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Abstract. The uncertainty quantification of aeroelastic wind turbine simulations is an active
research topic. This paper presents a dedicated, open-source framework for this purpose.
The framework is built around the uncertainpy package, likewise available as open source.
Uncertainty quantification is done with a non-intrusive, global and variance-based surrogate
model, using PCE (i.e., polynomial chaos expansion). Two methods to handle the uncertain
parameter distribution along the blades are presented. The framework is demonstrated on the
basis of an aeroelastic stability analysis. A sensitivity analysis is performed on the influence of
the flapwise, edgewise and torsional stiffness of the blades on the damping of the most critical
mode for both a Bladed linearization and a Bladed time domain simulation. The sensitivities of
both models are in excellent agreement and the PCE surrogate models are shown to be accurate
approximations of the true models.

1. Introduction
Aeroelastic simulations form a cornerstone in the design and certification process of wind
turbines. Comprehensive models covering the interaction of aerodynamics, structural dynamics
and controllers are needed to understand and optimize the characteristics of new turbine designs.
Due to their interdisciplinary nature, these models tend to cover a large number of parameters,
whose interaction makes it often difficult to identify driving factors for a specific behavior. Yet,
understanding exactly this interaction and the influence each parameter has on investigated wind
turbine characteristics, can have significant importance in the design process. The analysis
of uncertain parameter interaction and the influence of these parameters on model outcomes
is covered by Uncertainty Quantification (UQ). Uncertainty quantification on wind turbine
aeroelastic simulations is an active research topic. A literature overview is given by van den Bos
et al. [1]. Example research topics are the influence of parametric uncertainties on wind turbine
aerodynamics and loads [2, 3, 4, 5, 6] and uncertainties in blade flutter [7, 8, 9].

One of the main hurdles which has to be overcome, is the inherent significant computational
cost of aeroelastic wind turbine simulations. This requires dedicated methods to allow for the
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investigation of multiple uncertain parameters simultaneously, while also accounting for their
interaction. Promising on this aspect are meta model approaches, which approximate the true
model with a cost efficient surrogate, retaining the critical information on parameter interaction
and sensitivity. These methods are particularly efficient for systems with a small amount of
uncertain parameters. In this case, the computational effort compared to standard UQ methods
can be reduced by multiple orders of magnitude [10]. Extensive work has been done on the
development of these methods by Sudret et al. [10, 11]. These meta model based uncertainty
quantification methods have been applied to different research questions on wind turbine loads
by multiple authors [12, 13, 14, 15, 16, 17, 18] and recently also on the topic of blade flutter by
Li et al. [19].

Most of these methods are non-intrusive, meaning that the UQ methodology can be
implemented without modification of the investigated model. This has the primary benefit that
the considered models can usually be exchanged with ease. This independence of the model
explains the usefulness of open-source development of these methodologies to enhance the cross-
disciplinary knowledge exchange. Multiple open-source libraries have been developed over the
last years [20, 21, 22]. However, some wind turbine specific functionalities were not open-source
available before. Uncertain parameters are often distributed along the blades, which requires
a parameterization of the uncertainty in this dimension. Furthermore, the interfaces towards
different tools can be generalized to ease the implementation of further tools.

The goal of this research is to develop a framework for uncertainty quantification
on aeroelastic wind turbine simulations taking into account limitations due to the high
computational cost and additional requirements due to the radius resolved uncertain parameters.
A further goal is to establish the framework in a modular and generic way which facilitates its
usage for other simulation tools and for other uncertain parameters or quantities of interest. To
this end, the full python code of the wtug framework has been made open-source accessible [23].
In this paper, and as part of the open-source framework, the influence of the edgewise, flapwise
and torsional stiffness of the blades on the aeroelastic stability of the turbine is used exemplarily.
Stability analysis of wind turbines is a prime example of a time-consuming simulation with
complex, multi-parameter models.

This paper has two main parts. Part one will introduce the uncertainty quantification
framework in all its theoretical and practical aspects. Part two will exemplify the usage of
the framework for the investigation of aeroelastic stability of wind turbines.

2. Uncertainty Quantification Framework

The uncertainty quantification framework is built around the open-source uncertainpy package
[20]. This package provides methods for global, variance based uncertainty quantification based
on surrogate models. How and why these methods and this package have been selected will
be briefly explained in this section, followed by an explanation of the radially resolved input
parameterization and an overview of the practical implementation of the open-source uncertainty
quantification framework wtug [23].

2.1. Variance based uncertainty quantification
The implemented framework bases on non-intrusive, global, variance-based uncertainty
quantification. The meaning of this classification is briefly clarified in the following.

Intrusive UQ methods are introduced on the equation level in the models themselves, while
non-intrusive methods can be seen as a wrapper around the actual model. Intrusive methods
are often more efficient, because they do not require an expensive sampling of the investigated
model. However, the required implementation modifications are a significant overhead, which
hinders widespread application.
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Another distinction are local vs. global approaches. Local methods, commonly analyzed
by means of partial derivatives, describe the sensitivity around a fixed reference point. Global
approaches quantify the uncertainty over the full input uncertainty distributions. On top of
that, certain efficient global methods, such as Elementary Effects (EE), capture the full input
distribution, but vary input parameters independently, which neglects possible interactions
between parameters. Variance-based UQ methods capture both the full input distribution
domain and possible interactions between parameters. They attempt to decompose the
variance of the output Quantity of Interest (Qol) in contributions by each of the input
parameters individually and contributions due to interactions between these parameters. The
full mathematical derivation is not included here and can be found in section 2 in [10] or in
section 4.1 in [13]. To understand the outcomes of the uncertainty quantification, following
mathematical concepts are introduced. Assuming that the variance of the true model Y can be
decomposed in

d
Var(Y) =Y Vi+ > Vij+.. (1)
i=1

1<i<j<d

where d is the number of uncertain parameters. This relation shows the decomposition of the
total variance Var(Y') in first order terms V;, attributable to each input, and higher order terms
Vij, representing the interactions. Note that this series will be further expanded depending on
the total amount of uncertain parameters. Derived variance-based sensitivity measures are the
Sobol indices. The First Order Sobol index represents the isolated contribution of each uncertain
parameter on the total variance. It is defined for each uncertain parameter as
V
S; = ————, where i € [1,....d|. 2
‘ Var(Y)’W (1] 2)
The Total Sobol index represents the contribution of each uncertain parameter to the total
variance, including contributions due to parameter interactions. It is defined as

o Vit X0 Vi +
A Var(Y)

, where i € [1,...,d]. (3)

2.2. Surrogate model

The most well-known non-intrusive, global UQ methodology is the Monte-Carlo method.
Its methodology bases on a dense sampling of the input uncertainty distributions to get a
statistically meaningful description of the model output. The required sampling density is one of
the main obstacles in non-intrusive UQ. Monte-Carlo simulation is computationally inefficient,
limiting its direct usage to fast models. The essential aspect of uncertainpy, which makes it
suitable for cost-intensive models, is the introduction of a surrogate model. The stochastic
uncertainty quantification is done on a computationally efficient Polynomial Chaos Expansion
(PCE) surrogate model. A detailed description of this approach can be found in [20] and [10].
A short summary is given here. PCE approximates the true model by a sum of orthogonal
polynomials with unknown coefficients. Samples of the true model are used as training data
for the surrogate model. An overdetermined system of equations is established, which is solved
for the optimal polynomial coeflicients in a least-squares sense. The orthogonality of the basis
polynomials with respect to the input uncertainty distributions assures an optimal convergence
of the approximation error with the order of the polynomials. The shape of the polynomial
basis is fully defined by the orthogonality requirement with respect to the input uncertainty
distributions. A higher polynomial order will reduce the approximation error, but will also
increase the number of unknown coefficients and the corresponding required number of training
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data samples. The truncation order and other aspects of the experimental design, such as
the sampling method and the number of samples, rely on user-defined settings. Adaptive
methodologies which update the experimental design iteratively based on the approximation
error or other performance metrics of the surrogate model could be a possible future improvement
[24].

A verification of the surrogate model is needed to guarantee that it is an accurate
representation of the true model. A leave-one-out test is applied to assure cross-validation.
This test is done by computing a new surrogate model at each of the training data coordinates,
with exclusion of said training data node. These leave-one-out surrogate models are evaluated
at the same coordinates and compared with the excluded training data samples. This error
measure has two main benefits. No additional model evaluations are needed for the verification
and oversampling effects are taken into account, which would not be the case if the surrogate
model is directly compared with its training data samples.

2.3. Input parameterization

Two approaches to handle the uncertainty distribution in radial direction along the blades are
implemented in the framework. Figure 1 visualizes both approaches. Methodology one is shown
on the left. This method is similar to the work by Kumar et al. [13]. Multiple control points
are distributed in radial direction. Each of these points can be an uncertain parameter or can
have a fixed value. A Non-Uniform Rational Basis Splines (NURBS) interpolation is used to
get a smooth function in radial direction. Three exemplary random samples are shown and
the influence they would have on a structural parameter is shown in the bottom left plot. The
second method serves two purposes. It aids the generation of individually defined distributions
and it reduces the total number of uncertain parameters. A fixed distribution can be given
as input, and the uncertain parameter only describes the amplitude of the uncertainty. The
right-hand side plots in figure 1 visualize this. The upper and lower bounds of the user-defined
distributions are marked in black, three random samples are picked between these bounds. The
lower right-hand side plot shows their influence on an exemplary structural parameter.

Each parameterization could be used for a different research question. The NURBS curves
approach has multiple uncertain parameters along the span, which could be used for studies
where the sensitivity of a specific parameter along the span is in question. The user-defined
distributions are useful if the uncertainty distribution of a specific parameter along the span is
known, for example through experiments or by prior knowledge.

Each uncertain parameter individually can be represented by means of a uniform distribution,
described by its minimum and maximum value, or a normal distribution, described by its
mean and standard deviation. The implementation of other distributions only requires minor
modifications and will be undertaken in the future.

2.4. Framework overview

A generalized overview of the uncertainty quantification framework is shown in figure 2. The box
on the left is governed by the open-source uncertainpy and chaospy python modules [20, 21].
The box on the right-hand side is specific with respect to the particular model and research
question. A preprocessor is needed which understands the definition of the uncertain parameters
and can translate them into specific inputs for the employed simulation tool. The postprocessor
takes simulation results as input and extracts the predefined Quantity of Interest (Qol). An
adequate number of model samples covering the full uncertainty range is used to establish
the surrogate model. This computationally efficient model can then be used to determine all
statistical characteristics through Monte-Carlo sampling. Note that this methodology can also
be applied in case of multiple Quantities of Interest (Qols). This will require the (automatic)
setup of multiple surrogate models, but does not require more model evaluations if all Qols can
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Figure 1: Example of NURBS curves parameterization (left) and user-defined distribution (right)

be extracted from the same simulations. The level of detail in this flowchart is intentionally
low, illustrating the suitability of the framework to a range of different models and research
questions. Uncertain parameters which could be considered in future investigations are further
beam properties, e.g. shear center and elastic center positions, aerodynamic model properties,
e.g. polar lift slope and maximum lift coefficient. Additional to these numerical model properties,
physical quantities such as spar positioning, laminate angles, surface roughness or blade erosion
due to uncertainty in manufacturing defects or lifetime depreciation could be highly interesting.
Uncertainties in the wind field or other non-blade components will not be distributed along the
blade, but can also be covered by the framework. Among others, interesting Qols can be the
modal quantities of critical modes, flutter speed, ultimate or damage equivalent loads, tower
clearance or the annual energy production.
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3. Case Study: Aeroelastic Wind Turbine Stability

The capabilities of the framework are demonstrated by an exemplary case study. The reference
model is based on the open-source IWT-7.5-164 turbine [25]. The blade stiffness was reduced
significantly to establish an instability under nominal operating conditions [26]. The analysis is
limited to a single, critical operating condition of the turbine at a steady, uniform wind speed
of 12 m/s, a pitch angle of 0° and a rotational speed of 10 rpm. Symmetrical conditions are
enforced by neglecting gravitational loads, tilt, wind shear or veer and tower effects on the wind
field. An edgewise instability formed with negative damping for both the 1%* and 2°¢ backward
whirling modes. A detailed description of this reference instability condition is given in [26].
The damping ratio of the most negatively damped mode is used as single Qol. The flapwise,
edgewise and torsional stiffness are used as uncertain parameters, this will be detailed in section
3.2. The models for this case study are available as use case in the open-source framework.

3.1. Wind turbine stability analysis

The aeroelastic analysis is done with the commercial simulation code Bladed, version 4.9. The
main model components to point out are the blades, tower and aerodynamics. The tower is
modeled as a single, modal reduced body with 12 enabled modes. Each blade is modeled as a
multi-segmented structure with 6 individual sub-bodies, each sub-body contains 12 modes. The
Beddoes-Leishmann dynamic stall model and the @Qye dynamic wake model are enabled. The
fixed operating point eliminates the need for an active control system.

Two methods are applied for the stability analysis. The standard Bladed linearization
functionality linearizes the model around the non-linear reference condition. The eigenvalue
analysis of the linearization matrix gives a modal decomposition of the system with a frequency
and damping for each aeroelastic mode. The Qol is therefore a direct simulation output.

The second method uses the standard Bladed time domain simulation functionality.
Postprocessing of the time signals is required to determine the damping of the most critical
mode. Multiple simplified methods were tested unsuccessfully. Determining the logarithmic
damping between subsequent oscillation peaks of the signals or exponential curve fitting to
original data both assume the system to only have a single degree of freedom. These methods
could therefore only produce accurate results if the full system was completely dominated by
the critical mode, which was not always the case. Instead, Dynamic Mode Decomposition
(DMD) was used to overcome this problem. The main idea of this methodology is to fit a
linear operator to the actual non-linear system. The eigenvalues of this linear operator can be
interpreted analogously to those of an actual linearization of the system. A detailed explanation
of the theoretical basis of DMD and a detailed analysis of the DMD results on the non-linear
aeroelastic time signals is out of the scope of this study. The framework uses the Higher-Order
DMD implementation in the open-source pyDMD package [27]. Le Clainche et al. [28] serve as
reference for the theoretical background.

3.2. Uncertainty Quantification

Three structural beam properties are defined as uncertain parameters, the flapwise, edgewise
and torsional stiffness. Each of them is described by the same normal distribution around their
respective reference values with a standard deviation of 5%. The probability density function
(PDF) of this input distribution is given by the orange curve in figure 3a. The parameterization
along the blade is made with the NURBS curve methodology presented in section 2.3. The
applied NURBS curve has two fixed control points at the root and tip of the blade and a
variable control point in the middle. Each physical parameter has therefore only one uncertain
parameter. A snapshot of the random samples is shown in figure 3b. These input distributions
are chosen as academic example and are not meant to represent any real physical deviations
that could occur in a wind turbine blade.
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Figure 3: Definition of the input uncertain parameters

The design of experiments of the surrogate model was identical for both tools and fixed
from the outset. A fourth order polynomial is used, applying the quasi-random, minimal
discrepancy Hammersley sampling method. According to the best-practice study by Hosder
et al. [29], the input distribution space was oversampled by a factor of 2, resulting in a total of
72 random samples. These settings were verified by trial-and-error, the accuracy of the surrogate
model could not be improved significantly by increasing its order or the number of samples. As
mentioned before, an adaptive design of experiments, as e. g. presented by Liithen et al., will be
a meaningful extension of the UQ framework in the future [24].

The damping ratio training samples for both tools are shown by the circular markers in figure
4a. For clarity, some important remarks have to be made. The Hammersley sampling method
is quasi-random. Training data coordinates are chosen to minimize the discrepancy. In this
implementation, the torsional stiffness uncertain parameter varies linearly from its minimum
value at random sample node 0, up to its maximum value at random sample node 71. This
results in a clear ’trend’ in the damping values, rather than completely random results. The
samples are identical between the two tools, e.g., the simulation at node 0 is in both tools done
with the exact same set of input parameters.

There is a constant offset of approximately 0.5 % between the Bladed linearization damping
and the Bladed time domain damping, independent of the uncertain parameters. This
discrepancy is also present for simulations under nominal uncertain parameter conditions. The
reason for this offset is not yet fully understood and considered beyond the scope of the article
and subject of future investigations. The spread of the damping values for the random samples
around the nominal values shows an almost identical trend for both tools. This is a first
indication that the three investigated uncertain parameters have an identical influence on the
Qol for both methodologies. In the same plot, the evaluations of the leave-one-out surrogate
models are visualized by the + markers. An excellent agreement can be seen for most nodes. This
verifies the approximation of the true model by the PCE surrogate model. Another visualization
of the same training data samples and leave-one-out model verification data is shown in figure
4b. The markers would be on the diagonal red line for an exact approximation of the training
data by the leave-one-out model. This figure highlights again the excellent agreement. One
further finding is that especially for the Bladed time domain model, the approximation quality
seems to deteriorate at the edges of its domain, i.e., for the lowest and highest damping values.
At these values, the input parameters are likely at their respective bounds too. As discussed
in section 2.2, the leave-one-out test is done by evaluating the surrogate model at the training
data point excluded from the training dataset. The Hammersley sampling method will therefore
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Figure 4: Verification of the PCE surrogate model by a comparison of the damping training
data samples and the leave-one-out evaluations

locally lose its favorable low discrepancy characteristic. This will result in an exaggerated error
in the leave-one-out test compared to the actual quality of the surrogate model. It is therefore
likely that these small errors at the edges of the domain are rather an effect of the leave-one-out
verification methodology. Finally, the total approximation error of the leave-one-out test can
also be condensed into an error metric value. Following two metrics are defined, namely the
normalized root-mean-square deviation (NRMSD), and the Mean Absolute Error (MAE), which
are given by

¥ (Z-2)°
NRMSD = maxZ —min Z ’ (4)
> )Z _ Z‘
MAE=—1 1 (5)
n

where Z is the set of damping values of the true model, 7 is the set of approximated damping
values of the leave-one-out surrogate model, and n is the number of samples. The Mean Absolute
Error (MAE) has the benefit that it describes the error in the same unit as the samples. This
makes it easier to interpret the severity of a specific error. The Normalised Root-Mean-Square
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Deviation (NRMSD) uses a normalization of the error by the spread of the samples. For this
case study, both error metrics show the accuracy of the PCE model with a relative NRMSD
below 2% and an MAE close to 0.01% damping, as visualized in figure 4c. The approximation
error of the time domain model is slightly larger compared to the linearized model.

The main result of the variance based uncertainty quantification are the Sobol indices, as
described in section 2.1. The first order and total Sobol indices for both tools are visualized
in figure 5. Independent of the tool, the torsional stiffness has the dominant influence on the
unstable mode. This agrees with engineering judgement. This also explains the clear trend in
figure 4a. The first order and total Sobol indices are almost identical. This signifies that there
is no interaction between the uncertain parameters. E.g., the influence of the torsional stiffness
on the damping is independent of the edgewise or flapwise stiffness.
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Figure 6: Total output distribution and individual first order effects on output distribution

The PCE model is resampled 100,000 times to obtain further statistical properties, as shown
in figure 6. The top left plot shows the total output distributions. The offset of the mean
value is again significant, but the shapes of the normal distribution are in excellent agreement
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between the two tools. The resampled mean for Bladed time domain is at a damping ratio
of -0.825 %, with a standard deviation of 0.263 % damping. The resampled mean for Bladed
(lin.) is at a damping ratio of -1.325 %, with a standard deviation of 0.261 % damping. The
three remaining plots show the first order effects of each parameter individually on the output
distribution. This is a visual representation of the conclusions drawn from the Sobol indices.
The torsional stiffness has the dominant participation in the variance of the output parameter.
In comparison, the flapwise and edgewise stiffness only have a negligible influence.

4. Conclusion

An open-source Python framework is presented with the goal to establish an interface between
wind turbine aeroelastic simulation codes and publicly available uncertainty quantification tools.
The non-intrusive, global, variance-based uncertainty quantification with a PCE surrogate model
is done in uncertainpy. The framework can be applied to various research questions with different
quantities of interest and different sets of uncertain parameters. An exemplary case study on
the influence of structural blade properties on stability analysis results in Bladed has been used
to demonstrate the requirements and outcomes of the framework. The case study showed that
the uncertainty quantification on a linearized model and non-linear time domain simulation are
in excellent agreement. The PCE surrogate model was successfully verified as approximation of
the true model and the observed sensitivities agree with the engineering judgment expectations.

Acknowledgments

This work is a collaboration of three partners from research and industry in the frame of
the German national research project QuezUS. This project is funded by the German Federal
Ministry for Economic Affairs and Climate Action, grant no. 03EE3011A/B.

References
[1] van den Bos L M M and Sanderse B 2017 Uncertainty quantification for wind energy applications - Literature
review Tech. Rep. SC-1701 Centrum Wiskunde & Informatica
] Rinker J M 2020 (J. Phys.: Conf. Ser vol 1618) (Delft, The Netherlands: TORQUE)
| Roberson A N, Shaler K, Sethuraman L and Jonkman J 2019 Wind Energy Science 4 479-513 ISSN 2366-7443
] Fluck M and Crawford C 2016 (J. Phys.: Conf. Ser vol 753) (Munich, Germany: TORQUE)
[5] Ernst B, Schmitt H and Seume J R 2014 (J. Phys.: Conf. Ser vol 555) (Copenhagen, Denmark: TORQUE)
| Ziegler L and Muskulus M 2016 (J. Phys.: Conf. Ser. vol 753) (Munich, Germany: TORQUE)
] Lobitz D W 2005 Journal of Solar Energy Engineering 127 538-543 ISSN 0199-6231
] Resor B and Paquette J 2011 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference (Denver, Colorado: American Institute of Aeronautics and Astronautics)
[9] Pourazarm P, Modarres-Sadeghi Y and Lackner M t
[10] Sudret B 2008 Reliability Engineering and System Safety 93 964-979
[11] Le Gratiet L, Marelli S and B S 2017 Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions
and Gaussian Processes pp 1289-1325
[12] Caboni M, Carrion M, Rodriguez C, Schepers G, Boorsma K and Sanderse B 2020 (J. Phys.: Conf. Ser. vol
1618) (Delft, The Netherlands: TORQUE)
[13] Kumar P, Sanderse B, Boorsma K and Caboni M 2020 (J. Phys.: Conf. Ser vol 1618) (Delft, The Netherlands:
TORQUE)
[14] Hirvoas A, Prieur C, Arnaud E, Caleyron F and Munoz Zuniga M 2021 International Journal for Numerical
Methods in Engineering 122 2528-2544 ISSN 1097-0207
[15] Hiibler C, Gebhardt C G and Rolfes R 2017 Renewable Energy 111 878-891 ISSN 0960-1481
[16] Hubler C, Gebhardt C G and Rolfes R 2019 29th European Safety and Reliability Conference (Hannover,
Germany: ESREL)
[17] Miiller F, Krabbe P, Hiibler C and Rolfes R 2021 The 31st International Ocean and Polar Engineering
Conference (Rhodes, Greece)
[18] Rinker J 2016 (J. Phys.: Conf. Ser. vol 753) (Munich, Germany: TORQUE)
[19] Li S and Caracoglia L 2019 J. Phys.: Conf. Ser 188 43-60 ISSN 0167-6105
[20] Tennge S, Halnes G and Einevoll G T 2018 Frontiers in Neuroinformatics 12 ISSN 1662-5196

10



The Science of Making Torque from Wind (TORQUE 2022) IOP Publishing
Journal of Physics: Conference Series 2265(2022) 042039  doi:10.1088/1742-6596/2265/4/042039

[21] Feinberg J and Langtangen H P 2015 Journal of Computational Science 11 46-57 ISSN 1877-7503

[22] Marelli S and Sudret B 2014 The 2nd International Conference on Vulnerability and Risk Analysis and
Management (ICVRAM 2014) (University of Liverpool, United Kingdom) pp 2554-2563

[23] wtug, Wind Turbine Uncertainty Quantification. https://doi.org/10.5281/zenodo.6401223

[24] Lithen N and Sudret B 2019 Book of Abstracts of the 90th Annual Meeting of the International Association
of Applied Mathematics and Mechanics (GAMM 2019) (Vienna, Austria: TU Verlag)

[25] Popko W et al. 2018 IWES Wind Turbine IWT-7.5-164. Rev 4 Tech. rep. Fraunhofer IWES Bremerhaven,
Germany https://gitlab.cc-asp.fraunhofer.de/iwt /iwt-7.5-164, GPL v3

[26] Verdonck H, Hach O, Braun O, Polman J D, Balzani C, Miiller S and Rieke J 2021 Code-to-code comparison
of realistic wind turbine instability phenomena Presented at the Wind Energy Science Conference (WESC),
https://doi.org/10.5281/zenodo.5874658

[27] Demo N, Tezzele M and Rozza G 2018 The Journal of Open Source Software 3 530

[28] Le Clainche S and Vega J 2017 SIAM Journal on Applied Dynamical Systems 16 882-925

[29] Hosder S, Walters R and Balch M April 23-26, 2007 48th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference (Honolulu, Hawaii: ATAA)

11



