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Abstract: Biotic and abiotic plant stress (e.g., frost, fungi, diseases) can significantly impact crop
production. It is thus essential to detect such stress at an early stage before visual symptoms and
damage become apparent. To this end, this paper proposes a novel deep learning method, called
Spectral Convolution and Channel Attention Network (SC-CAN), which exploits the difference in
spectral responses of healthy and stressed crops. The proposed SC-CAN method comprises two
main modules: (i) a spectral convolution module, which consists of dilated causal convolutional
layers stacked in a residual manner to capture the spectral features; (ii) a channel attention module,
which consists of a global pooling layer and fully connected layers that compute inter-relationship
between feature map channels before scaling them based on their importance level (attention score).
Unlike standard convolution, which focuses on learning local features, the dilated convolution layers
can learn both local and global features. These layers also have long receptive fields, making them
suitable for capturing long dependency patterns in hyperspectral data. However, because not all
feature maps produced by the dilated convolutional layers are important, we propose a channel
attention module that weights the feature maps according to their importance level. We used SC-CAN
to classify salt stress (i.e., abiotic stress) on four datasets (Chinese Spring (CS), Aegilops columnaris
(co(CS)), Ae. speltoides auchery (sp(CS)), and Kharchia datasets) and Fusarium head blight disease
(i.e., biotic stress) on Fusarium dataset. Reported experimental results show that the proposed method
outperforms existing state-of-the-art techniques with an overall accuracy of 83.08%, 88.90%, 82.44%,
82.10%, and 82.78% on CS, co(CS), sp(CS), Kharchia, and Fusarium datasets, respectively.

Keywords: fusarium head blight disease; wheat salt stress; hyperspectral information; dilated
convolution; attention mechanism

1. Introduction

Stress in wheat crops can be caused by abiotic factors (e.g., salt, drought, or extreme
temperatures) or biotic factors (e.g., pathogens and insects) [1]. Such stress affects wheat
growth and productivity [2] and can be identified by observing visual symptoms [3]. A
study in [4] successfully detected stress by analyzing the visual symptoms using an image
processing technique. However, by the time visual symptoms appear, it is often too late
to put in place appropriate crop management solutions to mitigate crop losses. Early
manifestation of plant stress responses include changes in chlorophyll content, as well as
cellular metabolism and tissue degradation [5]. These changes affect in turn the plant’s
spectral reflectance, which can be captured by hyperspectral sensors. Hence, spectral
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information (reflection intensity per waveband in hyperspectral data) can be leveraged for
the early detection of crop stress.

Spectral information is typically captured at hundreds of narrow bands, where
adjacent bands tend to be highly correlated, resulting in considerable redundancy [6,7].
Analyzing spectral information is challenging because of its high dimensionality and
redundancy [8]. A number of methods have been proposed to analyze spectral data
for wheat-stress classification, e.g., Bayesian [9], random forest, and Support Vector Ma-
chine (SVM) [10]. However, these methods rely heavily on handcrafted features, which
are usually designed for a specific task. They also cannot be generalized, limiting their
applicability [11]. In contrast, recent deep learning techniques can learn features auto-
matically from the data [11,12], making them a promising alternative for spectral data
analysis.

A number of these deep learning studies treat spectral data as a sequence. A deep
learning method commonly used for sequential data are Recurrent Neural Networks
(RNNs) [13,14]. Mou et al. [15] used RNNs to extract features from the spectral data.
However, RNNs are prone to gradient vanishing or exploding problems if the sequence is
long [16,17]. As a result, RNNs are less suitable for long data sequences. To address this
issue, Lipton et al. [18] proposed Long Short-Term Memory (LSTM), which replaced the
recurrent hidden nodes with memory cells, so that the gradient can go across several time
steps without vanishing or exploding. LSTM network was used to extract features from
the spectral data [16,19]. However, LSTM has a limited attention span, and cannot capture
long dependency patterns [20], which may exist in the hyperspectral data. Moreover, since
LSTM and RNNs have recurrent connections, their training process is time-consuming for
a very long sequence.

Other studies proposed convolutional neural network (CNN) to extract features from
spectral data. The convolutional networks do not have recurrent connections, so they are
faster to train than LSTM or RNNs. Since the spectral data structure is a one-dimensional
(1D) array, Hu et al. [21] proposed to use CNN with 1D kernels to extract these spectral
features. If the 1D-CNN network is shallow, it will only be able to extract local features
as its kernels only have a short receptive field [22]. Stacking more layers is thus required
to increase the receptive field. This process will increase the number of parameters and
lead to over-fitting problems. In order to overcome this problem, Jin et al. [23] proposed to
convert spectral data into 2D array and use 2D convolution kernels to help extract global
spectral features. The proposed network achieved a better performance than its 1D-CNN
counterpart. However, the 2D kernels may lose certain local features when implemented
on the reshaped spectral data.

In order to overcome the aforementioned shortcomings, we propose spectral convolu-
tion modules that consist of dilated convolutional layers with 1D filters to extract spectral
features. The use of dilated convolutional layers is inspired by WaveNet [24], which was
originally developed for speech generation, but with two important differences. First
, our dilated convolutional layers use acausal dilated convolution to learn the relation-
ship between adjacent bands in contrast to causal dilated convolution in WaveNet, which
only learns from previous states. Second, our dilated convolutional layers use recurrent
connections to minimize the exploding or vanishing gradient problem, and to minimize
information continuity loss [25,26]. Our proposed spectral convolution module is able to
extract both local and global features from the long spectral data for the following reasons.
The first dilated convolution layer has a dilation rate of 1, which corresponds to a standard
convolution, allowing it to extract the local features. By increasing the dilation rate, the
receptive field for the dilated convolutional layer gradually becomes larger. Consequently,
the dilated convolution layers are able to extract various levels of global features.

Every dilated convolutional layer employs C filters to produce C channel-wise feature
maps. Each filter works as a detector; thus, a channel-wise feature map is actually the
detector response map of the corresponding filter [27]. However, certain feature maps may
contain very insignificant information, which will have little effect on the overall network
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performance. As a result, if all feature maps are treated equally without taking importance
into account, the network performance may be adversely affected. The work of [28] handles
this issue by removing the uninformative feature maps and their corresponding filters in
the current layer and in kernels of the next layer.

Despite containing little information, the less important feature maps may still be
useful. Discarding them completely like in [28] may deteriorate the network performance.
Hence, in this paper, we proposed to add a channel attention module after every dilated
convolutional layer to learn the importance level of each feature map channel and to
scale each feature map channel based on its importance level (attention score). Here,
the informative feature maps will be multiplied with a large attention score, and the
uninformative feature maps will be multiplied with a small attention score. Hence, each
feature map is treated differently based on its importance level.

We then apply our proposed network to the problem of stress classification in wheat
crops, and we analyse two types of wheat stress. The first is wheat crop stress caused by
Fusarium infection (i.e., biotic stress) using the Fusarium head blight (FHB) disease dataset,
used in [23]. Fusarium infection can harm the physiological functions of wheat, resulting
in wheat yield reduction and grain quality deterioration [29]. Additionally, several fungal
toxins, including the poisonous one Deoxynivalenol (DON), will be produced after the
wheat is infected, making the FHB infected grain unsafe for food [30]. Detecting the disease
earlier can reduce the loss caused by the FHB disease.

The second type of stress that we analysed is caused by excess salt (i.e., abiotic stress).
Salt stress causes hyperosmotic stress and ion imbalance that affect the growth and yields
of crop plants [31]. A study in soybean plants [31] showed that a high concentration of
NaCl affects the plant reflectance in the range of 600–730 nm. Although a study in melon
plants [32] found that NDVI750-705 (Normalized Different Vegetation Index based on 705
and 750 nm) and Water Index based on 900 and 970 nm have a significant relationship with
salt stress. Those studies showed that different plants might have different spectral regions
that significantly relate to salt stress. Finding the spectral regions manually when working
with a new plant type is ineffective. Hence, instead of manually selecting the important
spectral regions, the study in [10] presented an ensemble feature selection method to select
several most important bands from 215 bands acquired by a spectral sensor. Further study
in sugarcane plant by [33] that compares all bands, five principal components from PCA,
and nine vegetation indexes as the feature input of SVM showed that SVM that used
all of the band as input is superior. Using all of the bands and processing them with a
robust machine learning technique is a promising approach for salt stress classification.
Hence, in this study, we proposed a deep learning technique, to classify salt stress in wheat.
We used four salt stress datasets: Chinese Spring (CS), Aegilops columnaris (co(CS)),
Ae.speltoides auchery (sp(CS)), and Kharchia datasets. Only CS dataset was reported in
the study by [10]. Reported experimental results show that our proposed network, dubbed
SC-CAN (Spectral Convolution and Channel Attention Network), performs better than the
state-of-the-art methods.

In summary, our contributions in this paper are three-fold: (1) We leverage causal
dilated convolutional layers in the spectral convolution modules to capture both local and
global spectral features. In contrast, a shallow network with standard convolution can
only extract local features. (2) By introducing a channel attention module, we make our
network pay more attention to informative feature maps. Our experiments show that the
channel attention module improves the network’s performance and stability. (3) We achieve
state-of-the-art performance for the classification of salt and Fusarium stress. Our proposed
method achieves an F1-mean of 83.03% on the CS dataset compared to SFS_Forward with
F1-mean of 77.71%. For the Fusarium dataset, we obtain an overall accuracy (OA) of
82.78% compared to 74.30% for the 2D-CNN-BidGRU. These findings demonstrate that the
proposed SC-CAN network can detect the stress in wheat even before the visual symptoms
arise. Section 2 provides an overview of the related works, including dilated convolution
and attention modules. Section 3 explains the proposed SC-CAN method. Experimental



Remote Sens. 2022, 14, 4288 4 of 18

results and performance evaluation are discussed in Section 4. The research findings are
concluded in Section 5.

2. Related Works
2.1. Dilated Convolution

In dilated convolutions, the kernel is applied to an area longer than its length by
inserting d− 1 zeros between kernel elements, where d is the dilation rate whose value
is a positive integer [24]. The value of d varies. The larger the d, the larger the receptive
field. When d is 1, the dilated convolution will be the same as the standard convolution
(see Figure 1a). Another example of a frequently used dilation rate is 2i−1 (see Figure 1b),
where i is the layer number. A network with a dilated convolution has a wider receptive
field than a network with a standard convolution, as shown in Figure 1b.

Figure 1a,b show that the deepest feature map is in the output layer. Since the receptive
field size of each pixel in the output feature map is much smaller than the size of the input
signal (Figure 1a), each pixel contains local features. As an example, the value of a feature
in the middle of the map, represented in orange, depends only on the input in bands 5–11.
Changes in the input value in band one will not affect the feature value in the orange pixel.
There is empirical evidence that pixels located “far away” from their corresponding feature
do not affect the value of that feature. Since these features only depend on pixels whose
position is local to them, they are called “local” features. Unlike standard convolutions,
dilated convolutions (Figure 1b) can extract global features even when the network is
shallow. From the figure, the feature value of the orange pixel in the output feature map
is based on the input values from band one through band B; therefore, these features are
called “global”. In the event that one of the values in the input bands changes, the value in
the orange pixel will also change. Therefore, dilated convolution can capture long-range
dependencies.

band
b1

input

hidden layer

hidden layer

output

d=1

d=1

d=1

2 3 4 5 6 7 8 9 10 11

(a)
band

input

hidden layer

hidden layer

output

d=4

d=2

d=1

B1 2 3 4 5 6

(b)

Figure 1. (a) An example of standard spectral convolution, and (b) An example of dilated spectral
convolution, where the receptive field is much larger with just few layers.

Dilated convolutions can be used with 1D, 2D, or 3D kernels. Studies have used dilated
convolutions with 2D kernels to extract spatial features from hyperspectral images [34–37].
These studies differ in terms of network structure and dilation rate. The study in [34] used
a constant dilation rate of 3, while [35,36] used gradually increasing dilation rates, and the
study in [37] used gradually increased dilation rates followed by convolutional layers with
gradually decreased dilation rates. Overall, these studies showed that dilated convolution:
(1) can reduce spatial information loss [35], (2) can learn discriminative spatial features
and expand the receptive field of the convolution kernel without increasing computational
complexity [34,37], and, thus, (3) efficient for classification [36].

The benefit of dilated convolution for the extraction of spatial features encourages us to
use it for the extraction of spectral features as well. It is important to extract spectral features
from data in several situations, e.g., when the data contain only spectral information (data
acquired from non-imaging sensors) or when we wish to explore vegetation interaction
with spectral reflectance [38]. Due to the fact that spectral signal data are one-dimensional,
dilated convolution with 2D kernels cannot be applied.
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The hyperspectral data that only contains spectral information are structurally adapted
to convolution with 1D kernel. A dilated convolution with 1D kernel was first proposed in
WaveNet for speech generation [24]. Given a sequence of input text, WaveNet can predict a
sequence of T output speech, where T is the length of the output data. The convolution
process in WaveNet is causal to ensure that the prediction generated at time t is independent
of any future steps, where t ∈ T. Unlike the speech generation problem, our problem is a
classification problem, which means that the predictions generated by our model can be
affected by all the spectral data. For that reason, the convolution process used in this paper
is acausal, as detailed in Section 3.1.

2.2. Attention Module

An attention module can help a network focus on informative features [39,40].
An attention module can also describe the global dependencies between input and
output [41]. One of the attention mechanisms is self-attention, which allows an input
in the input sequence to interact with other inputs in the sequence and learn which inputs
the module should pay more attention to. This technique is popular in many fields, such as
abstractive summarization, textual entitlement, and reading comprehension [41–44].

In image processing, a spatial attention module was used in [40] to encode the spatial
area where the network attends most to make output decisions. In HSI, attention mech-
anisms have been used in several studies. Mou et al. [45] designed a spectral attention
module at the beginning of their network using a gating mechanism. In contrast to [45],
Liu et al. [46] applied the attention process to a group of spectral data. In both [45,46], the
spectral attention modules improved the network performance. At the same time, Lorenzo
et al. [47] coupled attention-based convolution with an anomaly detection technique for
hyperspectral band selection. Their experiments showed that the combination between the
attention module and the anomaly detection could be used for band selection, although
it did not improve the classification performance. The aforementioned works are simi-
lar in that an attention module is used to help the networks focus on important spectral
information.

In convolution-based feature extraction, each filter works as a detector, whose output
is saved onto a channel-wise feature map. Each feature map may contain a different amount
of information. Certain feature maps may contain rich knowledge that is important to the
network, while others do not. Hence, in contrast to [45–47] which use spectral attention,
our self-attention mechanism focuses on channel attention to make the model pay more
attention to informative feature maps.

To implement a self-attention mechanism, several studies used convolutional layers
to compute attention between an input and its neighbours (local attention). This self-
attention type is suitable for inputs that have neighbourhood relationships, such as spatial
relationships between pixels in an image. Hence, convolutional-based self-attention is
widely used for computing spatial attention [25,48,49], and spectral attention [47]. However,
this type of self-attention may not suit channel attention because feature map channels do
not have neighbourhood relationships. Feature map channels may have global relationships.
Scaled dot product attention can be used to compute the global attention of inputs. This
attention computes the relationship between a query and a set of key-values [41], where for
self-attention, the query and key-values are from the same inputs that have been projected
by different projections layers. This kind of attention has been widely used for encoder–
decoder attention in machine-translation problems. However, its impact on self-attention is
not significant [50]. Another technique that can be used to compute global relationships
between inputs is a fully connected layer. This technique has successfully been used to
compute spectral self-attention[46]. In this paper, we exploit fully connected layers to
compute the global relationship between feature map channels. In contrast to the spectral
self-attention [46] which squeezes a group of bands, in this paper, we squeeze each feature
map channel, as detailed in Section 3.2.
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3. Proposed Methodology

The SC-CAN network basic diagram is shown in Figure 2a, with details of the spectral
convolution and channel attention modules provided in Figure 2b,c. The network’s input is
a spectral signal, which can be considered as a vector of size 1× B, where B is the number
of bands. We consider the input as a sequence of spectral bands.

input
1× B

label prediction

1×C

Spectral Convolution 

Module

Channel Attention 

Module

× N

1×1,C 

Convolution

GAP

Dilated Acausal 

Convolutional Layer

(dilation rate 2i-1)

tanh

σ 

× +

1×B× C

initial feature maps ith refined feature maps

H i-1 Hi
^ 

1×B× C

ith Spectral Convolution Module 

...

ith refined feature maps
1×B× C

GAP 1×1×C

1×B× C
ith scaled feature maps

... ...

ith Channel Attention Module

W1 W2

scale

× 

(a)

(b)

(c)

intial feature maps

1×B×C

refined feature maps

1×B×C

scaled feature maps

1×B×C

Figure 2. (a) Overview of the proposed network, (b) the detail of a spectral convolution module,
which consists of a dilated convolutional layer that residually connected and has two activation
functions, “tanh” and “σ” (sigmoid), and (c) the architecture of a channel attention module, which
utilizes global average pooling along the spectral axis and fully connected layers to compute inter-
relationship between channel-wise feature maps.

In the training phase, each input is first convolved by a 1D convolution layer with C
output channels and kernels of size 1× 1 to project the input into C channel-wise feature
maps (initial feature maps). So, the initial feature maps size is 1× B× C, where C is the
number of output channels, i.e., 196. We need projection because we used residual con-
nections in every dilated convolutional layer, and the output channel of these convolution
layers is C, so to make a residual connection, we have to make sure the dimension of feature
maps before convolution and after convolution is the same. The intermediate feature
maps are then processed by N dilated convolutional layers and channel attention module
consecutively. Their deepest output is Nth scaled feature maps.

The Nth scaled feature maps with the highest level features that have been scaled by
the channel attention module have a size of 1× B× C. In addition, to obtain the global
information about each feature map’s channel for classification, the scaled feature maps
are processed by global average pooling (GAP). With this process, the scaled feature maps
will be resized from 1× B × C to 1× C. Then, a Dropout layer with a 0.1 rate is used
as a regularizer to minimize the over-fitting problem, and a fully-connected layer with
a softmax activation function is used to predict labels. To calculate the training loss, the
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label prediction is compared with the true label. In addition, the training loss is used to
update the SC-CAN training parameters. In order to build a trained SC-CAN model, these
processes must be repeated several times (epochs).

Test data prediction labels are generated based on the classification of the test inputs by
the trained SC-CAN model during testing. A comparison is made between the predictions
and the true labels in order to calculate the performance masures.

3.1. Spectral Convolution Module

A dilated convolutional layer is incorporated into each of our N spectral convolu-
tion modules. Hence, we can consider the dilated convolutional layer at the ith spectral
convolution module as the ith dilated convolutional layer. The dilation factor of the di-
lated convolutional layer is 2i−1, where i is the index of the spectral convolution module,
i = {1, 2, ..., N}. The dilation factor that increases exponentially with depth results in the
exponential growth of the receptive field, and thus each dilated convolutional layer can
extract a different level of features.

The first dilated convolutional layer (i = 1) has a dilation factor of 1, d = 2i−1 =
21−1 = 20 = 1. As a special case, dilated convolution with dilation factor of 1 is the same
with standard convolution that can extract local features. The actual example and result of
the standard convolution process for spectral information in producing local features are
shown in Figure 3. Given a kernel (Figure 3 (top)) and spectral input (Figure 3 (middle)),
the result of the convolution process (feature map) is shown in Figure 3 (bottom). From the
figure, we can see that every local area that has a valley is lighter. The corresponding valley
of the curve and feature value is marked with red rectangles. The deeper the valley, the
lighter the feature map (the feature value is larger).

kernel

input

a channel-wise 
feature map

Figure 3. Convolution process with input spectral signal and a kernel size of 3 to produce local
features.

The next ith spectral convolution module has a dilated convolutional layer with
d = 2i−1, resulting in a larger receptive field. For example, if the kernel size is 3, the ith
dilated convolutional layer receptive field is determined by Equation (1) [51]. Consequently,
it can capture a longer dependency between bands and more global features, making it
suitable for a long spectral vector.
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Based on the WaveNet model, we used a dilation factor of 2i−1. Unlike WaveNet,
which uses causal dilated convolution (see Figure 4a), we use acausal dilated convolution.
WaveNet uses causal dilated convolution since it assumes that an input at a time-step t
is only conditioned by the inputs at all previous time-steps. As we take hyperspectral
measurements, we consider that the information at one band is correlated with information
at adjacent bands (the previous and the next bands). Acausal dilated convolution is
used since [19] demonstrated that networks utilizing both previous and latter information
bands extract spectral information more effectively than networks utilizing only previous
information bands (see Figure 4b). Each dilated convolutional layer is followed by tanh
and σ activation. This process is shown in Equation (2). The work by [52] has shown that
tanh and σ improve the network’s performance.

input

hidden layer

output

d=1

d=2

band

1 2 3 4 5 6 ... B

(a)

input

hidden layer

output

d=1

d=2

band

1 2 3 4 5 6 ... B

(b)

Figure 4. (a) An example of causal dilated convolutions, where the convolution output of a certain
band does not depend on the information of the next bands and (b) an example of acausal dilated
convolution, where the convolution output of a certain band depends on the information of the
adjacent bands.

However, when the dilation rate > 1, not all pixels are used for calculation. If this
happens many times, it may cause information continuity loss [25]. Hence, in this paper,
we connected the dilated convolutional layers residually to minimize the information
continuity loss, as well as, to reduce exploding or vanishing gradients problem. The
process is shown in Equation (3).

ReceptiveFieldi = 2i+1 − 1 (1)

Ĥi = tanh(Wi ∗ Hi−1 + bi)� σ(Wi ∗ Hi−1 + bi) (2)

ith re f ined f eature maps (RFMi) = Hi−1 + Ĥi (3)

The complete scheme of the spectral convolution module is shown in Figure 2b. The
first dilated convolutional layer (i = 1) input is the initial feature maps (H0) with size
1× B× C. After dilated convolution, the output is the 1st refined feature maps that has the
same size as the input. The operation of the ith dilated convolutional layer is formulated
in Equations (2) and (3). The symbol ∗ represents the convolution operator, Wi ∈ R3×C×C

denotes the weights of the dilated convolution with kernel size 3, C input channels and C
output channels, bi is bias vector of the ith dilated convolutional layer,� is the element-wise
multiplication operator and σ is the sigmoid activation function.

The 1st refined feature maps are then processed by a channel attention module, which
is detailed in Section 3.2, producing the 1st weighted feature maps (H1). H1 will become an
input of the second dilated convolutional layer (i = 2). These steps are repeated N times,
with the dilated convolutional layer and channel attention module operating sequentially.
In the end, the output of the deepest dilated convolutional layer is the Nth refined feature
maps, and the deepest channel attention module output is the Nth weighted feature maps.
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3.2. Channel Attention Module

In order for the network to learn about inter-channel relationships, we propose a chan-
nel attention module, which produces channel attention scores indicating the importance
of each feature map channel. The scores, which range from 0 to 1, are multiplied by their
respective feature map channel. Here, when a feature map channel is very important, it
will be multiplied with a high score, but when the feature map channel is not essential, it
will be multiplied with a very low score, e.g., 0.2. Due to this process, the network will pay
more attention to important feature map channels since their values will be scaled with a
higher attention score.

The detailed architecture of the channel attention module is presented in Figure 2c.
The module input is the refined feature maps from the dilated convolutional layer. Since
every dilated convolutional layer extracts different levels of features, we introduced the
attention module after every dilated convolutional layer. Thus, the attention module can
scale each feature map channel at every feature level.

Given RFMi is the ith refined feature maps, RFMc
i ∈ R1×B is a feature map of its cth

channel, where c ∈ {1, 2, ..., C}. RFMc
i (j) represents the data at position j in RFMc

i . GAP
can be considered as feature compression along the spectral dimension. It squeezes each
feature map channel, RFMc

i , into a real number zc
i , as shown in Equation (4).

zc
i = GAP(RFMc

i ) =
1
B

B

∑
j=1

RFMc
i (j) (4)

Given zc
i is part of Zi, where Zi = {z1

i , z2
i , ..., zC

i } with dimension of Zi ∈ R1×C, we fur-
ther implement two fully-connected (FC) layers to compute the inter-relationships between
channels. The first FC layer (FC1) has neuron of size C/2 with weight W1 ∈ RC×C/2, and
FC2 has C neurons with weight W2 ∈ RC/2×C. To generate attention score (As) with values
[0,1], we apply the sigmoid activation function. Finally, the attention score is multiplied
with the refined feature maps to generate the ith scaled feature maps (Hi), which constitutes
the input of the (i + 1)th dilated convolutional layer. The attention module process is
shown in Equations (5) and (6), where � is the element-wise multiplication operator or
scaling operator.

As(RFMi) = σ(FC2(FC1(GAP(RFMi))))
= σ(W2(W1(GAP(RFMi))))
= σ(W2(W1(Zi)))

(5)

Hi = RFMi � As(RFMi) (6)

4. Experiments and Analysis
4.1. Experimental Settings

Datasets: We evaluated the proposed method on datasets for wheat salt stress classifi-
cation (abiotic stress): Chinese Spring (CS), Aegilops columnaris (co(CS)), Ae. speltoides
auchery (sp(CS)), and Kharchia datasets [9]. The datasets names originate from the names
of the wheat species and cultivars. There are 12,896 samples, 5228 samples, 11,665 samples,
and 14,652 samples in the CS, co(CS), sp(CS), and Kharchia datasets, respectively. The
dataset can be accessed freely (https://conservancy.umn.edu/handle/11299/195720, ac-
cessed on 21 March 2021). We also evaluated the method on a wheat fusarium head blight
disease (Fusarium) dataset (biotic stress) [23].

The CS, co(CS), sp(CS), and Kharchia datasets contain spectral information from wheat
that was examined in a hydroponic system. The spectral information was taken when leaf
4 of the wheat emerged. All screenings were performed in a Canviron growth chamber to
guarantee uniform conditions for other growth factors. In day light, the temperature was
22 ◦C, while in the dark, it was 18 ◦C . The relative humidity was 50%. The photoperiod
was 16h. Light intensity was 375 molm−2s−1. pH was adjusted to 6.5, three times per
week. The samples labelled as normal were from controlled plants (no NaCl). The samples

https://conservancy.umn.edu/handle/11299/195720
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labelled as stressed were from tanks, where NaCl was gradually added over two days
until it reached the final concentration of 200 mM. A hyperspectral sensor was used to
capture hyperspectral information from both samples 24 h after salt application before
visible symptoms appeared (Hyperspectral sensor: PIKA II, Resonon, Inc., Bozeman, MT
59715, USA). The hyperspectral wavelength ranges from 400 nm to 900 nm, with a total of
215 bands.

The second dataset for Fusarium head blight disease in wheat crops (Fusarium dataset)
was acquired in real field conditions at Guo He town, Hefei City, Anhui Province, China [23].
The disease occurrence was entirely natural because the cultivation did not use pesticides.
The experiment was conducted from 29 April to 15 May 2017. This period is ideal for disease
detection as wheat was in the medium milk stage to the fully ripe stage. The hyperspectral
sensor is known as a push broom-type hyperspectral apparatus (OKSI, Torrance, CA, USA).
The dataset has three classes, namely background (labelled as 0), healthy (labelled as 1),
and disease (labelled as 2). The spectral data consist of 338 bands whose wavelengths range
from 400 nm to 1000 nm. As in [23], we removed bands 1–69 and 327–338 and used the
remaining 256 bands for a fair comparison.

Evaluation Protocols and Performance Measures:

• For the experiments with CS, co(CS), sp(CS), and Kharchia datasets, alike [10], we used
70% data as training samples and 30% data as testing samples. In each experiment,
we applied 5-fold cross-validation and reported mean and standard deviation. As
preprocessing, we utilized a standardization technique to rescale data to have a mean
of 0 and a standard deviation of 1. For training, we used Adam optimizer with a
learning rate of 0.0003, the batch size was 256. The number of output channel (C)
was 196, and the number of iterations was 200. For evaluation, we computed the F1
measure of control (F1C0) and stressed salt (F1C1) classes, Overall Accuracy (OA) and
Average Accuracy (AA), to evaluate the proposed method’s performance.

• For the Fusarium dataset experiments, the total number of samples is 809,200. We ran-
domly selected 227,484 samples and used the remaining samples for testing. However,
since around 200,000 samples have zero value in all their bands, we discarded these
samples. Then, we used the Synthetic Minority Oversampling technique (SMOTE) to
oversample the minority class to overcome the class imbalance problem. In each exper-
iment, we applied 5-fold cross-validation. The training settings were the same as those
of the CS dataset, except for a batch size of 128 and a learning rate of 0.0002. For eval-
uation, we computed the F1 measure of background (F1background), healthy (F1healthy),
and disease (F1disease) classes, OA and AA, to evaluate the proposed method’s perfor-
mance with the Fusarium dataset.

Supposed c is the class/label in the dataset, where c ∈ {C0, C1} for salt stress datasets
and c ∈ {background, healthy, anddisease} for the Fusarium dataset, TPc (True Positive of
label c) denotes the scenario where the actual class is c and the predicted class is c (i.e.,
correctly predicted label). FPc (False Positive of label c) denotes the falsely predicted as c,
FPc is falsely predicted as not c. Nc is the number of samples with actual class is c. F1c is
F-score of label c and F1-mean is average of the F1c. Equations (7)–(11) show an example
formula to calculate salt stress datasets’ quantity performances.

OA =
∑c∈{C0,C1} TPc

∑c∈{C0,C1} Nc
(7)

AA = ∑
c∈{C0,C1}

TPc

Nc
(8)

Precisionc =
TPc

TPc + FPc
(9)

Recallc =
TPc

TPc + FNc
(10)
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F1c = 2× Precisionc × Recallc
Precisionc + Recallc

(11)

4.2. Impact of the Number of Dilated Convolution Layers (Number of N)

A quantitative analysis was performed to explore the dilated convolutional layers’
behaviour and obtain the optimum depth. Figure 5 shows the impact of the depth of the
dilated convolutional layer on the performance (mean-OA). We assessed different numbers
of N, from 3 to 10.

3 4 5 6 7 8 9 10
Depth of dilated convolutional layer

60

65

70

75

80

85

90

95

100

OA
-m

ea
n 

(%
)

CS dataset
co(CS) dataset
sp(CS) dataset
Kharchia dataset

Figure 5. Performance comparison of our proposed method for different numbers of dilated convolu-
tional layers. OA-mean is the average of OA from 5-fold experiments.

The figure shows that the impact of the depth on the performance behaviour is
relatively similar for CS, co(CS), sp(CS), and Kharchia datasets. For a depth ranging from 3
to 6, the OA-mean increases sharply. The improvement drops from 6 to 7 and then relatively
steady from the depth of 7. One possible reason is that those datasets have 215 bands.
When N is 3, the global receptive field size, based on Equation (1), is 23+1 − 1 = 15. The
maximum dependency pattern the network can capture is only 15, while the data may have
longer dependency patterns that have not been captured. Hence, the performance with
N = 3 is relatively low. Starting from a depth of 7 (N = 7), the global receptive field size is
27+1 − 1 = 255. The size is more than enough to capture the longest pattern in the data.
When the depth is 8, most datasets reach the maximum performance. Increasing the depth
beyond 8 does not significantly impact the performance. Sometimes, it can decrease the
performance, e.g., the performance of the Kharchia dataset with a depth of 9 and CS and
co(CS) with a depth of 10.

4.3. Ablation Analysis
4.3.1. Impact of Dilation on Performance

Using the optimal depth from the experiment in Section 4.2, i.e., 8, we evaluated
the model performance for CS, co(CS), sp(CS), and Kharchia datasets for two scenarios:
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(i) model with dilation and (ii) model without dilation. In both scenarios, the architectures
were the same, but for the model without dilation, a constant dilation rate of 1 was used
instead of 2i−1 where i is the depth of the layer. Then, we reported OA-mean and F1C1-
mean produced by these two scenarios in Figure 6a,b. We presented OA results because
OA has been widely used to interpret a model’s performance. However, OA does not take
into account how the distribution of the predicted data. Hence, we also reported F1C1 (F1
score of stressed salt) to interpret the precision and recall of the stressed salt (C1).

CS co(CS) sp(CS) Kharchia
Dataset

50
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-m
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)

with dilation
without dilation

(a)

CS co(CS) sp(CS) Kharchia
Dataset

50

60

70

80

90

100

F1
C1
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ea
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(%

)

with dilation
without dilation

(b)

Figure 6. Performance comparison (a) OA-mean and (b) F1C1 between dilated convolution and
standard convolution in our proposed architecture. Note: the values are averaged from 5-fold
experiments.

The dilated convolution enables the network to have a larger receptive field than the
standard convolution, thereby enabling the capture of global features and longer depen-
dencies between bands. As a result, dilated convolution is more suitable for hyperspectral
data than the standard convolution when the network is shallow. It is clear that for all
datasets, the OA-mean of the network with dilated convolutions is better by more than
10% (see Figure 6a). The F1C1 of the network with dilated convolution is also superior by
more than 10% to the respective model without dilation (see Figure 6b). The gap is higher,
especially in the co(CS) dataset.

4.3.2. Impact of Channel Attention Module on Performance

Our ablation analysis (see Table 1) shows that channel attention enhances performance.
The number of output channels for every dilated convolution layer in our network is C.
Every convolutional layer will have C filters that work as feature descriptors to produce C
channel-wise feature maps (C feature maps). Certain feature maps may not be essential or
may contain little information that would not contribute much to the network. Intuitively,
handling all the feature maps equally may hurt performance. Reported results show that
weighting the feature maps based on their importance level improves the performance. The
largest improvement is on AA of co(CS) dataset, which increases from 84.01% to 88.07%
(4.06%), and the smallest improvement occurs in the AA of CS dataset with only 0.83%.

Table 1 shows that most measurements for the network without attention have larger
standard deviations. For 5-fold experiments, one can conclude that the attention module
improves the stability of the network.
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Table 1. Performance comparison between with and without channel attention module. The numbers
in bold show the best performance.

Dataset Performance With Attention Without Attention

CS

OA 83.08 ± 0.70 81.02 ± 2.79
AA 83.15 ± 0.43 82.32 ± 1.61
F1C0 82.21 ± 0.30 78.24 ± 5.96
F1C1 83.86 ± 1.09 82.78 ± 1.94

co(CS)

OA 88.90 ± 0.81 85.24 ± 0.91
AA 88.07 ± 0.88 84.01 ± 1.01
F1C0 91.38 ± 0.62 88.11 ± 1.05
F1C1 84.41 ± 1.17 80.46 ± 0.97

sp(CS)

OA 82.44 ± 0.62 79.73 ± 1.04
AA 82.52 ± 0.52 80.20 ± 1.07
F1C0 83.03 ± 1.09 80.93 ± 1.35
F1C1 83.03 ± 1.09 78.22 ± 2.10

Kharchia

OA 82.10 ± 0.36 78.80 ± 2.09
AA 81.25 ± 0.43 78.60 ± 2.00
F1C0 76.23 ± 0.34 73.58 ± 1.22
F1C1 85.65 ± 0.35 82.07 ± 3.15

4.4. Comparison with Existing Methods

This experiment compared our proposed architecture with several deep learning
architectures and existing state-of-the-art methods for CS and Fusarium datasets. For
CS, co(CS), sp(CS), and Kharchia datasets, we compared our model with a model that
treated spectral information as a vector and used the standard 1D convolution to extract
the features (1D CNN). We also compared the proposed method with the spectral-residual
network (sRN), which uses 1D convolution and residual connections [53]. Furthermore, we
compared our proposed method with methods that considered the spectral information
as a sequence, e.g., RNN, LSTM [54] and spectralFormer [55]. We also compared our
architecture with SFS Forward [10], the state-of-the-art method on the CS dataset.

For the Fusarium dataset, besides comparing our method with 1D CNN, LSTM [54],
spectralFormer [55] and sRN [53], we also compared it with 2D-CNN-bidGRU [23] because
it is the state-of-the-art method on the Fusarium dataset. Since the testing protocols, i.e.,
the training and testing sets, are different, we discarded samples that have zero values in
all their bands while [23] did not; we report the results of 2D-CNN-bidGRU as reported in
the paper [23] and 2D-CNN-bidGRU with our testing protocol to reflect the results with
two testing protocols.

Table 2 shows the performance comparison between our proposed method and ex-
isting methods with CS, co(CS), sp(CS), and Kharchia datasets. The table shows that the
proposed method consistently produces the highest performance on all measurements and
all datasets. Moreover, our proposed method outperforms SFS_Forward by a large margin
of 7.31% in terms of F1C1 on the CS dataset. We also find that compared to the baseline
method, 1DCNN, adding spectral convolution and channel attention modules (in SC-CAN)
improved the F1-score of class C1 (stressed salt) by 6.65%, 22.57%, 16.46%, and 14.16% for
CS, co(CS), sp(CS), and Kharchia datasets, respectively. In comparing the performance of
our proposed method across datasets, co(CS) dataset shows the best performance. Based
on the visualization of normal and stress crop spectral reflectance from several samples
in each dataset (as shown in Figure 7a–d), it is possible that the high performance of the
co(CS) dataset is due to the lower inter-class similarity of the co(CS) dataset compared to
the other datasets. The co(CS) dataset is therefore easier to classify.
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Table 2. Performance comparison between our proposed method and existing methods with CS,
co(CS), sp(CS), and Kharchia datasets. The numbers in bold show the best performance.

Method F1C0 F1C1 F1-mean OA AA

CS

1DCNN 71.40 ± 1.64 77.21 ± 0.46 74.31 ± 0.93 74.65 ± 0.79 74.50 ± 0.74
RNN 76.82 ± 2.68 80.02 ± 1.49 78.42 ± 1.96 78.57 ± 1.86 78.52 ± 1.89
LSTM 77.16 ± 0.88 81.27 ± 0.37 79.21 ± 0.60 79.42 ± 0.56 79.25 ± 0.54
sRN 79.78 ± 0.57 82.14 ± 0.95 80.97 ± 0.66 81.05 ± 0.69 80.98 ± 0.57
spectralFormer 77.55 ± 1.78 80.60 ± 0.96 79.08 ± 1.31 79.20 ± 1.26 79.09 ± 1.32
SFS_Forward 78.87 76.55 77.71 - -
SC-CAN 82.21 ± 0.30 83.86 ± 1.09 83.03 ± 0.66 83.08 ± 0.70 83.15 ± 0.43

co(CS)

1DCNN 79.40 ± 0.51 61.84 ± 1.03 70.62 ± 0.73 73.25 ± 0.65 70.89 ± 0.72
RNN 82.20 ± 1.20 66.70 ± 2.75 74.45 ± 1.76 76.82 ± 1.47 74.98 ± 1.58
LSTM 84.36 ± 0.42 70.88 ± 0.98 77.62 ± 0.64 79.65 ± 0.54 78.05 ± 0.60
sRN 85.03 ± 0.65 70.74 ± 1.75 77.89 ± 1.05 80.20 ± 0.81 79.00 ± 0.97
spectralFormer 86.09 ± 1.03 73.88 ± 3.45 79.99 ± 2.21 81.86 ± 1.67 80.57 ± 1.52
SC-CAN 91.38 ± 0.62 84.41 ± 1.17 87.89 ± 0.89 88.90 ± 0.81 88.07 ± 0.88

sp(CS)

1DCNN 68.42 ± 0.63 65.32 ± 0.66 66.87 ± 0.57 66.95 ± 0.58 66.89 ± 0.58
RNN 79.31 ± 0.57 74.36 ± 1.38 76.83 ± 0.97 77.10 ± 0.89 77.57 ± 0.73
LSTM 76.07 ± 0.96 73.07 ± 1.26 74.57 ± 0.95 74.67 ± 0.94 74.70 ± 0.97
sRN 77.88 ± 0.53 74.70 ± 0.76 76.29 ± 0.47 76.41 ± 0.45 76.47 ± 0.44
spectralFormer 77.84 ± 1.45 75.21 ± 1.53 76.52 ± 1.22 76.62 ± 1.24 76.73 ± 1.33
SC-CAN 83.03 ± 1.09 81.78 ± 0.39 82.40 ± 0.60 82.44 ± 0.62 82.52 ± 0.52

Kharchia

1DCNN 53.46 ± 0.66 71.49 ± 0.59 62.47 ± 0.51 64.64 ± 0.54 62.55 ± 0.53
RNN 61.71 ± 4.56 80.44 ± 1.06 71.07 ± 2.38 74.18 ± 1.45 73.72 ± 1.66
LSTM 66.97 ± 0.98 79.91 ± 0.62 73.44 ± 0.74 75.02 ± 0.71 73.63 ± 0.75
sRN 69.71 ± 1.54 82.50 ± 0.73 76.11 ± 0.97 77.83 ± 0.85 76.87 ± 0.98
spectralFormer 67.57 ± 1.06 81.04 ± 1.22 74.30 ± 0.99 76.08 ± 1.13 74.93 ± 1.30
SC-CAN 76.23 ± 0.34 85.65 ± 0.35 80.94 ± 0.33 82.10 ± 0.36 81.25 ± 0.43
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Figure 7. The spectral signal visualization from several samples (a) Example signal of healthy and
salt stressed crops from co(CS) (b) CS, (c) sp(CS), and (d) Kharchia datasets.
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Table 3 presents the performance comparison between our proposed network and
existing networks for the Fusarium head blight disease detection. The table shows that
our proposed method produces the best results for F1disease, OA, and AA. RNN produces
a slightly better result for F1healthy. The 2D-CNN-bidGRU produces a better result for
F1background than ours. However, we outperform 2D-CNN-bidGRU and RNN by a large
margin for F1disease. F1disease and F1healthy of SC-CAN outperform 2D-CNN-bidGRU by
±18% and ±12%, respectively. Given that the Fusarium dataset is very imbalanced (the
size of diseased-class samples is half of the size of background-class samples and a third of
the size of healthy-class samples), and the upsampling process may produce noisy data, our
proposed network still produces an acceptable result on F1disease, i.e., 70.38%, compared to
52% from the result of 2D-CNN-bidGRU. This result shows that our proposed method is
suitable for the case of an imbalanced dataset.

Table 3. Performance comparison between our proposed method and existing methods with Fusar-
ium dataset. The numbers in bold show the best performance.

Method F1disease F1healthy F1background OA AA

1D CNN 52.71 ± 1.38 76.50 ± 0.29 79.21 ± 0.69 61.37 ± 33.89 62.58 ± 34.55
RNN 51.59 ± 8.29 83.27 ± 4.14 80.51 ± 1.77 79.79 ± 1.13 72.33 ± 3.46
LSTM 51.15 ± 4.57 77.35 ± 0.71 83.03 ± 1.54 78.36 ± 1.24 82.86 ± 0.65
sRN 39.78 ± 18.70 73.97 ± 14.35 77.56 ± 6.78 72.31 ± 11.68 76.09 ± 9.85
spectralFormer 62.99 ± 4.45 81.91 ± 0.61 84.18 ± 0.63 82.00 ± 0.89 72.59 ± 1.88
2D-CNN-BidGRU 1 52 71 88 74.30 -
2D-CNN-BidGRU 2 30.19 ± 0.85 62.30 ± 0.42 77.01 ± 0.26 66.70 ± 0.48 70.47 ± 0.19
SC-CAN 70.38 ± 3.10 83.25 ± 0.62 83.42 ± 1.68 82.78 ± 0.97 83.83 ± 1.65

1 as reported in paper [23]; 2 using our testing protocols.

Three main reasons make the proposed SC-CAN method superior to other existing
methods. First, our method is able to learn both local and global features, whereas 1D
CNN and sRN, which are based on the standard convolution, are only capable of learning
local features (see Section 3.1). Second, our method has a high model capacity because it
exploits a large receptive field. As a consequence, unlike LSTM, our method can capture the
long pattern dependencies of spectral information. Third our method pays more attention
important feature maps.

5. Conclusions

We propose a novel architecture where spectral dilated convolutional layers extract
spectral features for salt stress detection and Fusarium head blight disease classification
from datasets that only have spectral information. By leveraging the spectral response of
plants, our work can detect stress before visible symptoms appear. The key idea behind our
method is the use of acausal dilated 1D convolution on the spectral vectors to capture the
long dependencies between bands, local features, and global features. A channel attention
module is also proposed to scale the channel-wise feature maps produced by spectral
convolutional layers according to their importance. Experimental results demonstrate
that the spectral dilated convolution and channel attention modules can improve the
performance significantly. In addition, the channel attention network is also more stable
than the respective network without channel attention modules. Based on the results of our
experiments, our proposed network achieves state-of-the-art performance on CS, co(CS),
sp(CS), Kharchia, and Fusarium datasets.
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