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Abstract The propagation of detonation in layers of

reactive gas bounded by inert gas is simulated com-

putationally in both homogeneous and inhomogeneous

systems described by the two-dimensional Euler equa-

tions with the energy release governed by an Arrhenius

rate equation. The thickness of the layer is varied and

the detonation velocity is recorded as the layer thick-

ness approaches the critical value necessary for success-

ful propagation. In homogeneous systems, as activation

energy is increased, the detonation wave exhibits in-

creasingly irregular cellular structure characteristic of

the inherent multidimensional instability. The critical

layer thickness necessary to observe successful propa-

gation increases rapidly, by a factor of five, as the ac-

tivation energy is increased from Ea/RT0 = 20 to 30;

propagation could not be observed at higher activation
energies due to computational limitations. For simula-

tions of inhomogeneous systems, the source energy is

concentrated into randomly positioned squares of reac-

tive medium embedded in inert gas; this discretization

is done in such a way that the average energy content

and the theoretical Chapman-Jouguet (CJ) speed re-

mains the same. In the limit of highly discrete systems

with layer thicknesses much greater than critical, veloc-

ities greater than the CJ speed are obtained, consistent

with our prior results in effectively infinite width sys-
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tems. In the limit of highly discretized systems wherein

energy is concentrated into pockets representing 10% or

less of the area of the reactive layer, the detonation is

able to propagate in layers much thinner (by an order

of magnitude) than the equivalent homogenous system.

The critical layer thickness increases only gradually as

the activation energy is increased from Ea/RT0 = 20

to 55, a behavior that is in sharp contrast to the homo-

geneous simulations. The dependence of the detonation

velocity on layer thickness and the critical layer thick-

ness are remarkably well described by a front curvature

model derived from the classic, ZND-based model of

Wood and Kirkwood. The results of discrete sources

are discussed as a conceptual link to the behavior that

is experimentally observed in cellular detonations with

highly irregular cellular structure in which intense tur-

bulent burning rapidly consumes detached pockets be-

hind the main shock front. The fact that highly discrete

systems are well described by classical, curvature-based

mechanisms is offered as a possible explanation as to

why curvature-based models are successful in describ-

ing heterogeneous, condensed phase explosives.

Keywords Detonation · propagation limit · yielding
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1 Introduction

Among the various attempts to elucidate the complex

dynamics of gaseous detonation waves over the past

six decades, studies that probe the response of deto-

nations to losses resulting from lateral divergence in

the reaction zone perhaps have proven to be the most

productive. By measuring how the detonation velocity

decreases with increasing lateral losses and eventually



2 Mi et al.

fails, the sensitivity of the energy release mechanism to

losses can be revealed. This competition between release

of chemical energy that sustains the wave and the losses

due to flow expansion that result in its decline and fail-

ure lies at the heart of most critical phenomena in det-

onation. A key question these studies can ask is: Are

detonations in systems characterized by highly irregu-

lar cellular structures—associated with large activation

energies governing their reaction zone structure—more

robust in their ability to continue propagation in the

presence of losses in comparison to more regular mix-

tures associated with lower activation energies? Con-

tradictory answers have been found as this problem has

been approached from different angles.

Theoretical models of detonations with divergent

flow that are based on a steady, quasi-one-dimensional

solution (known as ZND-based models) assume a laminar-

like wave structure and examine the reactive flow along

the centerline with radial expansion [1–4]. These models

exhibit a critical turning point in the relationship be-

tween the deficit in propagation velocity from the ideal

Chapman-Jouguet (CJ) value and the loss parameter

(in this case, flow divergence or the related curvature

of the detonation front), and this critical point is asso-

ciated with failure of the wave. Further analysis based

on this type of model associates the detonation velocity

vs. loss parameter relation with the effective activation

energy governing the reaction process: A greater activa-

tion energy results in the detonation failing at velocities

closer to the CJ velocity and smaller values of the loss

parameter, so that detonations governed by high acti-

vation energies should be less resilient to losses.

Mounting experimental evidence has shown that,
in contradiction to the predictions of ZND-based mod-

els described above, detonations that are characterized

by highly irregular structures are able to continue to

propagate at lower velocities while subjected to greater

losses. In the experimental studies of detonations with

mass divergence due to porous confinement, Radulescu

and Lee have shown that highly irregular mixtures (i.e.,

propane-oxygen and methane-oxygen mixtures) result

in detonation failure at significantly smaller tube di-

ameters (normalized by the corresponding ZND induc-

tion zone length) than the critical tube diameters at

which weakly unstable, argon-diluted detonations fail,

which contradicts the predictions of the correspond-

ing ZND-based model [5,6]. Recently, Borzou and Rad-

ulescu conducted experiments of detonations propagat-

ing in horn-shaped channels with a constant area diver-

gence and found that detonations in highly unstable,

propane-oxygen mixtures are able to propagate with a

greater magnitude of area divergence (hence, greater

losses) than those in weakly unstable, argon-diluted

acetylene-oxygen mixtures [7]. By fitting their exper-

imental results for the highly unstable mixtures to the

ZND-based theoretical framework, Borzou and Rad-

ulescu determined an effective activation energy that

is 70% lower than the value derived from detail chem-

ical kinetics [7]. This inconsistency between theoretical

predictions and experimental results is hypothesized to

result from the fact that the classical, laminar-like pic-

ture of ZND-based models fails to describe the mul-

tidimensional and transient structure of real gaseous

detonations.

Numerical simulations have enabled researchers to

capture some of the multidimensional features of cel-

lular detonations since the early 1980s [8,9] and hence

have been used to seek further insights into detonation

dynamics by attempting to resolve these features. Few

computational studies, however, have explored critical

phenomena at the boundary between when detonations

can and cannot propagate in the presence of losses.

A study exploring the effect of activation energy on

cellular detonations responding to losses due to com-

pressible confinement has recently been performed by

Reynaud et al. [10] These authors, by solving the two-

dimensional, reactive Euler equations, demonstrated that,

as activation energy is increased, the critical reactive

layer thickness (normalized by the corresponding ZND

half-reaction-zone length) increases and the maximum

velocity deficit decreases, suggesting a decrease in resis-

tance to losses for increasingly unstable detonations [10,

11]. This result is qualitatively consistent with the pre-

dictions of the ZND-based model, however, it is in con-

tradiction to experimental findings. It is important to

note that, although the morphological features of the

leading shock complex are captured in inviscid flow

(Euler-based) simulations, the turbulent-driven mech-

anism governing the burnout of the large pockets of

weakly shocked reactant in cellular detonations cannot

be accurately described by such simulation. Burning via

turbulent-driven mixing in real detonations has been

conjectured to be able to more effectively release the en-

ergy contained in these weakly shocked pockets [12,13,

7,14], and thus facilitate the propagation of highly un-

stable detonations wherein these pockets may contain

as much as half of the gas processed by the wave [15–

18]. As validated turbulent burning models at the reac-

tion zone conditions of real gaseous detonations are still

under development, and direct numerical simulation of

three-dimensional, reactive, compressible turbulence is

likely beyond computational capacity for the coming

decade, different approaches to modeling this problem

are necessary in the meantime.

Recently, a different approach to the detonation dy-

namics problem has been proposed by the present au-
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Fig. 1 Conceptual illustration of a cellular detonation wave
propagating in a detonable mixture of gases confined by an
inert gas layer.

thors in considering the influence of concentrating the

energy release into reactive pockets embedded in an

otherwise inert media [19–22]. Conceptually, this cor-

responds to an inhomogeneous detonable mixture re-

sulting from incomplete mixing, a problem with some

relevance to propulsion and explosion safety (discussed

below), but more generally, this approach attempts to

study the influence that spatially localized reaction cen-

ters, such as those that arise spontaneously in unstable,

cellular detonations, have on detonation dynamics. This

picture of detonation as propagating via random reac-

tion centers also has some conceptual similarity to hot

spots in condensed-phase explosives and may inform

our understanding of detonation in such media. The

premise of this approach is that examining the influence

of spatially concentrated reaction centers may enable

fully computationally resolved simulations to be con-

ducted, reflecting some element of the dynamics that

occur in highly irregular cellular detonations that at

present cannot be resolved. Examination of this discrete

source approach in systems without losses has already

revealed some unusual results: As the energetic content

of a medium is collected into sufficiently concentrated

pockets, the average wave velocity of the detonation

propagating through the system may be as much as

15% greater than the CJ speed of the equivalent ho-

mogeneous system due to the highly non-equilibrium

nature of the flow at the effective sonic point [20–22].

In the present paper, the approach of imposing spa-

tially discretized sources will be extended to a two-

dimensional system of a detonable gaseous mixture con-

fined by an inert gas layer. The problem of a detonation

in a reactive layer with yielding confinement (as illus-

trated in Fig. 1) is particularly convenient for studying

the dynamics for a number of reasons: (i) The base

flowfield is quasi-steady (unlike the unsteady direct ini-

tiation or critical diameter problems), (ii) resolving the

details of a wall-interaction viscous boundary layer is

not required (as is necessary for detonations in narrow

tubes and channels), and (iii) in the limit as the reactive

layer becomes very large, the classical CJ detonation

velocity is usually recovered, providing a well-defined

asymptotic limit.

The problem of a detonation propagating in a layer

or column of detonable mixture surrounded by an inert

gas has been studied experimentally since the 1960s [23–

25]. Initially, this problem was motivated as a gas-phase

analog to a cylindrical rate-stick experiment, the stan-

dard test used to quantify conventional high explosives.

Concerning the relevance to industrial accident scenar-

ios, researchers have revisited this problem with their

focus upon linking critical layer dimensions for a self-

sustained propagation to other dynamic parameters of

detonations, such as detonation cell size and the crit-

ical diameter for a transition to unconfined detona-

tion [26–33]. Much recent interest in the problem of a

detonation propagating in thin reactive layers bounded

by non-reacting gas—and in layers with spatially inho-

mogeneous reactive composition—has been motivated

by the rotating detonation engine (RDE) concept [10,

34–37]. The detonable layer in an RDE is bounded by

the combustion products (residual from the prior cycle)

on one side of the wave, and the dynamics of detona-

tion propagation in this layer is crucial to the operation

of the engine. In most embodiments, the fuel and oxi-

dizer are injected separately to avoid detonation-driven

flashback into a mixing chamber, resulting in significant

non-uniformities in the detonable mixture. In some re-

cent studies, numerical simulations of detonation waves

in RDE-relevant combustion scenarios result in super-

CJ propagation with discretely spaced fuel-oxidizer in-

jection [38,39].

In this study, the inhomogeneities are introduced

as a spatially random distribution of discrete, reactive

pockets in the detonation system with inert, yielding

confinement. Numerical simulations based on the two-

dimensional, reactive Euler equations are performed for

both homogeneous and randomly inhomogeneous cases,

and the results are compared to a ZND-type model that

assumes the front is governed by a globally curved and

laminar-like structure. The objective of this paper is

to examine the influence of the characteristics of the

imposed spatial inhomogeneity and the governing ac-

tivation energies on the near-limit wave propagation,

specifically addressing the question: What is the com-

parative influence on the critical layer thickness of ac-

tivation energy and spatial discreteness?

This paper is organized as follows. In Sect. 2, the

problem considered in the simulations is stated. Sec-

tion 3 describes the numerical methodology used to

solve the governing equations. The simulation results

of wave structures, the history of instantaneous prop-
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agation speed, the averaged propagation speed as a

function of the reciprocal of the reactive layer thick-

ness 1/h, and the critical thickness for self-sustained

propagation h∗ as a function of spatial discreteness Γ

and activation energy Ea are presented in Sect. 4. The

results are also compared to a curvature-based model

that assumes a ZND-like structure of the detonation.

The findings based upon the simulation results are dis-

cussed in Sect. 5 and summarized in the Conclusions

(Sect. 6). Numerical convergence tests performed for se-

lected simulation results are reported in the Appendix.

2 Problem statement

The reactive system consists of an inviscid, calorically

perfect gas (i.e., with a constant ratio of specific heat

γ). The gasdynamics of this system is described by

the two-dimensional reactive Euler equations in a lab-

fixed reference frame with flow and state variables non-

dimensionalized with respect to the pre-shock, initial

state. The governing equations are formulated as fol-

lows,

∂U

∂t
+
∂F (U)

∂x
+
∂G (U)

∂y
= S (U) (1)

where the conserved variable U, the convective fluxes

F and G, and reactive source term S are, respectively,

U =


ρ

ρu

ρv

ρe

ρZ

 F =


ρu

ρu2 + p

ρuv

(ρe+ p)u

ρZu



G =


ρv

ρuv

ρv2 + p

(ρe+ p)v

ρZv

 S =


0

0

0

0

ρΩ

 (2)

In the above equations, e is the non-dimensional spe-

cific total energy, and Z is the reaction progress vari-

able, or the normalized concentration of reactant, which

varies between 1 (unreacted) and 0 (fully reacted). For

a homogeneous reactive system, the specific total en-

ergy is defined as e = p/(γ − 1)ρ + (u2 + v2)/2 + ZQ.

In this study, the reaction rate Ω = ∂Z/∂t is governed

by single-step Arrhenius chemical kinetics as follows,

Ω = −kZ exp (−Ea/T ) (3)

where k and Ea are the dimensionless pre-exponential

factor and activation energy, respectively. Note that

the activation energy is non-dimensionalized with re-

spect to the initial, pre-shock thermodynamic state, i.e.,

Ea = Ẽa/
(
R̃T̃0

)
(where the tilde “∼” denotes a dimen-

sional quantity), not with respect to the corresponding

von Neumann state. Specific values were selected for the

preexponential factor k so that the half-reaction-zone

length l1/2 in the ideal ZND solution for the homoge-

neous case with the corresponding Ea equals to unity.

Thus, all the length quantities reported in this paper

are in the unit of the corresponding l1/2.

The initial configuration of the simulation system

is illustrated in Fig. 2(a). The red region on the bot-

tom is the reactive gas layer with a thickness h; the

blue region on the top is the inert gas layer with a

thickness hI, where Z equals 0 initially. The critical

thickness of the reactive layer below which a detona-

tion wave fails to propagate is denoted as h∗ in this

paper. A high-pressure region near the left end of the

simulation domain, as shown in Fig. 2(a), is used to

initiate a rightward-propagating detonation wave. For

the cases with a low activation energy, i.e., Ea = 10,

20, and 25, the pressure and density in the initiation

zone was set equal to twice the corresponding CJ state

properties, i.e., p = 2pCJ and ρ = 2ρCJ; for the cases

with a relatively high activation energy, i.e., Ea ≥ 30,

the pressure and density in the initiation zone were set

to p = 5pCJ and ρ = 2ρCJ. Two different amounts of

initiation energy were used for cases with low and high

activation energies to ensure that the detonation wave

can be successfully initiated while minimizing the over-

driving effect. The rest of the simulation domain was

initialized with uniform, density, and particle velocity

as p = 1, ρ = 1, u = 0, and v = 0.

The spatial inhomogeneities were introduced to the

simulation system as spatially discrete reactive squares,

similar to those in previous studies where this approach

of imposing discrete sources were first proposed [20,21].

The reaction progress variable Z was initialized as 1 in

these reactive sources and 0 in the inert regions sep-

arating them. Different from a regularly spaced array

of sources introduced in Ref [21], square sources of the

same size were randomly assigned in the reactive layer.

With a prescribed average spacing between neighbor-

ing sources L, the spatial discreteness parameter Γ can

be defined as the ratio between the size of a source

and the inert area surrounding it, i.e., Γ = W 2/L2.

In the limit of Γ → 1, the reactive layer becomes ho-

mogeneous where the initial distribution of Z is uni-

form; in the limit of Γ → 0, a discrete source ap-

proaches a δ-function in space, namely, a point source

of energy. In order to maintain the average specific en-

ergy release Q the same as that in the homogeneous

cases, the energy release associated with each discrete
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Fig. 2 Schematic illustration of (a) the initial conditions for the simulation system and (b) the method used to initialize a
spatially random distribution of discrete sources.

source must be increased according to the prescribed

spatial discreteness Γ . For the cases with spatial inho-

mogeneities, the specific total energy is formulated as

e = p/(γ−1)ρ+(u2 +v2)/2+ZQ/Γ . The method used

to randomize the positions of the discrete sources while

maintaining a prescribed value of the overall discrete-

ness Γ is described in the next section.

3 Numerical methodology

The simulation code used to solve the two-dimensional

reactive Euler equations is based upon a uniform Carte-

sian grid. The MUSCL-Hancock scheme with the van

Leer nonsmooth slope limiter and a Harten-Lax-van

Leer-contact (HLLC) approximate solver for the Rie-

mann problem was used [40]. This code is implemented

in Nvidia’s CUDA programming language [41,42]. The

simulations were performed on a Nvidia Tesla K40M

and P100 GPU computing processors. The Strang split-

ting method was adopted to treat separately the hydro-

dynamic process and the reactive process. This numer-

ical scheme is thus of second-order accuracy in space

and time.

In each case where a detonation wave successfully

propagated, the length (in x-direction) of the entire

simulation domain was approximately 3000 times the

half-reaction-zone length l1/2 for an ideal, homogeneous

case. The technique of an advancing computational win-

dow, which was developed in several recent studies for

simulating detonation waves propagating over a long

distance [43–45,10], was used in this study in order to

reduce the computational cost. Instead of the entire do-

main, the simulations were only performed in a window

that enclosed the leading wave complex. Two window

sizes, 600l1/2 and 400l1/2 in the wave propagation direc-

tion, were used in this study. The smaller window size

was used when the width of the computational domain

in the transverse direction was large, i.e., for larger re-

active layer thickness h. Once the leading shock front

nearly reached the end of the computational window

(i.e., 20l1/2 away from the right boundary along the

bottom boundary), the left and right boundaries of the

window were advanced by either half or quarter of the

window size, 600l1/2 or 400l1/2, respectively, thus en-

suring a distance of approximately 300l1/2 between the

leading wave front and the rear (left) boundary. This

distance was verified to be sufficiently large to capture

the reaction zone dynamics that contribute to the prop-

agating wave front. In addition, this technique of an ad-

vancing computational window ensures that any long

term initiation-zone influence on the steady-state wave

propagation is eliminated.



6 Mi et al.

On the top, left, and right boundaries of this com-

putational window, a transmissive, outflow boundary

condition was implemented. The ghost cells took the

lowest-order extrapolation of the values in the adja-

cent cells as explained by Oran and Boris.[46] It has

been shown buy Kasimov and Stewart that the use

of transmissive boundary condition can result in non-

physical waves being reflected into the computational

domain.[47] Therefore, for all simulations reported in

this paper, a minimum thickness of the inert layer hI =

50l1/2 (i.e., a thickness of 500 computational grid for

a resolution of l1/2/∆x = 10) was used to ensure that

any reflected waves from of the top boundary would not

influence the propagation dynamics.

On the bottom boundary, a reflecting boundary is

applied to model a rigid confining wall or plane of sym-

metry. This boundary condition enforces zero normal

velocity, and flow can move freely in the tangential di-

rection to the bottom boundary. Thus, there is no in-

fluence of diffusivity and viscosity due to this boundary

condition. For the cases with an infinitely large reactive

layer, the entire simulation domain with a width (in y-

direction) of 300l1/2 is initialized as a reactive medium;

periodic boundary conditions are applied in the top and

bottom boundaries.

As the average source spacing L and the overall spa-

tial discreteness Γ were prescribed, the width of each

square sourceW was calculated asW =
√
ΓL2. In order

to initialize the simulation domain with a spatially ran-

dom distribution of discrete sources, the reactive layer

was first divided into squares of a size W 2 as marked by

the thick black lines in Fig. 2(b). Note that a source-

sized square is much larger than the size of the com-

putational cells shown as gray lines. A random number

Nr between 0 and 1 was assigned to each source-sized

square using a uniform random number generator. As

shown in Fig. 2(b), if a Nr is less than or equal to

the spatial discreteness Γ , a reactive source is placed

at this square, and all the computational cells within

this square are initialized with Z = 1; otherwise, the

square contains only inert material with Z = 0. A nu-

merical resolution of 10 computational cells per half-

reaction-zone length of the ideal homogeneous case, i.e.,

l1/2/∆x = 10, was for most of the simulations reported

in this paper. For selected cases, simulations were per-

formed at different resolutions, i.e., l1/2/∆x = 5, 20,

and 30, for convergence tests. For the cases with very

small discrete sources, e.g., W = 1 corresponding to

L = 10 and Γ = 0.01, the minimum resolution ensures a

sufficient number of computational cells within a square

source (100 cells in the source with 10 cells along each

side of the square). A complete study of grid resolution

is reported in the Appendix.

4 Results

For all the simulations performed in this paper, the av-

erage specific energy release Q = 50 and the ratio of

specific heats γ = 1.2 were selected to represent a typi-

cal detonate mixture of gases. The selected Q = 50 and

γ = 1.2 are canonical values that have been extensively

studied in the literature of gaseous detonations.[48–53,

47,54,55] In order to examine the effect of various acti-

vation energies, four different values of Ea, i.e., Ea = 10,

20, 25, and 30, were considered for both homogeneous

and inhomogeneous cases; two larger activation ener-

gies, Ea = 40 and 55, were considered only for highly in-

homogeneous cases with Γ = 0.01. The average source

spacing L and the spatial discreteness Γ were inde-

pendently varied to quantitatively control the nature

of the imposed spatial inhomogeneities. For each set

of simulations with fixed Ea, L, and Γ , the only vari-

able parameter is the thickness of the detonable layer

h. Some selected results showing the wave structure for

both homogeneous and inhomogeneous cases with var-

ious governing parameters are presented in Sect. 4.1.

Sample plots of the propagation velocity histories re-

sulting from different cases, which allows one to iden-

tify whether a detonation wave successfully propagates

or not, are shown in Sect. 4.2. The measured average

propagation velocity Vavg for all the cases considered

in this study plotted as functions of the reciprocal of

the detonable layer thickness, i.e., 1/h, and the deter-

mined critical thickness h∗ below which a detonation

wave extinguishes are summarized in Sect. 4.3 and 4.4,

respectively.

4.1 Wave structure

Sample wave structures shown in Fig. 3 are for the case

of a low activation energy Ea = 10. The top half of

each subfigure is the contour plot of reaction progress

variable Z; the bottom half is the contour plot of pres-

sure. The red area in the plot of Z is the reactive re-

gions, or discrete sources in the inhomogeneous cases

(Fig. 3(b) and (c)). The white dash lines indicate the

interface between the reactive medium and the inert

confinement. With a homogeneous reactive medium, as

shown in Fig. 3(a), the resulting wave front exhibits a

nearly smooth curvature without any noticeable trans-

verse waves. According to the linear stability analy-

sis, for the cases with Ea = 10, transverse instabili-

ties may be present if the computational grid is further

refined.[50,56] Such transverse waves are weak, near-

acoustic waves with likely little influence on the lead-

ing wave front. Discretizing the reactive medium into

square sources with Γ = 0.25 and an average source
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spacing L = 10, significantly larger than the intrinsic

reaction-zone length for an ideal, homogeneous case, the

wave structure becomes irregular as shown in Fig. 3(b).

A localized high-pressure region can be observed near

the leading shock front. While fixing the spatial dis-

creteness Γ = 0.25 and reducing the average source

spacing to L = 1, i.e., equal to the l1/2 for the ideal

ZND solution, a slightly roughened wave front with an

identifiable global curvature is recovered as shown in

Fig. 3(c).

For Ea = 20, selected snapshots of the wave struc-

tures resulting from a homogeneous case and inhomo-

geneous cases with moderately discretized (L = 10,

Γ = 0.25) and highly discretized (L = 10, Γ = 0.01)

sources are shown in Fig. 4(a), (b), and (c), respec-

tively. At the selected reactive layer thickness h = 100,

a detonation wave can propagate in all three cases. In

the homogeneous case (Fig. 4(a)), transverse waves in-

teracting with a globally curved leading shock front

can be observed. A thin blue-green streak attached to

the confinement interface can be seen on the Z-plot

in Fig. 4(a), indicating that flow behind the leading

shock laterally expands and some partially reacted gas

moves away from the detonation complex. For the case

with moderately discrete sources (L = 10, Γ = 0.25),

as shown in Fig. 4(b), the resulting reaction-zone wave

structure appears to be spatially more inhomogeneous

than that from an initially homogeneous medium, fea-

turing spatially localized high-pressure pockets near the

leading shock front. A global curvature of the leading

shock front can still be identified. While maintaining a

constant source spacing L = 10, decreasing Γ to 0.01

makes the chemical energy possessed by the medium

highly concentrated into the small (W = 1) discrete

sources as shown in Fig. 4(c). The resulting localized

high-pressure pockets behind the leading shock are sep-

arated by rather large low-pressure regions. Although

the shock front propagating in the reactive layer can be

distinguished from the oblique shock compressing the

inert confinement, it does not seem to exhibit a glob-

ally curved shape.

4.2 Velocity history

For each simulation run, the trajectory of the lead-

ing shock front xs(t) along the rigid wall (the bottom

boundary of the simulation domain) can be recorded

by finding the location where pressure increases to p =

1.01 from its initial value p = 1 every unity time step.

The instantaneous propagation velocity V can then be

calculated by numerically differentiating xs(t) over time.

For some selected cases with Ea = 20, sample results

of the instantaneous propagation velocity histories nor-

malized by VCJ as a function of the leading shock posi-

tion are plotted in Fig. 5.

As shown in Fig. 5(a) and (b), for both homogeneous

and inhomogeneous (L = 10 and Γ = 0.25) cases, re-

spectively, with a reactive layer thickness h = 80, the

detonation wave can self-sustainably propagate. The

fluctuation in V for the homogeneous case shown in

Fig. 5(a) has an average amplitude of approximately

80% of VCJ (from 0.6 to 1.4VCJ). For the inhomoge-

neous cases with h = 80 (Fig. 5(b)), V fluctuates over

a much larger range from 0.5 to 1.8VCJ. The inhomo-

geneous case shown in Fig. 5(c) has a much thinner

reactive layer of h = 40. The resulting velocity history

exhibits some fluctuations around VCJ after the initia-

tion process, and decreases to a very low value (below

0.2VCJ). A velocity history as shown in Fig. 5(c) indi-

cates that a detonation wave cannot successfully prop-

agate at this reactive layer thickness, i.e., h < h∗, for

the given set of parameters.

4.3 Average velocity

4.3.1 Results of the simulations

For a case of simulation where the resulting detona-

tion wave successfully propagates, although the instan-

taneous propagation velocity exhibits fluctuations due

to the presence of inhomogeneities in energy release,

a quasi-steady propagation velocity can be measured

in an average sense over time or propagation distance.

The total distance over which a detonation wave prop-

agates in such a simulation run is approximately 3000.
The average propagation velocity Vavg is measured over

the second half of the propagation distance, i.e., from

xs ≈ 1500 to 3000, in order to avoid the influence of the

initiation process on the measurement. The measured

values of Vavg normalized by the CJ velocity are plot-

ted as a function of the reciprocal of the reactive layer

thickness 1/h for the cases with Ea = 10, 20, and 30 in

Fig. 6(a), (b), and (c), respectively. The results are plot-

ted as a function of the reciprocal of the layer thickness

so that extrapolation to the y-axis corresponds to the

infinite thickness layer case. Two average velocities over

smaller distances, i.e., xs ≈ 1500 to 2250 and xs ≈ 2250

to 3000, are also measured to provide information re-

garding the uncertainty in the measurement of Vavg and

plotted as error bars on the data points in Fig. 6.

The results plotted in Fig. 6(a) are for the cases

with a very low activation energy Ea = 10. As the reac-

tive layer thickness decreases (i.e., 1/h increases), the

average velocity resulting from homogeneous and inho-

mogeneous cases decreases. The Vavg for the inhomoge-
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Fig. 3 Wave structures (contour plots of reaction progress variable on top and pressure on bottom) for the cases with Ea = 10,
h = 30, and (a) a spatially homogeneous reactive medium, (b) an inhomogeneous medium with discrete sources of L = 10,
Γ = 0.25 and (c) L = 1, Γ = 0.25.
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Fig. 4 Wave structures (contour plots of reaction progress variable on top and pressure on bottom) for the cases with Ea = 20,
h = 100, and (a) a spatially homogeneous reactive medium, (b) an inhomogeneous medium with moderately discrete sources
(L = 10, Γ = 0.25), and (c) an inhomogeneous medium with highly discrete sources (L = 10, Γ = 0.01).

neous cases with an average source spacing L = 10 (red

circles) are slightly greater than those resulting from

the homogeneous cases (blue squares). For the inhomo-

geneous cases with an average source spacing L = 1

(green diamonds), the resulting Vavg are very close to

those for the homogeneous cases. For all three of these

cases, the resulting Vavg decreases with h in a seem-

ingly linear fashion; no case resulting in a quenched

detonation was obtained for this low activation energy

Ea = 10.

In Fig. 6(b) and (c), the results of Vavg/VCJ are plot-

ted as a function of 1/h for the cases with relatively

higher activation energies, i.e., Ea = 20 and Ea = 30.

A thin blue curve is plotted through the data for the

homogeneous cases in both Fig. 6(b) and (c) to visu-

ally indicate the Vavg/VCJ vs. 1/h trend; a vertical dash

line is plotted to indicate the critical thickness marking

the propagation limit. For an infinitely large reactive

medium (realized by applying periodic boundary condi-

tion on the top and bottom boundaries of the domain),

i.e., an adiabatic detonation system without losses, the

Vavg resulting from the homogeneous cases with both

Ea = 20 and 30 is very close to VCJ (with less than 1%

difference). As the reactive layer thickness decreases,

the velocity deficit from the CJ value becomes greater

until the propagation limit is encountered.

For the cases with Ea = 20 and moderately dis-

cretized sources (Γ = 0.25, red circles in Fig. 6(b)), the

resulting Vavg is not significantly different from that

of the homogeneous cases at large reactive layer thick-

nesses (small 1/h). Approaching to the critical thick-

ness, the Vavg for the Γ = 0.25 inhomogeneous be-
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comes significantly greater than that for the homoge-

neous cases. For the cases with highly discretized re-

active sources (Γ = 0.01, cyan downward-pointing tri-

angles in Fig. 6(b)), the resulting Vavg is significantly

greater than the CJ velocity for the ideal, homogeneous

system with the same amount of overall heat release at

large reactive layer thicknesses. As shown in Fig. 6(b),

the propagation limit for the cases with highly dis-

cretized sources (Γ = 0.01) is encountered at a much

smaller critical thickness than that for the homogeneous

cases.

For the cases with Ea = 30 as shown in Fig. 6(c),

the homogeneous cases (blue squares) reaches the prop-

agation limit at a larger h compared to those with

an inhomogeneous medium. Making the reactive source

sufficiently discrete, the resulting Vavg are significantly

greater than VCJ at relatively large reactive layer thick-

ness. As Γ decreases from 0.25 (red circles) to Γ = 0.01

(cyan downward-pointing triangles), i.e., making the

reactive medium increasingly discretized, a detonation

wave can self-sustainably propagate into thinner reac-

tive layers.

The horizontal dash-dotted lines added on Fig. 6(b)

and (c) indicate the super-CJ propagation velocity as

a result of a one-dimensional array of regularly spaced,

highly discretized sources of energy for the case with

Q = 50 and γ = 1.2. This result was obtained via nu-

merical simulation and first reported in Ref. [20]. In

the limit of extremely discretized sources (Γ → 0), the

resulting super-CJ velocity has been shown to be in-

dependent of the detail mechanism of energy deposi-

tion [20,21]. It is, hence, valid to compare the current

results of Vavg with single-step Arrhenius kinetics to

the result obtained in Ref. [20] where an instantaneous

energy deposition was considered.

4.3.2 Model prediction

The prediction of the Vavg vs. 1/h relation using a theo-

retical model is plotted as the black curves in each sub-

figure of Fig. 6. This model is based on the assumption

of a smoothly curved leading shock front followed by a

steady, laminar-like reaction zone structure. First, us-

ing Wood and Kirkwood’s quasi-one-dimensional model

along the central streamline (equivalent to that along

the rigid wall confinement in the problem considered

in this study), the relation between the normal detona-

tion velocity and the wave front curvature (Dn-κ rela-

tion), can be solved [1]. The smoothly curved leading

wave front can then be geometrically constructed know-

ing the Dn-κ relation using the method first developed

by Eyring et al. [57] This theoretical model, combining

Wood and Kirkwood’s solution and Eyring et al.’s geo-

metric construction (see more details in Appendices of

Refs. [45,22]), was used by Li et al.[45,44] to predict the

Vavg vs. 1/h relation. As demonstrated by Li et al. [45],

given the appropriate Dn-κ relation and shock angle

at the confinement-explosive interface, the steady-state

wave front constructed using Eyring et al.’s method is

identical to those obtained using the Detonation Shock

Dynamic model [58–60].

For the cases with a low activation energy Ea = 10

shown in Fig. 6(a), the theoretical prediction is very

close to the simulation results for both homogeneous

and inhomogeneous cases at large thicknesses; a prop-

agation limit, marked by the turning point of the Vavg
vs. 1/h curve, is predicted by this model, but it is not

captured by the numerical simulations. For higher ac-

tivation energies Ea = 20 and 30 shown in Fig. 6(b)

and (c), respectively, the model predicts significantly

smaller velocity deficits and critical reactive layer thick-

ness than the simulation results for the homogeneous

and moderately inhomogeneous (Γ = 0.25) cases. The

simulation results of Vavg for the near-limit cases with

highly discretized inhomogeneities (Γ = 0.01) appear

to be fairly close to the turning point of the theoretical

prediction curves in Fig. 6(b) and (c).

4.4 Critical thickness h∗

With values of activation energy Ea ≥ 20, the failure

of detonation propagation is captured in the cases with

both a homogeneous reactive layer and a random distri-

bution of discrete sources (as shown in Fig. 6(b) and (c)

for Ea = 20 and 30, respectively. The critical thickness

of the reactive layer h∗ below which a detonation fails
to propagate can thus be determined for these cases

and summarized in Figs. 7 and 8. For each data point

plotted on these two figures, the upper error bar in-

dicates the smallest thickness at which the simulation

results in a self-sustained propagation, h∗go; the lower

error indicates the largest thickness at which a failure

of propagation is identified, h∗no−go. The critical thick-

ness h∗ is determined as the average value between h∗go
and h∗no−go, i.e., h∗ = (h∗go +h∗no−go)/2. In other words,

the critical thickness h∗ is bounded by h∗go and h∗no−go.

The simulation results of h∗ are plotted as a func-

tion of Γ , the spatial discreteness of the imposed inho-

mogeneous sources, with a fixed average source spacing

L = 10 in Fig. 7. On the right end of this plot, Γ = 1

is associated with the cases of a homogeneous reactive

layer. The results with Ea = 20, plotted as circles, show

that the critical thickness decreases from h∗ = 57.5±2.5

to 25±5 as the reactive medium is varied from spatially

homogeneous to highly discretized, i.e., from Γ = 1 to

Γ = 0.01. For the cases with Ea = 30, the resulting h∗
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Fig. 7 Critical thickness of the reactive layer h∗ as a function
of spatial discreteness Γ for Ea = 20 (marked as circles) and
Ea = 30 (marked as squares).

(squares in Fig. 7) decreases from 247.5± 2.5 to 45± 5

as Γ decreases from Γ = 1 to Γ = 0.01, exhibiting

a steeper slope of change with the spatial discreteness

of the reactive medium than that associated with the

Ea = 20 results. The simulation results shown in Fig. 7

are at a numerical resolution of 10 computational cells

per the half-reaction-zone length (l1/2/∆x = 10), which

has been verified to be sufficient to obtain converged re-

sults of h∗ (see Appendix).

In Fig. 8, the simulation results of critical thickness

h∗ as a function of activation energy Ea for the homo-

geneous Γ = 1 cases are plotted as square symbols. A

dash line is drawn through the data point as a visual

guide showing the trend of the results, not a numerically

fitted function. The results of h∗ for the homogeneous

cases increases nearly fivefold (from 57.5 to 247.5) as Ea

increases from 20 to 30. This result suggests that simu-

lations for homogeneous media with greater activation

energies Ea > 30 would require a larger domain size and

greater numerical resolution (l1/2/∆x ≥ 20) to capture

the critical thickness (as discussed in the Appendix).

Therefore, performing those simulations is beyond the

computational capacity that is available to the authors

at this time, and thus no simulations of homogeneous

media were conducted at Ea > 30.

The simulation results of h∗ for the most highly dis-

cretized cases with Γ = 0.01 and L = 10 as a function of

Ea are plotted as circles in Fig. 8. A dash line is added

to show the trend of these data. The resulting h∗ in-

creases from 25±5 to 85±5, at a significantly lower rate

comparing to the results for the homogeneous cases, as

Ea increases from 20 to 55. The h∗ vs. Ea relationship

10 20 30 40 50 60
0

100

200

300

h*

Ea

homogeneous

Γ = 0.01, L = 10

ZND-based model

Fig. 8 Critical thickness of the reactive layer h∗ as a function
of activation energy Ea with a homogeneous medium (marked
as squares) and with a highly inhomogeneous medium of Γ =
0.01 and L = 10 (marked as circles). The black curve is the
theoretical prediction using the Wood and Kirkwood (ZND-
based) model with a curvature-based geometric construction
of the wave front.

predicted by the ZND-based model (Wood and Kirk-

wood model with wave front construction) is plotted

as the thick black curve in Fig. 8. This model predic-

tion of h∗ (that associates the turning points of the

ZND-based model prediction curves plotted in Fig. 6)

is significantly smaller than the results of the simula-

tions for the homogeneous cases, however, appears to

be very close to the simulation results for the highly

inhomogeneous cases, especially for relatively low acti-

vation energies of Ea < 40.

5 Discussions

The simulation results reported in this paper show that

the presence of discrete reactive sources significantly

affects the propagation behaviour of detonations with

yielding confinement as the sources become more spa-

tially concentrated. In the cases with a reactive layer

thickness that is significantly greater than the critical

value, as shown in Fig. 6(b) and (c) for Ea = 20 and 30,

respectively, the average propagation velocity increases

beyond the CJ value for an increasingly discretized re-

active medium, and tends to approach the super-CJ

propagation speed obtained from one-dimensional sim-

ulations with regularly spaced, highly discretized sources

of energy. This result is consistent with the results of

our prior studies of detonations in discrete systems in

domains with periodic boundary conditions (i.e., in the
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absence of losses) [20–22]. Thus, the super-CJ Vavg re-

sults observed in the present study for highly inhomo-

geneous cases at large thicknesses can be interpreted as

weak detonations due to the non-equilibrium state at

the effective sonic surface, a hypothesis that has been

further elucidated in Ref. [20–22].

We now turn to discuss the velocity deficit observed

with lateral expansion of flow resulting from yielding

confinement. For low values of activation energy, i.e.,

Ea < 20, the introduction of spatial concentration of

energy release has little effect on detonation propaga-

tion, and detonation velocity deficits in both homoge-

neous and spatially discrete systems are well described

by a front curvature model based on an assumed lam-

inar, ZND-like structure. As the activation energy is

increased to Ea > 20, a difference in behavior of the

homogeneous and inhomogeneous systems is observed:

a sufficiently inhomogeneous reactive media assists a

detonation wave to propagate beyond the limit encoun-

tered in a homogeneous medium. For the cases with a

relatively high Ea = 30, as varying the spatial inho-

mogeneity of the initial distribution of reactant from

a homogeneous medium to highly discretized reactive

sources, the critical thickness of the reactive layer for

a self-sustained propagation is reduced by nearly an

order of magnitude (as shown in Fig. 7). This sen-

sitizing effect of spatial inhomogeneities on the near-

limit propagation of detonation waves was first found

by Li et al. [44] In their work, a pressure-dependent re-

action model, which resulted in a smooth, laminar-like

wave structure in the homogeneous case, was used, and

the effect of introducing sinusoidal perturbations of the

density and temperature fields was examined. The find-

ing of this current study thus complements the work of

Li et al. [44] by showing this sensitizing effect in an un-

stable detonable system governed by activated chemical

kinetics. Given that the inhomogeneities were imple-

mented as spatially concentrated reactant that could

approach point-like sources in this study, a more pro-

nounced effect of inhomogeneities on the propagation

limit was found in the present study compared to that

of Li et al. [44]

For the homogeneous cases, i.e., systems without

imposed inhomogeneities, the simulation results of h∗

increases by approximately a factor of five as activa-

tion energy increases from 20 to 30, results which are

consistent with the findings reported by Reynaud et

al. [10,11] that explored a range of Ea = 10–38.23 with

Q = 23.8 and γ = 1.33. The qualitative trend of these

results can likely be attributed to the shock strength

(temperature) sensitivity of highly activated kinetics.

As shown in Fig. 8, this increasing trend of h∗ vs. Ea

exhibited by the simulation results for the homogeneous

cases is significantly steeper than that of the ZND-based

model prediction.

In order to explain this quantitative discrepancy be-

tween simulation results and model prediction, some

features of cellular detonations responding to yielding

confinement that are captured by Euler-based simula-

tions need to be considered. In the homogeneous cases,

transverse waves, which originate from the perturbation

caused by yielding confinement, develop themselves into

a cellular wave structure. In such a cellular detonation

complex, large pockets of reactive gas are processed by

the leading shock at a strength that is considerably

weaker than the corresponding CJ Mach number. The

reaction within these weakly shock pockets is initiated

at a relatively low temperature (much lower than the

von Neumann temperature associated with MCJ), and

thus, progresses much more slowly. The overall strength

of the leading shock complex decreases significantly due

to lateral expansion in the transverse direction from the

rigid wall towards the inert confinement. A more sub-

stantial amount of slowly reacting gas can thus be found

near the expanding confinement interface downstream

from the leading shock as indicated in Fig. 4(a). The

energy release from these slowly reacting pockets of gas

are unlikely to contribute to re-strengthening the lead-

ing shock wave. Hence, a near-limit, cellular detonation

wave under yielding confinement suffers not only losses

in momentum due to the lateral expansion, but also an

insufficient support from the slow energy release of the

weakly shocked reactant, especially near the reactant-

confinement boundary. The mutually aggravating effect

between these two mechanisms of losses might be re-

sponsible for this more dramatic decrease in detonation

resilience to flow divergence that has been identified in

Euler-based simulations with a homogenous medium.

As shown in Fig. 8, the h∗ vs. Ea relationship ob-

tained for the cases with highly discretized sources of

energy (Γ = 0.01 and L = 10) appears to be very

close to the ZND-based model prediction, at least for

20 ≤ Ea ≤ 40. This remarkably good agreement sug-

gests that, in near-limit scenarios, there may be some

effective similarity between the detonation dynamics

arising from a highly inhomogeneous medium and that

considered in the ZND-based model. Considering a case

with spatially highly discretized reactive sources, the

chemical energy of the medium is concentrated into

very small regions. The dimensionless energy density

within a discrete source is Q/Γ while that of a homoge-

neous medium is Q. For the same activation energy and

shock strength, the amount of energy released in the

concentrated source is proportionally greater than that

of the reactant in a homogenous medium. The greater

energy release results in a greater local temperature at
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this source, which further accelerates the rate of energy

release from the source. Due to this positive-feedback

mechanism, the amount of gas that reacts slowly in the

homogeneous medium case is significantly reduced in

the inhomogeneous cases or completely eliminated in

the limit of Γ → 0. Thus, the energy release of dis-

crete sources is likely more coherent with the leading

shock complex, which is effectively similar to the sce-

nario pictured by the ZND-based model, wherein the

energy release zone is closely attached to the leading

shock. This effective similarity might provide an ex-

planation for why a smooth-curvature-based model can

fairly well capture the macroscopic dynamics of detona-

tions in condensed-phase explosives that are sensitized

by mesoscale inhomogeneities, e.g., the DSD model for

detonation in ammonium nitrate/fuel oil (ANFO) [61].

In the limit of large activation energy, a parcel of

shocked reactant tends to undergo an effective induc-

tion process with minimal amount of energy release.

The positive-feedback energy release mechanism of highly

discretized sources (as elucidated in the previous para-

graph) may shorten the duration of this effective in-

duction process. This effect is likely suggested by the

fact that, for Ea = 55, the critical thickness result-

ing from the highly inhomogeneous case is consider-

ably thinner than the ZND-based model prediction (as

shown in Fig. 8). The intense energy release of these dis-

crete sources governed by highly activated kinetics may

share some similarity with the strong, localized explo-

sions that have been experimentally observed and con-

jectured to dominate the critical phenomena in highly

unstable gaseous detonations [62].

By performing numerical convergence tests for se-
lected cases in this study, it has been found that the

simulations with the discretized sources can be more

easily converged numerically than the simulations of

homogeneous media (see Appendix). Relatively mod-

est computational resolutions (five computational cells

per half-reaction-zone length of the ZND solution for

the homogeneous case, i.e., l1/2/∆x = 5) were able

to identify the critical layer thickness that was con-

firmed as the resolution was increased to as great as

l1/2/∆x = 30. This resolution was not sufficient to

resolve the reaction zone structure inside the reactive

pockets, but resolving these features may not be neces-

sary to capture the overall dynamics of the wave. This

behavior is quite different from that in homogeneous

simulations, wherein the critical layer thickness contin-

ued to vary (increase) as the numerical resolution was

increased to l1/2/∆x = 30. In fact, converged simula-

tions were not possible at activation energies greater

than Ea = 30 with current computational resources.

The result might indicate that the discrete source ap-

proach may be a way to explore the dynamics of deto-

nations governed by high activation energies (Ea > 50)

representative of real hydrocarbon mixtures.

6 Conclusion

The results of this study have demonstrated that con-

centrating the energy release of a medium into spatially

concentrated sources—leaving inert gas in-between the

sources with the overall energy release of the media re-

maining the same—results in a detonation wave that is

able to propagate in significantly thinner layers. This

effect becomes more significant as activation energy is

increased, with the difference between the critical layer

thickness and a homogenous reactive layer and a highly

inhomogeneous layer (Γ = 0.01) being as much as a

factor of five times different. For sufficiently low activa-

tion energy (Ea → 10), laminar-like propagation is still

possible, and under these conditions, the simulations in

the homogenous media and the discretized media con-

verge and are in good agreement with a simple front-

curvature based model deriving from the classic work

of Wood and Kirkwood.

In the case of highly discretized sources, the crit-

ical layer thickness is in remarkably good agreement

with the predictions of the classic Wood and Kirkwood

model based upon front curvature over the range of acti-

vation energies studied, particularly over the range 10 <

Ea < 40. This surprising result, in which a highly het-

erogeneous media results in detonation dynamics that is

in better agreement with a ZND-based model than det-

onation in a perfectly homogeneous media, is reminis-

cent of polycrystalline explosives. In condensed phase

explosives, hot spots reduce the sensitivity to the bulk

temperature of the shock-compressed media and effec-

tively “wash out” the inherent instabilities, resulting in

an effectively laminar-like structure governed by aver-

age front curvature.

Another finding in this study is the easiness (i.e.,

coarser resolutions that are necessary) to obtain nu-

merically converged results of critical thickness for the

highly inhomogeneous cases. Although it was very diffi-

cult to obtain numerical convergence for the simulations

with Ea > 30 and homogeneous media, fully converged

results of critical thickness were obtained at relatively

low resolutions for the cases with highly discretized

sources governed by very large activation energies (e.g.,

Ea = 55).
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Appendix: Numerical convergence study

For two selected values of moderately high activation

energy considered, i.e., Ea = 20 and Ea = 30, numerical

convergence tests were performed for the homogeneous

cases (Γ = 1) and the most highly discretized cases

(Γ = 0.01 and L = 10). The convergence study for the

resulting critical reactive layer thickness h∗ from these

cases is shown as the “go” vs. “no-go” charts plotted in

Figs. 9 and 10.

In Figs. 9, 10, and 11, each symbol represents a case

of one or several simulations with a reactive layer thick-

ness h at a numerical resolution in terms of the number

of computational cells per the ideal half-reaction-zone

length l1/2/∆x. In these figures, a circle ◦ indicates a

“go”, i.e., a case resulting in a self-sustainable propaga-

tion; a cross × indicates a “no-go”, i.e., a case of prop-

agation failure. The dashed line indicates the boundary

between “go” and “no-go” results that defines the crit-

ical thickness h∗ as a function of numerical resolution.

Considering the stochastic nature of the distribution

of reactive sources in a highly inhomogeneous medium,

for the near-limit cases, five simulations have been per-

formed for the same value of h. Only if all of these five

simulations result in a successful wave propagation over

a distance that is more than approximately 150 times

the average source spacing L, the case with the corre-

sponding h is considered as a “go”.

For the homogeneous case with Ea = 20 shown in

Fig. 9(a), as the numerical resolution was increased

from l1/2/∆x = 10 to 20, the result of h∗ increased

by approximately 9%. As the numerical resolution was

increases from l1/2/∆x = 20 to 30, there was no change
greater than ±4% in the result of h∗. For the highly

discretized case with Ea = 20, Γ = 0.01, and L = 10

shown in Fig. 9(b), there was no change greater than

the prescribed average source spacing L in the result

of h∗ as the resolution was increased from l1/2/∆x = 5

to 30. For Ea = 30, the homogeneous case shown in

Fig. 10(a), as the numerical resolution was increased

from l1/2/∆x = 5 to 10, the result of h∗ increased by

approximately 26%. As the numerical resolution was

increased from l1/2/∆x = 10 to 20, the change in the

result of h∗ was less than ±1%. As shown in Fig. 10(b)

for the highly discretized case with Ea = 30, Γ = 0.01,

and L = 10, there was no change greater than the pre-

scribed average source spacing L in the result of h∗ as

the resolution was increased from l1/2/∆x = 5 to 20.

For the homogeneous cases with both Ea = 20 and

Ea = 30 as shown in Figs. 9(a) and 10(a), respectively,

simulations at a relatively coarse resolution result in a

smaller critical thickness. This reduction in h∗ could be

attributed to the fact that the effect of numerical diffu-

sion becomes more significant when the inviscid Euler

equations are solved at coarser resolutions. In a cellular

detonation structure that arises from a homogeneous

reactive medium, there is a large amount of reactant

that is shocked by the weak parts of the leading shock

and undergoes a very slow burning process. The effi-

ciency of this slow reaction process can be significantly

enhanced by numerical diffusion. Simulations at coarse

resolution likely result in an artificially (numerically)

enhanced energy release rate and, thus, enables a det-

onation wave to propagate in a thinner reactive layer.

For the large values of activation energy Ea = 40

and 55, the simulations have been performed only for

the highly inhomogeneous cases with Γ = 0.01 and L =

10. As shown in Fig. 11(a) for the cases with Ea = 40,

simulations at three different resolutions l1/2/∆x = 10,

20, and 30 resulted in the same critical thickness. For

the cases with the greatest value of activation energy

considered in this study Ea = 55, a minimal resolution

of l1/2/∆x = 20 was required to obtain numerically

converged result of h∗ as shown in Fig. 11(b). There-

fore, the results of h∗ as a function of Ea presented in

Fig. 8 were all based on the simulations at a resolution

of l1/2/∆x = 10 except the data point for the Ea = 55,

highly inhomogeneous case, which was performed at a

resolution of l1/2/∆x = 20.
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