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Abstract: To characterize carcass and meat attributes, such as beef eating quality in specific farming
conditions, 31 young grass-fed crossbred Angus x Salers cattle in two farming systems (a mono-cattle
system versus a mixed system with beef cattle and sheep) were used in this study. Three muscle cuts
(striploin—m. longissimus dorsi et thoracis; bolar blade—m. triceps brachii caput longum; internal flank
plate—m. obliquus internus abdominis) were used for consumer eating quality testing and striploin
was used for panelist eating quality assessment, and objective measurements [Warner–Bratzler shear
force (WBSF) and fatty acid (FA) and antioxidant contents]. Results indicated that the farming system
had no impact on carcass characteristics or meat quality, but it tended to affect FA content, which is
likely explained by between-system differences in animal maturity (assessed by ossification score).
Animal gender had significant effects on three eating quality traits evaluated by untrained consumers,
with higher flavor liking, overall liking, and overall meat eating quality (MQ4) scores in females
than in males. Additionally, FA contents were correlated with sensory quality traits to varying
extents: consumer-scored tenderness, flavor, and overall liking were mainly positively correlated
with ω-3 and ω-6 polyunsaturated fatty acid (PUFA) contents, and panelist-evaluated tenderness
and abnormal flavor were more positively correlated with total lipids, saturated fatty acid (SFA), and
monounsaturated fatty acid (MUFA) contents. Overall, this study showed that specific grass-fed
crossbred Angus x Salers cattle can produce lean meat rich inω-3 PUFAs with a lowω-6/ω-3 ratio
and with “better than average” beef eating quality.

Keywords: farming system; crossbreeding; grass feeding; beef eating quality; fatty acid

1. Introduction

Novel livestock farming systems such as agroecological farming and sustainable
intensification systems, have emerged in response to the growing ecological concerns about
sustainable agriculture, especially in France [1]. Moreover, the beef industry is undergoing
changes due to the increasing concern for animal welfare and environmental impact at the
expense of intensive livestock production coupled with the increasing demand for beef
of high nutritional and eating quality [2,3], also with the need to develop pathways that
are context-specific, with more consideration given to the food origin, its quality, and the
region where beef is produced [3].

Animal feeding and farming systems are evaluated as crucial factors of consumers’
meat-quality perception, and grass-fed beef is preferred by consumers over concentrate-
fed beef, mainly based on visual (such as color) and credence (such as perceived traits)
qualities [4,5]. Grass-fed beef products represent a premium niche market with certain
additional value through better animal welfare, a cleaner environmental footprint, and
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enhanced nutritional quality in terms of a more favorable PUFA/SFA ratio (polyunsaturated
fatty acid/saturated fatty acid ratio) andω-6/ω-3 ratio (n-6 polyunsaturated fatty acid/n-3
polyunsaturated fatty acid ratio) [2,6]. Additionally, grass-fed products have been identified
to be more tender, though containing less intramuscular fat [7], but may be associated with
lower commercial quality (i.e., lower meat yield).

Furthermore, grass feeding typically results in leaner beef products [8], whereas beef
products with higher intramuscular fat content tend to produce beef of superior eating
quality. For instance, the marbling level of “abundant” corresponds to the grade of “prime”
in the United States Department of Agriculture (USDA) beef-grading system. Specific
crossbreeding with early-maturing breeds to enhance fat synthesis and deposition is a
way to take advantage of grass feeding systems in order to produce meat of good eating
quality [9]. Hardy breeds, such as Salers, are well adapted to the mountainous pasture
environment, unlike more specialized beef breeds (i.e., Angus). The early-maturing Angus
breed is more adapted to grass feeding and fattening than continental beef breeds [10].
As such, the animals used in this experiment were crossed from an early-maturing sire
breed (Angus) and a hardy dam breed (Salers) [11] with the objectives of rearing cattle
well adapted to the mountainous environment and grass-feeding system to potentially
produce beef of good eating quality. Additionally, carcass characteristics and meat quality
have been poorly studied within this specific crossbreed, and were therefore tested within
the experiment.

Mixed systems with different species seem to be effective at enhancing animal perfor-
mance [12] and optimizing agronomic outputs [13]. In mixed-species systems, reducing
animal density of one species provides benefits for grass consumption and pasture utiliza-
tion efficiency [14] and also for parasite control through the dilution of parasites [15]. In
comparison with monospecific systems, a mixed sheep/beef cattle system has increased
meat production due to higher animal weight gain [16]. However, few studies have inves-
tigated the effect of mixed systems with a principal focus on animal performance, such
as live weight gain [17]. What is yet less clear is the impact of mixed systems on carcass
characteristics and meat eating quality attributes of tenderness, juiciness, and flavor, as
well as FA composition.

To better meet these objectives of novel livestock farming systems, two strategies
were studied in the current experiment: (1) specific crossbreeding of beef animals was
performed for better adaptation to grass feeding and for a better beef eating quality, and
(2) a mixed-species system was introduced for integrated management of parasites and
higher efficiency of grass utilization. There were two major aims of the present study:
(1) to examine the carcass and meat-quality attributes of the Angus x Salers beef cattle;
(2) to investigate the effect of farming system (the association of beef cattle and sheep within
a mixed system) on beef carcass characteristics and meat-quality attributes.

2. Materials and Methods
2.1. Experimental Design

The present study was based on an experiment conducted on the Laqueuille site
of the Herbipôle experimental unit from INRAE. All cattle used in this study were an
Angus x Salers cross. There were two independent farming systems: a monospecific
beef cattle system (MONO, ncattle = 22) and a mixed system with beef cattle and sheep
(MIX, ncattle = 13, nsheep = 66). In the mixed system, beef cattle co-grazed with sheep from
April until the end of July 2019, after which cattle grazed before the sheep from August
until mid-October 2019. Calves were weaned in October and fattened indoors with grass
haylage. The grass and haylage used to feed all the animals were from natural organic
pastures with a variety of grass species (results of botanical analysis of grasses are presented
in Supplementary Materials). All males were castrated one week after birth. Allocated
areas and livestock units (LU) were the same in both systems, the mixed system being
characterized by 40% sheep LU and 60% bovine LU.
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2.2. Carcass Grading and Muscle-Cut Collection

Thirty-one cattle—20 (10 females and 10 castrated males) from the mono system and
11 animals (6 females and 5 castrated males) from the mixed system—were slaughtered at
a young age (around 14 months). All procedures were approved by the C2EA-02 Ethics
Committee (APAFIS#1417-2015081011477291 v3 and APAFIS#24191-2015043014541577 v4).
Animal carcasses were assessed according to the EUROP grid (conformation and fat scores
were converted into a continuous 15-point scale) [18] and by a certified grader for ossifi-
cation, marbling, and hump height following the MSA (Meat Standards Australia) stan-
dards [19]. Critical methods of carcass grading are presented in Supplementary Materials.
The descriptive data are presented in Table 1.

Table 1. Unadjusted means, standard deviations, minimum and maximum values for animal age,
carcass traits, meat pH, color, lipid content, FA content and FA index.

Traits Mean SD Min Max

Age (days) 422 16.8 386 458
HCW (hot carcass weight, kg) 226.6 17.4 190.2 254.2
CCW (cold carcass weight, kg) 226.0 17.5 190.2 254.2

Hump height (cm) 3.5 0.7 2 5
Ossification (100–590) 130 20.8 100 190
Marbling (100–1190) 240 56.4 160 350

pH 5.66 0.13 5.48 5.93
EU conformation (1–15) 8 0.5 7 8

EU fat score (1–15) 6 0.8 5 8
Fat % HCW 1 (%) 15.35 1.34 12.90 18.50

Muscle % HCW 2 (%) 66.57 1.38 63.80 69.10
CIE L* (lightness) 31.32 2.07 26.39 36.94
CIE a* (redness) 14.02 1.37 10.66 16.69

CIE b* (yellowness) 14.66 1.42 11.10 17.34
Total lipids 3 2.92 0.54 1.92 3.99

C18:3n-3 4 (ALA 5) 51.30 10.16 33.89 73.35
C20:5n-3 (EPA 6) 11.04 3.95 6.26 21.02
C22:5n-3 (DPA 7) 20.11 4.62 11.96 27.93
C22:6n-3 (DHA 8) 4.30 4.40 0.00 12.7
PUFA/SFA ratio 9 0.23 0.05 0.14 0.37
ω-6/ω-3 ratio 10 1.60 0.18 1.26 1.97

1 Fat % HCW: fat percentage based on hot carcass weight [fat weight (kg)/hot carcass weight (kg) %]; 2 Muscle %
HCW: muscle percentage based on hot carcass weight [muscle weight (kg)/hot carcass weight (kg) %]; 3 Total
lipids unit: g/100 g muscle; 4 FAs [fatty acids] are expressed in content (mg/100 g muscle); 5 ALA: alpha-linolenic
acid; 6 EPA: eicosapentaenoic acid; 7 DPA: docosapentaenoic acid; 8 DHA: docosahexaenoic acid; 9 PUFA/SFA
ratio: polyunsaturated fatty acid/saturated fatty acid ratio; 10 ω-6/ω-3 ratio: n-6/n-3 PUFA ratio; 3,5,6,7,8,9,10 data
based on 30 animals.

Left and right striploins (m. longissimus dorsi et thoracis), bolar blade (m. triceps brachii
caput longum) and two portions of the internal flank plate (m. obliquus internus abdominis)
were collected from each carcass at 24 h postmortem (pictures of raw muscles and cuts
are presented in Supplementary Materials). These muscle cuts were selected to represent
a potential difference in eating quality based on previous work in beef [20]. All muscle
cuts were vacuum packed and stored at 4 ◦C before being frozen and used for further
quality testing and measurements. Two aging times were applied to the bolar blade, with
31 muscle cuts aged 5 days and similar 31 muscle cuts aged 14 days. Both striploins and
both portions of the internal flank plate were all aged 14 days. As such, in total, 186 samples
were collected for subsequent testing sessions, with 31 striploin samples, 62 bolar blade
samples, and 62 internal flank plate samples used for untrained consumers, whereas the
other 31 striploin samples were used for the trained panelists.

Not all data are reported in the results. Corresponding information is mentioned in
the table titles or notes.
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2.3. Physicochemical Analysis

Measurements of muscle lipid, fatty acid analyses, antioxidant and vitamin contents were
conducted on a subsample of the striploin and are described in detail in Hamdi et al. (2018) [21].

2.3.1. FA Composition

FA composition was determined by chromatographic analysis after transmethylation.
FAs underwent methylation by mixing of boron trifluoride (BF3) and methanol 14%. Methyl
esters of FAs were then extracted by hexane and recovered after centrifugation at 1000× g for
10 min at room temperature. The FA composition was determined by gas chromatography
flame ionization (CPG/FID, Shimadzu, Kyoto, Japan) using an Omegawax 250 capillary
column (30 m, 0.25 mm ID). Injector and detector temperatures were 230 ◦C and 250 ◦C,
respectively. Temperature was increased by 5 ◦C/min. FAs were identified and quantified,
and the results are expressed as content (mg/100 g muscle).

2.3.2. Antioxidant Content

A subsample of 250 mg of striploin muscle was homogenized in 3 mL of phosphate
buffer (50 mM, pH 7) with a polytron for 15 s at 17,000× g. The homogenate was centrifuged
at 1200× g for 15 min at 4 ◦C. The supernatant obtained was filtered and stored at 80 ◦C
for determination of the activities of superoxide dismutase (SOD), glutathione peroxidase
(GPx), and catalase (CAT).

SOD activity was determined by measuring the ability to inhibit the autoxidation
of pyrogallol by 50%. The absorbance of the final solution was measured at 420 nm
and 25 ◦C by a Uvikon 923 double-beam spectrophotometer (Kontron Analysis Division,
Zurich, Switzerland).

GPx activity was determined by measuring the rate of oxidation of NADPH. The
absorbance of the final solution was measured by the Uvikon 923 double-beam spectropho-
tometer at 366 nm and 37 ◦C. GSH Px activity is expressed as mmol NADPH/min.mg protein.

CAT activity was determined by measuring the rate of decomposition of hydrogen
peroxide (H2O2) to H2O and O2. The absorbance of the final solution was measured using
the Uvikon 923 double-beam spectrophotometer at 240 nm and 20 ◦C. CAT activity is
expressed as mmol H2O2/min.mg protein.

2.3.3. Vitamin Content

Vitamin A was extracted after saponification and hexane extraction. The hexane phase
was removed by evaporation with a stream of gaseous nitrogen. Then, the dry extract
obtained was solubilized by 240 mL of tetrahydrofuran and 240 mL of dichloromethane:
methanol (65 V/35 V). Vitamin E concentration was determined by UV spectrophotom-
etry at 292 nm and quantified using high-performance liquid chromatography (HPLC;
model 430, Kontron) with Kroma System 2000 software (Kontron Analysis Division).

2.3.4. Color and pH

Color was measured on the striploin 2 h after excision from the carcass using a
spectrophotometer (Konica Minolta CM-600d, Osaka, Japan) and expressed in CIE L*, a*,
and b* units. Five measurements per muscle (randomly distributed over the muscle but
avoiding connective tissue) were used to determine the meat color. Meat pH was measured
on striploin using a portable pH meter at 24 h postmortem.

2.4. Untrained Consumer Testing

A total of 155 muscle cuts were prepared for untrained consumer testing. According
to the MSA grilling protocol [22], each muscle cut was sliced into five 25 mm-thick steaks.
Each steak was further cut in half after cooking and 10 portions from one muscle cut
were served to consumers. Steaks were grilled on a Silex clamshell grill set to 200 ◦C
for 2.5 min up to an internal temperature of 55–57 ◦C. Representative pictures with three
muscle cuts before and after cooking are presented in Supplementary Materials. Each
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consumer evaluated in total seven steaks—a starter steak (striploin) followed by six testing
steaks (from striploin, bolar blade and internal flank plate)—that were served based on a
6 × 6 Latin square allocation for diverse quality levels and balancing order effect across
consumers. Each consumer scored tenderness, juiciness, flavor liking, and overall liking on
a 100 mm scale, with the left side of the scale representing not tender, not juicy, extremely
dislike, and the right side representing very tender, very juicy, and extremely like. Then,
consumers were asked to assign each sample to one of four MSA quality grades [2 star
(unsatisfactory), 3 star (good everyday), 4 star (better than everyday), and 5 star (premium)]
that best described their overall evaluation of the sample. A total of 360 untrained French
consumers were recruited to participate in one of the 6 testing sessions with 60 consumers
per session.

2.5. Meat Preparation, Trained Panelist Eating Quality Evaluation, and WBSF Measurement

Striploin samples were thawed at 4 ◦C for 24 h and cut into two subsamples for eating
quality and WBSF measurement.

A panel of 20 members evaluated each meat sample using the monadic test method.
Before the eating quality evaluation, the panelists were trained to be familiar with the meat
eating quality evaluation traits. The meat samples were cut into 15 mm-thick steaks, which
were grilled on a double-sided grill at 300 ◦C for 1.15 min to reach an internal temperature
of 55 ◦C. Then, each sample was cut into 5 portions of 15 × 20 × 20 mm and each portion
was sliced into 4 pieces to be served to four different panelists. For 5 testing sessions,
25 portions from 5 animals were evaluated using a 5 × 5 Latin square allocation, whereas
30 portions from 6 animals were evaluated using a 6 × 6 Latin square in the last session. In
total, 6 sessions with 31 samples from 31 animals were evaluated by 20 panelists. These
20 panelists participated in each session, and each panelist tested 31 samples. Six eating
quality traits were used to describe meat quality: initial tenderness, overall tenderness,
initial juiciness, overall juiciness, typical flavor, and abnormal flavor. Each eating quality
trait was scored on a 10-point non-graduated scale from 0 (tough, dry, slight flavor) to 10
(very tender, very juicy, intense flavor).

WBSF measurement of the raw meat was measured using MTS Synergie 200 [23]. For
each sample, 5 cores of 1 cm meat were cut perpendicularly to the fibers. The peak force
was recorded for each meat piece and the shear force was finally determined for each
sample based on the average of the 5 measurements.

2.6. Statistical Analysis

Statistical analyses were performed with R software (4.1.1) and IBM SPSS 25. To
assess the effect of animal gender and farming system and their interaction on carcass
characteristics and meat quality, a univariate analysis of variance was performed using a
general linear model with the post hoc (Tukey HSD) test, including Bonferroni correction
for pairwise comparisons. The significance level was determined at a Bonferroni-corrected
p < 0.05. This method was used to examine the significant differences between means of
raw data. Data from 14-day-aged striploin were used in this analysis.

In the specific case of data from untrained consumers, a linear discriminant analysis
was performed [package: MASS, function: lda] to calculate the optimal weightings of the
four eating quality attributes (tenderness, juiciness, flavor liking, and overall liking) to
predict the final MSA quality grades (2 star, 3 star, 4 star, and 5 star) based on the combined
meat eating quality score (MQ4). The methodology is exhaustively described in Watson
et al. (2008) [22]. The current MQ4 was calculated according to the following equation:
0.36 × tenderness − 0.02 × juiciness + 0.29 × flavor liking + 0.37 × overall liking. The
calculation of MQ4 weightings was based on raw data on all samples (10 portions for each
muscle cut) tested by consumers.

To provide potential structure of the entire dataset with different dimensions and
accurate inference in terms of correlations among all the animal, carcass, and meat quality
attributes, principal component analysis (PCA) and Pearson correlation analysis with hier-
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archical cluster analysis (HCA) were conducted [package: factoextra, corrplot, ClustOfVar,
function: fviz_pca, corrplot, hclustvar]. Data from 14-day-aged striploin were used in
this analysis.

To comparatively assess the eating quality level of the current samples with those
previously reported to define an overall average eating quality level, a European consumer-
testing dataset from a wide range of experiments conducted containing a large diversity of
cattle types and beef cuts [24] was utilized, with chi-squared tests used in this analysis. A
total of 1550 samples from 155 muscle cuts, including all the muscle cuts and aging times,
were used in this comparative analysis.

3. Results
3.1. Effect of Animal Gender and Farming System on Carcass Characteristics

Animal gender significantly affected carcass weight and ossification score (p < 0.001),
with females having lower carcass weight and higher ossification score (Table 2). There was
a significant interaction between gender and farming system on fat and muscle percentage
based on hot carcass weight (p < 0.01): the MIX females showed higher fat percentage
and lower muscle percentage than MONO females, but no difference was observed for
males. However, neither animal gender nor farming system showed any significant effect
on marbling and fat cover, hump height, carcass conformation, pH, or meat color (p > 0.05).

Table 2. Estimated marginal means of animal and carcass characteristics as affected by animal gender
and farming system.

System (S) MONO MIX Significance of F-Value

Gender (G) Female
(n = 10)

Male
(n = 10)

Female
(n = 6)

Male
(n = 5) SEM 1 G S G × S

Age (day) 415 421 430 429 7.34 0.74 0.07 0.54
HCW 2 (kg) 208.9 238.8 225.9 238.7 5.23 <0.001 0.06 0.06
CCW 3 (kg) 208 238.5 224.8 238.3 5.19 <0.001 0.07 0.06
Hump (cm) 3.0 4.0 3.0 3.5 0.31 0.08 0.23 0.41
Ossification 140 a 120 b 150 a 110 b 6.58 <0.001 0.97 0.09
Marbling 230 250 250 220 26.1 0.75 0.82 0.33
pH 5.7 5.7 5.6 5.7 0.06 0.27 0.49 0.52
EU conformation 4 7 7 7 7 0.23 0.2 0.79 0.80
EU fat score 4 5 5 6 6 0.35 0.96 0.2 0.54
Fat % HCW 5 14.6 b 15.1 b 17.1 a 15.2 b 0.47 0.08 <0.01 <0.01
Muscle % HCW 6 67.3 a 66.6 ab 65.3 b 66.6 ab 0.55 0.5 <0.01 <0.01
CIE L* 32.2 31.1 30.5 31.0 0.93 0.73 0.25 0.29
CIE a* 13.4 14.4 14.5 13.9 0.61 0.70 0.60 0.15
CIE b* 14.3 14.9 14.8 14.8 0.66 0.64 0.78 0.62

1 SEM: standard error of the mean; 2 HCW: hot carcass weight; 3 CCW: cold carcass weight; 4 on a 15-point European
grid; 5 Fat % HCW: fat percentage based on hot carcass weight [fat weight (kg)/hot carcass weight (kg) %]; 6 Muscle %
HCW: muscle percentage based on hot carcass weight [muscle weight (kg)/hot carcass weight (kg) %].a, b Within a
row, means with different letters are significantly different (p < 0.05) between different groups.

3.2. Effect of Animal Gender and Farming System on FA Content, Antioxidant Content, Vitamin
Content and Eating Quality

The farming system displayed significant effects on some FA contents (Table 3). On
average, MIX animals had higher contents of total FA, SFA, MUFA, and CLA. Animal
gender had significant effects on beneficial FA ratio, with females having higher PUFA/SFA
ratio and lowerω-6/ω-3 ratio than males (p < 0.05). On average, no effect of farming system
was found on antioxidant content or eating quality evaluated by untrained consumers
(Table 4), and animal gender had significant effects on three eating quality traits evaluated
by untrained consumers, with higher flavor liking, overall liking, and MQ4 scores for
females (p < 0.05) (Table 4).
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Table 3. Estimated marginal means of FA content, antioxidant content, and vitamin content as
affected by animal gender and farming system.

System (S) MONO MIX Significance of F-Value

Gender (G) Female
(n = 10)

Male
(n = 9)

Female
(n = 6)

Male
(n = 5) SEM 1 G S G × S

(g/100 g muscle)
Total lipids 2.68 2.92 3.35 2.89 0.23 0.57 0.11 0.09
Total FA 2.47 2.56 3.12 2.77 0.24 0.54 <0.05 0.30
(mg/100 g muscle)
C12:0 3.73 4.39 5.96 6.17 0.65 0.44 <0.001 0.68
C14:0 62.32 72.09 92.46 78.24 8.98 0.77 <0.05 0.13
C16:0 566.4 600.2 730.7 639.5 62.61 0.59 0.07 0.25
C18:0 437.4 426.7 525.7 472.1 50.9 0.46 0.13 0.63
Linear SFA 1130.3 1166.3 1432.1 1265.3 127.1 0.55 0.08 0.36
Branched SFA 34.99 37.54 45.33 42.16 3.97 0.93 <0.05 0.40
Total SFA 1165.3 1203.9 1477.5 1307.4 130.8 0.56 0.07 0.36
C16:1n-7 45.81 50.70 59.92 56.57 5.66 0.87 <0.05 0.40
C18:1n-9 686.4 715.4 894.1 788.2 72.96 0.54 <0.05 0.29
C18:1 9trans 9.15 9.43 12.32 10.57 1.07 0.43 <0.05 0.27
C18:1 10–11trans 50.90 56.66 69.90 57.89 6.91 0.6 0.09 0.14
MUFA cis 822.7 862.4 1067.5 949.2 86.23 0.60 <0.05 0.29
MUFA trans 102.51 111.00 137.03 119.92 12.45 0.69 0.05 0.24
Total MUFA 2 925.2 973.4 1204.6 1069.1 96.42 0.60 <0.05 0.27
C18:2n-6 (LA) 3 76.80 79.52 81.25 74.40 4.37 0.58 0.93 0.21
C20:4n-6 (ARA) 4 25.96 24.39 31.93 24.20 2.40 <0.05 0.17 0.14
PUFA n-6 LC 5 38.71 34.85 46.77 37.01 3.48 <0.05 0.09 0.33
PUFA n-6 trans 25.93 29.52 33.76 30.47 2.87 0.95 0.08 0.17
Total PUFA n-6 147.4 152.0 169.6 146.6 9.94 0.29 0.33 0.12
C18:3n-3 (ALA) 50.28 49.48 55.97 51.03 4.66 0.48 0.37 0.61
C20:5n-3 (EPA) 11.60 9.68 13.17 9.80 1.75 0.09 0.57 0.63
C22:5n-3 (DPA) 19.32 18.39 23.34 20.91 2.00 0.33 0.07 0.66
C22:6n-3 (DHA) 4.68 3.66 4.71 4.21 2.07 0.67 0.87 0.88
PUFA n-3 96.31 91.33 107.87 98.50 9.81 0.40 0.27 0.80
CLA 6 9cis11trans 20.37 23.96 28.57 25.64 2.55 0.88 <0.05 0.15
Total CLA 24.07 27.07 31.61 27.95 2.87 0.89 0.09 0.18
Total PUFA 272.7 275.1 315.3 279.2 21.70 0.37 0.22 0.31
C16:0/C18:0 1.38 1.36 1.32 1.37 0.06 0.05 0.34 0.59
PUFA/SFA ratio 0.25 0.20 0.25 0.22 0.02 <0.05 0.49 0.58
ω-6/ω-3 ratio 1.53 1.74 1.47 1.68 0.07 0.001 0.31 0.96
C18:2n-6/C18-3n:3 1.51 1.65 1.45 1.54 0.08 0.09 0.24 0.72
CAT 7 1.84 2.04 2.20 2.32 0.19 0.32 0.06 0.80
GPx 8 0.04 0.04 0.38 0.34 0.01 0.76 0.48 0.78
SOD 9 3.24 3.07 3.16 3.45 0.24 0.76 0.46 0.25
Vitamin 10 A 0.03 0.03 0.04 0.04 0.01 0.31 0.23 0.47
Vitamin 10 E 2.53 2.49 2.66 2.15 0.19 0.10 0.52 0.17

1 SEM: standard error of the mean; 2 MUFA: monounsaturated fatty acid; 3 LA: linoleic acid; 4 ARA: arachi-
donic acid; 5 PUFA n-6 LC: long-chain PUFA; 6 CLA, conjugated linoleic acid; 7 CAT, catalase (µmol H2O2
consumed/min per mg protein); 8 GPx, glutathione peroxidase (µmol NADPH/min per mg protein); 9 SOD, su-
peroxide dismutase (IU/mg protein); 10 vitamin unit: µg/g tissue. All data used in this table are from 14-day-aged
striploin. FA content results are presented for data from 30 animals, since the abnormal FA content of one sample
from one male animal was not considered, due to a sampling problem.
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Table 4. Estimated marginal means of eating quality scores evaluated by untrained consumers and
trained panelists and WBSF as affected by animal gender and farming system.

System (S) MONO MIX Significance of F-Value

Gender (G) Female
(n = 10)

Male
(n = 10)

Female
(n = 6)

Male
(n = 5) SEM 1 G S G × S

Cut—striploin Consumer testing

Tenderness 60.99 47.63 59.86 51.5 6.78 0.07 0.81 0.66
Juiciness 62.08 52.54 55.70 57.44 3.75 0.23 0.82 0.09
Flavor liking 62.35 48.72 58.64 53.7 5.27 <0.05 0.89 0.34
Overall liking 60.45 48.69 58.95 50.84 5.52 <0.05 0.95 0.70
MQ4 2 61.17 48.24 59.25 51.78 5.83 <0.05 0.90 0.49

Cut—striploin Panelist testing

Initial tenderness 7.45 7.58 7.76 7.41 0.23 0.58 0.71 0.22
Overall tenderness 7.56 7.41 7.73 7.54 0.27 0.44 0.51 0.93
Juiciness 7.38 6.99 7.27 7.49 0.31 0.74 0.45 0.25
Initial juiciness 6.92 7.08 6.92 7.04 0.27 0.54 0.93 0.93
Typical flavor 6.80 6.75 6.98 6.91 0.25 0.77 0.43 0.97
Abnormal flavor 9.67 9.71 9.75 9.66 0.09 0.78 0.86 0.43
Mastication residual 8.06 7.76 8.25 7.91 0.32 0.24 0.54 0.94
WBSF (N/cm2) 84.01 78.26 67.95 72.25 8.05 0.92 0.12 0.46

Cut—internal flank
plate Consumer testing

Tenderness 63.12 69.09 65.39 67.53 4.74 0.32 0.93 0.64
Juiciness 58.70 65.51 60.92 62.01 4.25 0.28 0.86 0.43
Flavor liking 63.12 68.73 60.75 66.57 3.53 0.07 0.45 0.97
Overall liking 62.10 67.50 61.39 66.85 4.05 0.12 0.84 0.99
MQ4 62.84 68.47 62.55 67.10 4.01 0.14 0.81 0.87

Cut—bolar blade Consumer testing

Tenderness 70.05 63.82 62.42 64.50 4.74 0.53 0.33 0.26
Juiciness 70.14 64.00 63.58 69.53 3.85 0.98 0.88 0.07
Flavor liking 71.70 66.22 63.22 68.63 3.70 0.99 0.34 0.09
Overall liking 71.34 64.98 63.11 67.10 4.44 0.75 0.42 0.18
MQ4 71.35 64.94 62.85 66.57 4.25 0.71 0.35 0.17

1 SEM: standard error of the mean; 2 MQ4: combined meat eating quality score, which is used to describe the
overall eating experience of consumers based on the perception of tenderness, juiciness, flavor liking, and overall
liking. All data used in this table were from 14-day-aged beef samples.

3.3. Relationships between Animal and Carcass Characteristics and Meat Eating Quality Attributes

Animal age, marbling score, and conformation score were more related to eating
quality perceived by panelists than consumers (Figure 1A). Carcass weight and hump
height were more correlated with eating quality perceived by consumers. The two ellipses
in Figure 1A represent the core area of the two farming systems, which are obviously not
discriminated. Moreover, according to hierarchical cluster analysis (Figure 1B), carcass
characteristics were clustered more closely to consumers’ evaluated eating quality than
panelists’ evaluated eating quality.

The correlations between all the traits were confirmed by Pearson correlation coef-
ficients. Some are indicated as being significant in Figure 1B, and others are partially
presented below. Marbling was positively correlated with age (r = 0.38, p < 0.05). The
ω-6/ω-3 ratio was negatively correlated with ossification score (r = −0.45, p < 0.05). CIE
L* was negatively correlated with vitamin E content (r = −0.49, p < 0.05). Hump height
had a negative correlation with all consumers evaluated eating quality traits, MQ4 score
and overall tenderness evaluated by panelists (r = −0.46 to −0.50, p < 0.01). Similarly,
carcass weight was negatively correlated with flavor liking (r = −0.43, p < 0.05). EU fat
score was positively correlated with consumer-assessed MSA quality grades (r = 0.38,
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p < 0.05). One result of the current data is that consumer eating quality scores had no
significant correlation with WBSF, and was only correlated with the panelists’ scores for
juiciness (r = 0.4, p < 0.05). Tenderness and juiciness evaluated by panelists were negatively
correlated with WBSF (r = −0.65, −0.36, p < 0.01). In addition, contents in SOD, someω-3
(EPA, DPA), and some ω-6 (ARA) PUFA were positively correlated with consumers scored
tenderness, flavor liking, and overall liking (r = 0.36 to 0.51, p < 0.05). Panelist-evaluated
tenderness was positively correlated with the content of total lipids, SFA, MUFA, ω-6
PUFA, and certain ω-3 PUFA (EPA) (r = 0.37 to 0.46, p < 0.05) and negatively correlated
withω-6/ω-3 ratio (r = −0.43, p < 0.05). Panelist-evaluated juiciness was correlated with
catalase content andω-6/ω-3 ratio (r = 0.49, −0.45, p < 0.05). Flavor evaluated by panelists
had no correlation with FA content, but abnormal flavor was positively correlated with the
content of total lipids, SFA, C16:1n-7, C18:1n-9, C18:1 9trans, total MUFA, MUFA cis, total
CLA, and CLA 9cis11trans (r = 0.37 to 0.44, p < 0.05) and negatively correlated with DHA
content (r = −0.36, p < 0.05). Correlation analyses with FA contents were performed on
data from 30 animals, since the abnormal FA content of one sample was not considered
due to a sampling problem.
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Figure 1. (A) Principal component analysis (PCA) and (B) Pearson correlation matrix with hierarchical
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3.4. The Eating Quality of Angus x Salers Beef Evaluated by Consumers

To assess the eating quality level of the Angus x Salers beef samples (Table 5, line A),
a European consumer-testing dataset (Table 5, line B) from a wide range of experiments
conducted with a large diversity of European cattle types and beef cuts [24] was utilized
in the comparative analysis. The data comprised 743 animals and 86,624 beef tests. This
dataset was used as a means to reflect an average and diverse eating quality level (based
on the four MSA quality grades), and if the eating quality level of the Angus x Salers
beef is higher than that of the European beef samples, a “better than average” quality
might be reached. For Angus x Salers beef samples, the highest proportion was assigned
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to 5 star (27% versus 11% for European dataset), followed by 4 star (30% versus 24% for
European dataset) and 3 star (26% versus 39% for European dataset), while only 17% of
Angus x Salers beef samples were assigned 2 stars (versus 26% for European dataset), these
differences being significant (p < 0.001) (Table 5, lines A and B). Thus, for the Angus x Salers
beef samples, fewer samples had low-quality grades (2 star and 3 star), and more samples
have high-quality grades (4 star and 5 star).

Table 5. Distribution of beef samples to different MSA quality grades by consumers based on the
present database versus the European database utilized.

Samples Consumer-Assigned MSA Quality Grade Chi-Squared
Test

Dataset 2 star 3 star 4 star 5 star p
n 2 (% 3) n (%) n (%) n (%)

Angus x
Salers 1 (A) 271 (17%) 401 (26%) 462 (30%) 412 (27%)

<0.001
EU dataset (B) 22,686 (26%) 33,809 (39%) 20,430 (24%) 9699 (11%)

(A) 1546 beef samples of striploin, bolar blade and internal flank plate from the present study (1550 beef samples
from 155 muscle cuts were tested by the current French consumers, 4 consumer data missed); (B) 86,624 beef
samples from 22 muscle cuts were tested by consumers from France, Poland, Ireland, and Northern Ireland.
1 Angus x Salers: the present dataset; 2 n: the number of the samples tested by consumers in the corresponding
category; 3 %: the proportion of samples of each MSA quality grade in all the samples of each dataset. In MSA
consumer testing, each beef sample was divided into 10 portions and each portion was evaluated by one consumer.
Then, the consumer was asked to assign each sample to one of the four MSA quality grades [2 star (unsatisfactory),
3 star (good everyday), 4 star (better than everyday), and 5 star (premium)] best describing their overall evaluation
of the sample.

For a more relevant comparison of eating quality scores (tenderness, juiciness, flavor
liking, overall liking, and MQ4) of Angus x Salers beef samples with that of the European
dataset, we used striploin and bolar blade samples only, since data on internal flank plates
are not available in the European dataset. Indeed, the Angus x Salers beef samples had
higher scores for all eating quality traits (Table 6).

Table 6. Consumer scores on meat eating quality traits based on the present database versus the
European database utilized.

Cut Dataset n Tenderness Juiciness Flavor
Liking

Overall
Liking MQ4

Bolar blade
Angus x Salers 1 31 66.19 a 66.79 a 67.79 a 67.01 a 66.91 a

EU 2 54 50.36 b 56.98 bc 55.60 b 54.29 b 52.44 c

Striploin Angus x Salers 3 31 54.94 ab 57.01 bc 55.84 b 54.82 b 55.36 bc

EU 4 326 52.74 b 53.61 c 55.58 b 54.58 b 53.69 c

SEM 2.99 2.52 2.28 2.49 2.48
p <0.001 <0.001 <0.001 <0.001 <0.001

1 Angus x Salers: 31 14-day-aged bolar blade samples from the present dataset; 2 EU: 54 blade samples from
45 young animals of 3 breeds; 3 Angus x Salers: 31 14-day-aged striploin samples from the present dataset;
4 EU: 326 striploin samples from 267 young animals of 9 breeds. Internal flank plates were not analyzed in the EU
dataset, so the comparison was made based only on striploin and bolar blade. a, b, c Within a row, means with
different letters are significantly different (p < 0.05) between different groups.

4. Discussion
4.1. Carcass Characteristics

By comparison with young Angus or Salers bovines slaughtered over decades in the
same processing plant and assessed with the same measurements [25], the Angus x Salers
animals of this study were lean based on fat percentage (19.52% for Angus and 16.07%
for Salers versus 15.35% for Angus x Salers). Furthermore, the 2.92% of total lipids of the
current animals is generally considered lean [26]. Grass feeding and the young age of our
animals are likely the main reasons for this leanness [27].
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Differences in fat percentage based on hot carcass weight between the two systems
were observed for females only. In general, animals reared and fattened on intensive
feeding systems show a tendency to have higher intramuscular fat (IMF) content, with
females likely depositing more IMF than males [28]. However, this is not always the case,
e.g., likely due to the lower intake energy levels, no difference in IMF content between sexes
of feral cattle was observed under feral conditions in Doñana National Park, Spain [29]. This
may fit with our observations that fat cover and marbling remained unaffected by gender
and farming system due to the low energy of the grass-based diet in the current study.

In addition, no differences were found in meat color between females and males or
between the two farming systems, which confirms previous findings that different rearing
managements had little or no impact on beef color [30]. It is somewhat notable that the
current beef samples were likely to be dark based on the low values of lightness and redness
(CIE L* = 31.3, a* = 14.0), in particular when comparing to dark-cutting beef [31]. This is in
accordance with the fact that grass-fed/finished cattle tend to produce darker meat [32],
with high pH caused by a lower muscle glycogen content at the time of slaughter. However,
the possible interference of pH can be ruled out, since the current pH was generally
compliant (<5.7) and was not correlated with L* value in the present analysis. Moreover,
CIE L* and a* values of the current samples (from around 200-day grass-fed animals) were
numerically lower than in a study conducted with longissimus dorsi et thoracis muscle from
199-day grass-fed Charolais and Limousin bulls that had CIE L* and a* values of 46.5 and
18.0 [33]. This suggests the current beef may indeed be dark. It was demonstrated that beef
color is considered acceptable for consumers when a* values are ≥ 14.5 [34], the current
beef being close to this threshold, which may indicate that the current meat color is not too
dark to be unacceptable for the consumer. In addition, grass diets can significantly improve
beef antioxidant contents, preventing the oxidation of oxymyoglobin to metmyoglobin,
which leads to negative changes in meat color [35]. However, given the low number of
correlations between meat color and antioxidant contents in the present study, the low value
of CIE L* may be explained by the specific crossbreeding and/or insufficient blooming time
of the beef samples, which is recommended to be longer [36], hence sufficient oxidation of
pigment had not fully occurred.

4.2. Fatty Acid Profile

FA content was unaffected by the interaction of animal gender and farming system.
However, the females had a beneficially higher PUFA/SFA ratio and a lower ω-6/ω-3
ratio than males, which is likely due to the association between animal maturity and FA
deposition. Females were more physiologically mature than males based on ossification
score, with theω-6/ω-3 ratio being negatively correlated with ossification score (p < 0.05),
indicating that more mature females tended to deposit more PUFA (especially ω-3 PUFA)
than males. The farming system mostly affected the SFA and MUFA contents, with only
MIX animals having higher levels of those FAs than MONO animals. This may also be
attributed to different animal maturity. It is well established that grass feeding can sig-
nificantly improve beneficial FA composition with higher ω-3 PUFA content and lower
ω-6/ω-3 ratio [2]. Indeed, the current grass-based diet and crossbreeding strategy resulted
in a lowω-6/ω-3 ratio (1.6 relative to the recommended target of <2–3) [2]. The contents
of SFA and MUFA increase faster than the content of PUFA with increasing fatness, and
consequently, the relative proportion of PUFA and the PUFA/SFA ratio decrease. Hence
lean and late maturing breeds would have a higher PUFA/SFA ratio than early-maturing
breeds when slaughtered at the same carcass weight [2]. This fact can support our finding
that the PUFA/SFA ratio of current animals was 0.23, which can be considered moder-
ate, since beef PUFA/SFA ratio is generally low, around 0.1, except for very lean beef,
where the PUFA/SFA ratio can be easily reach the recommended values for human nu-
trition (>0.4) [26]. By comparison of the current FA composition with that of grass-fed
beef [37], the current animals presented quite good ω-3 PUFA composition with high
content of ALA (51.3 mg/100 g muscle relative to a range of 28.1–52.8 mg/100 g muscle),
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EPA (11.0 mg/100 g muscle relative to a range of 5.8–24.5 mg/100 g muscle) and DHA
(4.3 mg/100 g muscle relative to a range of 1.5–4.2 mg/100 g muscle), despite the fact that
these comparisons may depend on genetic makeup, breed, gender, age, and geographic
location, which all affect FA compositions [27]. Consumption ofω-3 PUFA is linked to a
variety of health benefits, notably in the prevention of cardiovascular diseases. However,
the Western diet is largely deficient in ω-3 PUFA, with the actual daily intake achieving
only up to half the recommended amount (estimated actual consumption in the Western
diet: 0.9 g/d ALA, 137 mg/d EPA and 101 mg/d DHA; recommendations: 1.8 g/day ALA,
250 mg/d EPA, 250 mg/d DHA) [38]. Consumption of 70 g of the current Angus x Salers
beef can provide around 7.2 mg EPA. Highω-3 PUFA content can benefit human health,
but the oxidation of ω-3 PUFA would produce health-impairing factors. However, in
comparison with the literature on grass-fed beef [27,39], the antioxidant contents of our
Angus x Salers animals seem outside an optimal range. This might produce health-risk
components fromω-3 PUFA oxidation.

4.3. Eating Quality

No effect of farming system was found on eating quality, while significant effects of
gender were detected by consumers, with higher scores of flavor liking, overall liking,
and MQ4 for females. As expected, panelist assessments of eating quality of the beef
samples from Angus x Salers animals seem better than that of purebred Salers (i.e., the
panel scores of overall tenderness, juiciness, and flavor were 7.5, 7.3, and 6.8 for striploin
of the present Angus x Salers animals, 5.5, 5.6, and 5.6 for striploin of young Salers bulls,
and 5.1, 5.7, and 5.9 for striploin of Salers cull cows [40]). Although data from different
experiments are not comparable, a mean value greater than approximately 7 for all eating
quality traits may indicate an average or greater eating quality for Angus x Salers animals,
despite the abnormal flavor, which was evaluated as extremely high (close to 10). This fits
with earlier observations, which showed that consumers prefer eating quality of grain-fed
beef because grass-fed beef contains “abnormal” pastoral flavor characterized as “grassy”,
“wild” and “barny” and lacks normal beef flavor (reviewed by Pogorzelski et al., 2022 [41]).
In addition, aroma volatiles are related to FA composition [42] with correlations found
between abnormal flavor scores from panelists and total lipids, SFA, MUFA, CLA, and
some ω-3 PUFA (DHA) contents. The oxidation of ω-3 PUFA might be associated with
the high abnormal flavor score [2]. In this study, most correlations between sensory traits
from panelists and FA contents were positive. The only negative correlation was between
abnormal flavor and DHA content. No significant correlation was found between sensory
traits from panelists and PUFA content. These observations differ from the findings by
Ellies-Oury et al. (2021), which indicated that with longissimus thoracis muscles from young
Charolais bulls, sensory traits (juiciness, overall liking and flavor) evaluated by panelists
were negatively correlated with PUFA proportions [43]. This may be due to different animal
types and production systems, and also different FA units (content or proportion) used in
the different studies. Moreover, we found that consumer-scored tenderness, flavor liking,
and overall liking were positively correlated with some ω-3 (EPA, DPA) and some ω-6
(ARA) PUFA contents. It can be concluded from those findings that the correlations and/or
relationships between sensory traits and FAs can be variable according to animal types and
farming systems.

Most importantly, on average, the current beef samples had higher consumer eating
quality scores and a higher proportion of samples were assigned to the higher MSA qual-
ity grades of 4 star and 5 star, with a lower proportion assigned to being unsatisfactory
than the beef samples from the European dataset. In general, IMF highly contributes
to beef eating quality with strong correlations (r = 0.74 to 0.88, p < 0.05) between IMF
content and tenderness, juiciness, flavor liking, and overall liking being reported [44].
The contribution of marbling score to the variability in MQ4 score is up to 51% for
m. longissimus thoracis et lumborum [45]. However, in the present study, no significant cor-
relation was found between marbling score and eating quality scores assessed by both
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consumers and panelists. This absence of significant correlation may be somewhat ex-
plained by the low range of variability of marbling score, and a greater number of animals
with a larger phenotypic range may be warranted. Furthermore, this may also be explained
by the fact that other factors aside from marbling affect beef eating quality [46] and the
marbling effect may have been overshadowed by these other factors. For instance, con-
sumer scores are related to FA composition, mainly ω-3 and ω-6 PUFA (i.e., EPA, DPA,
ARA) contents, whereas tenderness evaluated by panelists was more related to total lipids,
SFA, and MUFA contents. Consistent with the literature [47], ω-6/ω-3 ratio had a negative
correlation with tenderness and juiciness. In fact, given that the current animals were young
and lean, specific relationships might exist between animal and muscle characteristics and
eating quality traits. Indeed, beef eating quality is multifactorial determined, for instance,
with various effects of marbling depending on muscle cut [45] or with a low effect of breed
on eating quality [48].

The WBSF measurement was used additionally in this study to provide more re-
peatable measurements of tenderness. It provides also indications of the strengths of
the connective tissue and myofibrillar structures [49]. In the study of Dransfield et al.,
(2003) [40] with three muscles aged 14 days from four breeds, three quality classes (lowest,
intermediate, and highest) were derived based on panelists’ eating quality assessment, with
WBSF values of raw meat from the highest to the lowest eating quality classes being 79.4 to
94.1 N/cm2. Our result of WBSF on raw meat (77.1 N/cm2) suggests that the tenderness of
Angus x Salers beef might be in the tender category (the highest-quality class set by Drans-
field et al. (2003) [40]). Consumer assessment of tenderness and instrumental measures
of tenderness have been extensively studied and their correlations were generally weak
[r = −0.19 [50], −0.26 [51]] in most studies, but sometimes can be higher (r = −0.72) [52].
A higher correlation between panelist-scored tenderness and WBSF (r = −0.82) has been
reported [53]. Our results confirm a weak correlation (p > 0.05) between consumer-assessed
tenderness and WBSF and a moderate but significant correlation between panelist-assessed
tenderness and WBSF. Although WBSF measurement is not a good indicator of consumer
perception of meat eating quality, since the former is not only related to mechanical force
but also associated with the sensations generated by moisture and fat within meat, whereas
panelist assessment of quality can be reconciled to a certain extent with WBSF. This is
consistent with Perry et al. (2001) [54], who found that consumers had the ability to detect
any improvement in eating quality, but the improvement cannot be measured by WBSF.
Conversely, panelists could better discriminate tender and tough meat in accordance with
WBSF. This can further support the finding of no correlation between consumers’ and
panelists’ assessments of beef eating quality. Trained panelists and untrained consumers
may have different emphases when tasting beef; for example, as panelists are more qual-
ified and guided by more granular eating quality traits, they may intentionally focus on
certain aspects that determine eating quality, such as abnormal flavor, which may be not
noticed by untrained consumers. Although both methods have been found to be effective in
assessing the eating quality of meat, this uncorrelated relationship is understandable given
the different processing protocols (i.e., sample size and cooking temperature) and scales of
the two methods. Moreover, the low number of animals and beef samples potentially with
a low range of variability of eating quality can also explain these uncorrelated results.

5. Conclusions

This study demonstrated that young grass-fed crossbred Angus x Salers animals can
produce beef of “better than average” eating quality with low intramuscular fat content,
high ω-3 PUFA content, and a low ω-6/ω-3 ratio. This is of importance due to the paucity
of research on grass-fed Angus x Salers animals. FA composition had correlations with
beef eating quality in varying extents: consumer-scored tenderness, flavor liking, and
overall liking were mainly related toω-3 andω-6 PUFA contents, and panelist-evaluated
tenderness was more correlated with the contents of total lipids, SFA, and MUFA. The
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ω-6/ω-3 ratio was positively correlated with WBSF and negatively correlated with panelist-
scored tenderness and juiciness.

To summarize, crossbreeding and especially the grass-feeding strategy could con-
tribute together to good animal performances in terms of FA profile and meat eating quality.
Although the association of beef cattle and sheep within a mixed system had very little
or no impact on carcass or meat attributes, the findings of this study have important im-
plications for future practices: (1) beef cattle and sheep mixed farming systems, which
have agroecological benefits, can be implemented without undue penalty to meat quality;
(2) Angus x Salers crossbreeding with a grass-feeding strategy is relevant due to the higher
beneficial FA composition and above-average eating quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11162493/s1, Supplementary Materials File S1: I—Animal
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sample preparation and Quality Assurance. References [19,22] are cited in Supplementary Materials.
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