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Abstract: This paper presents an innovative approach to the automatic modeling of buildings com-

posed of rotational surfaces, based exclusively on airborne LiDAR point clouds. The proposed ap-

proach starts by detecting the gravity center of the building's footprint. A thin point slice parallel to 

one coordinate axis around the gravity center was considered, and a vertical cross-section was ro-

tated around a vertical axis passing through the gravity center, to generate the 3D building model. 

The constructed model was visualized with a matrix composed of three matrices, where the same 

dimensions represented the X, Y, and Z Euclidean coordinates. Five tower point clouds were used 

to evaluate the performance of the proposed algorithm. Then, to estimate the accuracy, the point 

cloud was superimposed onto the constructed model, and the deviation of points describing the 

building model was calculated, in addition to the standard deviation. The obtained standard devi-

ation values, which express the accuracy, were determined in the range of 0.21 m to 1.41 m. These 

values indicate that the accuracy of the suggested method is consistent with approaches suggested 

previously in the literature. In the future, the obtained model could be enhanced with the use of 

points that have considerable deviations. The applied matrix not only facilitates the modeling of 

buildings with various levels of architectural complexity, but it also allows for local enhancement 

of the constructed models.  
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1. Introduction 

Remote measurement systems enable the development of digital models that depict 

real-world objects with increasing accuracy. Light detection and ranging (LiDAR) tech-

nology, which collects point clouds using airborne laser Scanning (ALS), has particularly 

contributed to advancements in remote measurement. Airborne LiDAR data are de-

scribed by three coordinates (attributes), which, in combination with aerial color images 

(red, green, and blue; RGB), have led to the development of a new functionality in 3D 

modeling [1–3]. LiDAR data can be labeled by automatic point classification, where the-

matic subsets are created based on attributes [2,4,5]. Classification is a crucial process in 

3D modeling, because the represented objects are characterized by increasing complexity 

[6,7]. A point cloud can be classified using  supervised learning methods that rely on sta-

tistical formulas [8–10] or supervised methods based on machine learning classifiers [11–

13]. During the classification process, subsets must be verified, to identify and eliminate 

outliers. Classification is combined with segmentation, to select subsets of points that rep-

resent individual objects. The selected subsets facilitate 3D city modeling, mainly 3D 

buildings that represent most infrastructure objects in urban areas. The segmentation of 

LiDAR datasets can be simplified with the use of vector sets depicting the ground floors 

of buildings [14–16]. Classified and segmented point clouds from aerial images fulfil the 
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requirements for modeling buildings at the LOD0, LOD1, and LOD2 levels of detail, as 

long as their visibility is not disturbed by natural and artificial curtains. Additional data 

(for example terrestrial scans) are needed to generate LOD3 models, because extended 

facades of buildings are often rendered in insufficient detail based on aerial images. LOD4 

modeling is also applied to model building interiors based on indoor scans. Building in-

formation modeling (BIM) technologies are increasingly being used to create virtual 3D 

models of buildings with architectural details, in building design and management. The 

BIM dataset generated in the process of designing, modeling, and managing buildings 

meets the requirements for creating LOD models at different levels of detail. BMI technol-

ogies offer an alternative to the above solutions [14,17]. The construction of virtual 3D city 

models in the CityGML 3.0 standard [18–20] requires models of urban objects with vary-

ing levels of complexity and accuracy. The generation of vector and object data with var-

ious levels of detail, based on point clouds, poses a considerable challenge. Complex mod-

els (LOD3) should accurately depict the structural features of buildings, such as gates, 

balconies, stairs, towers, and turrets. Vector 3D models with varying degrees of complex-

ity should be restricted to a single topology, which poses a difficult task for researchers. 

Such models should not only enable rapid visualization of 3D datasets at different scales 

and with varying complexity, but they should also facilitate data processing during com-

prehensive analysis [19,21]. In the next stage of designing a smart city, 3D datasets de-

scribing individual buildings must be linked with semantic data [22] to create thematic 

applications [23]. The CityGML 3.0 Transportation Model also requires highly detailed 

models of street spaces, in particular buildings. These models are utilized in autonomous 

vehicles [22,24] and other mobile mapping systems.  
Various approaches to modeling buildings based on point cloud data have been de-

veloped. The proposed approaches rely on subsets of points describing buildings and, in 

the next step, subsets describing roof planes. These points can be identified with the use 

of various approaches: 

 Methods based on building models that are represented in LOD0 [14,25,26]. 

 Methods involving algorithms that are based on triangulated irregular networks 

(TIN) [16]. 

 Methods involving point classification, filtration, selection, and segmentation [27,28].  

 Methods where points are classified by machine learning [12].  

 Methods where points are selected based on neighborhood attributes [29].  

 Methods where point clouds are filtered based on a histogram of Z-coordinates [7,30].  

The modeling process is two-fold: modeling of roof planes and modeling of building 

surfaces [30]. These processes are often conducted manually, based on defined reference 

models that are available in libraries or are generated for the needs of specific projects 

[31]. Other approaches involve different methods of processing subsets of LiDAR points. 

In the generated point clouds, subsets that represent roof planes are extracted by the de-

veloped algorithms [30,32]. In the next step, roof plane boundaries are modeled as 

straight-line segments, and the topological relationships between these elements are es-

tablished [26,27,32–35]. Building facades are usually difficult to model, due to incomplete 

datasets in point clouds. Therefore, it was assumed that a building's outside walls should 

be reconstructed based on the roof boundary. This approach supported the development 

of numerous algorithms for automatically identifying and modeling buildings based on 

LiDAR data at the LOD2 level. The generated algorithms are based on modeled roof 

planes [32,35,36]. In the constructed models, the ground floor of a building is represented 

by the contour of the roof [34,35]. This simplified approach was adopted to establish top-

ological relationships between geometric objects in building models [18,35,37]. The pro-

posed methods and algorithms for modeling buildings at different levels of detail always 

give simplified results. Models rarely fully correspond to reality, because construction 

technologies allow creating complex spatial structures that are difficult to render in 2D or 
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even 3D mathematical frameworks for virtual visualization of entire cities. The present 

study was undertaken to search for new solutions to this problem. 

2. Research Objective 

Most solutions for roof plane modeling in the literature are based on straight-line 

geometric elements. In practice, roofs and roof structures tend to be more complex in 

buildings that feature towers, turrets, or other ornamental structures, in the shape of 

spheres or curved planes. In the proposed models, such elements are usually simplified 

or even omitted. These differences become apparent when virtual LOD2 models of cities 

are compared with Street View visualizations. Two 3D building models from the Polish 

Spatial Data Infrastructure (SDI) geoportal are presented in Figure 1. The constructed 

models present selected buildings in the Polish city of Olsztyn. Complex building struc-

tures, including ornamental features, were not visualized because only straight-line 3D 

elements were used in the modeling process. This problem had been previously recog-

nized by Huang et al. [35]. 
These observations indicate that towers, turrets, and other ornamental features con-

stitute structural blocks and require special modeling methods. Some of these structures 

can be modeled by rotating straight-line segments. New methods for the automatic gen-

eration of detailed building models are thus needed, to ensure compliance with the 

CityGML 3.0 standard. Therefore, the aim of this study was to develop an automated al-

gorithm for modeling the characteristics of tall structures in buildings, represented by sol-

ids of revolution, and based on LiDAR point cloud data. 

  
(a) (b) 

  
(c) (d) 

Figure 1. Selected 3D building models from the Polish SDI Geoportal, including Street View visual-

izations; (a) Model of the Olsztyn City Hall building; (b) Visualization of the Olsztyn City Hall 

building; (c) Models of other representative buildings and their visualizations (d). 

These observations indicate that: 

 Towers, turrets, and other ornamental structures require special modeling methods.  

 Some of these structures can be modeled by rotating straight-line segments.  

 New methods for the automatic generation of detailed building models are thus 

needed to ensure compliance with the CityGML 3.0 standard.  

Therefore, the aim of this study was to develop an algorithm for modeling the char-

acteristics of tall structures in buildings, represented by solids of revolution, and based on 

point cloud data. 
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3. Design Concept 

The expected model that will be generated by the proposed modeling algorithm 

should be described first. For this purpose, an experiment was designed to assess the sim-

ilarity  between the envisaged model and the tower point cloud, and between the envis-

aged model and the tower building. The test was inspired by Tarsha Kurdi and Awrangjeb 

[38]. A 3D point cloud distributed irregularly on the tower's outer surfaces can be meas-

ured by airborne laser scanning. On the one hand, the relatively low point density, irreg-

ular point distribution, accuracy of point location, presence of noisy points, and the geo-

metric complexity of the scanned building decrease the similarity between the scanned 

tower and its point cloud. On the other hand, the generalization of the point cloud for 

calculating a 3D model decreases the similarity between the constructed model and the 

point cloud. Therefore, the fidelity of the constructed model decreases twice: during the 

scanning step and during the modeling step.  
The experiment consisted of two stages. First, a 3D tower model was developed man-

ually from the tower point cloud, without a reference to the original building image. In 

the first stage, the calculated model was named Model1, and it is shown in Figure 2b. Both 

the tower point cloud and the terrestrial image were used as inputs, to manually generate 

the 3D tower model. In the second stage, the calculated model was named Model2, and it 

is shown in Figure 2c. It should be noted that the model was generated with the use of the 

official Polish GIS model, which was imported to CAD and is presented as a skeleton in 

Figure 2c. 

 

Figure 2. Tower of the Olsztyn City Hall building; (a) LiDAR point cloud; (b) Model 1 generated 

directly from a point cloud; (c) Model 2 generated from the point cloud and the terrestrial image 

shown in Figure 1b. 

A comparison of the obtained tower models indicates that: 

 Despite the fact that geometric details are not rendered with sufficient clarity in the 

point cloud, they can be identified in Model 2, but not in Model 1. 

 Model 2 preserves the tower’s geometric form, which can be observed in the terres-

trial image. 

 Some errors in the diameters of different parts of the tower body in Model 2 result 

from a greater focus on the image than the point cloud. 

 Model 1 renders the geometric form of different tower parts with lower accuracy, but 

it preserves dimensions with greater accuracy. 
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 Model 1 represents the point cloud more accurately than Model 2, whereas Model 2 

represents the original tower more accurately than Model 1. 

These observations suggest that in an automatic modeling approach, based only on 

an airborne LiDAR point cloud, the processing parameters and measurements are applied 

directly to the point cloud. Thus, the expected model will more accurately represent the 

point cloud describing the original building. Consequently, the constructed building may 

be more similar to Model 1 than Model 2.   

Figure 2b indicates that the tower can be regarded as a rotational surface. The tower 

body is composed of five vertical parts (Figure 2); therefore, five horizontal cross-sections 

were calculated from the tower point cloud to verify this hypothesis, as shown in Figure 

3. 

 

Figure 3. Five cross-sections in the tower point cloud. 

The first three cross-sections are circular, but the last two are rectangular. Moreover, 

the point density is low in the lower part of the tower, due to airborne scanning and the 

presence of elements connecting the building with the tower, which is why cross-sections 

4 and 5 are not complete. However, due to the tower’s architectural complexity and the 

fact that similar towers can be presented geometrically by rotational surfaces (as discussed 

in Section 4), the latter hypothesis was adopted, and tower points were modeled based on 

rotational surfaces. 
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Finally, Model 1 was built with the use of the automatic modeling approach, which 

relies on this strategy being applied to the point cloud, and all steps of the construction 

process were automated. 

4. Proposed Modeling Approach 

The suggested modeling approach was applied to the 3D airborne LiDAR point cloud 

of the tower. The presented algorithm was applied to automatically generate a 3D model 

of the scanned tower. The proposed method consists of five consecutive steps, which are 

presented in Figure 4. First, to calculate the tower footprint gravity center, the tower point 

cloud was projected onto a horizontal plane passing through the coordinate origin. 

 

 

Figure 4. Workflow of a modeling algorithm for generating a building composed of rotational sur-

faces. 

The projection on the horizontal plane OXY follows the lines parallel to the Z axis; 

therefore, the result is a 2D point cloud with only X and Y coordinates (the same X and Y 

Input: 3D tower point cloud 

Projection of the point cloud onto a hori-

zontal plane  2D point cloud 

Calculation of the gravity center 

of the 2D point cloud 

Generation of a vertical cross-section 

passing through the gravity center 

Division of the vertical cross-section into two symmetrical parts with 

the use of a vertical line passing through the gravity center 

From top to bottom, each point defines a cylinder. Cylinder height 

is equal to the vertical distance between the considered point and 

the next one. The radius is equal to the distance between the point 

and the vertical line passing through the gravity center 
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coordinates as in 3D space). In other words, this operation could be realized by consider-

ing only the coordinates X and Y, to define a new 2D point cloud that represents the tower 

footprint. The elimination of the Z coordinate from the original point cloud enabled the 

generation of the target 2D footprint point cloud. The resulting 2D point cloud of the 

tower footprint is presented in Figure 5a. Due to an irregular distribution of 3D points on 

tower surfaces, the density of the obtained point cloud is also irregular: greater on the 

right side and smaller on the left side.  

In the second step, the gravity center coordinates of the projected point cloud (Figure 

5a) are calculated. For this purpose, the static moments of a 2D cloud are analyzed by 

considering the points as infinitely small elements. Therefore, static moment equations 

were applied to the new point cloud, to calculate the gravity center of the tower footprint 

(Equation (1) [39]).  
The application of the static moment principle shifted the gravity center, due to an 

irregular point density (see the green circle in Figure 5a). The tower footprint is symmet-

rical, and this problem can be resolved by calculating gravity center coordinates using 

extreme values of X and Y coordinates (minimum and maximum), as indicated in Equa-

tion (2) (see the red circle in Figure 5a). 

�� =
∑ ��

�
���

�
       �� =

∑ ��
�
���

�
 (1)

�� = ���� +
���������

�
, �� = ���� +

���������

�
 (2)

where Xg and Yg are the coordinates of the gravity center; n is the number of points; Xi 

and Yi are point cloud abscissas and ordinates in OXY. 

In the third step, a vertical cross-section passing through the gravity center was cal-

culated, by identifying the points located in a slice with thickness Ԑ around the considered 

vertical plane. The Ԑ value was considered according to Equation (3) (Figure 5b). 

� = 2 × ��    �� =
1

√�
 (3)

where Ԑ is the thickness of the vertical cross-section slice; Td is the mean horizontal dis-

tance between two neighboring points [29]; and θ is the point density. 

 

Figure 5. (a) Projection of a 3D tower point cloud on a horizontal plane passing through the coordi-

nate origin; the red circle is the gravity center calculated based on extreme coordinate values; the 

green circle is the gravity center calculated based on static moments. (b) Vertical cross-section pass-

ing through the gravity center. (c) Semi-vertical cross-section. 
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In the fourth step, the symmetrical vertical cross -section was divided into two parts 

using the vertical line passing through the gravity center (Figure 5c). The obtained semi-

cross-section represents the basic graph that revolves around the vertical line passing 

through the gravity center, to approximate the surface of revolution which represents the 

3D tower model.  

Mathematically, when a line segment is revolved around an axis, it draws a band. 

This band is actually a piece of a cone called the frustum of a cone. This cone could be a 

cylinder when the line segment is parallel to the rotating axis. Finally, from top to bottom, 

each point defines a cylinder, and the cylinder’s height is equal to the vertical distance 

between the considered point and the next one, and the radius is equal to the distance 

between the point and the vertical line passing through the gravity center. The analyzed 

semi-cross-section (Figure 5c) is not continuous and contains gaps (see the red arrow in 

Figure 5c). Due to the low point density and irregular point distribution, these gaps are 

presented by the frustums of cones connecting the two consecutive cylinders. 

The 3D tower model is calculated with the use of a matrix. Three matrices were used 

for this purpose: X, Y, and Z (Equations (4)–(6)). These matrices represent the coordinates 

of rotating surface pixels and have the same number of rows and columns. The number 

of rows is equal to the number of points in the semi cross-section, whereas the number of 

columns can be selected arbitrarily, but it must be greater than seven and multiples of four 

added to one. In the model presented in Figure 6, the number of columns is equal to 25.   
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��,� = ��� − ��� sin(
���

�
+

��

�
), ��,� = ��� − ��� cos(

���

�
+

��

�
) (6)

where Xg and Yg are the coordinates of the gravity center (Equation 2); Xi, Yi, and Zi (i=1 

to n) are the point coordinates of the semi cross-section; j=1 to m; n is the number of points 

in the semi cross-section; αi and βi are the step values of X and Y, respectively; and m is 

the number of columns in matrix X.   

Figure 6 presents the 3D model of the tower point cloud shown in Figure 2a. This 

model was constructed automatically using the described approach, based on rotational 

surfaces. The generated model is similar to that shown in Figure 2b, because only the 

tower point cloud was considered in both models. Both models represent a rotational sur-

face and consist of five parts that are vertically superimposed. Furthermore, their dimen-

sions are similar to the mean dimensions measured directly from the point cloud. In con-

trast, the model shown in Figure 2c, where both the tower point cloud and the tower im-

age were considered, differs more considerably from the calculated model.  
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Figure 6. (a) Automatically generated 3D tower model; (b) superimposition of the tower point cloud 

onto the tower model. 

The suggested algorithm was implemented in MATLAB software, and the “surf (X, 

Y, Z)” command was used to visualize the calculated building model. However, the sug-

gested algorithm has the following pseudocode (Algorithm 1): 

Algorithm 1 

Input (point cloud (X, Y, Z), m, θ) 

Point cloud sorted in ascending order based on Z values 

�� = ���� +
���������

�
  

�� = ���� +
���������

�
  

  �� =
1

√�
 

i = find (X > Xg − Td and X < Xg + Td and Y ≤ Yg) 

SCS = [Y(i), Z(i)] 

for i = 1 to length (SCS), Step = 1 

for j = 0 to m, Step = 1 

Zb (i, j+1) = SCS (i, 2) 

Xb (i, j+1) = Xg + (Yg − SCS (i, 1)) × cos(
�×�

�
+

�×�×�

�
) 

Yb (i, j+1) = Xg + (Yg − SCS (i, 1)) × sin(
�×�

�
+

�×�×�

�
) 

Next j 

Next i 
Surf (X, Y, Z) 
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Where SCS is the list of semi-cross-section points; Surf is the 3D visualization func-

tion; Xb, Yb, and Zb are the three matrices of the building model (Equations (4) and (5)). 

In the previous pseudocode, the suggested algorithm was very short and simple. The 

algorithm outputs three matrices that can be exported in raster or vector format. The da-

tasets used in the suggested approach will be presented in the next section. The remaining 

results will be discussed and the accuracy of the modeling process will be estimated in 

Section 6. 

5. Datasets 

The Polish SDI was developed by the Head Office of Geodesy and Cartography, and 

constitutes a data source that is widely used in research. ALS data from LiDAR measure-

ments conducted in 2018 (12 point/m2), as well as LOD2 3D building models generated in 

the CityGML 2.0 standard, were selected from SDI resources for the needs of the study. 

The 3D building models were generated by compiling three data sources: 2D build-

ing contours from the Database of Topographic Objects in 1:10 000 scale, LiDAR data 

(building class), and the Digital Terrain Model (DTM) with a mesh size of 1 m. Buildings 

were modeled based on 2D building contours. The height of building contours was deter-

mined based on the minimum height of building contour vertices in the DTM dataset. The 

3D building models were downloaded from the SDI, as individual vector files presenting 

roof planes, building walls, and 2D building contours.  

The most characteristic buildings in Olsztyn, including the Olsztyn City Hall with an 

ornamental tower (Figure 1a,b), a building with a chimney (Figure 7a), and water towers 

(Figure 7b), were selected for the study. Two water towers with characteristic shapes, lo-

cated in the cities of Bydgoszcz (Figure 7c) and Siedlce (Figure 7d), were additionally se-

lected. ALS data were obtained from SDI resources.  
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Figure 7. Modeling four tower point clouds; (a–d): tower images from Google Street View; (e–h): 

Tower point clouds; (i–l): 3D tower models. 

6. Results, Accuracy Estimation, and Discussion 

In the literature, the accuracy of 3D building models generated based on LiDAR data 

can be estimated using two approaches. In the first approach, the generated model is com-

pared with the reference model [15,40–42]. In the second approach, a LiDAR point cloud 

is the reference model [15,38,43–45]. In the second approach, the accuracy is estimated by 

calculating the distances between the 3D model and the point cloud. In the present study, 
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the reference model was the building point cloud. To estimate the accuracy of the gener-

ated model, the point cloud is superimposed onto the built model, and the distances be-

tween cloud points and the model are calculated. The point cloud is superimposed onto 

the 3D tower model in Figure 6b. A histogram of the distances between cloud points and 

the generated tower model (see Figure 6b) is shown in Figure 8. Figure 8 shows that a high 

percentage of points fit the constructed tower model accurately, and the distances be-

tween the points and the model are less than 0.30 m. A distance of less than 0.35 m is 

regarded as acceptable. The accuracy of altimetry measurements, the texture of building 

surfaces and ornaments, and the presence of noise shift cloud points around the mean 

building surfaces. Moreover, some parts of the building do not support the hypothesis 

postulating that the building is represented by a rotational surface. For example, the lower 

part of the tower in Figure 3 is not exactly a rotational surface.  
In addition to the point cloud presented in Figure 2a, four different tower point 

clouds were assessed, to analyze the accuracy of the models developed with the suggested 

approach. The images, the point cloud, and the constructed models of four tower point 

clouds are presented in Figure 7. The total number of points, the number of points that 

deviate from the model within the interval (0, 0.3 m), the number of points with deviations 

greater than 0.3 m, and the standard deviation of the distances from the constructed model 

are presented in Table 1.  
It should be noted that the same approach was used to calculate the values presented 

in Table 1 and the histogram in Figure 8. Hence, the tower point cloud was superimposed 

onto the calculated model, and the deviation of each point from the constructed model 

was calculated. This operation was performed to calculate the deviation for each point. A 

histogram of deviations is presented in Figure 8. The calculated deviations were analyzed, 

and the results are presented in Table 1. 

 

Figure 8. Histogram of deviations between cloud points and the 3D tower model. 

Table 1. Standard deviations and the number of points that deviate from the tower model within 

the specified intervals. 

Tower Number  

Name–City 

Number of 

Points 

Number of Points 
σ (m) 

Dist ϵ (0,0.3 m) Dist > 0.3 m 

1 Olsztyn City Hall 2330 1833 497 0.49 

2 Building with a chimney in 

Olsztyn 
330 244 86 0.9 

3 Water tower in Olsztyn 4974 2217 2757 0.84 
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4 Water tower in Bydgoszcz 5500 5246 254 0.21 

5 Water tower in Siedlce 4811 3825 986 1.4 

Dist: deviation between a point and the constructed model; σ: standard deviation of the distance 

between the cloud point and the tower model. 

To calculate the deviation of a given Point P (Xp, Yp, Zp) in Figure 9, the Z coordinate 

was used to determine the point’s location in matrix Z in Equation 5. The point can have 

three locations. In the first case, if the point is located in a row where Zp = Zi (I = 1 to n), 

the deviation can be calculated according to Equation (7) (as shown in Figure 9). 

��� = �(�� − ��)� + (�� − ��)� − �� + ��  (7)

In the second case, if Point P is located between two rows, the deviation is calculated 

for each of the two rows, and the final deviation is estimated for the last two values. In the 

third case, if Point P is located outside matrix Z values (up or down), it is considered a 

noisy point and neglected. 

In Figure 9, distance P P’ represents deviation, and distance P’G represents the radius 

of rotation, which equals Yi − Yg. In Equation (6), angle ɤ equals ((2.j.π)/m). It should be 

noted that the deviation can be negative or positive, depending on the point’s location in 

the calculated model. The deviation is negative if the point is located inside the model, 

and positive if the point is located outside the calculated model. Standard deviation al-

ways has a positive value. 

In Table 1, tower No. 1 is the tower shown in Figure 2, whereas towers No. 2, 3, 4, 

and 5 are the towers shown in Figure 7, in the same order.  

 

Figure 9. Deviation of Point P located in the horizontal plane, where Z = Zp. 

In Table 1, Tower 5 has the greatest standard deviation (σ = 1.4 m). This tower consists 

of two main parts, separated by a step. The points located down the step are not shown 

(see the red arrow in Figure 7h) because the object was scanned from an aerial view, and 

the missed points are located within the hidden area. In fact, the suggested modeling al-

gorithm replaces the missing points with the frustum of a cone, which is why the obtained 

model was deformed in the hidden area (see the blue arrow in Figure 7l). Despite a high 

standard deviation, most points fit the calculated model.  

In building No. 3, the number of points that well fit the tower model is almost equal 

to the number of points with a deviation greater than 0.3 m. In Figure 7b, the deviations 

can be attributed to the highly ornamental building facades. From another viewpoint, the 

reasonable standard deviation (σ = 0.84 m) confirms this result. Tower No. 2 has a simple 

architectural design, and the deviation is below the minimal value of standard deviation 

(σ = 0.21 m). 

The suggested approach has certain limitations. The proposed algorithm assumes 

that building facades are completely covered by LiDAR points. In fact, this hypothesis 

may not always be valid. Therefore, when facade points disappear for whatever reason, 
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the analyzed building details will also disappear. Moreover, the discussed method is very 

sensitive to noisy points, which can substantially deform the building model. Fortunately, 

this issue can be resolved by considering point deviation values in addition to building 

symmetry. Some geometrical forms create hidden areas that cannot be accessed by laser 

pulses, such as the building shown in Figure 7d. These hidden areas may produce distor-

tions in the calculated building model.   

It should be noted that most algorithms for modeling buildings based on LiDAR data 

suggested in the literature are model-driven or data-driven approaches [39]. In these ap-

proaches, the concept of a building model relies on the assumption that the building con-

sists of connected facets that are described by neighborhood relationships. The connec-

tions between these facets form facet borders and vertices. A comparison of the proposed 

modeling approach and the approaches suggested in the literature indicates that the de-

veloped algorithm does not belong to the last two modeling approaches, because the 

building concept differs entirely from the modeling approaches where one building is 

represented by three matrices that describe the building’s geometric form.  
However, modeling algorithms should be compared based on their performance. 

Therefore, three selected approaches were compared with the proposed algorithm in Ta-

ble 2. In Table 2, standard deviation was used to estimate the accuracy of the generated 

model. Despite differences in the architectural complexity of the target buildings in the 

compared approaches, the accuracy of the suggested algorithm is still acceptable.  

To conclude, the suggested approach paves the way to developing new and general 

modeling methods based on a matrix representation of buildings with both simple and 

complex architectural features. In the future, the proposed model could be further im-

proved by integrating point deviations and improving the model’s fidelity to the original 

point cloud. 

Table 2. Accuracy of the proposed approach and previous algorithms. 

Approach  Standard Deviation 

Proposed algorithm 0.21 m to 1.41 m 

Kulawiak [3] 0.29 m to 2.36 m 

Ostrowski et al. [15] <0.3 m to >1 m 

Jung and Sohn [42] 0.05 m to >3 m 

7. Conclusions 

This article proposes a methodology for automating the modeling of buildings with 

ornamental turrets and towers based on LiDAR data. The proposed modeling procedure 

was based directly on a point cloud. A vertical axis was generated from a LIDAR data 

subset describing a tower. It was assumed that the tower was symmetrical about its axis. 

A cross-section was introduced to the point cloud, with a plane passing through the axis, 

which produced a vertical cross-section. The vertical cross-section was used to build a 

solid of revolutions, as the 3D model of the tower. The modeling algorithm relied on a 

matrix to generate the building model in a mathematical form.  

Five tower point clouds were used to evaluate the accuracy of the suggested method. 

Hence, the deviation of points representing the obtained model was calculated, in addi-

tion to the  standard deviation. Despite the algorithm’s overall efficacy, it had three main 

limitations. The tower was not covered by LiDAR data in its entirety. Moreover, some 

geometric forms may generate hidden areas that can produce deformations in the model. 

Moreover, the suggested algorithm is sensitive to the presence of noisy points. However, 

facade ornaments, an insufficient accuracy of LiDAR data, and noisy points significantly 

decreased  the accuracy of the generated model. In the future, the building model can be 

enhanced by considering points with considerable deviations. The matrix form of the pro-

posed algorithm facilitates local enhancements. In addition to the matrix, a vertical cross-

section can also be applied to develop a new  approach for modeling buildings, regardless 
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of the level of architectural complexity. Finally, additional data, such as aerial or terrestrial 

imagery, could be incorporated into the proposed modeling approach, to increase the 

model’s fidelity to the original building.  
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