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ABSTRACT

The electromagnetic levitation facility on board the International Space Station is used to investigate contactlessly and without gravity-
induced convection thermophysical properties and microstructure formations of hot, highly reactive metallic liquids. Despite the widely
forceless microgravity environment, the small remaining electromagnetic levitation forces still drive residual convective fluid flows inside the
levitated droplet, which may disturb the measurements. Thus, the knowledge of the flow velocities is critical to interpret and evaluate the
measurement results. In previous investigations of Xiao and co-workers, a great amount of numerical magneto hydrodynamics calculations
were performed with many different material properties and source force terms. The results for the maximum flow velocities hereof were
analytically characterized by surrogate models consisting of multi-dimensional, high-order regression analysis. The present work offers
another analytical description of these numerical results. Derived based on physical relations, it provides a simpler and physically more illus-
trative presentation.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0096768

I. INTRODUCTION

Electromagnetic levitation is a notably simple and robust tech-
nique for the containerless handling of electrically well-conducting
liquids.1,2 By application of high-frequency alternating magnetic fields,
the levitated material of 5–10mm diameter is heated and melted by
the induced eddy currents and stably positioned by the resulting
Lorentz forces without external mechanical contact. Together with the
use of contactless measurement methods, this enables the investigation
of thermophysical properties, such as surface tension, viscosity, electri-
cal resistivity, and density, as well as the investigation of microstruc-
ture formations and solidification processes of hot, highly reactive
metallic melts or melts in the undercooled liquid state below their
melting temperature.3–5

However, all of these measurement methods are more or less
severely influenced by the convective and sometimes turbulent fluid
flows driven by the electromagnetic levitation forces, which enter (skin
effect) the metallic melt.6–10 A typical example represents the so-called
“oscillating drop method” for the containerless viscosity measurement
of a liquid. Its basic idea is to excite surface oscillations on a freely sus-
pended liquid droplet by a short-time pulse of the magnetic levitation

force and to associate their subsequently measured damping, which is
due to the viscous shear flow in the droplet, with the viscosity of the
liquid via simple physical relations.3,11 Obviously, this method delivers
reasonable results only if the fluid flow in the droplet originating from
the oscillations is only weakly distorted by the convective fluid flow
driven by the magnetic levitation forces.

On the ground, the levitation forces, necessary to lift a metallic
droplet of 5–8mm diameter against its weight, generate convective
fluid flows in the liquid of a strength that renders a reasonable applica-
tion of the oscillating drop method impossible. This is, however, differ-
ent if electromagnetic levitation and viscosity measurement are
performed under “microgravity” (lg) conditions in the “ISS-EML”
electromagnetic levitation facility on board the “International Space
Station.” In this case, the task of the high-frequency magnetic levita-
tion fields consists alone in the containerless confinement of the metal-
lic droplet at a predefined location against external residual forces and
in its inductive heating and melting.

The ISS-EML facility12–14 uses two superposed high-frequency
magnetic fields BEðtÞ ¼ BE;0 sin ðx tÞ, as sketched in Fig. 1. A
symmetric quadrupole type “positioning field” produced by two
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equal, parallel, and coaxial circular rf currents (�150 kHz) of
the same strength but opposite directions, the resulting total force
F / �BE;0 � rBE;0 of which repels a displaced weightless metallic
droplet to its center between the two coils where the field strength is
weakest, as shown in Fig. 1(a). Additionally, a widely homogeneous
dipole type “heating field,” generated by two parallel and coaxial
circular rf currents (�370 kHz) of the same strength and in the same
directions, the total induced heating power P / B2

E;0 of which enables
an efficient heating of the metal specimen, as shown in Fig. 1(b).

The typical experiment run in the lg ISS-EML facility (for details,
see, e.g., Ref. 14) consists essentially of two phases:

1. The “heating phase,” where the originally solid metal sample, posi-
tioned in the center of the coils by a strong magnetic positioning
field, is heated, melted, and overheated a few hundred Kelvin over
its melting temperature by a strong magnetic heating field.

2. The subsequent and primarily interesting cooling or “experimen-
tal phase,” where the magnetic heating field is reduced to its
technically lowest possible value, and where the magnetic posi-
tioning field is reduced to a value that still keeps the droplet
safely in place against possible external residual accelerations. In
this phase, the experiments on the droplets take place, after the
strong disturbances in the liquid from the heating phase decayed
within the first few seconds.8

As video images show,14 the deformation of the levitated droplets
from the spherical shape is during the experimental phase typically in
the range of 0.5% only and thus negligible. This is due to the fact that
during this phase, the surface tension of the small metal droplets is
much higher than the distorting surface pressure from the low remain-
ing magnetic forces. Furthermore, there are generally no fluctuations
on the free surface visible during this phase indicating a laminar or at
most a weak turbulent fluid flow near the boundary.

Nevertheless, the remaining magnetic forces in the experimental
phase still drive a steady “residual fluid flow” in the droplet (see the
example in Sec. VA), which, depending on its strength, may non-
negligibly interfere with the flow resulting from the oscillating drop
method. This becomes evident when viscosity measurements, espe-
cially performed on low viscous liquid droplets, by the oscillating drop
method provide physically meaningless values.15 Thus, it is necessary
for the experiment preparation to predict the strength of this steady
residual fluid flow inside the levitated droplet in terms of the sample
and facility parameters. In the following, we investigate this flow in an

undisturbed spherical liquid droplet placed in the high-frequency
magnetic fields of the micro-g ISS-EML levitation facility. A first
attempt to calculate residual flow velocities driven by the magnetic lev-
itation forces from a purely analytical approach has already been per-
formed by Li,16 however, under restricting conditions.

II. THE SURROGATE MODEL OF Xiao et al.

A more useful analytical description is available by the surrogate
modeling of Xiao et al.17,18 They performed numerical magneto
hydrodynamics (MHD) simulations for a spherical, electrically con-
ducting, liquid droplet of 6.5mm in diameter located in the center of
either a rf magnetic dipole or quadrupole field, which approximates
the equivalent heating or positioning field of the ISS-EML electromag-
netic levitation facility, cf. Fig. 1. These calculations were performed
for a great amount of different values of the sample properties: density
q, viscosity g, and electrical conductivity r, covering ranges
5 g=cm3 � q � 10 g=cm3; 1� 10�3 Pa s � g � 40� 10�3 Pa s, and
0:5� 106ðXmÞ�1 � r � 5� 106ðXmÞ�1, which are typical for the
most liquid metallic alloys, and for various magnetic field strengths,
the generating coil current of which is externally predetermined by a
facility control voltage Uctr. Depending on the Reynolds number, Re,
in the resulting fluid flows, these numerical calculations were per-
formed either with the use of a laminar code, for Re/ 300, or with
the use of a turbulent Renormalization Group (RNG) k–e code for
Re’ 300. The typical patterns of the internal convective fluid flow
fields are shown in Fig. 2.

The maximum flow velocities umax in the liquid sample as func-
tion of the different sample and facility parameters ðq; g;r;UctrÞ were
analytically presented by the authors by means of a four-dimensional
polynomial (the surrogate model)

umaxðq; g; r;UctrÞ ¼
X
i;j;k;s

pi;j;k;s U
i
ctr q

j ln ðgÞk ln ðrÞs (1)

with coefficients pi;j;k;s, which were fitted to the corresponding numeri-
cal results for umax. It turns out that at least a third-order fit with up to
21 parameters has to be performed for a reasonable match.

III. THE PHYSICAL MODEL

Compared with the surrogate model of Eq. (1), the analytical
expression for umax as function of ðq; g; r;UctrÞ can considerably be
reduced when physical relations between the occurring quantities are
considered. On this basis, an analytical formula is derived in this

FIG. 1. Sketch of a spherical sample S in
the center of circular coil windings. The
external high-frequency magnetic quadru-
pole (a) and dipole (b) fields BE generated
by the respective coil currents I are used
for the containerless positioning and heat-
ing of S in lg, respectively. Outlined are
also the magnetic Lorentz forces F (black
arrows) in S, resulting from the respective
BE -field, and the characteristic pattern of
the driven fluid flow (green arrows) in the
liquid sample.
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section containing only three a priori unknown coefficients. These are
determined in Sec. IV by a multilinear fit (regression analysis) of the
analytical formula to the great amount of numerical MHD results of
Xiao et al.,18 see above.

A. Basics

Just as for the above-mentioned numerical simulations, the basis
for the following physical analytic model are the classical non-linear
MHD equations applied on an incompressible liquid spherical drop
S :¼ x 2 R3 : jjxjj < RS

� �
of radius RS. Due to the weak Lorentz

forces in the microgravity environment, the assumption of a spherical
shape represents a reasonable simplification. Due to the constant mass
density q, the steady flow field uðxÞ in S can well be described by the
mass conservation equation

r � uðxÞ ¼ 0 (2)

and the steady incompressible Navier–Stokes momentum conserva-
tion equation

q uðxÞ � ruðxÞ ¼ �rpðxÞ þ gDuðxÞ þ fðxÞ: (3)

The terms on the right-hand side of Eq. (3) describe the internal stress
on a liquid volume element resulting from the pressure pðxÞ, the vis-
cous shear flow with constant coefficient g, and the external electro-
magnetic Lorentz force density fðxÞ. The appropriate conditions at the
boundary points xB between the liquid droplet and a surrounding vac-
uum are determined on the one hand from the conservation of mass
flow at the free boundary surface

nðxBÞ � uðxBÞ ¼ 0; (4)

meaning that there is no flux in the normal direction nðxBÞ on the free
surface and, on the other hand, from the conservation of momentum
in tangential direction sðxBÞ at the free boundary surface

nðxBÞ � ruðxÞjx¼xB þ ruðxÞ½ �T jx¼xB

� �
� sðxBÞ ¼ 0; (5)

meaning that there is no shear stress on the fluid flow from outside of
the sample.

As shown in Sec. IIIC, the rotational invariant geometry of the
sample and coil system, outlined in Fig. 1, is transferred to the

symmetry of the external electromagnetic force field fðxÞ and to the
steady fluid flow field uðxÞ in S. This means that fðxÞ and analogously
uðxÞ are two-dimensional only and that the basic Navier–Stokes equa-
tion (3) is a two-component vector equation in the ðr; hÞ half-plane.
The solenoidal flow patterns revealed by Fig. 2 suggest to apply the
curl operatorr� on Eq. (3). This cancels the pressure termrpðxÞ but,
according to Sec. IIIC, not the non-conservative external force term
fðxÞ. Using the vector identities u� ðr� uÞ � r½u � u�=2 �u � ru
andr� ½r� X� � rr � X� DX, the modified Navier–Stokes equa-
tion then reads

qr� uðxÞ � XðxÞ½ � � gr� r� XðxÞ½ � þ r � fðxÞ ¼ 0 (6)

after the vorticity

XðxÞ :¼ r� uðxÞ (7)

has been introduced. Since the curl operator points in a direction per-
pendicular to the direction of its operand and perpendicular to the gra-
dient of its magnitude, it is not difficult to recognize that the three
terms in (6) point all in the same direction er � eh ¼ eu perpendicular
to the ðr; hÞ half-plane, cf. Fig. 2, which reduces (6) to a single scalar
equation. To obtain the appropriate condition of (6) at the boundary
points xB between the liquid droplet and the surrounding vacuum, let
us assume that the fluid parameters ðq; g; rÞ drop in a tiny neighbor-
hood around the boundary of S smoothly from its non-zero constant
value inside of S to its zero value outside of S. Then, the application of
the well-known “pillbox” procedure, cf. for example, (Ref. 19,
Appendix A), on the compressible Navier–Stokes equation in this area
results finally in the constraint

� qnðxBÞ � uðxBÞ � ruðxÞjx¼xB

� �� gnðxBÞ
� r � XðxÞjx¼xB

� �þ nðxBÞ � fðxBÞ ¼ 0: (8)

As for the surrogate model, we are interested for our physical
model in the value of the maximum velocity umax :¼ maxjjuðxÞjj of
the flow field in S. Due to the slip flow condition (5) at the free outer
boundary of S, and since also the flow driving force fðxÞ is maximal
there (skin effect), see Sec. III C 4, we expect umax to occur on the
boundary jjxjj ¼ RS of S what is also confirmed by the numerical
MHD calculations, see the examples of Fig. 2. This means that we are

FIG. 2. Examples for the characteristic
axially- and mirror-symmetric fluid flow
patterns inside the upper section of a liq-
uid electrically conducting sphere proc-
essed in the ISS-EML levitation facility.
The flow in (a) is driven by the facility’s rf
magnetic positioning field and that one in
(b) by its rf magnetic heating field, cf.
Fig. 1. The red dots indicate the locations
of the maximum flow velocity, which occur
on the boundary of the sphere. The
diagrams result from the numerical MHD
calculations of Xiao et al.18
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mainly interested in the behavior of the flow field uðxÞ in the neigh-
borhood of the boundary. In this respect, the three terms of Eq. (6) are
investigated in detail in the following.

B. Turbulence

As mentioned in Sec. II, Xiao et al.18 applied for the numerical
calculation of the mean velocity field �uðxÞ of a turbulent fluid flow in
S an appropriate RNG k–e code. In order to model also those results
analytically, the turbulent flow velocity field

uðxÞ ¼ �uðxÞ þ u0ðxÞ
is generally split in the mean field �uðxÞ and a fluctuating remainder
u0ðxÞ. Similar to the laminar case, we look here only for a physical
model of the maximal mean velocity �umax :¼maxjj�uðxÞjj ¼ jj�uðxmaxÞjj
of the turbulent flow field, the location xmax of which is assumed by the
same reasons as before to occur on the free boundary jjxmaxjj ¼ RS of S.

Since, as mentioned above, a fluctuation or jitter of the spheri-
cally shaped, free surface is during the experimental phase generally
not observed, we expect that the magnitude of the remainder u0

:¼jju0ðxmaxÞjj is on the boundary of S only a small quantity u0 	 �umax

compared to �umax. Thus, we neglect in the following the fluctuating
remainder term u0ðxÞ in our calculations for the maximal mean flow
velocity �umax in the neighborhood of the boundary. As a consequence
of this, the analytical calculations for the turbulent case will structur-
ally be the same as those for the laminar case except that uðxÞ and
umax are replaced by �uðxÞ and �umax, respectively. The justification of
this assumption will turn out when the results of the analytical model
are compared with the data from the numerical RNG k–e model in
Sec. IV.

C. The local electromagnetic force density fields

When an electrically conducting sample, in the present case a
liquid metallic sphere S :¼ x 2 R3 : jjxjj < RS

� �
of radius RS, is

placed in an alternating magnetic field Bðx; tÞ ¼ B0ðxÞ cos ðx t þ /Þ
¼ Re½~BðxÞeixt � of angular frequency x, the induced electric field
Eðx; tÞ ¼ Re½~EðxÞeixt � drives an alternating current density field
jSðx; tÞ ¼ Re½~jSðxÞeixt � in S. (In the following, complex-valued
quantities are marked by a tilde 
 and their complex conjugated
counterparts additionally by the superscript �:Þ In consideration of
Ohm’s law in moving media (Ref. 20, Sec. 10.2) and Faraday’s
induction law (Ref. 20, Sec. 6.1), a relation between ~BðxÞ and ~jSðxÞ
reads for x 2 S

r�~jSðxÞ ¼ r �ix~BðxÞ þr� uðxÞ � ~BðxÞ
� 	� �

��ixr~BðxÞ; (9)

where r denotes the constant electrical conductivity in S. In the
present case, the frequencies x=2p > 150 kHz, the flow velocities
jjujj < 1m=s (Ref. 18), and the occurring characteristic length
scales L � d > 0:1mm in S, where d is the skin depth defined in
Eq. (20), result in very small magnetic Reynolds numbers
Rm :¼ jjujj=ðx LÞ < 0:01, which justifies the neglect of the fluid
flow dependent term in (9). In the following, the steady local force
density fðxÞ for points x 2 S is defined as the time average of the
alternating Lorentz force density, that is, fðxÞ :¼ jSðx; tÞ � Bðx; tÞ.
In complex notation, this reads

fðxÞ ¼ 1
2
Re ~jSðxÞ � ~B

�ðxÞ
h i

¼ 1
2xr

Im ~jSðxÞ � r �~j
�
SðxÞ

� �h i
;

(10)

where the last expression results from (9).

1. Induced current density field

In the steady state, the alternating magnetic field Bðx; tÞ and,
according to (9), also the alternating current density field jSðx; tÞ
induced in the spherical sample S are maintained by an external alter-
nating current density distribution jEðx; tÞ ¼ Re½~jEðxÞeixt � in the coils
jjxjj � RE surrounding S as indicated in Fig. 1. In [Ref. 19, Eq. (3.26)]
~jSðxÞ; x 2 S has been derived for arbitrary three-dimensional external
current densities ~jEðxÞ; jjxjj � RE in terms of an expansion in spheri-
cal harmonics. In the present case, the whole system of spherical sam-
ple S and surrounding coils is rotationally invariant around the z axis.
In spherical coordinates, x ¼ ðr; h;uÞ with origin in the center of S,
see Fig. 3, and orthogonal spherical unit vectors erðh;uÞ; ehðh;uÞ,
and euðuÞ defined in Eq. (A1), this means that the external current
density distribution

~jEðr; h;uÞ ¼ ~jEðr; hÞ euðuÞ (11)

confined to the coils in the area r � RE , flows in u-direction only, and
has a magnitude ~jEðr; hÞ, which is independent of the u-coordinate.
Under these conditions, ~jSðxÞ of [Ref. 19, Eq. (3.26)] simplifies for
r � RS likewise to

~jSðr; h;uÞ ¼ ~jSðr; hÞ euðuÞ (12)

with

~jSðr; hÞ ¼
~I E
2R2

S

X1
l¼1

Rl
S Cl ~jE

� 	
P1
l ðcos hÞ ~C lðrÞ; (13)

where ~IE is the (complex) total current through each coil winding and
P1
l ðcos hÞ the first-order associated Legendre function of degree l,

FIG. 3. Sketch of the geometrical arrangement of spherical sample S and sur-
rounding coil windings together with the applied coordinates, unit vectors, and
dimensions.
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which determines the functional dependence of ~jSðr; hÞ on the polar
angle h.

The real valued coefficient

Cl ~jE
� 	

:¼ 2l þ 1
lðl þ 1Þ

ð1
RE

ðp
0

~jEðr0; h0Þ
~I E

r0�lþ1P1
l ðcos h0Þ sin h0dh0dr0 (14)

describes the influence of the external current density distribution
~jEðr; hÞ on~jSðr; hÞ and simplifies itself for the idealized case of N thin
circular current loops of coordinates ðrn; hnÞ and current directions
sign ¼ þ1;�1, see Fig. 3 and (Ref. 2, Sec. 5), to

Clðrn; hnÞ ¼ 2l þ 1
lðl þ 1Þ

XN
n¼1

signr
�l
n sin hnP

1
l ðcos hnÞ: (15)

For a mirror-symmetric external current density distribution relative
to the (x, y) plane through the center of S with~jEðr; hÞ ¼ ~jEðr;p� hÞ,
which causes the dipole type magnetic heating field of the EML levita-
tion facility sketched in Fig. 1(b), Eq. (14) implies, due to the property:
P1
l ð�cos hÞ ¼ ð�1Þlþ1P1

l ðcos hÞ, that
Cl ~jEðr; hÞ ¼ ~jEðr;p� hÞ� 	 6¼ 0 only if l ¼ 1; 3; 5;…: (16)

Similarly, for an inverted mirror symmetric external current density
distributions with~jEðr; hÞ ¼ �~jEðr;p� hÞ, which causes the quadru-
pole type magnetic positioning field of the EML levitation facility
sketched in Fig. 1(a), Eq. (14) implies that

Cl ~jEðr; hÞ ¼ �~jEðr;p� hÞ� 	 6¼ 0 only if l ¼ 2; 4; 6;…: (17)

According to Eq. (14) or (15), the magnitude of the single terms in the
expansion of (13) behaves as Rl

S Cl½~jE� ¼ OððRS=REÞlÞ. The magnet
coils of the ISS-EML levitation facility are designed such that already
the lowest order term of the expansion (13) alone, that is,

~jSðr; hÞ ¼
~IE
2R2

S
Rl
S Cl ~jE

� 	
P1
l ðcos hÞ ~C lðrÞ; (18)

approximates very well for l ¼ 1 the current density distribution
induced in the spherical sample S by the external magnetic heating
field, and for l ¼ 2, the current density distribution induced in S by
the external magnetic positioning field.

The dependence of ~jSðr; hÞ on the radial r-coordinate is deter-
mined by the complex function

~C lðrÞ :¼ ~zffiffiffiffiffiffiffiffiffiffi
r=RS

p Jlþ1=2 ~zr=RSð Þ
Jl�1=2 ~zð Þ ; (19)

where Jlþ1=2 denotes the half-integer order Bessel functions. ~C lðrÞ
depends via

~z :¼ ð1� iÞq; q :¼ RS=d; and d :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= l0xrð Þ

q
(20)

on the skin depth d and thus on the electrical conductivity r of the
material in S and on the angular frequency x of the respective mag-
netic field. In Eq. (20), l0 denotes the magnetic vacuum permeability.

2. Force density in rotationally invariant systems

For rotationally invariant current density distributions ~jSðxÞ
¼ ~jSðr; hÞeuðuÞ, as in the present case, the force density, defined in
Eq. (10) for r � RS, amounts to

fðxÞ ¼ 1
2xr

Im j~jSðr; hÞj2eu � r� euð Þ
h

þ~jSðr; hÞeu � r ~j
�
Sðr; hÞ

h i
� eu

� �i
¼ 1

2xr
Im ~jSðr; hÞr ~j

�
Sðr; hÞ

h i
eu � eu �~jSðr; hÞeu eu � r~j�Sðr; hÞ

h i
¼ 1

2xr
Im ~jSðr; hÞr~j

�
Sðr; hÞ

h i
; (21)

where the second term results from the application of the well-known
double vector product rule. (Here and in the following the operand of
a differential operator is set in brackets in cases of doubt.) With the
definitions in Eq. (20) and with the explicit representation of the gradi-
ent r in spherical coordinates (A2), the local electromagnetic force
density (21) in S simplifies for the special case of a rotationally invari-
ant system of sample and coil around the z axis to

fðr; hÞ ¼ l0
4
d2Im er~jSðr; hÞ

@

@r
~j
�
Sðr; hÞ þ eh~jSðr; hÞ

1
r
@

@h
~j
�
Sðr; hÞ

� �
:

(22)

Application of the curl operator on f finally yields

r� fðr; hÞ ¼ l0
4
d2Im r~jSðr; hÞ � r~j

�
Sðr; hÞ

h i
¼ eu

l0
2
d2Im

@

@r
~jSðr; hÞ

1
r
@

@h
~j
�
Sðr; hÞ

� �
: (23)

3. Force densities of the EML heating and positioning
fields

Insertion of ~jSðr; hÞ from (18) in Eq. (22) yields the local force
densities

f lðxÞ ¼ � erðh;uÞ l08
j~IEj2
R3
S

Rl
S Cl ~jE

� 	� �2
P1
l ðcos hÞ

� �2
� RS

2q2
Im ~C

�
l ðrÞ

@

@r
~C lðrÞ

� �
(24)

exerted on points x 2 S either by the magnetic heating field, if l¼ 1, or
by the magnetic positioning field, if l¼ 2, of the ISS-EML facility. In
Eq. (24), j~IEj is just the amplitude of the total alternating coil current.
Due to P1

1ðcos hÞ ¼ sin h and P1
2ðcos hÞ ¼ 3 sin h cos h, the maximum

local force of the heating field occurs at h ¼ p=2 and that one of the
positioning field at h ¼ p=4 and h ¼ 3p=4, respectively, as already
sketched in Fig. 1 and plotted in Fig. 4. Insertion of~jSðr; hÞ in Eq. (23)
yields analogously

r� f lðxÞ ¼ euðuÞ l08
j~IEj2
R4
S

Rl
S Cl ~jE

� 	� �2 @

@h
P1
l ðcos hÞ

� �2
� RS

r
RS

2q2
Im ~C

�
l ðrÞ

@

@r
~C lðrÞ

� �
: (25)

With the definition of ~C lðrÞ in Eq. (19) and in consideration of the
recurrence relation of the Bessel functions [Ref. 21, Eq. (9.1.27)], the
differentiation of ~C lðrÞ yields with the definition of ~z :¼ ð1� iÞq,

RS
@

@r
~C lðrÞ ¼

~z ~zr=RS Jl�1=2 ~zr=RSð Þ � ðl þ 1ÞJlþ1=2 ~zr=RSð Þ� �
r=RSð Þ3=2Jl�1=2ð~zÞ
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such that the r-dependent part of Eqs. (24) and (25) finally reads

RS

2q2
Im ~C

�
l ðrÞ

@

@r
~C lðrÞ

� �
¼ Im

~z
r=RS

Jl�1=2 ~zr=RSð Þ
Jl�1=2 ~zð Þ

J�lþ1=2 ~zr=RSð Þ
J�l�1=2 ~zð Þ

" #
:

(26)

4. Influence of the “skin effect”

In the experimental praxis, the ISS-EML levitation facility applies
alternating magnetic fields with frequencies of x=2p � 370 kHz
(heating field) and of x=2p � 150 kHz (positioning field) to liquid
metal samples with radii in the range of 3mm � RS � 4mm and
electrical conductivities in the range of 0:5� 106ðXmÞ�1 � r � 5
�106ðXmÞ�1. This means that the relation q ¼ RS=d, defined in Eq.
(20), varies in the range of 2:5 < q < 11 for the magnetic heating field
and in the range of 1:5 < q < 7 for the magnetic positioning field.
This allows in consideration of (20) and with the representation of
Jlþ1=2 given in Ref. 22 [Eq. (8.462)] to approximate the half-integer
order Bessel functions appearing in Eq. (19) by

Jlþ1=2 ~zr=RSð Þ � exp ~z�r=RSð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p~zr=RS

p ~r lð~zr=RSÞ; (27)

with the complex function

~r lð~zÞ :¼
Xl

k¼0

i�lþk�1ðl þ kÞ!
k! ðl � kÞ! ð2~zÞk (28)

for values 0 < r=RS � 1, which are not too far away from 1. For the
radial dependence of f lðxÞ andr� f lðxÞ given by (26), this means that

RS

2q2
Im ~C

�
l ðrÞ

@

@r
~C lðrÞ

� �

� exp �2qð1� r=RSÞð ÞIm ~z

r=RSð Þ2
~r l�1ð~zr=RSÞ
~r l�1ð~zÞ

~r�
l ð~zr=RSÞ
~r�
l�1ð~zÞ

" #

< exp �RS � r
d=2


 �
RS=d

r=RSð Þ2 : (29)

The exponential decrease clearly reveals that the force density fðr; hÞ
of Eq. (24) and its curlr� fðr; hÞ of Eq. (25) affect the liquid sample

FIG. 4. Diagrams showing superposed
the behavior of the electromagnetic heat-
ing ((a) and (b)) and positioning ((c) and
(d)) force density field fðxÞ (vector dia-
gram) and its curl r� fðxÞ (contour
map) for two different values of q inside of
the upper section of S, respectively. Blue
values indicate a direction of r� fðxÞ
pointing into the paper (er � ehÞ red val-
ues that one out of it (�er � ehÞ. The
dashed line limits the boundary layer of
thickness d=2 where the electromagnetic
force density and its curl decrease expo-
nentially to 1=e of their values at the
surface.
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mainly in a shell of thickness d=2 below the boundary of S (skin effect).
This is visualized for the heating and positioning field and for two
different values of the relation q :¼ RS=d in the diagrams of Fig. 4.
Bearing this behavior in mind, it is reasonable to assume that also the
flow field uðr; hÞ and its vorticity r� uðr; hÞ driven according to
Eq. (6) by r� fðxÞ scale near the boundary of S in radial direction
with d=2, and furthermore, that together with maxjjr � fðxÞjj, also
the maximum value of the flow speed umax :¼ maxjjuðxÞjj occurs on
the boundary of S.

Since the Bessel functions can for r � RS and q> 2.5 very well
be approximated by Eq. (27), the radial dependence of fðxÞ and r
�fðxÞ given by Eq. (29) finally assumes for r ¼ RS and q> 2.5 the
simple expression

RS

2q2
Im ~C

�
l ðrÞ

@

@r
~C lðrÞ

� �
r¼RS

� qIm ð1� iÞ ~r�
l ð1� iÞqð Þ

~r�
l�1 ð1� iÞqð Þ

" #

¼ q 1� l
q
þ O 1=q2

� �
 �
; (30)

where the relation of the complex conjugated functions ~r l , defined in
(28), has been expanded up to the first order in 1=q.

D. The non-linear convection term

In spherical coordinates, x ¼ ðr; h;uÞ with origin in the center
of S and unit vectors erðh;uÞ, ehðh;uÞ, and euðuÞ defined in Eq.
(A1), cf. Fig. 3, the rotationally invariant, two-dimensional fluid flow
field in the ðr; hÞ half-plane can be described by

uðxÞ ¼ urðr; hÞ erðh;uÞ þ uhðr; hÞ ehðh;uÞ: (31)

With this result and in consideration of Eq. (A2), the vorticity defined
in Eq. (7) assumes the form

XðxÞ ¼ euðuÞ
r

1þ r
@

@r

� �
uhðr; hÞ � @

@h
urðr; hÞ


 �
¼: Xðr; hÞ euðuÞ: (32)

Accordingly, the boundary conditions (4) and (5) at the surface of the
spherical sample S, that is, for points xB ¼ ðRS; h;uÞ for which
nðxBÞ ¼ erðh;uÞ and sðxBÞ ¼ ehðh;uÞ, amount to

urðRS; hÞ ¼ 0 (33)

and

@

@r
uhðr; hÞjr¼RS

¼ uhðRS; hÞ
RS

; (34)

respectively. In calculating (34), it has been considered that with (33)
also @urðRS; hÞ=@h ¼ 0. With these results, the magnitude of the vor-
ticity (32) on the boundary reads

XðRS; hÞ ¼ 2
uhðRS; hÞ

RS
: (35)

Since r � XðxÞ ¼ r � ½r � uðxÞ� � 0 and due to Eq. (2), the double
vector product in the first the non-linear convection term of the modi-
fied Navier–Stokes equation (6) leads to

r� u�X½ � ¼ r � Xu½ � �r � uX½ � ¼ X � ru� u � rX

¼ eu ur þ uh cothð ÞX
r
� ur

@

@r
X� uh

r
@

@h
X


 �
; (36)

where for its representation in spherical coordinates, Eqs. (31), (32),
and (A2) have been applied. As already mentioned above, we are only
interested in the value of the maximum velocity umax :¼ maxjjuðxÞjj
of the flow field, which we expect to be located on the boundary of S in
the point xmax ¼ ðRS; hmaxÞ, cf. Fig. 2. Due to (33), this means that
umax ¼ uhðRS; hmaxÞ. In consideration of (33)–(35) and the property
@uhðRS; hÞ=@hjh¼hmax

¼ 0 for a local velocity maximum on the bound-
ary, Eq. (36) simplifies at xmax to

r� uðxÞ�XðxÞ½ �x¼xmax
¼2

eu
R2
S
cothmaxu

2
max¼ eu

u2max

R2
S
AqðhmaxÞ; (37)

where the coefficient AqðhmaxÞ is a dimensionless, scalar constant rep-
resenting the constant part in the second term of (37). It is worth not-
ing, however, that AqðhmaxÞ depends on the flow field uðxÞ at hand
and may be considered to be constant only when the flow pattern and
the location of umax on the boundary of S do not change. For the two
different flow fields, as shown in Fig. 2, which are generated by the two
different force density fields f lðxÞ of the ISS-EML facility, different val-
ues of AqðhmaxÞ have to be expected. The same holds if the flow field
changes from laminar to turbulent.

E. The shear stress term

In spherical coordinates, x ¼ ðr; h;uÞ with origin in the center
of S the radial differentiation of the mass conservation equation (2) [cf.
Eq. (A2)] yields in the present two-dimensional case

0¼ r2
@2

@r2
urðr;hÞ þ 3r

@

@r
urðr;hÞ þ r

1
sinh

@

@h
sinh

@

@r
uhðr;hÞ

� �

¼ r2
@2

@r2
urðr;hÞ � 6urðr;hÞ � 1

sinh
@

@h
sinh 3� r

@

@r

� �
uhðr;hÞ

� �
(38)

after insertion of (2). On the surface of S, that is, for all points
xB ¼ ðRS; hÞ, Eq. (38) leads in consideration of (33)–(35) finally to

0 ¼ RS
@2

@r2
urðr; hÞ

���
r¼RS

� 1
sin h

@

@h
XðRS; hÞ sin h½ �: (39)

Another relation on the boundary of S results from Eq. (8). In
consideration of Eqs. (24), (32)–(34), and (A2), it reads in spherical
coordinates and after scalar multiplication with eu,

q
@

@h
u2hðRS; hÞ

2
¼ g

@

@r
rXðr; hÞ½ �

���
r¼RS

¼ g
RS

R2
S
@2

@r2
uhðr; hÞ

���
r¼RS

þ 2uhðRS; hÞ



þ @

@h
1

sin h
@

@h
uhðRS; hÞ sin h½ �

�
; (40)

where the last term results from the use of Eq. (2) in spherical coordi-
nates. At the point xmax ¼ ðRS; hmaxÞ on the boundary of S, where the
local maximum flow velocity umax ¼ uhðRS; hmaxÞ with the property
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@uhðRS; hÞ=@hjh¼hmax
¼ 0 is located, Eq. (40) leads finally to the

relation

R2
S
@2

@r2
uhðr;hmaxÞ

���
r¼RS

¼ 1
sin2ðhmaxÞ�2


 �
umax� @2

@h2
uhðRS;hÞ

���
h¼hmax

¼Ag1ðhmaxÞ
3

umax; ð41Þ

where the coefficient Ag1ðhmaxÞ=3 is a dimensionless constant rep-
resenting the constant factor in the second term of (41) as well as
the parameter independent scale of the angular differentiation, see
Fig. 2.

Regarding (32) the double curl operation onXðxÞ, which appears
in the second, the shear stress term of the modified Navier–Stokes
equation (6) results in spherical coordinates in

r� r� X½ � ¼ � eu
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r2
@2

@r2
rX½ � þ r

@

@h
1

sin h
@

@h
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¼ � eu
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�r
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@h
r
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@r2
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sin h
@

@h
X sin h½ �

� ��
: (42)

In consideration of (39) and (41), Eq. (42) leads at the surface of S in
the point xmax ¼ ðRS; hmaxÞ finally to the simple expression

r� r� XðxÞ½ �x¼xmax
¼ � eu

R3
S

Ag1umax þ R3
S
@3

@r3
uhðr; hmaxÞ

���
r¼RS


 �
:

(43)

Due to the exponential decrease in the magnetic fields inside S with
increasing distance from its boundary, see Eq. (29), the local magnetic
force field fðxÞ essentially affects the liquid sample in a shell of
thickness d=2 below the boundary of S only (skin effect).
Consequently, it is reasonable to assume that also the flow field
uðxÞ scales near r � RS in radial direction with the conductivity r-
dependent skin depth dðrÞ of Eq. (20), implying that the expression
d3 � @3uh=@r3 remains essentially constant with changing dðrÞ.
Moreover, we assume that the pattern of the flow field uðxÞ near
xmax ¼ ðRS; hmaxÞ remains nearly the same even if its magnitude
umax ¼ jjuðxmaxÞjj changes. With these two conditions and the defi-
nitions in (20), Eq. (43) amounts to

r� r� XðxÞ½ �x¼xmax
¼ � eu

R3
S

Ag1 þ q3Ag2

� �
umax (44)

with dimensionless scalar constants Ag1ðhmaxÞ and Ag2ðhmaxÞ for
which the same holds as for AqðhmaxÞ in Sec. IIID.

F. The analytical model for the maximum fluid flow
velocity

Equations (25) and (30) imply that at xmax ¼ ðRS; hmaxÞ

r � f lðxÞjx¼xmax
¼ euAf ðhmaxÞl0I

2
0

R4
S
R2l
S q� lð Þ; (45)

with a scalar constants Af ðhmaxÞ of dimension [m�2l], which
depends on the location of the maximum fluid velocity on the

boundary of S and thus also on the type of the magnetic field of
the EML facility (heating field: l ¼ 1, positioning field: l ¼ 2Þ. In
Eq. (45), I0 :¼ j~I Ej denotes the amplitude of the alternating coil
current. Insertion of the Eqs. (37), (44), and (45) in (6) results for
the modified Navier–Stokes equation at xmax ¼ ðRS; hmaxÞ in the
simple scalar expression

B2Re
2 þ B0 þ B1q

3
� �

Re� q
g2

l0I
2
0R

2l
S q� lð Þ ¼ 0; (46)

after its scalar multiplication with eu, after the definition of the dimen-
sionless Reynolds number

Re :¼ RSq
g

umax; (47)

and after the introduction of the new composed coefficients B0ðhmaxÞ;
B1ðhmaxÞ, and B2ðhmaxÞ of dimension (m2l). The solution of the qua-
dratic equation (46) under consideration of the steady-state condition:
Re¼ 0 if I0 ¼ 0 finally yields our physical model

Re ¼ B0 þ B1q3

2B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4B2

B0 þ B1q3ð Þ2
q
g2

l0I
2
0R

2l
S q� lð Þ

s
� 1

0
@

1
A (48)

for the maximum fluid flow velocity in the sample S driven by the
magnetic heating field: l ¼ 1 or positioning field: l ¼ 2 of the ISS-
EML facility.

Evidently, the Reynolds number of (47) and thus umax depends on
only two parameters: q¼RS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0xr=2

p
and l0I

2
0R

2l
S ðq� lÞ q=g2, which

are a combination of the known sample properties RS;r;q;gf g
and facility properties x; I0f g, instead of four parameters as supposed
for the surrogate model presented in Sec. II. Furthermore, there are
only three a priori unknown coefficients B0ðhmaxÞ; B1ðhmaxÞ, and
B2ðhmaxÞ, which have to be fitted to the numerical results of the MHD
calculations, instead of 21. Here, it should be reminded that the coeffi-
cients BnðhmaxÞ depend on the pattern of the flow field at hand and
may be considered to be constants only when the flow pattern near the
location ðRS; hmaxÞ of the maximum velocity does not significantly
change.

IV. DETERMINATION OF THE MODEL COEFFICIENTS

A rearrangement of Eq. (46) results in

l0I
2
0R

2l
S q� lð Þq=g2
Re|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Y

¼ B0 þ B1 q3|{z}
X1

þB2 Re|{z}
X2

: (49)

In consideration of (20) and (47), the quantities Y, X1, and X2 defined
in (49) depend on sample RS;r;q; gf g and facility x; I0f g parameters
and on the corresponding maximum fluid flow velocities umax, which
have numerically been calculated for a great variety of different, physi-
cally reasonable parameter values via the MHD simulations of Ref. 18.
By simple multilinear regression analysis of (49) with these data, the
three coefficients B0, B1, and B2 of the analytical model (48) could be
determined. For the two flow driving force fields and the two flow
models, their values are collected in Table I.

A. Heating field results

Although, as mentioned in Sec. III C 4, the EML facility processes
liquid metal samples, the radii RS, and electrical resistivities r of which
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result in values of q ¼ RS=dðrÞ that cover the range 1:5 < q < 11, we
have to confine for the fit of our physical model to the numerically
calculated datasets of the heating field to values of

2:5/ q/ 6: (50)

The upper limit in (50) is due to the restricted validity of the
numerical results of Ref. 18. Near the boundary of S these have
been calculated on a relatively rough mesh with grid steps in radial
direction on the order of dg � RS=18, recognizable by the distances
between the flow arrows in Fig. 2. On the other hand, the typical
penetration depth of the force field into the sample S is, according
to Sec. III C 4, on the order of �dðrÞ=2. The assumption, that rea-
sonable results from the numerics can only be expected if the grid
steps are at least a factor �2=3 smaller than the typical variation

length of the physically relevant quantity d=2, that is, if
dg � RS=18/ ð2=3Þ d=2, led to the upper limit in (50). Note that
this upper limit restricts only the validity of the numerical calcula-
tion but not that of the physical model (48).

The lower limit in (50) is due to the simplicity of the physical
model (48). In order that the flow field uðxÞ scales near the boundary
of S in radial direction with the penetration depth dðrÞ=2, as this was
supposed in Sec. III E, dðrÞ=2 should be smaller than the typical radius
of the vortex RV, which is another length scale in the flow, c.f. Fig. 2.
Driven by the heating force field, it is on the order of RV � RS=4 and
widely constant for the different values of the sample and facility
parameters.

The numerical MHD calculations of Ref. 18 for the fluid flow in
S driven by the magnetic heating force field have been performed with

TABLE I. Coefficients of Eq. (48) for the laminar or turbulent fluid flow driven by the heating or positioning force field, respectively. Included are also the corresponding values
of l and the lower limits of q, see Secs. IVA and IV B.

Force field Flow model l q B0 (m
2l) B1 (m

2l) B2 (m
2l)

Heating Laminar (Re / 300) 1 ’ 2.5 7:4� 10�3 1:0� 10�4 2:9� 10�5

Heating Turbulent (Re ’ 300) 1 ’ 2.5 3:9� 10�3 1:1� 10�3 7:7� 10�5

Positioning Laminar (Re / 300) 2 ’ 3.5 2:4� 10�6 9:6� 10�9 1:1� 10�8

FIG. 5. Reynolds numbers in the fluid flow driven by the magnetic heating force field. The left diagrams (a) and (c) show plots of the numerically calculated Reynolds numbers:
Renum from the laminar and the turbulent (k � eÞ MHD model vs the corresponding Reynolds numbers: Remod resulting from the fitted analytical model (48). The right diagrams
(b) and (d) show plots of the corresponding relative deviations: jRenum � Remodj=Renum from each other. The mean value over all data points of the latter is in both cases
<3%. The turbulent model fits best for Re’300.
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a laminar and with a turbulent (RNG k� e) model, respectively. The
output of both calculations that also satisfies (50) consists of 1320 dif-
ferent datasets for umax;r;q; g; I0;RS;xf g however with a sample
radius and a magnetic field frequency fixed at RS ¼ 3:25mm and
x=2p ¼ 370 kHz, respectively. The multilinear fit of (49) with l¼ 1 to
these datasets resulted in the coefficients listed in the first two rows of
Table I.

Figure 5 shows, for the whole datasets, the plots of the numeri-
cally calculated Reynolds numbers, Renum, resulting from the laminar
and the turbulent (k� e) model, respectively, vs the corresponding
Reynolds numbers, Remod, resulting from the analytical model (48)
with the coefficients from Table I. The diagrams demonstrate that
under the conditions of Eq. (50), the numerically calculated Reynolds
numbers Re ¼ umaxRSq=g of the fluid flows in the liquid sample, and
thus, their maximum velocities umax are in the laminar and turbulent
regime fairly well be reproduced by the analytical model (48).

B. Positioning field results

Driven by the positioning force field, the flow develops two toroi-
dal vortices that compete for the place in the upper section of the liq-
uid sphere of radius RS, see Fig. 2(a). Compared with the situation in
Sec. IVA, this results in a slightly stronger variation of the vortex exten-
sions for different values of the sample r; q; gf g and facility I0f g param-
eters. This limits the tolerable range of dðrÞ from below further by a
factor of �1.5 and restricts thus in the present case the range of q to

3:5/ q/ 6: (51)

The output of the numerical calculations of Ref. 18 for the fluid
flow in S driven by the magnetic positioning force field that also satis-
fies (51) consists of 570 different datasets umax;r;q; g; I0;RS;xf g
however with a sample radius and a magnetic field frequency fixed at
RS ¼ 3:25mm and x=2p ¼ 150 kHz, respectively. The multilinear fit
of (49) with l¼ 2 to these datasets resulted in the coefficients listed in
the last row of Table I.

Figure 6 shows for the whole datasets the plot of the numerically
calculated Reynolds numbers, Renum, resulting from the laminar model
vs the corresponding Reynolds numbers, Remod, resulting from the

analytical model (48) with the coefficients from Table I. The diagrams
demonstrate that under the conditions of Eq. (51), the numerically cal-
culated Reynolds numbers Re ¼ umaxRSq=g of the fluid flows in the
liquid sample, and thus, their maximum velocities umax are fairly well
be reproduced by the analytical model (48).

V. SUMMARY AND PRACTICAL APPLICATIONS

The residual convective fluid flows inside liquid spherical metallic
droplets processed contactlessly in the electromagnetic levitation facil-
ity ISS-EML on board the International Space Station have numeri-
cally been calculated by Xiao et al.17,18 for various values of the droplet
parameters: electrical conductivity r, mass density q, viscosity g, and
radius RS, and of the facility parameters: amplitude I0 and angular fre-
quency x of the coil current. For an analytical representation of the
maximum flow velocity umax as function of these parameters, we
derived the analytical model

Re ¼ B0 þ B1q3

2B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4B2

B0 þ B1q3ð Þ2
q
g2

l0I
2
0R

2l
S q� lð Þ

s
� 1

0
@

1
A;

see Eq. (48), with three adjustable coefficients B0, B1, and B2. Here, Re
denotes the Reynolds number

Re :¼ RSq
g

umax;

see Eq. (47), and

q :¼ RS=d with d :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= l0xrð Þ

q

FIG. 6. Reynolds numbers in the fluid flow driven by the magnetic positioning force field. The left diagram (a) shows a plot of the numerically calculated Reynolds numbers:
Renum from the laminar model vs the Reynolds numbers: Remod resulting from the fitted analytical model (48). The right diagram (b) shows a plot of the corresponding relative
deviations: jRenum � Remodj=Renum from each other. The mean value over all data points of the latter is <4%.

TABLE II. Thermophysical properties of liquid Si50Ge50 and liquid Zr64Ni36 alloys at
their respective liquidus temperatures Tliq. The values were taken from Refs. 14, 15,
and 23.

Material Tliq (K) rliq (X
�1 m–1) qliq (kg/m

3) gliq (Pa s)

Si50Ge50 1548 1:4� 106 5:9� 103 � 10�3

Zr64Ni36 1283 7:1� 105 6:9� 103 27� 10�3
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is the relation between the droplet radius RS and the frequency x, and
conductivity r dependent skin depth d. Microgravity electromagnetic
levitation facilities apply generally two different superposed high-
frequency magnetic fields to levitated droplets: a quadrupole type
positioning field and a dipole type heating field, c.f. Fig. 1. In the pre-
sent investigation, we regarded them, however, separately. Typically,
the local Lorentz forces caused by the dipole field generate one and
those caused by the quadrupole field two toroidal vortices in the
upper section of the liquid sphere, see Figs. 1 and 2. Equation (48)
holds for both fields, however, with different values of the number l,
coefficients B0, B1, and B2, and lower limits for q, which are listed in
Table I.

According to the diagrams in Figs. 5 and 6, the analytical model
(48) agrees together with the corresponding coefficients in Table I
fairly well with the numerically calculated results.

A. Reynolds numbers in levitated Si50Ge50
and Zr64Ni36 melts

In practical applications, the strength of the high-frequency cur-
rents feed into the levitation coils by the power supplies is externally
controlled by a voltage Uctr. For the ISS-EML facility, the relation
between these control voltages and the amplitudes of the coil current
I0 reads for the “heating current”

IH0 ¼ 24:4 A½ � þ 22:7 A=V½ �UH
ctr (52)

and for the “positioning current”

IP0 ¼ 30:5 A½ � þ 30:0 A=V½ �UP
ctr ; (53)

where during the experimental phase the control voltages cover
typically the ranges 0V � UH

ctr / 1V and 0V � UP
ctr / 5V.

To obtain an impression on the strength of the residual fluid
flows driven in liquid metallic droplets by the forces from the mag-
netic heating and positioning fields of the ISS-EML facility, the
corresponding Reynolds numbers as function of the external con-
trol voltages have been calculated via (48) with the coefficients
of Table I for a liquid Si50Ge50 and a liquid Zr64Ni36 droplet of
RS ¼ 4mm radius at its respective liquidus temperature Tliq.

The dedicated material parameters are listed in Table II. The
results are plotted in Fig. 7.

It becomes evident from the diagrams in Fig. 7 that for both mate-
rials, the fluid flow in the droplet generated by the forces of the mag-
netic positioning field is much weaker than that one resulting from the
heating field. Furthermore, there may occur drastic differences in the
Reynolds numbers for different liquids. In the present examples, this is
mainly due to the strongly different viscosities of the thin fluid Si50Ge50
melt and the highly viscous, glass-forming Zr64Ni36 melt.

The diagram of Fig. 7(a) proves that the residual fluid flows in a
Si50Ge50 melt caused by the forces of the magnetic fields of the ISS-
EML levitation facility are even in their idle states at Uctr ¼ 0V still
extremely high: Re> 1100. This supports the assumption in the
Introduction why the viscosity measurements for the Si50Ge50 melt by
means of the oscillating drop method provided physically meaningless
values,15 although they have been performed in the widely forceless lg
environment of the ISS.

By contrast, the diagram of Fig. 7(b), showing for Uctr ¼ 0V only
low Reynolds numbers (Re/ 25Þ, exhibits for high viscous glass-
forming metallic liquids, as Zr64Ni36, residual fluid flows, which are
most likely weak enough to enable in the microgravity ISS-EML levita-
tion facility reasonable viscosity measurements via the oscillating drop
method.
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APPENDIX: BASIC FORMULAS IN SPHERICAL
COORDINATES

For convenience, this section contains a short collection of for-
mulas from (Ref. 24, Sec. 2.5), which are often used in the previous
calculations. In a Cartesian frame of reference with the constant
orthogonal unit vectors ex; ey , and ez , the orthogonal spherical unit
vectors in r-, h-, and u-direction read

erðh;uÞ ¼ sin h cosu ex þ sinu eyð Þ þ cos h ez;

ehðh;uÞ ¼ cos h cosu ex þ sinu eyð Þ � sin h ez;

euðuÞ ¼ �sinu ex þ cosu ey:

(A1)

The gradient, divergence, and curl operators read in spherical
coordinates

rf ¼ er
@

@r
f þ eh

r
@

@h
f þ eu

r sin h
@

@u
f ;

r � v ¼ 1
r2

@

@r
r2vr
� 	

þ 1
r sin h

@

@h
vh sin h½ � þ 1

r sin h
@

@u
vu;

r� v ¼ er
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@

@h
vu sin h½ � � @

@u
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 �

þ eh
r
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sin h
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