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ABSTRACT
Providing a physically sound explanation of aging phenomena in non-equilibrium amorphous materials is a challenging problem in modern
statistical thermodynamics. The slow evolution of physical properties after quenches of control parameters is empirically well interpreted via
the concept of material time (or internal clock) based on the Tool–Narayanaswamy–Moynihan model. Yet, the fundamental reasons of its
striking success remain unclear. We propose a microscopic rationale behind the material time on the basis of the linear laws of irreversible
thermodynamics and its extension that treats the corresponding kinetic coefficients as state functions of a slowly evolving material state. Our
interpretation is based on the recognition that the same mathematical structure governs both the Tool model and the recently developed
non-equilibrium extension of the self-consistent generalized Langevin equation theory, guided by the universal principles of Onsager’s theory
of irreversible processes. This identification opens the way for a generalization of the material-time concept to aging systems where several
relaxation modes with very different equilibration processes must be considered, and partially frozen glasses manifest the appearance of partial
ergodicity breaking and, hence, materials with multiple very distinct inner clocks.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0087649

I. INTRODUCTION
Amorphous states of matter that derive from the non-

equilibrium solidification of supercooled liquids, such as most
glasses and gels, are ubiquitous in nature and of significant tech-
nological and scientific relevance.1–4 One of the most essential fin-
gerprints experimentally observed in these non-equilibrium amor-
phous states is the slow evolution of physical properties (e.g., volume
and transport coefficients) with the “waiting” time t after prepa-
ration, a phenomenon commonly referred to as physical aging.5–16

The wealth of experimental data on the equilibration and aging
processes of glass- and gel-forming liquids, thus, becomes a key to
test the predictive power of available theories of glasses.17–20 Many
such data are successfully fitted by phenomenological models, and it
remains as a challenge for statistical-mechanics theories to reconcile
the phenomenology with fundamental principles.21–24

Many of these phenomenological models were built out of
the need to include essential effects such as the existence of sev-
eral (not only one) relaxation modes or the presence of dynamical
heterogeneities.14,16 For example, the need to describe measured
thermal and viscoelastic properties during vitrification and devitrifi-
cation under a wide variety of experimental conditions and thermal
histories led to the development of powerful phenomenological
tools, such as the Tool–Narayanaswamy–Moynihan (TNM5–7) and
the Kovacs–Aklonis–Hutchinson–Ramos (KAHR12) models. These
models are commonly used in industry to predict aging effects,25

and their development involved a rich discussion of many rele-
vant issues.14 For our present purpose, however, we shall focus on
the TNM model, and to simplify the discussion, we only highlight
the essential feature of Tool’s original proposal,5 namely, to model
the highly nonlinear aging processes observed in a given observable
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X(t) in terms of a simple mathematical representation: The model
posits the generic nonlinear equation

dX(t)
dt

= −
1

τ(X(t))
[X(t) − X∞], (1)

where τ(X(t)) is a characteristic relaxation time that itself exhibits
aging and that is postulated to depend on waiting time only through
its dependence on X(t). A change of variable from the time t to the
“material” (or “inner”) time ζ, defined as6

ζ(t) ≡ ∫
t

0

dt′

τ(X(t′))
, (2)

allows us to write the solution of Eq. (1) as X(t) = X∗(ζ(t))with the
function X∗(ζ) that obeys the ordinary linear differential equation

dX∗(ζ)
dζ

= −[X∗(ζ) − X∞]. (3)

The solution of Eq. (1) with the arbitrary initial condition X(t = 0)
= X0 is, thus, given by

X∗(ζ) = X∞ + [X0 − X∞]e−ζ. (4)

Despite its general success, the applicability of this simple ver-
sion of the TNM model is known to be limited, in practice, and
this prompted the proposal of alternative independent empirical
models.14 In fact, already in the original proposal, Narayanaswamy
considered extended versions.6 The resulting description turns out
to capture the essence of the behavior experimentally observed in
many glass forming materials, although the fundamental reason
for this is not fully understood.16,26 Determining the boundaries of
validity of the TNM model and the origin of its corresponding lim-
itations is still active matter of current research.27 Only recently,
careful long-time experiments could establish the very existence of
an internal “clock” as a manifestation of more fundamental physical
principles in a real material.28

A general statistical mechanics theory of irreversible pro-
cesses in liquids was proposed two decades ago.29,30 This approach,
referred to as the non-equilibrium self-consistent generalized
Langevin equation (NE-SCGLE) theory, predicts many relevant uni-
versal signatures of the glass and gel transitions—including aging
phenomena—and more specific features reflecting the role of the
particular molecular interactions acting in the specific system con-
sidered. For example, for simple liquids with purely repulsive inter-
particle interactions, this theoretical framework accurately describes
the non-stationary and non-equilibrium process of the formation of
high-density hard-sphere-like glasses,30–32 whereas for liquids with
repulsive plus attractive interactions at low densities and tempera-
tures, it predicts the formation of sponge-like gels and porous glasses
by arrested spinodal decomposition.33–36

The NE-SCGLE was formulated in Ref. 29 and can be summa-
rized in terms of a set of equations that describe the non-equilibrium
evolution of the structural and dynamical properties of a simple
glass-forming liquid [we refer here for simplicity to a generic system

of N identical spherical particles in a volume V that interact through
a radially symmetric pair potential U(r)]. The most central of
these equations describes the time evolution of the non-equilibrium
structure factor (SF) S(k; t) ≡ ⟨δn(k)δn(−k)⟩t , where the brack-
ets indicate the average over the time-dependent non-equilibrium
statistical ensemble and δn(k) is the Fourier-transformed (FT)
fluctuating particle-number density n(r) = ∑N

1 δ(r − ri)/
√

N. For a
homogeneous system, instantaneously quenched at t = 0 from an
initial equilibrated state corresponding to density and temperature
(n (i), T(i)), toward new values (n ( f ), T( f )

), the NE-SCGLE for the
SF reads

∂S(k; t)
∂t

= −2k2D0b(t)n ( f )E(k; n ( f ), T( f )
)

× [S(k; t) − 1/n ( f )E(k; n ( f ), T( f )
)]. (5)

The evolution of the non-equilibrium SF is driven by a thermody-
namic force given by E(k; n, T), the FT of the second functional
derivative E[r; n, T] of a postulated Helmholtz free energy
density-functional F[n; T], i.e., E[∣ r − r′ ∣; n; T] ≡ δ2βF[n; T]
/δn(r)δn(r′),37 evaluated at the uniform (bulk) density and tem-
perature fields30 n(r, t) = n ≡ N/V and T(r, t) = T, where N, V ,
and T are, respectively, the total particle number, volume, and
temperature of the final state of the quench, and β−1

= kBT with the
Boltzmann constant kB. The factor D0 in the NE-SCGLE relaxation
[Eq. (5)] arises from the diffusive relaxation of density fluctuations
and is related to the short-time friction coefficient ζ0

= kBT/D0 in
colloidal suspensions (or a suitable kinetic or “Doppler” friction in
the case of molecular liquids38,39).

More crucially, the factor b(t) in Eq. (5) is a non-equilibrium
time-dependent mobility function29 that can be identified, in the
NE-SCGLE framework, with the normalized instantaneous long-
time self-diffusion coefficient b(t) ≡ DL(t)/D0. It is the crucial
ingredient in the theory of aging, as it describes the kinetically
slowed down evolution of structural quantities. It needs to be cal-
culated by a suitable theory of (near-stationary) structural relax-
ation and kinetic arrest; in this context, b(t) is typically evalu-
ated within the SCGLE framework, although a suitable extension
of mode-coupling theory (MCT) would give qualitatively similar
results.

Equations (1) and (5) bear an obvious resemblance: identifying
S(k; t) as a length-scale dependent (k-dependent) observable X(t)
within Tool’s model and 1/n ( f )E(k; n ( f ), T( f )

) as the asymptotic
value X∞, we observe that NE-SCGLE encodes the mathematical
structure of the generic relaxation postulated by Tool. In particular,
a change of variable from time t to

u(t) ≡ ∫
t

0
b(t′)dt′ (6)

allows us to write the solution of Eq. (5) as S(k; t) = S∗(k; u(t))
in terms of the function S∗(k; u) solving the linear differential
equation

∂S∗(k; u)
∂u

= −α(k)[S∗(k; u) − 1/nE(k; n ( f ), T( f )
)], (7)
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with a k-dependent relaxation factor α(k) ≡ [2k2D0n ( f )E(k; n ( f ),
T( f )
)] and initial condition S∗(k; u = 0) = S(k; t = 0) = S(i)

(k);
thus,

S∗(k; u) = [nE ( f )
(k)]−1

+ (S(i)(k) − [nE ( f )
(k)]−1

)e−α(k)u. (8)

Hence, the NE-SCGLE proposes an unambiguous microscopic
identification of the relaxation rate [1/τ(X(t))] corresponding to
the variable X(t) = S(k; t). Remarkably, this factorizes, 1/τ(k; t)
= α(k)b(t), and thus, the corresponding “material” time equally
factorizes,

ζ(k; t) = α(k)u(t). (9)

The quantity u(t) can be regarded as an “intrinsic” material time that
governs the relaxation of density fluctuations on all length scales.

In this contribution, we aim to link the two different
approaches to aging just highlighted—representative of a more
practical-oriented materials-science and engineering methodol-
ogy and of the statistical-physics method to predict macroscopic
behavior from microscopic intermolecular forces—by exploiting
the mathematical similitude between the phenomenological Tool
model described by Eqs. (1)–(4) and the NE-SCGLE framework of
Eqs. (5)–(9). We argue that this bears a deep physical significance
as it reflects a remarkable connection in their fundamental roots,
namely, the universal principles of Onsager’s theory of irreversible
processes.

Relating classical and irreversible thermodynamics to glass sci-
ence has, indeed, a long tradition, as illustrated since the 1950s by
Davies and Jones,40,41 in the 1970s by Moynihan et al.7,8 and as
discussed more recently by Bailey et al.42 In fact, the elegance and
simplicity of the TNM model rest on its fundamental roots in the
linear laws of irreversible thermodynamics, but it is notably aug-
mented by Tool’s assumption that the relaxation times vary with
time through their dependence on the state variables themselves.
In irreversible-thermodynamic terms, this means that the kinetic
coefficients of the transport equations (such as viscosity, conduc-
tivity, and diffusion coefficients) are treated as state functions. The
empirical success of the TNM model clearly demands the theoretical
investigation and prediction of the corresponding “kinetic equations
of state,” which the NE-SCGLE theory incorporates in the very heart
of its formulation.

As we will discuss below, the NE-SCGLE supports the
definition of an intrinsic material time u(t) that is generic to a
wide range of observables and, at the same time, suggests an exten-
sion of the TNM concept toward materials characterized by multiple
intrinsic times, namely, those where fundamentally different modes
of relaxation exist. We also hope to trigger by our discussion the
reconsideration from a microscopic starting point of various phe-
nomenological concepts of enormous practical and fundamental
impact,14 whose discussion has been the subject of both historical
arguments and enlightening reviews. Illustrative examples include
the concepts of time–temperature superposition (TTS) and thermo-
rheological simplicity (reviewed in Refs. 43 and 44) and the notions
of fictive temperature and effective time, introduced decades ago by
Struik.9 In close relationship with the fundamental description of

Kovacs’ kinetic signatures in glass-forming systems and of the con-
cept of fictive temperature4,10,11 (see Ref. 45 for a recent discussion),
the present work is meant to advance along this program by focusing
on the fundamental relationship between the empirically success-
ful TNM model and the microscopic foundation of the NE-SCGLE
formalism.

We start in Sec. II by discussing the Tool model as a manifes-
tation of the linear laws of irreversible thermodynamics, modified
by TNM’s recognition that the kinetic coefficients may be consid-
ered state functions and, hence, depend on the current value of the
state variables. These linear laws, applied to several coupled state
variables, naturally extend the original Tool’s one-relaxation time
model5 to the multi-variable model proposed by Narayanaswamy.6
Section III addresses the problem of defining and predicting the
kinetic equations of state, i.e., the dependence of the kinetic coef-
ficients on the state variables. The route proposed by NE-SCLGE
theory rests on the universal laws of irreversible thermodynamics,
although with several important additions.29 The most important
among them is the central role played by the kinetic equation of state
L = L[X], which the resulting non-equilibrium microscopic theory
predicts in an approximate, but systematic manner. For clarity, in
Subsection III B, we provide an illustrative example on the use of
the NE-SCGLE to calculate the intrinsic material time of a glass-
forming model system. In Sec. IV, we show how the NE-SCGLE
framework allows us to extend TNM’s concept of material time
for the more sophisticated case of glass forming systems involving
non-spherically interacting particles, leading to multiple relaxation
modes originated in the dynamical coupling between the transla-
tional and orientational degrees of freedom. In Sec. IV, we also
illustrate the use of this extended model for the description of
aging phenomena in a model dipolar fluid. Finally, in Sec. V, we
summarize our conclusions.

II. THE TOOL MODEL AND THE GENERAL LAWS
OF IRREVERSIBLE THERMODYNAMICS

Let us start by reviewing the TNM framework from the per-
spective of the linear laws of irreversible thermodynamics, modified
upon the recognition that the corresponding kinetic coefficients are
state functions. We, then, explain how such linear laws applied to
several state variables naturally extend Tool’s original model5 to the
multi-variable model of Narayanaswamy.6

A. Linearity between “fluxes” and “forces” for one
variable X(t)

Tool’s Eq. (1) can be understood in a simple manner as a direct
extension of the universal laws of irreversible thermodynamics.46

For this, let the variable X(t) represent an extensive thermodynamic
property. The most relevant of these laws states that the relaxation of
this extensive variable toward its equilibrium value, Xeq, is governed
close to equilibrium by a linear relationship,

∂X(t)
∂t

= L ΔF, (10)

between the “flux” [i.e., the time rate of change of X(t)] and
the corresponding “thermodynamic force” ΔF ≡ F[X] − F[Xeq

],
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where the function F[X] is the respective conjugate variable, F[X]
= dS[X]/dX, with S[X] being the entropy47 and L being the corre-
sponding Onsager kinetic coefficient. This fundamental law is one
of the pillars of the TNM model.

The fact that “flux” and “force” are linearly related, however,
does not imply that Eq. (10) is a linear equation. One obvious rea-
son is that the thermodynamic equation of state F = F[X] does not
involve a linear relationship between ΔF and ΔX ≡ X − Xeq. Such
“thermodynamic” non-linearity is expected and well understood,
and Boltzmann’s fundamental postulate S[X] = kB ln W[X]48 allows
us, in principle, to determine the precise function F[X] = dS[X]/dX.
A less obvious non-linearity of Eq. (10), however, arises if one allows
for the proportionality “constant” L to be a state function L = L[X].
In contrast to the thermodynamic equation of state F = F[X], no
general fundamental principle analogous to Boltzmann’s postulate
is available to assure the existence of or to determine the “kinetic
equation of state” L = L[X] from first principles.

B. Equilibrium vs kinetically arrested stationary states
The very postulate of existence of a kinetic equation of state

L = L[X] already offers a glimpse of one of the most fascinating
predictions of Eq. (10). Written as

∂X(t)
∂t

= L[X(t)] (F[X(t)] − F[Xeq
]), (11)

this equation assures us that any equilibrium state Xeq is a stationary
solution since in the limit t →∞, the factor (F[X(t)] − F[Xeq

]) on
the right-hand side vanishes whenever X(t →∞) = Xeq. The inverse
statement, however, is not true. In other words, not every stationary
solution of this equation corresponds to an equilibrium state. The
reason for this is the possibility that the kinetic coefficient L[X(t)]
asymptotically vanishes at long times (i.e., L[X(t →∞)] = 0), thus
establishing conditions for stationarity without the equilibrium con-
dition ΔF = 0 being required. Thermodynamic equilibrium states
have long been understood as a consequence of the fundamental
and general laws of classical47 and statistical48 thermodynamics. In
contrast, the second class of stationary solutions, denoted by Xa,
in which the transport mechanisms represented by L[X] become
arrested (L[Xa

] = 0), find their vivid physical realization in the for-
mation of rather common non-equilibrium states of matter, such as
glasses and gels. Demonstrating the existence of these states is one of
the central aspects of the NE-SCGLE theory.

The notorious asymmetry in the understanding of equilib-
rium vs non-equilibrium stationary states of matter derives from the
fact that equilibrium states can be understood solely in terms of a
maximum entropy principle combined with Boltzmann’s postulate,
without having to appeal to the fact that they are stationary solu-
tions of any non-equilibrium process. This is in stark contrast with
non-equilibrium stationary states, which can only be understood as
stationary solutions of non-linear transport equations of the kind in
Eq. (11).

C. A natural extension of the TNM model
The full significance of Onsager’s principle and its non-

equilibrium extension comes to light in the multi-variable

generalization of Eq. (10). Consider ν thermodynamic extensive
variables X1(t), X2(t), . . ., Xν(t) grouped as the components of a
vector X(t) ≡ [X1(t), X2(t), . . . , Xν(t)], and let S = S[X] be the fun-
damental thermodynamic relation.47 Then, Fi[X] ≡ (∂S[X]/∂Xi)

are the corresponding intensive conjugate variables, and to first
order,46

∂ΔX(t)
∂t

= L ⋅ ΔF(t), (12)

where ΔX(t) ≡ X(t) −Xeq, ΔF[X(t)] ≡ F[X(t)] − F[Xeq
], and L is

the matrix of Onsager kinetic coefficients.
For small enough derivation from equilibrium, the lineariza-

tion of F[X] in [X(t) −Xeq
] yields

∂ΔX(t)
∂t

= −L[Xeq
] ⋅ E[Xeq

] ⋅ ΔX(t), (13)

where the elements Eij[X] of the matrix E[X] are the thermody-
namic susceptibilities Eij[X] ≡ −k−1

B (∂Fi(X)/∂Xj) = −k−1
B (∂

2S(X)
/∂Xj∂Xi).

This linearization suggests a natural extension toward a
multi-variable Tool model, based on the ad-hoc assumption at
L and E can be considered as kinetic state functions to describe the
evolution of an observable X(t) toward is asymptotic value X∞,

∂X(t)
∂t

= −τ−1
[X(t)] ⋅ [X(t) −X∞], (14)

with the relaxation-rate matrix τ−1
(t) ≡ L[X(t)] ⋅ E[X(t)].

Equation (14) is formally solved as

X(t) = X∞ + exp+[−∫
t

0
τ−1
[X(t′)] dt′] ⋅ [X(t) −X∞], (15)

where the time-ordered exponential E(t, 0) = exp+[−∫
t

0 dt′ τ−1
(t′)]

is the unique solution of the differential equation ∂tE(t, 0)
= −τ−1

(t)E(t, 0) to the initial condition E(0, 0) = 1. In principle, the
matrix τ−1 can be diagonalized, and it will have non-negative eigen-
values τ−1

i ≥ 0 because it is the product of a symmetric matrix L and
a matrix E that for reasons of thermodynamic stability is assumed
to be positive (semi-)definite. The individual modes of relaxation
in the set of observables Xi that correspond to the eigenbasis of the
relaxation-rate matrix, then, follow

∂Xi(t)
∂t

= −
1

τi[X(t)]
[Xi(t) − Xeq

i ] (for i = 1, 2, . . . , ν). (16)

Note the subtle difference to Eq. (1): each of the corresponding relax-
ation rates now is a state function that, in general, depends on all the
variables grouped in the vector X(t). In addition, the typical exper-
imental setup prescribes a set of Xi that do not correspond to an
eigenbasis of τ−1 so that, in general, the individual Xi(t) given by
the matrix exponential in Eq. (15) do not decay as simple exponen-
tials, but rather as superpositions of exponentials. This addresses
Narayanaswamy’s concern6 that Tool’s original model5 in Eq. (1)
“postulates a simple exponential relaxation mechanism governed by a
single (time-dependent) relaxation time. In fact, most glasses exhibit
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a more complex nonexponential relaxation behavior that can, how-
ever, be characterized by a distribution or spectrum of relaxation
times.” In addition, there need not exist a single scalar material time
because different modes of τ−1 can have very different temperature
dependence.

The formal solution, Eq. (15), suggests to define a “material-
time matrix,”

ζ(t) ≡ ∫
t

0
[τ[X(t′)]]−1 dt′. (17)

As we exemplify below, for the discussion of the long-time fate of
aging systems, in the limit t →∞, we essentially distinguish between
the following cases: if τ−1 approaches a matrix that is similar to a
strictly positive definite matrix, asymptotically, ζ(t) ∼ ζ∞t, i.e., the
material time becomes asymptotically linearly related to physical
time, but with a non-trivial prefactor matrix ζ∞ that reflects the slow
dynamics of the equilibrating system. In the second case, when the
relaxation of all relevant modes of the system becomes kinetically
arrested, τ−1 approaches the zero matrix, and in this case, the mate-
rial is characterized by an asymptotically constant set of material
times, which can be expressed as a set of eigenvalues ζ i (or equiva-
lently, a set of finite intrinsic material-time values ui). In this case, the
physical aging of the system forever “gets stuck” at a finite internal
clock-time.

The multi-variable generalization of the TNM model displays
a third possibility: in systems with kinetic arrest but partial equili-
bration of some of the dynamical modes, the relaxation-rate matrix
τ−1
(t)may have blocks with different temperature dependence and,

in particular, may develop zero-blocks for large t while remain-
ing non-zero, in general. In this case, the matrix ζ(t) will have
sub-blocks that grow asymptotically with t and ones that approach
constants, i.e., a mixture between the two cases described above
that are already present in the single-variable TNM model. As dis-
cussed below, this situation arises, for example, in the kinetic arrest
of a dipolar hard-core fluid, where translational degrees of freedom
display kinetic arrest, while the rotational degrees of freedom can
remain ergodic and, thus, equilibrate. Other systems where such par-
tial equilibration is known are mixtures of very disparate particles.
The partial equilibration, then, manifests as a subset of material-time
eigenvalues that remain stuck at finite values and a separate subset
that grows indefinitely with physical time.

III. THE TNM MODEL AND THE NE-SCGLE THEORY
FOR SIMPLE LIQUIDS

Section II dealt with the TNM model of aging, viewed as the
phenomenological manifestation of the universal laws of irreversible
thermodynamics. In this section, we now shift our perspective to that
of the NE-SCGLE theory. We will focus, first of all, on the identifica-
tion of the functions b(t) and u(t) appearing in Eqs. (5) and (6) as,
respectively, the kinetic coefficient and intrinsic material time of the
variable S(k; t), as determined from the solution of the NE-SCGLE
system of equations.

A. The NE-SCGLEs
The main conceptual link between Tool’s Eq. (1) for a

generic property X(t) and the relaxation equation [Eq. (5)] for the

structure factor S(k; t) is the mobility function b(t)whose time inte-
gral u(t) = ∫

t
0 b(t′)dt′ is an intrinsic material time. Recall that, in

essence, the mobility b(t) is the long-time self-diffusion coefficient
and, hence, plays the role of the kinetic coefficient of this particu-
lar problem. Thus, in the context of the NE-SCGLE theory, it is a
state function, which means that it depends on t through its func-
tional dependence on S(k; t), a dependence that shall be denoted by
b(t) = b[S(t)].

It has widely been recognized that the static structure factor is a
“master property” of structural relaxation in the sense that—at least
within the usual mean-field description of the glass transition as pro-
posed by MCT or SCGLE—S(k) governs the long-time dynamics.
Extending this notion to the non-equilibrium aging dynamics, we
consider the kinetic coefficients in the TNM-like models to be func-
tionals of S(k; t). In particular, within the NE-SCGLE, relaxation
equations to determine b[S(t)] have been derived as a straightfor-
ward extension of the equilibrium SCGLE theory; a similar program
could be carried out on the basis of MCT. In essence, the qualita-
tive description given by both theories concerning the asymptotic
structural-relaxation dynamics for long times will be identical.49

Within the NE-SCGLE, the mobility b(t) is expressed through
a generalized friction kernel,

b(t) = [1 + ∫
∞

0
dτΔζ∗(τ; t)]

−1
. (18)

For the t-evolving and τ-dependent friction kernel Δζ∗(τ; t), the
following approximate expression is derived:29

Δζ∗(τ; t) =
D0

24π3n ∫
dk k2

[
S(k; t) − 1

S(k; t)
]

2

F(k, τ; t)FS(k, τ; t), (19)

where F(k, τ; t) ≡ N−1
⟨δn(k, t + τ)δn(−k, t)⟩ is the non-

equilibrium collective intermediate scattering function (ISF), whose
self -part, FS(k, τ; t), is defined as FS(k, τ; t) ≡ ⟨exp[ik ⋅ ΔrT(t, τ)]⟩,
with ΔrT(t, τ) ≡ [rT(t + τ) − rT(t)] being the displacement of a
tracer particle.

These equations are complemented with the corresponding
memory-function equations for the ISFs F(k, τ; t) and FS(k, τ; t),
written approximately in terms of their Laplace transforms (LTs),
F(k, z; t) and FS(k, z; t), as

F(k, z; t) =
S(k; t)

z + k2D0S−1(k;t)
1+λ(k) Δζ∗(z;t)

(20)

and

FS(k, z; t) =
1

z + k2D0

1+λ(k) Δζ∗(z;t)

, (21)

where λ(k) ≡ 1/[1 + (k/kc)
2
] and kc is an empirically determined

parameter.31

Equations (18)–(21) constitute a closed system of equations
that summarizes the NE-SCGLE theory, together with Eq. (5). They
determine the kinetic coefficient b(t) as a (rather involved) func-
tional b(t) = b[S(t)] of the non-equilibrium static structure factor
S(k; t) and, thus, constitute a kinetic equation of state associ-
ated with the variable S(k; t). Once the thermodynamic input
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E(k; n ( f ); T( f )
) has been determined, then the solution of these

equations simultaneously yields predictions for S(k; t) and for the
dynamic properties b(t), Δζ∗(τ; t), F(k, τ; t), and FS(k, τ; t).

B. Illustrative concrete calculation of the intrinsic
material time

The previous concepts are better illustrated by means of a con-
crete example involving the solution of the NE-SCGLEs. Despite
their seemingly complex appearance and non-linear character, the
mathematical features of Eq. (5)—and particularly Eq. (8)—render
their numerical solution relatively manageable. The reader is
referred to Ref. 30 for a thorough and detailed explanation of the
numerical methods involved and to Ref. 50 for access to a code
with the corresponding computational program. Here, we only illus-
trate the results for the glass-forming model liquid also studied in
Ref. 30, which consists of N identical spherical particles interacting
through short-ranged and purely repulsive interactions. We refer to
the Weeks–Chandler–Andersen (WCA) model,51 whose pair poten-
tial U(r) vanishes for r larger than the distance σ of soft contact, but
which for r ≤ σ is given by

U(r) = ϵ[(
σ
r
)

12
− 2(

σ
r
)

6
+ 1]. (22)

The state space of this system is spanned by the reduced num-
ber density n∗ ≡ nσ3 and the reduced temperature T∗ ≡ kBT/ϵ,
here denoted simply as n and T, so that the volume fraction is
ϕ = πn/6. For the determination of the thermodynamic property
E(k; n ( f ), T( f )

) entering in Eq. (5), we employ the same approxima-
tion as in Ref. 30 based on the Percus–Yevick/Verlet–Weis (PY/VW)
approximation52–54 for the hard-sphere liquid with an effective
hard-sphere diameter σHS(T) determined by the blip function
method.55

The solution of the NE-SCGLEs describes the evolution of the
properties S(k; t), b(t), Δζ∗(τ; t), F(k, τ; t), and FS(k, τ; t) for
times t > 0 after the system, initially at equilibrium at tempera-
ture T(i) and volume fraction ϕ, is instantaneously and isochorically
quenched (at t = 0) to a final temperature T( f ). Here, however, we
shall focus only on the behavior of the mobility function b(t) and on
its integral u(t), the intrinsic material time of the variable S(k; t).
As discussed in Ref. 30, the mobility function actually depends on
both the initial and final temperatures, T(i) and T( f ), and on the
volume fraction ϕ of the quench, b(t) = b(t; ϕ, T(i), T( f )

). Its long-
time asymptotic limit ba(ϕ, T( f )

) ≡ b(t →∞; ϕ, T(i), T( f )
), however,

is independent of T(i) and serves to identify two qualitatively differ-
ent scenarios predicted by the NE-SCGLE theory for the relaxation
of the system after quenching.

The two scenarios are (i) equilibration, for which ba(ϕ, T( f )
)

is identical to its finite and positive equilibrium value, ba(ϕ, T( f )
)

= beq
(ϕ, T( f )

) > 0, thus defining a condition to predict whether the
system would be able to reach a new equilibrium state, and (ii)
aging, where ba(ϕ, T( f )

) vanishes, and hence, the system is predicted
to age endlessly. As illustrated in Fig. 1(a), using this criterion, the
state space (ϕ, T) of the WCA system can be divided in two regions
delimited by the dynamic arrest (solid) line T = Tc(ϕ), above which
the system will equilibrate (ergodic region) and below which it will

become arrested (non-ergodic or glass region). Let us mention in
passing that full kinetic arrest at Tc is a mean-field simplification,
as is well understood in the context of both MCT and SCGLE. For
the present qualitative discussion, we do not consider additional
relaxation modes that might be active in the idealized glass.

In the inset of Fig. 1(a), we plot the NE-SCGLE results for
the asymptotic value ba(ϕ, T( f )

) as a function of T( f ) along the
isochore ϕ = 0.66. These results determine that, at this isochore,
the dynamic arrest temperature is Tc(ϕ = 0.66) ≈ 0.0915. At Tc(ϕ),
the kinetic parameter ba(ϕ, T) passes continuously from its vanish-
ing value below to its equilibrium non-zero value beq

(ϕ, T) above.
As also illustrated in the inset of Fig. 1(a), when T( f ) approaches
Tc from above, beq

(ϕ, T) vanishes as beq
(ϕ, T) ∼ (T − Tc(ϕ))μ with

exponent μ = 2.2.
Figure 1(a) also shows the illustrative isochore ϕ = 0.66 and

indicates with two downward arrows two representative isochoric
quenches along this isochore. Both quenches start at the same ini-
tial temperature, T(i)

= 0.04, but end at different final temperatures
T( f ). The shallower quench (T( f )

= 0.2 > Tc) represents a typical
equilibration process, whereas the deeper quench (T = 0.07 < Tc)

is meant to illustrate a process of dynamic arrest. In Figs. 1(b) and
1(c), we plot the full non-equilibrium evolution of, respectively, the
kinetic parameter b(t; ϕ, T) (in terms of its inverse) and the intrin-
sic material time u(t; ϕ, T( f )

) as a function of the waiting time t,
indicating with the thick solid and thick dashed lines these two illus-
trative quenches of Fig. 1(a). Figures 1(b) and 1(c) also include other
similar quenches (thinner lines) to emphasize the crossover from the
equilibration regime [solid lines, T( f )

> Tc(ϕ)] to the aging regime
[dashed lines, T( f )

< Tc(ϕ)]. The thick dotted line corresponds to a
quench to the critical temperature Tc(ϕ) ≈ 0.0915.

These results exhibit some relevant predictions of the
NE-SCGLE theory whose detailed analysis, however, lies outside
the scope of this article. Instead, we refer the reader to Ref. 30
for a detailed analysis of results analogous to those summarized in
Fig. 1(b), but in which the various lines correspond to quenches
with the same initial and final temperatures (Ti = 0.1 and T = 0),
along different isochores. Here, we only highlight the predicted
existence of the two regimes: equilibration for quenches with
T( f )
> Tc(ϕ) [solid curves in Figs. 1(b) and 1(c)] and aging for

T( f )
< Tc(ϕ) (dashed curves). In the equilibration regime, we also

note that b−1
(t; ϕ, T( f )

) reaches its equilibrium value 1/beq
(ϕ, T( f )

)

after an equilibration time-scale teq
(T( f )

), highlighted by the black
circles in Fig. 1(b). The equilibration time teq grows asymptotically
linearly with the relaxation time, teq

∼ 1/beq; both quantities, further-
more, increase strongly and eventually diverge as T( f ) approaches
the critical value Tc from above.

Figure 1(c) displays the corresponding evolution of the intrinsic
material time u(t; ϕ, T( f )

) ≡ ∫
t

0 b(t′; ϕ, T( f )
)dt′. One observes that

u(t) exhibits a short-time behavior given by u(t) ≈ bi × t, which
is determined by the initial condition bi ≡ beq

(ϕ, T(i)
). At longer

times, u(t) shows a crossover that can be easily understood in
terms of the long-time behavior of b(t). For T( f )

> Tc, for instance,
the long-time limit of u(t) would be approximately given by u(t)
≈ A + beq

(ϕ, T( f )
)t, where A ≈ ∫

teq

0 [b(t
′
) − ba]dt′ and teq

(T( f )
) is

the corresponding equilibration time-scale. Hence, the material time
u(t) continues to grow as a linear function of time when the system
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FIG. 1. (a) Dynamic arrest diagram of the WCA model in the plane (ϕ, T). The vertical downward arrows represent two isochoric quenches starting from the same
equilibrium state (ϕ(i) = 0.66, T (i) = 0.25) and ending at distinct final temperatures T ( f ) = 0.2 (equilibration, solid arrow) and T ( f ) = 0.06 (aging, dashed arrow). The solid
line is the dynamic arrest line separating ergodic states [ba(ϕ, T) > 0] from glassy states [ba(ϕ, T) = 0]. Inset: long-time asymptotic mobility ba(ϕ = 0.66, T ( f )) as a
function of the final quench temperature; Tc(ϕ = 0.66) ≈ 0.0915 (vertical dashed line). (b) Inverse of the time-dependent mobility, b−1(t; ϕ = 0.66, T ( f )), for isochoric
quenches encompassing the two indicated in (a), illustrating the processes of equilibration [ba(ϕ, T) > 0, solid curves] and aging [ba(ϕ, T) = 0, dashed curves]. The dotted
line corresponds to a quench to the critical value Tc(ϕ = 0.66). (c) Corresponding evolution of the material intrinsic time u(t) = ∫ ∞0 b(t′)dt′ for the same sequence of
quenches shown in (b).

has reached equilibrium. For T( f )
< Tc, instead, b(t) → 0 as t →∞,

so u(t) reaches an arrested plateau value ua(ϕ, T( f )
) ≈ ∫

ta
0 b(t′)dt′,

with ta being the time scale required by b(t) to reach its asymp-
totic arrested value ba

= 0, which becomes shorter with decreasing
T( f ). The value ua depends on the specific quench and, hence, serves
as a nonequilibrium state parameter, augmenting the set of ther-
modynamic control variables that are needed to uniquely specify a
material.

C. Physically relevant functionals of S(k; t)
Let us mention in passing that the NE-SCGLE, in the spirit

of a mean-field theory of the glass transition, expresses a num-
ber of physically relevant properties as functionals of S(k; t) so
that these can, in principle, be easily evaluated on the basis of the
results discussed above. Examples include the internal energy E(t)
and the pressure p(t) of a simple liquid with only pair interactions
whose configurational contributions ΔE(t) and Δp(t) are given,
respectively, by the so-called “energy” and “pressure” equations,

ΔE(t)/N =
n
2 ∫

u(r)g(r; t)dr (23)

and

Δp(t) = −
n2

6 ∫
r(

du(r)
dr
)g(r; t)dr. (24)

In these equations, the non-equilibrium radial distribution func-
tion g(r; t) can be related with S(k; t) just as it is typically done
in equilibrium conditions, i.e., [S(k; t) − 1]/n is the Fourier trans-
form of [g(r; t) − 1]. Remarkably, these relationships, which are
well known from equilibrium statistical physics, can be shown to also
hold under non-equilibrium conditions by following their standard
derivation,48,55 starting from the definition of g(r; t) as a statistical
average, but avoiding the use of the canonical (or any other equilib-
rium) ensemble. The discussion of these aspects is beyond the scope
of the present contribution and will be reported elsewhere.

Similarly, many other relevant dynamical, transport, and rhe-
ological properties may be written at least approximately in terms
of S(k; t) or of the dynamical scattering functions, which through
Eqs. (18)–(21) again depend on S(k; t). A simple example is
provided by the mean squared displacement W(τ; t) ≡ ⟨(r(t + τ)
− r(t))2

⟩/6, which may be written within the NE-SCGLE in terms of
the friction function Δζ∗(τ; t) through the following exact equation:

W(τ; t) = D0τ − ∫
τ

0
Δζ∗(τ − τ′; t)W(τ′; t)dτ′. (25)

An equally important example is provided by the non-
equilibrium rheological or viscoelastic properties of the system,
which may be represented by the complex-valued dynamic shear
modulus G(ω; t) or by the dynamic shear viscosity η(ω; t). Either of
these properties determines the macroscopic stress induced in a vis-
coelastic liquid upon the application of a low-amplitude oscillatory
shear strain of frequency ω.56 These two properties are related by
G(ω; t) = iωη(ω; t). An approximate determination of these prop-
erties may be provided by the non-equilibrium Stokes–Einstein rela-
tion,57 ζ(ω; t) ≈ 3πσ × η(ω; t), where ζ(ω; t) is the Fourier–Laplace
transform of ζ(τ; t) ≡ ζ0[2δ(t) + Δζ∗(τ; t)], with ζ0 being the
short-time friction coefficient ζ0 ≡ kBT/D0. Thus, η(ω; t) may be
approximated by

η(ω; t) ≈ η0[1 + Δζ∗(ω; t)], (26)

where η0 ≡ ζ0/3πσ is the short-time (or infinite frequency) viscosity.
In its zero-frequency limit, this equation leads, using the definition
of b(t) in Eq. (18), to the approximate identification of the non-
equilibrium static viscosity η(t) ≡ η(ω = 0; t) with the inverse of
the mobility function b(t), η(t) ≈ η0/b(t). This means that the non-
equilibrium linear viscosity η(t) is also expected to exhibit the same
qualitative behavior as the results for b−1

(t; ϕ, T) in Fig. 1(b), which
can also, then, be read as the predicted scaled viscosity η(t; ϕ, T)/η0.
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IV. THE TNM MODEL FOR SYSTEMS WITH
ROTATIONAL–TRANSLATIONAL DYNAMIC COUPLING

The simple glass-forming model liquid discussed in Sec. III B,
formed by identical spherical particles, is, of course, an idealiza-
tion. It allows us, however, to illustrate important features of the
NE-SCGLE description of aging when a single relaxation mecha-
nism is governed by one time-evolving relaxation time. A more
interesting situation arises in systems where multiple relaxation
mechanisms are active. This is the case, for instance, in dense and
highly asymmetric colloidal mixtures of hard spheres58 and also in
suspensions where the pair interactions between colloids depend on
particle’s orientations.59–61 An interesting question that arises in this
context, thus, is if the application of the NE-SCGLE theory to a sim-
ple model that incorporates, for example, rotational–translational
dynamical coupling (or, alternatively, coupling in the dynamics of
multiple species) could also serve to extend TNM’s model of aging
to such more complex conditions.

With this idea in mind, in this section, we shall focus on the
application of the NE-SCGLE framework to the description of aging
in a model system whose interparticle interaction is not radially sym-
metric. We refer to a dipolar hard-sphere (DHS) fluid,55 formed
by N axially symmetric identical particles in a volume V , interact-
ing through a hard sphere repulsion of diameter σ, which shall be
denoted as UHS(r12), plus a dipole–dipole interaction so that the
total pair potential reads

U(r1, μ̂1; r2, μ̂2) = UHS(r12) + (μ2
/r3

12)D(r̂12, μ̂1, μ̂2), (27)

where r1 and r2 are vectors describing the positions of the parti-
cles, r12 ≡ (r2 − r1), r12 = ∣r12∣, and r̂12 = r12/r12 and μ̂1 and μ̂2 are
unit vectors indicating the particles’ orientations so that the dipo-
lar tensor D(r̂12, μ̂1, μ̂2) ≡ [μ̂1 ⋅ μ̂2 − 3(μ̂1 ⋅ r̂12)(μ̂2 ⋅ r̂12)] contains all
the orientational features of the interaction. A detailed characteriza-
tion of this system has been provided recently in the context of the
NE-SCGLE theory.62 Here, we only bring together some of the most
important elements in the context of our present discussion.

A. Non-spherical NE-SCGLE theory
The non-spherical extension of the NE-SCGLE theory was

formulated in Refs. 63 and 64 in terms of a set of equations describ-
ing the non-equilibrium evolution of the structural and dynamical
properties of a system represented by Eq. (27) and has been system-
atically employed62 to understand the dynamically arrested states
already detected in extensive molecular dynamics (MD) simulations
of this model.65,66 We summarize the relevant ingredients of the
non-spherical version of the NE-SCGLE theory in the Appendix.

Similar to the spherical case discussed previously, the most
central equation of the extended NE-SCGLE describes the time-
evolution of the non-equilibrium structure factor, which for
liquids involving non-spherical interactions can be defined as
S(k, μ̂; k′, μ̂ ′; t) ≡ ⟨δn(k, μ̂; t) δn∗(k′, μ̂ ′; t)⟩. Here, δn(k, μ̂; t) is the
Fourier transform of the fluctuation in the local number density
n(r, μ̂; t) ≡ N−1/2

∑
N
a=1δ(r − ra(t))δ(μ̂ − μ̂a(t)) of particles at the

position r and with orientation μ̂ at time t.67 In practice, however,
one focuses on the coefficients of the spherical harmonic expansion
of n(k, μ̂; t),63,65–68 commonly referred to as tensorial density modes
and denoted as n̂lm(k, t) [see Eq. (A1)]. These coefficients, in turn,

allow us to define the corresponding projections of S(k, μ̂; k′, μ̂ ′; t),
namely,65,66 Slm:l′m′(k, k′, t) ≡ ⟨n̂lm(k; t)n̂∗l′m′(k

′; t)⟩. From symme-
try considerations and within well-defined approximations,62 only a
finite subset of its isotropic and homogeneous diagonal components,
denoted as Slm(k, t) ≡ Slm:lm(k,−k, t), are involved in the central
NE-SCGLE, which reads64

∂Slm(k; t)
∂t

= −2[k2DT
0 bT(t) + l(l + 1)DR

0 bR(t)] n f E ( f )
lm (k)

× [Slm(k; t) − 1/n ( f )E ( f )
lm (k)]. (28)

Just as its spherically symmetric counterpart, Eq. (5), this equa-
tion describes the non-equilibrium isochoric response of the DHS
system to an instantaneous quench at t = 0 from an arbitrary initial
temperature T(i) to a final value T( f ), while the system is constrained
to remain spatially homogeneous and isotropic, with fixed bulk
number density n = N/V . Alternatively, it also describes the isother-
mal response after an instantaneous compression from an initial
volume fraction ϕ(i) to a final value ϕ( f ).

In Eq. (28), DT
0 and DR

0 are, respectively, the translational and
rotational free-diffusion coefficients of the constituent dipolar par-
ticles. The functions E ( f )

lm (k), on the other hand, are spherical
harmonic projections of the second functional derivative of the free
energy with respect to the local number density n(r, μ̂), evaluated
at the final state point of a quench, i.e., E ( f )

lm (k) ≡ Elm(k; n( f ), T( f )
)

(see Subsection 2 of the Appendix). As mentioned before, this intrin-
sically thermodynamic property is an externally provided input for
the theory, which, for the DHS model, can be determined following
the steps outlined in Refs. 62 and 66. The other relevant elements
appearing in Eq. (28) are the time-dependent translational and
rotational mobility functions bT(t) and bR(t). They are calculated
with the non-spherical extension of the NE-SCGLE theory summa-
rized in Eqs. (A4)–(A9). We highlight in the following the physical
notions underlying the extended Tool–Narayanaswamy–Moynihan
model suggested by the non-equilibrium evolution of the tensorial
components Slm(k; t) in Eq. (28).

B. The rotational–translational
Tool–Narayanaswamy–Moynihan model

One simple manner to identify an extended TNM model,
inspired in the NE-SCGLE theory for fluids with coupled rotational
and translational dynamics, is again based on the recognition of the
mathematical structure of Eq. (28), which has exactly the same struc-
ture of the generic relaxation equation [Eq. (1)] postulated by Tool,
namely,

∂Slm(k; t)
∂t

= −
1

τlm(k, t)
[Slm(k; t) − Slm(k; t →∞)], (29)

with the relaxation time τlm(t) given by

1
τlm(t)

≡ 2[k2DT
0 bT(t) + l(l + 1)DR

0 bR(t)]n ( f )E ( f )
lm (k), (30)

which can also be written as

1
τlm(t)

≡ αlm(k)bT(t) + βlm(k)bR(t), (31)
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with αlm(k) ≡ 2k2DT
0 n ( f )Elm(k; Tf ) and βlm(k) ≡ 2l(l + 1)DR

0 n ( f )

Elm(k; Tf ). In fact, Eq. (29) corresponds to the multi-variable exten-
sion of Tool’s model, Eq. (14), with a relaxation-rate matrix that is
diagonal in (lm), (l′m′).

This immediately allows us to identify the corresponding
TNM material time ζ lm(k; t) for the relaxation of each tensorial
component Slm(k; t) as

ζlm(k; t) ≡ ∫
t

0

dt′

τlm(t′)
= αlm(k)uT(t) + βlm(k)uR(t), (32)

i.e., a linear combination of the translational intrinsic material time
and a corresponding rotational intrinsic material time,

uT(t) ≡ ∫
t

0
bT(t

′
)dt′, (33)

uR(t) ≡ ∫
t

0
bR(t′)dt′. (34)

It is also straightforward to show that the solution of Eq. (29)
can be written as Slm(k; t) = S∗lm(k; uT(t), uR(t)) with the function
S∗lm(k; uT , uR) defined as

S∗lm(k; uT , uR) = {nE ( f )
lm (k)}

−1
+ [S(i)lm (k) − {nE

( f )
lm (k)}

−1
]

× e−2αlm(k)uT e−2βlm(k)uR , (35)

where S(i)lm (k) ≡ Slm(k; t = 0). Note that, in the absence of non-
spherical interactions, the only relevant projections reduce to (l = 0,
m = 0)-projections, so βlm(k) = 0 and Eqs. (33)–(35) reduce
to Eqs. (6)–(8) for a mono-component system of spherical
particles.

C. Equilibrium and non-equilibrium stationary
solutions and arrested states diagram

Before considering specific results, let us highlight that Eq. (28)
already reveals remarkable features regarding the possible non-
equilibrium states of the DHS model system defined in Eq. (27) (and
of any other that can be generically represented by this equation).
The functional dependence of both bT(t) and bR(t) on the spheri-
cal harmonic projections Slm(k; t) [see Eqs. (A4)–(A7)] introduces
strong non-linearities and, more crucially, implies the existence of
two kinds of stationary solutions where ∂Slm(k, t)/∂t = 0, which are
both fundamentally different from equilibrium states.

As mentioned before, we can distinguish ordinary thermo-
dynamic equilibrium conditions, where stationarity is attained
because the factor [Slm(k; t) − 1/nE ( f )

lm (k)] on the right-hand side
of Eq. (28) vanishes, i.e., because all the spherical harmonic com-
ponents Slm(k; t) are able to reach their corresponding thermo-
dynamic equilibrium values, S(eq)

lm (k) = [nE
( f )
lm (k)]

−1, at a finite t.
This corresponds to quenches to states where both mobilities bT

(t)
and bR

(t) attain finite long-time values limt→∞bT(t) ≡ beq
T > 0 and

limt→∞bR(t) ≡ beq
R > 0.

Other categories of stationary solutions of Eq. (28) are those
for which the asymptotic value of the kinetic factor τ−1

lm (k, t)
≡ αlm(k)bT(t) + βlm(k)bR(t) vanishes for t →∞. Due to the struc-
ture of Eq. (28), this condition can be fulfilled if either both bT(t)
and bR(t) vanish asymptotically or, for l = 0, only bT(t) vanishes
since βlm(k) ∝ l vanishes in this case. These two possibilities, in
fact, correspond to totally or partially arrested states of matter as
predicted by the NE-SCGLE and observed in extensive molecular
dynamics simulations:65 in the fully arrested state, both mobilities
vanish, while in mixed-glass states, rotational degrees of freedom
equilibrate, and thus, bR(t) never vanishes.

Thus, this simple analysis of the possible classes of station-
ary solutions of Eq. (28) already announces the possibility of only
two qualitatively distinct non-equilibrium amorphous states for the
DHS model. As just mentioned, the existence of these states has
been confirmed recently with the assistance of extensive MD sim-
ulations.65 In fact, the use of the asymptotic long time solutions of
the non-spherical NE-SCGLEs (see Subsection 4 of the Appendix)
allows for the development of the corresponding arrested state dia-
gram of the DHS fluid shown in Fig. 2(a). This diagram identifies
the region in the (ϕ, T) plane (with T ≡ kBTσ3

/μ2) corresponding to
ergodic states, as well as two regions corresponding to the two afore-
mentioned dynamically arrested states, and the boundaries between
these regions. The different arrows in Fig. 1(a) illustrate two qual-
itatively distinct processes that could be used to bring the DHS
system to each of the two arrested states, namely, isochoric quenches
toward a fully arrested state (vertical arrows) and isothermal com-
pressions toward partially arrested states (horizontal arrows). As in
Fig. 1, solid arrows correspond to equilibration processes in which
the final states also lie in the ergodic region (Q1 and C1), whereas the
dotted arrows illustrate processes toward dynamically arrest states
(Q2 and C2).

The full solution of the NE-SCGLE (outlined in Subsection 3
of the Appendix) provides the isochoric (or isothermal) evolution
for t > 0 of the physical properties involved, for example, the projec-
tions Slm(k; t), the corresponding dynamic correlations Flm(k, τ; t),
and FS

lm(k, τ; t), and also the friction memory kernels Δζ∗T (τ; t) and
Δζ∗R (τ; t). The detailed analysis of such of properties, however, is
beyond the scope of this contribution and will be addressed else-
where. Here, we only focus on the non-equilibrium behavior of the
mobility functions bT(t) and bR(t), which, according to our pre-
vious discussion, define the kinetic coefficients τ−1

lm (t), and also on
the behavior of the corresponding intrinsic material times uT(t) and
uR(t), which allow us to identify the corresponding TNM material
time ζ lm(k, t) of each projection Slm(k; t).

Figure 2(b) displays the evolution of the two relaxation times
b−1

T (t) (upper panel) and b−1
R (t) (lower panel) for the isochoric

quenches Q1 (thick solid lines) and Q2 (thick dashed lines) shown
in Fig. 2(a), both starting from the same initial equilibrium state
(ϕ = 0.4, T(i)

= 1) and ending at distinct final state points (ϕ = 0.4,
T( f )
= 0.3) and (ϕ = 0.4, T(i)

= 0.05), respectively. Thus, these pro-
cesses consider state points that lie above and below the transition
temperature Tc(ϕ = 0.4) ≈ 0.075. In Fig. 2(b), we also include results
for other similar quenches in order to highlight the crossover from
equilibration (solid lines, T( f )

> Tc) to aging (dashed lines, T( f )

≤ Tc). One notes first that, qualitatively, both b−1
T (t) and b−1

R (t) dis-
play the same behavior, i.e., both become increasingly larger with
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FIG. 2. (a) Dynamic arrest diagram in the plane (ϕ, T∗) predicted by the NE-SCGLE theory for the DHS fluid [Eq. (27)]. The solid line separates the regions of ergodic and
fully arrested states, where both the translational and orientational dynamics undergo dynamical arrest simultaneously. The vertical dashed-dotted line separates ergodic
from partially arrested states, where only the translational dynamics undergoes a glass transition, while the orientational dynamics remains ergodic. Vertical and horizontal
arrows represent, respectively, isochoric quenches (Q1, Q2) and isothermal compressions (C1, C2), starting from the same equilibrium state (ϕ(i) = 0.40, T (i) = 1) and
ending at distinct final states located either in the ergodic region (solid arrows, Q1 and C1) or inside an arrested one (dashed arrows, Q2 and C2). (b) Inverse of the
time-dependent mobilities b−1

T ,R(t; ϕ( f), T( f)) for the isochoric quenches along Q1 and Q2 (and endpoints in between), illustrating processes of equilibration [ba(ϕ, T) > 0,
solid curves] and aging [ba(ϕ, T) = 0, dashed curves]. The dotted line corresponds to a quench to Tc(ϕ = 0.66) ≈ 0.07845. (c) Inverse mobilities for processes C1 and
C2 and intermediate densities. The inset provides a zoomed-in view.

the decreasing final temperature and both reach their corresponding
equilibrium values, 1/beq

T (t) and 1/beq
R (t), at a very similar time-

scale, which increases with T( f ). As emphasized by the black circles
in the upper and lower panels, the equilibration times teq

T (T
( f )
) and

teq
R (T

( f )
) follow a rather similar trend, increasing asymptotically

linearly with the equilibration time, 1/beq
T,R(ϕ, T( f )

) ∼ teq.
For quenches at-or-below Tc, instead, one observes an

unbounded increase in both b−1
T (t) and b−1

R (t), thus suggesting
their simultaneous divergence as t →∞. This indicates a grad-
ual and simultaneous decrease in the translational and rotational
diffusion (i.e., an increase in the viscosity of the system) and
describes, thus, the formation of a fully arrested state in which
both the orientational and translational dynamics slow down and
undergo aging during the endless process of reaching a glassy
state. Let us also mention that an analogous behavior is found
for the two α-relaxation times, τ(α)T (k, t) and τ(α)R (k, t), associ-
ated with the functions FS

00(k, t) and FS
10(k, t), which describe

the relaxation of, respectively, the translational and orientational
dynamics.

These features are to be contrasted against the behavior that
is found for the mobility functions upon isothermal compressions
(such as C1 and C2) toward the region of partially arrested states.
As shown in Fig. 2(c), for these processes, one observes a clear
decoupling in both mobilities: b−1

T (t) again shows a crossover from
equilibration (for compressions with final volume fraction ϕ( f )

< ϕc = 0.582) to an aging regime (ϕ( f )
≥ ϕc = 0.582), whereas b−1

R (t)
does not change appreciably in the whole volume fraction regime
explored and, in fact, reaches an equilibrium value at a remark-
ably small time-scale. This scenario describes, thus, the formation
of a partially arrested state, in which translational diffusion slows
down and ages as in the process of formation of a hard-sphere glass,
while the orientational dynamics of the dipolar particles remains
ergodic, but in a disordered and only slowly evolving configuration
of positions.

D. Time evolution of the intrinsic material times
and physical trajectories on the plane (uT ,uR )

It is also illustrative to consider the “inverse” functions of the
intrinsic material times in Eqs. (33) and (34), namely,

t(uT , uR) = ∫

uT

0

du′T
b∗T(u

′
T , u′R)

(36)

and

t(uT , uR) = ∫

uR

0

du′R
b∗R(u

′
T , u′R)

, (37)

where b∗T(uT , uR) ≡ bT(t(uT , uR)) and b∗R(uT , uR) ≡ bR(t(uT , uR)).
One requires, of course, that these two expressions yield the same
value of the actual (i.e., real) waiting time, t, so that the differential
form

dt =
duT

b∗T(uT , uR)
=

duR

b∗R(uT , uR)
(38)

must be satisfied along a (real) physical trajectory [uT(t), uR(t)] in
the (uT , uR)-plane.

Thus, for each process considered (quench or compression),
the system traces a corresponding physical trajectory of points
[uT(t), uR(t)] on the material-time plane (uT , uR) as the waiting
time evolves from t = 0 toward t →∞. Some general features of
these trajectories can be implied from the inspection of the possible
long-time limits, ba

T ≡ limt→∞bT(t) and ba
R ≡ limt→∞bR(t).

For instance, if a given protocol drives the system to an arbi-
trary equilibrium state (e.g., Q1 and C1), then both bT(t) and bR(t)
eventually reach finite equilibrium values beq

T > 0 and beq
R > 0 within

a finite waiting time window. Then, Eqs. (33) and (34) imply that
both material times will evolve without bound as t runs from 0
to infinity so that the physical trajectory will start at the origin,
(uT , uR) = (0, 0), and will tend to (uT , uR) = (∞,∞). At asymptot-
ically long times, the physical trajectory in the (uT , uR) plane will
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FIG. 3. (a) Schematic representation of two isochoric quenches above (Q1) and below (Q2) the critical value Tc(ϕ = 0.4) ≈ 0.078 45 for the transition to fully arrested
states. (b) and (c) Corresponding evolution of the intrinsic material times and the physical trajectories in the (uT , uR) plane. (d) Schematic representation of two isothermal
compressions below (C1) and above (C2) the critical value ϕc(T = 1) ≈ 0.582 for the transition to a partially arrested state. (e) and (f) Corresponding evolution of the
intrinsic material times and the physical trajectories in the (uT , uR) plane.

be a straight line with a prefactor that is determined by the spe-
cific quench. This is illustrated by the blue and purple solid lines in
Figs. 3(c) and 3(f).

If, instead, the protocol drives the system to a fully arrested
state (e.g., Q2), both asymptotic values ba

T and ba
R will be zero. In

this scenario, Eqs. (33) and (34) imply that the real trajectory starts
again at (uT , uR) = (0, 0) but now ends at a point (ua

T , ua
R), with

ua
T ≈ ∫

ta

0 bT t′dt′ and ua
R ≈ ∫

ta

0 bRt′dt′. This case is illustrated by the
dashed line in Fig. 3(c).

Finally, a third possibility is a partially arrested state where ba
T

vanishes, but ba
R attains an equilibrium value. In this case, uT(t)

becomes finite, while uR(t) increases without bound; see the dashed
line in Fig. 3(f).

V. CONCLUSIONS
We have discussed the concept of a material time in

the context of aging in glasses, i.e., of the slow evolution of
the physical properties of a system after a quench in control
parameters. In particular, we have shown how the empirical
Tool–Narayanaswamy–Moynihan model of aging can be seen as
arising from the mathematical structure of equations that is sug-
gested by the non-equilibrium extension of the self-consistent
Langevin equation theory, NE-SCGLE. A key concept in this iden-
tification is that of a kinetic state function. Specifically, the theory

suggests a structure where the relaxation rate of evolving observ-
ables during aging is expressed as a functional of the waiting-time
dependent static structure function.

The generic mathematical structure of the TNM relaxation
equation allows for two distinct stationary states: those correspond-
ing to equilibration, where upon a quench within the ergodic-liquid
state of a system, all relaxation rates remain non-vanishing, and
those corresponding to quenches into the (ideal) glassy state, where
the relaxation rates vanish. In the two cases, the material time evolves
distinctly: upon equilibration, the inner clock of the material evolves
asymptotically proportional to the physical time after the quench.
For arrested states, the material time attains a finite asymptotic
value.

More intriguingly, the extension of the NE-SCGLE to include
multiple relaxation modes—exemplified in the present contribution
through a model with distinct translational and rotational degrees
of freedom—highlights the possibility of a third kind of stationary
state, that of partial equilibration. Here, the aging process is charac-
terized by two material times: one of which attains a finite long-time
limit, while the other grows asymptotically proportionally with the
real waiting time.

In principle, this highlights that a “material time” can only
be defined with respect to a given observable, and not all observ-
ables need to follow the same internal clock; considering a set of
observables that undergo aging, a corresponding set of material
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times would, in principle, be obtained. However, the NE-SCGLE
theory encodes an interesting factorization property: for example,
when considering the length-scale dependent relaxation of density
fluctuations, the information on the length scale can be absorbed
into a wave-number dependent prefactor. We expect, thus, that the
aging process of a glass former, in general, is controlled by a (small)
set of intrinsic material times ui corresponding to structurally dis-
tinct relaxation channels—such as those connected to translational
and rotational degrees of freedom in a system with anisotropic
interactions or those related to different particle species in mix-
tures of very disparately sized particles. The final material properties
of a quenched glass are, thus, characterized by a vector ua of the
asymptotic values of these intrinsic material times (some compo-
nents possibly infinite in the case of partial equilibration), and the
aging process is represented as a one-dimensional curve in the space
spanned by the intrinsic material time components, parameterized
by the physical waiting time.

We expect that the fundamental and universal laws of irre-
versible thermodynamics and the microscopic perspective provided
by statistical mechanical theories of irreversible processes, such
as the NE-SCGLE theory, may be instrumental in extending the
descriptive power of the TNM model beyond its current limi-
tations. Similarly, the use of the NE-SCGLE formalism should
also enrich the discussion of other phenomenological concepts of
great practical and fundamental relevance, such as the concepts
of time–temperature superposition (TTS) and thermo-rheological
simplicity,43,44 and the notions of fictive temperature and effective
time.9 In the absence of fundamental principles that allow for the
identification of their microscopic origin, it has been difficult to
assess their validity and to establish a clear relationship between
them, with the concept of material clock. In this regard, it is impor-
tant to mention that the TTS scaling for equilibrium liquids is a
distinct prediction of mode-coupling theory3,70–72 (and hence, also
of the original equilibrium SCGLE theory49). These first-principles
equilibrium theories break down in the very high viscosity regime.
Future work will address the combination of the NE-SCGLE formal-
ism with extensions of MCT-like theories that account for the avoid-
ance of the ideal glass transition.73 This combination is expected
to open a route to extend equilibrium glass-transition theories to
the non-equilibrium regime and, hence, to provide a fundamental
basis of a non-equilibrium extension of the notion of TTS and of its
possible connection with the concept of a material clock.

At the same time, we should also expect that the success of
the TNM model and of the other useful phenomenological notions
referred to above will serve as a compelling motivation for the con-
ventional statistical mechanical theoretical methodologies to sur-
mount some of its own limitations, particularly those derived from
the difficulty in identifying the universal physical principles that gov-
ern the macroscopic evolution of matter during the non-equilibrium
process of amorphous solidification. In this regard, it will be inter-
esting to reconcile the present description of aging based on the
NE-SCGLE and linked to the TNM model, with more elaborate
approaches rooted in the non-equilibrium statistical physics of spin
glasses. The seminal work by Cugliandolo and Kurchan aside,74

most notably, the extension of MCT proposed by Latz75 offers a sep-
arate account of aging phenomena, which is less obviously recast
in the form of empirical models. We also leave such discussion for
future work.
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APPENDIX: NON-SPHERICAL NE-SCGLE THEORY

In this appendix, we summarize the equations that constitute
the extension of the NE-SCGLE theory for systems with non-
spherical interactions and provide a numerical procedure that allows
its solution. In addition, we briefly discuss the asymptotic long-time
limit of the NE-SCGLEs, which allow for the determination of the
dynamical arrest diagram of Fig. 2(a).

1. Fundamental equations
The extension of the NE-SCGLE to describe systems with

non-spherical interactions was carried out in Refs. 63 and 64. As
mentioned above, the core of the theory is Eq. (28), which describes
the non-equilibrium time evolution of the structural correlations
Slm(k, t) = ⟨n̂lm(k; t)n̂∗lm(−k; t)⟩, defined in terms of the spherical
harmonic projections, n̂lm(k; t), of the Fourier transform of the local
density, n(k, μ̂; t). More specifically, these coefficients are defined
as63,65–68

n̂lm(k, t) =

√
4π
N

il
∫

V
dr eik⋅r

∫ dμ̂ Y∗lm(μ̂) n(r, μ̂, t)

=

√
4π
N

il
∑

a
eik⋅ra(t) Y∗lm(μ̂a(t)). (A1)
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Besides the projections Slm(k, t), the NE-SCGLE also deals with
non-stationary two-time density correlation functions, also referred
to as intermediate scattering functions (ISFs), defined as64

Flm,l′m′(k, k′, τ; t) = ⟨n̂lm(k, t) n̂∗l′m′(k
′, t + τ)⟩

=
4π
N

il′−l
∑
ab
⟨ei[k⋅ra(t)−k′ ⋅rb(t+τ)]

× Y∗lm(μ̂a(t))Yl′m′(μ̂b(t + τ))⟩ (A2)

and

FS
lm,l′m′(k, k′, τ; t) =

4π
N

il′−l
∑

a
⟨ei[k⋅ra(t)−k′ ⋅ra(t+τ)]

× Y∗lm(μ̂a(t))Yl′m′(μ̂a(t + τ))⟩, (A3)

where τ denotes the correlation (delay) time. Note that the equal-
correlation-time values of the collective ISF of Eq. (A2) are also the
spherical harmonic components of the non-equilibrium SF at the
evolution time t, i.e., Flm;l′m′(k, k′, τ = 0; t) = Slm;l′m′(k, k′; t). The
dependence on the direction of the vectors k and k′ refers to the
possible presence of external fields that would break conditions of
global homogeneity and isotropy of space. Restricting to the case of
disordered states (i.e., excluding the possibility of non-isotropic and
non-uniform conditions, such as in crystalline solids), one might
assume that the only relevant components of these functions depend
on the magnitude of k and k′ with k′ = −k.

As discussed in Refs. 63–68, if all the orientations of par-
ticles, μ̂a, and of the wave vector, μ̂k = k/∣k∣, are described
in the so-called k-frame,65,66 one is left with correlation func-
tions of the form Fll′m(k, τ; t) ≡ Flm;l′m′(k, τ; t)δmm′ , FS

ll′m(k, τ; t)
≡ FS

lm;l′m′(k, τ; t)δmm′ , and Sll′m(k; t) ≡ Slm;l′m′(k; t)δmm′ . Further-
more, and on the basis of previous work for the specific case
of the DHS fluid,65,66 one might restrict to consider only diago-
nal (l = l′) components Flm(k, τ; t) ≡ Fll′m(k, τ; t)δll′ , FS

lm(k, τ; t)
≡ FS

ll′m(k, τ; t)δll′ , and Slm(k; t) ≡ Sll′m(k; t)δll′ .
Within these considerations, the NE-SCGLE theory is summa-

rized by a set of coupled evolution equations for the waiting-time
dependent functions involved, whose solution for t > 0 describes the
irreversible evolution of the structural and dynamical properties of
an instantaneously quenched DHS liquid. As already mentioned, the
most important of such equations is Eq. (28). The mobility func-
tions bT

(t) and bR
(t) appearing in this equation are state functions,

i.e., they are also functionals of the projections Slm(k; t). The exact
functional dependence is, in general, unknown, but providing an
approximate proposal for the functional dependence of bT

(t) and
bR
(t) on Slm(k; t) is precisely part of the core of the NE-SCGLE

approach. According to Ref. 64, these functions are defined as

bT
(t) = (1 + ∫

∞

0
dτ Δζ∗T (τ; t))

−1
(A4)

and

bR
(t) = (1 + ∫

∞

0
dτ Δζ∗R (τ; t))

−1
, (A5)

that is, in terms of the non-stationary τ-dependent friction func-
tions Δζ∗T (τ; t) and Δζ∗R (τ; t), for which approximate expressions are
provided,29,64,69 namely,

Δζ∗T (τ; t) =
1
3

DT
0

(2π)3n ∫
dk k2

∑
l
(2l + 1)

× [(Sl0(k; t) − 1)S−1
l0 (k; t)]

2
FS

l0(k, τ; t)Fl0(k, τ; t) (A6)

and

Δζ∗R (τ; t) =
1
4

DR
0

(2π)3n ∫
dk∑

l≥1
l(l + 1)(2l + 1)

× [(Sl0(k; t) − 1)S−1
l1 (k; t)]

2
FS

l1(k, τ; t)Fl1(k, τ; t). (A7)

These equations are finally coupled with time-evolution equa-
tions that can be obtained for Flm(k, τ; t) and FS

lm(k, τ; t), which
can be written in terms of their Laplace transforms Flm(k, z; t),
FS

lm(k, z; t), Δζ∗T (z; t), and Δζ∗R (z; t), as

Flm(k, z; t) =
Slm(k; t)

z + k2DT
0 S−1

lm (k;t)

1+Δζ∗T (z;t)λ(lm)
T (k;t)

+
l(l+1)DR

0 S−1
lm (k;t)

1+Δζ∗R (z;t)λ(lm)
R (k;t)

(A8)

and

FS
lm(k, z; t) =

1

z + k2DT
0

1+Δζ∗T (z;t)λ(lm)
T (k;t)

+
l(l+1)DR

0

1+Δζ∗R (z;t)λ(lm)
R (k;t)

. (A9)

The functions λ(lm)T (k; t) and λ(lm)R (k; t) are cutoff func-
tions defined, respectively, as λ(lm)T (k; t) = 1/[1 + (k/kc(t))2

] and
λ(lm)R (k; t) = 1, with kc(t) = α × kmax(t) and kmax(t) being the posi-
tion of the main peak of S00(k; t) and α = 1.305. This ensures
that, for radially symmetric interactions, one recovers the original
NE-SCGLE theory for liquids of soft and hard spheres (contained as
the case l = 0).

Provided that the fundamental thermodynamic inputs E ( f )
lm (k)

have been determined, Eq. (28) combined with Eqs. (A4)–(A9)
constitute a closed set of equations for the non-equilibrium prop-
erties Slm(k; t), bT

(t), bR
(t), Δζ∗T (τ; t), Δζ∗R (τ; t), Flm(k, τ; t),

and FS
lm(k, τ; t), whose self-consistent solution describes the non-

stationary and non-equilibrium structural relaxation of glass-
forming liquids formed by non-spherical particles.

2. Thermodynamic inputs E( f)
lm (k)

To solve the NE-SCGLEs, the thermodynamic functions
E ( f )

lm (k)must be externally determined. These functions derive from
the spherical harmonic expansion of64

E[r, μ̂; r′, μ̂ ′; n, T] ≡ (
δ2βF[n, T]

δn(r, μ̂)δn(r′, μ̂ ′)
), (A10)

which is the second functional derivative of the Helmholtz free
energy density functional F[n, T] (in units of the thermal energy
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kBT = 1/β) with respect to the local number density n(r, μ̂). In the
absence of external fields, F[n, T] can be written, in general, as
F[n, T] = Fid[n, T] + Fex[n, T], that is, as the sum of the ideal gas
free energy Fid[n, T] ≡ ∫ dr dμ̂ n(r, μ̂){ln[4πΛ3n(r, μ̂)] − 1} (with
Λ being the thermal wavelength48,55) plus the excess free energy,
Fex[n, T], arising from the interparticle interactions, which reads

βFex[n, T] = −∫ drdμ̂ dr′dμ̂ ′∫
1

0
dλ(1 − λ) c(2)

× [r, μ̂; r′, μ̂ ′; λn, T] n(r, μ̂)n(r′, μ̂ ′), (A11)

with c(2)[r, μ̂; r′, μ̂ ′; n, T] ≡ c(r, μ̂, μ̂ ′; n, T) being the two-particle
direct correlation function.55,67 Therefore,

E[r, μ̂; r′, μ̂ ′; n, T] = δ(r − r′)δ(μ̂ − μ̂ ′)/n(r, μ̂) − c(2)

× [r, μ̂; r′, μ̂′; n, T]. (A12)

To determine E ( f )
lm (k), we evaluate E[r, μ̂; r′, μ̂ ′; n, T] at the

uniform density n(r, μ̂) = n and temperature T(r, μ̂) = T of the final
state. The Fourier transformed spherical harmonics projections of
the resulting function E(r, μ̂; r′, μ̂ ′; n, T) read

Elm,l′m′(k; n, T) = δl,l′δm,m′/n − clm,l′m′(k; n, T), (A13)

with

clm,l′m′(k; n, T) = il−l′
∫ dr∫ dμ̂∫ dμ̂′ c(r, μ̂, μ̂ ′; n, T)

× eik⋅rY∗lm(μ̂)Yl′m′(μ̂
′
). (A14)

Just as it happens in the case of the structural and dynamic cor-
relation functions Slm(k; t), Flm(k, τ; t), and FS

lm(k, τ; t), the use of
the k-frame simplifies the determination of the spherical harmon-
ics projections in Eq. (A14), where one sticks only with projections
of the form cll′m(k; n, T) ≡ clm;l′m′(k; n, T)δmm′ . Hence, one can
employ one of the available approximations generated in the con-
text of the equilibrium theory of liquids for the determination of
the direct correlation function c(r, μ̂, μ̂ ′; n, T). As shown in Refs. 53,
55, 63, and 65–68, an appealing choice is the use of the so-called
mean spherical approximation (MSA) for the DHS fluid proposed
by Wertheim.53 Within this approximation, it is straightforward to
show that the functions cll′m(k; n, T) also become diagonal in l and
l′, so one deals only with projections of the form clm(k; n, T), thus
providing the diagonal elements of Elm,l′m′(k; n, T), namely,

Elm(k; n, T) = [1 − n clm(k; n, T)]/n. (A15)

3. Numerical solution of the NE-SCGLEs
To solve the NE-SCGLE system of differential equations in

Eqs. (A4)–(A9), we appeal to standard integration schemes once
the mobilities b∗T(ut , ur) and b∗R(ut , ur) have been determined. More
specifically, we can use Eq. (5) to evaluate Slm(k; t) at a dis-
crete sequence of waiting times t( j)

( j = 0, 1, 2, . . .) or, equivalently,
S∗lm(k; uT , uR) at the corresponding sequence of points (u( j)

T , u( j)
R )

in the (uT , uR) plane since for each waiting time t( j), Eqs. (33) and
(34) assign values u( j)

T = uT(t( j)
) and u( j)

R = uR(t( j)
) to the mate-

rial times uT and uR. In practice, we start by giving the initial value

S(i)lm (k) of Slm(k; t) as an input to Eqs. (A6)–(A9), whose solution
determines Δζ∗T (τ; t = 0) and Δζ∗R (τ; t = 0) and, through Eqs. (A4)
and (A5), also the initial values (b∗(0)T , b∗(0)R ) ≡ (bT(0), bR(0)) of
the sequence (b∗( j)

T , b∗( j)
R ) ≡ (bT(t( j)

), bR(t( j)
)). This is the j = 0

step of the evaluation of the sequence Slm(k; t( j)
), bT(t( j)

), and
bR(t( j)

) with ( j = 1, 2, . . .).
In general, at any subsequent step j > 0 corresponding to

a waiting time t( j)
> 0, we first input the value Slm(k; t( j)

) in
Eqs. (A4)–(A9), whose solution determines bT(t( j)

) and bR(t( j)
),

among all the other dynamic properties at time t( j) [or, equivalently,
at the point (u( j)

T , u( j)
R )]. The next step starts with the arbitrary

choice of a sufficiently small increment Δu( j)
T ≡ u(j+1)

T − u( j)
T . Since

Eq. (38) implies that Δt( j)
= Δu( j)

T /bT(t( j)
) = Δu( j)

R /bR(t(n)), this
choice also determines Δu( j)

R ≡ u(j+1)
R − u( j)

R and Δt( j)
≡ t( j+1)

− t( j),
thus defining also t( j+1) and the new point (u(j+1)

T , u(j+1)
R ) along

the (real) physical trajectory in the “material-time” plane (uT , uR).
The determination of (u(j+1)

T , u(j+1)
R ) together with Eq. (35) allows

us to evaluate S∗lm(k; u(j+1)
T , u(j+1)

R ), which we can also label as
Slm(k; t( j+1)

). This allows us to start the next step of the sequence
by now giving Slm(k; t( j+1)

) as the new input in Eqs. (A4)–(A9).

4. Asymptotic solutions of the NE-SCGLE:
a non-equilibrium route for the determination
of a dynamical arrest diagram

Under certain circumstances, one might be interested only
in describing generic features summarizing the overall physical
scenario for the distinct dynamical arrest transitions of the DHS
fluid [or of any other model system whose potential of interac-
tion can be described by means of Eq. (27)]. In fact, the similarity
between Eqs. (A6)–(A9) and its equilibrium counterpart [cf. Eqs.
(46)–(49) of Ref. 63] already suggests to consider the analysis of
the solutions S∗lm(k; uT , uR) and of all the other quantities involved
[bT
(t), bR

(t), Flm(k, τ; t), FS
lm(k, τ; t), Δζ∗T (t), Δζ∗R (t)] in the asymp-

totic long-τ regime, a routinely exercise in both MCT and SCGLE.49

As it happens, in terms of such analysis, both the equilibrium
SCGLE63 and the NE-SCGLE turn out to establish essentially the
same physical scenario for the case of DHS fluid if one uses the MSA.

To see this, one can consider the τ →∞ limit of Eqs. (A6)–
(A9), namely,

f lm(k; t) ≡ lim
τ→∞

Flm(k, τ; t)
Slm(k; t)

(A16)

and

f S
lm(k; t) ≡ lim

τ→∞
FS

lm(k, τ; t) (A17)

and

Δζ∗(∞)α (t) ≡ lim
τ→∞

Δζ∗α (τ; t), (A18)

with α = T, R, which we may refer to as the non-equilibrium exten-
sion of the so-called non-ergodicity parameters (NEPs).49 Rather
than labeling these t-dependent properties in terms of the (real)
waiting time, we might relabel them in terms of the material times
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(uT , uR) defined above. Then, the time evolution of the NEP along
the interval 0 < t < ∞ obviously will map onto the evolution of
the point u(t) ≡ (uT(t), uR(t)) along the physical trajectories just
introduced above in Sec. IV B.

It is not difficult to show that the NEPs defined in
Eqs. (A16)–(A18) are the solution of the following two equations:

1
γ∗T(u)

=
1

6π2n∫
∞

0
dk k4

∑
l
[2l + 1][1 − S∗−1

l0 (k; u)]
2

× S∗l0(k; u) f S
l0(k; u) f l0(k; u) (A19)

and

1
γ∗R(u)

=
1

16π2n∫
∞

0
dkk2
∑

l
2l[l + 1][2l + 1][S∗l0(k; u) − 1]2

× S∗−1
l1 (k; u) f S

l1(k; u) f l1(k; u), (A20)

involving the two “order parameters”

γ∗α(u) ≡
D0

α

Δζ∗(∞)α (u)
(α = T, R), (A21)

where

f ∗lm(k; u) ≡
[S∗lm(k; u)]λ(lm)T (k; u)λ(lm)R (k; u)

S∗lm(k; u)λ(lm)T (k; u)λ(lm)R (k; u) + k2γTλ(lm)R (k; u) + l(l + 1)γRλ(lm)T (k; u)
(A22)

and

f ∗S
lm(k; u) ≡

λ(lm)T (k; u)λ(lm)R (k; u)
λ(lm)T (k; u)λ(lm)R (k; u) + k2γTλ(lm)R (k; u) + l(l + 1)γRλ(lm)T (k; u)

. (A23)

Equations (A19)–(A23) complemented with Eq. (35) yield a
system of closed equations for the two dynamic order parameters
γ∗T(u) and γ∗T(u). In turn, the solution of these equations provides
the values of γ∗T(u) and γ∗T(u) at any point u in the “material time”
plane (uT , uR) and, in particular, along the “physical trajectories”
discussed in Sec. IV D. As discussed there, the analysis of these real
trajectories determines if the quench (or crush) considered, which
ends in the (arbitrary) state point (η, Tf ), will fall in any of the three
scenarios (full equilibration, mixed states, or full arrest) described in
Sec. IV C.

Following Refs. 30 and 63, we might proceed as follows: if for
a given quench with parameters n, Ti, and Tf we find that both
γ∗T(u) = ∞ and γ∗R(u) = ∞ for an arbitrary trajectory in the plane
u = (uT , uR) (0 ≤ uT ≤ ∞, 0 ≤ uR ≤ ∞), we conclude that all the
solutions Slm(k; uT →∞, uT →∞) = [nE ( f )

lm (k)]
−1, which implies

that the system will be able to equilibrate after the specific quench
considered. This condition also implies that the mobility functions
bT(t →∞) = bT

f > 0 and bR(t →∞) = bR > 0, that is, they are free
to reach their corresponding equilibrium finite values, so each par-
ticle is delocalized and mobile and free to rotate. In other words,
the point (n, Tf ) lies in the region of equilibrium (ergodic) states.
If, instead, finite values ua

= (ua
T , ua

R) of u exist such that one or
both of γ∗T(u

a
) and γ∗R(ua

) remain finite only within the inter-
vals 0 ≤ uT ≤ ua

T and 0 ≤ uR ≤ ua
R, with γ∗(a)R ≡ γ∗(ua

R) and/or γ∗(a)T
≡ γ∗(ua

T), then the system is expected to get dynamically arrested
in a non-equilibrium asymptotic state, whose spherical harmonic
components of the structure factor, Slm(k; ua

) are, then, given by

S∗lm(k; ua
) = [nE ( f )

lm ]
−1
+ [S(i)lm (k) − nE ( f )

lm

−1
(k)]

× e−2(αlm(k)ua
T+βlm(k)ua

R), (A24)

which clearly differ from the corresponding equilibrium limit
Seq

lm(k) = [nE f (k)]−1. In addition, one or both ba
T ≡ bT(t →∞)

= b∗T(u
a
T , ua

R) and ba
R ≡ bR(t →∞) = b∗R(u

a
T , ua

R) will vanish in this
limit stage.

As mentioned before, the parameters ba
T , ba

R, ua
T , ua

R, γ∗(a)T , and
γ∗(a)R depend, in general, on the fixed density, n, and on the initial
and final temperatures of the quench (and similarly for the case of
isothermal compressions), and such dependence contains the basic
information from which the features of dynamical arrest emerge. As
it happens, however, if our purpose is only the determination of the
boundaries between the regions of ergodicity and dynamical arrest
in the control parameters space, the influence of the initial state tem-
perature becomes rather irrelevant since distinct values for Ti lead
to the determination of the same boundary. The use of this protocol
allows for the determination of the non-equilibrium phase diagram.
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