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Abstract: Salinity is a natural and anthropogenic process that plants overcome using various re-
sponses. Salinity imposes a two-phase effect, simplified into the initial osmotic challenges and
subsequent salinity-specific ion toxicities from continual exposure to sodium and chloride ions. Plant
responses to salinity encompass a complex gene network involving osmotic balance, ion transport,
antioxidant response, and hormone signaling pathways typically mediated by transcription factors.
One particular transcription factor mega family, WRKY, is a principal regulator of salinity responses.
Here, we categorize a collection of known salinity-responding WRKYs and summarize their molecular
pathways. WRKYs collectively play a part in regulating osmotic balance, ion transport response,
antioxidant response, and hormone signaling pathways in plants. Particular attention is given to
the hormone signaling pathway to illuminate the relationship between WRKYs and abscisic acid
signaling. Observed trends among WRKYs are highlighted, including group II WRKYs as major
regulators of the salinity response. We recommend renaming existing WRKYs and adopting a naming
system to a standardized format based on protein structure.

Keywords: WRKY transcription factor; osmotic stress; ion detoxification; radical oxygen species;
hormone signaling; salinity tolerance

1. Introduction

Climate change is the most dangerous threat to humanity, with major implications for
food production. One inherited issue from global warming is the increased salinization
of arable land [1], which is a bottleneck for crop production. With the population set to
reach nine billion by 2050 [2] and food production only meeting a fraction of what will be
required, there is a deficit in predicted food availability [3]. As such, unproductive arid
to semi-arid landscapes have been developed with irrigation systems to meet the food
production demands. Irrigation schemes without adequate drainage, such as those in low
rainfall areas, result in salinization, as evaporation brings salts throughout the profile to the
surface via capillary action [4]. Developing salt-tolerant crops is required to match these
conditions [5]. Understanding the tolerance mechanisms for improving existing varieties is
key to overcoming the challenges presented [6].

Salinity stresses can be divided into two phases: (I) water gradient disruptions and (II)
sodium ion (Na+) accumulation, which disrupt the plant’s physiological and biochemical
functions. Interference in the water gradient has immediate consequences, including
growth cessation, stomatal closure, sodium influx, and cell depolarization [7]. Continual
exposure to Na+ results in their uptake; in toxic concentrations, Na+ disrupts cellular
processes and causes an efflux of potassium ions from plant cells. For example, sodium
binds competitively to potassium target sites, disrupting cell metabolism [8] and decreasing
chlorophyll content and overall photosynthetic capabilities [9–13]. Therefore, salinity
imposes complex challenges that require plants to employ a wealth of signaling pathways
to overcome the barriers to normal function.
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Upon detecting stress conditions, plants respond by directly enriching ion transporter
activity or modulating regulatory pathways [14]. Transcription factors are regulators that
target specific DNA regulatory elements directly, for positive or negative control [15], medi-
ating the stress relief pathway. One particular transcription factor, WRKYs, regulate salinity
through osmotic response, ion transport, oxidative stress relief, and hormone signaling
pathways. WRKY genes are a common element in regulating biotic and abiotic stress
responses [16,17], and a single WRKY protein will target specific W-box sequences which
act as regulatory elements for downstream genes and subsequently induce many pathways.

In some species, over 100 WRKYs have been identified, some with roles in salinity
tolerance. However, the positive and negative functions of WRKYs and their distinct
salinity tolerance mechanisms have not been collated. In addition, the specific involvement
of WRKY gene clusters in salinity tolerance remains unknown. This review presents a
collection of known WRKYs that regulate the salinity response in plants and label them
according to their pathways of action. In particular, WRKY genes involved in abscisic
acid (ABA) signaling are scrutinized due to the high observed frequency for this pathway
within WRKY genes. Observed trends between WRKY groups and the salinity response are
outlined for future WRKY analysis when predicting salinity response. Further, we propose
renaming existing WRKY genes based on an adopted naming scheme [18].

2. Mechanisms of Plant Tolerance to Salinity

Effective ion transport is a tolerance characteristic since excessive ion accumulation
under salinity conditions, including Na+ and chloride (Cl–), can be toxic. Several key genes
mediate this response. High-affinity potassium ion (K+) uptake transporter (HKT) mediates
the continual uptake of K+ to ensure an optimal K+:Na+ ratio within the plant cells [19–21].
The salt overly sensitive (SOS) pathway involves Na+/H+ antiporters to maintain home-
ostasis, primarily involving SOS1 but also SOS2 and SOS3 [16,22,23]. Another important
intracellular Na+/H+ exchange is the NHX-type, with NHX proteins responsible for Na+

compartmentalization or sequestration into intracellular vacuoles [16,24].
The ability to adjust and maintain the osmotic gradient is also important under salinity

stress. Organic solute production (e.g., proline) helps adjust the osmotic gradient and
involves the pyrroline-5-carboxylate synthetase (P5CS) gene, among others [25]. ABA is a
key hormone triggered under induced drought as it regulates stomatal opening [26] and
proline accumulation. Lesser-known salt tolerance zinc finger (STZ) genes function as
transcriptional repressors to improve the osmotic/drought response [27].

Reactive oxygen species (ROS) are a byproduct of cellular metabolism that drive ion
transport and maintain an optimal osmotic gradient. Under salt stress, ROS production
increases [28], affecting the delicate balance required for plant functioning by causing
oxidative stress. Malondialdehyde (MDA) can accumulate in toxic levels under oxidative
stress and is often used as a marker for lipid peroxidation under such conditions [29–32].
However, one study has disputed MDA accumulation as a marker for sensitivity, viewing it
as a tolerance mechanism [33]. Managing ROS is important because one study reports a 40%
reduction in thylakoid membrane proteins from oxidative effects [34], which subsequently
reduces photosystem capability [34]. Combating ROS production requires antioxidant (AO)
species that typically scavenge ROS. Common AO species include superoxide dismutase
(SOD) [35], peroxidase (POD), catalase (CAT) [36,37], ascorbate peroxidase (APX) [38],
glutathione S-transferase (GST) [39], and/or glutathione peroxidase (GPX) [37,38] which
when accumulated will result in less oxidative harm to cellular processes.

Given that there are multiple overlapping mechanisms within a response pathway,
signaling is delegated to ‘master switches’ such as hormones which can induce multiple
mechanisms across multiple pathways in response to specific conditions. Numerous plant
hormones, or phytohormones, play a critical role in salinity tolerance, including ABA,
ethylene, salicylic acid (SA), jasmonic acid (JA), auxin, and gibberellic acid (GA) [40].

While all hormones play their part, ABA is the most important, crosstalking with other
phytohormones and being responsible for various response mechanisms. ABA typically
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responds to osmotic stress but also plays a critical role in salinity tolerance and other
abiotic stress signaling. For example, in angiosperms ABA regulates stomatal closure in
response to osmotic stress [41], helps avoid pockets of salinity in the soil by retarding root
growth from exploring such areas [21,42], and may be involved in ROS scavenging [40,43].
SA promotes growth under salt stress, activating proline accumulation, enhancing the
antioxidant system, and improving photosynthesis [44]. SA and JA positively regulate
salinity tolerance and crosstalk with other hormones: SA regulates GA, auxin, and ABA,
while JA only mediates ABA [40]. However, excess SA reduces plant fitness compared to
moderate levels that improve fitness and survivability [40]. JA primarily represses plant
growth under salt stress, while promoting ion and ROS homeostasis. Other hormones
involved in regulating the salinity response are ethylene, existing as a positive regulator,
and auxin which is a negative regulator [40].

Hormones can be regulated by proteins or themselves regulate proteins that bind and
specifically control gene expression (positive or negative) known as transcription factors,
including NAC, MYB, bZIP, ERF/dehydration-responsive element binding protein (DREB),
and WRKY [17]. Here, we outline WRKY genes involved in key regulatory mechanisms,
including ABA regulation and the SOS pathway.

3. WRKY Genes

WRKY genes have proliferated predominantly in angiosperms but can be found in
some slime, algae, and other organisms [45]. WRKY genes were first discovered in sweet
potatoes [46]. The core structure of WRKY proteins is a 60 amino acid (aa) conserved
WRKY sequence domain at the N-terminal and a Zn-finger motif at the C-terminal [47].
Generally, WRKY proteins bind to the DNA sequence motif (T)(T)TGAC(C/T), otherwise
known as the W-box [47,48]. Selection between conserved W-boxes is based partially
on neighboring sequences [49], but this is not universal as, for example, Hv-WRKY38
requires two W-box domains for effective binding [50]. Other WRKY proteins can diverge
further with no evidence of W-box binding, such as NtWRKY12, which binds to a WK-box
(TTTTCCAC) [51]. The C-terminal Zn-finger motif and N-terminal are responsible for the
WRKY transcription factor’s ability to bind to DNA [52,53].

WRKY proteins are classified into four groups. Group I proteins comprise two do-
mains, while Group II and III proteins comprise one domain [47,54]. Group I is further
divided into subgroups Ia and Ib based on their zinc fingers (C2H2 zinc fingers and C2HC
zinc fingers, respectively) [55]. Group II is subdivided into five groups (a–e) distinguished
by amino acid motifs and phylogenetic analysis [47,54]. Group III classification is based on
its divergent C2HC zinc finger, unique to the WRKY family [55]. Group IV WRKY proteins
lack a zinc finger [56] and are divided into subgroups Iva, containing a partial zinc finger
motif (CX4C), and IVb, containing no conserved Cys or His residues [56].

3.1. WRKY Genes in Biotic and Abiotic Response

WRKY genes are diverse in their function and consequently involved in the positive
and negative regulation of various abiotic and biotic stresses. For instance, biotic reg-
ulators HvWRKY1 and 2 play an important role in suppressing the pathogen-inducible
gene, HvGER4c, which confers resistance to powdery mildew [57]. Silencing WsWRKY1
in Withania somnifera decreased the activity of defense-related genes and reduced overall
plant fitness upon fungal (B. cinerea) and bacterial (P. syringae) infection [58]. OsWRKY62
negatively regulates basal defenses against pathogens, with its overexpression compro-
mising Xa21, a basal defense gene, and thus reducing plant innate immunity [59]. Abiotic
stresses are also under the purview of WRKY responses. In maize (Zea mays), ZmWRKY106
was induced under drought and heat stress and weakly induced by salt stress [60]. Os-
WRKY30 helped alleviate the drought response in rice (Oryza sativa) by regulating relevant
genes [61]. However, WRKY proteins are often associated with a complex web of inter-
actions that enhance abiotic and biotic stress tolerance. In sugar cane (Saccharum spp.),
ScWRKY5 transcription was induced via inoculation with smut Sporisorium scitamineum
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(biotic stress) and by abiotic stresses such as polyethylene glycol (PEG) and NaCl [62]. In
tomato (Solanum lycopersicum), SlWRKY31 activated the plant defense mechanism upon
multiple pathogen inoculations and was involved in drought and salt stress tolerance [63].

3.2. WRKY Genes Involved in Salinity Response

Currently, there are 94 WRKY genes identified in barley (Hordeum vulgare) [57], 83
in tomato [63], 103 in rice [64], and 62 in pepper (Capsicum annuum) [65]. Tables 1 and 2
summarize known WRKYs that regulate salinity tolerance, including plant species, gene
name, and tolerance mechanisms based on their expression, be it in the native host plant
or ectopic expression in another species, such as Arabidopsis. However, WRKY genes are
complex, with their response differing with salt concentration; Tables 1 and 2 only report
their signaling relationships in response to salinity.

Table 1. Negative WRKY transcription factor regulators for salinity response.

Plant (Species)
Originate from Expression Tested inGene ID Protein ID Function References

Pepper
(Capsicum annuum)

Arabidopsis &
Tobacco CaWRKY27 n.a.

Insertion reduced
ROS-detoxification, hormone

signalling, and osmotic
response pathways

[66]

Bermudagrass
(Cynodon dactylon (L). Pers.) Arabidopsis CdWRKY50 n.a.

Overexpression (OE) reduced
hormone signalling, ion

transport, ROS scavenging,
and osmotic

regulation pathways

[67]

Chrysanthemum
(Chrysanthemum

morifolium)
Arabidopsis CmWRKY17 AJF11725 *

OE reduces hormone
signalling and osmotic

response pathways
[68]

Cotton
(Gossypium barbadense) Arabidopsis GbWRKY1 n.a.

OE negatively regulated
osmotic response and

hormone signalling pathways
[69]

Cotton
(Gossypium hirsutum) Tobacco GhWRKY17 ADW82098.1 *

OE enhanced sensitivity to
saline conditions by reducing
ROS regulation and hormone

signalling pathways

[70]

Cotton
(Gossypium hirsutum) Arabidopsis GhWRKY6 n.a.

OE reduced osmotic response
and hormone

signalling pathways
[71]

Rice (Oryza sativa) Arabidopsis
& rice OsWRKY72 ALB35168.1 *

OE inhibited osmotic response
and interfered with hormone
signalling in Arabidopsis, but
native expression enhanced

rice salinity tolerance

[72,73]

Poplar
(Populus alba

var. pyramidalis)

Populus alba var.
pyramidalis PalWRKY77
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Japanese knotweed
(Polygonum cuspidatum)

Arabidopsis
& native PcWRKY33 AYN74370.1 *

OE reduced oxidative stress,
osmotic response, and ion

transport response pathways
in Arabidopsis, but native

expression enhanced
salinity tolerance

[75]

Sorghum
(Sorghum bicolor (L.)

Moench)
Arabidopsis SbWRKY50 Sb09g005700 **

OE reduced osmotic response,
ROS scavenging, and ion

transport pathways
[76]

Grape (Vitis vinifera) Arabidopsis VvWRKY13 n.a.
OE reduced ROS scavenging,

osmotic response, and
hormone signalling pathways

[77]
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Table 1. Cont.

Plant (Species)
Originate from Expression Tested inGene ID Protein ID Function References

Maize (Zea mays) Arabidopsis ZmWRKY17 ACG39023.1*

OE resulted in salt
hypersensitivity and
insensitivity to the

ABA pathway

[78]

* NCBI GenBank database (https://www.ncbi.nlm.nih.gov/, accessed 14 April 2022),
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unspecified between IDs,
** Plant Transcription Factor Database (TFDB, http://planttfdb.gao-lab.org/, accessed 16 April 2022).

Table 2. Positive observed WRKY transcription factors for salinity response.

Plant Expressed in Gene ID Protein ID Function References
Peanut

(Arachis hypogaea) Peanut AhWRKY75 n.a. OE enhanced fitness and
ROS scavenging [79]

Arabidopsis thaliana Arabidopsis AtWRKY33 NP_181381.2 *
OE enhanced osmotic

and hormone
signaling pathways

[80]

Arabidopsis thaliana Arabidopsis AtWRKY8 NP_193551.1 *
OE enhanced osmotic

response and ion
transport pathways

[81]

Chrysanthemum
(Dendranthema grandiflorum) Tobacco DgWRKY1 AGI96744.1 * OE enhanced

antioxidant response [82]

Chrysanthemum
(Dendranthema grandiflorum) Tobacco DgWRKY3 AGN95658.1 *

Responsive to salt
conditions, enhanced
oxidative stress relief

and osmotic
response pathways

[83]

Chrysanthemum
(Dendranthema grandiflorum) Chrysanthemum DgWRKY4 n.a.

OE enhanced
ABA-independent

pathways and ROS species
[84]

Chrysanthemum
(Dendronthema grandiform) Chrysanthemum DgWRKY5 n.a.

OE involved in ABA
signaling and pathway,

ROS scavenging, osmotic
regulator, and adjustment

to infer salt
stress tolerance

[29]

Fortunella crassifolia Tobacco & Lemon FcWRKY40 n.a.
OE enhanced osmotic

response and ion
transport pathways

[30]

Tartary buckwheat
(Fagopyrum tataricum) Arabidopsis FtWRKY46 QGT76435.1 *

OE enhanced ROS
scavenging and osmotic
response and reduced

hormone signaling

[85]

Cotton
(Gossypium hirsutum) Arabidopsis GhWRKY34 AJT43314.1 *

OE enhanced hormone
signaling, osmotic
response, and ion

transport pathways

[86]

Cotton
(Gossypium hirsutum) Tobacco GhWRKY39-

1 AGX27509.1 *
OE enhanced ROS

detoxication pathway and
enhanced fitness

[87]

https://www.ncbi.nlm.nih.gov/
http://planttfdb.gao-lab.org/
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Table 2. Cont.

Plant Expressed in Gene ID Protein ID Function References

Cotton
(Gossypium hirsutum) Arabidopsis GhWRKY46 n.a.

Enhanced insensitivity to
salinity through enhanced

osmotic and ion
transport response

[88]

Cotton
(Gossypium hirsutum) Arabidopsis GhWRKY6-like n.a.

OE enhanced ROS
scavenging, osmotic

response, and hormone
signaling pathways

[89]

Rubber tree
(Hevea brasiliensis) Arabidopsis HbWRKY82 n.a.

OE enhanced ROS
scavenging, osmotic

response, and hormone
signaling pathways

[90]

Sweet potato
(Ipomoea batatas (L.) Lam.) Arabidopsis IbWRKY2 n.a.

OE enhanced ROS
scavenging, osmotic

response, and hormone
signaling pathways

[31]

Jatropha curcas Tobacco JcWRKY AGE81984.1 *

OE enhanced ROS
scavenging, osmotic

response, and hormone
signaling pathways

[91,92]

Apple
(Malus baccata) Tobacco MbWRKY4 n.a.

OE enhanced antioxidant
response and osmotic

adjustment
[93]

Siberian crab apple
(Malus baccata) Tobacco MbWRKY5 MDP0000514115 **

OE enhanced membrane
stability, osmotic response,

and AO capabilities
[94]

Apple
(Malus × domestica borkh)

Arabidopsis
& Apple MdWRKY30 QDL95022.1 *, �

OE enhanced ROS
scavenging, hormone
signaling, and osmotic

response pathways

[95]

Resurrection plant
(Myrothamnus flabellifolia) Arabidopsis MfWRKY70 n.a.

OE enhanced hormone
signaling, ROS

scavenging, and osmotic
adjustment pathways

[96]

Malus xiaojinensis Arabidopsis MxWRKY53 n.a.
OE enhanced fitness,

proline, and ROS
scavenging activity

[97]

Apple rootstock
(Malus xiaojinensis) Arabidopsis MxWRKY55 n.a.

OE enhanced ROS
scavenging and osmotic

response pathways
[98]

Rice (Oryza sativa) Rice OsWRKY87 n.a.

OE enhanced ion
transport, osmotic

response, and hormone
signaling pathways and

ROS-scavenging
protein activity

[99]

Southworth dance
(Pyrus betulaefolia) Arabidopsis PbWRKY40 Pbr004885.1 **

OE enhanced ROS
scavenging and Na+

regulation via transporters
[100]

Japanese knotweed
(Polygonum cuspidatum) Arabidopsis PcWRKY11 MZ734625 ****

OE reduced oxidizing
elements and increased
proline accumulation

[101]

Moso bamboo
(Phyllostachys edulis;

Bambusoideae)
Arabidopsis PeWRKY83 PH01004514G0080 *

OE enhanced hormone
signaling and osmotic

response pathways
[32]
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Table 2. Cont.

Plant Expressed in Gene ID Protein ID Function References

Tomato
(Solanum lycopersicum) Arabidopsis SlWRKY3 ADZ15316 *

OE enhanced hormone
signaling, osmotic

response, ROS scavenging,
and ion

transport pathways

[102]

Tomato
(Solanum lycopersicum)

Solanum
lycopersicum SlWRKY8 Solyc02g093050.2.1 *

OE enhanced osmotic
response, ROS scavenging,

and hormone
signaling pathways

[103]

Wheat (Triticum aestivum) Tobacco TaWRKY10 ADY80578.1 *
OE enhanced osmotic

response and ROS
scavenging pathways

[104]

Wheat (Triticum aestivum) Rice TaWRKY13 Traes_2AS_
6269D889E.1 **

Reduced ROS activity and
enhanced proline

accumulation in OE lines
[105]

Wheat (Triticum aestivum) Arabidopsis TaWRKY19 ACD80362.1 * OE enhanced osmotic
response pathway [106]

Wheat (Triticum aestivum) Arabidopsis TaWRKY2 ACD80357.1 * OE enhanced osmotic
response pathway [106,107]

Wheat (Triticum aestivum) Tobacco TaWRKY44 ALC04265.1 *

OE enhanced ROS
tolerance and scavenging

and compatible solute
accumulation

[108]

Wheat (Triticum aestivum) Arabidopsis TaWRKY75-A TraesCS4A01G193600.1
** Involved in JA pathway [109]

Wheat (Triticum aestivum) Arabidopsis TaWRKY79 AFN44008.1 *
OE enhanced hormone
signaling and osmotic

response pathways
[110]

Wheat (Triticum aestivum L.) Arabidopsis TaWRKY93 AFW98256.1 *
OE enhanced osmotic and

hormone
signaling pathways

[111]

Bog bilberry
(Vaccinium uliginosum) Arabidopsis VuWRKY n.a.

OE enhanced ROS
scavenging and osmotic

response pathways
[112]

Grape (Vitis vinifera L.) Arabidopsis VvWRKY30 ALM96663.1 *

OE enhanced osmotic
response in proline
accumulation and

oxidative stress
response activities

[113]

Maize (Zea mays) Maize ZmWRKY104 Zm00001d020495
***

OE enhanced ROS
scavenging response [114]

* NCBI database (https://www.ncbi.nlm.nih.gov/, accessed 14 April 2022), ** within PlantTFDB (http://planttfdb.
gao-lab.org/, accessed 16 April 2022), *** GrainGenes database (https://wheat.pw.usda.gov/GG3/, accessed on
17 April 2022), **** quoted to be in GenBank but doesn’t appear, � labeled MdWRKY31 in NCBI GenBank.

This review collated and summarized WRKYs involved in regulating salinity tolerance
from the literature. WRKYs were excluded if there was only evidence of being upregu-
lated by salinity but no inferred tolerance or sensitivity mechanism. However, WRKY
studies with no gene expression analysis but investigated protein accumulation were in-
cluded selectively. GmWRKY49 [115], TaWRKY10-1 [116], Elaeis guineensis WRKYs [117],
MdWRKY100 [118], IlWRKY2 [119], WRKY75 [120], GhWRKY25 [121] and a host of barley
candidate genes [18,122] were excluded despite evidence of upregulation under saline con-
ditions. Cherry rootstock (Prunus avium L.) PaWRKY25, 33, and 38 were also excluded due
to the lack of a pathway of inferred tolerance analysis despite some evidence of enhanced
tolerance (e.g., enhanced chlorophyll accumulation and survival rates) [123]. VvWRKY30,
MxWRKY53, VuWRKY, GhWRKY46, and TaWRKY13 had a lack of gene expression analysis
but evidence of protein accumulation to justify their inferred mechanisms. TaWRKY2 [106]

https://www.ncbi.nlm.nih.gov/
http://planttfdb.gao-lab.org/
http://planttfdb.gao-lab.org/
https://wheat.pw.usda.gov/GG3/
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was not included due to inconsistencies within the literature. Two other papers [109,124]
confused TaWRKY2 with TaWRKY1 (according to the former paper), containing an accession
that was, confusingly, labeled TaWRKY1. In summary, while not appropriate for this review,
the excluded papers are excellent starting points for future investigations. The next section
explains the specific methods for categorizing WRKYs under different regulatory pathways.

3.3. Pathways for WRKY Mediating Salinity Response

Below is a summary of the frequency for inferring regulation for the investigated
WRKYs (Figure 1). When investigating the effect pathway, a conserved mechanism cannot
be assumed when inserted into different plants. Modeled from within Arabidopsis, Figure 2
illustrates the inferred mechanisms used to classify the different response pathways. Most
WRKY papers include the transformation of Arabidopsis with some including tobacco, to
examine the impact of transferring their selected WRKY gene. However, the returning data
are not always translatable in the native plant; for example, OsWRKY72 in rice improved
salinity tolerance within the species [73] but reduced tolerance in Arabidopsis [72]. Similarly,
PcWRKY33 enhanced survival of its natural host (P. cuspidatum) under saline conditions
but reduced overall fitness in transgenic Arabidopsis [75]. Hence the selection of WRKY to
enhance tolerance is only possible through practical experimentation.
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Figure 1. Bar graph visualizing the distribution of response pathways for WRKY genes.

Distinguishing WRKYs that affect ion transporters is a fairly stringent and straight-
forward process (Figure 2a). Figure 3a summarizes WRKYs that infer regulation via the
ion transport pathway. The WRKYs included here are those with evidence of differential
gene regulation responsible for ion transporters. This includes the upregulation of the SOS
pathway (SOS1, SOS2, and/or SOS3), NHX, and HKT genes for stabilizing and maintaining
an optimal Na+/K+ ratio for cellular function. Discriminating factors included the irregular
expression of transport genes from the presence of the relevant WRKY gene but not the
observed optimal K+/Na+ ratios compared to wild type alone. An outlier was SlWRKY3,
which enhanced various ion transport pathways, such as Na+/K+-transporting ATPase
(NP000693), to improve salinity tolerance.
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Figure 2. (a) Method for inferring the mechanism of action of differential regulation of genes APX,
GST, POD, CAT, SOD, and/or GPX to determine involvement in the oxidative stress relief pathway.
Differential regulation of HKT, NHX, and/or the SOS pathway to infer ion transport regulation. ABA
signaling, differential hormone sensitivity, and/or differential accumulation due to the presence
of WRKY are classified as hormone signaling. The osmotic response was according to differential
expression of P5Cs, STZ, and ABA signaling. This is modeled after Arabidopsis since most WRKYs
were investigated therein; (b) How WRKYs qualified for ABA signaling modeled in Arabidopsis. Split
into independent signaling based on differential expression of DREB and dependent signaling based
on differential regulation of ABA biosynthesis genes (PP2CA and MYC). Biosynthesis genes included
RD22, ABI, AAO, NCED, and ZEP.

The oxidative stress relief pathway was discriminated based on the evidence of en-
hanced antioxidant (AO) upregulation and/or enriched AO protein accumulation. These
genes included POD, CAT, APX, GST, GPX, and SOD pathways (Figure 2a), except for
MfWRKY70, included in this review due to its in-depth analysis of the osmotic response
pathway to overcome salinity, despite minor conclusion regarding MfWRKY70’s ability to
overcome the ROS produced under salinity stress. WRKYs involved in the oxidative stress
pathway are in Figure 3b.

The osmotic response pathway overlaps the ABA and hormone signaling pathways
but warrants distinction. Figure 3c summarizes the pathways that determined what
classifies osmotic response signaling. Distinguishing ABA signaling is discussed below
and illustrated in Figure 2b. For this review, the criteria predominantly depended on the
upregulation of P5Cs or STZ. Evidence of proline or soluble sugar accumulation alone
was not used as a qualifying characteristic. Excluded WRKYs included TaWRKY44 and
PbWRKY40 (accumulated organic sugar and proline), VuWRKY, TaWRKY13, MxWRKY55,
MxWRKY53, MbWRKY4 (accumulated proline), and JcWRKY (accumulated soluble sugars).
The included WRKYs had evidence of specific gene enrichment in response to salinity
stress for the relevant genes. GmWRKY12 [125] was excluded because it lacked solute
accumulation as evidence, but its promoter region included elements involved in numerous
stress relief pathways, warranting its distinction.
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Figure 3. (a) WRKYs that positively (light green lines) and negatively (dark red) affect the ion
transport response; (b) WRKY oxidative stress response pathway with positive (light green lines) and
negative (dark red) interactions, solid lines indicate genotypic evidence, and dashed lines indicate
phenotypic evidence; (c) WRKYs that regulate salinity tolerance through an osmotic response pathway
with positive (light green lines) and negative (dark red) interactions. (d) WRKYs that regulate the
hormone signaling pathway with positive (light green lines) and negative (dark red) interactions;
(e) WRKY interactions with ABA signaling for dependent, independent, or both pathways; green
boxes enhanced salinity tolerance, red boxes reduced salinity tolerance, dashed red lines indicate
reduced expression, and solid green lines indicate enhanced expression of the ABA signaling pathway.
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Hormone signaling included WRKYs which were involved with ABA signaling and
other hormones and is shown in Figure 3d. ABA signaling is strictly defined as outlined in
the next paragraph and in Figure 2b, but classifying WRKYs for hormone signaling with
other hormones was considered on a case-by-case basis. This loose definition for hormones
other than ABA is outlined in Figure 2a.

Discriminating the WRKYs between the different forms of interaction within ABA sig-
naling (Figure 3e) was tricky given the conflicting conclusions within the literature but is
defined here and shown in Figure 2b. Signaling within the ABA pathway is divided into
ABA-dependent or ABA-independent signaling. An established link exists between WRKY
genes and the ABA pathway [126]; here, this relationship is specifically related to salinity.
Conflicting conclusions exist for certain gene interactions, such as responsive to desicca-
tion 29A (RD29A), recognized by different papers as dependent [127] and independent [81].
MfWRKY70 was first reported to operate in the ABA-dependent pathway because RD29A was
induced [96]; however, we concluded that MfWRK70 is ABA-dependent due to the enrichment
of the nine-cis-epoxycarotenoid dioxygenase (NCED) gene involved in ABA synthesis [128].
Using RD29A signaling to infer ABA-dependent signaling is not a good interpretation since
it is induced by ABA-dependent and ABA-independent pathways [129–132]. Classifying
WRKYs as ABA signaling was based upon evidence of interactions within the ABA signal-
ing pathway, but not if the WRKY gene was induced by ABA signaling itself. In summary,
ABA signaling was determined from interactions within the ABA signaling pathway and
discriminating between dependent and independent pathways was based on the regu-
lation of biosynthesis and selective literature definitions [131,132]. The classification of
ABA signaling included the upregulation of gene families NCED [132,133], zeaxanthin
epoxidase (ZEP) [131,134], aldehyde oxidase (AAO) [131,135,136], response to desiccation
29 (RD29), response to desiccation 22 (RD22) [130], MYC [137], DREB, abscisic acid-
responsive elements-binding factor (ABF) [131], ABA insensitive (ABI) [131], and ABA-
hypersensitive germination (PP2CA) [138,139]. Of these, only the DREB family was classi-
fied as ABA-independent signaling, while NCED, ZEP, AAO, ABF, RD22, and ABI were clas-
sified as ABA-dependent signaling due to roles in ABA biosynthesis, regulation, and what
the selected literature distinguished as the ABA-dependent signaling pathway [131,132].

4. Standardizing WRKY Naming

The naming convention found for WRKY genes is not consistent within the literature
and subsequently has limited practicality. Sometimes naming can be coincidental, as with
AhWRKY75 being most similar to AtWRKY75 via homolog analysis [79]. Other times
WRKYs are named due to their homology, as with PcWRKY33 named after AtWRKY33 [75]
and GmWRKY6 after AtWRKY6 [71]. However, if there is no identified homolog with
Arabidopsis, this system does not work, and the discovery sequence is then relied on for
labeling. This mixture of systems has created inconsistent rules, undermining its practical
use. ZmWRKY17, for instance, has close homology with AtWRKY15, GmWRKY13, and
VvWRKY11 but is not similar in numbered labeling [78]. Another example is HvWRKY38,
with close homology with AtWRKY40 and OsWRKY71 [50]. Naming based on homology
clashes with ascending numeration, such as GhWRKY39-1 named according to homology
with AtWRKY39; since GhWRKY39 already existed, the authors’ solution was to denominate
with ‘-1 [87]. Naming can also be distinguished by an isolated ruleset, such as TaWRKY75-A
being labeled according to its location in the sub-genome [109]. This sub-genome labeling
has been conserved due to its significance within the context of renaming here. In addition,
musaWRKY18 does not follow standard naming conventions [140] nor does WRKY75 [120].

We propose renaming WRKYs based on their physical structure, adopting an existing
renaming system [18] that was prompted while investigating WRKYs in the literature.
Figure 4a, made from Tables 1 and 2, show that most WRKYs are in group II, and as are the
overwhelming majority of negative regulators as seen in Figure 4b. However, this does not
match the literature, with abiotic stress believed to be linked proportionally more to groups
I and III WRKYs [106].
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Figure 4. (a) Ratios of group I, II, and III WRKYs involved in the salinity response (see also Tables 1 and 2);
(b) Ratio of the groups containing WRKYs with a positive impact on salinity tolerance.

Merging the trends observed from the WRKY grouping with a system built to in-
corporate the physical structure into the naming of a WRKY is a practical tool for future
investigations. You cannot infer a mechanism by knowing its group, but it will be relevant
when deciding the hierarchy for investigating WRKYs. An example of how the system
by Yazdani, Sanjari [18] renames its WRKYs is HvWRKY32, a group III WRKY and, thus,
subsequently named HvWRKY_III11 with 11 denoting that this is the eleventh HvWRKY_III
protein found. The WRKYs from Tables 1 and 2 have been renamed with this adopted sys-
tem, if possible, in Table 3. Some WRKYs were moved into other WRKY groups according
to the phylogenetic tree in Figure 5. This tree was also used to classify ungrouped WRKYs,
such as AtWRKY8, GhWRKY17, and OsWRKY72, if their accession was available; however,
if no accession or group is given then they cannot be named under this practical system.

Table 3. Proposed renaming of selected WRKYs from Tables 1 and 2.

WRKY Gene New Name Issues with Naming and Comments
AhWRKY75 AhWRKY_IIc1 No protein ID available to check
AtWRKY33 AtWRKY_I1 –

AtWRKY8 AtWRKY_IIc1 No subgroup in the paper and thus deduced from phylogenetic
analysis

CaWRKY27 – No information on grouping and no accession available
CdWRKY50 – Classed as group II but without subgroup and accession

CmWRKY17 CmWRKY_IId No subgroup in the paper and thus deduced from phylogenetic
analysis

DgWRKY1 DgWRKY_Iic –
DgWRKY3 DgWRKY_III1 –
DgWRKY4 DgWRKY_I1 No protein ID available to check
DgWRKY5 DgWRKY_I2 No protein ID available to check
FcWRKY40 FcWRKY_Iia No protein ID available to check
FtWRKY46 FtWRKY_III1 –
GbWRKY1 GbWRKY_IIc1 No protein ID available to check

GhWRKY17 GhWRKY_IId1 No subgroup in the paper and thus deduced from phylogenetic
analysis

GhWRKY34 GhWRKY_III1 No protein ID available to check

GhWRKY39-1 GhWRKY_IId2 No subgroup in the paper and thus deduced from phylogenetic
analysis

GhWRKY46 GhWRKY_IIc1 No protein ID available to check
GhWRKY6 – No information on grouping and no accession available
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Table 3. Cont.

WRKY Gene New Name Issues with Naming and Comments
GhWRKY6-like – No information on grouping and no accession available
HbWRKY82 HbWRKY_IIc1 No protein ID available to check
IbWRKY2 IbWRKY_I1 No protein ID available to check

JcWRKY JcWRKY_III1 Classed as a group, but phylogenetic analysis deduced JcWRKY as
group III

MbWRKY4 – No information on grouping and no accession available
MdWRKY30 MdWRKY_IIa1 –
MbWRKY5 MbWRKY_I1 –
MfWRKY70 MfWRKY_IIa1 No protein ID available to check
MxWRKY53 MxWRKY_IIc1 No protein ID available to check
MxWRKY55 – No information on grouping and no accession available

OsWRKY72 OsWRKY_IIc1 No subgroup in the paper and thus deduced from phylogenetic
analysis

OsWRKY87 – No information on grouping and no accession available
PalWRKY77 PaWRKY_IIa1 –

PbWRKY40 PbWRKY_IIa1 No subgroup in the paper and thus deduced from phylogenetic
analysis

PcWRKY11 PcWRKY_IId1 No protein ID available to check
PcWRKY33 PcWRKY_I1 –

PeWRKY83 PeWRKY_IIc1 No subgroup in the paper and thus deduced from phylogenetic
analysis

SbWRKY50 SbWRKY_IIc1 Grouped within class III but determined group II subgroup c from
phylogenetic analysis

SlWRKY3 SlWRKY_III1 –
SlWRKY8 SlWRKY_IId1 –

TaWRKY10 TaWRKY_IIc1 Grouped within class I but determined to be group II subgroup c from
phylogenetic analysis

TaWRKY13 TaWRKY_III1 Grouped within class II without subgrouping, but phylogenetic
analysis determined to be group III

TaWRKY19 TaWRKY_I1 –
TaWRKY2 TaWRKY_I2 Grouped as group II but analysis determined closer to group I

TaWRKY44 TaWRKY_IIa1 Grouped as a class I protein, but analysis determined group II
subgroup a

TaWRKY75-A TaWRKY_III2-A –

TaWRKY79 TaWRKY_IIa2 No subgroup in the paper and thus deduced from phylogenetic
analysis

TaWRKY93 TaWRKY_IIa3 No subgroup in the paper and thus deduced from phylogenetic
analysis

VuWRKY VuWRKY_I1 No protein ID available to check
VvWRKY13 – No information on grouping and no accession available
VvWRKY30 VvWRKY_III1 –

ZmWRKY104 ZmWRKY_IIa1 No subgroup in the paper and thus deduced from phylogenetic
analysis

ZmWRKY17 ZmWRKY_IId1 –
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5. Conclusions

The challenges imposed by salinity require a network of responses to overcome, with
the mechanisms varying between species and WRKY genes. With climate change pre-
dicted to further exacerbate dryland salinity [5], understanding the tolerance mechanisms
employed by plants can help overcome these challenges. Salinity is summarized as a
two-phase challenge of (I) imposed drought and (II) salinity-specific ion toxicities from
extended exposure to NaCl ions. Numerous mechanisms are used to combat the challenges
introduced by salinity, with WRKY transcription factors heavily involved [7]. Here, WRKYs
have been labeled according to their signaling pathway in response to salinity, simplified
into four categories: osmotic response, hormonal response, ion transport, and oxidative
stress detoxification regulation. In the literature, salinity is managed primarily by group
II WRKYs, and predominantly operate via the osmotic response pathway. Considerable
crosstalk with ABA signaling (dependent or independent) also occurs, predominantly as
a positive signaling pathway. Most WRKYs are positive regulators from group 2, and
nearly all WRKY negative regulators were found to be from group II. The analyzed WRKYs
were also included in a phylogenetic analysis, if possible, to determine their subgroup and
confirm their grouping. We adopted a more practical naming system for WRKY genes to
rename existing WRKYs in a coherent and standardized fashion that synergizes with the
trends observed within this review.
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This information will improve access to WRKYs involved in regulating salinity tol-
erance and accelerate investigations on hardier crop varieties. In this review, WRKYs
involved in negative and positive regulation for salinity tolerance have been separated
due to their difference in practicality. Identifying negative regulators is the most practical
information for future crop varieties since there is no concern about foreign DNA insertions
with gene knock out [142]. Negative WRKYs should not overshadow the practicality of
positive WRKYs, however, as they can be transferred between species. The accessibility of
such transformation is becoming easier because of ever-developing advanced technolo-
gies [6,143]. One such technology is the clustered, regularly interspaced, short palindromic
repeat (CRISPR)/Cas systems which is making genetic investigations more accessible for
fast-tracking potential new varieties [143,144].
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