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Abstract
Visual localization, the method of self-localization based on camera images, has estab-
lished as an additional, GNSS-free technology that is investigated in increasingly real
and challenging applications. Particularly demanding is the self-localization of first
responders in unstructured and unknown environments, for which visual localization
can substantially contribute to increase the situational awareness and safety of first
responders. Challenges arise from the operation under adverse conditions on compu-
tationally restricted platforms in the presence of dynamic objects. Current solutions
are quickly pushed to their limits and the development of more robust approaches is of
high demand. This thesis investigates the application of visual localization in dynamic,
adverse environments to identify challenges and accordingly to increase the robustness,
on the example of a dedicated visual-inertial navigation system.

The methodical contributions of this work relate to the introduction of semantic
understanding, improvements in error propagation and the development of a digital
twin. The geometric visual odometry component is extended to a hybrid approach that
includes a deep neural network for semantic segmentation to ignore distracting image
areas of certain object classes. A Sensor-AI approach complements this method by
directly training the network to segment image areas that are critical for the considered
visual odometry system. Another improvement results from analyses and modifications
of the existing error propagation in visual odometry. Furthermore, a digital twin is
presented that closely replicates geometric and radiometric properties of the real sensor
system in simulation in order to multiply experimental possibilities.

The experiments are based on datasets from inspections that are used to motivate
three first responder scenarios, namely indoor rescue, flood disaster and wildfire. The
datasets were recorded in corridor, mall, coast, river and fumarole environments and
aim to analyze the influence of the dynamic elements person, water and smoke. Each
investigation starts with extensive in-depth analyses in simulation based on created
synthetic video clones of the respective dynamic environments. Specifically, a com-
bined sensitivity analysis allows to jointly consider environment, system design, sensor
property and calibration error parameters to account for adverse conditions. All inves-
tigations are verified with experiments based on the real system.

The results show the susceptibility of geometric approaches to dynamic objects in
challenging scenarios. The introduction of the segmentation aid within the hybrid
system contributes well in terms of robustness by preventing significant failures, but
understandably it cannot compensate for a lack of visible static backgrounds. As a
consequence, future visual localization systems require both the ability of semantic
understanding and its integration into a complementary multi-sensor system.
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Zusammenfassung
Die visuelle Lokalisierung, die Methode der Selbstlokalisierung anhand von Kamerabil-
dern, hat sich als eine zusätzliche, GNSS-freie Technologie etabliert, die in immer mehr
realen und anspruchsvollen Anwendungen untersucht wird. Besonders anspruchsvoll
ist die Selbstlokalisierung von Ersthelfern in unstrukturierten und unbekannten Um-
gebungen, bei der die visuelle Lokalisierung wesentlich dazu beitragen kann, das Si-
tuationsbewusstsein und die Sicherheit von Ersthelfern zu erhöhen. Herausforderungen
ergeben sich durch den Betrieb auf rechenbeschränkten Plattformen unter widrigen Be-
dingungen und in Gegenwart dynamischer Objekte. Aktuelle Lösungen stoßen schnell
an ihre Grenzen und die Nachfrage nach der Entwicklung von robusteren Ansätzen
ist hoch. Diese Arbeit untersucht die Anwendung der visuellen Lokalisierung in wi-
drigen, dynamischen Umgebungen, um Herausforderungen zu identifizieren und die
Robustheit der Methode zu erhöhen, am Beispiel eines dedizierten visuell-inertialen
Navigationssystems.

Die methodischen Beiträge dieser Arbeit beziehen sich auf die Integration des
semantischen Verstehens, Verbesserungen in der Fehlerfortpflanzung und die Entwick-
lung eines digitalen Zwillings. Die geometrische Methode zur visuellen Odometrie
wird zu einem hybriden Ansatz weiterentwickelt, in dem markante Bildpunkte auf
bestimmten Objektklassen basierend auf einem neuronalen Netz zur semantischen
Segmentierung aussortiert werden. Ein entwickelter Ansatz aus dem Bereich der sensor-
nahen künstlichen Intelligenz ergänzt diese Methode, indem das Netz direkt darauf
trainiert wird, Bildbereiche zu erkennen, welche für die betrachtete visuelle Odometrie
kritisch sind. Eine weitere Verbesserung ergibt sich aus der Analyse und der Modi-
fikation einer bestehenden Fehlerfortpflanzung innerhalb der betrachteten visuellen
Odometrie. Außerdem wird ein digitaler Zwilling vorgestellt, der die geometrischen
und radiometrischen Eigenschaften des realen Sensorsystems in der Simulation nach-
bildet mit dem Ziel, die experimentellen Untersuchungsmöglichkeiten zu vervielfachen.

Die Experimente basieren vorrangig auf Inspektionsdatensätzen, die verwendet
werden, um drei Ersthelferszenarien zu untersuchen, nämlich Rettung in Gebäude-
komplexen, Flutkatastrophe, und Waldbrand. Die Datensätze wurden in Flur-, Ein-
kaufszentrum-, Küsten-, Fluss- und Fumarolenumgebungen aufgezeichnet und werden
verwendet, um den Einfluss der dynamischen Elemente Person, Wasser und Rauch
zu analysieren. Jede Untersuchung beginnt mit einer ausführlichen Analyse in der
Simulation auf der Grundlage von synthetischen Videoklonen der jeweiligen dyna-
mischen Umgebungen. Insbesondere ermöglicht die kombinierte Sensitivitätsanalyse
die gemeinsame Betrachtung von Umgebungs-, Systemdesign-, Sensoreigenschafts- und
Kalibrierungsfehlerparametern, um widrige Bedingungen zu berücksichtigen. Alle Unter-
suchungen werden durch Experimente am realen System verifiziert.

Die Ergebnisse zeigen deutlich die Anfälligkeit von geometrischen Ansätzen für dy-
namische Objekte in anspruchsvollen Szenarien. Die Einführung des Segmentierungs-
zusatzes innerhalb des hybriden Systems verbessert deutlich dessen Robustheit, indem
erhebliche Fehler verhindert werden. Das Fehlen eines sichtbaren, statischen Hinter-
grunds kann es jedoch verständlicherweise nicht kompensieren. Zukünftige visuelle
Lokalisierungssysteme erfordern daher sowohl die Fähigkeit zum semantischen Ver-
ständnis als auch die Integration in ein komplementäres Multisensorsystem.
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Chapter 1

Introduction

Visual localization describes the estimation of the 6 Degrees-of-Freedom (DoF) pose,
consisting of position and orientation, of a mobile sensor-system from camera images in
a confined space. A basic building block is Visual Odometry (VO) that incrementally
estimates the camera pose based on a sequence of camera images. A complementary
sensor to cameras is the Inertial Measurement Unit (IMU) that measures accelerations
and angular rates and also can be used to estimate the trajectory. The combination
of both sensors within a Visual-Inertial Navigation System (VINS) provides a more
robust and accurate localization solution compared to the individual sensors. Further
developments, such as their integration into a Simultaneous Localization and Mapping
(SLAM) framework or their combination with a Global Navigation Satellite System
(GNSS) receiver, can significantly increase the accuracy of the system. Moreover, recent
advances in Deep Learning (DL) lead to the development of hybrid systems, combining
model- and data-based approaches, to further improve localization capabilities.

One of such visual localization systems is the Integrated Positioning System (IPS)
(Börner et al., 2017). It was developed at the German Aerospace Center (DLR)
and is designated for navigation, 3D reconstruction and inspections. IPS performs
dead reckoning based on Inertial Navigation (IN) that is aided by measurements from
stereo-camera-based VO. By consisting of both, the sensors and the localization solu-
tion, it represents a complete sensor system. Optionally, measurements from GNSS or
infrastructure-based fiducial markers can be used to enable global localization.

Visual localization is an essential tool for robust autonomous navigation in unknown
environments and has become indispensable for robotic applications such as planetary
exploration or vehicle navigation within environments where GNSS is not available.
Visual cameras are valuable components for sensor systems, because they are based
on passive measurements, do not include mechanical elements, provide a large amount
of information and are light-weight and inexpensive. Furthermore, the relatively large
computational requirements of related computer vision algorithms are cushioned by
the rapid improvements of computing hardware in the past few decades. These ad-
vantages motivate practitioners to apply visual localization in more and more difficult
environments, but in which such methods quickly reach their limits. As a consequence,
researchers have recently focused on increasing robustness of visual localization sys-
tems in high dynamic environments and under adverse conditions. Coined by Cadena
et al. (2016), visual localization has entered the robust-perception age.
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1.1 Motivation
In line with the global trend, IPS is exploited to be applied in more and more challeng-
ing environments. Some of those current and future challenging applications are shown
in Figure 1.1. This includes localization in the context of dynamic hand-held indoor (a)
and outdoor localization (d) and vehicle navigation (g). This includes inspection in the
context of geological applications (b, c, f), forestry (e), and on-orbit-servicing (h). As-
sociated challenges include reduced calibration accuracy and sensor properties due to
adverse conditions and visual distractions from dynamic environmental elements that
can severely impact the localization solution. Analyzing this impact and increasing
robustness against dynamic elements is a hot topic in current research.

(a) Corridor (b) Fumaroles (c) Coast (d) River

(e) Forest (f) Glacier caves (g) Vehicle nav. (h) Satellite insp.

Figure 1.1: Exemplary IPS datasets recorded in challenging environments. Datasets
of (a-d) are used in this thesis. References: (a,b) Irmisch et al., 2020, 2021, (e) Thiele,
2015, (f) Auf dem Kampe, 2021, (g) Ernst et al., 2018, (h) Benninghoff et al., 2018.

A particularly demanding application is the localization of first responders in un-
structured or unknown environments. In emergency response, a reliable and accurate
localization system with seamless indoor and outdoor navigation capability is consid-
ered as an essential tool to improve situational awareness and safety (Ferreira et al.,
2017; Rantakokko et al., 2011). This real-time system must provide meter-level accu-
racy, specifically less than one meter horizontally and floor-level accuracy vertically,
and integrity monitoring capabilities such as estimation of localization errors in form
of uncertainties (Rantakokko et al., 2010). The accuracy requirement is a lot less than
for instance from industry and construction with at least centimeter-level requirements
(El-Sheimy and Li, 2021). Though, localization systems for first responders must be
able to work reliable without using technical infrastructure and without any a priori
knowledge (e.g., maps, floor plans). Furthermore, the performance of the sensor system
will be severely constrained by the demands for energy-efficiency with batteries that
last longer than 24 hours, inexpensiveness with a cost less than 1000 $, handiness and
light weight of less than 1 kg (Rantakokko et al., 2010). Moreover, it must operate
in harsh environments and is frequently exposed to physical stress, which can reduce
sensing quality and lower calibration accuracy.
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Visual localization is generally considered as a promising component for sensor-
fusion-based localization systems of first responders. But the mentioned restrictions
(has to work under adverse conditions in harsh environments and without any self-
localization infrastructure and a priori knowledge) are challenging and topic of research
and development. In this context, the IPS research team of the DLR is currently en-
gaged in the projects INGENIOUS (2019) and RESCUER (2018). For instance, an
on-ground IPS is deployed in combination with airborne MACS (Hein et al., 2019)
technology in INGENIOUS to develop methods for real-time localization of first re-
sponders in combined indoor and outdoor environments and rapid environmental map-
ping. A critical point to consider is that the localization system must not interfere
with the first responder activity (Ferreira et al., 2017). This reduces the applicabil-
ity of infrastructure-based or SLAM-based visual localization methods that require to
look at specific way points. Therefore, IPS must constantly guarantee an accurate dead
reckoning solution in all environments.

The development of solutions for real-time tracking of first responders is of high
demand (IFAFRI, 2022). A robust visual localization method integrated in a multi-
sensory system will substantially contribute to increase the situational awareness and
safety of rescuers in future first responder scenarios. In this context, the main challenges
are operation under adverse conditions on a computationally restricted platform and
in the presence of a high number of dynamic objects. For example, adverse conditions
can lead to reduced sensing capabilities due to poor visibility or to reduced calibration
accuracy due to high physical stress on the system. Dynamic objects can create strong
visual distractions that can even cause the system to fail.

Motivated by this promising use case, this work aims at investigating the applica-
tion of visual localization in dynamic, adverse environments to identify challenges and
accordingly to increase the robustness of visual localization, on the example of IPS.

1.2 First Responder Scenarios
First responders have to operate in adverse environments that present unique chal-
lenges and consist of diverse dynamic environmental elements, such as in Figure 1.1
(a-d). Their influence on the localization solution has to be studied in detail in or-
der to develop robust localization systems, which requires the existence of appropriate
datasets. However, obtaining such data is complicated, because, similar to the deploy-
ment of robotic platforms in disaster response (Murphy, 2021), a real first responder
operation in a catastrophic scenario is not the time to collect data for research experi-
ments or for system development. As a consequence, the required experiments must be
based either on a simulated scenario in a real confined environment (as in INGENIOUS
or RESCUER), abstracted from other applications or modeled with synthetic data.

In this thesis, inspection datasets from IPS are used to abstract and motivate three
theoretical first responder scenarios that are characterized by unique environmental
elements. The scenarios include (i) indoor rescue, (ii) flood disaster and (iii) wildfire.

(i) Indoor rescue scenarios can be versatile and can take place in complex buildings.
For instance, groups of civilians might have locked themselves in different building parts
during a rampage scenario and must be rescued by groups of first responders without
them coming into contact with the attacker. The rescuers themselves are unaware of
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the attacker’s position, which however might be known to the incident commander
due to contact with other rescue teams. The commander‘s task is then to navigate
the rescuers safely through the building. In a complex building with no or damaged
pre-installed infrastructure for localization, visual localization can be a valuable asset,
but might be impaired by the frequent presence of moving persons in front of the
cameras. For instance, team members might walk constantly in front of the camera
as they navigate through the building. Further, groups of people to be rescued walk
disoriented through the area or move together in one direction. The dynamic element
person is considered in this thesis based on a large-scale mall dataset and the corridor
dataset of Figure 1.1 (a).

(ii) The flood disaster in Germany 2021 resulted in considerable destruction of
infrastructure and claimed over 180 lives (Kreienkamp et al., 2021). Even though
such exceptional event is considered to happen only once every few hundreds years,
the climate change increases the likelihood and intensity of extreme rainfall events.
(Fekete and Sandholz, 2021) attribute the main problems of the 2021 flood disaster
response to awareness, assessment, construction and planning gaps. They further noted
that navigation through flooded areas and identification of alternative access routes
has proven to be a challenge. In this context, accurate localization and navigation is
essential for a systematic securing of large terrains, possibly including digital capture of
secured areas and location marking of, in the worst case, corpses to be recovered. This
requires an accurate self-localization, which is severely restricted by GNSS availability
in urban canyons or dense forests, missing natural reference points such as bridges or
buildings due to the destruction caused by the flood, and unfamiliarity of non-resident
first responders with the environment. Visual localization might be a valuable asset,
but might be impaired doing an ongoing flood by flowing water that appears opaque
and consists of floating debris. The dynamic element water is considered in this thesis
based on the coast (c) and river (d) datasets of Figure 1.1.

(iii) Wildfire. A self-localization system for fire fighters can be beneficial to quickly
reach individuals that lost orientation or behave erratically during a fire fighting sce-
nario (Rantakokko et al., 2010). Another application for self-localization of fire fighters
could be the efficient localization and extinguishing of embers after a main wildfire
fighting event in combination with satellites and drones. Space- and airborne tech-
nologies are the key for large-scale fire monitoring. However, they cannot observe
embers through clouds, treetops or dense smoke. In this case, ground-based fire fight-
ers could efficiently support the ember mapping process through the use of thermal
camera devices and precise localization methods. In this context, visual localization
can be a valuable asset, but might be impaired by the frequent presence of rising smoke
and steam that partly cover and blur image areas. The dynamic element smoke1 is
considered in this thesis based on the fumaroles dataset of Figure 1.1 (b).

The datasets for these three scenarios have mostly in common that they are recorded
in non-laboratory and relatively inaccessible environments. As a consequence, the
amount of ground truth information is severely limited. Furthermore, the datasets are
mostly restricted to one survey day with each a limited number of recordings with just
a few tens of thousands of images. This limits the amount of variation of environmental

1The term smoke is used in this work for better generalization in the context of first responders,
but is imprecise from a geological point of view, since fumaroles emit steam and volcanic gases (vapor).
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factors in the images and consequently reduces the significance of results. Therefore,
each scenario is considered additionally in simulation to create highly diverse synthetic
datasets using the digital twin of IPS that was developed within the scope of this thesis.

1.3 Research Focus
This section outlines the research questions, briefly summarizes the main contributions
of this thesis and lists publications, in which parts of thesis have been already published.

Research Questions

Following the motivation, this work shall answer the research question:

1. What is the influence of typical dynamic objects from different challenging envi-
ronments on (stereo) visual localization and how can it be assessed?

In connection with this research focus, the capability of Deep Neural Networks (DNNs)
for object detection is exploited in this thesis. A key component will be the considera-
tion of strategies from the research field Sensor-AI (Börner et al., 2020), which foresees
a close interaction and combination of physical models, data-based models and classical
approaches in one sensor system. Therefore, the following questions are formulated:

2. With specific focus on the dynamic elements person, water and smoke, can a
DNN be used to identify critical image areas that are not suitable for VO?

3. Can the gained additional knowledge of this DNN be used to improve visual
localization in the respective dynamic environments?

Since the main motivation is the application for first responders, which involves the
topics uncertainty and sensor degradation, the following question is also considered:

4. Which error sources, either from the environment or the sensor system, have the
most erroneous influence and need to be considered first in future developments?

Contributions

To answer the given research questions, new methods and tools for evaluation must be
developed. The three main contributions of this thesis summarize as follows.

The first contribution is the analysis of the influence of different dynamic elements
from challenging environments on visual localization and the development of methods
to reduce their influence. First, the object person is considered in indoor environments,
which is frequently studied in literature. Therefore, a basic mask approach based on a
pre-trained DNN for semantic segmentation is used to ignore distracting image areas.
Second, the dynamic elements smoke and water are considered, which are studied
in this work based on fumarole, coastal and river datasets. Therefore, a Sensor-AI
approach is proposed to improve VO-based sensor systems. Specifically, a DNN is
trained to segment image areas that are critical for a specific VO system and use this
knowledge to improve the same VO system.

The second contribution is the consistent simultaneous investigation in real world
and in simulation. Therefore, a digital twin was developed that closely replicates the
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geometry and radiometric properties of the real-world IPS in simulation. It was used
to create synthetic videos clones of each considered dynamic element in the respective
environments. In-depth analyzes are conducted in simulation based on three extensive
simulation strategies. First, the sensitivity analysis allows to assess the influence of sin-
gle parameters. Second, the geometric Monte-Carlo-Simulation (MCS) allows to assess
the quality of propagated uncertainties. Third, the combined sensitivity analysis al-
lows to consider multiple environment, system design, sensor property, and calibration
error parameters at once and to weight their individual influence. All investigations
are verified with experiments based on the real IPS.

The third contribution is the continuous consideration of degraded camera param-
eters caused by adverse conditions. First, degraded geometric system calibration is
considered that can result, for instance, from high physical stress on the system. There-
fore, realistic calibration errors in form of uncertainties are assessed and deployed in all
experiments. Further, the error propagation concept in IPS is analyzed and improved,
which is validated using the simulation strategy geometric MCS. Moreover, system un-
certainties are brought into relation with the influence of dynamic objects and are also
deployed to identify distracting image areas in order to generate reference data within
the Sensor-AI approach. Second, degraded camera properties are considered that can
result from adverse environmental conditions. Specifically, image blur and noise are
considered as part of the combined sensitivity analysis.

Associated Publications

Parts of this thesis have been published in the following publications:

• Irmisch et al. (2019). “Simulation Framework for a Visual-Inertial Navigation
System”. In: International Conference on Image Processing (ICIP).

• Irmisch et al. (2020). “Robust Visual-Inertial Odometry in Dynamic Environ-
ments using Semantic Segmentation for Feature Selection”. In: ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences.

• Irmisch et al. (2021). “A Hand-Held Sensor System for Exploration and Thermal
Mapping of Volcanic Fumarole Fields”. In: Geometry and Vision. Communica-
tion in Computer and Information Science (CCIS).

1.4 Organization of the Thesis
This thesis is mainly separated into two parts. Part I (Chapters 3-5) considers the
basic geometric approach of IPS in order to prepare the investigation of the main
research questions. This includes a methodical description of IPS, the development
of a digital twin and an investigation of uncertainties in VO. Part II (Chapters 6-8)
evolves IPS to a hybrid system by introducing a learning-based module. This includes
the introduction of a segmentation aid and a related Sensor-AI approach to improve IPS
in diverse dynamic environments. The results of both parts are then jointly discussed
with respect to the research focus in a subsequent chapter.

Chapter 2 reviews state-of-the art methods available in the field of (visual) localiza-
tion. Special focus is on: navigation in first responder applications; different methods
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for visual localization, including the combination of classical approaches with DL mod-
ules; visual localization in dynamic environments; and simulation tools to analyze and
improve visual localization.

Chapter 3 introduces the basic concepts of the existing IPS with focus on its sensors,
physical models, localization approach and metrics to evaluate estimated trajectory and
uncertainty quantities. Chapter 4 introduces the digital twin that was developed within
this thesis. This includes a description of its functionality, its synthetic video clones
for the environments corridor, fumaroles and coast, and the used simulation strategies
(i) sensitivity analysis, (ii) geometric MCS, and (iii) combined sensitivity analysis.
Chapter 5 investigates the influence of geometric calibration errors on IPS and ana-
lyzes its error propagation concept. Therefore, factors are first discussed that influence
the geometric registration during application for inspection and first responders and
respective calibration settings I and F are derived. Then, the VO pipeline is ana-
lyzed with respect to propagation of uncertainties and three related improvements are
proposed. Finally, the improvement of the VO and navigation solution of IPS is vali-
dated in simulation with strategy (ii) and confirmed on real-world data. The improved
method and the derived calibration settings are used in the following chapters.

Chapter 6 introduces the basic concept of semantic segmentation, which is inte-
grated as a DL module in the proposed hybrid system, and briefly summarizes related
developments. Chapter 7 investigates the influence of the dynamic object person on
the localization in indoor environments by using a pre-trained DNN for semantic seg-
mentation. Three experiments are presented. Strategy (i) is conducted simultaneously
in simulation and real-world in a highly dynamic corridor environment to investigate
the influence of different system parameters. Strategy (iii) is applied to weight the in-
fluence of dynamic environmental parameters to other error sources. Real-world data
is used to confirm the observations based on a large-scale mall dataset. In Chapter 8,
a Sensor-AI approach is proposed that learns critical image areas from VO and uses
this knowledge to improve the same VO method. This method helps to extend the
investigation of the influence of dynamic objects on visual localization to the objects
smoke and water. The experiments are conducted in simulation with strategy (ii) and
are also based on real-world data from the environments fumaroles, coast and river.

The results are jointly discussed and interpreted in Chapter 9 and are brought into
context with existing literature. Finally, Chapter 10 summarizes gained insights and
gives an outlook on future work.
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Chapter 2

Related Work

This chapter provides a concise overview about related literature with focus on self-
localization for first responders, different realizations of vision-based localization meth-
ods, visual localization in dynamic environments and the use of digital twins to develop
related vision-based methods.

2.1 Self-Localization Technologies and their Oper-
ational Capability for First Responders

A variety of solutions for self-localization of individuals or robotic platforms exist. This
section provides an outline of the main technologies from research for the localization
of first responders. The reader might be referred to El-Sheimy and Li (2021) for a
comprehensive review of sensors and techniques for indoor navigation and to Ferreira
et al. (2017) for a detailed survey of research work for localization of first responders.

GNSS is a collective term for global-navigation systems such as the NAVSTAR
or Galileo. Based on multilateration with at least 4 satellites within line of sight, a
low-cost receiver can estimate its position with an accuracy of a few meters. Although
this revolutionary technology has become a standard for many outdoor applications,
it shows major performance loss and outages in urban canyons, tunnels, dense forests
and indoor environments. As a result, GNSS transfers to a secondary sensor even in
autonomous driving (El-Sheimy and Li, 2021).

Infrastructure-based methods depend on pre-installed or pre-deployed local area
networks. For instance, pre-installed Wifi-networks are widely used for indoor naviga-
tion and provide accurate localization. Further, 5G technology shows great potential
for localization and navigation (El-Sheimy and Li, 2021). However, the signal can be
blocked by multiple floor-levels or underground, jammed or destroyed during major dis-
aster events such as fires or floods. Pre-deployed infrastructure has to be established
first on arrival of the first responders, but similarly enable reliable and accurate lo-
calization. This includes technologies such as Radio-Frequency Identification (RFID),
Ultra-Wide-Band (UWB), Zigbee or Bluetooth Low Energy (BLE).

Infrastructure-less approaches allow relative positioning in a local reference frame.
They can be self-contained or dependent on active or passive measurements of the envi-
ronments. IN provides a self-contained localization solution, which does not require ex-
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ternal references, by integrating measured acceleration and angular rate measurements
in a strapdown manner (Woodman, 2007). The development of small and lightweight
Microelectromechanical System (MEMS) inertial sensors allow the deployment of IMUs
in various applications. However, they are prone to strong drift accumulation due to
varying unknown measurement bias terms and therefore, they must be aided by Zero
Velocity Updates (ZUPT) or external sensor measurements for accurate localization.

Active sensors such as Light Detection and Ranging (LiDAR) efficiently capture the
3D-structure of the environment based on the Time-of-Flight (ToF) principle and can
provide accurate localization results. Though, they are usually based on mechanical
laser arrays (e.g., Velodyne VLP-16) that spin at high frequency and are relatively
expensive and bulky. This limits its application for small localization devices that are
subjected to high physical stress. A recent development is the MEMS-based solid-
state LiDAR (e.g., RealSense L515), which was already successfully applied for SLAM
(Wang et al., 2021). It is inexpensive and light-weight, but comes with a smaller
field of view. Related, the RGB-D sensor is frequently used for localization in indoor
environments (e.g., Azure Kinect) as it provides highly accurate depth maps at close
distances. However, due to its infrared-based ToF technology, it is unusable in outdoor
environments with direct sunlight (Tölgyessy et al., 2021) and is therefore less suited
for outdoor first responder applications. Other active sensors are based on radar and
sonar technologies, that however show low measurement density or reflection issues on
object surfaces.

Cameras are passive sensors and a popular choice for localization approaches. Vi-
sual localization comes at low cost, provides a large amount of information and shows
accurate localization results. Though, it is sensitive to illumination, depends on the sig-
nificance of environmental features and is relatively computational expensive. Besides
standard visual camera, new camera sensor technology is developed that is promising
for localization under adverse environmental conditions. Examples are the event cam-
era sensor for extremely fast camera movements, the SWIR camera that is possibly
well suited for navigation in dense smoke or RGB-D, thermal and light-field cameras.

A first responder localization system is a safety-critical component and cannot be
based on one sensor only. Data fusion of complementary sensors must be realized.
For instance, an early sensor fusion approach was described by Fischer et al. (2008),
which is based on the combination of foot-mounted IMUs and ultrasound beacons.
The IMU is used for IN with periodical application of ZUPTs during standstill phases.
The ultrasound beacons were simulated, but were thought to be deployed by the first
responders, leaving a “breadcrumb” trail. The authors demonstrated that the inherent
drift of the IN solution could be compensated by the measurements from the beacons.
Rantakokko et al. (2011) deployed two foot-mounted IMUs for two units that were
additionally equipped with UWB ranging devices. They demonstrated a cooperative
approach, where the shared position and distance information between both units im-
proved localization results over basic ZUPT-based IN. Kachurka et al. (2021) presented
a real-time cooperative SLAM system for indoor localization of first responders, fus-
ing GNSS with two complementary SLAM approaches, namely LiDAR-Inertial-SLAM
and Visual-Inertial-SLAM. By testing their approach in a challenging indoor scenario,
they showed that although the individual SLAM methods fail in different scenes, the
cooperative approach offers a consistent and accurate trajectory.
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2.2 Methods for Visual(-Inertial) Localization
Visual localization is an extensive field of research that is targeted with most differ-
ent approaches. This section provides an outline of different categories with selected
examples of the main directions for vision-based localization with focus on VO, VINS
and SLAM approaches. For a complete and comprehensive overview, the reader might
be referred to the classics (VO: Scaramuzza and Fraundorfer, 2011, Aqel et al., 2016;
VINS: Huang, 2019; SLAM: Durrant-Whyte and Bailey, 2006, Cadena et al., 2016) or
to Alkendi et al. (2021) for a recent review about state-of-the-art approaches.

Visual Odometry

VO is a map-less approach to estimate the ego-motion based on images sequences and
is most often applied in a monocular or stereo-camera setup (Scaramuzza and Fraun-
dorfer, 2011). Substantially, the methods are divided into the two broad categories
geometric (model-based) and non-geometric (learning-based) approaches (Chen et al.,
2020; Poddar et al., 2018). Depending on the amount of image information used, it
is classified as sparse or dense (Engel et al., 2016). The type of used image infor-
mation, either based on salient features or pixel intensities, classifies the approach as
feature- or appearance-based (Scaramuzza and Fraundorfer, 2011). Closely related, the
optimization objective determines whether it is an indirect or direct approach by re-
spectively formulating a geometric or a photometric error (Engel et al., 2016). The
exact classification is often vague and many hybrid methods exist.

A geometric, sparse, indirect VO approach was presented by Nister et al. (2004),
who estimated the ego-motion based on tracked features either for a monocular or
stereo-camera setup. They detected salient feature points in every image, used image
patches as descriptors and applied feature matching with normalized correlation as sim-
ilarity metric. The camera motion estimation was combined with an outlier detection
approach to improve robustness and iterative refinement that optimized the geometric
reprojection error. This work has coined the term visual odometry.

A geometric, sparse, direct, monocular VO approach was presented by Engel et
al. (2016), who estimated the ego-motion directly based on measured pixel intensities.
They optimized the photometric error over multiple recent keyframes to jointly account
for intrinsic and extrinsic camera parameters and inverse depth values. This approach
inherits the advantages of direct methods, i.e., the ability to use all image points, and
of sparse methods, i.e., efficiency. Though, they further showed that direct methods
are more prone to geometric noise such as calibration errors than indirect methods.
Therefore, indirect methods might be better suited for first responder applications
where high physical stress and the use of low-cost cameras are to be expected.

Learning-based methods recently gained enormous attention due to the immense
progress in the DL domain. Chen et al. (2020) distinguished between hybrid and
end-to-end approaches and further divided them into supervised and unsupervised ap-
proaches. The stated main advantages over model-based approaches are their capability
to automatically discover relevant and resilient task-specific features, their ability to
learn from past experience and their capability to account for the increasing amount of
sensor data. Though, disadvantages arise from its dependence on giant datasets, lack
of interpretability and required amount of computational power.
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For instance, Zhan et al. (2020) proposed a hybrid approach that aids geometric
monocular pose estimation with two DNNs. They are deployed to find reliable 2D-
2D point correspondences based on optical flow and to recover the metric scale based
on depth prediction. In such way, hybrid approaches of model- and learning-based
approaches usually outperform pure geometric approaches, since the DNNs can provide
additional information that can easily be integrated into the model-based method.

Wang et al. (2017) proposed DeepVO, a supervised, end-to-end, monocular approach
that is based on a Recurrent Convolutional Neural Network (RCNN). It is able to com-
pute the metric scale without prior information during operation and showed superior
performance over a monocular geometric approach of LIBVISO2 (Geiger et al., 2011).

End-to-end approaches are promising, but are still outperformed by model-based
(or hybrid) approaches in the VINS domain (Chen et al., 2020). Though, they show
better resistance to sensor degradation such as calibration errors (Clark et al., 2017).

Visual-Inertial Odometry

VINS utilize high-informative but low frequency cameras and self-contained but drift-
prone IMU in a complementary sensor setup. Substantially, VINS methods are catego-
rized based on the processing stage used for data fusion, i.e., loosely- or tightly-coupled,
and the type of fusion method, i.e., filter- or optimization-based (Huang, 2019). VINS
approaches that essentially perform dead reckoning are referred to as Visual-Inertial
Odometry (VIO).

Optimization-based approaches solve a nonlinear least-squares problem over a set
of measurements in a Bundle Adjustment (BA) manner, which is constrained to a few
keyframes due to high computational costs. E.g., Stumberg et al. (2018) proposed an
optimization-based, tightly-coupled, direct, sparse, monocular VIO method that min-
imizes photometric errors and IMU measurements simultaneously to jointly estimate
camera poses and sparse scene geometry. By integrating the scale and gravity direction
into the state vector, they eliminated the need for a tedious state initialization phase.

Filter-based methods perform data fusion in a filtering manner, for instance based
on the Extended Kalman Filter (EKF) or the Unscented Kalman Filter (UKF). Loosely-
coupled, filter-based VINS estimate the VO with a covariance independently and then
fuse the estimated transformation with IMU measurements in the filter (e.g., IPS,
Grießbach et al., 2014). This is computationally highly efficient, but geometric infor-
mation are lost. A tightly-coupled, filter-based VINS uses information of 3D points to
optimize the IMU states, which leads to improved accuracy, but comes at higher com-
putational costs. Geometric constraints can be induced by adding tracked 3D points
to the state vector, such as described by Huang (2019). Though, this approach is
computational expensive when there are many features involved. To reduce compu-
tational costs, for instance Mourikis and Roumeliotis (2007) proposed the EKF-based
Multi-State-Constraint Kalman Filter (MSCKF) in the context of monocular, tightly-
coupled, feature-based VIO. The derived measurement model includes camera poses of
recent keyframes in the state vector instead of 3D points and uses multi-view-tracked
feature points during the measurement update to induce geometric constraints.

Anderson et al. (2019) investigated the covariance estimation for a geometric,
feature-based, indirect RGBD-VO approach, using a Monte-Carlo method for error
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propagation. The estimated relative transformation was used in a simplified EKF of
a loosely-coupled, filter-based VIO approach for an Unmanned Aerial Vehcile (UAV).
They showed that dynamically propagated covariances for VO lead to more accurate
filter estimates than fixed values. They formulated a normalized error that allows a
gross evaluation of propagated uncertainties, see Section 3.3.2.

Simultaneous Localization and Mapping

SLAM describes the simultaneous state estimation of a sensor system and map genera-
tion of the environment based on the perceived sensor data in real-time (Cadena et al.,
2016), starting in an unknown location and unknown environment (Durrant-Whyte
and Bailey, 2006). SLAM is a superset of VO since the trajectory estimation of the
sensor system is an essential part (Poddar et al., 2018). Further, VINS are considered
as an instance of SLAM, while it is specifically addressed as Visual-Inertial (VI)-SLAM,
if the 3D feature points are contained in the state vector and jointly optimized with
the camera/IMU pose (Huang, 2019). The mentioned taxonomy for VO and VIO is
directly applicable for SLAM approaches. The reader might be referred to Campos
et al. (2021) for a concise overview of the most representative approaches.

The main advantage of SLAM is its potential to eliminate the drift, which basically
is the Achilles heel of all dead reckoning systems, in already mapped areas based on
keyframe- and loop closure techniques. Though, the disadvantage is the enormous
required computational costs to contain and update the map and the corresponding
system poses. Therewith, additional challenges arise in terms of robustness, scalability
and efficient map representation, see Cadena et al. (2016).

Most recently, the open-source library ORBSLAM3 was published by Campos et al.
(2021), which contains state-of-the-art methods for geometric, sparse, indirect V-SLAM
and optimization-based, tightly-coupled VI-SLAM for mono-, stereo- and other cam-
eras types. It builds up on ORBSLAM2 (Mur-Artal and Tardós, 2016) that combines
tracking and mapping of 3D points based on descriptor-based ORB features, keyframes,
loop closure and relocalization based on bag-of-words (Galvez-López and Tardos, 2012).
The backbone of ORBSLAM3 is a sophisticated map-handling approach based on Atlas
(Elvira et al., 2019) that allows multi-map handling, smooth loop-closure and relocal-
ization. Thereby, they strongly contributed to the open problem of “how to store the
map during long-term operation” (Cadena et al., 2016). ORBSLAM3 includes a VINS-
option based on Mur-Artal and Tardos (2017) and a favorable short initialization phase
of less than 15s based on Campos et al. (2020). Interestingly, they pointed out that
image segmentation could be used to discard features on the sky that can corrupt the
system due to small motions, indicating that a geometric- and learning-based hybrid
approach still could improve the system in dynamic environments.
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2.3 Visual Localization in Dynamic Environments
In the last decade, visual localization research has significantly shifted to the improve-
ment of robustness in challenging environments. This section provides an outline of
selected strategies and examples with focus on visual, feature-based approaches. The
reader might be referred to Saputra et al. (2018) for a comprehensive overview for
V-SLAM and Structure from Motion (SfM) for localization in dynamic environments.

Geometric Approaches

Feature-based VO and SLAM approaches typically rely on the same principles for ro-
bust localization. Geometric models in form of fundamental matrices or homographies
are estimated based on tracked features, while Random Samples Consensus (RANSAC)
(Fischler and Bolles, 1981) is used to statistically exclude outliers and non-static feature
points. Thereby, different geometric constraints are applied, such as from epipolar ge-
ometry (Hartley and Zisserman, 2003) or motion constraints. For instance, MonoSLAM
(Davison et al., 2007) predicts the camera motion with corresponding uncertainties to
restrict the search space during feature tracking. The space is defined by the position
and propagated uncertainty of the projected map point in the new camera frame.

Sensor fusion such as with an IMU can significantly increase the robustness of the
localization approach. Similar to motion constraints, Hwangbo et al. (2011) used gy-
roscope measurements from an IMU to predict feature positions in sequential images
under strong camera motion and used them as initialization for the Kanade-Lucas-
Tomasi (KLT) tracker. In terms of localization robustness, Zhang et al. (2018) devel-
oped a tightly-coupled, multi-keyframe VINS and could show a superior performance
of VIO over pure visual methods in a dynamic office environment by experimenting on
datasets consisting of pedestrians and strong camera motion.

Temporal information from feature tracking or optical flow ease feature classifica-
tion. Extending MonoSLAM, Migliore et al. (2009) implemented tracking and classifi-
cation of dynamic features in a parallel module. An intersection test of three projected
viewing rays from the same feature in different views is used for classification. It for-
mulates a chi-squared test based on corresponding propagated uncertainties to account
for uncertain measurements. Zou and Tan (2013) proposed a collaborative SLAM for
localization of multiple monocular cameras tracking static and dynamic points. In
scenarios with high content of moving objects, a camera view might be obscured by a
moving object. In such a scenario, they preserve robustness by estimating camera poses
of multiple cameras jointly together with the positions of dynamic 3D points. They
maintain uncertainties of map points, which allows to use its reprojection error for clas-
sification based on a chi-squared test. Alcantarilla et al. (2012) identified features on
moving objects based on dense scene flow from two subsequent stereo frames within V-
SLAM. First, dense scene flow is computed based on depths maps, optical flow and an
initial VO estimation. Measurement uncertainties are propagated to derive correspond-
ing motion uncertainties. Second, non-static motions are identified with a chi-squared
test and corresponding features are discarded within a second VO estimation.

Geometric constraints play an essential role in IPS and are used in this thesis in
combination with a chi-squared test to identify moving features. Though, the proposed
approach of Chapter 8 is deployed offline to train a DNN based on past experiences.
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Semantic Approaches

The integration of a DNN for semantic segmentation into VO or SLAM is an efficient
way to introduce prior knowledge about potentially moving objects. Kaneko et al.
(2018) generated a mask for the object classes car and sky and used it to prevent
the feature detection within monocular SLAM in corresponding image areas. They
found mostly superior performance over the base method by experimenting on synthetic
datasets with diverse weather conditions. Bescos et al. (2018) could show similarly good
results of the basic mask approach over the base method in dynamic environments with
respect to monocular and stereo SLAM. Though, they reported slight deterioration in
the presence of parking cars, due to hard rejection of features on cars, which generally
provide good and reliable static features for the base method. Schorghuber et al. (2019)
relaxed those semantic constraints by introducing a confidence factor that continuously
evaluates features based on the number of observations and semantic classifications to
certain classes. Features on parking cars, if observed to be static multiple times,
are therefore used for localization. Contrary to discarding dynamic features, motion
information of rigid bodies can provide additional information during the optimization
process. Bescos et al. (2021) tightly coupled the SLAM objectives and multi-object
tracking in dynamic environments for stereo or RGBD systems, i.e., they optimize the
camera trajectory, object trajectory and static and dynamic objects points jointly.

Segmentation of only objects that actually move is a hot topic in research. For in-
stance, Siam et al. (2018) proposed a two-stream architecture for joint object detection
and motion segmentation based on appearance and motion clues. They could show that
this multi-task approach outperforms independently-trained networks. Apart from ve-
hicle navigation, Dave et al. (2019) proposed a class-agnostic approach for instance
segmentation of arbitrary moving objects. Their architecture similarly fuses motion
cues from optical flow and appearance cues from a segmentation model backbone.

Segmentation of arbitrary moving objects can significantly improve visual localiza-
tion. For instance, Barnes et al. (2018) trained a DNN to simultaneously predict a
depth map and an ephemerality mask to improve either a direct or an indirect monoc-
ular VO approach in a vehicle navigation context. Reference ephemerality image data
was generated offline based on additional sensor data from a stereo camera and LiDAR
and a generated 3D model of the static background. During application in indirect VO,
the ephemerality mask is used to strictly classify each feature as static or dynamic. Re-
cently, Bojko et al. (2021) generated class-agnostic masks of moving objects by only
using monocular camera images in connection with the targeted SLAM approach. In
training runs, they deployed SLAM outliers to derive binary masks for the whole im-
age sequence, which are used to train the DNN. In their experiments, they focused on
consensus inversion, which describes situations where more feature on dynamic then
on static objects are present, and could show significant improvements.

In this thesis, the basic mask approach is used to assess the influence of different
dynamic objects. In Chapter 8, geometric constraints are deployed to generate training
data offline for unknown object types, which shows parallels to Barnes et al. (2018)
and Bojko et al. (2021). Contrary to Barnes et al. (2018), the proposed method does
not require an additional sensor setup. Contrary to Bojko et al. (2021), the proposed
method is not restricted to dynamic objects and identifies method-specific distractions
in general, such as homogeneous surfaces or unusable fine-structured vegetation.
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Application in Challenging Environments

Visual localization and semantic segmentation are applied to increasingly challenging
environments, which can contain significant amounts of water or smoke.

In terms of water detection, for instance, Lopez-Fuentes et al. (2017) trained DNNs
for semantic segmentation in the context of flood monitoring based on a proposed river
water segmentation dataset and demonstrated the potential of DL for water detec-
tion. Though, water appearance comes with high variability due to constant motion,
reflection of surrounding vegetation and structures and changes of weather conditions.
Scherer et al. (2012) proposed an automatic river mapping system based on a low-flying
Micro Air Vehicle (MAV) that contains an image-based, self-supervised river segmen-
tation module. This approach uses a State Vector Machine (SVM) to classify patch-
and descriptor-based feature vectors. The classifier is continuously updated with gen-
erated training samples based on prior scene knowledge, e.g., a predicted horizon to
partition the image or detection of reflected features that directly identify river patches,
and therefore can cope with the high variety of river appearances. In a similar riverine
mapping context, Yang et al. (2017) proposed to include the reflection of feature points
into the localization procedure of Unmanned Aerial Vehcile (UAV)-based VINS. They
proved the benefit of the additional geometric information from reflections in terms
of observability analysis, numerical simulation and real-world experiments. Besides
drone applications, visual localization is further considered for surface vessel applica-
tions. E.g., Kriechbaumer et al. (2015) evaluated two stereo-VO methods and found
better performance of an indirect- over a direct approach. They stated that they found
no evidence for static scene violations in their experiments after RANSAC filtering.

Visual localization seems to be relatively robust against distractions from the water.
Reflection has even shown to be a key component for efficient river segmentation and
localization. Though, the considered scenario in this thesis differs in the way that no
prior assumptions about water can be made, water can obscure very large parts of the
image and flotsam might introduce challenges besides ripples or reflections.

In terms of smoke detection, for instance, Yuan et al. (2019) proposed a DNN for
smoke segmentation that was trained on synthetically generated data. Their results
show relatively accurate segmentation results and they highlighted difficulties arising
from high variation in smoke appearances, blurry boundaries and possible confusion
with similar appearing objects. Furthermore, the visibility of smoke depends on the
observed wavelength range of the cameras. Starr and Lattimer (2014) conducted ex-
tensive experiments to evaluate the performance of different navigation sensors under
low visibility due to smoke. Visual cameras have shown to be unaffected in light smoke
conditions and to be strongly affected in dense smoke conditions. Brunner et al. (2013)
combined visual and thermal cameras in V-SLAM, which improved localization over
single domain approaches in night, smoke and fire conditions. A proposed pre-selection
of local image areas for feature matching based on an entropy-based evaluation of struc-
tural information further improved their localization results by masking distractions
from low-light or smoke conditions.

The observability of smoke at different wavelength indicates that the training of a
DNN for smoke segmentation should be directly linked to the used cameras. This is
targeted in this thesis with a Sensor-AI approach and class-agnostic image segmentation
in Chapter 8.
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2.4 Simulation for Visual Localization
Simulation is essential for the efficient development and safe testing of visual localiza-
tion approaches in hazardous or difficult to access environments. This chapter presents
an outline of existing simulation tools and datasets. The reader might be referred to
Liu et al. (2021) for a comprehensive survey about related real and synthetic datasets.

Modular simulation tools are essential to create versatile synthetic datasets. A
popular tool from the robotics community is Gazebo (Koenig and Howard, 2004) that
allows to use different sensor models and physics engines in order to model differ-
ent complex robot platforms. OpenSceneGraph [OSG] is an OpenGL-based graphics
toolkit which was frequently used for visual simulation or scientific visualization, but is
currently succeeded by VulcanSceneGraph. Blender is a popular 3D modeling and an-
imation tool that allows realistic rendering based on computational expensive raytrac-
ing. It is frequently used in scientific research, such in the context of 3D reconstruction
(SyB3R, Ley et al., 2016) or training of DNNs (BlenderProc, Denninger et al., 2019).
Different real-time game engines with realistic large-scale environments are exploited,
such as Unreal Engine or Unity. For instance, AirSim (Shah et al., 2017) presents a
multi-sensor-platform that generates synthetic camera-images and IMU data in real-
time primarily for UAV applications. CARLA (Dosovitskiy et al., 2017) presents a
vehicle platform simulator that focuses on urban environments and simulates dynamic
objects with high diversity in their appearance and behavior.

Many challenging simulated datasets were proposed recently. For instance, Wang et
al. (2020) proposed the challenging TartanAir dataset that consists of several sequences
in diverse environments. Trajectories were generated automatically by using sampling-
based planning techniques and occupancy grid maps. Jeon et al. (2019) proposed the
disaster scenario dataset DISC that contains environmental challenges such as fire,
smoke and collapse. They further demonstrated the benefit of using disaster scenarios
during the training of DNNs in different tasks, such as semantic segmentation or VO.

Realism comes not only from high-quality synthetic sensor data, but also from a
close connection to real-world scenarios and motions. Pham and Suh (2018) simulated
sensor data for a foot-mounted IMU based on measured real-world trajectory and a
smoothing algorithm to introduce corrections based on externally measured way points.
A similar approach is developed in this thesis for the motion profile transfer. Gaidon
et al. (2016) cloned real-world sequences in a synthetic environment and introduced the
term synthetic video clone. They explicitly considered the transferability of experiment
observations across real and virtual worlds, exemplary on the task of complementing
training sets for multi-object trackers based on DL methods. However, even though the
realism of simulations improves continuously, testing should not be based on synthetic
data only, due to the gap between synthetic and real-world data (Vaudrey et al., 2008).

The term digital twin is used in this thesis to describe the synthetic projection of a
real sensor system. However, it can also be used to describe the synthetic projection of
a real environment. In this context, Smit et al. (2021) demonstrated and thoroughly
discussed the combined use of real-time, vision-based 3D mapping and 3D data visu-
alization to increase situational awareness of first responders and their commanders.

This thesis focuses on the use of synthetic video clones from mid-scale, real envi-
ronments and realistic trajectories in combination with extensive statistical evaluation.

17





Part I

The Geometric System
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Chapter 3

Fundamentals - Visual-Inertial
Navigation with IPS

In short, IPS (Börner et al., 2017) is a stereo-vision-aided inertial navigation system
that loosely-couples indirect, sparse VO and inertial navigation based on a Kalman
filter. It describes a sensor system that consists of the sensor components and a local-
ization solution. The function demonstrator used in this work is shown in Figure 3.1
(left). The localization functionality was designed and implemented by the authors of
Grießbach et al. (2014) [OSLib]. This includes the implementation of a multi-threading
processing framework, mathematical camera models, feature detection and matching,
VO, strapdown and data fusion, and analytical error propagation (Grießbach, 2015).
Zhang (2018) extended this work by improving the AGAST feature detector, imple-
menting an error propagation for the matching procedure, and investigating a first
keyframe-based approach in IPS. Outside of the focus of this thesis, it further consists
of a 3D reconstruction module based on the stereo camera (e.g., used in Ernst et al.,
2018) and can be fused with GPS to allow global localization (Baumbach et al., 2018).

This chapter describes the basic functionality of the VINS implementation in IPS,
focusing on the VO component. The chapter begins with an introduction of the sensors
of the used prototype and mathematical models used to model the camera system.
The second section describes the localization functionality. This includes a detailed
description of the image processing pipeline, which is the focus for improvements in

Stereo-

Camera

IMU

GPS

Thermal-

Camera

Figure 3.1: IPS hardware demonstrator (left, image from Irmisch et al., 2021) that is
used in this work and a IPS helmet (right) that might be suitable for first responders.
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Chapters 5, 7 and 8, and a brief summary of the IN and data fusion component. The
third section describes evaluation metrics that are used in later experiments. This
concerns trajectory evaluation and the evaluation of propagated uncertainties. Finally,
a short summary follows, which highlights geometric properties that should make IPS
less vulnerable to dynamic objects.

3.1 Sensors
This section introduces the sensors of IPS and the used mathematical camera models.

3.1.1 Physical Sensor Composition
Different prototypes exist for IPS and consist at least of a stereo camera and IMU. The
hand-held IPS technology demonstrator of Figure 3.1 (left) is used in this thesis. The
image shows the setup with an additional GNSS and a thermal camera in a volcanic
coast environment. Figure 3.1 (right) shows a prototypical IPS helmet system that was
for instance used during inspection of maritime hull structures (Wilken et al., 2015).
This system can be used hand-free, which makes it suitable for use by first responders
in principle. Further systems exist, such as used for vehicle navigation in combination
with GNSS (Baumbach et al., 2018; Zuev et al., 2019), which could be suitable for
global navigation of emergency vehicles in partly GNSS-denied environments.

Table 3.1: Hardware parameters for the camera (left) and IMU (right).

AVT Prosilica GC1380H ADIS-16488 Gyroscope Accelerometer
Resolution 1360×1024 px Bandwidth 330 Hz 330 Hz
Pixel size 6.25 µm Scale-factor stab. (s) 10 000 ppm 5000 ppm

Focal length 4.8 mm Random walk 0.3◦/h 0.029 m/s/
√

h
Sensor type CCD-panchrom. Bias repeatability (bc) ±0.2 ◦/s ±16 mg

Field of view 98° output noise (n) 0.16 ◦/s 1.5 mg

The main hardware components of IPS are an industrial-grade, MEMS-based IMU
and a stereo camera setup based on industrial-grade, panchromatic cameras, see Table
3.1. The chosen camera parameters in IPS can be seen as a trade-off between inspection
with accurate 3D reconstruction and robust localization in real-time. On the one hand,
inspection based on stereo cameras favors long focal length cameras and high resolution.
On the other hand, localization favors a large field of view to ensure a large coverage
area between sequential camera images during motion and to reduce the image area of
individual moving objects in the camera view. For real-time localization, the images
are usually downscaled to half resolution (640×512 px) and captured at 10 Hz. A Field
Programmable Gate Array (FPGA) synchronously triggers both visual cameras and
handles the accurate timestamp assignment for all sensor data. The data is recorded
and processed on an external laptop.

The main camera coordinates and transformation are shown in Figure 3.2. The
Kalman filter estimates the state of the system for timestamp t. The state includes the
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Figure 3.2: Illustration of the main coordinate systems and transformations in IPS.

transformation T n
b,t that describes the orientation and position of IMU body frame b in

world navigation frame n. The coordinate system of n is defined by the position and
yaw-angle of the first recorded system state of each recording (run), while the z-axis is
aligned to the direction of gravity. The stereo camera consists of the left camera frame
l and the right camera frame r. The VO estimates the relative transformation ∆T
between consecutive timestamps for l. Frames b, l, r of the sensor system are spatially
referenced by the calibrated static transformations T b

l and T r
l .

3.1.2 Camera Sensor Modeling
In this section, mathematical models are introduced that are applied in IPS to model a
camera system, including geometric and radiometric components. Figure 3.3 illustrates
the relation of different camera coordinates that are used in the following.
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Figure 3.3: Camera coordinate frames and transformations, based on Grießbach, 2015.

Camera Model

The pinhole camera model (Schreer, 2005, p.40) is used to model the projection of a
camera and is illustrated in Figure 3.4 (a). It describes the central projection of an
object point M⃗ l onto the image plane Π, which results in the projected image point
m = (u, v)T . Π is defined in parallel to the xy-plane of the camera frame l and is
placed in front of the camera in the mathematical model. Related, the principal point
c describes the point on the image plane that is the intersection of the principal axis
z and Π. This projection is realized by the projection matrix P in Equation 3.1. The
camera matrix K is composed of the principal point c = (u0, v0)T and the principal
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distance in pixel units α, based on the focal length f and pixel size d. s is a scale factor
for the transformation into the two-dimensional Euclidean space.

smi = Km̃ = K·P̃ ·M⃗ l = (3,3)K·(3,4)P̃ ·(4,4)T
l
w·(4,1)M⃗

w = (3,4)P ·M⃗w (3.1)

with K =

α 0 u0
0 α v0
0 0 1

 and α = f/d (3.2)

P composes first transformation T l
w that transforms object point M⃗w from an ar-

bitrary world frame w into camera frame l. Second, it consists of the normalized
projection matrix P̃ = (3,4)I, transforming M⃗ l into normalized camera image coordi-
nates m̃. And third, it consists of the camera matrix K, transforming m̃ into image
coordinates to m. The coordinate transformation steps are noted in Figure 3.3.
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(a) Camera coordinate frame (b) Ideal image (b) Distorted image

Figure 3.4: Illustration of central camera projection (a) and of the observed distortion
effect for the used system in simulation, showing ideal (b) and distorted images (c).

Distortion model

Real lenses are usually not sufficiently represented by the ideal pinhole model, due
to aberrations such as image distortion, defocus, spherical and chromatic aberration,
coma, and similar. Geometrically most significant is image distortion (Hartley and Zis-
serman, 2003) and needs to be considered using a fitting distortion model. A common
approach for standard field-of-view cameras, and fitting for the used IPS demonstrator,
is the Brown distortion model (Brown, 1971). It models radial symmetric distortion δr

and decentric distortion δt in Equation 3.3 to transform the normalized camera point
m̃ = (x, y)T to the distorted point m̃δ.

m̃δ = m̃ + δr(m̃, k) + δt(m̃, p) (3.3)

δr(m̃, k) = m̃·
N∑

n=1

(
knr2n

)
with r2 = x2 + y2 (3.4)

δt(m̃, p) =
(

p1(3x2 + y2) + 2p2xy
p2(x2 + 3y2) + 2p1xy

)
(3.5)
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Radial distortion is usually the most important deviation (Hartley and Zisserman,
2003, p.189) and appears in pincushion or barrel distortion. The latter is the case
for the used IPS demonstrator, visualized in Figure 3.4 (right). Radial distortion is
described as a polynomial with coefficients k = (k1, k2, ..., kN), while N is usually set
to 3. In the case of cheap camera lenses, the deviation might also include tangential
distortion and decentric distortion should additionally be considered. It is described
in Equation 3.5 with p = (p1, p2). For the used IPS demonstrator, p is omitted.

Noise model

In addition to degradation caused by the lens, the conversion of the captured light into
a digital signal adds noise to the image. Image noise can degrade the feature matching
process and needs to be considered (Zhang, 2018). It can roughly be separated in to
two main sources, which are fixed pattern noise and dynamic noise. Fixed pattern
noise is usually automatically corrected by the camera itself. In contrast, dynamic
noise varies between each captured frame due to read-out noise and photon noise. The
noise model of Zhang (2018) is used for error propagation from noise during feature
matching in IPS [OSLib] and for image degradation in the developed simulation tool
of this thesis (Chapter 4). The model is formulated in Equation 3.7 with the resulting
pixel value µN and resulting noise σN . It depends on electronic noise NE of the camera
and shot noise, represented by µN(I)/G with pixel intensity I and a gain parameter
G. For instance, the parameters NE = 0.32 and G = 58.12 are used in thesis for the
considered camera system and were provided by (Zhang, 2018). Figure 3.5 shows the
characteristic square root shape of the mean Standard Deviation (SD) for each pixel
intensity during the calibration procedure based on 100 simulated images, degraded
using given radiometric parameters.

µN(I) = I (3.6)

σN(I) =
√

N2
E + µN(I)

G
(3.7)

Figure 3.5: Illustration and image noise model formulation based on (Zhang, 2018).

In the course of this thesis, camera binning and camera capture gain is applied in
simulation. Both affect image noise and therefore requires and adaption of NE and
G. An implementation was provided in [OSLib]. Binning for IPS cameras refers to a
summation of intensity values of pixels I = {Ii}b−1

i=0 in the binning area b = bwidth∗bheight,
formulated as

µB(I) =
∑b−1

i=0 Ii, (3.8)

σB(I) =
√∑b−1

i=0 σN(Ii)2 =
√

N2
E,B + µB(I)

GB

, (3.9)
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and with NE,B =
√

b ∗ NE and GB = G. The analogue amplification using camera
capture gain C results in scaling based on the decibel equation and is formulated as

µD(I) = 10 C
20 ∗ I, (3.10)

σD(I) = 10 C
20 ∗ σN(I) =

√
N2

E,D + µD(I)
GD

(3.11)

with NE,D = 10 C
20 ∗ NE and GD = 10− C

20 ∗ G.

Stereo Camera

Figure 3.6 shows a stereo setup of two pinhole cameras, displaced by the fixed relative
transformation T r

l . In this setup, the projection of M⃗ onto the image plane Πr to mr

is constraint by the epipolar geometry. The baseline B describes the connection of the
origins of the camera frames l and r. Its intersections with the image planes Π and Πr

define the epipols el and er. Related, the object point M⃗ and the origins of l and r
define the epipolar plane, while ml, mr, el, er lie on this plane. Its intersections with
the image planes denote the epipolar lines ιl and ιr. The epipolar geometry states that
the related image point of mr in image plane Πr lies on the epipolar line ιr.

π  m

π  π  

m m 

ee eee

MM

l B

Camera Left Camera Right

r

lT
r
lT
r

l r

r

r

r

→

l

ι lι 

l

Figure 3.6: Stereo camera setup with epipolar geometry, based on Schreer (2005, p.69).

3.2 Data Processing
The main components of the IPS processing pipeline are summarized in Figure 3.7
and will be explained in detail in the following sections. In summary, the sensor data
consists of consecutive camera images and IMU acceleration â and angular rate ŵ
measurements. For VO, features are detected in the left camera image and tracked
within the right image and one consecutive stereo pair. Successfully tracked features
are used to compute the ego-motion between both stereo pairs. An additional ego-
motion is computed based on the IMU data using the common strapdown mechanism.
A Kalman filter fuses both information and computes the system pose. Optionally, the
stereo images can be used to generate depth images based on a Semi-Global-Matching
(SGM) GPU-implementation (Ernst and Hirschmüller, 2008). Using the estimated
poses, the depth images can be accumulated to generate a 3D point cloud (e.g., used
in Irmisch et al., 2021) in the context of fumarole mapping.
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Figure 3.7: Software processing pipeline and its main components for IPS localization
(black) and optional standard IPS 3D reconstruction (grey, not used in this thesis).

3.2.1 Feature Detection and Tracking

Feature-based VO relies on point-based image correspondences between images. Fea-
tures or keypoints are distinctive image points such as corners or blobs, where (Harris
and Stephens, 1988; Lowe, 2004) are commonly used representatives. Image corre-
spondences are defined as “two-dimensional features that are the reprojection of the
same 3D feature across different frames” (Scaramuzza and Fraundorfer, 2011). There
are two major techniques in literature to find image correspondences (Fraundorfer and
Scaramuzza, 2012). First, features can be detected in one image and tracked in other
images using local search techniques, such as correlation. This approach is relatively
fast, but assumes that the viewpoint change between cameras is small. Second, fea-
tures can be detected in each image separately and matched using feature descriptors.
This procedure is more computational expensive, but allows larger view point changes
and is the current absolute choice for feature-based state-of-the-art SLAM approaches,
such as in (Campos et al., 2020).

The first technique is applied in IPS, because detected features are only needed to be
tracked in one consecutive stereo image. Feature tracking over more images is currently
avoided, because it might lead to correlated VO estimations. All image operations
for detection and tracking are applied in the original distorted image (superscript δ)
to keep computational costs low and to not disturb information on image noise by
interpolating pixel values. Visualized in Figure 3.8, features are detected in the first
left camera frame only (e.g., ml1δ) and are tracked in the corresponding right camera
image (intra-matching) as m̂r1δ and in the subsequent stereo frame (inter-matching) as
m̂l2δ and m̂r2δ. {t; t+1} is used interchangeably with {1; 2} for subsequent timestamps.

An extended feature detector of AGAST (Mair et al., 2010) is used, that was pro-
posed and implemented for IPS by (Zhang, 2018). The basic principle is the comparison
of pixels in a circular mask to the center value and the derivation of corner candidates
based on the number of similar intensity pixels (Smith and Brady, 1997). To improve
efficiency, the Features from Accelerated Segment Test (FAST) is applied that consid-
ers only pixels on the outer circle with a Bresenham circle of 3, reducing the number
of considered pixels to 16 (Rosten and Drummond, 2005). A feature is found if at least
S = 9 contiguous pixels have brighter or darker pixel values, delimited by a threshold
ΘI . Further improvements are made in the Adaptive and Generic Accelerated Segment
Test (AGAST, Mair et al., 2010), in which comparisons are formulated in a dynamic
decision tree that automatically switches between two trained trees, optimized for ei-
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Figure 3.8: Feature matching process in IPS. The explanation is provided in the text.

ther homogeneous and heterogeneous areas. (Zhang, 2018) ensures a stable number
of intra-matched feature a well spatial distribution of detected features. The stable
number of feature matches is achieved by first using a relatively low intensity threshold
ΘI during detection (e.g., 8 stated by Zhang, 2018). Then, a number of ΘD features
with the highest score are selected based on a circular non-max suppression approach,
before intra-matching is applied. ΘD is set dynamically and orients on the number
of successfully matched features from intra-matching in comparison to a user-defined
desired number of feature matches ΘM for intra-matching (e.g., ΘM = 100). The well
spatial distribution of detected feature is achieved by dividing the image into c× c grid
cells and detecting ΘD/c2 features in each cell (e.g., c = 2 used in this thesis).

Feature tracking is based on patch-based template matching in IPS. The template
is defined based on the feature of m1δ in the first image and is matched with a number
of candidates in the second image within a local search area (se, sσ). A relatively
small template size (e.g., 5×5 px) is used in IPS, which is possible due to tracking of
keypoints over only two stereo frames and strict reduction of the search space.

For intra-matching, Normalized Cross Correlation (NCC) is used as matching met-
ric with

γNCC(u, v) = 1
n

∑
i,j

(S(u + i, v + j) − µS)(T (i, j) − µT )
σSσT

, (3.12)

with search image patch S and template patch T of size n = i·j pixels. {µT , µS} and
{σT , σS} describe the mean and SD of the patch in both images, respectively. Its ad-
vantage is an invariance to pixel intensity differences, e.g., caused by different exposure
times of both cameras. Its disadvantage is a currently lacking subpixel matching ap-
proach. During intra-matching, the search space is effectively reduced using epipolar
constraints, visualized in Figure 3.8 with dashed lines in the right camera image in
r1. The object point M⃗ is triangulated in the stereo setup based on ml1δ and m̂r1δ,
whereby the Sampson-approximation (Hartley and Zisserman, 2003) is used for correc-
tion of first order measurement errors in feature positions (Grießbach, 2015, p.33).
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Sum of Absolute Differences (SAD) is applied in IPS during inter-matching, under
the assumption that corresponding pixels of consecutive images keep the same intensity.

γSAD(u, v) = 1.0 − 1
n·255

∑
i,j

|S(u + i, v + j) − T (i, j)| (3.13)

Its advantage is fast processing and the existence of a subpixel matching approach with
analytical error propagation from image noise, proposed by Zhang (2018). The disad-
vantage is its susceptibility to changing pixel intensities, which can limit its usability
in outdoor environments. The search space is reduced by inertial constraints, visual-
ized with a dashed ellipses in Figure 3.8. Its center is the projection of M⃗ into the
stereo frame at t+1, using the IN strapdown solution T n,t+1

n,t to predict the movement.
The ellipsical search space sσ itself is defined by the elliptical confidence region, re-
sulting from the propagated covariance from the uncertain object point M⃗ , uncertain
calibration parameters and uncertain navigation solution T n,t+1

n,t .

3.2.2 Ego-Motion from Visual Odometry

“Visual odometry (VO) is the process of estimating the egomotion of an agent (e.g.,
vehicle, human and robot) using only the input of a single or multiple cameras attached
to it” (Scaramuzza and Fraundorfer, 2011). In general, a cost function is defined
and minimized using a least-square variant to estimate the optimal 6D transformation
parameters based on measured 3D object point or 2D image point correspondences.
Scaramuzza and Fraundorfer (2011) categorized this optimization problem in three
different approaches, which are 2D-to-2D, 3D-to-2D, 3D-to-3D, while the former two
are found to be generally more accurate. Most suited for a stereo setup is 3D-to-2D,
since the set of 3D points directly inherent the correct metric scale (Nister et al., 2004).

Accordingly, the stereo-based visual odometry approach in IPS implements the 3D-
to-2D approach. The non-linear least-squares problem is formulated by (Grießbach,
2015, p.35) with

min
∆T

||m̂l2 − ml2||2, (3.14)

exemplary for the left camera. The parameters for the relative transformation ∆T
are optimized by minimizing the error between the matched feature m̂l2 and the pro-
jected point ml2 of the object point M⃗ , as visualized in Figure 3.9. In the sense of
least-squares (Appendix A.1), m̂l2 is the observation and M⃗ is the condition. The
parameters of ∆T with (tx, ty, tz, αx, αy, αz)T define the model parameters. The model
function is defined by the transformation of M⃗ by ∆T and its projection into l2.

The least-squares problem is solved using the Gauss-Newton algorithm (Appendix
A.1), for which required Jacobiens with partial derivatives were formulated and im-
plemented by Grießbach (2015). Assuming that only small movements are possible
between consecutive camera frames, the identity matrix is used as initial guess and
a Levenberg-Marquardt approach is not required. Grießbach (2015) further imple-
mented an analytical error propagation to estimate model parameter uncertainties,
propagating feature matching uncertainties and camera model uncertainties through
the least-squares solution. The error propagation is only done once during the last
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Figure 3.9: The 3D-to-2D VO problem in IPS. ∆T is optimized to minimize the
distance (red) between the projection ml2 of M̂ and the tracked feature ml2.

optimization step, where ∆a is close to zero and eases the computation, see Grießbach
(2015, p.86).

Further, single outliers in Equation 3.14 can introduce significant errors or even
cause the minimization to fail. A common approach to achieve robustness against
outliers is RANSAC (Fischler and Bolles, 1981). It estimates a solution for model
parameters based on a randomly sampled minimal set of observations, which are three
feature points for the given optimization problem. This solution is assessed by counting
inliers from the full feature set to this solution. A feature is counted as an inlier, if the
squared distance from their projection to the corresponding matched feature point is
less than a user defined threshold. This procedure is done iteratively multiple times,
while the best solution is further optimized based on its inlier set to compute the final
model parameters.

3.2.3 Inertial Navigation and Data Fusion

“Inertial navigation is a self-contained navigation technique in which measurements
provided by accelerometers and gyroscopes are used to track the position and ori-
entation of an object relative to a known starting point, orientation and velocity”
(Woodman, 2007). IPS deploys an IMU that consists of each three perpendicular
accelerometers and gyroscopes. It is based on MEMS technology, which allows rigid
construction and efficient design in terms of small size and weight, power consump-
tion, cost, maintenance and allows operation in hostile environments (Titterton and
Weston, 2004; Woodman, 2007), such as experienced with IPS. Int his context, this
section provides a brief introduction to the IN concept IPS. However, since the focus
of this thesis is on visual localization, the filter is mostly considered as black box in
the further course of this thesis and not considered for improvements.
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Figure 3.10: Strapdown mechanization, based on Woodman, 2007.

The strapdown mechanism is used to estimate the current 6D pose {αn, pn} of the
system in the navigation frame based on the measured accelerations âb and angular
velocities ω̂b in body frame. Formulas for the IPS specific implementation are detailed
in Grießbach et al. (2014). Figure 3.10 shows the overall principle of the strapdown
mechanism, that consists of five steps. First, the orientation or attitude α̂n of the sys-
tem is estimated through integration of ω̂. The estimated orientation is secondly used
to project âb into the navigation frame, where the gravitation is on the z-axis and can
be subtracted in the third step. With the acceleration being in the navigation frame,
it can be integrated twice, resulting fourth in the velocity and fifth in the 3D position
pn of the system. Several assumptions are made that require a relatively high data
rate of the IMU, especially for the first step. For instance, the small angle assumption
is made to simplify the orientation vector differential equation (Wendel, 2011, p. 46).
Also, earth rotation is neglected in IPS. Therefore, a sampling period of 2.44 ms was
selected in IPS (Grießbach et al., 2014), which corresponds to a clock rate of 410 Hz.

Measurements of gyroscopes and accelerations are subjected to perturbations that
can lead to drifts when propagated through the strapdown mechanism (Woodman,
2007). Most significantly, the measurements are subject to white noise and a bias that
can show a significant constant and instabilities. A calibration is usually provided
by the manufacturer. Further error sources are for instance temperature effects and
calibration errors, such as errors in scale factors, alignments and output nonlinearities,
but are not explicitly considered in the current development stage of IPS navigation.

To additionally estimate the bias terms, a Kalman filter is implement in IPS that is
aided by relative transformation measurements from the visual odometry component.
In general, a Kalman filter is a recursive probabilistic state estimation technique to
estimate the state of a discrete-data (or continuous in other settings) linear dynamic
system based on noisy measurements, which are assumed to be from Gaussian nature.
For nonlinear filter problems, the EKF is a popular choice that linearizes about the
current mean and covariance using first-order Taylor expansion. However, EKF are
considered as ad hoc state estimator (Welch and Bishop, 1995) or suboptimal approx-
imation method (Wendel, 2011), if non-linearities are significant, which would be the
case when filtering total-space states in IN. Therefore, an error state space EKF variant
is applied in IPS that severely reduces nonlinearities by filtering the error state

∆x = (∆αn
b , ∆pn

b , ∆vn, ∆bb
ω, ∆bb

a)T , (3.15)

which consists of error estimates of the attitude αn
b , position pn

b , velocity vn and bias
terms. The principle is visualized in Figure 3.11, while the mathematical formulation
is derived and detailed in Grießbach et al. (2014). In the time update step, a priori
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state x− is predicted based on the strapdown mechanism, where IMU measurements
are treated as known input variables. During the measurement update, the error
measurement ∆y is defined based on the difference of x− to the reference measure y
from VO, which is used to filter the error state and update a priori x−, resulting in
a posteriori x+. The method of stochastic cloning (Roumeliotis and Burdick, 2002) is
applied to correctly take correlations between the current and the previous frame into
account.

  VO

 IMU
â,ŵ 
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ω 

Figure 3.11: Error state spatial navigation filter design (Grießbach et al., 2014).

The backbone of a Kalman filter are propagated uncertainties for measurements
and internal states, which are required to correctly weight the influence of the reference
measurement. Uncertainties need to be consistent, which means that estimated errors
match to their theoretical statistical characteristics with zero mean and correctly scaled
covariance (Grießbach et al., 2014). The consistency of uncertainties will be exemplary
addressed in Chapter 5 for the VO results based on statistical analysis with simulated
data. To reach covariance consistency of the filter solution, the Kalman filter was tuned
once in 2014 based on a grid search approach on a set of real world datasets.

False measurements with inconsistent uncertainties from VO can corrupt the filter
states and lead to a false navigation solution. To identify significant deviations, a
chi-squared test is applied on the innovation ∆y to verify that the VO measurement
is consistent to the filter state x-. The chi-squared test compares the error ∆y with
the propagated uncertainties based on the Mahalanobis distance. The measurement
is ignored if χ2 > c, while c is set to 22.46. This value results from a chi-squared
distribution with 6 degrees of freedom and a significance number of 0.1 %.

IPS requires an initial two-step procedure to initialize the strapdown and filter
states, which is essential for an accurate navigation solution. First, the system is set
at rest for a short time to average angular velocity measurements in order to estimate
their bias terms. Though, the acceleration bias can not directly be estimated, due to
the superimposed acceleration from gravity. Therefore, small movements of the system
are required with a reference measurement from VO in a second phase. Ideally, each
body frame axis is individually aligned to the gravitation direction. This procedure
takes around 45s for an experienced user with feedback from the filter.

3.3 Evaluation Metrics
Different evaluation metrics are required to assess the localization performance of IPS.
This section briefly introduces required metrics for trajectory and transformation eval-
uation and the evaluation of propagated uncertainties.
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3.3.1 Trajectory Evaluation
The goal of trajectory evaluation is an assessment of the consistency and accuracy of the
temporally- and spatially depended consecutively estimated 6D poses. Generally, an
end-to-end performance evaluation based on suitable Ground Truth (GT) is preferred
over intrinsic measures, such as the reprojection error for SLAM systems (Sturm et
al., 2012). However, it is subjected to difficulties, such as the high dimensionality of
the data and the definition of GT and estimation in different reference frames (Zhang
and Scaramuzza, 2018). Further, the choice of the metric to evaluate an estimated
trajectory depends on the available GT data. In this thesis, a complete GT is provided
for synthetic datasets, whereas only a few Ground Control Points (GCPs) or even just
a few closed loops are available for real-world datasets.

Absolute Trajectory Error (ATE)

In simulation, the ATE (Sturm et al., 2012) is used as primary metric in this thesis
to evaluate the final localization output. A visualization is given in Figure 3.12. Its
computation composes of two steps. First, trajectory alignment is applied to estimate
transformation S matrix that optimally transforms the estimated trajectory {P̂ i}N−1

i=0
with N poses to the reference frame of the GT trajectory {P i}N−1

i=0 . Specifically, the
distances between positions of estimated and GT poses are minimized in a least-squares
manner with the method of (Umeyama, 1991) using the implementation of (Zhang and
Scaramuzza, 2018). Second, distances between corresponding poses are estimated with

mATE := 1
N

N−1∑
i=0

ATEi = 1
N

N−1∑
i=0

||P −1
i SP̂ i||T , (3.16)

and stated by their mean in this thesis. ||.||T describes the norm of the translational
components. The advantage of the ATE is that it captures translational and rotational
errors simultaneously, since the latter manifest themselves in wrong translations.

In real world, the GT is limited to GCPs {p}M−1
i=0 with p ∈ R3, which can be used

for evaluation using the ATE. GCPs are 3D positions where the system was placed or
hold for a short time. Due to the possibility of only very few GCPs being available,
two special cases needs to be considered and are visualized in Figure 3.12 (b) and (c).
If exactly two GCPs are available, which were reached exactly once, the GT can be
simply defined by a distance between both GCPs. The measured distance error is

Pi

Pi

ATEi d

d

e

p1 p2 p1

ˆ 

ˆ ˆ 

(a) Complete GT (b) 2 GCPs (c) 1 GCP

Figure 3.12: Computation of the ATE (red) for the estimated trajectory (blue) that is
aligned to the ground truth (green). Three cases are visualized with different number
of ground truth data available.
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twice the mean ATE. If only one GCP is available which was reached exactly twice,
the problem reduces to a closed loop and no GCP parameters need to be defined. The
common Closed Loop Error (CLE) is twice the mean ATE.

Normalized Closed Loop Error (nCLE)

Many IPS datasets only consist of a number of closed loops. The comparison of results
between many different closed loop trajectories is difficult due to different trajectory
lengths. The drift of VO and VIO will lead to a higher CLE, if the trajectory is longer.
A common solution is to normalize the CLE by the traveled distance, given with

nCLE = ||p̂N−1 − p̂0||∑N−1
i=1 ||p̂i − p̂i−1||

. (3.17)

Relative Translation Error (RTE)

In simulation, the estimated relative transformation from VO can also be evaluated
using GT. Error matrix Ei describes the VO error with

Ei := (P −1
i+1P i)−1T̂ l,i+1

l,i . (3.18)

Following, the computation of the mean RTE is straight forward with

mRTE = 1
N

N−1∑
i=0

RTEi = 1
N

N−1∑
i=0

||Ei||T . (3.19)

The rotational error can be computed in a similar way, under the assumption that the
small angle approximation holds. Considering the applied 10 Hz image frame rate, this
rotational metric is less meaningful, if fast rotations are observable in the dataset.

It is obvious that an investigation based on datasets with such limited amount
of GCP is doomed to be of less meaning. Due to this, researchers often expensively
generate GT data using motion capture systems or use synthetic data with complete
and exact GT. I chose the latter and developed a digital twin.

In literature, there a several alternatives described for trajectory alignment, error
formulation and application of statistical metrics. (Zhang and Scaramuzza, 2018) de-
scribe additional problem-specific variations of the trajectory alignment. For instance,
the scale of S can be estimated additionally to tackle scale ambiguity of monocular
localization methods. Or, since IMU estimates a roll and pitch based on the IMU, a
yaw-only optimization for the rotational part can be used. Other error formulations
are, for instance, the Relative Pose Error (RPE) that considers the relative error be-
tween pairs of poses or the Relative Error (RE) that applies the ATE procedure to
sub parts of the trajectory (Zhang and Scaramuzza, 2018). In this thesis, however, the
basic ATE is used for most investigations, which is most common and different evalu-
ation metrics are usually highly correlated (Sturm et al., 2012). Common alternatives
for the mean are the Root Mean Squared Error (RMSE) or the median, which weight
outliers stronger or weaker, respectively.
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3.3.2 Error Propagation and Uncertainty Evaluation
A consistent estimated uncertainty for VO is a hard requirement for a loosely-coupled,
filter-based VINS. Grießbach (2015) implemented analytical error propagation from fea-
ture matching and camera model uncertainties throughout the presented VO pipeline.
The individual steps with error propagation will be revisited in Chapter 5 in detail. In
the following, the main idea of analytical error propagation and two evaluation metrics
to asses the quality of the estimated uncertainties are introduced.

Analytical Error Propagation

In error propagation, the goal is to find the distribution of a function of random vari-
ables. Specifically, the distribution of an output y is desired that results from a function
f with random variables x, composed in y = f(x). Formulated by the law of error
propagation with

Σy = F xΣxF T
x , (3.20)

the input uncertainty Σx is propagated through the function f with jacobian F x and
approximately mapped to the output Σy (Arras, 1998). A linear equation system
y = F x can be solved directly.

In the nonlinear case, the function f can be approximated by Taylor series. Based
on Arras (1998), the first order approximation results in a mean y0 and covariance Σy

formulated as
y0 = f(x0) , (3.21)

Σy = Jy
xΣxJyT

x , (3.22)
where the Jacobien matrix Jy

x contains the partial derivatives Jij = δfi/δxj.
Analytical error propagation is applicable, if the following simplified conditions are

met: (i) the distribution of x can be described by a mean x0 and covariance matrix
Σx; (ii) the SD is relatively small with respect to the range of x; (iii) f is continuously
differentiable for elements xi of x in the neighborhood of x0; (iv) higher order terms
of the Taylor series approximation are negligible.

Monte Carlo Simulation

MCS is commonly used as reference to verify functionality of developed methods for
uncertainty propagation. It describes a statistical approach for error propagation, that
can be applied on general multivariate distributions (JCGM 102, 2011), if a number of
conditions are met (JCGM 101, 2008, p.14).

Only multi-variate Gaussian distributions are considered in this thesis, for which
the procedure can be summarized in three steps. First, M samples {xi}M−1

i=0 are drawn
from the joint Probability Density Function (PDF) of x, defined by x0 and Σx. Then,
each sample is applied in f to retrieve M output quantities {yi}M−1

i=0 . Finally, mean y̌0
and covariance Σ̌y are estimated using the set of generated quantities {yi}M−1

i=0 .
This method is applicable, if the following simplified conditions are met: (i) the

distribution of x can be described by a mean x0 and covariance matrix Σx; (ii) f is
continuous for elements xi of x in the neighborhood of x0; (iii) the distribution of
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y can be described by a mean y̌0 and covariance matrix Σ̌y; (iv) a sufficiently large
number of samples M are drawn.

The analytically estimated uncertainty can be validated based on a relative test
with

|σ̂i − σ̌i| < ϵ · σ̌i, (3.23)
by comparing the analytically propagated SD σ̂i to the statistically propagated SD σ̌i,
with σ̂2

i = Σy,ii and σ̌2
i = Σ̌y,ii and a tolerance value ϵ.

Normalized Error

The normalized error (Anderson et al., 2019) can be used to judge the estimated un-
certainty, if a large number of estimated quantities are present, which are independent
and consist each of an individual (differently scaled) covariance. An accurate GT is
required. The error ei is estimated based on the estimate x̂i and GT xi, and then
normalized by the estimated SD σ̂i to get the normalized error ẽi:

ei = x̂i − xi , (3.24)

ẽi = ei/σ̂i , (3.25)
˜̌σi = sd(ẽ-i) . (3.26)

Note that ei is notated in this thesis as the i-th element of an error e of a measured
vector quantity x̂. Further, gross outliers are rejected during this procedure based on
the condition1 |ei| < 6σ̂i, as suggested by Anderson et al., 2019.

Ideally, the resulting distribution of a set of normalized errors ẽ-i should follow
a SD with ˜̌σi ≈ 1, due to normalization. If ˜̌σi > 1, the estimated uncertainty σ̂i is
optimistic or overconfident, i.e., the error is underestimated. If ˜̌σi < 1, the estimated
uncertainty σ̂i is conservative or underconfident, i.e., the error is overestimated. The
different manifestations of the normalized error are exemplified in Figure 3.13.

This error metric only allows a gross evaluation of the uncertainty, but might offer
useful insights, if MCS cannot be applied directly.
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Figure 3.13: Exemplary manifestations of the normalized error.

1This condition is omitted in Section 5.2.1 due to partly highly optimistic predictions.
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3.4 Summary
In this chapter, various outlier rejection methods were introduced that help to make
IPS generally robust against outliers and also moving objects. In the following, four
aspects are recapitulated that will be revisited in the following chapters.

First, the VO is constrained by inertial measurements. Specifically, the strapdown-
based ego-motion prediction is used to predict the feature positions in the second stereo
frame images and to restrict the search area based on estimated uncertainties. Con-
sequentially, features on moving objects are rejected beforehand, if they show a larger
displacement in image coordinates than the magnitude of the estimated uncertainty.

Second, the VO of IPS uses generally tight bounds for several geometric thresholds.
Concerning outliers in general, epipolar constraints are applied during feature tracking
with a tight threshold (e.g., 0.8 px) This requires accurate camera calibration.

Third, RANSAC effectively helps to find the subset of data (feature matches) that
can be described jointly by a relative transformation. In combination with the extended
AGAST detector, which guaranties a well distribution of detected features in the image,
the object must be of significant relative size to disturb the system.

Fourth, the estimated VO can be rejected by the Kalman filter based on the chi-
square test, if the new measurement does not fit to the internal state with the given
propagated uncertainties.
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Chapter 4

A Digital Twin for IPS

The ability to test methods based on simulated data is important for the development
of localization systems that have to operate reliably in hazardous environments. This
includes the replication of realistic environments and sensors on the one hand. On the
other hand, an implementation of a correct movement profile of the mobile platform is
required. This is complicated by the large variety of possible platform variants.

In (Irmisch et al., 2019), we presented a method to transfer movement profiles that
have been recorded in real world into a simulation environment. The associated modu-
lar simulation framework was designed especially, but not limiting, for the development
of VIO of the handheld localization system IPS. The digital twin is used to generate
synthetic video clones (Gaidon et al., 2016), exemplified in Figure 4.1.

This chapter extends this work by two aspects. First, the simulation tool is used to
replicate three dynamic real-world scenarios, whose procedure and dynamic elements
are explained. Second, different strategies to evaluate and analyze methods for visual
localization with statistical meaning are presented, which are used in later chapters.

(Real) (Synthetic)

(a)

(b)

Figure 4.1: (a) Illustration of using the estimated trajectory from the real IPS (blue)
for a digital twin (red). (b) Exemplary real and synthetic camera images.
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4.1 Simulation Framework
This section describes the three processing steps of the digital twin, shown in Figure
4.2, and names additional generated data that can be used for evaluation purposes.

Smooth
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Figure 4.2: Proposed pipeline of the digital twin. An estimated trajectory is transferred
from real world into simulation (a). Synthetic images and IMU data are generated (b).
IPS is applied and evaluated based on synthetic data and complete ground truth (c).

4.1.1 Movement Profile Generation
The objective is to create a trajectory with a realistic motion profile, such as motion
from walking with a hand-held system. The required steps are noted in Figure 4.2 (a).

First, a handheld device (IPS HW) is used to record stereo images and IMU data.
Second, the stereo-vision aided inertial navigation engine (IPS SW) estimates a trajec-
tory, that consists of time-aligned six degrees-of-freedom poses and related covariance
matrices with respect to a local reference frame. Due to the relative nature of VO, the
positional uncertainty in the fusion process with IMU data continues to increase over
time (Figure 4.3 (a)). An unbounded increase and a possible deviation in the position
estimation can lead to incorrectly simulated camera poses that intersect with walls
or the ground. This is prevented by inserting absolute measurements, for instance at
the end of the run (Figure 4.3 (b) at 72 s). Third, the smoothed trajectory T n

Smooth
can be determined by the Rauch-Tung-Striebel algorithm (Rauch et al., 1965). It uses
the stored a priori and a posteriori state estimates including their covariances from
the navigation engine forward pass to calculate optimal estimates and covariances in a
second backward pass. T n

Smooth serves as motion profile in simulation (Figure 4.2 (b)).
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(a) IPS Trajectory:
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Figure 4.3: Processing steps of movement profile generation: basic IPS trajectory in
z direction (a), aiding with reference points (b) and subsequent smoothing (c). The
trajectory (black line) shows the pickup of the IPS, walking straight for 12s and putting
it down. The associated standard deviation (grey area) was scaled for visualization.
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The second and third step can be replaced by a bundle adjustment approach that
simultaneously estimates a 3D model and a fitting trajectory, see Section 4.2.

4.1.2 Rendering of Camera Images
The objective is to simulate stereo camera images based on real world geometric and
radiometric calibrations, including image distortion and noise. Image simulation is
based on the standard rendering pipeline and was extended with subsequent shaders
to simulate sensor effects. [OSG] was chosen as the rendering platform. It provides
free and open source accessibility, high integrability in C++ frameworks and extensive
expansion options due to its scene graph technology. The implemented virtual stereo
camera originates from (Lehmann, 2015, 2016) and was improved in (Irmisch, 2017)
with respect to image quality. In this thesis, the virtual camera was validated and
integrated into the developed simulation tool with several extensions.

The standard rendering pipeline is used “to generate, or render, a two-dimensio-
nal image, given a virtual camera, three-dimensional objects, light sources, shading
equations, textures and more” (Akenine-Möller et al., 2008). This pipeline consists of
three conceptional steps, illustrated in Figure 4.4. First, the geometry of the scene
is set in the application step for a defined timestamp, including objects, positions
and movements, described as Scene3D in Figure 4.2. The timestamps to render are
determined based on the frequency and exposure time of the target camera SpecCam.
The poses are extracted from a cubic spline of T n

smooth, detailed in Section 4.1.3, and
taking into account the rigid relative transformaton T n

l . Mentioned objects consist of
points (vertices), lines and faces, where the latter are each defined by three vertices and
represent the surface of the object. Second, all positions of the objects to be rendered
are projected into image coordinates during the geometry stage based on a normalized
camera model, while vertices that are not bordered by the image are clipped. Last, the
rasterizer stage uses the projected vertices to compute the nearest face and set colors
for each pixel defined by the face. The result is an ideal image that coincides with the
pinhole model, as shown in Figure 4.4 (iii) or Figure 4.5 (ii).

Application Geometry Rasterizer

(i) (ii) (iii)(w`,h`)(ii) (iii)

...

Figure 4.4: The graphic rendering pipeline (illustration from Irmisch, 2017, p.18).

Sufficient image quality is required for a meaningful investigation of computer vision
algorithms. It can be ensured by texture filtering (mip-mapping), anti-aliasing (multi-
sampling) and rendering in high resolution (super-sampling), see (Irmisch, 2017, p.19).
Further, horizontal and vertical dimensions of the viewing frustum are set to cover
the corresponding border pixels resulting from the camera distortion, to facilitate the
largest possible image coverage after distortion.
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The extended rendering pipeline introduces three additonal steps, which are real-
ized by subsequent fragment shaders and visualized in Figure 4.5. First, the lens-shader
simultaneously distorts the ideal camera image based on the Brown distortion model
and down samples the high-resolution image with extended image borders (w‘, h‘) to
the original image size (w, h). From an implementational perspective, each pixel of (iii)
needs to be undistorted to sample at the correct position in image (ii). For efficiency,
this step is based on a pre-computed lookup table, since undistortion requires an it-
erative non-linear solving algorithm, such as Gauss-Newton implemented in [OSLib].
Second, an accumulation buffer (Navarro et al., 2011) is implemented to integrate a
defined odd number (2n + 1) of distorted images that are rendered within a given ex-
posure time to simulate motion blur. The timestamps for the integrated images are
equally placed in the exposure interval and the pose of image (n + 1) is stored as GT.
Motion blur requires high computing effort and therefore, it is used sparsely in this
thesis. Third, the sensor-shader is used to model various image degradation effects.
In this work, it includes blurring with a Gaussian kernel, greyscaling and image noise
based on (Zhang, 2018), described in Section 3.1.2.

(w,h)

Graphic Rendering 

Pipeline

Lens

Shader

Accumulation 

Buffer

Sensor

Shader

(w,h)(w,h)(w`,h`)(ii) (iii) (iv) (v)(i)

Figure 4.5: The extended rendering pipeline (extending figure of Irmisch, 2017, p.19).

The modular implementation allows the simulation of any number of cameras with
individual exposure times, frequencies, time-offsets, grey scaling, interior and exterior
geometric camera parameters and the radiometric property noise. The camera can be
attached to any movement profile and rendered in any user-defined synthetic 3D-world.

4.1.3 IMU Simulation
The objective is to create degraded synthetic acceleration ab and angular rate ωb

measurements in body frame b based on a given discrete trajectory, realized in three
steps. This component was implemented by co-authors of (Irmisch et al., 2019) [OSLib].

First, the objective requires a representation of a discrete trajectory as a continuous
function with C2 continuity, i.e., continuous derivatives up to second order. The con-
sidered discrete trajectory T̆ n

Smooth consists of sampled poses for camera rendering based
on T n

Smooth and equals T n
GT . C2 continuity for continuous speed and acceleration are

fulfilled by cubic spline interpolation for positions [SciPy]. Similar, the C2 continuity
for continuous angular velocity and acceleration are met by cubic spline interpolation
for rotation vectors [pyins]. While Euler vector representation is used, the difference
to generated trajectories based on other rotation matrix representations is negligible
for the used multiple-point interpolation with points spaced close together (Kang and
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Park, 1999). Nevertheless, future IMU data simulation could profit from a trajectory
with improved properties from higher order rigid body motion interpolation methods
(Haarbach et al., 2018).

Second, based on the cubic spline functions, new discrete poses and their derivatives
can be extracted for any intermediate points in time and at arbitrary frequencies. The
desired angular velocity ωb is sampled directly. The acceleration an is sampled in the
navigation frame n, superimposed by gravity g and rotated into the body frame b based
on the corresponding sampled Euler angles, resulting in ab .

Third, perfect IMU measurements need to be degraded, since real gyroscope and
acceleration measurements are subject to deterministic and stochastic errors such as
from constant bias, white noise, temperature effects, calibration or bias instabilities
(Woodman, 2007). The applied error model (Wendel, 2011, p. 68) is formulated as

x̂b = Mxb + bx + nx, with M =

 sx δzx −δyx

−δzy sy δxy

δyz −δxz sz

 . (4.1)

Vectors x̂ and x denote the measured and true quantities of either the accelerations or
angular rates. M denotes misalignments of sensor axes for off-diagonal elements and
scale error s on the main diagonal. The bias bx consists additively of a constant bc

and an instability component bc. nx denotes zero-mean Gaussian noise. We consider
s, bc and nx in the current implementation based on Table 3.1 (p.22).

Figure 4.6 shows the effect of sensor degradation on the IN solution based on basic
strapdown. The result worsens with increasing number of added error sources. Finally,
it shows the application of the EKF approach with aid from VO that successfully
corrects the pure IN.
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Figure 4.6: Inertial navigation (IN) based on strapdown with degrading synthetic IMU
data. Left: IN at 40 kHz fits the ground truth (GT) well (IN-40kHz). Using 400 Hz for
IN degrades the results (IN-400Hz). The error increases when adding noise (IN-400-
Hz-N). Right: An additional constant bias and scale error results in a large drift (IN-
400Hz-NBS). Meanwhile, the integrated estimated visual odometry (VO) results in an
accurate trajectory (VO-10Hz). Using an EKF with VO as aid corrects the IN (IPS).
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4.1.4 Additional Ground Truth Data
The objective is to extract versatile information that can be used to generate substantial
Ground Truth (GT) information. This includes absolute and relative transformations,
semantic segmentation, depth maps, optical flow and point clouds, see Figure 4.7.

(a) Segmentation (b) Depth map (c) Optical flow (d) Point cloud

Figure 4.7: Synthetic image-based GT data from the presented simulation tool.

First, GT trajectory T n
GT and GT visual odometry transformations VO l

GT are gen-
erated based on a generated logfile. It holds intermediate representations of the scene
graph at all rendered times by saving the structure and all matrix transformations

GT semantic segmentation can be generated. Similar to (Gaidon et al., 2016), the
scene is rendered a second time to generate time-consistent per-pixel category- and
instance-level semantic GT. During the second rendering, all lighting, shading and
material effects are disabled and a unique label is assigned to each object, decoded in
a RGB color value and set as ambient material property. Though, this procedure is
not applicable for partially transparent objects, such as smoke (Section 4.2.2) or fire,
as observed by Jeon et al., 2019. If transparent foreground particles do not change the
received color from the background object, due to a very low alpha value of the particle
texture, the label of the background object should be used. Therefore, during second
rendering, smoke is simulated identically to the first rendering. All pixels with RGB
values that do not belong to known background objects get the label smoke.

GT depth maps can be extracted from the z-buffer, which is used in the rasterizer
step to identify the nearest object. Its value represents the depth between the frustum
near znear and far zfar plane, while higher precision is preserved for near values due
to perspective division (OpenGL, 2012). znear is set to 5 cm within this work, since
ground objects appear close, if the hand-held system is put on the ground. This might
lead to an ambiguous order of objects in far distance (z-fighting, Akenine-Möller et al.,
2008) and needs to be checked during the design of experiments. The extracted depth
map is distorted to match the RGB image. Nearest-neighbor interpolation is used to
avoid averaging depth values from fore- and background objects at object edges. A high
super-sampling factor of 5 is used to reduce resulting inaccuracies from interpolation.

GT optical flow can be generated that describes the displacement of a projected
object point between two images. Similarly to (Wang et al., 2020), the optical flow
is computed using logged camera poses and depth maps. A related procedure will
be presented in Section 5.2.1. Additionally, moving objects are identified using GT
semantic segmentation to compensate for their relative movements between considered
timestamps. Though, the implemented GT optical flow is limited to static objects and
moving rigid objects, which is not the case for person and particles. Finally, a GT
point cloud can be generated using logged camera poses, calibration and depth maps.
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4.2 Synthetic Datasets
The synthetic video clone closely resembles real-world data (Gaidon et al., 2016). In
this thesis, three synthetic clones were generated based on real-world datasets that can
be used for detailed analysis by changing different properties. This chapter describes
the construction process of each clone. While the corridor datasets was constructed
by hand, the other two were automatically generated using a photogrammetry tool.
Dynamic elements were added manually, including persons, smoke and water. All
datasets start with an initialization phase, which lasts up to one minute to facilitate a
good initialization without examination by an expert.

4.2.1 Synthetic Corridor Dataset
The 3D model for the corridor dataset was created manually and recreates an office
corridor of the DLR department in Berlin Adlershof in detail. The position and struc-
ture of real objects were measured using measuring tapes and laser range finders and
used to reconstruct the objects in [Blender]. Textures and materials were chosen and
adapted to visually match recorded real imagery data. The corridor has a length of
21.5 m, height of 2.5 m and width of 1.7 m in the beginning.

Trajectories were estimated and recorded following the procedure described in Sec-
tion 4.1.1. Two GCPs were introduced with a distance of around 16m. A rigid metal
construction was installed on the ground to ensure reproducibility. The initialization
phase is an inherent part of each recorded trajectory.

The dynamic element person was introduced manually. An animated human model
[XNA] was used in the experiments, which is limited to walking straight with adjustable
speed. Two adjustable dynamic scene properties were defined: Ps describes walking
speed of the person; Ph describes height of the person (e.g., 1.95 m).

16m

90s50s

(a) Synthetic corridor scene

(b) Real (c) Synthetic at t1 (d) Synthetic at t2

Figure 4.8: Visualization of the synthetic corridor environment with optional persons.
In (c,d) two persons are observed slowly starting moving, where t2 − t1 = 4s.
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4.2.2 Synthetic Smoke Dataset
The 3D model and trajectory were generated simultaneously with the photogrammetry
tool [Pix4D] and recreate a part of the active volcanic fumarole fields of Vulcano, Sicily
(Irmisch et al., 2021). Fumaroles are openings (vents) in the surface that emit steam
and corrosive volcanic gases due to underground thermal volcanic activity. The 3D
reconstruction is based on the recorded images of IPS in full resolution and uses the
estimated local trajectory and calibration parameters of IPS as a priori. The advantage
is a fast, automated, high quality and consistent 3D modeling that intuitively only
reconstructs surfaces in detail that are observed based on the used trajectory and
images. A disadvantage is that it can only be used for this specific trajectory. The
initialization sequence is added manually in the beginning of the trajectory.

The dynamic element smoke was introduced manually. Therefore, the particle ed-
itor of McDowell et al. (2006) was used to design smoke that visually matches the
appearance of smoke (correct: vapor) in recorded real imagery data of fumaroles. The
texture of each particle is a simple grey pattern with a two-dimensional Gaussian-like
distributed alpha, which is high in the middle and zero at texture borders. More com-
plex or varying particle patterns result in flickering of the smoke in subsequent images,
which might be due to z-fighting of close particles. Due to this, the synthetic smoke
only shows soft edges and primarily softens the edges from background objects. While
the synthetic smoke looks relatively realistic in Figure 4.9, this possible gap to real
data needs to be kept in mind when evaluating vision algorithms. Two adjustable dy-
namic scene properties were defined: SPS describes the particle speed that proportional
adapts the number of particles to keep a constant smoke density; SN describes a factor
for the alpha value of the particles texture and is used to adjust the smoke density.

60s/180s

9m

(a) Real fumarole field (b) Synthetic fumarole field

(c) Real (d) Synthetic at t1 (e) Synthetic at t2

Figure 4.9: Visualization of the synthetic fumarole environment with optional smoke.
In (d,e) the development of smoke is exemplified, where t2 − t1 = 1s.
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4.2.3 Synthetic Water Dataset
The 3D model and trajectory were generated similarly to the fumarole dataset and
recreates a part of the volcanic coast of Vulcano, Sicily. The coast formation was
created by a slowly cooling laval flow, where the typical polygonal joint pattern of
basalt columns can be observed at the steep wall in Figure 4.10 (a). The real dataset
targets to inspect the coast line, while the presence of water was kept to a minimum
during recording to avoid degrading effects by water dynamics. To increase the severity
of the water element in simulation, the trajectory was moved 1m closer to the water.

The dynamic element water was introduced manually. The basic water implemen-
tation of Wang and Qian (2012, p.262) is used that simulates water based on texture
operations on a 2D plane. It first generates a reflection map for the water surface that
shows the rendered scene mirrored at the water plane. A normal map and its deriva-
tive (du/dv map) with wave structures is then applied to distort the reflection in order
to create water effects. To sample from both maps, flow and ripple coordinates are
estimated based on current texture coordinate ccurr and current time t with t = (t, t)T ,
as exemplified for the flow component in Equation 4.2. Wflow is introduced to control
water flow speed, where the water flows slow or fast, if Wflow is low or high, respectively.

cflow = 5.0·ccurr + 0.02·Wflow·t (4.2)

In the same way, Wripple is introduced to vary the speed component of the ripple
effect, which basically adds a repetitive back and forth motion. Further relations and
equations can be looked up in the open source package of Wang and Qian (2012).
Finally, Wscale is introduced to control the size of waves by scaling the water plane.

60s

10m

90s

(a) Real volcanic coast (b) Synthetic volcanic coast

(c) Real (d) Synthetic at t1 (e) Synthetic at t2

Figure 4.10: Visualization of the synthetic coast environment with optional water. In
(d,e) the development of water is exemplified, where t2 − t1 = 1s.
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4.3 Simulation Strategies
The application of a computer vision algorithm on synthetic data can provide substan-
tial insights with the right choice of simulation and evaluation strategy. It can provide
clues of how this method depend on specific parameters and how the robustness can
be increased. This can be attributed to the substantial GT information and absolute
control over system and environment parameters. The following parameter types are
considered in this thesis:
P E Environment parameters: either control the appearance of the environment (sta-

tic) or the proportion of dynamic elements contributing to the scene (dynamic).
Applied during simulation.

P D System design parameters: control design choices of the constructed virtual sys-
tem, such as the dimension of the stereo baseline B. Applied during simulation.

P P Sensor property parameters: control the degradation of sensor data, such as cam-
era capture gain, which affects image noise. Applied during simulation.

P C Calibration error parameters: control the severity of calibration errors by falsify-
ing true simulated values. Applied during application.

Three different strategies are presented in this section and are used with different
goals in this thesis. This includes the basic sensitivity analysis, a geometric MCS,
and a proposed Monte-Carlo-based combined sensitivity analysis. They are based on
the same overall structure, but differ in the used type of parameters, the number of
parameters and the evaluation method. Hereinafter, each strategy is introduced with
an explanation of its goal, its simulation procedure and its specific evaluation method.

4.3.1 Sensitivity Analysis
The main objective is a quantitative study of the impact of single factors on the con-
sidered computer vision method. A side objective is the analysis of the method under
difficult conditions that are rarely observable in real world. This approach is common
and the objectives are also addressed as “ceteris paribus analysis” (main objective) or
“what-if analysis” (side objective) by (Gaidon et al., 2016).

Figure 4.11 (left) shows the conceptional design. One parameter is selected and set
to m distinctive values. The value is added to modify the corresponding configuration
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Figure 4.11: Conceptual design (left) of the strategy sensitivity analysis with an ex-
emplary statistical analysis (right). The explanation is provided in the text.
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files SimConf or IPSConf for subsequent data simulation and application of IPS. Each
estimated trajectory is evaluated based on GT from the synthetic dataset. Application
and Evaluation is repeated n times to account for the non-deterministic nature of
RANSAC in the VO component. The n results are then used for analysis based on
some statistical metric, which is done for each of the m parameter settings. This
simulation strategy is used in Section 7.2.

The statistical data can for instance be visualized in a box plot with the varied pa-
rameter on the x-axis and resulting error on the y-axis. One example is shown in Figure
4.11 (right) for the environment parameter motion blur that was introduced based on
four different exposure times. One IPS setting is evaluated based on the mean ATE
in the different environments fumaroles, coast, corridor and with m = 50 repetitions.
Similar sensitivity experiments are provided and explained in Appendix B.1.

4.3.2 Geometric Monte Carlo Simulation
One characteristic of the strategy sensitivity analysis is that it does not consider cal-
ibration errors, which, however, can have a strong influence on the navigation result.
This severely increases the gap between real world and simulation, especially if the
evaluated algorithm makes assumptions about the existence of errors. Therefore, the
strategy geometric MCS is proposed to evaluate the considered navigation method
based on simulated datasets in combination with a MCS to model errors from extrinsic
and intrinsic calibration parameters. The overall objective is to introduce calibration
errors into the analysis process to provide a meaningful comparison of methods and to
enable an evaluation of propagated uncertainties.

The procedure consists of three steps, which are illustrated in Figure 4.12. First,
sensor data for one complete run is simulated based on perfect calibration parameters.
Second, IPS is applied and evaluated on this run n-times. For each application, a
calibration parameter set is sampled once from their defined error distributions, i.e.,
altogether n sets are sampled. Third, the estimated values can be analyzed based on
their accuracy and uncertainty.

The accuracy analysis is based on common metrics for trajectory evaluation (Sec-
tion 3.3.1). The uncertainty of VO estimations is evaluated based on the normalized
error (Section 3.3.2), which provides a rough impression about the uncertainty qual-
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Figure 4.12: Conceptual design (left) of the geometric Monte Carlo Simulation with
an exemplary statistical analysis (right). The explanation is provided in the text.
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ity. The information about the considered calibration error distributions are provided
to the specific localization method in order to provide a comprehensive evaluation of
propagated uncertainties. Further, only measurements during motion of the system
are considered for uncertainty evaluation, because a system at stand still can result in
VO measurements that show a systematic error and would distort the statistic with a
bias. Figure 4.12 (right) shows an exemplary analysis of the normalized error ê, which
experimental distribution ideally should match the estimated distribution with ˜̌σ≈1
(Section 3.3.2). This approach will be used in Section 5.3.1.

The difference to a basic MCS is that detected features, feature matching errors
and system movements are not based on a theoretical or random generation, but based
on a realistic setup and can be considered in an end-to-end setup. The approach is
applied in Section 5.3.1 to evaluate uncertainty assumptions and error propagation in
the VO component of IPS.

4.3.3 Combined Sensitivity Analysis
A characteristic of the previous two strategies is that they only observe one state of
the highly complex system that the real world represents. Even small deviation in
the observed scene, such as the size of a moving object, might completely change
the navigation results. This severely limits the meaningfulness of the two previous
presented strategies. Therefore, the strategy combined sensitivity analysis is proposed
that jointly considers environment, system design, sensor property and calibration
parameters for simulation and application in a Monte Carlo manner. This approach
allows to cover a large set of possible scenarios and enables a statistical evaluation of
the considered localization methods.

The procedure is illustrated in Figure 4.13 (left). First, n parameter sets are sam-
pled for simulation and application based on defined distributions for P E,D,P,C . In the
current implementation, they are mostly defined as Gaussian distributions and within
a reasonable range for each individual parameter. Second, the datasets are simulated
and the localization method is applied for each sampled parameter set and the ATE is
estimated. Third, a correlation analysis between the varied parameters and the mean
ATE is conducted to quickly find the potentially most influencing parameters, such as
exemplified in Figure 4.13 (right). Fourth, a sensitivity analysis is conducted based on
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Figure 4.13: Conceptual design (left) of the strategy combined sensitivity analysis with
an exemplary correlation analysis (right). The explanation is provided in the text.
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scatter plots for the most influential parameters to validate the observations from the
correlation analysis. This strategy is used in Section 7.2.2 and Section 8.3.

The correlation analysis is based on the Pearson correlation coefficient that de-
scribes the degree of linear relationship between two variables. The two fundamental
assumptions are normality and linearity of the data. To meet normality, the parameters
are preferably sampled from normal distributions. Meeting linearity is more difficult,
since calibration errors lead to higher mean ATE either with a positive or negative
error value. Therefore, only the absolute value of calibration error parameters are used
during correlation analysis. All in all, the translation from sampled input parameters
to the final mean ATE is highly nonlinear, which severely reduces meaningfulness of
the correlation coefficient. Nevertheless, it shows to provide important insights in later
experiments, which can be verified by observing the scatter plot.

4.4 Summary
In this section, the developed digital twin of IPS was presented that is used to generate
synthetic video clones of scenarios that were recorded with the real-world system. Three
synthetic environments were presented, which will be used in the following chapters for
in-depth analysis. Furthermore, three simulation strategies are presented that target
different objectives and will support the investigation in the following chapters. The
potential gap between the real-world and synthetic datasets and experiments will be
discussed in Section 9.3.
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Chapter 5

Analysis and Improvement of
Uncertainty Estimation in Visual
Odometry

Measurement results require a reliable estimate of uncertainty to be used in subsequent
decision making. This applies equally to localization for inspection and by first respon-
ders. For instance, the visualization of uncertainty regions for position monitoring of
first responders in the command and control center can increase efficiency and helps
to build trust in the system (Rantakokko et al., 2011).

In IPS, uncertainty estimation based on analytical error propagation is an essen-
tial component. It is required for the Kalman filter that predicts the current pose
with assigned uncertainties. The filter can only generate reliable results, if all input
measurements provide consistent uncertainties that match their true error distribution.
Particularly, the quality of a VO estimate is highly variable and depends on the num-
ber and distribution of features in the image, feature matching quality and camera
calibration accuracy. Therefore, the VO implementation includes an analytical error
propagation to propagate uncertainties from feature matching and camera calibration
through the least-squares solution. This method was developed by (Grießbach, 2015)
and expanded by (Zhang, 2018) for error propagation from image noise through the
feature matching process. Each individual step was verified by MCS and the over-
all IPS has proven itself by successful use in many applications over years. Though,
the quality and consistency of the VO measurements itself, including all VO steps,
assumptions and approximations, has not been verified.

This chapter has two aims, which form the basis for investigations in the following
chapters. First, a way is needed in the evaluation process to account for degradation
in geometric calibration, which, for example, is evoked by limitations in the calibration
process or by high physical stress on the system in a first responder context. This is
important to assess the influence of calibration errors for a specific application and to
guide the focus of future developments to increase the overall robustness of the system.
Second, the VO pipeline is revisited with focus on error propagation to assess the
quality of propagated uncertainties. This is important, because system uncertainties
are brought into relation with the influence of moving objects in Section 7.2.1 and are
exploited to identify distracting image regions in Section 8.1.1.
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This chapter consists of four sections. Section 5.1 defines and reasons for two geo-
metric calibration settings that differ in the severity of calibration errors. Specifically,
a calibration for Inspection (I ) is defined that assumes small errors and a calibration
for First responders (F) is defined that assumes large errors. Section 5.2 revisits the
VO pipeline with focus on uncertainty propagation and includes three related and
proposed minor improvements, which will be used during application of IPS in the
following chapters. In Section 5.3, the geometric MCS is used to analyze the influence
of calibration errors on IPS and to assess the propagated uncertainties. Section 5.4
discusses the results and the currently used concept in IPS for error propagation with
focus on propagating calibration uncertainties. Finally, a short resume summarizes the
main insights and consequences for the following chapters.

5.1 Geometric System Calibration
Geometric system calibration is a mandatory requirement in photogrammetry and is
essential for accurate visual localization. In IPS, this concerns the spatial transforma-
tions T b

l and T r
l (Section 3.1.1), the camera model parameters κ=(u0, v0, fu, fv)T and

the camera distortion parameters δ=(k1, k2, k3, p1, p2)T (Section 3.1.2). The calibration
itself is performed beforehand and is usually based on a least-squares optimization. The
quality of the calibration depends strongly on the used setup, camera properties, and
number of images and number of corners of the used chessboard calibration pattern
(other options do exist, see Wohlfeil et al., 2019). The outcome are calibration param-
eters and a covariance matrix.

In this section, two representative calibration settings (I , F) are derived for the
application of IPS in inspection and by first responders. The first section describes
the selected calibration setups based on laboratory calibration for I and based on
in-situ calibration for F . The second section discusses challenges that can degrade
the geometric calibration during operation and representative error distributions are
derived, which are used in following investigations.

5.1.1 Camera Calibration for Inspection and First Responder
The objective of this section is to choose calibration settings that relate to the appli-
cations inspection and first responder. For inspection, I assume that the system can
be regularly and thoroughly calibrated in a laboratory and is treated with care during
operation. Thus, the calibration should be trustworthy and show only small errors.
For first responder, I assume that the system cannot be calibrated regularly, often
needs to be done in-situ and is exposed to physical stress during operation. Thus, the
calibration can only be rough and might show larger errors.

The used settings for camera calibration are shown in Figure 5.1. The multi-
camera calibration is based on a chessboard pattern of known size, a sophisticated
corner assignment based on additional AprilTags to enable full image coverage, and a
nonlinear optimization problem to estimate intrinsic and extrinsic camera parameters.
Analytical error propagation is implemented to propagate uncertainties from feature
and object points to the resulting camera parameters. For inspection, the laboratory
calibration uses a high number of 72 stereo pairs, recorded with a camera tripod. The
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Right CameraLeft Camera

(a) Laboratory (used for I )

Thermal Cam.

Right CameraLeft Camera

(b) In-situ (used for F)

Figure 5.1: Considered calibration setups for inspection and first responder applica-
tions. Datasets and calibrations were provided by the authors of Choinowski et al.
(2019) and Wohlfeil et al. (2019).

result is an accurate calibration with small uncertainties, e.g., with a SD of 0.073 px for
u0. For first responder, the in-situ calibration is based on 40 image triplets, which were
recorded without a camera tripod, and simultaneously calibrates the stereo camera
and a thermal camera. This results in a more uncertain calibration, e.g., with a SD of
0.538 px for u0. The complete sets of calibration parameters and uncertainties can be
found in Appendix A.3.

5.1.2 Derivation of Calibration Uncertainties
The objective of this section is to critically consider the trustworthiness of the geometric
calibration during operation with IPS and consequentially to propose a more realistic
error assessment in form of scaled calibration parameter uncertainties. A realistic
assessment of possible calibration errors is required to correctly weight the calibration
errors, for instance, within the combined sensitivity analyses (Section 7.2.2, 8.3) and
to verify that errors of these considered dimensions can be correctly propagated in the
VO component of IPS. Therefore, this section starts by discussing different significant
factors that might degrade the geometric calibration. This discussion is used as basis
to define multiplication factors to scale the propagated uncertainties from calibration.

The multiplication of derived uncertainties with a defined factor is common for
particular applications, but the factor must be stated (JCGM 101, 2008, p. ix). How-
ever, the resulting differently scaled uncertainties of this section are primarily based on
expert judgment, as they can currently not be estimated based on statistical methods.
I.e., they fall into the category of uncertainties that are “evaluated by other means”
(category B evaluation of uncertainty, JCGM 101, 2008, p. ix). Another point to con-
sider is that IPS currently only supports the definition of a SD for each calibration
parameter and does not allow to use the full covariance matrix from calibration, due to
its modular design. Therefore, only the SDs for each parameter are considered in this
thesis for all experiments, which is necessary for a meaningful evaluation of propagated
uncertainties of the VO component. The use of marginal distributions for error prop-
agation and also the systematic error influence of the calibration parameters during
application will be discussed in Section 5.4.
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Four effects are considered that can introduce additional errors into the calibration:

• The quality of propagated uncertainty itself needs to be considered. For
instance, a determining factor for the resulting calibration uncertainty is the as-
sumed uniform uncertainty of corner positions (Wohlfeil et al., 2019). The true
uncertainty of detected corners will increase, if the corner is observed from poses
with close distance and flat angles to the chessboard due to projective distor-
tion, or if they are projected into regions with strong camera distortion. Other
properties that have similar effects are camera noise and blur from depth of field.
Consequently, the estimated uncertainty from calibration might be optimistic.

• Physical stress can deteriorate the calibration quality during operation. Accel-
eration from movement might slightly change the geometric sensor composition
temporarily, due to possible elasticity of materials or (despite all efforts) loosely-
mounted sensor components. Long-term vibrations, material fatigue and strong
impacts on the system can lead to permanent changes. One example is pro-
vided in Figure 5.2, where the geometric sensor composition was observed to
have changed during operation in an extreme environment.

• Environmental influences can change the sensor composition, such as air pres-
sure, magnetic fields or temperature. I exemplary discuss temperature that is
known to cause material expansion, approximated with Equation 5.1 (Becker et
al., 2003).

∆L ≈ α·L0·∆T (5.1)
The stereo camera of the hand-held IPS consist of a calibrated baseline of L0=B=
0.20m at room temperature, which is the largest calibrated dimension in this
setup. The stereo camera is mounted on an aluminum rig with a length expansion
coefficient α0 = 2.4·10−5K−1. In related indoor datasets, I observed internal
IMU temperatures between 30◦C and 50◦C. In the extreme fumarole datasets, I
observed IMU temperatures of up to 70◦, due to high environmental temperatures
and isolation of IPS with protective gear, see Figure 3.1 (left, p.21). This suggests
that differences to room temperature such as ∆T = 30K are entirely possible.
This results in a material expansion of ∆L ≈ 0.14mm, which is far higher than
the assumed SD from in-situ calibration for B ≈ xr

l with 0.0083 mm.
• Incomplete calibration of the system lead to errors by default. Specifically,

the calibration of IPS consists of two steps: calibration of the stereo camera
and registration of the IMU to the left camera T b

l . For rotation estimation
(Grießbach, 2015, p. 48) in the second step, the three axes of the body frame
are ideally aligned with zn axis of the navigation frame (direction of gravitation),
while observing a fixed vertical calibration pattern. Parameters T n

b and the
pose of the chessboard are estimated in a nonlinear optimization procedure with
uncertainty estimation. The displacement is difficult to determine with the given
low cost IMUs (Grießbach, 2015, p. 47). It is measured manually with a ruler
and an uncertainty of 1mm is defined based on expert judgment. This second
step is generally laborious and is often discarded. However, this can be crucial,
because it depends on the calibrated left camera, which is slightly different for
each camera calibration.
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Figure 5.2: Exceptional change in camera calibration under physical stress in the ex-
treme fumarole dataset: (a) Result from online rotation estimation for stereo trans-
formation T r

l , provided by co-authors of (Irmisch et al., 2021). A drastical change1 of
0.05◦ can be observed for α̂x at time 874s. (b) The change might be attributed to strong
acceleration at time 874s, due to a hard put down of the system onto the ground.

To account for mentioned additional error sources, I defined multiplying factors to
inflate given uncertainties and noted them in Table A.9 in Appendix A.3. Uncertainties
of intrinsic camera parameters are scaled by a factor of 4 for calibration I , which
results in a range of uncertainties that are usually used in IPS (prior, see Table A.9).
Parameter uncertainties for the stereo transformation T r

l are scaled by the higher factor
5, because I assume that they are more influenced by physical stress. As a special case,
the SD for baseline B ≈ xr

l is multiplied by 20 to account for errors from temperature
peaks. The uncertainty of calibration F is scaled with similar reasoning, but the factor
is chosen generally smaller, because the main error is assumed to be already present
in the uncertain in-situ calibration. Calibrated parameters for T b

l , the transformation
between left camera l and body frame b of the IMU, are based on the same calibration
for both applications. I chose a higher scale factor for the calibration F of T b

l based on
the assumption that the transformation is more difficult to derive in a first responder
sensor system, which might be more densely built and of lower material and sensor
quality.

To summarize, two calibration parameter sets (I : inspection, F : first responder)
were derived that mainly differ in their level of uncertainties to account for different
geometric properties and calibration errors of both theoretical sensor setups.

5.2 Uncertainties in Visual Odometry
After defining reasonable calibration uncertainties as basis, the next step is to inves-
tigate the handling of uncertainties within the VO module. This section considers
three aspects and proposes corresponding modifications to improve the internal han-
dling of uncertainties. The aspects concern made assumptions during feature matching,
tracking of covariances between entities and camera model parameters during feature
undistortion, and Weighted Least-Squares (WLS) for ego-motion estimation.

1The change manifested in the optimizable parameter α̂x of T r
l , but the real change of system

might actually be in another not-optimized parameter, such as the location of the principal point.
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5.2.1 Feature Matching Uncertainties
The first step with uncertainty estimation in VO is feature matching. The objective
of this section is to question made assumptions about uncertainties during template
feature matching (introduced in Section 3.2.1) and to suggest suitable values for IPS.

Uncertainties for template feature matching are defined in IPS as follows. The
feature mc1δ corresponds to the considered template in the first image c1 and is assigned
an uncertainty of Σmc1δ=0. To define matching uncertainties, IPS differs between pixel-
wise and subpixel matching, based on the introduced matching metrics NCC and SAD.

For pixel-wise matching with NCC, the uncertainty of the matched feature m̂c2δ in
the second image c2 is

Σm̂c2δ ,pixel-wise = Σquant. + Σprior,pixel-wise. (5.2)

It first composes of Σquant.=diag(1/12, 1/12) that describes uncertainty from quantization.
It composes of Σprior=diag(0.12, 0.12) to account for unknown nonlinearities that are
currently not modeled in IPS, e.g., matching errors resulting from view point changes.

For subpixel matching with SAD, the uncertainty of the matched feature m̂c2δ in
the second image c2 is

Σm̂c2δ ,subpixel = Σnoise + Σprior,subpixel. (5.3)

It includes the covariance matrix Σnoise that describes uncertainty propagated from
image noise through the matching process (Zhang, 2018), which is only applicable for
subpixel matching. Currently, Σnoise is assumed to sufficiently cover feature matching
uncertainties and Σprior is omitted. In the following, I will show that this assumption
is not applicable and will derive suitable values for Σprior,pixel-wise and also Σprior,subpixel
to account for remaining unknown nonlinearities.

Evaluation Procedure

Template feature matching can be evaluated based on the developed simulation tool,
as visualized in Figure 5.3. The assumption is that mc1δ in image c1 corresponds to
a static object point, which is to be found in the second image c2 using the matching
procedure. (i) Then, feature mc1δ is detected in the first image. (ii) The corresponding
GT object point M⃗ is generated based on the depth value at mc1δ in the GT depth map

MM
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mC1δ 

c1T
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mC2δ 

(i) feature 

detection

(ii) GT depth 

projection

(iii) GT back-

projection 

(iv) error 
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mC2δ ^ 

→

c2

Figure 5.3: Feature matching evaluation procedure based on synthetic data.
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and using GT calibration parameters and the GT camera pose. (iii) M⃗ is projected
into the second camera using GT calibration parameters and the known GT camera
pose, which results in the GT image point mc2δ. (iv) Finally, mc2δ can be compared to
the matched feature m̂c2δ. This procedure is applied to all feature matches that were
used for the final VO estimation after RANSAC filtering.

The resulting matching error is computed on each dimension i of mc2δ as

ei = m̂c2δ
i − mc2δ

i (5.4)

and is used to compute the experimentally derived SD σ̌i of a set of feature matching
errors e-i with

σ̌i = sd(e-i), (5.5)
which is computed based on the 99% interval to account for outliers.

Additionally, the estimated SD σ̂i of the propagated feature matching uncertainty
Σm̂c2δ can be roughly evaluated based on the SD ˜̌σi of the normalized error ẽi, as
explained in Section 3.3.2.

Experiments

Figure 5.4 shows resulting experimental error distributions (σ̌i, µ̌i) for one simulated
experiment. This experiment evaluates intra (m̂r1δ) and inter (m̂l2δ, m̂r2δ) matching
(superscripts were introduced in Section 3.2.1). The normalized errors ˜̌σold indicate that
the estimated uncertainties σ̂i are significantly optimistic. This clearly shows that the
propagated uncertainties Σnoise from noise do not sufficiently account for all unknown
nonlinearities. The effect is negligible for intra matching in vertical direction with er1

v ,

(m̂r1δ) (m̂r2δ) (m̂l2δ)

−2 0 2

error er1
u [px]

0.0

0.5

1.0

d
en

si
ty

σ̌: 0.39
µ̌: -0.005

˜̌σold: 1.23
˜̌σnew: 0.99

−0.5 0.0 0.5

error er2
u [px]

0

2

σ̌: 0.151
µ̌: 0.007

˜̌σold: 11.9
˜̌σnew: 0.98

−0.5 0.0 0.5

error el2u [px]

0

2

σ̌: 0.149
µ̌: 0.001

˜̌σold: 11.6
˜̌σnew: 0.97

−1 0 1

error er1
v [px]

0.0

0.5

1.0

d
en

si
ty

σ̌: 0.322
µ̌: -0.007

˜̌σold: 1.02
˜̌σnew: 0.99

−0.5 0.0 0.5

error er2
v [px]

0

2

σ̌: 0.137
µ̌: -0.007

˜̌σold: 14.2
˜̌σnew: 0.9

−0.5 0.0 0.5

error el2v [px]

0

2

σ̌: 0.13
µ̌: -0.004

˜̌σold: 13.7
˜̌σnew: 0.85

Figure 5.4: Feature matching evaluation based on the static fumarole dataset and
altogether 102433 point correspondences between all four images. Errors are shown in
blue and their experimentally derived distribution (σ̌, µ̌) is plotted in green. The SD of
the normalized error is written for the original (˜̌σold) and the proposed (˜̌σnew) settings.
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but is still significant in horizontal direction with er1
u . The errors in u-direction for intra

matching is likely caused by the large view-point change introduced by the baseline
in x-direction of T r

l . Similar, inter matching shows errors in x-direction, which might
be due to predominant view point changes on the horizontal plane than in vertical
direction.

Further experiments and evaluations are provided in Appendix B.2. They show
that the feature matching error is influenced by many factors, such as the considered
environment, the magnitude of view point changes and the severity of motion blur.

Definition of Prior Uncertainties

To improve the uncertainty estimation during feature matching, I defined values of
Σprior for intra and inter matching, so that Σmatch. roughly matches the measured
distributions σ̂ in the experiment of Figure 5.4. The chosen values are noted in Table
5.1. The uncertainties in inter matching were defined identically for the different image
dimensions, because the predominant movement on the horizontal plane might be
dataset specific. Based on the adjusted prior uncertainties Σprior, the normalized error
˜̌σnew generally tends to the ideal value of 1.0, noted in Figure 5.4.

Considering an application in real world, the conditions are most likely to be more
difficult than in simulation and the related true feature uncertainties will increase.
Therefore, I roughly define a scaling factor of 1.2 based on expert judgment to inflate
the feature matching uncertainties for application in real world, see Table 5.1.

Table 5.1: Definition of unified SD in [px] for Σprior=diag(σ2
u, σ2

v) to account for un-
known nonlinearities during intra (Σprior,r1) and inter matching (Σprior,r2, Σprior,l2).

σr1
u σr1

v σr2
u σr2

v σl2
u σl2

v

simulation 0.27 0.15 0.15 0.15 0.15 0.15
scale factor 1.2 1.2 1.2 1.2 1.2 1.2
real world 0.324 0.18 0.18 0.18 0.18 0.18

Summary

This investigation has shown that the magnitude of feature matching errors depends
on many factors. It has been proven experimentally that the currently assumed feature
matching uncertainties in IPS do not represent the true feature matching error well.
The feature matching error is subjected to unknown nonlinearities that are not modeled
in IPS, such as introduced by view point changes. To account for such nonlinearities,
an additional uniform uncertainty was defined based on experiments in simulation.

5.2.2 Covariances during Feature Transformation
The second step with uncertainty propagation in VO is undistortion of detected and
matched feature points. The objective of this section is to investigate the importance
of tracking covariances between transformed quantities and model parameters of this
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transformation. Currently, such covariances are often dropped in the modular imple-
mentation of IPS. In this section, I discuss one example from VO, where the tracking
of covariances between quantities and model parameters significantly improves propa-
gated uncertainties.

I consider the transformation of feature points (see Figure 3.3, p.23). Specifically,
I consider to use 11×11 covariance matrices (Cov11x11 ), instead of 2×2 covariance
matrices (Cov2x2 ), as intermediate representation of uncertainties between each of the
three steps of the undistortion method, which are formulated as

mδ → m̃δ → m̃ → m̂. (5.6)

The distorted image point mδ is transformed into normal camera coordinates m̃δ,
undistorted to m̃ and transformed back into image coordinates m̂.

For simplification, I concentrate in the following argumentation on a forth and back
transformation of a feature point between image and normalized camera coordinates,
formulated as

m → m̃ → m̂ , (5.7)
based on 6×6 covariance matrices (Cov6x6 ) instead of 2×2 covariance matrices. This
reasoning applies equally to undistortion, which is sketched out in Appendix B.3.

Using 2×2 Covariance Matrices

The existing implementation (Cov2x2 ) [OSLib] uses 2x2 covariance matrices to model
the uncertainty of each feature point. Note that this implementation with all partial
derivations was formulated and implemented by Grießbach et al. (2014, p.25).

The first transformation m→m̃ is formulated with corresponding error propagation
as

m̃i = mi − ci

fi

, (5.8)

(2,2)Σm̃ = (2,2)J
m̃
m·(2,2)Σm·(2,2)J

m̃T
m + (2,4)J

m̃
κ ·(4,4)Σκ·(2,4)J

m̃T
κ . (5.9)

It consists of the feature point uncertainty (2,2)Σm of m=(u, v)T and the model uncer-
tainty (4,4)Σκ of the interior orientation with κ=(u0, v0, fu, fv)T , including the principal
point c=(u0, v0)T . Jacobian matrices (2,2)J

m̃
m and (2,4)J

m̃
κ describe partial derivatives of

image coordinates and interior orientation w.r.t. normalized camera coordinates:

(2,2)J
m̃
m = δm̃

δm
=
[
f−1

u 0
0 f−1

v

]
(5.10)

and

(2,4)J
m̃
κ = δm̃

δκ
=
[
−f−1

u 0 −f−2
u (u − u0) 0

0 −f−1
v 0 −f−2

v (v − v0)

]
. (5.11)

The second transformation m̃→m with m̃=(x, y)T is formulated with error propaga-
tion as:

m̂i = m̃i · fi + ci, (5.12)
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(2,2)Σ̂m = (2,2)J
m
m̃·(2,2)Σm̃ · (2,2)J

mT
m̃ + (2,4)J

m
κ ·(4,4)Σκ · (2,4)J

mT
κ (5.13)

with Jacobian matrices and partial derivatives:

(2,2)J
m
m̃ = δm

δm̃
=
[
fu 0
0 fv

]
, (5.14)

and
(2,4)J

m
κ = δm

δκ
=
[
1 0 x 0
0 1 0 y

]
. (5.15)

Using 6×6 Covariance Matrices

The considered implementation Cov6x6 tracks covariances between features and model
uncertainties for the intermediate representation of m̃ with (6,6)Σm̃,κ. The error prop-
agation for the first step (m→m̃) is formulated as:

(6,6)Σm̃,κ = (6,6)J
m̃,κ
m,κ · (6,6)Σm,κ · (6,6)J

m̃,κT
m,κ

[
(2,2)Σm̃ (2,4)Σ̆κ,m̃

(2,4)Σ̆T
κ,m̃ (4,4)Σκ

] [
(2,2)Σm (2,4)0

(4,2)0 (4,4)Σκ

] [
(2,2)J

m̃
m (2,4)J

m̃
κ

(4,2)0 (4,4)I

]
.

(5.16)

The Jacobian matrices and covariance matrices assemble of basic matrices from the
implementation Cov6x6. (2,2)Σm̃ consists of the familiar covariance matrices (2,2)Σm and
(4,4)Σκ and the additional partial covariance matrix (2,4)Σ̆m̃,κ, which holds covariances
between feature point m̃ and interior orientation κ.

The error propagation for the second step (m̃→m̂) is formulated accordingly:

(6,6)Σ̂m,κ = (6,6)J
m,κ
m̃,κ · (6,6)Σm̃,κ · (6,6)J

m,κT
m̃,κ (5.17)

with

(6,6)Σ̂m,κ =
[

(2,2)Σ̂
′
m (2,4)Σ̆m,κ

(2,4)Σ̆T
m,κ (4,4)Σκ

]
. (5.18)

Covariance matrix (2,2)Σ̂
′
m is the final result for this two-step procedure. Partial covari-

ance matrix (2,4)Σ̆m,κ appears to be equal (2,4)0 after this back and forth transformation.

Experiments

A MCS (Section 3.3.2) is conducted to evaluate the methods Cov2x2 and Cov6x6 for
an exemplary feature point. For this experiment, (2,2)Σm is set to diag(1/12, 1/12) and
the derived calibration parameters with uncertainties of calibration setting F (Section
5.1) are used. The results are visualized in Figure 5.5. After transforming image
point m into normalized camera coordinates m̃, the propagated uncertainty of both
analytical methods equal the MCS result. However, after transforming m̃ back into
image coordinates m̂, only Cov6x6 with σ6x6=(0.29px, 0.29px)T equals the MCS result
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Figure 5.5: Covariance confidence ellipses from propagated uncertainties during back
and forth feature transformation. Considered are Monte-Carlo Simulation (MCS) based
on 100k iterations and analytical error with different covariance matrix dimensions.

with σMCS=(0.29px, 0.29px)T , while the result of Cov2x2 with σ2×2=(1.06px, 0.83px)T

is heavily conservative.
This experiment shows that the covariances in (2,4)Σ̆m,κ provide the necessary infor-

mation that the camera model in the second step is the same as in the first step and
thus, that the introduced error in the first step will be reversed in the second step.

Summary

In summary, traversing a quantity through multiple transformations that depend on
the same model parameters requires the tracking of covariances between quantity and
model parameters. This insight is equally applicable for the undistortion method, con-
sisting of three internal transformations (Equation 5.6). The equivalent covariance
matrix used for tracking is (11,11)Σm̃,κ,δ and additionally considers the distortion pa-
rameters δ = (k1, k2, k3, p1, p2)T (see Appendix B.3). In the current implementation,
however, only (2,2)Σ̂

′
m will be passed to the next step of VO in the following section,

which is the ego-motion estimation.

5.2.3 Weighted Least-Squares
The third step with uncertainty propagation in VO is ego-motion estimation based on
least-squares. The objective of this section is to prototypical exploit the knowledge
about propagated feature uncertainties in VO. Therefore, the least-squares problem of
VO (Grießbach, 2015) is extended to use feature uncertainties in a WLS manner.

Weighted Least-Squares Formulation

The formulated least-squares problem of Section 3.2.2 seeks to minimize the Euclidean
distance between projected object points M⃗ in the image (features ml2) and matched
feature points m̂l2 in left camera image coordinates of the second stereo frame l2 with

min
∆T

||m̂l2 − ml2||2, (5.19)

in order to optimize model parameters that describe the relative transformation ∆T .
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In this least-squares approach, however, the data is assumed to be isotropically
Gaussian and propagated uncertainties are not considered. An alternative formulation
can be formulated based on the Mahalanobis distance with

min
∆T

[√
(m̂l2 − ml2) Σ̂−1

e (m̂l2 − ml2)
]2

. (5.20)

Covariance matrix Σ̂e reflects the error of observation m̂l2 to the projected point ml2

with e = m̂l2 − ml2, which defines the residual of this least-squares problem. In this
work, Σ̂e is approximated as

Σ̂e ≈ Σm̂l2 + Σml2 . (5.21)
Covariance matrix Σm̂l2 describes the uncertainty of the observation m̂l2, that con-
sists of uncertainties from feature matching (Section 5.2.1) and undistortion (Section
5.2.2). Covariance matrix Σml2 describes the uncertainty of the projected point ml2

and results from propagating object point uncertainties and camera model uncertain-
ties through the projection of M⃗ to ml2 (using methods of Grießbach, 2015). In this
step, the relative transformation ∆T is still unknown and approximated by I. This
approximation is applicable since only relatively small movements in ∆T are to be
expected. Further inaccuracies in this approximation result from not tracking covari-
ances between entities and camera model parameters and not modeling dependencies
between observations and conditions.

Next, off-diagonal covariances are neglected to simplify the problem. Only variances
are used in this approach with Σ̂e = diag(σ̂2

u, σ̂2
v) and {ml2, m̂l2} = {(u, v)T , (û, v̂)T }.

This restriction allows to derive

min
∆T

[
1
σ̂2

u

(û − u)2 + 1
σ̂2

v

(v̂ − v)2
]

, (5.22)

which can be written in the original least-squares formulation of Equation A.4 (p.xiv):

χ2(∆T ) =
N∑

j=0

[
ŵju

(
ûj − πu(M⃗ j|∆T )

)2
+ ŵjv

(
v̂j − πv(M⃗ j|∆T )

)2
]

−→ Min, (5.23)

with weights ŵju = 1/σ̂2
ju and ŵjv = 1/σ̂2

jv. It consists of the model function π

that projects M⃗ onto the image plane based on the model parameters param(∆T ) =
(tx, ty, tz, αx, αy, αz)T that describe the relative transformation. Additionally, π is based
on κ and δ, which are omitted in Equation 5.23 for simplified notation. This WLS
problem can be solved with the Gauss-Newton algorithm2 (Appendix A.1).

Experiments

Figure 5.6 shows examples from a real-world experiment and visualizes the resulting
residual uncertainties Σe for the feature set after RANSAC filtering. SDs are scaled for
better visualization. It shows that the main difference in residual uncertainties comes

2The implementation was provided in [OSLib] with an option to define a weight matrix.
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Figure 5.6: 68% confidence intervals of residual covariances Σe, which are scaled for
better visualization, for one exemplary dataset, recorded at Valle dei Mostri, Sicily.

from distortion uncertainties in the considered approach. The effect is significant at
image borders in (b), when using the calibration settings F .

This WLS approach is validated by a basic MCS in Appendix B.4. This experiment
shows that the presented WLS method outperforms the basic least-squares approach
in the presence of noisy feature points. The MCS simulation could further verify a
correct analytical error propagation (developed by Grießbach, 2015) for single VO esti-
mates, considering uncertainties from feature matching and camera model parameters
κ. Though, this experiment did not consider distortion parameters δ.

Summary

In summary, VO can be improved by considering feature covariances in a WLS approach
in the presence of noisy feature points. Features with high uncertainties are to be
expected in IPS, primarily due to uncertainty in distortion, as exemplified in Figure
5.6. The fact that geometric distortion parameters rather constitute a systematic error
than a statistical error will be discussed in Section 5.4.

5.3 Experiments
In the previous section, three modifications were proposed and validated based on
small individual experiments. In this section, they are applied jointly as WLS+, which
is evaluated on the basis of synthetic and real-world data in comparison to the orig-
inal method, abbreviated as LS. First, the strategy geometric MCS of Section 4.3.2
is applied to introduce errors from geometric calibration into the evaluation process
and to evaluate the quality of propagated uncertainties of the VO component. Second,
the observations are then validated based on multiple small-scale real-world datasets of
various static environments. Each experiment considers two system calibration settings
(I and F , see Section 5.1) with different levels of uncertainty. (Images are processed
with a resolution of 680×512px. More technical notes are provided in Section 7.1.2)
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5.3.1 Geometric Monte Carlo Simulation
The simulation strategy geometric MCS (Section 4.3.2) is used and applied for each
of the synthetic static datasets fumaroles, coast and corridor (Section 4.2). Each
environment is simulated once without dynamic elements. IPS is then applied 500
times for each configuration (WLS+, LS) on each dataset. For each application of
IPS, geometric calibration parameters P C := {κl, κr, δl, δr, T b

l , T r
l } are sampled once

based on their respective error distributions. This is done equally for both calibration
settings (I , F). The evaluation is based on three metrics. First, the accuracy of the
VO component is evaluated based on the mean RTE (Section 3.3.1). Second, the
propagated uncertainties of the translation parameters from the estimated relative VO
transformation are evaluated based on the normalized error (Section 3.3.2). Third, the
mean ATE (Section 3.3.1) is used to evaluate the estimated final IPS trajectory.

To recapitulate, the modifications in WLS+ over LS are: (i) improved feature
matching uncertainties; (ii) tracking of covariances between quantities and camera
model parameters during undistortion; and (iii) a WLS approach.

The results of this experiments are noted in Table 5.2. They show a clear improve-
ment of WLS+ over LS. First, the SDs of the normalized errors show that the estimated
uncertainties of WLS+ better represent the true error distribution than of LS (closer
to 1.0), which can be attributed to modifications (i) and (ii). The uncertainty esti-
mations of LS show to be generally conservative (e.g., ˜̌σx ≪ 1.0). Second, the mean
RTE implies that modification (iii) improves the VO estimations in WLS+. Further,
the higher calibration errors in F lead to a visible increase of the mean RTE for both
methods, but its relative change is less strong for WLS+. Third, the mean ATE shows
that the improved VO of WLS+ consequently leads to a more accurate final trajectory.

Table 5.2: Geometric MCS for LS and WLS+ based on different synthetic datasets.

calib.uncertainties: I (small) F (large)
method: LS WLS+ LS WLS+

Fu
m

ar
ol

es

mATE [m] 0.0196 0.0159 0.0585 0.0371
mRTE [mm] (VO) 0.44 0.40 0.94 0.72
˜̌σx 0.6 0.94 0.43 0.85
˜̌σy 0.5 0.79 0.38 0.78
˜̌σz 0.5 0.75 0.41 0.7

C
oa

st

mATE [m] 0.0143 0.0127 0.0374 0.0272
mRTE [mm] (VO) 0.52 0.46 1.08 0.84
˜̌σx 0.56 0.9 0.47 0.91
˜̌σy 0.48 0.76 0.38 0.78
˜̌σz 0.54 0.85 0.43 0.77

C
or

rid
or

mATE [m] 0.0294 0.0273 0.0785 0.0634
mRTE [mm] (VO) 1.31 1.28 2.56 2.25
˜̌σx 0.62 0.99 0.36 0.79
˜̌σy 0.63 0.92 0.42 0.85
˜̌σz 0.67 0.95 0.45 0.83
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Figure 5.7: Distributions for LS and WLS+, consisting each of 606444 VO estimates
from 500 samples (i.e., applications of IPS), exemplary for the fumarole dataset.

The VO estimations are further investigated in Figure 5.7. It considers the nor-
malized error êx of the relative translation in x-direction of the estimated relative
transformation ∆T . Either for LS and WLS+, the estimated uncertainties get more
conservative for larger calibration uncertainties. This may indicate that still not all rel-
evant covariances are tracked in WLS+ between intermediate entities and calibration
parameters. Specifically, the undistortion step (Section 5.2.2) and ego-motion esti-
mation step (Section 5.2.3) are still applied individually, which should result in more
conservative estimations, as similarly observed for the feature transformation steps in
Section 5.2.2. Though, WLS+ is visibly less affected by this effect then the LS solution.

Figure 5.8 shows the experimental distributions of the normalized error êx for all
500 samples (left) and single samples (center, right) for WLS+ with calibration F . Sin-
gle samples describe exactly one application of IPS with one set of sampled calibration
parameters. It can be argued that one sample corresponds to an application in real
world, where the calibration values are fixed and represent one instance of the given
calibration parameter distribution. The plot implies that the estimated uncertainties
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Figure 5.8: Distributions of single samples (center, right), each based on 1219 estimates.
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σ̂x of an individual sample are relatively conservative and that they are generally are
not well modeled by a Gaussian distribution. Also, the mean of the experimental distri-
bution deviates from zero, which might indicate a bias in VO. Further, it is significant
that in both samples the mean for ẽx deviates in another direction. This experiment
might imply that the implemented error propagation from calibration uncertainty in
IPS does not accurately model the introduced error from geometric calibration, which
is rather a systematic error than a statistical error. However, since the actual calibra-
tion parameters are unknown in real world, the current solution in IPS is to model the
overall uncertainty (Figure 5.8, left) that covers all possible cases as best as possible.
This topic will be picked up in the discussion of Section 5.4.

5.3.2 Confirmation with Real World Data
The methods LS and WLS+ are evaluated in this section based on multiple calibration
settings in different static real-world environments. The used calibration parameters
and uncertainty settings were introduced in Section 5.1. The LS approach is addition-
ally applied with the prior uncertainty setting (Appendix A.3), which is frequently
used in IPS as default, if reliable uncertainty values cannot be determined. A partic-
ularity is that prior does not define uncertainties for distortion parameters (set to 0),
which is why it is considered in the following experiments. The considered datasets of
Table 5.3 differ in length d and availability of GT information. The mean ATE (Section
3.3.1) is used for evaluation based on the available GCPs.

In comparison of WLS+ with LS, the results imply that WLS+ tends to show more
accurate results than the basic LS approach. If applied based on the laboratory (lab.)

Table 5.3: Real-world experiments based on 14 different datasets (Table A.3). Each
number shows the mean ATE [cm] over 20 repetitions. Bold numbers mark the best
results of each dataset for each set of calibration parameters (laboratory, in-situ).

calib. param.: laboratory in-situ d[m] GCPs
calib. unc.: prior I I prior F F properties

method: LS LS WLS+ LS LS WLS+ dataset-
corridor-1 0.06 0.06 0.06 0.07 0.07 0.04 33 1
corridor-2 0.09 0.10 0.09 0.06 0.08 0.05 37 2
corridor-3 0.08 0.08 0.07 0.05 0.04 0.04 37 2
basement-1 0.43 0.43 0.45 0.43 0.45 0.40 215 6
park-area-1 0.66 0.66 0.58 1.01 0.84 0.80 364 15
park-area-2 0.08 0.08 0.07 0.11 0.10 0.08 30 1
coast-1 0.05 0.07 0.05 0.05 0.17 0.07 50 1
crater-rim-1 0.08 0.08 0.08 0.07 0.11 0.08 68 1
crater-rim-2 0.05 0.06 0.05 0.05 0.09 0.05 42 1
mars-1 0.05 0.08 0.04 0.03 0.06 0.02 68 1
hotel-1 0.09 0.08 0.10 0.11 0.27 0.08 44 1
mine-1 0.29 0.29 0.29 0.25 0.25 0.24 122 3
mine-2 0.35 0.35 0.35 0.28 0.28 0.27 134 3
park-stairs-1 0.04 0.04 0.03 0.07 0.09 0.05 36 1
Bold numbers: 7 6 11 3 1 12
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calibration, WLS+ achieves the best results in 11 out of 14 datasets. If applied based
on the in-situ calibration, WLS+ achieves the best results in 12 out of 14 datasets.

In general, WLS+ shows to be more accurate when using uncertainty settings of
calibration settings F than using I . This might imply that the derived uncertainty of F
represents the true error distribution of the in-situ calibration better than the derived
uncertainty of I represents the true error distribution of the laboratory calibration, at
least for the presented datasets.

Despite relatively good results, their significance is impaired. The difference be-
tween results of individual methods is extremely small, on the order of cm. Further-
more, only one methodical base configuration of IPS is considered in all experiments.
Due to this, the improvement can only be considered as a trend towards WLS+. A
deeper analysis of such small differences is not suitable based on real-world dataset
with such limited GT.

5.4 Discussion
The simulation-based experiments showed that increasing calibration errors (I to F)
leads to a stable decrease in accuracy for the considered uncertainty ranges. They
further showed the capabilities of IPS to propagate uncertainties from different error
sources, which was improved based on three modifications (WLS+ ) in this chapter.
Though, limitations of the current concept were observed, which are discussed in the
following with respect to (i) the definition of calibration uncertainties, (ii) the system-
atic error in geometric calibration, (iii) feature matching uncertainties and (iv) other
limitations.

(i) The first point addresses the definition of calibration uncertainties, which is a
mandatory input to IPS. An assumption in IPS is that these uncertainties can be de-
scribed using marginal distributions only. This restriction is required for the modular
design of IPS and an efficient computation with a reduced set of covariances during
each step. However, the information about the correlation of parameters is lost. For
instance, Figure 5.9 shows a strong correlation between focal length f l and distortion
parameter kl

1 or between the principal point parameters ul
0 and ur

0. Therefore, the
use of only marginal distributions might lead to a conservative representation of the
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Figure 5.9: Correlation from covariances for selected calibrated camera parameters
from calibration setting I . It shows high correlation between several parameters.
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calibration errors. The assumption is similarly applied in all MCS experiments in this
thesis, which is necessary to be able to validate propagated errors in IPS, but might
exaggerate, for example, the distortion parameter errors. In turn, this assumption
limits the reach of gained insights of the simulation-based experiments. Future devel-
opments could consider the correlation of calibration parameters and could start with
an investigation of their influence on IPS based on the geometric MCS.

Further, the discussion in Section 5.1.2 found that the uncertainties from the cali-
bration procedure do not adequately represent errors that can occur during operation.
Therefore, more realistic distributions (I ,F) were defined to model calibration errors in
the MCS-based experiments and for propagation in IPS. However, these relatively large
uncertainties are most likely conservative for the application of IPS in standard scenar-
ios. In future, it would be desirable to observe the consistency of the system calibration
during operation, or to implement an online-calibration method to continuously avoid
large calibration errors and associated large uncertainties.

(ii) Calibration errors are more of a systematic nature and are most likely not well
represented by Gaussian distributions during operation. In Section 5.2.2, it was shown
that traversing a quantity through multiple transformations that depend on the same
model parameters (if those are modeled with associated uncertainties) requires the
tracking of covariances between quantity and model parameters. This was exemplified
based on feature transformation, which leads to highly conservative estimates if the
covariances are not tracked. As pointed out in Section 5.2.2, not all covariances between
entities and camera model parameters are currently tracked through the complete VO
pipeline in IPS (e.g., distortion), which might explain the conservative VO estimates of
Section 5.3.1. The complete propagation of all uncertainties through the VO pipeline
could be investigated in future developments.

Furthermore, different VO estimates depend on the same calibration parameters,
which is currently not modeled and will most likely result in a bias drift of VO. The
existence of bias and drift in VO is known and can be compensated. For instance,
Dubbelman et al. (2012) proposed a projective model to compensate the bias in VO and
improved their stereo-based VO method up to 50% in the closed loop error. Jiang et al.
(2010) modeled the drift as a combination of wide-band noise and a first-order Gauss-
Markov process and concluded that quantifying drift by related model parameters
is more suited than using the closed loop error. Bias and bias instability of VO is
currently not modeled in IPS. The introduction of model uncertainties that lead to
more conservative VO estimates is currently the method of choice in IPS to account
for degraded geometric calibration.

(iii) The estimation of feature matching uncertainties is currently not well mod-
eled, despite the operational error propagation from image noise. High nonlinearities
originate, for instance, from view point changes and are currently attempted to be
compensated by an additional prior uniform uncertainty (Section 5.2.1). Though, the
actual error will strongly depend on the environment and conditions during the opera-
tion, which can be highly adverse in a first responder context. Therefore, the reach of
using additional uniform uncertainties is limited. Interestingly, the current error prop-
agation approach of IPS led to a higher estimated statistical error for features at image
borders (Section 5.2.3). This error propagation approach might be incomplete since
calibration errors are rather systematic errors, but it might compensate for degraded
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feature matching near the image border, which might arise due to strong image distor-
tion. In future, the actual distribution of feature matching errors could be analyzed
in more detail and an improved uncertainty estimation, for example, based on a DNN
might be promising to improve IPS.

(iv) There are several more limitations that restrict the reach of the experiments
and this discussion. The derived weights for the considered WLS approach (Section
5.2.3) resulted from propagated uncertainties, but are still only an approximation, as
several correlations have been omitted for simplification. Also, correlations between
feature points after feature transformation (e.g., undistortion) are not considered in
IPS. Moreover, the investigations and improvements focused exclusively on VO and
filter properties of IPS were not considered. Furthermore, the observations based the
normalized error only considered all VO estimates jointly. More insights could be
gained by dividing the measurements into bins, e.g., separated by the magnitude of
estimated uncertainties (Anderson et al., 2019). Finally, all experiments were only
based on one methodical base configuration of IPS.

5.5 Summary
This chapter created the basis for considering calibration errors in the experiments of
the next chapters (7, 8). Therefore, two calibration settings were derived, motivated by
the use of IPS for the applications inspection and first responder, respectively. First,
calibration parameters were used from a laboratory and an in-situ camera calibration.
Second, uncertainties were derived mainly based on expert judgment on the basis of a
discussion of the degrading conditions during operation of IPS.

Furthermore, this chapter analyzed the error propagation concept for the VO com-
ponent of IPS and proposed three modifications (WLS+ ). The improvement of IPS
by the modifications was demonstrated based on a geometric MCS in simulation and
was confirmed on real-world data based on a diverse collection of datasets. The ca-
pabilities of the current concept and its existing limitations were thoroughly discussed
in the previous chapter. Based on this discussion, I conclude that uncertainties and
their propagation in IPS are suitable and necessary to be involved in the following
investigations and discussions.

In the experiments of the following chapters, the modified approach WLS+ of this
section will be used and abbreviated by the basic term IPS. Furthermore, the upcoming
experiments will make use of the derived calibration settings (I ,F).
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The Hybrid System
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Chapter 6

Fundamentals - Semantic
Segmentation

Semantic understanding can provide environmental awareness capabilities for localiza-
tion systems that go far beyond the possibilities of pure geometric approaches. In Part
II of this work, a semantic aid is integrated into IPS in order to analyze the influence of
dynamic objects and to improve the robustness of the localization system accordingly.
This chapter introduces the method of semantic segmentation with primary focus on
DL-based techniques and the used evaluation metrics.

“Segmentation partitions an image into its constituent parts or objects” (Gonzalez
and Woods, 2018). It can be formulated as “the problem of classifying pixels with
semantic labels (semantic segmentation), or partitioning of individual objects (instance
segmentation), or both (panoptic segmentation)” (Minaee et al., 2021). The different
types are demonstrated in Figure 6.1. Semantic segmentation performs pixel-level
classification and labeling for all pixels of the image based on a set of defined categories.
Pixels that do not correspond to a specific class are assigned the default background
class. In contrast to instance and panoptic segmentation, it does not differentiate
between individual instances of one object class, such as different humans.

(a) Image (b) Instance Seg. (c) Semantic Seg. (d) Panoptic Seg.

Figure 6.1: Different forms of segmentation (b-d) based on a visual image (a).

Autonomous image segmentation is a fundamental and difficult task in image pro-
cessing and various problem-specific approaches exist (Gonzalez and Woods, 2018). An
early classical approach is image thresholding that is a common choice if the object
shows distinctive pixel intensities. It can be applied on a global level with multiple
thresholds using Otsu‘s method or on a local level based on moving averages. An-
other approach is edge based methods to detect and link object boundaries. They
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are applicable if regions of object boundaries are sufficiently different from each other.
Or, region-based approaches are favored for complicated scenes when object textures
show patterns with notable intensity differences. Representatives are region-growing
or region-splitting and -merging, k-means clustering, or watersheds. A relatively new
technique that has emerged over the last decade is image segmentation based on DL.
It currently represents the absolute choice that outperforms all previously mentioned
classical approaches for most complicated image segmentation tasks.

6.1 Developments in Deep Learning
“Deep learning is a particular kind of machine learning that achieves great power and
flexibility by representing the world as a nested hierarchy of concepts, with each concept
defined in relation to simpler concepts” (Goodfellow et al., 2016, p. 8). In other words,
a vector of input quantities are interpreted hierarchically in multiple steps by hidden
layers, each consisting of a number of neurons. The output of each layer is a feature
vector with increasing level of representation. With a significant number of layers, a
high-level representation of input quantities is reached. This can finally be used to
compute the output quantity, which might be a classification into user defined object
categories. The mentioned flexibility refers to a possible easy adjustment of the number
of layers and neurons as well as modular substitution with other mathematical problem-
specifc formulations, such as convolutional layers for image processing tasks. The power
might further refer to the possible representation in matrix notation, which allows easy
upscaling and application of hardware that is optimized for matrix processing.
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Neuron computation:

zi(l) =
nl-1∑
j=1

wij(l)aj(l-1) + bi(l)

Activation function:
hReLU(zi(l)) = max(0, zi(l))

Neuron output:
ai(l) = h(zi(l))

Figure 6.2: General model of a feedforward, fully connected neural network, illustration
based on Gonzalez and Woods (2018, p. 946).

Figure 6.2 shows a general example of a feedforward neural network based on a fully
connected neural network. The input quantity vector x̂ is processed through a number
of hidden layers l and classified by an output layer, such as softmax for classification,
to generate the output quantity ŷ. Each layer consists of a number of neurons nl

to interpret the previous quantity vector a(l-1). The number of neurons of hidden
layers can differ between individual layers. Each neuron consists of a mathematical
formulation z with trainable parameters (weights w, bias b) and a subsequently applied
activation function h, whereby the Rectified Linear Unit (ReLU) is most common.
During training, the network parameters are optimized in an iterative manner based on
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backpropagation and gradient descent, where α represents the learning rate, formulated
as

wij(l) = wij(l) − α
δL

δwij(l)
and bi(l) = bi(l) − α

δL

δbi(l)
. (6.1)

Given a dataset of corresponding input and output quantities, the current feed forward
result ŷ is compared to a GT y based on a loss function L(ŷ, y). The error is then
propagated back through the network structure based on the chain rule to update
network parameters. Neural networks with at least two hidden layers are called DNNs.

While the development of neural networks dates back to the 1940s (Goodfellow
et al., 2016), their development and application has experienced a drastic boom in the
last decade. The received attention can be subjected to four main factors. First, major
methodical developments of the last decades allowed the application and training of
DNNs for various tasks. For instance, Convolutional Neural Networks (CNNs) intro-
duced spatial relationships between pixels and heavily reduced the amount of required
model parameters. They have become the approach of choice for complex image recog-
nition tasks, exemplified with the superior performance of a CNN at the ImageNet
challenge (Krizhevsky et al., 2012). Second, the size of training datasets is drastically
increasing, which reduces the degree to which statistical generalization is a challenge
for DNNs (Goodfellow et al., 2016). Third, more powerful computing units allowed
the training of larger networks and application of larger datasets. Computing based on
Graphic Processing Units (GPUs) has become standard in DL. For instance, NVIDIA
specifically geared toward DL. They introduced Tensor cores that are specialized on
efficient matrix computation and utilize efficient training on work stations (e.g., RTX
Quadro), and further developed mobile computing units for inference during operation
(e.g., NVIDIA Jetson). Fourth, the software infrastructure significantly improved, due
to the development of open source and user friendly software libraries for DL. They al-
low a flexible, modular design and efficient training, inference, and evaluation of DNNs.
For instance, a popular DL library is Tensorflow (Abadi et al., 2016).

The success of DL in image segmentation is based on several developments, for
which (Minaee et al., 2021) provides a comprehensive overview. A fundamental step
was the application of fully CNNs (Long et al., 2015), which allow to output a prediction
of the same size as arbitrarily-sized input images. Other main developments are based
on encoder-decoder networks or based on spatial pyramid pooling modules.

The first approach allows to first encode a dense and high-level representation of
the image and subsequently decode a high-resolution segmentation map (Noh et al.,
2015). The resulting segmentation map, however, can show a loss of fine grained image
information. This is addressed by U-Net (Ronneberger et al., 2015), for example, by
using scip connection between a symmetrical encoder and decoder structure.

The second approach refers to networks from the DeepLab family (Chen et al.,
2018a). A key component of their work is the application of atrous convolution that
dilates a kernel by a specific dilation rate and thus can expand the receptive field of
the kernel without increasing the number of model parameters. They further proposed
Atrous Spatial Pyramid Pooling (ASPP) that applies multiple kernels with different
dilation rates in one layer to handle object segmentation at different scales. Already
proposed in (Chen et al., 2014), they combined their network with an iterative refine-
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Figure 6.3: General structure of the encoder-decoder design of (a) Deeplabv3+ (Image
based on Chen et al., 2018b) or (b) of Deeplabv3+ Mobilnetv2 (Sandler et al., 2018).

ment procedure based on Conditional Random Field (CRF) to improve localization of
object boundaries.

A network structure that combines both approaches is Deeplabv3+ (Chen et al.,
2018b) that uses an encoder-decoder architecture and includes dilated separable con-
volutions, sketched out in Figure 6.3 (a). The encoder consists of cascaded atrous sep-
arable convolutions, followed by an ASPP module. The decoder combines the results
of both modules and refines the segmentation results. They published their Tensor-
flow implementation and provide pre-trained weights based on different backbones and
trained on different public datasets [DeepLab]. (Sandler et al., 2018) specifically ad-
dressed the high computational demands and proposed the Mobilenetv2 architecture.
This network is based on inverted residuals between bottleneck layers that comprise of
depthwise separable convolutions. Separable convolution consists of spatial convolution
for each channel (depthwise) and a following 1x1 convolution (point wise), and reduces
the computational complexity in comparison to the standard convolution layer. It is
optionally integrated into the Deeplabv3+ structure, see Figure 6.3 (b), in the way that
the deep CNN structure is replaced by a Mobilenetv2 backbone and that the dilated
convolution kernels of the ASPP layer are removed.

6.2 Evaluation Metrics

The evaluation of semantic segmentation usually refers to quantifying model accuracy
(Minaee et al., 2021). The most commonly used metrics are the mean Pixel Accuracy
(PA) and mean Intersection over Union (IoU). Further alternative metrics are the
classification metrics Precision, Recall and F1-score, which however are not further
considered in this work.
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The PA is defined as the ratio of correctly classified pixels to the total number of
pixels in the image. It is stated by its mean for K+1 classes with K foreground classes
and one background class, and is formulated as

mPA = 1
K+1

K∑
i=0

PA = 1
K+1

K∑
i=0

pii∑K
j=0 pij

. (6.2)

The IoU is defined by the area of intersection between the predicted and GT seg-
mentation map, divided by area of union. This metric formulation is visualized in
Figure 6.4. The mean IoU also describes the mean over all classes and is the most
popular metric for semantic segmentation. It is formulated as

mIoU = 1
K+1

K∑
i=0

IoU = 1
K+1

K∑
i=0

|A ∩ B|
|A ∪ B|

. (6.3)

(a) Ground truth (b) Prediction (c) Overlap

IoU =

(d) IoU

Figure 6.4: Visualization of the mean IoU estimation for semantic segmentation.
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Chapter 7

Analysis and Improvement of
Visual-Inertial Navigation in
Dynamic Indoor Environments

Self-localization systems for first responders must be able to work reliably in highly
dynamic environments, which may be characterized, for example, by a high number of
moving people and vehicles. Camera-based localization in such environments is chal-
lenging. Feature-based localization methods need to reliably reject keypoints that do
not belong to the static background. Here, traditional statistical methods for outlier
rejection quickly reach their limits. A common approach is the combination with an
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Figure 7.1: Illustration of Irmisch et al. (2020) that shows exceptional cases from hand-
held localization on an escalator (a) and vehicle localization at night (b, with increased
brightness for better visualization). It shows selected features (green crosses) used for
pose estimation in the VO component of IPS without (Normal) and with (Masked) the
segmentation aid (red area). The hand-held system is reconsidered in this chapter.

81



The Hybrid System - A Segmenation Aid 7.1

IMU for VIO, such as in IPS. Also, semantic segmentation based on DNNs was recently
successfully applied in visual localization to identify features on certain object classes.
In (Irmisch et al., 2020), we studied the application of mask-based feature selection
based on semantic segmentation in IPS for robust localization in high dynamic envi-
ronments. A pre-trained DNN was used to segment persons and cars in the image.
The method was evaluated based on several different datasets from different IPS pro-
totypes, with Figure 7.1 exemplifying two challenging scenarios. In addition to IPS,
we also considered ORBSLAM2-Stereo (Mur-Artal and Tardós, 2016) to generalize our
observations. In this thesis I concentrate only on the hand-held sensor system IPS.

In this chapter, the experiments with the hand-held system in indoor environments
are reconsidered. The challenge is to navigate in an environment with various homo-
geneous surfaces on static objects and a dense presence of moving people, which in
combination introduce a critical ratio of features on static and dynamic objects. This
scenario is especially interesting in the context of first responders, for example, during
the rescue of victims in a rampage scenario (indoor rescue, Section 1.2).

The contribution presented in this chapter is a detailed analysis of the influence
of dynamic objects on the VIO result on the example of moving persons in indoor
environments and the identification of counter measures to reduce this influence. A
specific focus of this section is the application of semantic segmentation, a detailed
analysis in simulation, and a confirmation in real world.

The chapter is organized as follows. At the beginning, the integration of semantic
information into IPS is explained and technical aspects are noted about the configu-
ration settings. Then, three experiments are conducted that allow in-depth analyses.
First, a sensitivity analysis is conducted simultaneously in simulation and real world
in a highly dynamic corridor environment (Section 7.2.1). It is used to analyze the
influence of image frame rate, image resolution with stricter feature matching, level of
uncertainty, and the application of semantic segmentation. Second, a combined sen-
sitivity analysis follows that is used to weight the influence of dynamic environment
parameters to other error sources, such as calibration inaccuracies or camera noise, and
to verify propagated uncertainties from VO (Section 7.2.2). A large-scale real-world
mall dataset is investigated to confirm the possible benefit of the segmentation aid in a
possible first responder scenario (Section 7.3). Finally, a short summary of the results
ends this chapter.

7.1 Semantic Segmentation for Feature Selection
This section shortly describes the introduction of semantic segmentation into IPS,
which is processed as a mask and used for feature selection. Furthermore, technical
notes are provided that comment on the used configurations of IPS and their run-times.

7.1.1 Segmentation Aid
Semantic segmentation is used to support the rejection of detected features on moving
objects in the VO component. As summarized in Figure 7.2, a mask is generated based
on pixel-wise classification of defined object classes and is used to reject point feature
candidates during feature detection. In this chapter, I consider the class person, which
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Figure 7.2: Extension of VIO (Section 3.2) with a segmentation aid and optional (not-
used) extension of the 3D reconstruction component (grey, used in Irmisch et al., 2021).

I assume is constantly moving to exclude all small movements, for experiments with the
hand-held system. For pixel-wise classification, Deeplabv3+ (Chen et al., 2018b) with
a Mobilenetv2 (Sandler et al., 2018) backbone (Section 6.1) is used with pre-trained
weights, downloaded from [Deeplab]. The network was pre-trained by the authors on
the augmented training dataset of COCO (Lin et al., 2014) for semantic segmentation
and is able to segment 20 different object classes and the background. Based on the
segmentation of the target object class person, a mask is generated that defines the
belonging to forbidden object classes. To compensate inaccurate segmentation borders
and difficult object-assignable or object-close image features, the mask is dilated by
3 px, oriented on the feature radius of AGAST (Section 3.2.1). The application of
the mask is implemented in the feature detection phase. After a point candidate is
proposed by the corner detector, the image position is verified with the mask and
accepted or rejected accordingly. Further selections of the features to use, e.g., with
non-max suppression, follow and remain unchanged.

7.1.2 Technical Notes
In this section, I shortly comment about the implementation of IPS and the segmen-
tation aid extension as well as its configuration and run-times to provide a rough im-
pression about required computational resources. All experiments are conducted on a
powerful work station [DellPrecision] with an Intel Xeon W-2145 processor (maximum
boost frequency up to 4.5 GHz) and a Quadro RTX 6000 graphics card.

The implementation of IPS currently consists of three parallel main computational
threads for (i) feature detection and intra matching, (ii) inter matching and ego-motion
estimation, and (iii) the Kalman filter. The segmentation aid adds two more threads:
(iv) semantic segmentation and (v) mask generation.

The segmentation aid is implemented within a development and research frame-
work. While IPS is implemented as a multi-threading framework in a C++ environment
for real-time purposes, most open source deep learning networks are realized and pub-
lished in Python for fast development and deployment purposes. A replication in C++
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is a laborious task and often not provided. Therefore, I used [Pybind11] to implement
an interface from C++ to the Python-based Tensorflow-implementation of [Deeplab].
This approach allows to easily apply any Tensorflow- and Python-based DNN imple-
mentation in the C++ framework of IPS. Though, it complicates the installation process
of IPS with the segmentation aid on new platforms.

Two different IPS configuration settings were chosen in consultation with experi-
enced IPS users, while the base method is WLS+, introduced in Chapter 5. First,
IPS-fast provides real-time localization on computational restricted platforms by pro-
cessing the images in half resolution (680×512 px) at 10 Hz, while the feature matching
properties are optimized for maximum speed. The semantic segmentation module
for IPS-fast-masked processes each image at (512×384 px) resolution, which requires
around 15 ms on the GPU. Second, IPS-accurate runs in near real-time by processing
the images in full resolution (1360×1024 px) at 10Hz and uses slightly larger image
patches, i.e., 7×7 instead of 5×5, which entails a stricter selection during feature
matching. The semantic segmentation module for IPS-accurate-masked processes each
image in full resolution, which requires around 85 ms on the GPU.

Figure 7.3 summarizes the run-times. For IPS-fast, the IPS pipeline is able to
compute a system pose for stereo images around every 50ms in average, if sensor data
latency is disabled. Therefore, it is easily applicable on computational restricted hard-
ware without loosing real-time capability. The additional segmentation aid in IPS-fast
does not decrease the throughput. For IPS-accurate, the observed mean throughput is
around 140ms, and can therefore only be considered as near real-time capable. Inter-
estingly, the average throughput of this configuration is around 95ms for the corridor
dataset. The bottleneck appears to be the feature detection thread (i), which has to
handle less feature candidates in the homogenous corridor environment. The average
throughput is increased in IPS-accurate-masked by the segmentation aid, which adds
additional queries for each detected feature in thread (i).
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Figure 7.3: Throughput of system pose estimations for stereo images, if sensor data
latency is disabled. A throughput below 100ms implies real-time capability at 10Hz.

The configuration of IPS-fast could be easily adapted to a specific computing plat-
form and application to increase the localization performance without loosing real-time
performance. Though, this is not the focus of this thesis and only one configuration of
IPS-fast is used for all experiments in this thesis. Furthermore, the overall implemen-
tation, specifically pointing to the developments of this work, is intended for research
purposes and can be optimized in the future.
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7.2 Corridor - Sensitivity Analysis
Two experiments are presented in this section to analyze the influence of dynamic ob-
jects on VIO in depth. First, a sensitivity analysis is conducted in a highly dynamic cor-
ridor environment, simultaneously in simulation and real world. It is used to analyze
the influences of image frame rate, image resolution, level of uncertainty, and applica-
tion of semantic segmentation. Second, a combined sensitivity analysis follows for one
selected scene. It is is used to weight the influence of dynamic environment parameters
to other error sources and to evaluate the propagated uncertainties from VO.

7.2.1 Simulation and Real-World Sensitivity Analysis
The first experiment is designed to determine the limits of VIO in dynamic indoor
environments and to exploit the potential of the segmentation aid on the example of
IPS. IPS is evaluated in a similar dynamic corridor environment in real world and in
simulation, using the hand-held IPS (Chapter 3) and its digital twin (Chapter 4). The
experiment setup corresponds to a sensitivity analysis (Section 4.3.1). In the following,
the overall setup of the experiment is explained and then the results are analyzed in
detail by showing additional quantitative and qualitative results.

Experiment Setup

The experiment is based on the corridor dataset that consists of 7 real and 6 synthetic
recordings in a similar corridor environment. The datasets contain humans that are
mostly walking or standing with small movements. The trajectories of both sources
consist each of walking a short distance, illustrated in Figure 4.8 (a, p.45), but the
individual recordings differ in the level of dynamic and the presence of humans. For
instance, the dataset sim-corr-d2 consists of two humans walking consistently in front
of the camera. Or, the dataset sim-corr-d4 consists of two humans walking toward
the camera, while another two are observed starting to walk slowly. Tables A.2 and
A.4 (Appendix A.2) provide additional information about camera dynamics and path
lengths. The real camera images were recorded with a frame rate of 30 Hz and sorted
out for 10 Hz and 5 Hz. The simulation provides complete GT, while for the real-world
dataset only two GCPs with a distance of 16m at the beginning and the end of each
session are used as reference. To ensure the image quality of synthetic datasets, a
super-sampling factor of 5 is used and 21 images are accumulated to simulate motion
blur with an exposure time of 5ms.

Three different IPS configurations are examined, each applied without (normal) and
with (masked) the segmentation aid. IPS-fast is applied with both calibration settings
I and F (Section 5.1) to investigate the influence of the level of system uncertainties,
with small uncertainties in I and large uncertainties in F . Additionally, IPS-accurate is
applied to investigate the influence of image resolution with stricter feature matching,
using calibration setting F . Each method is applied both in simulation and real world,
and at different image frequencies (5 Hz, 10 Hz, 30 Hz).

For the application of IPS on synthetic datasets, the GT semantic segmentation
from the simulator is used as segmentation aid in IPS. This is necessary to exclude
all misleading effects from evaluation that arise from incomplete segmentation of hu-
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mans. For instance, Figure 7.5 (b) shows a scene where the right person was not fully
segmented by the DNN, which in turn lead to a false ego-motion estimation.

Results

The results are visualized using the Cumulative Distribution Function (CDF) in Figure
7.4, distinguished between simulation and real world and different camera frame rates.
Each line shows all ATEs of one method as a whole for 6 runs in simulation and 7 in
real world, and for each 20 repetitions.

The segmentation aid (dotted lines) generally increases localization results over IPS
in standard configuration (solid lines). This boost is distinctive at 30Hz and negligi-
ble at 5Hz. Figure 7.5 (c) shows one example where IPS-normal fails to correctly
distinguish between static and moving objects, which could be resolved using the seg-
mentation aid in IPS-masked.

Simulation Real World

5Hz

10Hz

30Hz

IPS-fast-normal-I

IPS-fast-masked-I

IPS-fast-normal-F

IPS-fast-masked-F

IPS-accurate-normal-F

IPS-accurate-masked-F

Figure 7.4: Results of the sensitivity analysis for the corridor datasets in CDF-
representation. The vertical lines mark the mean ATE for each CDF.
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Figure 7.5: Illustration of selected features (green crosses) used for ego-motion esti-
mation after RANSAC filtering with optional application of the segmentation aid (red
area). Brightness is increased for better visualization (a,b).

A lower image frame rate increases localization results over localization with high
image frequency for all IPS-normal settings. Due to higher frame rates, object motions
are less pronounced in the image and features on slowly moving objects are more likely
to be used in the VO ego-motion estimation. Illustrated in Figure 7.6 (a,b,c), more
features are used on slowly moving humans with higher image frequency.

A higher image resolution with stricter feature matching (IPS-accurate) similarly
shows to improve localization in dynamic environments in comparison to localization
with lower resolution (IPS-fast). This might also be attributed to more pronounced
object movements, such as indicated by Figure 7.6 (d) in comparison to (b).

A more certain IPS system shows to be less influenced by dynamic objects. Figure
7.4 clearly shows a better performance of IPS-fast-normal-I over IPS-fast-normal-F,
which only differ in the applied calibration settings with small (I) and large (F ) uncer-
tainties. If the segmentation aid is applied, IPS-fast-masked-I and IPS-fast-masked-F
do not significantly differ. This indicates a connection between the internal uncertainty
of IPS and the influence of moving objects, which is analyzed further in Table 7.1. It
shows the results for the simulated dataset sim-corr-d04, where slowly walking humans
appear to have a strong influence and false VO measurements are frequently computed,
such as visualized in Figure 7.5 (c). The internal uncertainty of IPS is exemplified by

(a) 5Hz, fast (b) 10Hz, fast (c) 30Hz, fast (d) 10Hz, accurate

Figure 7.6: The effect of image frame rate (a,b,c) and resolution (d) on the set of
selected features (green crosses) after RANSAC filtering. Brightness is increased.
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Table 7.1: Analysis of the relation between internal system uncertainties and the influ-
ence of moving objects based on IPS-fast-normal and simulated dataset sim-corr-d4.

χ2-test: activated disabled
Calibration: (I) (F) (I) (F)

mATE [m] 0.27 0.37 0.34 0.41
σ̂x of ∆T [mm] 0.64 1.24 0.63 1.23
∆T rejected 12 1 0 0

the propagated uncertainty σ̂x for the translation in x-direction of the estimated rel-
ative transformation ∆T . The results show that a smaller internal uncertainty (I)
enables the chi-squares test of the Kalman filter (Section 3.2.3) to correctly identify
the VO measurement as an outlier and reject the measurement accordingly. If the
internal uncertainty is high (F ), only very few false measurements are rejected and
the overall mean ATE is high. If no VO measurements are rejected, due to a disabled
chi-squared test, then the mean ATE is even worse.

The masking of static humans can also decrease the localization performance. This
is exemplified on the simulated dataset sim-corr-s02 (detailed in Table 7.2). The
dataset includes 9 simulated persons that are kept static and therefore do not introduce
dynamics into the scene, as illustrated in Figure 7.5 (d, top). Though, IPS-masked
still ignores all features on humans, see Figure 7.5 (d, bottom). Consequently, less
features are used for the VO ego-motion estimation, specifically around 42 features in
average instead of 64 features for this example. This results in a less accurate (higher
mean RTE) and more uncertain (higher σ̂x of ∆T ) VO ego-motion estimation, and
consequently in a worse localization result (higher mean ATE). Though, this loss in
performance is rather insignificant in comparison to the error that results from moving
objects, which dominates the results in Figure 7.4.

Comparing the results from simulation and real world, they show strong correlations
despite different evaluation metrics. It is particularly striking that IPS-accurate-masked
performs mostly similar at all frame rates, in simulation and real world respectively.

Table 7.2: Analysis of the influence of non-moving humans based on IPS-fast and
simulated dataset sim-corr-s02.

method: IPS-fast-normal IPS-fast-masked
calibration: (I) (F) (I) (F)

mATE [m] 0.0063 0.0071 0.0124 0.0113
mRTE [mm] 0.66 0.78 1.19 1.41
σ̂x of ∆T [mm] 0.46 0.85 0.75 1.44
used features 64.8 64.6 42.1 41.8
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7.2.2 Combined Sensitivity Analysis
A limitation of the previous experiment is the limited versatility in the datasets with
respect to other error sources. For instance, the camera calibration was assumed to be
perfect and camera noise was reduced to a minimum, oriented on the observed noise
from the real-world system in ideal conditions. Though, experiments under such ideal
conditions are less meaningful for application in a first responder context. The objective
of the following experiment is to introduce such error sources and to additionally weight
their influence against each other. Therefore, the combined sensitivity analysis (Section
4.3.3) is applied in this section.

Experiment Setup

The experiment is based on the artificial corridor dataset with slow moving humans,
which was introduced and visualized in Section 4.2.1. Table 7.3 summarizes the con-
sidered parameters that are sampled during each iteration in a Monte-Carlo manner.
Four different types of parameters are considered (introduced in Section 4.3). Start-
ing from the bottom, all geometric calibration parameters are varied based on their
specified distribution from the first responder calibration set F . This includes intrinsic
camera parameters κ and distortion parameters δ, and the extrinsic parameters for
the stereo transformation T r

l and registration to the IMU T n
l . Further, image blur and

image noise are considered to account for possible adverse conditions that may degrade
camera properties. Both are sampled in a reasonable range, which was predetermined
with a single parameter sensitivity analysis (Appendix B.1). Capture gain defines the
noise ratio based on formulas 3.8 - 3.11 (Section 3.1.2), but does not change the image
intensity in the simulation. Next, one design parameter is considered that describes
the simulated size of the stereo baseline, sampled closely around the baseline value of
the real-world system. Finally, two environmental parameters are considered, which
are person speed and person height (Section 4.2.1). Person speed is sampled in the
time domain and measures how much time both persons in front of the elevator need to
move 1.5 m. Figure 7.7 exemplifies simulated images of four different randomly-selected
parameter set samples.

The experiment follows the procedure of the combined sensitivity analysis, described
in Section 4.3.3. 900 different parameter sets are sampled and used for simulation and

Table 7.3: Considered parameters and sample distributions for the conducted combined
sensitivity analyzes. Considered are calibration parameters P C , camera properties P P ,
system design parameters P D, and environment parameters P E (Section 4.3).

name type sample distribution allowed range
person speed (time) [s] P E Ps ∼ N(11.5, 2.5) 6.5 < Ps < 16.5
person size [m] P E Ph ∼ N(1.56, 0.39) 0.78 < Ph < 2.34
baseline [m] P D B ∼ N(0.2, 0.03) 0.05 < B < 0.35
Gaussian blur [px] P P σblur ∼ N(0, 1) 0 < σblur < 5
capture gain factor P P C ∼ N(0, 5) 0 < C < 20
geometric calibration P C κ, δ, T r

l , T n
l of calibration F (Appendix A.3)
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Figure 7.7: Exemplary images from different samples of the combined sensitivity ana-
lyzes that show the variation in camera properties and environment parameters.

for application of IPS-fast-normal-F and IPS-fast-masked-F. The mean ATE is used
for trajectory evaluation. The data is analyzed based on a correlation plot, scatter
plots, and evaluation of the normalized error (Section 3.3.2).

Results

The correlation of the resulting mean ATE with the varied input parameters is pre-
sented in Figure 7.8. The calibration parameters are reduced in this plot to intrinsic
parameters κl of the left camera for better visualization. Considering IPS-normal
(based on IPS-fast-normal-F), the strongest correlation with the mean ATE can be
observed for the environment parameters person size and person speed, which was ex-
pected due to the chosen setup of this experiment. For instance, the ratio of features on
dynamic objects increases if the person is taller, which in turn increases the probability
of corrupted or false VO estimations. The influence of other parameters show generally
less correlation with the mean ATE. Considering IPS-fast-masked-F, the influence of
the dynamic environment parameters vanishes since all persons are completely masked
out during feature detection, using the GT-segmentation. Instead, the blurring shows
to be a significant factor in this case. Also, the error of the principal point in horizontal
direction ul

0 seems to be relatively significant, which is comprehensible since ul
0 directly

affects the scale of the trajectory. Interestingly, the design parameter stereo baseline
shows a negative correlation, which indicates that a larger baseline is generally more
suited than a smaller one.

However, as mentioned in Section 4.3.3, the correlation analyzes is relatively limited
due to high-nonlinearities in the transfer function, transferring the input parameters to
the mean ATE. Therefore, the observations needs to be confirmed by directly observing
the data in terms of a sensitivity analysis, for instance, using a scatter plot.
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Figure 7.8: Correlation analysis for corridor with 9 out of 29 varied parameters.
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Figure 7.9: Sensitivity analysis for the corridor dataset. Points show the mean ATE
of one sample with respect to the sampled parameter (top), whose sample distribution
is shown (bottom). Lines connect the mean of samples that are divided into 10 bins.

Figure 7.9 (left) shows the resulting mean ATE for each sample with respect to
the corresponding environment parameter person size. It shows that taller persons
in the image lead to higher errors of the trajectory, which confirms the observation
from the correlation analyzes. If the segmentation aid is applied, the influence of the
person size vanishes, as shown in Figure 7.9 (middle). The observed influence of image
blur is visualized in Figure 7.9 (right). It reveals that the observed correlation comes
from a few samples with strong image blur. Even though this effect is comprehensible,
this range of image blur is not densely sampled and should not necessarily dominate
the correlation analysis. In future, an outlier rejection scheme could be considered to
reduce the influence of single samples.

The overall results over all samples are noted in Table 7.4, where the improvement
by the segmentation aid is quantified in terms of mean ATE for the final trajectory and
mean RTE for VO estimations. The table additionally shows the SDs of the normal-
ized error ˜̌σ (Section 3.3.2) for the translation components of ∆T , which was used in
Section 5.3.1 for the geometric MCS and is also applicable for the combined sensitivity
experiment. While IPS-masked shows SDs of the normalized error ˜̌σ that correctly tend
to 1.0, IPS normal shows highly optimistic estimations with ˜̌σ ≫ 1.0. This is caused
by corrupted or false VO estimations, where the error can not be correctly modeled by
the estimated SD from error propagation. Figure 7.10 visualizes the distribution ( ˜̌σx,
˜̌µx) of the normalized error ẽx exemplary for the estimated translation in x-direction

Table 7.4: Results of the combined sensitivity analysis for corridor using IPS-fast-F.

method: IPS-normal IPS-masked
mATE [m] 0.246 0.081
mRTE [m] (VO) 0.0035 0.0026
˜̌σx 1.49 0.87
˜̌σy 1.51 0.96
˜̌σz 1.26 0.85
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Figure 7.10: Evaluation of propagated uncertainties for VO ego-motion estimations.

of ∆T . For IPS-normal (left), false VO estimations introduce outliers, which lead to
a non-Gaussian distribution. This experiment shows that VO errors that result from
dynamic objects cannot be modeled by the propagated uncertainty.

7.3 Confirmation with Real World Data
In the previous section, the influence of dynamic objects was analyzed in simulation
and based on real-world corridor datasets that were designed to bring IPS to its limits.
The semantic segmentation aid has shown to contribute well to improve the robustness
of IPS. In this section, IPS is tested on a large-scale real-world mall dataset to confirm
the possible benefit of the segmentation aid in a realistic scenario. This dataset might
be closest to a first responder scenario over all currently existing IPS datasets.

Experiment Setup

The dataset was recorded in 2014 for the indoor navigation competition at the interna-
tional conference on Indoor Positioning and Indoor Navigation (IPIN, 2014). Exempli-
fied in Figure 7.12, this dataset is challenging for visual localization due to the presence
of densely crowded areas (a), people walking frequently ahead (b), strong light reflec-
tions (a,b), large homogeneous surfaces (c,d), numerous escalators scenes (c) between
three floors, and strong camera motion (listed in Table A.6, Appendix A.2).

GT is provided in form of GCPs, for which the IPIN team provided latitude and
longitude coordinates. 6 GCPs are selected for evaluation in this work, where the
system was hold still for a few seconds. An additional barometer measurement of
IPS was used to derive relative ground truth altitude information. This enables an
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Figure 7.11: Illustration of the walked trail for the mall dataset (black dotted) and of
the used GCPs (red points) for evaluation. Floor levels are connected via escalators.
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evaluation based on the mean ATE. Figure 7.11 shows the trajectory of three floors
and the distribution of the GCPs {p}6

i=0. The trajectory has a length of around 900 m
and two sessions were recorded walking the same path, each with a different operator.

Images were recorded in half resolution (680×512 px) and at 10 Hz, which allows
the application of IPS-fast. The parameter values of the calibration ipin are used
in this experiment (Appendix A.3). They are based on a stand-alone and complete
laboratory calibration, which was conducted directly before the IPIN challenge and can
be assumed to be accurate and relatively uncertain. However, since such a calibration
is rather unrealistic in the context of first responder localization, I still use the defined
calibration uncertainty settings I and F for this setup. Though, the error in ipin is
most likely not well represented by I and F .

Results

The results for the two runs of the same trail are listed in Table 7.5. First considering
run ipin-d2, the results indicate that smaller uncertainties (I ) generally show better
results than larger uncertainties (F) in this setup. This might be attributed to the
mentioned accurate geometric calibration of the system. The results of ipin-d2 further
indicate a general loss in performance of around 6 to 8 % when applying the segmen-
tation aid. This might be attributed to densely crowded areas, such as in Figure 7.12
(a), where people actually stand still during a conversation. They can provide addi-
tional static features that stabilize the localization, as considered with Table 7.2 in
Section 7.2.1. In contrast, run ipin-d1 shows a significant improvement of IPS-masked-
F over IPS-normal-F, resulting in the overall best result for this experiment. This
indicates a significant influence of dynamic objects on IPS-normal-F in this run. Con-
sidering calibration settings I for ipin-d1, the segmentation does not show an influence.
This indicates that smaller system uncertainties in IPS-normal-I help to identify false
VO measurements based on the chi-squared test of the Kalman filter, as considered
with Table 7.1 in Section 7.2.1.
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Figure 7.12: Examples from the mall dataset that show sets of selected features (green
crosses) after RANSAC filtering with optional use of the segmentation aid (red area).
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Table 7.5: Results of the application of IPS-fast on two runs of the IPIN dataset. Bold
numbers mark the best result for each run. Particularities are marked in red.

method: IPS normal IPS masked
calib.unc.: (I) (F) (I) (F)
ipin-d1 3.25 7.13 3.26 2.53
ipin-d2 2.61 3.23 2.81 3.44

The significant error for IPS-normal-F in run ipin-d1 originates in an escalator
scene. This scene is analyzed in Figure 7.13, exemplary for the determined height in
local coordinates. First, the body-frame up-axis zb of the IMU is shown to delimit the
escalator scene. Before and after the escalator, the IMU measures the walking motion
profile and only measures the gravity during the ride. Second, the estimated normalized
relative translation of the VO estimation is shown. While the relative translation should
be constantly high, the VO of IPS-normal frequently estimates zero-movement due to
a high number of detected features on the person, as shown in Figure 7.1 (a, p.81).
Using these VO estimations as aid in the navigation filter leads to wrongly estimated
bias terms, exemplified for bias ba on zb in comparison with IPS-masked. As a result,
the navigation solution fails to estimate the change in height for this scene, compared
to a barometer measurement as reference. Contrary, IPS-masked is able to estimate
the height almost similar to the reference.
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Figure 7.13: System- and localization parameters in local coordinates of IPS-fast
masked-F on an escalator of dataset ipin-d1.

7.4 Summary
Moving objects can have a significant influence on visual localization, which was shown
in this chapter by three experiments that considered persons as primary source of
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dynamics in indoor environments. Three experiments were conducted that provide
significant insights into to the behavior of VIO systems in dynamic environments on
the example of IPS and how it can be improved.

The experiment of Section 7.2.1 consisted of a sensitivity analysis for different pa-
rameters and was considered simultaneously in simulation and real world. The main
insights are that the influence of dynamic objects can be reduced by (i) the segmen-
tation aid, which benefit is limited if the considered objects are actually not moving,
(ii) low image frequencies, (iii) high image resolution with stricter feature matching,
and (iv) small system uncertainties. It further shows a well match of the results from
simulation and real world.

The experiment of Section 7.2.2 consists of a combined Monte-Carlo based sensi-
tivity analysis for one exemplary selected scene. The main insights are that (v) the
influence of moving objects is more dominant than other error sources in this setup
and that (vi) errors in VO from observed moving objects are not represented by the
propagated SDs. It further demonstrates the applicability and also usefulness of this
simulation strategy.

The experiment of Section 7.3 consists of a realistic large-scale real-world dataset
for localization in a highly dynamic indoor environment. It confirms the benefit but
also the limitations for (i) the segmentation aid and (iv) small system uncertainties.
Most significant is the false localization in the escalator scene, which resulted in a false
estimation of the floor level and is critical for localization of first responders. It could
be resolved either based on (i) or (iv). This experiment further helped to explain how
the error from false VO estimation influences the internal filter states and the final
trajectory in VIO.
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Chapter 8

A Sensor-AI Approach to Improve
Visual Odometry in Adverse,
Dynamic Environments

The application of self-localization by first responders is not restricted to environments
with only common object types. Dynamic can be caused by various types of objects
for which specialized pre-trained neural networks are not always available. Further,
the influence of objects might depend on the used sensor system with special imag-
ing hardware and processing methods, such as the used feature matching procedure.
Training a dedicated DNN for application in different environments would require a
vast amount of manual labeling to cover each possible dynamic object. This is not
feasible for the high variety of different environments from first responder applications.

Motivated by Sensor-AI strategies (Börner et al., 2020), I propose an approach that
targets to improve VO in adverse, dynamic environments with the help of specifically
trained DNNs and without the need of extensive manual labeling. The related Sensor-
AI strategy envisions a close interaction and combination of physical models, data-
based models and classical approaches in one sensor system, primarily for applications
that are defined by strict energy requirements. Similarly, the proposed approach com-
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Figure 8.1: Proposed concept to improve VO-based sensor systems.
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bines classical feature-based VO, which relies on physical models, and analytical error
propagation, with a data-based model in form of a DNN for semantic segmentation.

The proposed concept is visualized in Figure 8.1. It intends to use Sensor-AI with
a DNN for semantic segmentation to automatically learn critical image areas from VO
and use its prediction to improve the same VO method. Offline, training data is auto-
matically generated based on semi-dense feature matching and statistical evaluation of
reprojection errors in comparison to propagated uncertainties. The network is trained
simultaneously for multiple environments and is trained on data that was recorded
with the same sensor system. Online, the trained DNN is used to detect critical image
areas to generate a mask for feature selection.

This chapter contains two contributions. The first contribution is a description and
evaluation of the proposed Sensor-AI concept to improve VO-based sensor systems.
The second contribution is an investigation of the influence of smoke and water on
visual localization, on the example of IPS. This is done in simulation using the dig-
ital twin of IPS and in real world using the Sensor-AI concept. The investigations
correspond to the motivated first responder scenarios flood disaster and wildfire.

The chapter is organized as follows. First, the automatic labeling procedure and
a method to automatically select the most suited timestamps from the trajectory are
introduced (Section 8.1). Second, the generated training, validation, and test datasets
are explained and a DNN is trained and evaluated with focus on the environments
fumaroles, coast, and river (Section 8.2). Third, the influence of smoke and water is
first investigated in simulation with the strategy combined sensitivity analysis (Section
8.3). Fourth, real-world experiments are presented to investigate the influence of those
elements in real world and to evaluate the improvement of VO (Section 8.4). Finally,
a short summary ends this chapter.

8.1 Automatic Training Data Generation
In this section, methods are introduced to automatically generate training data. This
includes an automatic pixel-level labeling procedure and an automatic timestamp se-
lection to avoid redundant data labeling and ensure efficient training.

The presented procedures include multiple hyper parameters, which where deter-
mined manually in an empirical manner based on small reference datasets. The chosen
values might not be optimal and can be improved in the future.

8.1.1 Pixel-level Labeling
The objective is to label an image without any manual work by an operator into good
and bad areas with focus on observed static and dynamic objects. Therefore, the VO
module itself is exploited and applied on a pair of stereo frames {q, a}. Reference stereo
frame q contains the camera image to be labeled. a describes one stereo frame out of
the local temporal neighborhood of q and consits of a left image al and a right image
ar. The overall pipeline is presented in Figure 8.2 and will be described in detail in the
following. In summary, (i,ii) image features are densely detected and tracked between
two stereo pairs. (iii) Their reprojection errors and related uncertainties are computed
to (iv) separate them into the classes good and bad based on a chi-squared test, which
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Figure 8.2: Illustration of the automatic pixel-level labeling procedure.

(v) is done for multiple neighboring stereo pairs. (vi) Image morphing is applied to
close gaps and to (vii,viii) create the final reference segmentation image.

(i,ii) Image features are densely detected and tracked in the image. The used meth-
ods were introduced in Section 3.2.1. During feature detection, the AGAST intensity
threshold is set to zero and the maximum number of detected features is set to infinite.
This leads to a detection of feature candidates for almost every pixel, except in pure
homogeneous areas, such as on a clear sky. Non-maximum suppression is kept acti-
vated and is applied with a radius of 1 px to bound the maximum required computing
power. All constraints during intra- and inter-matching are relaxed in a similar way to
ensure that every feature finds a match. This includes epipolar constraints, the search
space from inertial constraints, and the thresholds for the matching metrics NCC and
SAD. The result is a semi-dense set of tracked features, illustrated in Figure 8.2 (ii).

(iii) The next step is the computation of the error e between the matched feature
point m̂l2 and the projection ml2 of M⃗ and the corresponding propagated covariance
matrix Σe. This error was formulated in Equation 5.21 (Section 5.2.3) with

e = m̂l2 − ml2, (8.1)

Σe = Σm̂l2 + Σml2 . (8.2)
The individual components of this computation are shown in Figure 8.2 (iii) and the
methods of Grießbach (2015) [OSLib] are used for uncertainty calculus. The required
relative transformation ∆T between the two stereo frames is computed in a parallel
path based on VO in a standard configuration (IPS-accurate, Section 7.1.2).

(iv) A chi-squared test is applied to statistically assess whether the error e fits
to the propagated uncertainty Σe. If the test fails, the feature might correspond
to a homogeneous or repetitive object surface or to a moving object and should be

99



The Hybrid System - A Sensor-AI approach 8.1

considered as bad. The applied chi-squared test is formulated based on the Mahalanobis
distance with

χ2 = eT Σ−1
e e, (8.3)

which follows a chi-squared distribution with two degrees of freedoms. The feature is
valuated as good if it is within the 99 % interval and as bad if it is outside the 99.99 %
interval (empirically chosen), given with

ml1 of {q, al} is


good if χ2 < 9.2 and |e| < 2px
bad if χ2 > 18.5
background else

. (8.4)

The class background is assigned to feature points if the chi-squared test is not clear.
Further, the maximum error for the class good is bounded by a fixed threshold, such
as 2px in this implementation. Pixels in the image that could not be matched are not
valuated and are assigned the class background.

(v) This procedure is done for multiple image pairs to account for the statistical
nature of the chi-squared test. Specifically, reference frame q is evaluated based on
the projection of the object point into the left and right image of four neighboring
stereo frames (a, b, c, d), denoted as {q, (a, b, c, d)}. A VO solution must exist for at
least three stereo frame pairs to further consider q. This adds up to 8 valuations by
the chi-squared test for each feature. The final classification is formulated as

ml1 of {q, (a, b, c, d)} is


bad if rbad ≥ 0.5 and rvalid > 0.75
good if rgood ≥ 0.75 and rvalid > 0.75
background else

, (8.5)

where rvalid states the ratio of valid valuations for ml1 in {q, (a, b, c, d)}, and rgood and
rbad the ratio of bad and good valuations in the same set. The result is a set of good
and bad feature points, illustrated in Figure 8.2 (v). In future developments, this
combination component could be replaced by a chi-squared test with 16 dimension,
considering all 8 errors at once.

(vi) Image morphing (Gonzalez and Woods, 2018, p. 635) is applied in the next
step to close the gaps between classified feature points. Therefore, two binary maps
are generated for both good and bad features, which are visualized in Figure 8.2 (vi)
in black. Considering the mask good, the sequence {dilation by 5 px, erosion by 3 px}
is applied, which closes gaps and additionally marks areas as good that are close to
good features. Considering the mask bad, the sequence {dilation by 5 px, erosion by
6 px, dilation by 2 px} is applied, which closes gaps and subsequently removes areas
that result from isolated bad features. They are removed since the focus is on dynamic
objects that are usually described by a dense set of bad features and not by isolated
bad features points.

(vi, vii) the two masks are superimposed to build the final semantic segmentation
map, exemplified in Figure 8.2 (vii). The label good is preferred over the label bad
during class assignment of each pixel, because the information of good image areas
is valuable and should not be lost. The class background is assigned to pixels that
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are neither classified as good nor bad. The final result in Figure 8.2 (viii) shows that
moving water and the moving shadow are marked as bad, while the stones are mostly
classified as good image areas.

The current implementation of the complete automatic labeling procedure provides
a throughput of one image per 19s on a [DellPrecision] and occupies up to 50% of the
CPU capacity. This shows that processing all images of a dataset is not feasible.

8.1.2 Timestamp Selection

A preselection of the reference frames and corresponding stereo pairs is necessary to
reduce the computational overhead and to select the most suited image frames for
efficient training. This preselection needs to fulfill certain apparent criteria. First, the
selected reference frames should not be duplicates of the same image content to provide
a versatile training dataset. Second, the corresponding stereo pairs need to show a high
image overlap with the reference frame to ensure wide image coverage of the reference
segmentation. Third, each stereo pair must be apart in time to give the object time
to move, but not too far to ensure that the object does not cover different parts of the
static background.

Figure 8.3 summarizes the procedure to select a reference stereo frame q and corre-
sponding frames (a, b, c, d). Characteristics of the estimated trajectory are investigated
to select the best set of stereo pairs {q, (a, b, c, d)} for each timestamp based on several
constrains and a score function. Then, the timestamps with the highest score in a local
temporal neighborhood are selected to apply the automatic labeling procedure.
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Figure 8.3: Illustration of the automatic timestamp selection procedure.
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The identification of reference frames with corresponding set of pairs {q, (a, b, c, d)}
is based on the investigation of characteristics of an estimated trajectory. The trajec-
tory was computed beforehand with IPS-fast (Section 7.1.2). Each stereo frame of the
trajectory is considered as a reference frame candidate qc with timestamp tqc and a list
of all possible sets {{qc, (a, b, c, d)}i}M

i=0 of some length M is generated. Each set must
fulfill the constraints of Table 8.1 with respect to maximum differences in time, rota-
tion, translation, and exposure time. The exposure time constraint is required since
the applied matching-metric SAD is not invariant to image intensity changes. Further,
the pairs a and d must be outside the time interval [tb, tc] of the pairs b and c. Each
set of {{qc, (a, b, c, d)}i}M−1

i=0 is then assessed by the score sqc with

sqc = 0.5·
√

tqc − ta +
√

tqc − tb +
√

tc − tqc + 0.5·
√

td − tqc (8.6)

and the candidate with the highest score is selected as set for qc. The score function
is designed to favor sets whose individual pairs are distant to qc. The factor of 0.5 is
added for pairs a and d to prioritize distant inner pairs b and c. If no valid candidate
set exists for qc, sqc is set to -1.

The same score is used to identify the most promising sets {q, (a, b, c, d)} of the
trajectory. Exemplified in Figure 8.3, the score function is smoothed and its peaks
identify the final reference frame q and corresponding pairs (a, b, c, d). Additionally, a
non-maximum suppression is applied with a radius of 0.2 m to ensure that individual
reference frames are apart from each other in space, which helps to reduce the amount
of duplicates. The remaining sets are then processed by the automatic pixel-level
labeling procedure of Section 8.1.1.

Table 8.1: Constraints that must be fulfilled by each set of pairs.

constraint inner pairs outer pairs
max. change in {q, b}, {q, c} {q, a}, {q, d}
time < 0.3 s < 0.5 s
rotation < 4◦ < 12◦

translation < 0.1 m < 0.3 m
exposure time < 10 % < 10 %

8.2 Training for Semantic Segmentation

The automatic labeling procedure is used in this section to generate reference datasets
and to train and evaluate DNNs. In the following, the training procedure and the used
DNN are introduced first. Then, the composition of the training, validation and test
datasets are explained. Finally, a selection of trained DNNs are evaluated with focus
on seen and unseen environments.
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8.2.1 Technical Notes
The DNN Deeplabv3+ (Chen et al., 2018b) for semantic segmentation with a Mo-
bilenetv2 (Sandler et al., 2018) backbone structure (Section 6.1) is used as basis in this
theses. The network is selected in this work due to its lightweight architecture that
was specifically designed for mobile applications. The network requires around 15ms
to process one image with a resolution of 680×512 px on a RTX 6000 in the presented
setup with three classes.

The training strategy transfer learning is applied. It describes the process of reusing
trained model parameters from another task to initialize model parameters for the
current task. Hidden units usually learn representations or features that are useful for
multiple tasks. Therefore, I use pre-trained weights from [DeepLab] for Deeplabv3+
Mobilenetv2 that was trained on the public Ade20k dataset (Zhou et al., 2017). The
pre-trained network is able to distinguish between 80 different objects and should
provide generalized representations.

The overall training procedure mostly follows the suggestions by the authors of
Chen et al. (2018a,b). They also provide an open source implementation [DeepLab]
and scripts for training. A relative high ratio of the input image size to the output
feature map size of 16 is chosen, which allows fast training at expense of reduced
accuracy due to coarser feature maps (Chen et al., 2017). A crop size of 689×513 px
is used that covers the targeted image size of half resolution. All considered networks
in this thesis are trained on a RTX 8000 GPU with 48 GB memory. This allows to
use a relatively large batch size of 24, which generally provides more accurate gradient
estimates (Goodfellow et al., 2016, p. 272). Batch normalization is activated that
normalizes hidden units and speeds up training (Ioffe and Szegedy, 2015). Stochastic
gradient descent optimizer with momentum is used as optimizer.

The learning rate is set based on the “poly” learning rate policy that gradually
decreases the base learning rate. I found empirically that the relatively high base
learning rate of 0.1 worked best for the considered dataset. This value was determined
by an initial grid-based hyper parameter optimization with 5 steps to find a good base
learning rate, which was then used for all experiments. The number of learning steps
is set to 50000 and the end learning rate is set to 0.001. Based on this configuration,
the training of a single network takes about 16 h on a RTX 8000.

8.2.2 Datasets
A fundamental approach of Sensor-AI is to keep the neural network as close as possible
to the sensor system. Therefore, only data that was recorded with the considered hand-
held sensor system is used to generate the training-, validation- and test datasets.

The data that is used in this chapter was mostly recorded in the course of this
thesis. Most of the data was recorded during the Vulcano Summer School 2019 (Un-
nithan et al., 2019) in harsh environments, such as a volcanic fumarole field, a coast
environment, a martian analogue site, a volcanic mud field, and at Valle dei Mostri.
An advantageous peculiarity of this data is that they were recorded for thermal in-
spections and therefore, the system was frequently hold still for a short moment to
trigger a thermal camera image. This recording procedure is an excellent prerequi-
site for the developed timestamp selection method. The other part of the data was
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Figure 8.4: Visualization and statistics of training, validation and test datasets. Col-
orful lines illustrate trajectories of recorded runs. Green lines represent the test runs.

recorded in Berlin in urban environments, such as a river site and several indoor and
outdoor environments.

Figure 8.4 provides data statistics and shows trajectories of the three targeted
environments. Altogether 5630 stereo image frames were automatically selected out of
nearly 200.000 stereo frames that correspond to 48 different trajectories. This dataset is
splitted into training, validation and test datasets. The training and validation dataset
are based on the same runs and were split randomly and image-wise. All test datasets
are based on separate runs. For the fumarole and coast environments, the test run
was recorded in the same environment but in a different place, different except for the
start and end of each run. The training and test runs for the river dataset are from
the same places, because comparatively little data is available for the river dataset.

The described training dataset was generated based on the calibration I . A similar
dataset was generated for calibration F and shows to be consistent in terms of the
amount of data with 4125 training and 934 validation images. The different calibration
settings were introduced in Section 5.1 and are listed in Appendix A.3.

8.2.3 Evaluation
This section presents an evaluation of selected trained DNNs. The objective is to
provide a broad impression about their capabilities to segment the targeted dynamic
environmental elements. The interested reader might be referred to Appendix B.5 that
provides additional results and shows exemplary predictions in other environments.
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Figure 8.5: Visualization of semantic segmentations from the test dataset. (*) shows
the result of three DNNs that have not seen the individual environment during training.

First, two networks all-I and all-F are considered that were trained on the full
training datasets, which however were generated using the two different calibration
settings I and F . Listed in Table 8.2, their mIOU score (Section 6.2) shows that the
procedure equally works well for different calibration settings.

The mean scores are relatively low (e.g., 0.57 for all-I ). This is most likely caused
by a high proportion of pixel-level label noise in the reference data, such as visualized
in Figure 8.5. While the reference shows many incomplete or disturbed segments,
the predicted segmentation looks smooth and intuitive. On the one hand, this could
suggest a good generalization capability of the network for the presented segmentation
problem. On the other hand, this could be caused by relatively coarse feature maps of
the last layers of the used DNN (Section 8.2.1).
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Table 8.2: Evaluation of DNNs based on the mean IoU. Crossed out words indicate
unseen environments. Particularities are marked in red.

network fumaroles coast river+ mean
all (F) 0.56 0.58 0.63 0.59
all (I ) 0.55 0.57 0.59 0.57
✘✘✘✘smoke (I ) 0.51 0.56 0.59 0.55
✘✘✘coast (I ) 0.55 0.51 0.59 0.55
✘✘✘river (I ) 0.55 0.57 0.54 0.55

(+) the place was seen during training in another run

Three more trained DNNs are evaluated in Table 8.2 that are trained on three
reduced datasets. In each dataset, one of the environments fumaroles, coast, river is
not included. This leads to a decrease of the mean IoU by 5 percent in each unseen
environment (marked in red). Figure 8.5 shows each one prediction for the three
environments by the individual network that has not seen this environment during
training. Most dynamic object areas are segmented correctly, which suggests that
similar clues can be learned from different environments. For instance, smoke, clouds,
and homogeneous or blurry image areas might share similar clues. Or, the coast and
river both consist of water. However, some specific and unseen dynamic object elements
could not be segmented correctly, such as the flotsam on the river in the bottom right
image that were marked as good by the DNN.

8.3 Combined Sensitivity Analysis for Coast and
Fumarole Environments

The presented digital twin of Chapter 4 is deployed to analyze the effect of smoke
and water on IPS based on synthetic clones that provide complete GT data. The
simulation strategy combined sensitivity analysis (Section 4.3.3) is used that allows
high variability in the observed environmental elements. The synthetic dataset and
their specific dynamic parameters were introduced in Section 4.2.

Table 8.3: Parameters of the combined sensitivity analysis for coast and fumaroles.

name type sample distribution allowed range
geometric calibration P C κ, δ, T r

l , T n
l of calibration F (Appendix A.3)

Gaussian blur [px] P P σblur ∼ N(0, 1) 0 < σblur < 5
capture gain (factor) P P C ∼ N(0, 5) 0 < C < 20
water scale (factor) P E Wscale ∼ 1/N(7,5) 1/1 < Wscale < 1/15
water ripple (factor) P E Wripple ∼ N(1.0, 0.5) 0.1 < Wripple < 1.9
water flow (factor) P E Wflow ∼ N(1.0, 0.5) 0.1 < Wflow < 1.9
smoke density (factor) P E SN ∼ N(0.9, 0.6) 0.05 < SN < 2
smoke speed (factor) P E SS ∼ N(0.9, 0.6) 0.2 < SS < 2
texture blur [px] P E σtex ∼ N(9, 1) 0 < σtex < 5
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Figure 8.6: Images of selected samples and GT segmentation for the third column.

Listed in Table 8.3, both experiments consider calibration parameters and the cam-
era properties blur and noise (via capture gain), which ranges were predetermined with
a single parameter sensitivity analysis (Appendix B.1). Considered dynamic environ-
ment parameters are Wflow, Wripple, and Wscale for the coast dataset and Sdensity and
Sspeed for the fumarole dataset. These parameters and their sample ranges are selected
in such way that the simulation mostly looks realistic for the human eye.

Both datasets show rocky environments that generally provide rich sets of image
features. To reduce this richness, the fumarole dataset additionally considers the static
environment parameter σtex. All object textures of are initially subjected to Gaussian
blur based on σtex, before the current sample is simulated.

8.3.1 Coast
The analysis for the coast dataset is based on 900 samples and investigates IPS-fast-F.
Figure 8.6 (top) shows three samples with high diversity in the appearance of water.

The correlation analyzes in Figure 8.7 indicates a significant influence of water flow
and scale on IPS-normal. Both parameters define the speed of features that are tracked
on the water. These influences are eliminated for IPS-masked that masks out water
based on the GT semantic segmentation. The new most influential parameter shows
to be the error in u0, which directly affects the estimated scale of the trajectory.
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Figure 8.7: Correlation analysis for coast with 9 out of 29 varied parameters.

The sensitivity analyzes of Figure 8.8 visualize the data for three outlined param-
eters. Water flow shows a peak at value of 0.5, which can be interpreted as follows.
Below this value, tracked features are very slow and might only introduce small errors.
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Figure 8.8: Sensitivity analysis for the coast dataset. Points show the mean ATE of
one sample with respect to the sampled parameter (top), whose sample distribution is
shown (bottom). Lines connect the mean of samples that are divided into 10 bins.

Above this value, tracked features are fast and are either possibly easier to filter out
by RANSAC, change their appearance to fast, or cannot be tracked by the inertial
constraint tracking method. A similar behavior can be observed for the water scale,
where a smaller texture size (large: 1/5, small: 1/10) leads to smaller object movements
and consequently leads to larger trajectory errors.

This experiment suggests that water can decrease the navigation result not only by
its presence from covering large parts of the image, but also by its inherent dynamics
that lead to non-static features. Though, explicit realism can not be guaranteed with
the technology used and an investigation in real world is mandatory.

8.3.2 Fumaroles
The analysis of the fumaroles dataset is based on 450 samples and is conducted for IPS-
fast-F. The exemplified synthetic GT segmentation of Figure 8.6 (bottom) shows a very
high sensitivity of the GT smoke extraction method. This indicates that IPS-masked
is not applicable based on the synthetic GT segmentation, because disproportionately
many areas would be masked out. Instead, IPS-normal is investigated in more detail
with evaluation of the total number of used features (after RANSAC filtering) for each
sample described as feature count.

The correlation analyzes in Figure 8.9 only indicates a moderate influence of smoke
density on the mean ATE. The correlation with feature count on the other hand indi-
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Figure 8.9: Correlation analysis for fumaroles with 9 out of 29 varied parameters.
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cates a significant influence of smoke density and capture gain. Also a higher texture
blur seems to gradually decrease the total number of used features.

Figure 8.10 (middle, right) shows that smoke density and capture gain decrease the
feature count with similar severity. Though, only smoke density shows to moderately
affect the mean ATE. This can be because capture gain deteriorates all image frames
equally and the lack of features is distributed over the whole dataset. In contrast,
dense smoke reduces the number of features drastically for a few frames where smoke
is present. This can cause complete failures of VO for short periods, which leads to a
strong drift of the inertial navigation solution and consequently in a high mean ATE.

This experiment suggests that smoke affects IPS-fast-F by its mere presence, which
covers and blurs large parts of the image, and not by its motion. Again, explicit
realism can not be guaranteed with the technology used and real world experiments
are mandatory.
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Figure 8.10: Sensitivity analysis for the fumaroles dataset. Points show the mean ATE
of one sample with respect to the sampled parameter (top), whose sample distribution
is shown (bottom). Lines connect the mean of samples that are divided into 10 bins.

8.4 Confirmation with Real World Data
The previous experiments have shown that water can deteriorate the navigation solu-
tion due to its inherent dynamics. Smoke has shown a negative impact by covering and
blurring parts of the image. However, the realism of the experiments based on syn-
thetic data are limited by the technology used. Therefore, real-world data is exploited
in this section to validate made observations.

IPS is considered without (normal) and with (masked) the segmentation aid for
the two calibration settings I and F (Section 5.1), and is based on IPS-fast that was
introduced in Section 7.1.2. IPS-masked is applied with two networks that have seen
all environments during training and only differ in the used calibration settings (I , F)
that was also used to generate their training data. IPS-masked* is applied with three
different networks, which each have not seen one of the considered environments (fu-
maroles, coast, smoke) during training. The mask is generated based on the segmented
class bad from the Sensor-AI approach and is applied in IPS similarly as presented in
Section 7.1.1, but without subsequent image morphing.
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Table 8.4: Evaluation of IPS in dynamic real world environments using the nCLE [%]
based on closed loops (CL). Crossed out words indicate unseen environments. Bold
numbers show apparent differences between corresponding IPS-normal and -masked.
Calibration partly differs between data generation (train) and IPS application (apply).

IPS: normal masked normal masked masked* dataset-
calib. (train): I I F F I I I properties

calib. (apply): I I F F F F F
training data: - all - all ✘✘✘✘smoke ✘✘✘coast ✘✘✘river d[m] CLs

fumaroles-d1++ 1.30 1.27 1.14 1.11 1.13 1.11 1.11 360 5
fumaroles-d2 1.48 1.43 0.90 0.87 0.90 0.87 0.87 549 3
coast-d1++ 0.71 0.71 0.58 0.57 0.57 0.57 0.57 656 6
coast-d2 0.55 0.55 0.47 0.49 0.47 0.48 0.48 268 3
river-a-d1+ 0.78 0.61 0.46 0.24 0.27 0.26 0.40 44 1
river-a-d2+ 1.57 0.50 0.99 0.09 0.06 0.31 0.96 43 1
river-b-d3+ 0.79 0.80 0.68 0.77 0.74 0.78 0.71 41 1
river-b-s1+ 0.17 0.15 0.25 0.26 0.27 0.29 0.27 36 1

(+) the place was seen during training in another run, (++) the run was used to generate the training dataset

Table 8.4 presents the results for a fair selection of datasets from the different
environments. Dataset characteristics are listed in Table A.7 (Appendix A.2). The
nCLE (Section 3.3.1) is used for evaluation since no other GT information are available.

Considering the environments fumaroles and coast, the results show no significant
differences between IPS-normal and -masked. This indicates that the inherent dynam-
ics of smoke and water do not deteriorate the localization solution for the considered
datasets. The results for the fumarole dataset are generally rather poor, which might
be attributed to the high presence of smoke in the images that severely reduces the
amount of tracked features. In general, IPS-normal is capable of selecting mostly only
features that are on the static background. Exemplified in Figure 8.11 for fumaroles
and coast, the feature sets after RANSAC filtering are very similar for IPS-normal and
-masked. However, the considered datasets were recorded for the purpose of inspection
and the operator actively tried to reduce the amount of observed water and smoke.

The datasets of the river environment were recorded with a first responder applica-
tion in mind (Section 1.2), in which the observed presence of dynamic objects cannot
be actively avoided. Table 8.4 shows mixed results for the comparison of IPS-normal
and -masked for the different datasets. Significant improvements of IPS-masked over
-normal can be observed at river site a, for instance, by a factor of 10 on the dataset
river-a-d2 and using calibration F . The reason for this improvement is shown in Figure
8.11 (right). Slowly moving flotsam on calm water frequently leads to used features
on the water surface in IPS-normal, which are correctly masked out in IPS-masked.
Flotsam is not present at river site b. Dataset river-b-d3 shows a slight deterioration
for IPS-masked-F, which however could not be clearly assigned to the mask and rather
shows the limitations of the used metric nCLE. Dataset river-b-s1 presents a reference
dataset that was recorded near the river sites without the presence of water in the
images and shows no significant difference for the different methods.
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IPS-masked* describes the application of the mask-approach in environments that
have not been seen during training by the DNN. Table 8.4 shows that the localization
based on masked* does not worsen against normal, except again for dataset river-b-s1.
Though, strong improvement of masked of river site a cannot be achieved, if the river
environment was not seen during training. Figure 8.11 (bottom, right) shows that the
water is only partly segmented and especially the flotsam could not be masked out.
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Figure 8.11: Illustration of used features in green and the generated mask in red. The
three DNNs of masked* have not seen the considered environment during training.

8.5 Summary
In this chapter, a method was presented that learns to segment image areas that are
critical for a specific VO system and use this knowledge to improve the same VO
method. This method enables to analyze the influence of smoke and water on visual
odometry using real-world data. In line with the general approach of this thesis, the
analyzes was first conducted in simulation using GT segmentation and then in real
world using the Sensor-AI approach.

The experiments have shown that water and smoke can have a strong influence
on the localization result. The influence of water is caused by its inherent dynamics
and could be confirmed in simulation and real world. In real world, however, the
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localization was mainly influenced by flotsam, which still can be attributed to water
dynamics. The influence of smoke is caused by the presence of smoke itself that covers
and blurs large parts of the image and leads to relatively small feature sets. This effect
could be shown in detail in the simulation.

Using the Sensor-AI approach, the dynamic elements smoke and water could be
segmented successfully in real-world datasets. It further lead to a strong improvement
of the localization solution in a river environment in the presence of flotsam. In other
environments, it has neither shown an improvement nor a deterioration. If this ap-
proach is applied in a new environment, which was not seen during training of the
DNN, the results still neither improved nor deteriorated in comparison to the base
method. This might be because the seen and unseen environments often share a sim-
ilar static background, such as a rocky ground, which might have helped to reliably
segment good image areas in unseen environments.

In future, the semantic predictions themselves can further be used to provide visual
feedback to the user about which areas are well suited for localization and might guide
his way of proceeding to get an optimal localization solution. This approach is not only
restricted to dynamic elements, but should be applicable to all visual observable factors
that might disturb the localization, such as image areas with motion blur, defocus blur
or strong image noise.
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Chapter 9

Discussion

This chapter discusses the results of the previous chapters with regard to the research
questions, which will be addressed directly in Section 10.1, and puts them into context
of the application for first responders. The first section focuses on the influence of
dynamic objects in the defined first responder scenarios. The following two sections
discuss the more technical aspects of the proposed Sensor-AI module and the digital
twin. Finally, a short discussion follows about the application of IPS for first responder
applications.

9.1 The Influence of Dynamic Objects
Three first responder scenarios were introduced in Chapter 1. Related datasets were
abstracted from inspection data and were recreated with synthetic video clones within
this thesis. The scenarios are (i) indoor rescue, (ii) flood disaster and (iii) wildfire.

(i) Indoor Rescue

The rescue scenario was considered separately in Chapter 7 based on combined real-
world and synthetic corridor datasets and a large-scale mall dataset.

Starting with the closest replica of a first responder scenario of this thesis, the mall
dataset (Section 7.3) has shown the great potential of visual localization, but also its
limitations. The results have shown a relatively accurate localization when navigating
through large crowds of pedestrians over three floors. However, one extreme case
was observed that resulted in a floor-level deviation to GT. This is a safety critical
failure for first responder applications that require at least reliable floor-level accuracy
(Rantakokko et al., 2010). This error was caused by a person standing close in front of
the camera while going down an escalator. This resulted in the occurrence of consensus
inversion (Bojko et al., 2021), i.e., the observation of more features on moving than on
static objects, which repeatably resulted in a false ego-motion estimation. By using the
introduced DNN-based segmentation aid, all features on the person could be excluded
from ego-motion estimation, which resulted in a correct and robust localization. This
scene highlights the importance of semantic understanding for visual localization, which
also has been noted in related research (Bescos et al., 2018; Kaneko et al., 2018).
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Other solutions to overcome this limitation of visual localization in such a scenario
exist and are conceivable for first responder operations. For instance, signals from
pre-installed or pre-deployed infrastructure could be considered in terms of data fu-
sion, such as in Fischer et al. (2008) with UWB beacons. Furthermore, a UWB-based,
collaborative approach based on relative distance measurements between first respon-
der (Rantakokko et al., 2011) might easily identify such rare outliers and correct the
localization solution.

The experiments in the corridor environment (Section 7.2) allowed are more de-
tailed analysis of the influence of the object person, due to a more controllable en-
vironment and generated synthetic video clones. The main challenges that could be
replicated were slow object motions and dependent motion (Saputra et al., 2018), i.e.,
two people moving together. The observed main problems were a low number of static
features due to the homogeneous corridor environment and presence of moving objects,
a difficult clear separation of static and dynamic features, and consensus inversion. The
segmentation aid reduced the impact of dynamic objects to their mere presence in the
image. Though, due to the basic mask approach, features were also ignored on non-
moving persons, which resulted in reduced accuracy and higher uncertainty in scenes
with many non-moving people (Section 7.2.1). A similar scenario was, for instance,
described in Bescos et al. (2018) for vehicle applications with lots of parking cars. This
problem was targeted by Schorghuber et al. (2019) by using a continuously estimated
confidence factor for classification of features in static, static-dynamic and dynamic.

Further experiments in the corridor environment have shown the potential of ad-
vanced geometric approaches (Section 7.2.1). A higher image resolution with stricter
feature matching improved the results in dynamic environments, indicating that ro-
bustness can be bought with computational power. A lower image frame rate allowed
to better distinguish between static and dynamic features since object movements are
more noticeable. This indicates that feature point tracking and multi-view geometry
can significantly improve the results, which was, for instance, shown by Migliore et al.
(2009). Further, it highlights the need of keyframe-based techniques, which is the “gold
standard” in V-SLAM approaches (Campos et al., 2021). Besides that, smaller system
uncertainties helped to identify wrong vision-based ego-motion estimations based on
a chi-squared test in the filter. This underlines the need for accurate geometric cal-
ibration, whose results are stable during operation even under harsh conditions with
potentially high physical and temperature stress. This requires special sensor designs
for first responder applications. In summary, the results indicate that geometric ap-
proaches reduce the likelihood of dynamic objects to corrupt localization, but cannot
eliminate their influence completely due to a lack of semantic understanding.

(ii) Flood Disaster

The influence of the dynamic element water was considered based on real-world coast
and river datasets (Section 8.4) and in simulation (Section 8.3.1). In direct comparison
to the element person, the influence of its dynamics was mostly not measurable in real-
world and was also less significant in simulation. This might be attributed to the
high non-rigidity of water and rapid change of its appearance. Though, flotsam lead
to a visible distraction and measurable deterioration at one river sight, which can be
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accounted to a dependent motion of individual floating particles and a high fill factor
of water in the image. Again, the segmentation aid could prevent this distraction.

Further improvements are conceivable from a geometric point of view. For instance,
cameras with a larger field-of-view, such as fisheye cameras, could help to capture more
of the surrounding static background. If the water then still covers large parts of the
image, it would mean that the first responder is in a large open area and sensor fusion
with a GNSS-receiver would be the ultimate choice.

(iii) Wildfire

The wildfire scenario was considered based on fumarole datasets, in which the dynamic
element smoke was represented by vapor. The localization accuracy on the real-world
datasets were generally rather moderate (Section 8.4). Based on the real-world experi-
ments with and without using a mask for feature selection, the results indicate that the
inaccuracy did not result from smoke movements. This implies that the main influence
of smoke is by its mere presence, which covers and blurs large images areas. This
observation is supported by the simulated experiments (Section 8.3.2), which showed
a steady descent of the number of good features with increasing smoke density. The
consideration of vapor as a representative for smoke limits the range of these find-
ings for the scenario wildfire, since vapor generally shows less striking structures in its
appearance than dense particle-rich smoke.

These experiments show the limited applicability of cameras, which are sensitive in
the visual light spectrum, in environments with dense smoke. Though, as motivated in
the introduction, the considered application of ground-based fire fighters foresees the
use of thermal cameras for ember detection and mapping. These infrared cameras are
less affected by smoke (Starr and Lattimer, 2014) and could be incorporated into the
localization procedure (Brunner et al., 2013).

The real-world experiments were further severely subjected to other strong influ-
ences. This includes strong physical stress, which was caused by unusually high system
temperatures and ruthless use of the IPS. This might have led to a decreased calibra-
tion accuracy, as discussed in detail in Section 5.1.2, which advocates the integration of
online calibration functionality to the used sensor system. Furthermore, the fumarole
outdoor inspection dataset shows frequent changes of pixel intensities due to auto-
matic camera exposure time adjustments, caused by irregular partial viewing of the
sky during the inspection run. Feature matching based on SAD (Section 3.2.1), which
is often used in IPS due to an existing subpixel matching approach and implemented
error propagation from noise, is therewith not a good choice since it is not invariant to
intensity changes. As a consequence, a more sophisticated feature matching approach
will easily improve the results. Obvious candidates are NCC or descriptor-based fea-
ture matchers such as ORB, which, for instance, is the basis of the state-of-the-art
feature-based SLAM approach ORBSLAM3 (Campos et al., 2021).

9.2 The Deep Learning Module
The proposed Sensor-AI approach (Chapter 8) learns critical image areas from VO
offline and uses this knowledge to improve the same VO method online. As discussed,
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this approach helped to investigate the influence of smoke and water and could signif-
icantly improve IPS at a river site. Generated reference data has shown a relatively
high amount of label noise, which might be accountable to the used relatively weak
feature tracker based on small patches and SAD. Though, the predicted results of the
DNN looked smooth (Section 8.2.3), which can be attributed to a good generalization
capability or to small internal feature resolution of the used DNN. Furthermore, the
approach has shown first signs of good generalization to unseen environments (Section
8.2.3). Though, it could not identify water with flotsam, if it has not seen this element
before (Section 8.2.3, 8.4). Therefore, this approach can only be seen as a first attempt
and is currently limited to seen environments, which can possibly be accounted to the
high variability in appearance of smoke and water in different environments. Further,
the DNN is only applied in offline processing, since it is not yet integrated into the
sensor system.

A pre-trained DNN was applied for person detection in indoor environments (Chap-
ter 7). The Sensor-AI approach was not required for this element, since the pre-trained
DNN mostly segmented persons accurately. The application of the presented Sensor-AI
approach for learning to detect persons might be limited. Lots of data would be re-
quired from the same sensor system with a diverse set of moving persons, which would
raise privacy issues. Furthermore, a person can be both static and dynamic, in different
scenes. This would lead to high data uncertainty in the training data and a DNN that
only works on appearance-based clues might not be suited for this task. In this case,
a more suited approach would be to simultaneously consider motion and appearance
clues for motion detection, such as proposed by Siam et al. (2018). The Sensor-AI
approach is principally not limited to semantic segmentation and can be extended.

9.3 The Digital Twin
The developed digital twin accompanied all experiments with synthetic video clones,
which were used for in-depth analysis based on three simulation strategies. The use of
semantic object segmentation from GT data allowed the analyses of object influences
in simulation without possibly inaccurate segmentation from DNNs.

Datasets were generated that closely resemble the real-world datasets (Section 4.2).
The corridor dataset was created manually with a measurement tape. This is a time-
consuming procedure and only works for structured human-made objects. In contrast,
the unstructured coast and fumarole environments were recreated using a professional
photogrammetry tool. This is an efficient way to generate 3D worlds for a specific
trajectory, but it is not applicable in environments with homogeneous object surfaces.
Generally, if the requirement for a real-world-replicating video clone can be relaxed,
then other options exist. For instance, the motion profile can be transferred into any
synthetic environment to simulate image sensor data, such as done by Sayre-McCord
et al. (2018) in real-time. Furthermore, this allows to exploit the large synthetic worlds
and capabilities of game engines (e.g., Shah et al., 2017, Dosovitskiy et al., 2017).

Different simulation strategies were used to enable special in-depth analysis (Section
4.3). First, the standard sensitivity analysis allowed to analyze the influence of single
parameters that can not be analyzed in real-world, such as motion blur. However, this
procedure is laborious to conduct for many parameters (e.g., Section 7.2.1). Second,
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the geometric MCS allowed to analyze the influence of calibration errors. It has shown
the potential of the current error propagation concept of IPS, but also its limitations,
as discussed in Chapter 5. Third, the combined sensitivity analyses allowed to investi-
gate the influence of multiple parameters at once and to weight their influence on the
trajectory error based on a correlation coefficient. Considered parameters originated
from the environment, system design, sensor property and calibration errors. The ex-
periments showed that dynamic environmental parameters are more influential than
other considered parameters (Section 7.2.2, 8.3). This approach further includes the
capabilities of the geometric MCS, which was deployed to proof that dynamic elements
are not described by the propagated uncertainty in VO (Section 7.2.2). One restriction
of this method is the required computational power and disk space, which severely lim-
its the length of the dataset and the number of MCS samples. One contributing factor
is the required initialization phase (Section 3.2.3) that, for instance, takes 45s in the
simulated corridor dataset, which is one half of the simulation time. The integration of
state-of-the-art approaches such as of Campos et al. (2020) might reduce this overhead.

An important point to consider is the gap between simulation and real world. All
simulated dynamic elements in this thesis (Section 4.2) were designed to “look” realistic,
but they are severely limited in their realism at a closer look. Persons are only based
on one model, which is further limited to straight walking. Water is simulated based
on texture variation on one plane. Smoke is based on partly transparent, one-intensity
particles, which removes all structure from dense smoke. Other limitations that increase
the gap are, for instance, missing motion blur (which is only applied for the standard
sensitivity analysis) and changes in pixel intensity over time (Vaudrey et al., 2008).

Despite this gap, the gained insights matched mostly well between both domains.
First, a sensitivity analysis was conducted for the corridor experiments in simulation
and real world (Section 7.2.1). The observed localization results from both domains
matched well, even though the real-world experiments were severely limited in GT
data. Second, the water experiments did show a recognizable gap (Section 8.3.1, 8.4).
The flowing water has shown an erroneous influence on IPS in simulation, which could
only be shown in real-world in the presence of flotsam. Third, the results from the
smoke experiments in both domains agreed that the influence of smoke is caused only
by its presence itself (Section 8.3.2, 8.4).

9.4 IPS for Self-Localization of First Responders
IPS is a well-suited platform for the development of (visual) localization methods for
diverse applications, such as inspection, vehicle navigation, geological mapping and
also first responders. The advantage of IPS is that it is a complete sensor system,
consisting of different hardware prototypes, the localization software and a digital twin.
This allows a high degree of flexibility and favors a wide range of research applications,
as all components can be studied, replaced and extended.

The existing IPS prototypes, which are designed primarily for research purposes,
might currently not be operational enough for real emergency response operations,
but they could be specifically engineered for this application. This limitation for IPS
arises, for instance, due to possible adverse conditions such as dense smoke or its
susceptibility to dynamic objects in extreme scenarios without the segmentation aid.
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The latter is currently not integrated into the sensor system and is only beneficial for
known objects or in known environments, but first responders are often confronted
with unpredictable situations. Further, the sensors of the current IPS are currently
relatively expensive, exceeding 1000$ (Rantakokko et al., 2010), and it is relatively
bulky due to the additional required computer. Though, IPS and its technologies have
the necessary potential and further improvements are conceivable, for example, by
integrating a keyframe- or a SLAM-approach, sensor fusion (e.g., LiDAR, thermal or
event camera) or data fusion with external signals (e.g., UWB-beacons), besides the
existing GPS-option (Baumbach et al., 2018; Zuev et al., 2019).

Finally, it is important to highlight that all results of this thesis are limited by
the range of the conducted experiments. Most importantly, only one hardware system
was considered with mostly only one methodical base configuration for localization. A
higher number of features or a better feature distribution over the image might also
reduce the likelihood of dynamic objects to distract IPS. For instance, Zhang (2018,
p.50) considered 24 different configurations at once for each considered approach in his
experiments. Such a variation of methodical parameters could easily be integrated into
the combined sensitivity analysis. Besides, all real-world experiments were severely
limited in GT and simulation experiments were restricted to relatively small datasets.
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Chapter 10

Conclusion

This chapter concludes with a concise summary of the main findings and brief outlook
to coming developments on the basis of this work and for IPS. The following summary
starts with a brief wrap up of the focus of this thesis and conducted experiments, before
the formulated research questions are answered. It continues with the main limitations
of this work and ends with a concise conclusion for this thesis.

10.1 Summary
This thesis investigated the application of visual localization in dynamic, adverse en-
vironments to identify challenges and accordingly increase the robustness of the visual
localization system. The main motivation was the application for self-localization by
first responders, where challenges arise such as visual distractions from dynamic ob-
jects and sensor degradation due to adverse conditions and high physical stress on the
system. The investigations were based on the sensor system IPS, a stereo-VINS, which
was extended by a digital twin in this work. Experiments were based on recorded
datasets from corridor, mall, coast, river and fumarole environments and targeted the
analysis of the dynamic elements person, water and smoke. Simulated datasets were
used to support these experiments using synthetic video clones. In simulation, sensor
degradations were further considered in terms of geometric calibration errors and dete-
riorated camera properties to account for possible adverse conditions. Altogether, four
research questions were formulated, which are considered in the following paragraphs.

The first research question addresses the influence of dynamic objects on visual
localization. Based on the experiments, three different influences could be observed.

• First, moving objects can obscure the view and prevent the detection of static
features, which slightly reduces localization accuracy. This was mostly observed
for the element smoke that partly covered and blurred the full image.

• Second, features on moving and static objects might be not separable due to slow
object motions, which can result in a moderate drift. This was observed for the
element water in the presence of flotsam and for slow moving persons.

• Third, a set of moving features might be mistaken for the static background,
which can lead to severe drifts. The cause is consensus inversion, which was
observed for the element person. It is favored by homogeneous surfaces in indoor
environments, persons walking close in front of the camera and dependent motion.
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It was also shown that the influence of dynamic objects depends on the geometric prop-
erties of the localization method. For instance, the probability of an erroneous influence
by a moving object decreases with lower image frequency, higher image resolution with
stricter feature matching, or higher system uncertainties.

The second research question concerns the application of a DNN to identify critical
image areas that belong to dynamic objects. The detection of the object person was re-
alized simply with a fully trained DNN for semantic segmentation, which was provided
by the DL community. For the detection of water and smoke, a Sensor-AI approach
was developed that generates class-agnostic training data for semantic segmentation by
directly exploiting the VO module. The segmentation results were promising for envi-
ronments seen during training. In summary, all considered dynamic elements could be
segmented and a successful application for other distracting elements can be deduced.

The third research question addresses the applicability of the DNN to improve
visual localization. The basic mask approach was used to prevent the detection of
features on potentially moving objects by masking specific object classes. Significant
improvements were observed in the presence of moving persons and water with flotsam.
However, small decreases in localization accuracy were observed in cases where the basic
mask approach prevented the detection of features on non-moving persons. The mask
approach neither lead to an improvement nor a deterioration for smoke or water without
flotsam in the considered real-world experiments. In summary, the used segmentation
aid mainly contributes in terms of robustness as it is able to prevent rare but significant
localization failures.

The fourth research question aims to analyze various error sources in order to
assess their different degrees of influence and to set the focus of future developments.
This question is interconnected with the investigation of the previous questions and
points to the used simulation strategy combined sensitivity analysis. This strategy
allows to jointly consider environment, system design, sensor property and calibration
error parameters in one Monte-Carlo-based sensitivity analyses. It was shown that
the dynamic elements have the strongest influence in the selected scenarios. If their
influence is eliminated, then calibration errors have shown a relatively big influence.
This indicates that high effort should be put into the geometrical sensor calibration.

The results are subjected to several limitations. For instance, only one visual lo-
calization system was considered that comes with its own strengths and weaknesses.
Further, only one methodical base configuration of IPS was considered in most experi-
ments. In addition, available GT information was severely limited in real datasets and
synthetic datasets were limited in realism due to limited rendering capabilities.

To conclude, visual localization shows great potential for the use in challenging
environments and demanding applications, such as self-localization by first responders.
This thesis specifically pointed out the high potential of hybrid approaches, combining
model- and learning-based methods, on the example of using semantic segmentation
for feature selection. Though, this approach understandably could not compensate for
the lack of visible static backgrounds and further improvements are required to con-
stantly guarantee a reliable and accurate localization solution. Future developments
will consider improvements from versatile directions, including geometric approaches,
learning-based methods and novel sensor technologies, to improve the visual localiza-
tion system IPS in challenging environments.
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10.2 Outlook
During this research, I came across promising ideas, approaches and technologies that
I believe will shape future visual localization systems. In the following, I will resume
some of those with specific focus on IPS technologies and applications.

Geometric approaches show a high level of development in related literature. IPS
will benefit from an integration of long-term feature tracking, keyframe and SLAM
approaches. Though, a specific focus should be the improvement of the propagation
of uncertainties from feature matching and calibration parameters to fully exploit the
potential of the methods developed by Grießbach (2015).

Hybrid approaches that expand geometric methods with learning-capabilities will
be key for robust visual localization in dynamic environments. The presented Sensor-AI
approach, currently restricted to appearance clues (semantic segmentation), will benefit
from an extension to use motion clues (optical flow) and depth clues. Furthermore,
it would be interesting to explore machine learning techniques to estimate feature
matching uncertainties or even for the error propagation itself.

Novel camera sensor technologies show great potential for localization in adverse
environments. For instance, SWIR or thermal cameras could be explored in IPS for
reliable localization in dense smoke areas. The event camera will be considered in
applications that show fast camera movements or require high dynamic range cameras.
I further recommend to explore the solid-state LiDAR for localization in indoor or
subsurface environments to cope for homogeneous walls or low-light conditions.

Realistic simulation is important to prepare visual localization methods for use in
challenging and safety-critical scenarios. The digital twin will benefit from an extension
to state-of-the-art graphic tools, including game engines with their large-scale virtual
worlds or animation tools with realistic rendering based on extensive raytracing. The
strategy combined sensitivity analysis could hold promise for future use in other ap-
plications, such as in on-orbit-servicing (e.g., Benninghoff et al., 2018) to assess the
influence of strong light reflections from satellite surfaces on visual localization.

Finally, visual localization is and will be exploited in most different and most chal-
lenging environments, such as motivated in Figure 10.1 in the context of geological
and planetary exploration. In this sense, “Quick and accurate planetary exploration
requires tools which are able to survive extremes in environmental conditions, working
both on the surface and sub-surface. Sub-surface exploration is critical for example on
Mars or the Moon, since signs of extant or extinct life is likely to be found in sub-surface
caves (Carrier et al., 2020)” (Irmisch et al., 2021).

Figure 10.1: Exploration of a fumarole field with IPS, Vulcano Summer School 2019.
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Appendix A

Supplementary Material

This appendix provides additional material to enable a better understanding of dif-
ferent aspects. First, the idea behind the least-squares problem is explained, which
is the mathematical basis of the considered VO approach of Section 3.2.2. Second,
information about characteristics of the used datasets are listed and are linked to the
individual corresponding sections. Third, calibration parameters and the respective
uncertainties are listed, which complements Section 5.1.

A.1 The Least-Squares Problem

The least squares method (LS) belongs to the mathematical field of data fitting. This
section follows the detailed introduction of (Strutz, 2016). Data fitting aims at finding
model-parameters a of a chosen model function f that best describe the connection
between a set of pairs with conditions xi and experimental scalar observations yi that
are subjected to random errors ϵi. The data fitting problem is formulated as

yi = f(xi|a) + ϵi. (A.1)

Solving this problem requires establishing linearly independent equations based on
pairs of conditions and observations. Due to the presence of observation noise, it is
beneficial to have more linearly independent equations than unknown variables in a.
A common solution to this over-determined problem is the least square method.

LS can be formulated based on maximum likelihood estimation (MLE), that aims
at finding values of a that maximize the likelihood of making the observations yi based
on the given conditions and parameter values. In this context, it is assumed that each
observation yi is drawn from an independent, uncorrelated normal distribution with
mean equal to f(xi|a) and SD σi, and that the error ϵi = yi − f(xi|a) is normally
distributed (Strutz, 2016, p.158). The probability for making the observation yi is
defined as

P (yi|a) = 1
σi

√
2π

·exp
{

−1
2 ·
[
yi − f(xi|a)

σi

]2}
. (A.2)
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This probability needs to be maximized for all observations in dependence of the
model parameters. A joint optimization is achieved by a multiplication of all single
probabilities, resulting in the observation probability P (a), which is to be maximized:

P (a) =
N∏

i=1
P (yi|a) =

N∏
i=1

1
σi

√
2π

·exp
{

−1
2 ·χ2(a)

}
−→ Max. (A.3)

This maximization equals a minimization of χ2 in the exponential part. χ2 describes
the squared residual error between the observations and estimated value based on the
model function. Thus, the least square problem can be derived with

χ2(a) =
N∑

i=1
wi·
[
yi − f(xi|a)

]2
−→ Min. (A.4)

Weight wi = 1/σ2
i is based of the observation uncertainty of yi and can be used for the

weighted least square method (WLS), if the uncertainty of yi is known.
The solution of WLS depends on whether the relation between the observations y

and model parameters a is linear or nonlinear. For the former, the optimal parameters
for a can be estimated directly. For the latter, an iterative approach is required that
solves

ak+1 = ak + ∆a. (A.5)
The model parameter update ∆a can be estimated using the Gauss-Newton algo-

rithm that approximates the target function by a Taylor series of second order (Strutz,
2016, p.164). The solution is

∆a = (JT ·W ·J)−1·JT ·W ·r , (A.6)

which is composed of the residual vector r with ri = yi − f(xi|a), the diagonal
weight matrix W and the Jacobian matrix J . The latter contains partial deriva-
tives Jij = δf(xi|a)/δaj, with a matrix size of (N, M) given N observations and M
model parameters. The advantage of Gauss-Newton is a general fast convergence to
the closest minimum, but it requires an initial estimate that is close to the optimum.

An appropriate alternative is Levenberg-Marquart if a good initial estimate can
not be guaranteed. It combines the Gauss-Newton method with the gradient descent
method that is constraint by a dynamic damping factor. This factor ensures a dominant
application of gradient descent, if the estimate is still far from the optimium, and of
Gauss-Newton, if it is relatively close.
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A.2 Datasets
This appendix provides additional information on datasets used in this thesis. This
includes exemplary images, the trajectory lengths in 3D, information about camera
motion dynamics and information about GT. Note that brightness of most of the
images was increased for better visualization.

Table A.1: Characteristics of simulated datasets used for geometric MCS (Section
5.3.1).

dist. velocity angular rate
representative [m] [m/s] [◦/s] Ground

dataset images 3D mean max mean max Truth
corridor 24.81 0.62 1.34 20.03 86.32 yes
(static)

coast 26.15 0.46 1.68 32.19 159.32 yes
(static)

fumaroles 48.61 0.4 1.49 32.35 172.21 yes
(static)

Table A.2: Characteristics of simulated corridor datasets (Section 7.2.1).

dist. velocity angular rate
representative [m] [m/s] [◦/s] Ground

dataset images 3D mean max mean max Truth
sim-corr-s01 18.89 0.74 1.41 34.59 252.53 yes
(strong motion)

sim-corr-s02 24.81 0.62 1.34 20.05 85.99 yes
(static humans)

sim-corr-d01 17.51 0.87 1.62 13.23 48.71 yes

sim-corr-d02 17.6 0.84 1.51 13.03 54.66 yes

sim-corr-d03 17.74 0.84 1.34 12.93 44.88 yes

sim-corr-d04 24.81 0.62 1.34 20.03 86.32 yes
(slow humans)
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Table A.3: Characteristics of real datasets without dynamic elements (Section 5.3.2).

dist. velocity angular rate Ground
representative [m] [m/s] [◦/s] Truth

dataset images 3D mean max mean max (GCPs)
corridor-1 33.49 1.0 1.57 29.78 97.49 1

corridor-2 37.56 0.74 1.44 25.63 85.15 2

corridor-3 37.74 0.81 1.53 27.0 81.58 2

(corridor-4) 24.94 0.54 1.35 18.05 86.97 2

basement-1 215.26 0.54 1.2 10.92 90.89 6

park-area-1 364.02 0.73 1.46 12.13 93.43 15

park-area-2 30.44 0.87 1.3 19.65 69.52 1

coast-1 49.9 0.67 1.33 22.12 97.73 1

crater-rim-1 67.64 0.41 1.77 15.6 135.65 1

crater-rim-2 42.24 0.66 1.7 36.75 158.35 1

mars-1 67.66 0.72 1.54 32.4 107.62 1

hotel-1 43.89 0.66 1.94 37.47 195.88 1

mine-1 122.74 0.41 0.83 14.57 83.16 3

mine-2 134.34 0.36 0.98 15.56 100.89 3

park-stairs-1 36.35 0.71 1.1 22.89 99.61 1
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Table A.4: Characteristics of real datasets from the corridor environment (Section
7.2.1).

dist. velocity angular rate Ground
representative [m] [m/s] [◦/s] Truth

dataset images 3D mean max mean max (GCPs)
corridor-d1 17.96 0.7 1.18 13.73 52.76 2

corridor-d2 17.85 0.49 0.91 12.87 46.02 2

corridor-d3 18.06 0.47 0.84 13.24 39.96 2

corridor-d4 18.71 0.53 1.21 15.98 72.38 2

corridor-d5 18.79 0.51 1.05 17.65 86.88 2

corridor-d6 20.09 0.55 1.02 17.91 57.21 2

corridor-d7 144.93 0.72 1.61 24.0 148.81 2

Table A.5: Characteristics of simulated dataset used for combined sensitivity analysis
(Sections 7.2.2, 8.3.1, 8.3.2).

dist. velocity angular rate
representative [m] [m/s] [◦/s] Ground

dataset images 3D mean max mean max Truth
corridor 24.81 0.62 1.34 20.03 86.32 yes
(slow humans)

coast 26.15 0.46 1.68 32.19 159.32 yes
(dynamic water)

fumaroles 48.61 0.4 1.49 32.35 172.21 yes
(dynamic smoke)
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Table A.6: Characteristics of real datasets from the mall environments (Section 7.3).

dist. velocity angular rate Ground
representative [m] [m/s] [◦/s] Truth

dataset images 3D mean max mean max (GCPs)
ipin-1 902 0.9 1.63 18.3 129 6

ipin-2 874 1.06 1.92 22 156 6

Table A.7: Characteristics of real datasets from fumaroles, coast, river environments
(Section 8.4).

dist. velocity angular rate Ground
representative [m] [m/s] [◦/s] Truth

dataset images 3D mean max mean max (CLs)
fumaroles-d1 359.81 0.46 1.65 32.1 175.69 5

fumaroles-d2 549.02 0.43 2.08 25.15 208.9 3

coast-d1 656.32 0.48 1.66 35.74 200.27 6

coast-d2 267.66 0.49 1.67 32.48 191.24 3

river-a-d1 44.3 0.54 0.97 18.8 78.37 1

river-a-d2 43.03 0.34 1.37 13.54 99.07 1

river-b-d3 40.74 0.61 0.92 19.19 85.23 1

river-b-s1 36.35 0.71 1.1 22.89 99.61 1
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A.3 Geometric Calibration Parameters
Different calibration settings are considered in the experiments of this thesis. The
parameter values are listed in A.8 and their corresponding applied uncertainties are
listed in Table A.9.

Three different base calibration sets are considered. The laboratory calibration
describes a camera calibration that was conducted in a laboratory (see Section 5.1.1).
The in-situ calibration describes a camera calibration that was conducted during field
operations (see Section 5.1.1). Additionally, the calibration ipin-2014 was conducted
in 2014 for the IPIN challenge (IPIN, 2014). The calibration for inspections (I ) is
based on the laboratory calibration parameters, which uncertainties were scaled and
listed in Table A.9. Similarly, the calibration for first responders (F) is based on the
in-situ calibration parameters, which uncertainties were scaled and listed in Table A.9.
A detailed discussion is presented in Section 5.1.

Additionally, the calibration set prior is used in Section 5.3.2, which is based on
prior uncertainties for the intrinsic camera parameters based on expert knowledge and
uncertainties from the laboratory calibration for the stereo transformation.

Table A.8: Geometric calibration parameters for intrinsic and extrinsic camera param-
eters and IMU registration. Three different calibration sets are considered.

(a) Camera calibration parameters, exemplary for camera left (κl, δl)
calibration f [px] u0 [px] v0 [px] k1 k2 k3

laboratory 775.23 710.03 546.07 -0.2593 0.1166 -0.0281
in-situ 775.34 712.63 546.26 -0.2634 0.1265 -0.0335
ipin 2014 776.05 711.58 547.78 -0.2591 0.1132 -0.0256

(b) Stereo camera calibration parameters T r
l

calibration αx [◦] αy [◦] αz [◦] tx [mm] ty [mm] tz [mm]

laboratory 0.0075 0.0067 0.0048 -200.54 -0.405 0.57
in-situ 0.0095 0.007 0.0039 -200.93 -0.172 -1.362
ipin 2014 0.0058 0.0081 0.0067 -200.89 -0.035 0.383

(c) IMU registraton parameters T b
l

calibration αx [◦] αy [◦] αz [◦] tx [mm] ty [mm] tz [mm]

laboratory -1.567 0.0028 1.581 2.3 22 32.5
in-situ -1.567 0.0028 1.581 2.3 22 32.5
ipin 2014 1.5716 -0.0057 1.5609 -15.5 22 32.5
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Table A.9: SDs of geometric calibration parameters for intrinsic and extrinsic camera
parameters and IMU registration. Three different calibration sets are considered.

(a) Intrinsic camera calibration uncertainties, exemplary for camera left (κ, δ)
calibration f [px] u0 [px] v0 [px] k1 k2 k3

prior 0.2 0.3 0.3 0 0 0
laboratory 0.043 0.073 0.073 0.00014 0.00024 0.00012
scale factor 4 4 4 4 4 4
inspection (I) 0.172 0.291 0.29 0.00057 0.00097 0.00048
in-situ 0.274 0.538 0.416 0.00228 0.00611 0.00435
scale factor 1.3 1.3 1.3 1.3 1.3 1.3
first responder (F) 0.357 0.7 0.54 0.00297 0.00795 0.00566

(b) Stereo camera calibration uncertainties T r
l

calibration αx [◦] αy [◦] αz [◦] tx [mm] ty [mm] tz [mm]

laboratory 0.00173 0.00335 0.00041 0.0083 0.0061 0.0243
scale factor 5 5 5 20 5 5
inspection (I) 0.01521 0.01935 0.00328 0.166 0.0303 0.1214
in-situ 0.00865 0.01677 0.00205 0.124 0.0903 0.26907
scale factor 1.5 1.5 1.5 2 1.5 1.5
first responder (F) 0.02281 0.02903 0.00492 0.248 0.1355 0.4036

(c) IMU registraton uncertainties T b
l

calibration αx [◦] αy [◦] αz [◦] tx [mm] ty [mm] tz [mm]

standard 0.01785 0.0334 0.01733 1.0 1.0 1.0
scale factor 5 5 5 1 1 1
inspection (I) 0.08923 0.167 0.08663 1.0 1.0 1.0
scale factor 15 15 15 3 3 3
first responder (F) 0.26769 0.501 0.25989 3.0 3.0 3.0
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Appendix B

Supplementary Experiments

This appendix presents additional experiments to complement various investigations
from this thesis. First, a sensitivity analysis is used for parameter range selection for
image noise and Gaussian blur of the combined sensitivity analyses to complement
sections 7.2.2 and 8.3. Second, feature matching is evaluated with a more extensive
experiment to complement Section 5.2.1. Third, the error propagation for feature
undistortion is briefly investigated to complement Section 5.2.2. Fourth, a MCS is
conducted to verify the error propagation in VO of Grießbach (2015) with the presented
WLS approach to complement Section 5.2.3. Finally, the segmentation results of a few
more DNNs is evaluated to complement Section 8.2.3.

B.1 Sensitivity Analysis

Figure B.1 presents two additional sensitivity analyses that were used to select sample
distributions for the parameters (i) capture gain and (ii) gaussian blur to prepare the
combined sensitivity analyses (Section 7.2.2, 8.3). Each box comprises of 50 repetitions.

Image noise results in a stable localization up to 20 db. Interestingly, the coast
dataset is less affected by noise, which might be attributed to the higher contrast in
intensity values, observable in Figure 4.10 (p. 47) in comparison to Figure 4.8 (p. 45)
and Figure 4.9 (p.46). Oriented on this data, the maximum range of the parameter
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Figure B.1: Supplementary sensitivity analysis based on static simulated datasets.
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capture gain for the combined sensitivity analyses was set to 20 db, its mean to 0 db
and its SD to 5 db with the condition to be greater 0 db.

Gaussian blur results in a stable localization of up to 4 px. The corridor dataset is
most affected, which can be attributed to the small number of detected features due
to many existing homogeneous surfaces. Oriented on this data, the maximum range
of the parameter Gaussian blur (sigma) was set to 5 px (which is optimistic for the
corridor dataset), its mean to 0 px and its SD to 1 px with the condition to be > 0 px.

B.2 Feature Matching Evaluation
In this appendix, feature matching is evaluated with a more extensive experiment to
complement Section 5.2.1. Table B.1 evaluates feature matching during intra m̂r1δ and
inter m̂r2δ matching for different severity of motion blur (exposure time) and different
severity of view angle changes (image frequency). The experiments are based on the
synthetic datasets of Table A.1 without dynamic environment elements.

It can be observed that the error depends on the considered environment, increases
with the level of motion blur and with the severity of view point changes. A par-
ticularity is the corridor dataset. It can be observed that the quality and number
of features increase with the level of motion blur. The additional blurring seems to
support the feature detection in the environment with fine repetitive structures on the
carpet and wallpaper. This might explain the slightly improved localization solution
for the corridor dataset, which can be observed in Figure 4.11 (right, p.48) at 20 ms.

Table B.1: Supplementary evaluation of feature matching errors (SD [px]) with respect
to image frequency, synthetic datasets and motion blur. A white-to-red heat map
visualizes the deteriorated matching error for each column. N denotes the number of
features used to estimate the SD in each experiment.

images at 10 Hz images at 5 Hz
N m̂r1δ

0 m̂r1δ
1 m̂r2δ

0 m̂r2δ
1 N m̂r1δ

0 m̂r1δ
1 m̂r2δ

0 m̂r2δ
1

Fu
m

ar
ol

e 0 ms 102k 0.39 0.322 0.151 0.137 46k 0.38 0.32 0.176 0.166
5 ms 101k 0.401 0.326 0.153 0.137 46k 0.388 0.321 0.181 0.169
20ms 91k 0.438 0.344 0.287 0.295 38k 0.415 0.336 0.314 0.32

C
oa

st 0 ms 42k 0.407 0.34 0.163 0.151 19k 0.386 0.333 0.192 0.183
5 ms 42k 0.417 0.341 0.163 0.148 19k 0.395 0.334 0.197 0.185
20ms 39k 0.454 0.349 0.292 0.286 16k 0.423 0.342 0.335 0.322

C
or

rid
or 0 ms 5.8k 0.479 0.358 0.199 0.189 2.8k 0.435 0.35 0.225 0.215

5 ms 5.9k 0.465 0.357 0.193 0.18 2.8k 0.454 0.346 0.225 0.197
20ms 6.2k 0.504 0.352 0.185 0.164 3.0k 0.472 0.347 0.232 0.188

B.3 Error Propagation for Feature Undistortion
This section complements Section 5.2.2 with an experiment to validate the use of
11×11 covariance matrices (cov11x11 ) instead of 2×2 covariance matrices (cov2x2 )
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during feature undistortion. Formulated in Equation 5.6, the three required steps are
given with

mδ → m̃δ → m̃ → m̂ . (B.1)
The distorted image point mδ is transformed into normal camera coordinates m̃δ,
undistorted to m̃ and transformed back into image coordinates m̂.

The notation for the error propagation is similar as in Section 5.2.2 with the addition
of the distortion parameters δ. For instance, the first step of cov2x2 is formulated as

(2,2)Σm̃δ = (2,2)J
m̃δ

mδ ·(2,2)Σm·(2,2)J
m̃δ

T
mδ + (2,4)J

m̃δ

κ ·(4,4)Σκ·(2,4)J
m̃δ

T
κ . (B.2)

Related, the first step of cov11x11 is formulated as

(11,11)Σm̃δ,κ,δ = (11,11)J
m̃δ,κ,δ
mδ,κ,δ · (11,11)Σmδ,κ,δ · (11,11)J

m̃δ,κ,δT
mδ,κ,δ . (B.3)

The steps two and three are formulated accordingly.
Figure B.2 shows a MCS (Section 3.3.2) for the undistortion steps for one exemplary

feature point. It is conducted to verify the analytically propagated uncertainties on the
basis of the statistical propagation. It shows that after the first and the second step,
all propagated uncertainty are the same. This is due to the assumption of independent
calibration parameters, i.e., using only the SD of each parameters, which is also applied
during the MCS. This topic is discussed in Section 5.4. Though, after the third step,
the propagated uncertainties of cov2x2 diver significantly to the MCS result. This is
again due to the missing information that the uncertain camera model with parameters
κ was already used in the first step, similar as explained in Section 5.2.2. Propagated
uncertainties of cov11x11 equal the MCS result and are therefore the better choice.
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Figure B.2: Supplementary evaluation of error propagation for feature undistortion
based on a MCS (black, solid), analytical method based on 2×2 covariance matrices
(red, dotted), analytical method based on 11×11 covariance matrices (green, dashed).

B.4 Monte-Carlo-Simulation for Visual Odometry
In this section, the WLS approach (Section 5.2.3) is validated based on a MCS, in which
noisy feature points are introduced. The experiment is based on a set of 20 GT object
points {M⃗ i}19

i=0 and a GT transformation ∆T with parameters (tx, ty, tz, αx, αy, αz) =
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(5cm, 5cm, 5cm, 5◦, 5◦, 5◦). Their projections in all four camera images form the sets of
GT feature points, given with {(ml1

i , mr1
i , ml2

i , mr2
i )}20

i=0.
During each iteration of the MCS, the parameters for the camera model are sampled

based on their specific distributions (I, F , see Appendix A.3). Also, feature point values
are noised with a SD of 0.2px during each iteration, which results in the observed feature
sets {(m̂l1

i , m̂r1
i , m̂l2

i , m̂r2
i )}19

i=0. For a subset of feature sets (0%, 20%), the feature
point values are noised with a SD of 0.8 px to introduce noisy points. The relative
transformation is estimated based on the observed set of feature points with knowledge
of their error distribution. Camera distortion parameters δ are not considered.

Table B.2 shows the mean RTE over all 1000 iterations for the proposed WLS
approach and the original least-squares (LS) method. As to be expected, the results
do not differ for 0% noisy points. However, WLS outperforms LS in the presence of
20% noisy points. Besides, propagated uncertainties (based on methods of Grießbach,
2015) of this experiments could be verified using this MCS, which is not mentioned in
the table.

Table B.2: Supplementary evaluation of WLS. It shows the mean RTE [mm] and SD
(±) from 1000 iterations of a MCS for one VO estimation in the presence of noisy
points (0%, 20%). Bold numbers mark the best results of each comparison.

Calib. Setting: (I) (F)

N
oi

sy
[%

]

0
WLS 0.40±0.19 0.69±0.37
LS 0.41±0.19 0.69±0.38

20
WLS 0.52±0.25 0.87±0.47
LS 0.76±0.38 0.94±0.5

B.5 Semantic Segmentation
This section provides a few more results to the training of DNN based on the Sensor-
AI approach and complements Section 8.2.3. Table B.3 shows the mean IoU for the
different classes of the network all-I, which was trained on the full dataset that was
generated with calibration I . It shows that good achieves the highest score. This might
be due to its dominant presence in the image. This might reduce the influence of
pixel-level label noise, which was observed in the data (Section 8.2.3).

Table B.3: Supplementary evaluation of the trained DNN all-I.

class fumaroles coast river mean
good 0.79 0.77 0.73 0.76
bad 0.45 0.44 0.60 0.50
background 0.43 0.50 0.44 0.46
mean 0.55 0.57 0.59 0.57
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Table B.4: Supplementary segmentation results (calib. I ), showing the mean IoU.

name images network fumaroles coast river mean
all 4102 Mobilenetv2 0.55 0.57 0.59 0.57
all-1/2 2051 Mobilenetv2 0.55 0.55 0.58 0.56
all-1/4 1025 Mobilenetv2 0.53 0.54 0.56 0.54
all-xception 4102 Xception 0.55 0.57 0.58 0.57
all-mbv3 4102 Mobilenetv3 0.55 0.56 0.59 0.56
all-augmented 4102 Mobilenetv2 0.42 0.42 0.31 0.38

Table B.4 lists the results of some more exemplary selected trained DNNs. Networks
all-1/2 and all-1/4 are trained with fractions of the dataset. This experiment shows that
reducing the training dataset size decreases the mean IoU gradually, which in turn sug-
gests that more data could increase the mean IoU. Networks all-xception and all-mbv3
are based on different network structures. This experiment shows that training DNNs
based on other structures does not change the outcome much, which strengthen the
conclusion that the performance is limited by the training data, due to limited amount
of reference images and relatively high pixel-level label noise in the data. Network all-
augmented was trained on an augmented version of the dataset, which was augmented
in terms of image noise, image blur, distortion effects and similar. This experiment
exemplifies that data augmentation can lead to a strong drop in the mean IoU score.
This indicates that, for instance, blur or noise might provide important clues for certain
objects, such as smoke or brushwood, within the Sensor-AI approach.

Figure B.3 shows exemplary predictions of all-I in other environments. The cor-
responding runs were not included in the training dataset, but the same places were
seen for (a,b) and the same environment was seen for (d). (a) shows dark sand at Valle
dei Mostri that shows a similar structure as water and is partly labeled as bad by the
DNN. (c) shows a river site that was not included in the data and is partly mislabeled,
possibly due to water structures and appearances that are unknown to the DNN.
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Figure B.3: Supplementary qualitative segmentation results based on all-I.
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