
Include-Analysis for C++ Source Code

Bachelor’s Thesis
by

Aiko Bernehed, M. Sc.

submitted to

Software Engineering and Programming Languages
Prof. Dr. Michael Leuschel

Heinrich-Heine-University Düsseldorf

February 2022

Supervisor:
Dr. John Witulski

Abstract

The C++ programming language is highly versatile and leaves many aspects of code organi-
zation to programmers, but provides functionality for code separation into source and header

files. As projects have grown larger in size and C++ has found its way into critical infras-
tructure, the community has started developing a host of best-practice guidelines for code
organization. Since these are not programmatically enforced during development, static in-
clude analysis is an excellent tool for checking programmers adherence to these self-imposed
guidelines. In this work, the Axivion Suite by the Axivion GmbH is used to develop a set of
rules that enforce a number of guidelines as they may be encountered in real-world applica-
tions. The Axivion Suite uses a proprietary compiler to gather analysis data on existing C++
source code of a given project. The rules presented here are enforced by running specially
developed Python scripts on the analysis data generated by the Axivion compiler. Finally, the
entire set of rules is used to analyze an existing application, "Notepad++", and the results are
compared to Axivion’s proprietary rules, gathered under the name of Generic stylechecks.
"Notepad++" consists of a core program and the Scintilla and Boost libraries, all three of
which exhibit a host of different issues. Overall, the rules developed here uncover 3,673
and Axivion’s rules 3,890 violations. The minutiae of these results are discussed and final
conclusions about this work and Axivion’s implementation drawn.

iii

Acknowledgments

I would like to acknowledge the extensive help my supervisor, Dr. John Witulski, provided
me with this work. Furthermore, I would like to thank Axivion’s Dr. Sebastian Krings for his
insightful comments on an early version of the work carried out here, and Kristina Herbinger
for her quick and industrious assistance with the Axivion licensing tools. Finally, I would
like to thank my family for their continuous support of my work and education.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 The Necessity of Static Include Analysis . 1
1.2 State-of-the-Art . 5
1.3 The Axivion Suite . 7

2 Analysis Rules 11

2.1 Busy Headers . 12
2.2 Chained Includes . 15
2.3 Discouraged Content . 19
2.4 Include Guards . 20
2.5 No Absolute Paths . 24
2.6 No Conditional Preprocessing . 25
2.7 Primary Includes . 26
2.8 Too Many Includes . 27
2.9 Wrong Include Casing . 28
2.10 Wrong Include Type . 28
2.11 Analysis not implemented . 30

3 Analysis of an Existing Project 35

3.1 Analysis Results . 35
3.2 Execution Time . 42

4 Conclusion and Future Work 45

Bibliography 47

vii

List of Figures

1.1 Compilation steps of a C++ compilation program as presented by Mallia and
Zoffoli [14, p. 3]. 3

1.2 An illustration of how concatenating includes may lead to obscure and unex-
pected behavior. 6

2.1 Representation of an example program with a total of seven #include di-
rectives. The left numbers represent the amount of includes including that
file, whereas the right numbers represent the amount of transitive includes of
that file. 13

2.2 These are five examples of how concatenating includes may be arranged be-
fore and after applying the AB - Chained Includes rules. The blue header files
contain tokens the source file uses and are therefore essential. A discussion
of how the algorithm handles this situation is given in the text. 16

ix

List of Tables

2.1 An overview over which content is allowed and discouraged in a header
file according to The C++ Programming Language by Bjarne Stroustrup
(slightly adapted) [21, p. 425 f.] . 21

2.2 C++ Standard Library implementations of C Standard Library headers used
for backwards compatibility. [17, p. 485] . 29

3.1 The number of Stylecheck violations for the rules presented in Chapter 2 and
Axivion’s Axivion Generic Stylechecks, separated into the Notepad++ core
programming and the Scintilla and Boost libraries. 37

3.2 Execution time of all rules used for this project analysis and the correspond-
ing worst-case time complexity estimates for the rules developed in this the-
sis. 43

xi

Chapter 1

Introduction

The C++ programming language was originally developed by Bjarne Stroustrup as an exten-
sion to C in 1979 [19, 21]. The intent was to augment the speed and low-level practicality
of C by introducing object-oriented programming paradigms into the language. In fact, the
precursor to C++ was called "C with classes". Over the subsequent years the language was
developed further until the ISO C++ committee (officially named ISO/IEC JTC 1/SC 22/WG
21) promulgated the first C++ standard in 1998 under the title ISO/IEC 14882:1998 [16], in-
formally known as C++98. The latest standard was published in December 2020 as ISO/ICE
14882:2020 [17], also known as C++20, and will likely be replaced in 2023. Since its in-
ception C++ was, and still is, a very successful programming language rivaled in popularity
only by Python, Java and its predecessor C [22].

1.1 The Necessity of Static Include Analysis

C++ supports the use of standalone compilation units, such that the user code only sees
type and function declarations without any knowledge of their implementation [21]. The
definitions of those types and functions can be located in separate source files, marked by
endings such as ".cpp", ".cxx", or ".c++", which may be compiled independently from
the user code. For the compiler to know which tokens are available, declarations of types and
functions may be presented by header files, usually marked by a ".h" ending. The ISO C++

standard [17] does not require particular endings for source and header files, but a consistent
naming convention is strongly recommended by Stroustrup [21].

1

Chapter 1 Introduction

The header files are best understood as an interface between the source files containing the
actual code. They are made available to source files via the #include directive, so that
source files subsequently have access to all the types, functions, variables, and macros that
the targeted header file declares. For example, the C++ Standard Library header cmath
defines a function sqrt, which calculates the square root of a given numerical input. By
writing #include <cmath> a user has access to sqrt without any knowledge how it is
defined in the cmath source file.

C++ compilation of a project consists of four major steps [14] as detailed in Fig. 1.1 and
outlined as follows:

Preprocessor Directives for preprocessing are handled in each source file as they are en-
countered. C++ has a plethora of preprocessor directives, e.g. #define statements
for macro replacement or #if, #ifdef, and #ifndef statements to enable condi-
tional compilation. #include statements lead to the statement being replaced with
the entire target file, typically a header.

Compiler After the Preprocesser has finished the Compiler is presented with an augmented
source file with macro and conditional text replacement and the header files copied into
the text. The Compiler converts this pure C++ code, without preprocessing directives,
into an assembly file for the target platform.

Assembler The Assembler uses the generated assembly file to generate machine readable
object code. The object files typically have a ".o" or ".obj" file ending. Often
the Compiler invokes the Assembler directly, so that these intermediary steps are not
transparent to the user.

Linker The Linker takes all the necessary object files and links them together into a library
file or an executable program.

In the case of the sqrt example above, the source file has an #include <cmath> state-
ment. The Preprocessor replaces that directive with the cmath header file, which, among
other things, contains the forward declaration of the sqrt function. The compiler (and sub-
sequent assembler) can now use this forward declaration to generate an object file using this
reference to an undefined symbol. The Linker finally replaces that reference with the correct
address from the cmath object file. Therefore, neither the user nor the compilation program
ever needs to know about the sqrt source code and still have full access to it through the
cmath header as an interface.

2

1.1 The Necessity of Static Include Analysis

Figure 1.1: Compilation steps of a C++ compilation program as presented by Mallia and
Zoffoli [14, p. 3].

3

Chapter 1 Introduction

The ISO C++ standard [17] states few requirements for code organization. Theoretically,
one could provide a source and header file for every single variable and function used in a
project or, in the other extreme, one could write the complete project into a single source file.
Stroustrup himself writes: "Strictly speaking, using separate compilation isn’t a language
issue; it is an issue of how best to take advantage of a particular language implementation.
However, it is of great practical importance. The best approach is to maximize modularity,
represent that modularity logically through language features, and then exploit the modularity
physically through files for effective separate compilation." [21, p. 53]. The ISO standard
itself defines 124 Standard Library headers, also called system headers, which take up about
three-quarters of the entire document in chapters 16-32 [17]. Next to that users can define
their own headers and include them into source files.

Rules and regulations on how to structure a C++ project and how to utilize header files is
a matter of convention within the community. The exact guidelines followed vary between
users, teams, and industries, may even be contradictory to one another, and change over time.
A C++ compiler adhering to the ISO standard will happily translate any correct program with
little regard to code structure. Yet, adequate code structure is advantageous in providing a
number of benefits:

• By increasing the organization of the project current and subsequent programmers have
access to an understandable and serviceable code base.

• Code may be reused and shared between various projects and may even be published
using header files without publishing the underlying source code. Within a project,
often used functionality can be bundled along logical lines to have a single serviceable
piece of code.

• Coding responsibility can be assigned to various programmers and teams, creating
"experts" for a particular part of code.

• Standalone compilation units can be compiled separately from one another, thereby
greatly increasing compilation time should changes be made to only one part of the
code.

In static analysis the source code of an entire project can be automatically checked for ad-
herence to a set of self-imposed rules the programming team wishes to follow. This is in
contrast to unit tests and dynamic code analysis, which check a code’s performance after
compilation and during runtime on a set of predetermined inputs. Static include analysis, the
main topic of this thesis, is a subset of static analysis tools and applies to source and header

4

1.2 State-of-the-Art

file organization and their contents. The rules imposed often follow best-practice advice by
the C++ community. Therefore, the concepts discussed here can be used for a wide range of
C++ projects.

1.2 State-of-the-Art

There are currently several options available for static include analysis, though only two
open-source projects could be found. These will be touched upon briefly here.

cppclean

The open-source project cppclean, according to its own github page [4], "Finds problems in
C++ source that slow development of large code bases". It does this by building an Abstract
Syntax Tree of the source code to be analyzed and subsequently identifying various forms of
unused code. Currently, cppclean can find the following

• Classes with virtual methods that may cause issues
• Global and static data that may cause errors in conjunction with threads
• Declared but undefined functions
• Unnecessary forward class and function declarations
• Undeclared function definitions
• Unnecessary #include directives in header files and inconsistent casing in #include

directives and header file names.

Furthermore, there are a host of issues the development team has tagged as "planned", i.e.
yet to be implemented. Unfortunately, the latest commit to the repository is from November
2019, so the project may be deemed discontinued.

5

Chapter 1 Introduction

Include What You Use

Include What You Use [6], or IWYU for short, is still under active development with
IWYU 0.17 released in December 2021. The first version was released in February 2011
and was a spin-off form work done at Google. The developers follow a philosophy that each
file declares all the headers for all the symbols (types, functions, variables, and macros) used
directly. When followed, this means that it is possible to edit any #include directive and
statement without breaking any dependencies on that file.

Figure 1.2: An illustration of how concatenat-
ing includes may lead to obscure
and unexpected behavior.

For example, the Standard Library header

map includes the header compare. If a
source file includes map it has access to
everything in compare as well, including
the class partial_ordering. An
overview of the dependencies is illustrated
in Fig. 1.2. Include What You Use
posits that source.cpp in this example
should include compare directly. Oth-
erwise, the include dependencies within
the project may be opaque and deletion
of #include <map> may lead to unex-

pected behavior.

The developers mention a host of benefits by using IWYU on the project’s website [6]:

• Faster Compiles and fewer recompiles due to an elimination of unnecessary includes
• Easier refactoring due to each file being directly included, mitigating ambiguous in-

clude paths
• A certain level of self-documentation, since each header file clearly states its use
• Simpler cutting of dependencies, as the header files of irrelevant dependencies are

easier to identify
• Reduction of code size and compile time by replacing #include directives with for-

ward declarations. This aspect of IWYU is contentious though, since excessive for-
ward declaration can lead to a vast quantity of new issues.

IWYU makes heavy use of the clang compiler-frontend. Integrating IWYU into a project

6

1.3 The Axivion Suite

can be cumbersome and it may not work on every programming environment. Furthermore,
the development team itself is aware of major issues and writes: "This is alpha quality soft-
ware – at best (as of July 2018). It was originally written to work specifically in the Google
source tree, and may make assumptions, or have gaps, that are immediately and embarrass-
ingly evident in other types of code." [6, "Instructions for users"]. Overall, IWYU is certainly
a powerful tool, but it may be difficult to use and results must be operated on with care.

Commercial products

Apart from the two open-source tools cppclean and Include What You Use there is a host
of commercial static analysis tools to chose from:

• Klocwork by Perforce (https://www.perforce.com/products/klocwork)
• CppDepend by CoderGears (https://www.cppdepend.com/)
• Parasoft C/C++ Test (https://www.parasoft.com/products/parasoft-c-ctest/)
• Coverity by Synopsys (https://www.synopsys.com/software-integrity/)
• Polyspace by Mathworks (https://www.mathworks.com/products/polyspace.html)

How many of these also provide some sort of static include analysis is unclear from the
limited information available for each tool. The work carried out here was done using the
Axivion Suite by the Axivion GmbH. The suite is a full-service package that provides static
analysis, including static include analysis, and architecture analysis services. It supports a
variety of build tools, is compatible with most modern version control systems, and provides
plugins for Microsoft Visual Studio, Visual Studio Code and Eclipse.

1.3 The Axivion Suite

The Axivion Suite by the Axivion GmbH is a software analysis package for a plethora of
static code analysis tools wrapped with professional reporting and presentation software.
The origins of the suite date back to a project called Bauhaus originally developed at the
Institute of Software Engineering at the University of Stuttgart in 1996 [18]. Together with
the Working Group Software Engineering of the University of Bremen the project was further

7

Chapter 1 Introduction

developed and spun out into the Axivion GmbH in 2006, which, as an independent company,
was able to professionalize the software, address industry specific issues, and to handle and
fulfill customer requests. The origins of the Axivion Suite can still be seen in some of the
naming convention of software internals, where the name Bauhaus still appears.

The Axivion Suite uses two distinct tools to analyze project source code. Historically, the
first is the proprietary Intermediate Language (IML), which contains semantic and syntactic
information about the code in question [18, 20]. It has since been replaced by a construct
called the Intermediate Represenation (IR), the internals of which are not published. How-
ever, it can be inferred from the documentation and usage of the suite how it is organized.
The IR is built up as an Abstract Syntax Tref (AST), each node of which represents a general
object within the programming language, e.g. a source or header file, a function, class, vari-
able or namespace, and contains extensive information about that particular token. The IR is
split into two parts, the logical and the physical part:

• The logical part, also called LIR, represents how a programmer might think about
the code in the sense of functionality. As an example, it shows all entry points to a
program, the logical execution calls, and the connection between different variables,
functions, namespaces, classes, and other language tokens without any regard of where
they are in the source code.

• In contrast, the physical part, abbreviated as PIR and somewhat misnamed for a soft-
ware analysis tool, represents the actual structure of the code. It shows each source

and header file, each declaration and definition of variables, macros, function, classes,
etc. as they are encountered in each of these files and so on. The physical is a close
representation of how the code is actually written.

The second tool the Axivion Suite uses is the Resource Flow Graph (RFG) [20]. The RFG
is much more high-level than the IR and shows the project from a more global perspective.
Nodes in the RFG represent elements that are architecturally relevant, whereas edges repre-
sent their relationship. A graphical analysis tool for the RFG, called Gravis, was developed
and may pose the best way to analyze the RFG. The RFG has different views, which show dif-
ferent architectural parts of the project, for instance how function calls relate to one-another
or how different header files are included. Furthermore, each node in the RFG contains
all necessary information about the element it represents. The RFG is therefore best used
in conjunction with Gravis to understand a project and its internal interdependencies as a
whole.

8

1.3 The Axivion Suite

To generate the IR and RFG for C++ source code, the project has to be compiled with Axiv-
ion’s proprietary build tool CafeCC. According to the suite’s documentation [1], CafeCC
is the frontend to cafe, giraffe, and irlink, which are the suite’s compiler, assem-
bler, and linker, respectively. CafeCC compiles code like an ordinary compiler, but gathers
analysis data while doing so. It supports projects that would ordinarily be built with local
build tools such as make or Visual Studio solutions. The Axivion Suite also allows track-
ing of issues via a large variety of version control systems like Git and Apache Subversion
(SVN). Using the IR and RFG, users can access a large variety of analysis rules and also
implement their own. The rules written and implemented in this thesis will be discussed in
detail in Chapter 2. The results of a test of these rules on existing projects will be discussed
in Chapter 3 and a conclusion and an outlook for future work provided in Chapter 4.

9

Chapter 2

Analysis Rules

The Axivion Suite provide access to a lot of different analysis and stylechecks out of the box,
including major industry standardization guidelines like AUTOSAR [10] and MISRA [9].
Additionally, the suite allows the user to write their own analysis rules with an example of
a custom rule provided in the documentation. The rules are written in Python and can be
integrated into the analysis setup of an existing framework.

The configuration setup for the suite can be called with the command axivion_config.
The Axivion documentation [1] provides instructions about how to implement and package
custom rules, so that they can be found in and integrated into the configuration dialogue. By
setting the environment variable BAUHAUS_CONFIG to a specific configuration, the shell
command axivion_ci is used to build the IR (and RFG, if necessary), run the required
analysis, and publish the results to the local Axivion dashboard, which can be accessed with
a browser.

The setup of each custom rule follows the template provided in the documentation:

• The file needs to import bauhaus.analysis, baushaus.ir to access Axiv-
ion’s functionality and the rule is written as a class descended from analysis.AnalysisRule

• The class has a couple instance variables which are required for the rule title and to
output messages about the analyses results to the dashboard. Furthermore, the user can
program any number of variables used by the rule, such as reporting thresholds. These
can be changed when calling axivion_config.

• The method get_rulehtml_description is used to provide an HTML-coded

11

Chapter 2 Analysis Rules

description of the rule’s behavior to the configuration window and the dashboard.
• The method execute contains the intelligence of the rule. Depending on user pro-

gramming, it usually receives an IR graph with which to carry out the required analysis.
The class can also be augmented such that the method receives an RFG instead of or
in addition to the IR graph.

• Messages are emitted by calling the inherited method self.add_message(...),
which allows to provide information about the node in question and a message to output
to the programmer. For unit tests, this method is overwritten to return the messages to
the testing suite, which uses asserts to ensure that the rule behaves as anticipated.
Therefore, the tests are only minimally invasive to the script tested.

Most rules for static include analysis in the Axivion Suite fall under the category of "Generic
Stylechecks". The rules are named Generic-XXX, but in order to aid legibility Axivion’s
rules will be called Axivion Generic-XXX in this work. Using these rules and the concepts
presented in Chapter 1 as guidelines, several custom static include analysis rules were devel-
oped and tested. These rules will be called AB - XXX (for Aiko Bernehed) to differentiate
them from Axivion’s Generic rules. The Axivion Suite, version 7.2.5, provides the IR and
RFG for subsequent analysis by the AB rules developed here. In this chapter, each rule’s
background and motivation will be discussed, the implementation shown on a pseudo-code
basis and the functionality illustrated using include-graphs, where necessary. Each rule’s be-
havior was tested using automated unit tests. An estimation of each rule’s time complexity
in relationship to the amount of #include directives n is also provided. The source code
for this project is available upon reasonable request from the author’s git repository at the
Heinrich-Heine-University Düsseldorf1.

2.1 Busy Headers

The rule about "Busy Headers" is directly inspired by Axivion Generic-BusyHeaders rule
provided by the Axivion Suite. Each header file in the project is analyzed for the amount of
files that include it and the amount of transitive includes it contains. Those two numbers are
then multiplied and the header reported if a certain threshold is reached.

Whereas the number of including files is easily calculated, the number of transitive includes
1https://git.hhu.de/aiber100/ba_cs_code

12

2.1 Busy Headers

Figure 2.1: Representation of an example program with a total of seven #include direc-
tives. The left numbers represent the amount of includes including that file,
whereas the right numbers represent the amount of transitive includes of that
file.

a header contains is not quite so straightforward. It is calculated by iterating through all
included files, the files they include, and so on, and counting the total number of uniquely in-
cluded files. Fig. 2.1 shows the situation for an example of concatenating includes. For each
header the numbers state the amount of files that include the header and how many transitive
includes the header has. So the source file, marked as "*.cpp" here has no including files,
but five transitive includes. Even though multiple include paths lead to "d.h" and "e.h",
each included file in the graph is only counted once.

The motivation behind this rule is, that the preprocesser, as outlined in 1.1 replaces any
preprocessing directives it finds with the referenced code. Therefore, header files are not
only included into any file that targets it via an #include directive, but also transitively
included throughout the entire chain to the primary source file. In the above example in Fig.

13

Chapter 2 Analysis Rules

2.1, *.cpp contains all the code from all the header files it transitively includes, from a.h

to e.h.

Multiplying a header’s transitive includes by the amount of times that specific header is
included throughout the code, yields how much complexity this header alone introduces into
the project. If a certain user-determined threshold is breached, the rule reports a violation in
the dashboard. To remedy this issue, the programming team might consider restructuring the
code base and removing #include directives from heavily used header files.

Algorithm 1 Busy Headers Rule
1: procedure FIND INCLUDES(node: ir.Node, trans: dict, direct: dict)
2: if node previously visited then return \\ break cyclic includes
3: else
4: add node to previously visited
5: for all incl in User and System include-declarations do
6: FIND INCLUDES(incl.File, trans, direct) \\ call with target file of include
7: trans[node] += trans[incl] \\ concatenate current node’s with child’s includes
8: trans[node].append(incl) \\ append current child to node’s includes
9: direct[incl].append(node) \\ append current node to child’s list of includers

10: trans = set(trans) \\ make list of includes unique via set() method
11: return
12:
13: procedure EXECUTE(graph: ir.Graph)
14: initialize trans, direct
15: for all source-files in graph (ir.Physical) do \\ operate on physical part of IR
16: FIND INCLUDES(source, trans, direct)
17: for all node in header-files do
18: if trans[node] · direct[node] > threshold then
19: report node

The working principle of the rule is shown in Alg. 1. The algorithm is split into two proce-
dures, the first of which finds all transitive includes and direct includers for each file. The
second procedure iterates over all source files, calls the first procedure, and subsequently
calculates the product of transitive includes and direct includers for all source and header

files, as outlined above. If the product of transitive and direct includes for a file rises above a
user-defined threshold, the file will be reported. The programmer should consider rewriting
the program to break source file dependencies on a large number of header files and miti-
gate long chains of #includes that cascade throughout the program. Since the algorithm
iterates over all includes but doesn’t contain nested loops, the time complexity is in O(n).

14

2.2 Chained Includes

It should be noted here that this implementation of AB - Busy Headers and the Axivion

Generic-BusyHeaders rule diverge in their results. Axivion Generic-BusyHeaders consis-
tently reports one more transitive include than this implementation. When manually counting
through the includes of test code, e.g. as detailed in Fig. 2.1, the AB - Busy Headers rule’s
count seems to be correct and is supported by counts provided by the RFG, which points to
a bug in the Axivion Generic-BusyHeaders rule.

2.2 Chained Includes

The rule AB - Chained Includes was inspired by Include What You Use, as outlined in
section 1.2. Under the same philosophy, a file adhering should always include the headers
for its tokens directly. An example of how includes might be chained to enable access to a
token for the original source file is shown in Fig. 1.2. For an explanation on the veracity of
mitigating chained includes, the reader is referred to section 1.2.

However, strictly adhering to including every single header file that is required for all tokens
in a source file without allowing for chained includes may lead to an extreme number of
necessary includes. This directly clashes with the rule against too many includes, discussed
in section 2.8. Therefore, an alternative representation is discussed here: each source file
should include the most specific header file it can include without having to split include
trees. Furthermore, unnecessary header files should be flagged for removal.

The rule, as detailed in Alg. 2, first searches for all transitive includes of all #include
directives and the declarations and definitions of all tokens in the source file. It then breaks
all loops and ambiguous include paths. The algorithm tries to determine which is the include
with the least source files in it, to acknowledge efforts made to already provide the most ac-
curate includes. It also checks which direct ancestor headers are themselves declaring tokens
and are therefore indispensable. The script then checks for newly empty include paths, which
can be removed. Finally, the algorithm checks which header file in the include-path has the
least transitive includes, while still containing all the descending tokens necessary headers.
The algorithm iterates of all source and header files and contains a double-nested for-loop
again iterating over all header files as source files and compares them to all included files.
Therefore, the time complexity is in O(n3).

15

Chapter 2 Analysis Rules

(a) An example of include dependencies before the rule is applied.

(b) The same example of include dependencies after the rule is applied.

Figure 2.2: These are five examples of how concatenating includes may be arranged before
and after applying the AB - Chained Includes rules. The blue header files contain
tokens the source file uses and are therefore essential. A discussion of how the
algorithm handles this situation is given in the text.

16

2.2 Chained Includes

Algorithm 2 Chained Includes Rule
1: procedure FIND INCLUDES(node: ir.node, trans: dict, direct:dict) \\ same as Alg. 1
2: . . .
3: procedure DECLARATIONS AND DEFINITIONS(node: ir.Node, sources: list)
4: for all children of node do \\ recursively search for all declarations
5: DECLARATIONS AND DEFINITIONS(children, sources)
6: if node has part in ir.Logical, has a name, and is not a namespace then
7: DeclDefs = all files that are declaring and defining node (from ir.Logical)
8: DeclDefs = set(DeclDefs) \\ ensure uniqueness
9: for all DeclDefs do

10: if DeclDef is a header file then
11: sources.append(DeclDef) \\ save this token’s header
12:
13: procedure EXECUTE(graph: ir.Graph)
14: initialize trans, direct
15: for all source and user header-files in graph (ir.Physical) do
16: FIND INCLUDES(source, trans, direct)
17: initialize source-list
18: DECLARATIONS AND DEFINITIONS(source, source-list)
19: include-files = header files of all include-directives in source
20:
21: \\ now have all transitive includes and all declarations and definitions of all tokens
22: initialize src-inc, inc-src \\ Dictionaries referencing lists
23: for all src in source-list and incs in include-files do
24: \\ store which includes have which source files as descendants and which
25: \\ includes precede the source file. Due to forks these may be different
26: if src in trans[inc] then
27: src-inc[src].append(inc)
28: inc-src[inc].append(src)
29:
30: \\ flag includes for removal, leaves includes without source-descendant
31: to-remove = include-files - inc-src
32:
33: \\ check whether each src header has a unique include path, otherwise snip paths
34: for src, incs in src-inc.items() do
35: if len(incs) > 1 then \\ multiple include paths to src, see Fig. 2.2a, Case I
36: for all inc in incs do \\ must choose one inc of all available incs
37: choose first inc which is also a source-include \\ Fig. 2.2a, Case I
38: otherwise choose inc with least source-includes \\ Fig. 2.2a, Case II
39: delete all other sources from inc-src \\ ensure uniqueness
40: src-inc[src] = inc \\ ensure uniqueness

17

Chapter 2 Analysis Rules

Algorithm 2 Chained Include Rule
41: \\ paths now cleaned up, now search for empty paths and most accurate includes
42: \\ that still cover their respective paths
43: initialize to-replace, pot-remove
44: for inc, srcs in inc-src.items() do
45: if srcs is empty then
46: pot-remove.append(inc) \\ flag all includes NOW empty (after cleanup)
47: min-trans = len(trans[inc]) \\ current amount of transitive includes for inc
48: for all trs-inc in trans[inc] do
49: skip, if not all items in srcs descend from trs-inc
50: if len(trans[trs-inc] < min-trans then
51: min-trans = len(trans[trs-inc]
52: to-replace[inc] = trs-inc \\ most accurate header for descending tokens
53:
54: \\ report all rule violations
55: for all header in to-remove, pot-remove, to-replace do
56: report header

To better explain this rather complicated algorithm, the reader might consider Fig. 2.2a. Five
different examples for potential include paths show how the rule works. The source file has a
variety of #include directives, whereas only the headers with light blue coloring contain
tokens used by the source:

Case I Even though a.h is included first, the algorithm notices that b.h also provides a
token to the source file. Therefore a.h is flagged for removal.

Case II In contrast to Case I, the algorithm assigns f.h to the include path of d.h. There-
fore, e.h is flagged for removal, whereas it is suggested to replace d.h by f.h.

Case III The algorithm cannot find a token used in g.h or h.h. Therefore, the directive
#include "g.h" is flagged for removal.

Case IV Tokens in i.h are used. Nothing is flagged.
Case V The algorithm goes through all headers in the include path and checks how many

transitive includes it has and whether all headers with tokens used by the source file
are still included. Specifically, l.h has fewer transitive includes than j.h and k.h

and still precedes all token-containing headers. n.h has fewer transitive includes than
l.h, but doesn’t contain m.h. The same limitation holds for all other headers in this
subgraph. Therefore, the algorithm suggest to replace j.h with l.h

An updated results of how the five cases are handled when the programmer adheres to the

18

2.3 Discouraged Content

suggestions made be the rule is displayed in Fig. 2.2b. As is directly evident, the amount
of includes that need to be processed is significantly reduced by using the rule on this given
example. It should be noted that the algorithm only flags includes for removal, or suggests
to replace an include by a more accurate one. Therefore, using this rule never leads to more
#include directives being proposed. Rather the rule will only reduce the amount of in-
cludes a user is suggested to use. This is in contrast to Include What You Use, which,
according to the project’s website, requires the user to always use the most accurate include
they can for any given token. Furthermore, includes in header files are only flagged for
removal with the caveat that an including source or header file might use the include. There-
fore, the user can try to remove these files, but the algorithm does not guarantee that removal
of #include-directives in header files may not break the program.

The Axivion Suite provides Axivion Generic-LocalInclude with similar functionality. The
explanation provided with the rule reads: "Replace #include with forward declaration or
more precise #include where possible". Where superfluous #include-directives are de-
tected it provides the same suggestions for removal, but the rules diverge somewhat where
suggestions for other #include-directives are concerned. When analyzing a real-world
project, as outlined in Chapter 3, one receives a lot of suggestions. Particularly, both rules
agree on flags for superfluous includes in most cases, but there are some where the two rules
flag different includes for removal. That is most likely due to the #include dependencies
being built differently, which cannot be confirmed though, since the source code for Axiv-

ion Generic-LocalInclude is not accessible. Lastly, the Axivion Generic-LocalInclude rule
suggests to add multiple further #include-directives, which may increase the amount of
includes in a file, in contrast to the rule described in this section.

2.3 Discouraged Content

The C++ standard makes no mention of what is allowed to be in a header and what is abso-
lutely included. Conceivably, a user could write the entire code of a program into a single
header and only have the main compilation unit include that header. Therefore, as with
many other topics discussed in this work, the decision what a header file should contain is
informed by convention and ultimately decided by the programming team.

In Table 2.1 a compilation of what Stroustrup considers allowed and discouraged header

19

Chapter 2 Analysis Rules

content is shown. The rules for what is allowed and discouraged are, according to Strous-
trup: "simply a reasonable way of using the #include mechanism to express the physical
structure of a program." [21, p. 426]. Therefore, adherence to the guidelines presented here
is not strictly necessary, but can definitely be adhered to as good practice.

The AB - Discouraged Content rule is implemented here by a simple script. The algorithm
iterates over all header files it can find and checks for each token whether it is discouraged
content. If so, the token is reported and should be moved to a source file by the programming
team. The Axivion Suite does not seem to provide similar functionality. Since each header

file is touched exactly once, the complexity of the algorithm is in O(n).

2.4 Include Guards

Once a project acquires a certain size, different parts of the program start to include the same
header files. From the perspective of the program as a whole, this can lead to header includes
and their declarations being made multiple times within the same compilation unit. Multiple
types of header content, such as class definitions and inline functions, cause errors when
used multiple times [21, p. 440 f.].

There are two alternatives for the programmer to follow. They can either reorganize the
entire program to ensure that there are no redundancies, which is tedious for small and nearly
impossible for large projects. Or they can use a strategy to ensure that the multiple inclusion
of header files will not lead to errors. This is what include guards are designed to do. An
include guard for a header of name example.h may be defined as follows:

#ifndef EXAMPLE_H

#define EXAMPLE_H

... // The complete code of example.h

#endif

The first time the preprocessor encounters the leading #ifndef, the token EXAMPLE_H is
not known to it. Therefore, the token gets defined by the following line and the entire code of

20

2.4 Include Guards

Allowed Content

Named namespaces namespace N {...}
inline namespaces inline namespace N {...}
Type definitions struct Point(int x, y);
Template declarations template<class T> class Y;
Template definitions template<class T> class Z{...};
Function declarations extern int decl(const char*);
inline function definitions inline char indecl(char* p){...}
constexpr function definitions constexpr int sqr(int n)

{return n**2;}
Data declarations extern int a;
const definitions const float pi = 4;
constexpr definitions constexpr int foo=13;
Enumerations enum class Starter {Bulbasaur,

Charmander, Squirtle};
Name declarations class Matrix;
Type aliases using value_type = long;
Compile-time assertions static_assert(4<3);
Include directives #include "awesome_header"
Macro Definitions #define MATRIX_VERSION 42.0.1
Conditional compilation directives #ifdef __bachelorThesis
Comments // this is the end of this list

Discouraged Content

Ordinary function definitions int answer(char* universe)
{return 42;}

Data definitions int a;
Aggregate definitions char** choice[] =

{"red_pill", "blue_pill"};
Unnamed namespaces namespace {...}
using-directives using namespace Skywalker;

Table 2.1: An overview over which content is allowed and discouraged in a header file
according to The C++ Programming Language by Bjarne Stroustrup (slightly
adapted) [21, p. 425 f.]

21

Chapter 2 Analysis Rules

the header within the include guard is made available to the source file. Any subsequent time
the preprocessor encounters the line #ifndef EXAMPLE_H, the token is already defined
and the check fails. The entire code until the #endif statement is ignored. Therefore,
the include guard ensures that the code from the header file, even though included multiple
times, is only compiled and executed once.

A couple of facts should be pointed out:

• First of all, the C++ ISO standard [17] does not require or even mention include guards

at all. Any header file that does not contain an include guard is therefore fully compli-
ant with the standard and will be compiled successfully. Nevertheless, any programmer
not using include guards has to deal with the problems stated above.

• Secondly, as include guards are not enforced, there is no naming requirement. Con-
vention dictates that an include guard should use the name of the header file it is
contained in, but there is no requirement to do so. Conceivably, the programmer may
use any name they feel like. It should only be unique within the entire project, so that
crucial headers with the same include guard are not mistakenly ignored.

• Finally, the preprocessing directive #pragma once is an often used alternative to
include guards. This directive is not mentioned in the ISO standard and is highly con-
tentious in the C++ coding community, as evidenced by various threads on Stackover-
flow2 and Reddit3. According to the Wikipedia4 article on #pragma once, there
are a number of advantages and caveats of using the directive over include guards,
even though all major compilers support the directive. In the AB - Include Guards rule
#pragma once directives will be identified and the use of include guards suggested
instead.

The algorithm implemented for this rule identifies the include guards of all header files in the
project and reports any duplicates. It also identifies pragma once directives and missing
include guards and suggests implementation of an include guard. As detailed in Alg. 3 the
rule first gathers all include guards and #pragma once directives. It then compares all
include guards and first reports all user-written guards that are the same as guards used by
system headers. The rationale is that the user can change their own include guard but not
that of a system header. The rule also reports all header files that have no include guard or

2https://stackoverflow.com/questions/1143936/pragma-once-vs-include-guards
3https://www.reddit.com/r/cpp/comments/4cjjwe/come_on_guys_put_pragma_once_in_the_standard/d1j04te/
4https://en.wikipedia.org/wiki/Pragma_once

22

2.4 Include Guards

Algorithm 3 Include Guards Rule
1: \\ Identifies all include guards of requested type
2: procedure IDENTIFY GUARDS(graph: ir.Graph, include-type: string)
3: initialize guards
4: for inc in descendants of include-type in graph do
5: initialize found-guard = False, found-pragma = False
6: for all child in inc do
7: if child is Preinclude-Directive then \\ Axivion specific directive
8: continue
9: else if child is Pragma-Directive then \\ possible "#pragma once"

10: found-pragma = True
11: continue \\ Could still contain an include guard
12: else if child is #ifndef then \\ include guard found
13: guards[inc] = child.Name
14: found-guard = True
15: break
16: else if child is macro then \\ Axivion might identify this instead
17: possible-guard = child.Name
18: \\ Check whether the macro found has an #ifndef attached to it
19: for all #ifndef in inc.children do
20: if #ifndef macro name = possible-guard then
21: guard[inc] = possible-guard
22: found-guard = True
23: else
24: break \\ If nothing else breaks, no guard has been found
25: if not found-guard and not found-pragma then
26: guards[inc] = None
27: else if not found-guard and found-pragma then
28: guards[inc] = #pragma
29: return guards \\ returns all include guards of specified type to caller
30:
31: procedure EXECUTE(graph ir.Graph)
32: sys-includes = IDENTIFY GUARDS(ir.Graph, System-Includes)
33: usr-includes = IDENTIFY GUARDS(ir.Graph, User-Includes)
34: for all usr in usr-includes and sys in sys-includes do
35: report system-include guard used by usr-include \\ skip #pragma
36: for all usr-1 in usr-includes do
37: report missing include guard
38: report "#pragma once" instead of include-guard
39: for all usr-2 in usr-includes do
40: skip if usr-1.node == usr-2.node \\ skip if this is the same include
41: if usr-1 == usr-2 then
42: report duplicate include guard in different user includes

23

Chapter 2 Analysis Rules

use #pragma once directives. Finally, the algorithm identifies all uniquely different user
header files with the same include guard and reports them. Since the algorithm compares
all header files against all other header files, its time complexity is O(n2). It should be
noted that the Axivion Suite does not identify include guards or #pragma once directives,
but rather shows macro definitions, pragma directives, and #ifndef statements. Therefore,
logic dictates that these should represent include guards or #pragma once directives in
the code, but ultimately, the user will have to determine whether the given statement was
identified correctly and the reported error is valid.

With Axivion Generic-DuplicateIncludeGuard and Axivion Generic-MissingIncludeGuard,
the Axivion Suite provides two rules with a similar functionality to Alg. 3. While the former
works similarly in detecting duplicate include guards as the rule presented here does, the
second Axivion rule, Axivion Generic-MissingIncludeGuard, does not flag #pragma once

directives. It does flag the same missing include guards as this rule does though.

2.5 No Absolute Paths

Include paths, according to the ISO standard [17, p. 16] can be any combination of source
characters except newline, ’>’, and ’"’. Therefore, any manner of paths are allowed to be
used in the #include directive, including absolute paths. However, absolute paths are in
no way portable to other machines and can wreck havoc on a programming teams’ efforts to
share and work on distributed code. Consider code on Bob’s machine that he wants to share
with Tracy. Bob may write an include directive as

#include "C:\Users\Bob\OurProject\Headers\foo.h"

Tracy clones the git repository to her programming directory and has the headers lying in

C:\Users\Tracy\Programming\NewProject\OurProject\Headers\foo.h

Even though the end of the path is the same, the compiler is not going to find the header file
targeted by Bob’s include statement. Therefore, absolute paths should always be avoided.

24

2.6 No Conditional Preprocessing

Even if the user only has small local builds, the use of absolute paths may lead to bad habits
and subsequently requires the programmer to relearn their ways.

The algorithm used for this AB - No Absolute Paths rule is extremely straightforward. It
iterates over all #include statements and checks, whether an absolute include path was
used, using Python’s inbuilt functionality. If so, that node and path will be reported for
alteration by the programmer. As all #include directives are touched only once, the time
complexity is in O(n). The Axivion rule Axivion Generic-NoAbsoluteInclude has the same
functionality.

2.6 No Conditional Preprocessing

The C++ ISO standard defines a number of conditional preprocessing directives: These are
#if and #elif which get activated when the following conditional statement evaluates to
non-zero, #ifdef if the following macro has been defined, and, conversely, #ifndef if
the following macro has not yet been defined [17]. The last directive has already been used in
section 2.4 to build a framework for include guards. Conditional preprocessing can often be
encountered to allow compilation and different definitions for different target platforms.

However, according to NASA’s 10 Rules for Developing Safety-Critical Code, the use of the
preprocessor is highly problematic. Specifically, Rule 8 states: "The use of the preprocessor
must be limited to the inclusion of header files and simple macro definitions. [...] The use of
conditional compilation directives is often also dubious, but cannot always be avoided." [15].
The document further elaborates that the use of conditional preprocessing tools is highly
obfuscating and should therefore be avoided at all cost.

The Axivion rule Axivion Generic-NoIfdefInHeader takes a similar approach and prohibits all
of the conditional preprocessing directives mentioned above except for include guards. The
rule presented here, AB - No Conditional Preprocessing, uses the "Identify Guard" procedure
in Alg. 3 to find a header file’s include guard. It then finds all other conditional preprocessing
tokens and reports each in turn for removal or alteration by the programmer. Again, the
algorithm touches each header file once, setting its time complexity at O(n).

25

Chapter 2 Analysis Rules

2.7 Primary Includes

The code organization outlined in section 1.1 and the allowed and discouraged content de-
tailed in Table 2.1 underline the concept of using header files as an interface for source files.
Nevertheless, as an #include directive will allow the programmer to include any kind of
file, the preprocessor will easily copy all the code from the included file to the position of
the #include. Yet, in order to keep large codebases understandable, it is advised to strictly
adhere to the separation of source and header files and not to include any source files.

The algorithm presented here in Alg. 4 checks exactly that. It aggregates all source files and
even checks whether any source files might have been missed. Particularly, the algorithm can
identify all compilation entry points using the LIR (see section 1.3) and find their respective
source files. This might be necessary if an entry point, i.e. a main() function, is, for
some very obscure reason which deeply clashes with the concepts brought forth in this work,
located in a header file.

Lastly, it can happen that two different includes in different files target the same header file
"a.h" with #include "a.h" and #include <a.h>. Since this rule already compiles
all user and system include directives and their targets, this behavior is easily identified and
can be reported. The programmer is encouraged to work through the reported includes and
to remedy wrong user and system includes and to remove all source files as include targets.
Even though the rule operates on each #include directive multiple times, there are no
nested for loops, bringing its time complexity to O(n).

This is also the behavior of the Axivion provided rule Axivion Generic-FileKindDifference.
However, in contrast to the Axivion rule, reporting in the AB -Primary Includes rule has
been altered such that the user may see exactly which files have clashing system and user in-
cludes. This is not provided by Axivion Generic-FileKindDifference, which only states which
header file is targeted by diverging #include directives, but not where these directives are
located.

26

2.8 Too Many Includes

Algorithm 4 Primary Include Rule
1: procedure EXECUTE(graph: ir.Graph)
2: \\ get all source and all header files
3: for all files in project do
4: primary: list all source files
5: system: list all included system header files
6: user: list all included user header files
7:
8: \\ go through the entry points to check whether any source files have been missed
9: use LIR to find compilation unit’s entry point

10: find source file associated with entry point
11: add that source file to primary
12:
13: \\ check whether any primary file is an include target and whether user and system
14: \\ includes are not mixed
15: for all prim in primary do
16: if any prim in system or user then
17: report system or user node and include
18: for all sys in system do
19: if any sys in user then
20: report system and user node and include

2.8 Too Many Includes

This rule is rather straightforward, as is it’s counterpart Axivion Generic-TooManyIncludes:
The rules tallies up the amount of #include directives in each source and header file and
reports files with an amount of includes larger than a preconfigured threshold. Each header-
file is analyzed once, therefore again leading to time complexity O(n). A large number of
includes can lead to excruciatingly long compile times, as a large number of dependencies
have to be resolved. The programming team is therefore advised to rethink their code struc-
ture, to consolidate different header files into more meaningful units, and to drastically cut
the amount of #include directives each file uses. This rule is closely related to AB - Busy
Headers (see section 2.1) and fixing the code base to adhere to one rule may already resolve
issues with the other.

27

Chapter 2 Analysis Rules

2.9 Wrong Include Casing

Different file systems and operating systems can be either case-sensitive or case-insensitive.
This determines whether the header names "FOO.h" and "foo.h" are considered distinct or
equivalent. When switching between different file systems, care must be taken to ensure that
case sensitivity is not an issue. In general, Windows systems tend to be case-insensitive,
while Unix systems operate case-sensitive [11]. However, different version handle casing
differently and in some installations casing behavior can be altered.

In order to avoid problems when porting code from a case-insensitive to a case-sensitive
environment, it is encouraged to have the same casing in the #include statement as in the
header filename. This also aids legibility of a codebase. The rule AB - Wrong Include Casing

iterates over all #include directives in all source and header files and checks whether the
directive and include target have the same casing. If not, the directive is reported and should
be amended by the programmer. This is the same behavior as is exhibited by Axivion Generic-

WrongIncludeCasing. The AB - Wrong Include Casing rule operates by iterating over each
#include exactly once and accessing it’s target. Thus the rule operates in time complexity
O(n).

2.10 Wrong Include Type

The C++ ISO standard defines two different kinds of #include directives, the <...>

and "..." sequences [17, ch. 5.8]. The space inbetween the delimiters is reserved for
the filename of the header to be searched for. The standard does not however define what
these different delimiters should be used for. It notes: "An implementation can provide a
mechanism for making arbitrary source files available to the < > search. However, using
the < > form for headers provided with the implementation and the " " form for sources
outside the control of the implementation achieves wider portability." [17, p. 465]. Therefore,
any standard compliant compiler will compile any combination of includes, regardless of
which include type is used and whether the include is a user-defined header or one provided
by the implementation, what is generally called a Standard Library or system header (see
section 1.1).

28

2.10 Wrong Include Type

<cassert> <cctype> <cerrno> <cfenv> <cfloat>
<cinttypes> <climits> <clocale> <cmath> <csetjmp>
<csignal> <cstdarg> <cstddef> <cstdint> <cstdio>
<cstdlib> <cstring> <ctime> <cuchar> <cwchar>
<cwctype>

Table 2.2: C++ Standard Library implementations of C Standard Library headers used for
backwards compatibility. [17, p. 485]

It is recommended to use <...> includes for Standard Library and "..." includes for
user defined header files. Furthermore, the ISO standard supports a number of C Standard
Library headers for backwards compatibility, but also provides current alternatives for C++
that provide the same functionality but ensure static type safety [17, p. 478]. It is therefore
also recommended to use the C++ instead of the C Standard Library headers. Furthermore,
there are a couple of header files that are empty or have since been deprecated.

The C++ replacements for C Standard Library headers are listed in Table 2.2. The C header

is of the form name.h and is replaced by the C++ header cname, where name is the
basename of the file. Therefore, it is simple to identify C system headers and flag them for
replacement. Furthermore, through the evolution of the ISO standard from C++98 to C++20
and soon to C++23, several headers have become deprecated and/or empty. A compact
overview of these, which is easier to read than the standard, can be found in the unofficial
C++ reference5:

• The headers <ccomplex> and <complex.h> only include the header <complex>

and should be replaced by it.
• The headers <ctgmath> and <tgmath.h> only include the headers <complex>

and <cmath> and should be replaced by them.
• The headers <ciso646>, <cstdalign>, <cstdbool>, and the C header files
<iso646.h>, <stdalign.h> <stdbool.h> are meaningless, since the macros
they define are now C++ keywords or their functionality is no longer required.

The algorithm for this rule searches through all #include directives in the project once,
therefore being in time complexity O(n), and reports issues according to the following
logic:

5https://en.cppreference.com/w/cpp/header

29

Chapter 2 Analysis Rules

• A user-defined header included with the system include <...> should be included
with the user include "..." instead.

• A system-defined header included with the user include "..." should be included
with the system include <...> instead.

• When a user include "..." is used for a C Standard Library header, the programmer
should use the system include <...> and C++ Standard Library header instead.

• A C Standard Library header included with the correct system include <...> should
use the C++ header instead.

• If the headers ccomplex, complex.h, ctgmath, or tgmath.h are included,
they will be flagged for replacement as outlined above. The use of the system include
<...> syntax will also be recommended, should a user include "..." be used.

• If a meaningless header as outlined above is used, it will be flagged for removal.

The Axivion Suite provides the rule Axivion Generic-NoCHeaderInclude which only checks
whether a C Standard Library file is being used and suggests to replace it with the appro-
priate C++ Standard Library file. This also includes (now) meaningless headers such as
<iso646.h> which aren’t flagged for removal but suggested to be replaced with the C++
header <ciso646>. Furthermore, the rule Axivion Generic-IncludeKind checks whether
the correct type of include ("..." vs. <...>) is being used. That rule seems to perform
exactly as this rule here does, where the wrong kind of include directive was used.

2.11 Analysis not implemented

Apart from the rules mentioned until here, there are several further concepts that can be tar-
geted with static include analysis. Two of these, Precompiled Headers and Template analysis,
will be briefly explained here and an explanation provided as to why they were not explored
within this work.

Precompiled Headers

Precompiled Headers (PCH) are actually not part of the C++ ISO standard [17], but they are
supported by the Visual Studio Suite [12], GCC [5], and Clang [3]. The idea behind PCH files

30

2.11 Analysis not implemented

is that multiple includes of a header in different compilation units within a project greatly
increase compilation time [12]. Depending on the compiler, a project can have a single or
multiple chained PCH with an unlimited number of includes [3, 5]. However, since the PCH
needs to be recompiled after every change made, only sufficiently stable headers should be
added to it.

Precompiled Headers have a number of caveats though, some of which are acknowledged in
different compilers’ documentation [3, 5, 12], others of which are discussed within the C++
community6

• The PCH has to be produced by the same compiler binary file as is currently being
used for compilation [5]. This can lead to problems, if a distributed programming team
is using slightly different versions of the same build-system.

• PCH can easily become bloated, as it is simply to add content, but requires some house-
keeping to remove content. This is turn can obfuscate the benefits of PCH if frequent
recompiles are required.

• In line with the point above, PCH need to be kept up to date and therefore might
introduce additional maintenance.

• Should inconsistent #define directives occur inside and outside of PCH, they could
be missed by the compiler and linker. This would result in a broken build, which might
lead to inconsistent runtime errors that can be excruciatingly difficult to debug.

• Portability of code is pretty much excluded without recompiling the PCH.

Precompiled Headers should only be used by programming teams that are experienced in
their application and only for headers that are not prone to further change. This is tough
to adhere to for a programming team and difficult to analyze in static include analysis. The
Axivion rule Axivion Generic-PCHIncludes suggest to move often used #include direc-
tives to PCH. However, this does not take into account how often each header file might
have been changed in past versions of the project and is prone to change in future versions.
This requires access to the projects history, necessitates statistical analysis of past changes,
and subsequent prognosis of further changes. On top of that, PCH-files need to be com-
pared to the current state of the project and adequate conclusions drawn from that analysis.
Even the Axivion Suite does not provide functionality to investigate PCH-files. Therefore,
Precompiled Headers were deemed to be out-of-scope for this thesis.

6https://www.reddit.com/r/cpp_questions/comments/gw7vrs/what_are_the_downsides_to_precompiled_headers

31

Chapter 2 Analysis Rules

Templates

Templates are a construct that allow for further abstraction within the class framework of
C++. They are defined in the ISO standard [17] and are therefore a regular part of the C++
programming language. Stroustrup provides an excellent overview over how templates are
used [21, ch. 23]. A template is constructed by programming

template<typename T> class someClass{...};

The type T is then available as a general object within the class. It can be used as a type,
struct, or even as a template object itself. Stroustrup provides a small example which serves
to illustrate the usefulness of templates here as well [21, p. 668]

template <typename T>

class String{...};

String<char> cs;

String<unsigned char> us;

String<wchar_t> ws;

struct Jchar { /* ... */ }; // Japanese character

String<Jchar> js;

The example shows that the defined class String can be used with any character as well
as newly implemented characters, such as a struct of a Japanese character set. This is all
using one class definition and therefore greatly eases development of the class for a whole
host of applications.

However, when it comes to static include analysis, templates raise a host of issues. The
freedom and ambiguity in their writing means that T could be any object in the project and
could be defined in any header file used. Even more confounding, C++ allows function

32

2.11 Analysis not implemented

template overloading, meaning that the following code-snippet is allowed [21, p. 689]

template<typename T>

T sqrt(T);

template<typename T>

complex<T> sqrt(complex<T>);

double sqrt(double);

void f(complex<double> z) {

sqrt(2); // sqrt<int>(int)

sqrt(2.0); // sqrt(double)

sqrt(z); // sqrt<double>(complex<double>)

}

Furthermore, the C++ Standard Library makes heavy use of templates, which provides it
with an enormous range of functionality. For instance, the class unordered_map uses
templates in the following way [21, p. 914]

template<typename Key,

typename T,

typename Hash = hash<Key>,

typename Pred = std::equal_to<Key>,

typename Allocator =

std::allocator<std::pair<const Key, T>>>

class unordered_map {...};

Therefore, the argument for constructing an unordered_map object itself contains nested
template classes. All of the information above is known during compile time and can there-
fore conceivably be statically analyzed. The work necessary would basically require the
analysis to work through the program as a C++ compiler does and would easily require more
development than the rest of the rules presented here combine. Not even the Axivion Suite
provides functionality to analyze Templates and flag potential issues. Therefore, this aspect
of the C++ language was also deemed out-of-scope.

33

Chapter 3

Analysis of an Existing Project

The rules above check out on the test cases provided to each unit and can therefore be used
to analyze a real-world project. For this chapter, the text editing program "Notepad++" was
chosen as a test case [8]. The github page describes the program as follows: "Notepad++ is
a free (free as in both "free speech" and "free beer") source code editor and Notepad replace-
ment that supports several programming languages and natural languages." [7]. Notepad++
presents an interesting test case, since it makes heavy use of the "Boost C++ Libraries" [2]
and the editing component "Scintilla" [13]. Therefore, analysis carried out on the entire
source code also find issues associated with the versions of these libraries used in the project.
Notepad++ is authored and maintained by Don Ho [8].

3.1 Analysis Results

The rules presented in Chapter 2 as well as the respective rules for Axivion’s Generic Stylechecks
were implemented and "Notepad++" analyzed. The number of violations, as reported by the
rules and subdivided into each subaspect of each rule are presented in Table 3.1. Further-
more, the results were split into the core of "Notepad++", which was programmed by Don
Ho, and the Scintilla and Boost C++ libraries. The table lists the rules developed in this thesis
as AB (Aiko Bernehed) to discern them from the Axivion Generic Stylechecks. Following is
an overview over each rule and an interpretation of the analysis results.

35

Chapter 3 Analysis of an Existing Project

Rule Notepad++ Core Scintilla Boost

AB - Busy Headers 34 2 -

Axivion Generic-BusyHeaders 34 2 -

AB - Chained Includes
redundant headers 171 410 32
more accurate include 59 83 25
may be removed 14 719 24
may be removed, might be used by includers 26 - 44
Total 270 1,212 125

Axivion Generic-LocalInclude
#include moved to other header 20 179 34
#include to be removed 28 517 35
redundant #include 200 183 30
#include replaced by other #include 13 11 14
#include replaced by forward declaration 11 1 2
unused #include that includers may need 16 3 8
add #include 71 170 99
add declaration of struct or (template) class - 34 17
Total 359 1,098 239

AB - Discouraged Content 6 - -

AB - Include Guards
#pragma once detected 116 - -
missing include guard 11 - 9
Total 127 - 9

Axivion Generic-DuplicateIncludeGuard - - -
Axivion Generic-MissingIncludeGuard

guard does not cover complete file 1 - 1
guard incomplete - - 1
missing include guard 11 - 9
Total 12 - 10

AB - No Absolute Paths - - -

36

3.1 Analysis Results

Axivion Generic-NoAbsoluteInclude - - -

AB - No Conditional Preprocessing
#if in header 297 6 324
#ifdef in header 74 9 162
#ifndef in header 16 4 152
Total 387 19 638

Axivion Generic-NoIfdefInHeader 503 26 739

AB - Primary Includes 1 - -

Axivion Generic-FileKindDifference 1 - -

AB - Too Many Includes - - -

Axivion Generic-TooManyIncludes 24 - -

AB - Wrong Include Casing 71 9 -

Axivion Generic-WrongIncludeCasing 71 9 -

AB - Wrong Include Type
use Std. Lib. C++ header instead of C 29 641 3
unnecessary (deprecated) #include 2 - -
use " " instead of < > 1 - 86
use < > instead of " " 1 - -
Total 33 641 89

Axivion Generic-NoCHeaderInclude 31 641 3

Axivion Generic-IncludeKind
use " " instead of < > 1 - 86
use < > instead of " " 1 - -
Total 2 - 86

AB Total 929 1,883 861

Axivion Generic Total 1,037 1,776 1,077

Table 3.1: The number of Stylecheck violations for the rules presented in Chapter 2 and Ax-
ivion’s Axivion Generic Stylechecks, separated into the Notepad++ core program-
ming and the Scintilla and Boost libraries.

37

Chapter 3 Analysis of an Existing Project

AB - Busy Headers

The AB - Busy Headers rule and Axivion Generic-BusyHeaders agree exactly, suggesting that
both rules work correctly or have roughly the same bugs. As already pointed out in Section
2.1, the transitive includes calculated for the Axivion Generic rule are off by one include in
comparison to the rule developed here. In this project, the Scintilla and Boost libraries are
notably quite clean, whereas the core program could be redesigned to have fewer transitive
includes and direct includers in some files.

AB - Chained Includes

As explained in Section 2.2, it is not known how Axivion Generic-LocalInclude iterates
through subsequent includes and decides how to assign ambiguous include paths. It is also
not clear how the rule decides to implement forward declaration, which #include could
be replaced how by another #include, how or why includes should be added, or how the
declaration of structs, classes, and template classes could improve the program.

In direct comparison to the AB - Chained Includes rule, Axivion Generic-LocalInclude is a
lot more granular in its recommendations. The former is a lot more aggressive in suggesting
includes to be removed and flagging headers as redundant. This indicates either, that the
Axivion Generic rule is too careful in determining a better #include path, or, more likely,
that the AB - Chained Includes rule misses tokens in various headers. The rule, as presented in
Alg. 2 is rather complex and might miss some of the more obscure directives C++ supports.
Unfortunately, the Axivion Suite is also highly complex in its naming convention of C++
tokens. In order to confidently ensure that the algorithm works as intended, extensive testing,
far surpassing the rudimentary unit tests used in this project, must be employed.

However, both rules show that the majority of style violations to these rules are committed
in the Scintilla Library. The library has been under development and maintenance since
1999 [13]. To ensure backwards compatibility, it is likely that new styles of code organization
have been added to an old, existing project. This potentially leads to bloated projects with a
multitude of unnecessary and redundant #include directives, which in turn lead to a large
number of style violations in this analysis. Unfortunately, these violations are not trivial. In
a small project, such as "Notepad++", this inefficient code organization may be acceptable,

38

3.1 Analysis Results

but in large codebases compilation time can be increased greatly just by using the Scintilla
Library. This might be unacceptable to programming teams, which therefore might opt for
alternative solutions.

In contrast, the Boost Library is alright, but could use some overhauling of its #include
paths. The core programming of "Notepad++" could also use some work, particularly where
redundant and unnecessary includes are concerned.

AB - Discouraged Content

Only six style violations in three different files were detected, and these are all part of the
core "Notepad++" program. These violations are quickly remedied by moving the respective
code snippets to source files instead. The Scintilla and Boost libraries exhibit no issues.
As mentioned in Section 2.3, there is no counterpart to this rule within the Axivion Generic

Stylechecks of the Axivion Suite.

AB - Include Guards

Neither the rule presented here nor the Axivion Generic equivalent detect any duplicate
include guards. Furthermore, both rules agree on the amount of missing include guards

throughout the project. This suggest that both rules were implemented correctly. Further-
more, the Axivion Generic-MissingIncludeGuard provides interesting functionality that was
not considered in Include Guards presented here, i.e. checking for incomplete guards and
checking whether an include guard covers the entire file. On the other hand, Include Guard

identified 116 pragma once directives, which were not investigated by Axivion Generic-

MissingIncludeGuard. However, since the latter did not report these 116 headers as having
a duplicate or missing include guard, the rule must be aware of the #pragma once di-
rective. An optional reporting mechanism of #pragma once for the provided Axivion

Generic-MissingIncludeGuard might be beneficial for users of Axivion’s Software.

39

Chapter 3 Analysis of an Existing Project

AB - No Absolute Paths

It is not surprising that neither this rule nor its Axivion Generic counterpart flagged any
absolute paths in any headers. As soon as an absolute path is used in a project, it becomes
nearly impossible to successfully compile such a program on any other but the original host
machine. The project paths would have to be rebuilt exactly as they are programmed into the
code. Since "Notepad++" has been in successful deployment for many years and Scintilla
and Boost are established C++ libraries, all mistakes pertaining to absolute paths have already
been corrected.

AB - No Conditional Preprocessing

A couple of things are directly obvious when looking at this rule’s part of Table 3.1. First of
all, the rule Axivion Generic-NoIfdefInHeader consistently reports many more #if, #ifdef,
and #ifndef than the AB - No Conditional Preprocessing rule suggested in section 2.6.
Unfortunately, since the Axivion Generic rule does not display data for different types of
conditional preprocessing tokens, it is not clear what the Axivion Generic rule picks up that
the AB rule misses. Since the AB rule passes the rudimentary unit test, the discrepancy could
either be due to a bug in the Axivion Generic rule, or some unknown type of preprocessing
token being handled by the Axivion Generic rule that the AB rule does not.

Furthermore, most style violations occur in the Boost library. This is surprising, since the
library covers a wide range of topics and was designed with eventual integration into the C++
standard in mind [2]. However, the behavior uncovered by these rules directly contradicts
NASA’s "10 Rules for Developing Safety Critical Code" [15]. In contrast, the Scintilla library
is mostly clean.

Finally, the "Notepad++" core program exhibits too many conditional preprocessing direc-
tives for such a, comparatively, small project. It is not clear what all of these directive are
intended to provide. The project’s download page [8] only has three different software ver-
sions (x86, x64 and ARM64) which does not explain why so many different build versions
might be necessary to be supported.

40

3.1 Analysis Results

AB - Primary Includes

Both, the AB - Primary Includes rule and its Axivion Generic counterpart only find a single
header that is used as a user "..." and a system include <...>. As mentioned in section
2.7, the Axivion Generic rule does not provide both headers, which would be useful for
debugging.

AB - Too Many Includes

The logic behind this rule is simply: count all includes in each file, report files with a large
number of #include directives. However, here the AB - Too Many Includes rule developed
in this thesis and Axivion Generic-TooManyIncludes diverge. At the same time, it is not clear
how the Axivion Generic rule reaches the conclusion that 24 files in the project have more
than 400 includes, the predefined threshold. For instance, Notepad_plus.cpp is reported
as: "unit includes more than 400 files.", even though a manual count of the file only returns
27 #include directives. The rule description reads: "This rule will report compilation units
that include more than the configured number of files."

There are two possible ways to explain this behavior. The Axivion Generic rule is actually
referring to transitive includes, in which case the rule’s description is rather poor, or the rule
itself is badly implemented and returns false results. Should the former be true, the Axiv-

ion Generic-TooManyIncludes rule would have very similar behavior to Axivion Generic-

BusyHeaders, which would make the rule itself redundant. In both cases, the rule needs to
be checked and maintained and the description of the rule updated.

AB - Wrong Include Casing

In this case, the AB and Axivion Generic rules agree perfectly, suggesting consistent behav-
ior. Most violations occur in the core source code, while the libraries seem to be well im-
plemented. This makes intuitive sense, since "Notepad++" was written for case-insensitive
Windows systems, whereas Scintilla and Boost are supposed to be available to C++ program-
mers on all platforms.

41

Chapter 3 Analysis of an Existing Project

AB - Wrong Include Type

Although a little more convoluted than previously discussed rules, the AB and Axivion Generic

rule here agree perfectly. The use of C vs. C++ Standard Library includes is handled a little
differently. The rule presented in section 2.10 also checks whether header files might have
become unnecessary, which Axivion Generic-NoCHeaderInclude does not do. Therefore,
there is a slight discrepancy, in this case of 2, of reported #include directives that should
be exchanged for their C++ equivalent.

All other metrics match up exactly, which once again speaks to a good implementation of
both rules. It is remarkable that the Scintilla Library shows 641 violations pertaining to the
use of C instead of C++ Standard Library files. This speaks to the origins of Scintilla, which
came out when the C++98 standard was just established [16]. It also shows how important
continuous maintenance and updates to a codebase are.

3.2 Execution Time

Apart from comparing how the rules developed here match up against Axivion’s Axivion

Generic rules, the execution time is of particular interest. If the rules take an extraordinary
long time to execute, their value to the programming team might be diminished, since a team
might opt not to use the rules regularly due to project time constraints.

The analysis for this work was carried out on an Intel Core i5-8365U CPU with four cores
of 1.60 GHz per core with 16 GB of RAM. The resulting runtimes for each rule are shown
in Table 3.2. The table also shows the worst-case time complexity constraints as estimated
according to the algorithms presented in Chapter 2. The time complexity is presented in
terms of the total number of #include directives n.

"Notepad++" has roughly 230,000 source lines of code, which puts it on the low-end for
software projects. Nevertheless, the code base size is already sufficient to show the impact
of the algorithms’ time complexity on execution time. As expected, complex algorithms
exhibit a higher execution time than less complex algorithms. Furthermore, all AB rules,
except for AB - No Conditional Preprocessing, execute slower than their Axivion Generic

counterparts. Seeing as most rules are about two seconds slower, this would suggest that the

42

3.2 Execution Time

Rule Execution Time (s) Time Complexity

AB - Busy Headers 2.96 O(n)
Axivion Generic-BusyHeaders 0.19 -

AB - Chained Includes 10.60 O(n3)
Axivion Generic-LocalIncludes 7.92 -

AB - Discouraged Content 0.82 O(n)

AB - Include Guards 2.12 O(n2)
Axivion Generic-DuplicateIncludeGuard 0.54 -
Axivion Generic-MissingIncludeGuard 0.76 -

AB - No Absolute Paths 0.83 O(n)
Axivion Generic-NoAbsoluteInclude 0.02 -

AB - No Conditional Preprocessing 1.26 O(n)
Axivion Generic-NoIfdefInHeader 4.39 -

AB - Primary Includes 1.66 O(n)
Axivion Generic-FileKindDifference 0.01 -

AB - Too Many Includes 2.02 O(n)
Axivion Generic-TooManyIncludes 0.03 -

AB - Wrong Include Casing 1.01 O(n)
Axivion Generic-WrongIncludeCasing 0.1 -

AB - Wrong Include Type 2.00 O(n)
Axivion Generic-NoCHeaderInclude 0.04 -
Axivion Generic-IncludeKind 0.02 -

Table 3.2: Execution time of all rules used for this project analysis and the corresponding
worst-case time complexity estimates for the rules developed in this thesis.

43

Chapter 3 Analysis of an Existing Project

Axivion Generic rules are, unsurprisingly, more deeply integrated into the Axivion framework
and may even use a quicker programming language such as C or C++. One peculiarity should
be noted though: Axivion’s Axivion Generic-NoIfdefInHeader is significantly slower than
AB - No Conditional Preprocessing, which is supposed to have the same functionality. This
points to the Axivion Generic rule either working through a lot more possibilities than were
considered in the AB rules, or to the rule being poorly implemented.

44

Chapter 4

Conclusion and Future Work

In this work static include analysis schemes using the proprietary Axivion Suite by the Axiv-
ion GmbH were investigated. The rules implemented were inspired by previous work carried
out in other projects (Include What You Use), best practice suggestions by Stroustrup [21]
and NASA [15], and the Axivion Suite’s own analysis rules. Overall, ten rules were imple-
mented, compared to Axivion’s Generic rules, the rules implemented on the "Notepad++"
code base, and the different rules’ execution times analyzed.

In Section 2.1 a rule to identify busy header files, i.e. a header with a large product of direct
includers and transitive includes, was developed. It was shown that the respective Axivion
rule, Axivion Generic-BusyHeaders, overreports the amount of transitive includes by one,
which points to a possible bug in the rule.

In contrast, for the AB - Chained Includes rule it was shown in Chapter 3 that there is a
large discrepancy in reporting in comparison to Axivion Generic-LocalInclude, whereas the
latter exhibits a lot more granular reporting. As the AB - Chained Includes rule also suggests
significantly more #include directives for removal than Axivion Generic-LocalInclude,
it also likely misses several C++ tokens in its analysis. Furthermore, the rule sometimes
suggest the use of C instead of C++ Standard Library headers. That is a result of the tokens
being defined by the C header, but the C++ header providing further static type safety. The
rule needs to consider this kind of dependency. Therefore, the AB - Chained Includes rule
requires significantly further development and testing on a wide variety of projects for it to
reach maturity, much more than could be carried out for this thesis.

45

Chapter 4 Conclusion and Future Work

Lastly, it was shown with the AB - Discouraged Content rule and the #pragma imple-
mentation in the AB - Include Guards rule that the Generic rules miss certain functionality
that may be of interest for users. As detailed in Chapter 3 in the discussion of the Axivion

Generic-TooManyIncludes rule, there are also misleading rule descriptions or even bugs in
the Axivion Generic rules that make the reports of rules confusing. It is suggested here that
the user friendliness of all Axivion Generic rules is reviewed and updated.

Of further interest are the analysis of the Scintilla and Boost libraries used by "Notepad++".
Table 3.1 shows that most errors in the Scintilla library pertain to include organization and
the use of C instead of C++ Standard Library Headers. This probably is a results of the
Scintilla Library being comparatively old, originally developed in 1999, and therefore still
using a lot of the original C functionality that hadn’t yet been transferred to C++. However,
in the meantime the C++ ISO standard has been significantly developed and a redesign of the
Scintilla library might be called for.

On the other hand, the Boost library has a declared goal of eventual standardization of the
library [2]. This shows in the "false" use of the <...> include type within the library as
flagged by AB - Wrong Include Type. Also, the library has a lot of conditional preprocessing
directives, which is in violation of NASA’s 10 Rules for Developing Safety Critical Code [15]
and should be reconsidered. The Boost Libraries code organization could be amended to
provide more accurate includes as well.

Topics of interest but not analyzed here are the static analysis of Precompiled Headers and
Templates, as outlined in Section 2.11. If the work carried out in this thesis is further devel-
oped, the advantages, drawbacks, and potential analysis of Precompiled Headers might be
interesting. Templates, due to their ubiquitous use in the Standard Library and subsequent
migration into larger projects need to be investigated for any static include analysis to be
complete and should be considered in future work.

Overall, it is clear that static include analysis has extremely important applications for exist-
ing projects. The implementation carried out in Chapter 3 shows that the "Notepad++" core
implementation and each of the two libraries used have a host of different style issues asso-
ciated with them. Authors and maintainers of new and existing projects need to be aware of
hidden issues within their projects and new developments in the C++ ISO Standard that may
impact their work. Finally, it should be pointed out that the Axivion Suite itself, including
the Axivion Generic rules, needs to be protected from software erosion.

46

Bibliography

[1] Axivion Documentation (closed source).

[2] Boost C++ Libraries, available: https://www.boost.org/, accessed: 08-02-2022

[3] Clang 15.0.0 Documentation - Precompiled Header and Module Internals, available:
https://clang.llvm.org/docs/PCHInternals.html, accessed: 06-02-2022

[4] cppclean, available: https://github.com/myint/cppclean, accessed: 27-01-2022

[5] GCC Documentation - 3.22 Using Precompiled Headers, available: https:
//gcc.gnu.org/onlinedocs/gcc/Precompiled-Headers.html, accessed: 06-02-2022

[6] Include What You Use, available: https://include-what-you-use.org/, accessed:
27-01-2022

[7] Notepad++ git repository, available: https://github.com/notepad-plus-plus/
notepad-plus-plus, accessed: 08-02-2022

[8] Notepad++ Homepage, available: https://notepad-plus-plus.org/, accessed: 08-02-2022

[9] Official AUTOSAR Guidelines, available: https://www.autosar.org/, accessed:
01-02-2022

[10] Official MISRA Guidelines, available: https://www.misra.org.uk/, accessed: 01-02-
2022

[11] Adjust case sensitivity, available: https://docs.microsoft.com/en-us/windows/wsl/
case-sensitivity, accessed: 06-02-2022

47

https://www.boost.org/
https://clang.llvm.org/docs/PCHInternals.html
https://github.com/myint/cppclean
https://gcc.gnu.org/onlinedocs/gcc/Precompiled-Headers.html
https://gcc.gnu.org/onlinedocs/gcc/Precompiled-Headers.html
https://include-what-you-use.org/
https://github.com/notepad-plus-plus/notepad-plus-plus
https://github.com/notepad-plus-plus/notepad-plus-plus
https://notepad-plus-plus.org/
https://www.autosar.org/
https://www.misra.org.uk/
https://docs.microsoft.com/en-us/windows/wsl/case-sensitivity
https://docs.microsoft.com/en-us/windows/wsl/case-sensitivity

Bibliography

[12] Microsoft C, C++, and Assembler Documentation - Precompiled Header Files, avail-
able: https://docs.microsoft.com/en-us/cpp/build/creating-precompiled-header-files?
view=msvc-170, accessed: 06-02-2022

[13] Scintilla - A free source code editing component for Win32, GTK, and OS X, available:
https://www.scintilla.org/, accessed: 08-02-2022

[14] A. Mallia and F. Zoffoli, C++ Fundamentals, Packt Publishing, Mar. 2019, avail-
able: https://www.ebook.de/de/product/36449192/antonio_mallia_francesco_zoffoli_
c_fundamentals.html

[15] G. J. Holzmann, The Power of 10: Rules for Developing Safety-Critical

Code, NASA/JPL Laboratory for Reliable Software, 2006, available: http:
//pixelscommander.com/wp-content/uploads/2014/12/P10.pdf

[16] ISO/IEC 14882:1998 - Programming Languages — C++, International Organization
for Standardization, 1998, available: https://www.iso.org/standard/25845.html

[17] ISO/IEC 14882:2020 - Programming Languages — C++. International Organization
for Standardization, 2020, available: https://www.iso.org/standard/79358.html

[18] R. Koschke, Zehn Jahre WSR - Zwölf Jahre Bauhaus, Workshop Software Reengineer-
ing (2008) pp. 51–65.

[19] S. Pramanick, History of C++, available: https://www.geeksforgeeks.org/history-of-c/,
accessed: 26-01-2022

[20] A. Raza, G. Vogel, and E. Plödereder, Bauhaus – A Tool Suite for Program Analysis and

Reverse Engineering, Reliable Software Technologies – Ada-Europe 2006, Springer
Berlin Heidelberg (2006) pp. 71–82.

[21] B. Stroustrup, The C++ Programming Language, Addison Wesley,
2013, available: https://www.ebook.de/de/product/19365406/bjarne_stroustrup_the_
c_programming_language.html

[22] TIOBE Software BV, Tiobe Programming Language Index, available: https:
//www.tiobe.com/tiobe-index/, accessed: 26-01-2022

48

https://docs.microsoft.com/en-us/cpp/build/creating-precompiled-header-files?view=msvc-170
https://docs.microsoft.com/en-us/cpp/build/creating-precompiled-header-files?view=msvc-170
https://www.scintilla.org/
https://www.ebook.de/de/product/36449192/antonio_mallia_francesco_zoffoli_c_fundamentals.html
https://www.ebook.de/de/product/36449192/antonio_mallia_francesco_zoffoli_c_fundamentals.html
http://pixelscommander.com/wp-content/uploads/2014/12/P10.pdf
http://pixelscommander.com/wp-content/uploads/2014/12/P10.pdf
https://www.iso.org/standard/25845.html
https://www.iso.org/standard/79358.html
https://www.geeksforgeeks.org/history-of-c/
https://www.ebook.de/de/product/19365406/bjarne_stroustrup_the_c_programming_language.html
https://www.ebook.de/de/product/19365406/bjarne_stroustrup_the_c_programming_language.html
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine ande-
ren als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus den
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Clark, CO, 11. Februar 2022 Aiko Bernehed, M. Sc.

49

	Front Page
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The Necessity of Static Include Analysis
	1.2 State-of-the-Art
	1.3 The Axivion Suite

	2 Analysis Rules
	2.1 Busy Headers
	2.2 Chained Includes
	2.3 Discouraged Content
	2.4 Include Guards
	2.5 No Absolute Paths
	2.6 No Conditional Preprocessing
	2.7 Primary Includes
	2.8 Too Many Includes
	2.9 Wrong Include Casing
	2.10 Wrong Include Type
	2.11 Analysis not implemented

	3 Analysis of an Existing Project
	3.1 Analysis Results
	3.2 Execution Time

	4 Conclusion and Future Work
	Bibliography

