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Abstract

Continual Learning for Computer Vision Applications

Lorenzo Pellegrini

One of the most visionary goals of Artificial Intelligence is to create a system able
to mimic and eventually surpass the intelligence observed in biological systems in-
cluding, ambitiously, the one observed in humans. The main distinctive strength of
humans is their ability to build a deep understanding of the world by learning con-
tinuously and drawing from their experiences. This ability, which is found in various
degrees in all intelligent biological beings, allows them to adapt and properly react
to changes by incrementally expanding and refining their knowledge. Arguably,
achieving this ability is one of the main goals of Artificial Intelligence and a corner-
stone towards the creation of intelligent artificial agents.

Following a "cold era" during which the interest in the Artificial Intelligence field
was greatly reduced, a renewed interest in approaches based on Neural Networks
allowed this field to shine once again. Modern Deep Learning approaches allowed
researchers and industries to achieve great advancements towards the resolution of
many long-standing problems in areas like (and not limited to) Computer Vision and
Natural Language Processing. However, while this current age of renewed interest
in AI allowed for the creation of extremely useful applications, a concerningly lim-
ited effort is being directed towards the design of systems able to learn continuously.

Current AI systems, due to their structural and algorithmic design, fail at adapting
to changes in a meaningful way. Moreover, they fail at learning how to address
problems different from the ones for which they have been built or trained to solve.
As of today, there is a lot of progress to be made to fill the gap that separates artificial
and biological intelligence.

The biggest problem that hinders an AI system from learning incrementally is the
catastrophic forgetting phenomenon. This phenomenon, which was discovered in the
90s, naturally occurs in Deep Learning architectures where classic learning para-
digms are applied when learning incrementally from a stream of experiences. If
the system can’t access previous training data, then the knowledge model collapses
erasing all previous knowledge. Forgetting happens because classic learning para-
digms cannot adapt to continuous shifts in the data distribution, which is something
biological systems excel in handling.

My PhD work revolved around the Continual Learning field, a sub-field of Machine
Learning research that has recently made a comeback following the renewed interest
in Deep Learning approaches. The visionary promise of the continual learning field
is to develop novel approaches that can allow intelligent artificial systems to incre-
mentally expand, refine and adapt their knowledge by learning from experiences in
a human-like way. This dissertation will focus on a comprehensive view of contin-
ual learning by considering algorithmic, benchmarking, and applicative aspects of
this field. This dissertation will also touch on community aspects such as the design
and creation of research tools aimed at supporting Continual Learning research, and
the theoretical and practical aspects concerning public competitions in this field.
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Outline

Chapter 1 introduces the concepts and motivations regarding the Continual Learn-
ing field. In particular, the strengths and weaknesses of classic Deep Learning ap-
proaches are analyzed to pinpoint the major research challenges. Building upon
that, an introduction about the open issues and the mainstream research directions
is given, which serves as the reference point for the rest of the dissertation.

Chapter 2 describes the research efforts in improving the realism of continual learn-
ing scenarios and benchmarks. The chapter opens with a description of the most
frequently used benchmarks and protocols along with a summary of the terminol-
ogy and assumptions found in the literature. Following a discussion about the main
issues found in mainstream benchmarks, the NICv2 protocol is presented, which is
used as the reference family of benchmarks throughout the thesis.

Chapter 3 introduces continual learning techniques (AR1* and Latent Replay) able to
handle complex scenarios. In particular, algorithmic contributions are focused on
the creation of efficient algorithms able to handle the realistic scenarios described in
the previous chapter.

Chapter 4 revolves around the libraries and frameworks aimed at supporting the
research efforts in the continual learning field. The surge of interest in Continual
Learning is very recent and no common methodology and codebases were accepted
through the research community. Following an analysis of the mainstream research
directions and common practices, a list of desiderata for a continual learning library
is determined. Then, building upon those, the design and implementation of the
Avalanche library are described.

Chapter 5 is focused on practical applications of continual learning. Applications for
resource-constrained devices are described by showing how the findings outlined in
Chapter 3 can be applied in practice. In particular, this chapter details the design and
implementation of different practical applications including the ones that originated
from close collaborations with both external research groups and industry partners.
Moreover, a dissertation on theoretical and practical aspects of running and partici-
pating in public Continual Learning competitions is proposed.

Finally, conclusions and future challenges in the continual learning field are dis-
cussed in Chapter 6.
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Chapter 1

Background and Motivation

Artificial Intelligence has always been one of the most active fields of Computer
Science, and also one of the most popular among the general public. The field com-
prehends many different research directions, but all of them are directed towards the
common goal of reaching that scientific advancement that could allow for the cre-
ation of autonomous intelligent agents. Such agents, in the collective imagination,
are usually linked to the idea of robotic or personal assistant systems. Many artificial
intelligent systems and applications exist nowadays, but none of them feature that
kind of autonomy and adaptability found in humans. In fact, the field is still very
far from formulating a solution able to mimic the most relevant feature of biological
systems: the ability to learn over time. Among the most evident strengths of human
beings is their ability to learn from experiences, continuously, autonomously, and during
their whole lifetime. With this innate ability, they can build an internal knowledge
model able to describe the world around them. This also applies to other intelligent
animals but, in both the collective imagination and among researchers, the most vi-
sionary goal is to reach the degree of adaptability and intelligence found in humans.

As of now, the main issue that is preventing this kind of intelligence to be reached
is exactly the lack of ability to adapt over time. The world is a very complex envi-
ronment in which continuous change is the normality and exceptions are everyday events.
Many researchers started to work on the idea of enabling continuous learning capabil-
ities in artificial systems. This new research direction, also described by the lifelong
learning and incremental learning terms, is the focus of this thesis. Of course, intel-
ligence cannot be defined by the ability to adapt during time alone. However, this
"feature" found in biological systems constitutes part of the foundations of Artificial
General Intelligence.

Researchers that first started to explore this field (in the 1990s) were immediately
welcomed by the same obstacle that is blocking the path nowadays: the catastrophic
forgetting phenomenon. This phenomenon, described in more detail later, happens
when trying to learn new concepts in an incremental (sequential) way. This prob-
lem was immediately diagnosed in deep models trained with gradient optimization,
which constitute the mainstream structure and technique used in modern artificial
intelligence.

1.1 Modern Artificial Intelligence

While artificial intelligent systems still lack the ability to learn continuously, modern
artificial intelligence techniques were able to solve or, at least, reduce the gap with
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human performance on many complex problems. As of today, the most popular ap-
proaches are deep learning ones. Works in the continual learning area make use of
deep learning models as the main mechanism to simultaneously learn representa-
tions and accumulate knowledge. Before diving into the discussion of the continual
learning field, it is worth spending a few words about the popularity, strengths, and
limits of deep learning approaches.

1.1.1 Strengths of Deep Learning approaches

The use of deep learning techniques is now considered the main approach to be
employed when solving many long-standing problems in areas such as computer
vision, natural language processing, signal processing, etcetera. Deep learning is
based on the idea of stacking a deep architecture/hierarchy of components (layers).
In practice, deep neural networks, composed of a stack of tens of layers, are used to
learn relevant representations from huge amounts of data. The use of deep learning
techniques popularized the made the concept of learning in an end-to-end fashion.

The ability of this approach to learn relevant representations is arguably the main
strength of deep learning approaches. Representations are learned by using a gra-
dient-based optimization which is applied in depth through the model architecture.
From the representation learning point of view, the desirable features that made
deep learning popular are:

• Learning from high-dimensional data directly. This is arguably the biggest
strength: each problem to solve is different, which means that a technique
able to learn problem-specific representations autonomously is highly desir-
able. On the opposite, classic techniques usually exploit manually engineered
features, which are problem-specific and not generalizable across tasks. Al-
though an in-depth knowledge of the problem to solve (or at least the macro-
area it belongs to) is important, a system able to learn representations directly
from data allows for researchers (and engineers) to not focus on details regard-
ing the problem at hand, making it easier to develop and release new models.
This is particularly important in situations in which data is high-dimensional,
which happens in most real-world vision and NLP applications.

• Simple learning technique. In deep neural networks, the goal of the learn-
ing technique is to minimize a loss function that represents the discrepancy
between the output and the expected result. This idea is then applied in prac-
tice by applying iterative gradient descent steps, in which the gradient of the
loss function is computed through the network architecture by backpropaga-
tion. Of course, there are differences between different ways to do this (al-
though the Stochastic Gradient Descent is commonly used), but the same idea
is shared across the whole deep learning area. No matter the problem to solve
and the macro-area it belongs to, the promise of deep learning is that this sim-
ple technique can be applied to learn relevant representations.

• Exploiting data abundance. Not only deep learning techniques can extract
representations from the data directly, but they are also able to exploit the
abundance of data in the training dataset. One of the most iconic ideas around
modern artificial intelligence is that the performance of the resulting model is
related to the amount (and quality) of data available in the training dataset. In
other words, it is better to add more training data than to spend time designing
complex learning techniques. With this idea in mind, following the renaissance
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of neural network techniques, companies (and sometimes universities) started
to gather and publish bigger and bigger datasets for the most disparate tasks.

Neural network techniques have not always been that popular. The first scien-
tists that worked in this direction stumbled upon obstacles that blocked research
advancements. Firstly, early works focused on shallow models, which could not
properly be used to learn complex representations from data. Secondly, the lack of
abundant computational power, which is now provided by modern GPUs and ad-
hoc accelerators, made it difficult to train bigger architectures. Finally, the use of
MLPs alone instead of domain-specific architectures (CNNs, RNNs, Transformers),
made it difficult to approach problems featuring high-dimensional data.

In fact, one of the most popular events that made brought neural network techniques
popular again is the use of a CNN [82] to drastically reduce the error on the popular
ImageNet challenge [33]. At that point, it was clear that deep learning techniques
could enable efficient representation learning (due to the aforementioned elements:
using high-dimensional data, using a simple training technique, and exploiting the
abundant training data found in ImageNet). From that moment, a revolution within
both research and industry began. Nowadays, a lot of commonly used applications
are backed by one or mode deep learning models: photo enhancers and organiz-
ers, text and speech translators, quality assurance and anomaly detection systems,
biometric systems, etcetera.

For a more in-depth overview of the field, we recommend referring to popular books
and articles on the argument: [49, 85].

1.1.2 Current limits of Neural Network-based intelligent systems

Lack of adaptability The most evident issue of DNNs is the lack of mechanisms
that could be used to allow for a proper adaptation of the knowledge. In particu-
lar, DNNs are not able to adapt and generalize to new circumstances and environments.
To enable continual learning capabilities, an intelligent agent should be able to con-
textualize and specify already learned behaviors but also face never seen scenarios.
To do so, the agent has to learn new skills and concepts, or even just incremen-
tally improve how it behaves when facing already encountered problems and envi-
ronments. Alas, deep learning and gradient-based optimization techniques are not
sufficient to allow for this kind of adaptability due to the catastrophic forgetting phe-
nomenon. When faced with new concepts to learn or drifts in data distribution, a
model trained with classic gradient-based techniques forgets all previously accumu-
lated knowledge (more on this in Section 1.2).

Low efficiency Another limit of DNNs is the computational power (and time) needed
to train deep architectures. While the general availability of powerful accelerators,
such as GPUs and specialized hardware, allows for huge models to be trained, the
training process is still too computational and energy-expensive w.r.t. biological sys-
tems. Not only a higher efficiency is desirable for server-side applications, but they
are necessary to enable continual learning capabilities in edge devices such as robots
and embedded systems.

Dealing with small and non-i.i.d. batches One of the aspects that make deep
learning techniques so powerful is their ability to exploit large amounts of data.
However, when the amount of data is too limited, learning useful representations
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may become impossible. Dealing with small batches of data is common in contin-
ual learning scenarios. In addition, while training deep learning models through
SGD-based optimization techniques, the mini-batches that constitute the stream of
training data are usually obtained by shuffling and splitting the training dataset. In
continual learning scenarios, data may become available during time as non-i.i.d.
batches. Training using this batch composition quickly leads to knowledge destruc-
tion in the model, which mandates CL-specific techniques to be employed.

Lack of structural adaptability Given a problem to be solved, a network archi-
tecture is defined (usually borrowed from mainstream ones) and the training loop
is optimized by selecting the optimization technique and hyperparameters. This
means that the architecture itself is fixed throughout the whole training process. Ar-
chitecture search techniques [37] try to compensate for this limit. However, even in
that case, the search is done in the context of a classic training scheme and it can’t be
applied to continual learning scenarios.

1.2 On Continual Learning

The efforts toward enabling continual learning in intelligent systems are based on
the simple idea of learning over time. More precisely, the idea is to design an artifi-
cial system that can, at the same time: i) learn new concepts, ii) preserve previously
acquired knowledge (and forget unuseful information in a controlled way), iii) re-
use knowledge (generalize) across tasks.

Reaching the kind of intelligence found in biological intelligent systems, that con-
stitute proof of work, can be considered the main goal. Biological systems, like
humans, can learn new concepts while retaining existing knowledge, even when
abrupt drifts occur in the data distribution. In biological systems, A sudden com-
plete loss of previously acquired knowledge is considered an anomaly. These sys-
tems learn concepts sequentially one after another by being exposed to a stream of
sensory information. Alas, the forgetting phenomenon makes it impossible to han-
dle such a learning scheme in artificial systems. Early works in the field (Section
1.2.2) show that the interference problem is related to how gradient-based optimiza-
tion operates, which is not able to directly retain already acquired knowledge.

Once aware of these problems, the research community deemed it necessary to move
in the direction of developing ad-hoc techniques to contrast forgetting. Because of
that, the continual learning field revolves around the definition of designing novel
benchmarks and techniques that could bring the artificial intelligence field closer to
the goal of building general artificial intelligent systems.

1.2.1 Goals and Motivations

The concept of learning continually from experience has always been present in arti-
ficial intelligence and robotics [173, 181]. This idea has also been explored in research
names with different names, such as Lifelong Learning [25, 172] and Incremental Learn-
ing [48, 135]. All these directions focus on the idea of learning over time and, con-
sidering their broad landscape, they may be considered as the same field as well.

To reach that kind of adaptability in time, the stability/plasticity dilemma [53] must be
solved. In practice, biological systems can accommodate new knowledge (plasticity)
but, at the same time, they can preserve previously acquired knowledge (stability).
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It is clear that deep learning models, in which learnable parameters are trained to
minimize a loss function via gradient-based mechanisms, are inherently too plastic
to be able to retain previous knowledge.

One of the main reasons for pushing research into the field of continual learning is
that continual learning could be a fundamental element in empowering intelligent
embodied agents. Such agents would operate in a realistic environment and they
should be autonomous. An example of the real need for a continual learning system
can once again be made in the context of robotics [172]. Real-world embedded robots
are in strong need of learning over time, specializing and adapting their behaviors
locally in an efficient way [171]. This means that the underlying continual learning
system should be able to:

• Learn with limited (or none) labels. The ability to learn autonomously can be
considered the most fundamental element of autonomous intelligent systems.
Learning without supervision is common for biological systems thanks to their
innate ability to explore autonomously (curiosity) and reason about the envi-
ronment.

• Operate without task labels/boundaries. Just like with problem-specific labels, the
need for some kind of boundary or other signal describing the task at hand
would hinder the autonomy of the system, making it terribly different from a
biological system.

• Handle unexpected scenarios/tasks/problems. The system should be able to handle
unexpected scenarios and tasks. A system that can only operate in a specific
setting is too limited and it will be impossible to learn and act autonomously
and effectively.

• Learn from sensory information (online and streaming). Biological systems learn
from a continuous stream of data coming from their "sensors". Apart from
being excellent proof-of-works, they are also very efficient in doing so. In
other words, CL systems should be able to quickly and efficiently learn from
streams instead of batches of data. This becomes difficult when facing high-
dimensional data, which is the kind of data biological systems normally han-
dle.

• Learn with constant resources. Resources include all "hardware" elements such
as memory, computational power, and energy consumption. This, coupled
with the fact that learning should be done in a "streaming" fashion, poses strict
constraints on the ideal continual learning solution.

• Forget when necessary. This feature has been overlooked in the current continual
learning literature. While most of the literature focuses on solving the catas-
trophic forgetting problem, as far as we know, no efforts toward designing a
controlled forgetting mechanism have been made so far. However, the abil-
ity to gracefully forget past knowledge is very well-known in humans and a
desirable feature for embodied intelligent agents, too.

That said, the scope of application of continual learning techniques may be narrower
in scope: systems able to autonomously learn how to detect new classes of objects,
defects, voices, etcetera could all benefit from advancements in the continual learn-
ing field.
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In addition, continual learning could empower AutoML systems [62]. Without con-
tinual learning capabilities, these systems have to retrain the model on the whole
available data stored over time. This has a strong impact on their ability to quickly
adapt to changes and on their use of energy and computational resources. Consid-
ering that AutoML is becoming more and more relevant in the industry, and also
considering how much expensive they are, the use of effective continual learning
techniques could revolutionize the way these services are managed and provided.

1.2.2 Brief history

The idea of learning continually from experience is one of the fundamental topics in
artificial intelligence and robotics since their birth [173, 181]. However, it is only at
the end of the 20th century that it has begun to be explored more systematically.

Research on the possibility of continually training a deep learning model dates back
to 1989 when McCloskey and Cohen [107] proposed the initial experiments able to
show the inefficacy of the classic training methods. In particular, they identify the
catastrophic interference issue, which is the most studied problem in continual learn-
ing literature so far. The phenomenon resulting from that interference is usually
referred to as catastrophic forgetting. Since then, many works were directed toward
the study of methods that could enable the continuous learning of new concepts. In
particular, Turn and Mitchell [172] popularized the idea of lifelong learning on clas-
sification tasks, while Ring [140] studied the idea of applying continual learning to
reinforcement learning tasks. These two research directions are arguably the most
active ones even in recent times.

Starting from these early works, it was clear that most of the work would go in the di-
rection of using neural network models as the main learning drivers: the use of neu-
ral networks enable meaningful representations to be learned and shared across se-
quentially learned tasks. In fact, using manually engineered representations would
make it impossible to continually learn novel, possibly extremely varied, concepts.
At the same time, no matter the specific setting (supervised classification, reinforce-
ment learning, . . . ), it was evident that specific approaches were required to limit the
catastrophic inference phenomenon.

In addition, it is at that time that many assumptions and concepts (that are now con-
solidated in the literature) were posed. Common assumptions include the idea of
not being able to store a massive amount of data from past experiences, the idea of
limiting the memory and computational overhead introduced by learning a substan-
tial number of concepts, and the idea of keeping the training and inference time as
much constant as possible. These are all desirable elements that are needed for en-
abling continual learning on robotic systems and autonomous agents in general. In
fact, other early works were focused on strategies able to mitigate the forgetting by
not storing elements from the training data at all. This constraint has been relaxed in
more recent works and replay strategies are now widely used (more on this in Sec-
tion 1.3.1). However, the idea of pseudo-rehearsing was already proposed [142]. In
general, initial works focused on multi-task setups at a small scale of few examples
and considering small and shallow networks [83, 8].

Given these early works, it was clear that the most prominent macro-directions were
continual supervised learning and continual reinforcement learning, which are both very
akin to the robotics and neurobiology fields. This generally holds even in recent
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times. Apart from these two directions, it is worth noting that continual unsuper-
vised learning [134, 2] and continual semi-supervised learning [154, 179] have been less
explored. Continual learning in an unsupervised or semi-supervised way is highly
desirable and it is an open challenge (more on this in Section 1.3.2).

Continual Supervised Learning In the context of continual learning, most efforts
have historically been directed towards fully supervised learning contexts. Promi-
nent efforts include [171], where each new task consists in learning a concept using
binary classification. Several CL techniques were then proposed in the contexts of
memory-based learning and artificial neural networks while remaining within the
idea of not storing past data. Among these, it is worth noting pseudo-rehearsal
techniques proposed in [142, 161, 162]. More recent works include "Efficient life-
long learning algorithm" (ELLA) (proposed in [148]), which improves the multi-task
learning method proposed by [84]. Here the learning tasks are independent of each
other and a regularization strategy is proposed. A more theoretical study of contin-
ual learning was firstly accomplished by [123] within the PAC-learning framework.
Finally, a recent review covering more recent efforts has been proposed by Parisi et
al. [115], which also includes useful pointers for the continual reinforcement learning
area.

Continual Reinforcement Learning In [111] an algorithm for robot learning was
proposed that tried to capture the invariant knowledge about each task. In the doc-
toral thesis from M.B. Ring [140], a continual learning agent is proposed with the
idea of gradually solving complicated tasks by learning easy tasks first. It is from
[167] that each environment started to be treated as a separate task for continual re-
inforcement learning. This paradigm has been highly influential and many recent
works, such as [79, 147, 98], follow the same "environment/game-as-a-task" idea.
A hierarchical Bayesian continual reinforcement learning method in the framework
of Markov Decision Process (MDP) has been proposed in [182], while [42] specifi-
cally worked on policy reuse in a multi-task setting. A nonlinear feedback policy
that generalizes across multiple tasks was proposed in [30]. Following the idea pre-
sented with ELLA [148], a policy gradient efficient continual learning algorithm was
proposed in [7]. This work was further enhanced with cross-domain continual rein-
forcement learning [6] and with constraints for safe continual reinforcement learning
[5].

Regarding the overlap of reinforcement learning and continual learning, both areas try
to tackle scenarios in which learning happens sequentially, which means that abrupt
concept drifts may hinder the learning process. In addition, continual learning tech-
niques like experience replay, regularization, etcetera (more on Section 1.3.1) can
be used in both supervised and reinforcement learning. However, benchmarks are
quite different, with continual reinforcement learning efforts usually involving real
robotic systems or, more common in continual reinforcement learning, simulated envi-
ronments such as Atari and other games [79, 98, 14].

A more in-depth overview of the continual reinforcement learning area can be found
in [77].
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1.3 State of the art

Continual learning research is moving fast and many novel techniques, benchmarks,
and even whole new research directions are being actively proposed. This section is
meant to describe the state of the art in terms of approaches (techniques) and long-
standing challenges of the continual learning field in computer vision. In particular,
the mainstream continual supervised learning approaches are analyzed here, while the
description of commonly used benchmarks, which is a fundamental element needed
to describe the current state of the art, is proposed in more detail in Chapter 2.

1.3.1 Mainstream approaches

Regulariza�on

Synap�c 
Intelligence (SI)

Elas�c Weight 
Consolida�on 

(EWC)

Dis�lla�on

Learning without
Forge�ng (LwF)

Federated LwF
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FIGURE 1.1: Proposed classification of mainstream continual supervised learning
techniques. For each subdivision, a few reference techniques are listed.

Although it is a particularly recent area, continual learning features a lot of research
directions and areas of applications. Because of this and due to the complexity of the
problems it aims to solve, a lot of different techniques to tackle the forgetting prob-
lem are being proposed. Techniques are very different from each other, and only
a few common elements can be pointed out. While a formal taxonomy is hard to
define, a very high-level, non-exhaustive, coarse categorization of mainstream con-
tinual learning techniques is here provided by the means of three macro-categories
(also outlined in Figure 1.1):

• Knowledge preservation techniques (regularization and distillation)

• Replay techniques (including generative approaches)

• Structural techniques (model expansion and masking)

This classification based on these three categories is well known in the literature
[115, 103] (although different names can be attributed to each category). This way
to categorize continual learning approaches is based on the analysis of the strategies
employed in the earliest academic works in the field. We argue that, despite its sim-
plicity and the fact that it may not cover all possible approaches, this organization
is still valid and can categorize even more recent strategies, which usually feature
a hybridization of techniques taken from more than one of those categories. This
hybridization is required as techniques from each category try to limit the forgetting
issue each in a different way and, most importantly, these techniques are usually not
mutually exclusive.
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That said, given the aforementioned subdivision, it is worth spending a few words
on the mainstream approaches found in the literature for each category. This is use-
ful to delineate the strength and weaknesses of each macro-approach, as well as their
extremes.

Knowledge preservation techniques

Knowledge preservation techniques try to tackle the catastrophic forgetting phe-
nomenon by limiting the knowledge drift that happens in deep neural networks
when training on a new batch of data. Techniques belonging to this category do
not make use of an external replay buffer, which means that using these techniques
may have positive effects in terms of privacy preservation and persistent memory
usage. However, it must be noted that some additional memory may still be nec-
essary to store model-related additional data (which may happen in regularization
techniques). This particularly popular category of techniques can be split into two
sub-categories: regularization and distillation techniques.

Regularization Regularization techniques try to limit the knowledge drift by lim-
iting (slowing down) the update rate of learnable parameters in the model. Regu-
larization techniques are usually based on some definition of parameter importance.
Important parameters are preserved from abrupt updates while less important ones
are usually left freer to learn. Elements such as how the importance is measured
and bookmarked for each parameter, and the way parameter updates are regulated
based on that importance, are specific to each technique.

It is useful to pin-point a couple of techniques to allow for better framing of the
regularization techniques. Synaptic Intelligence (SI) [189] and Elastic Weight Con-
solidation (EWC) [79] are well-known continual learning strategies based on slightly
different mechanisms. I chose to bring these two examples as these techniques have
been presented by the respective authors as stand-alone, which means that they are
pure regularization strategies.

In EWC, the importance of each weight is given by the diagonal of the Fisher infor-
mation matrix. In SI, the importance of each parameter is measured as its contribu-
tion (during all experiences so far) in decreasing the value of the target loss function.
The idea in both techniques is that important parameters retain knowledge from
past experiences while non-important ones may carry less knowledge and so they
should be left freer to learn.

The mechanism regulating the slowdown of parameter updates is similar in both
mechanisms: the loss function guiding the optimization is integrated with an im-
portance-aware component that penalizes the change of learnable parameters. This
component is directly proportional to the importance of each parameter. A different
update mechanism is described in [103] that, starting from SI, proposes a simplified
framework for regularization techniques, in which the importance is used to alter
the learning rate of each parameter instead of altering the loss function.

Distillation Distillation techniques try to limit the forgetting phenomenon by dis-
tilling the knowledge of a previous model (usually the one at t− 1) so that the model
obtained when incrementally trained on the new experience may carry both the past
and new knowledge. The idea of distilling knowledge from one source model to
another one is well known in classic deep learning literature [65].
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Learning Without Forgetting (LwF) was introduced in [92] and is arguably the most
known technique in this category. In LwF, before the beginning of the training
phase, training samples from the current experience are forwarded in the model to
record the output from heads associated with previous tasks. Then, while training
on the current experience, the loss function is integrated with a component penal-
izing changes in the output of previous tasks. In addition, LwF has been used in
the context of continuous federated learning, such as in FLwF [174]. In general,
most continual learning distillation-based techniques are inspired by the successful
approach of LwF.

Replay techniques

Replay techniques (sometimes named rehearsal techniques) are widely used blocks of
modern continual learning strategies. This category of techniques tries to limit the
forgetting issue by replaying data that should be representative of previous expe-
riences. This forces the learning algorithm to optimize the loss for old instances,
too. This also prevents a situation in which the model is optimized on new concepts
without old ones used to counterbalance the learning process, which may result in
catastrophic forgetting. This is a very simple idea and even simple approaches lead
to excellent results in terms of retained knowledge. On the other hand, replay tech-
niques usually require abundant persistent storage memory to store the replay buffer
or the generative model(s). As such, this family of techniques can be divided into two
sub-categories: experience replay and generative replay.

Experience replay Experience replay techniques are based on the idea of keeping
a replay buffer in which to store instances from previous experiences. Instances are
then jointly replayed with data from the current batch. This has three implications:
i) it may pose a problem in terms of used storage memory, ii) replaying instances
requires additional computational resources (or time) to complete the training phase,
iii) storing raw data may not be possible due to privacy constraints. Despite these
issues, experience replay techniques are widely used as they can be easily used in
conjunction with knowledge preservation and structural techniques.

The recipe to design a replay technique usually involves defining the following ele-
ments:

• Fixed-size or expanding buffer. Many works follow the idea of keeping a fixed-
size replay buffer as this should better model a situation in which the persis-
tent memory cannot be easily expanded to accommodate for more instances.
However, other works expand the buffer depending on the unique concepts
(classes) learned up to that moment.

• Instances selection and replacement. This is arguably the most important com-
ponent in a replay strategy as it defines most of the effectiveness. No matter if a
fixed-size or an expanding buffer is employed, it is possible to store only a lim-
ited amount of instances. This means that a mechanism to select new instances
to be inserted in the buffer must be designed. The same mechanism is usually
in charge of removing instances already in the buffer if the maximum capacity
has been exceeded. This usually includes balancing the replay instances in the
buffer (e.g., class-balanced), which is usually desirable.

• Training-time sampling. Most works use the whole replay buffer by mixing
all old and new instances. A more sophisticated approach (especially common
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in streaming learning scenarios) is to use only a limited subset of the replay
buffer to limit the performance impact.

• Old and new instances mixing. The simpler solution is to randomly shuffle
new and replay instances as if they were a single training dataset. More so-
phisticated approaches may be desirable when using relatively small replay
buffers, such as fixing the number of replay instances to be inserted in each
minibatch. In addition, some approaches, like GEM [99], use replay exemplars
in a different way.

Class-balanced replay with random instances insertion/replacement is arguably the
simpler and most used solution. However, more complex solutions have been pro-
posed, such as the herding selection mechanism proposed in iCaRL [135], which is
now quite popular in literature. Other well-known strategies, like GEM [99] and
A-GEM [20], use experience replay to limit the degree of forgetting on past tasks by
the means of gradient projection.

Experience replay is not strictly linked to replaying raw data as-is. For instance, the
latent replay mechanism is proposed in Section 3.2, which uses latent activations
instead of raw images.

Generative replay In generative replay techniques, instead of replaying previous
instances, one or more generative models are used to generate data able to represent
the data distribution from past experiences. As with experience replay, generative
replay incurs storage-related issues due to the space required to store the generative
model(s). In addition, replay instances must be generated, which means that the
generative process will take computational resources and time. These techniques
are very interesting for three reasons: i) generative models, depending on how the
architecture and how they are used, may be less prone to forgetting, ii) there may be
fewer privacy-related issues in using generative replay techniques w.r.t. experience
replay ones, iii) recalling past experiences through generation may be more akin on
how biological systems work.

One of the earliest approaches is the Deep Generative Replay framework proposed
in [160] in which a WGAN-GP [54] (the scholar model) is trained at time t by using
both the currently available training data and the replay data generated using the
generator obtained at time t − 1. The performance of other generative models has
been explored in [88] using mainstream benchmarks based on MNIST and CIFAR
(mainstream benchmarks are discussed in detail in Chapter 2).

At the same time, it has been shown that the performance of algorithms that continu-
ally learn through generative replay drops when facing complex scenarios in which
the training stream is composed of high-dimensional data [88, 175].

Structural techniques

Structural techniques try to tackle the forgetting problem by changing the architec-
ture of the model. This usually includes adding learnable parameters, introducing
masks, new layers, or even parallel copies of models/blocks.

Of the three macro-categories, this is the less explored one. This is also the most
difficult category to subdivide as many approaches have been attempted. Here a
tentative subdivision is attempted as expansion techniques and masking techniques.
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Expansion techniques Expansion techniques are the most used structural tech-
niques. These techniques aim at limiting the forgetting issue by allocating new
learnable parameters (single units, layers, blocks, or even copies of the base model).
These techniques usually start from known model architectures (possibly adapted
to obtain a downsized form) or building blocks (such as ResNets blocks) and new
parameters are added when deemed appropriate. These techniques usually try to
circumvent the knowledge saturation problem that arises when the neural network
has to learn a lot of different concepts.

Progressive Neural Networks (PNN) [147], which can be considered an extreme case
of an expansion technique, is among the most known expansion technique. In PNN,
a new copy of a base model is allocated for each new task to learn. Residual connec-
tions are inserted from previous to new models to allow for knowledge transfer and
previous models are always frozen. Starting from this extreme technique, more re-
cent attempts aimed at limiting the memory and computational overhead posed by
PNN have been proposed [178, 91]. Instead of allocating whole parallel blocks, ex-
isting layers can be expanded or appended to the same branch, as proposed in [180].
An even more flexible capacity expansion technique is proposed in [188]. Both the
last two techniques can also manage multi-task settings without forcefully splitting
the model on a task basis. In fact, it must be noted that most of the structural tech-
niques are designed for task-incremental scenarios (more in Section 2.1.1), and the
additional learnable parameters allocated during past experiences are usually not
allowed to change to allow for knowledge reuse.

Masking techniques This family includes all the techniques that re-use the exist-
ing model capacity by partitioning the model. These techniques, like the expansion
ones, usually work in task-incremental settings only by creating a separate partition
for each task. These techniques differ in how the training is carried out and how the
partitions are created.

The model is usually partitioned by masking weights and/or activations on a per-
task basis. At test time, the forward pass will apply these masks to compute outputs
by using a partition of the model. The parts of the model allocated to a previously
learned task can be frozen, which means that those techniques may be forgetting-
free. Moreover, when learning new tasks, these techniques may reuse parame-
ters and features used when learning previous tasks. Prominent strategies include
HAT [152], PiggyBack [101], and Packnet [102]. Trajectory-based techniques such as
the ones based on PathNets [43] are part of this sub-category, too.

One obvious negative aspect of these techniques is connected to the saturation of
model capacity. However, this family of techniques may be used in conjunction
with expansion techniques to prevent saturation issues.

1.3.2 Current challenges

Continual learning, even though early works can be dated back to 1989 [107], saw a
surge in popularity only in recent years. Most of the efforts are directed towards the
computer vision area, and in particular towards the supervised classification one.
Because of that, many under-explored directions exist. With that, a set of challenges
that must be tackled to reach the kind of intelligence one would like to achieve exist.
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Adherence to reality and applications One of the biggest issues with continual
learning research, which encompasses both techniques and benchmarks, is the lack
of adherence to reality. Of course, the definition of realistic depends on the context.
In general, many benchmarks don’t seem to be able to model the kind of scenarios a
real application would face (more on this in Chapter 2). Apart from that, strategies
may need to evolve to accommodate for more complex scenarios, realistic images (or
other types of data), realistic availability of labels and task signals, and to consider
performance, memory, and time constraints.

We argue that, by adapting the benchmarks and the techniques used to tackle the
forgetting phenomenon, one could enable practical applications to be implemented.
Most of this thesis is centered around some proposed techniques and benchmarks
that move in this direction.

Towards object detection Arguably, the majority of works found in the continual
learning literature revolve around the object classification problem. However, this
doesn’t hold for the object detection problem. The importance of the classification
problem cannot be argued, as it serves as the initial step towards building continu-
ously learning systems for vision applications. However, detection could enable a
more vast set of possible real-life applications and, in general, can be deemed a more
realistic task for robotic applications.

The continual object detection area started to receive some attention only in recent
times, and works in this direction [1] are still a few.

Instance vs category learning Most of the mainstream benchmarks found in the
CL computer vision literature are based on well-known datasets used to evaluate
the performance of models trained in a classic, offline, manner. Mainstream object
datasets adopted in the CL literature include CIFAR10/100 and ImageNet. These
datasets were designed to model the category classification model: the training set is
usually composed of images of various objects (usually depicted only once through-
out the whole dataset) and the goal is to learn how to label objects at the category
level. On the contrary, the task of classifying at the instance level, in which the goal is
to identify the specific object, is not as much explored. It must be noted that datasets
and benchmarks such as the ones based on CORe50 [95] and OpenLORIS [158],
which were designed specifically for benchmarking continual learning strategies,
feature an instance-based classification problem. We argue that instance-based ob-
ject classification could enable more adaptive robotic applications and personal assis-
tants.

Streaming learning Incrementally training from experiences carrying very limited
batches of data is a particularly interesting challenge as a strategy able to learn
quickly from a very small set of instances could be used to enable continual real-
time learning capabilities on at-the-edge devices, such as robots, embedded boards,
and mobile systems.

Differently from the others, this research direction is a tad more explored [59, 99, 20].
Some works even focus on the extreme case in which the training dataset carried
by each incremental experience is comprised of a single exemplar (online streaming
learning).
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Exploiting unlabeled data Unsupervised learning seems to be a natural element in
any continually learning agent. An agent able to learn in an unsupervised way could
autonomously refine its knowledge regarding the environment. Moreover, that
could allow for some forward knowledge transfer, which is usually low (or none)
in mainstream continual learning techniques. However, the most important benefit
of using unsupervised learning techniques is the ability to use the vast amount of
data obtained from sensors without the need for humans (or oracles) in the loop.
That would reduce the gap between artificial and biological intelligent systems.

Recent works in the unsupervised learning field, such as the ones concerning the
use of a contrastive loss [23], show that meaningful representations could be learned
without any kind of supervision.

In addition, recent works in the continual learning field explicitly considered the
unsupervised and semi-supervised setups [134, 2, 154, 179].
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Chapter 2

Continual Learning Benchmarks

In this chapter, a comprehensive description of our efforts toward enabling contin-
ual learning in realistic and complex scenarios is given. The chapter starts with a
description of the most popular benchmarks found in the continual learning litera-
ture. Each macro-category of benchmarks is analyzed to pinpoint their distinctive
features as well as the issues which prevent them from modeling realistic situations.

Starting from these considerations, a set of novel benchmarks is proposed in Section
2.2. We believe that these benchmarks enable a more proper modelization of realistic
situations for vision applications in which an agent has to learn incrementally while
operating in an evolving environment. The techniques described in Chapter 3 are
based on these premises.

2.1 Mainstream benchmarks and protocols

Before delving into the reasoning and details behind mainstream and the novel pro-
posed benchmarks, it is better to spend a few words about elements such as com-
mon assumptions and the nomenclature on which continual learning benchmarks
are based.

The ability of an agent to learn continually can be empirically assessed in different
continual learning scenarios. Each scenario defines the constraints and the oppor-
tunities of the learning environment. In particular, it is assumed that continually
learning agents should learn from a stream of data produced by nonstationary, dy-
namic environments [115, 87]. Since the data distribution may drift at any time,
continual learning violates the i.i.d assumption behind traditional machine learning
training procedures, giving rise to problems like catastrophic forgetting of previous
knowledge [107].

The algorithmic engine enabling the continuous learning of new knowledge in in-
telligent agents is commonly named strategy. The issues faced when designing a
continual learning strategy are heavily influenced by the specific implementation of
the general continual learning scenario. The most popular scenarios all refer to an
experience-based way of learning, in which the strategy should learn from novel data
which becomes available over time.

In particular, in continual learning scenarios, learning is broken down into a, pos-
sibly unbounded, stream of experiences S = e1, e2, e3, . . ., with abrupt and instanta-
neous drifts between one experience and the other. Each experience ei brings a set
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of data (batch), together with optional additional knowledge, like a task label (usu-
ally, a scalar value) which helps to uniquely identify the distribution generating the
current data [87].

For the rest of this thesis, the terms experience and batch are often used interchange-
ably. It should be noted that the term experience is more general, as the term batch is
already used in the Machine Learning literature with a slightly different meaning.
Moreover, the term batch may be better suited to identify the training dataset carried
by the experience, while the experience itself is not solely composed of the dataset it
carries. For instance, experiences may carry additional signals such as task labels or
boundaries. Finally, to tackle in advance a common cause of misunderstandings, it
is common to find in literature the term task being used to refer to the element that is
here called experience. The use of task labels is very popular in the continual learning
literature and, as described in Section 2.1.1, in the popular Task-incremental scenario
each experience carries all the training data connected to a single task. Because of
this, the term task started to be used to identify an experience.

All the families of benchmarks described in the next sections start from some idea
that is used to model a specific scenario. Each benchmark resulting from the ap-
plication of that idea usually allows for the randomization of some of its defining
elements. Running experiments multiple times on instantiations in which these pa-
rameters are randomly set allows for more robust results to be obtained. In this
thesis, the term run is used to identify a single instantiation. For instance, in class-
incremental benchmarks (described in Section 2.1.1), running experiments by ran-
domly varying the order of encountered classes (that is, by experimenting on multi-
ple runs) is a common practice used to stabilize the accuracy curve and to identify
relevant variations (usually presented as the standard deviation).

Finally, the term instance is used to identify a single data point (for instance, an image
in vision tasks), but the terms exemplar and data sample are widely used, too.

The scenarios described in the following sections all refer to classification problems
(usually digits or object classification) where, for each exemplar, the target label is
always given at training time. It must be noted that continual learning literature
is not limited to the classification problem and fully-supervised learning schemes.
However, efforts to explore these research directions are more recent in literature
and are out of the scope of this thesis.

The following sections describe mainstream scenarios by following well-known sub-
divisions proposed in the literature [177, 115, 29]. However, for the sake of better
framing the family of benchmarks that will be used as the reference for the rest of
the thesis, the classification proposed in [95] and then refined in [103] is proposed
as well. That subdivision is here used as a general way to contextualize scenarios
based on their degree of concept repetition.

2.1.1 Class and Task Incremental

The surge of interest in continual learning has been initially driven by its application
to deep learning methodologies and is mostly oriented towards supervised com-
puter vision tasks, like object recognition from images [92, 147]. Naturally, one of
the most intuitive procedures to convert available computer vision benchmarks into
viable continual learning benchmarks is to concatenate multiple datasets to simulate
drifts in the data distribution (one dataset per experience, as in the protocol used by
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[92]). This allowed researchers to immediately leverage the vast amount of existing
computer vision benchmarks and to rapidly test new continual learning strategies
on large-scale streams. The learning objective was to classify patterns by assuming
to know from which dataset each pattern arrived (referred to as a task-incremental
learning scenario in the literature [177]). This task label information simplifies the
continual learning problem since patterns from different datasets can be easily iso-
lated by the model during both learning and inference.

After a period in which task-incremental has remained the most studied continual
learning scenario, the attention of the community has now turned to class-incremen-
tal scenarios [135], where experiments are conducted on a single dataset, with pat-
terns split by class and without any knowledge about the task label, neither during
training nor during inference.

In the class-incremental setting, each experience ei carries a training dataset Di =
{(xj, yj)}j=1,...,M, where xj is the input pattern and yj is its target class. The pe-
culiar characteristic of class-incremental scenarios is that they partition the target
class space by assigning a disjoint set of classes to each experience. Formally, be
C = {ck}k=1,...,C the set of all classes seen by the model during training and be Ci
the subset of classes present in experience ei, class-incremental scenarios satisfies the
following condition:

Ci
⋂
Cj = ∅, ∀i 6= j. (2.1)

We will refer to the constraint expressed by Equation 2.1 as the no repetition con-
straint. It simply states that classes present in one experience are never seen again in
future experiences or, likewise, that each class is present in one and only one experi-
ence.

The task-incremental scenario differs from the class-incremental one in which, in
the task-incremental scenario, each class partition is treated as a separate task (sub-
problem) to be solved. In practice, this means that each training experience carries a
different task label (usually an incremental scalar). This signal is used to identify the
class partition both in the training and testing stages. That is, at test time, the task
label is given for each test exemplar.

Following the subdivision proposed in [103], the scenarios based on the no-repetition
condition can be gathered under the New Classes (NC) family of scenarios.

New Classes scenarios are nowadays very popular in the continual learning com-
munity. Their simplicity and ease of use greatly fostered new studies and efforts
toward mitigating catastrophic forgetting, the main problem faced by models when
learning in this setting.

2.1.2 Domain Incremental

While New Classes benchmarks feature a strict partitioning of classes encountered in
the experience stream, the exact opposite happens in New Instances (NI) scenarios.

In these scenarios, experiences carry data belonging to the same data source and the
task labels are not available (at least at test time). Depending on the specific incarna-
tion, the classes that will be encountered may be or may be not already known from
the beginning (that is, at least one instance for each class is available in experience
"0"). Experiences may carry data from already seen classes (with no assumptions
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about the insertion of unexpected new classes), which enables for a rehearsal of al-
ready seen classes. In the mainstream literature, scenarios belonging (or akin) to
the New Instances family have been instantiated in various ways and with different
names, with Data and Domain-Incremental scenarios [177, 95, 103] being the most
known.

The New Instances family of scenarios may fall into the exact opposite problem seen
for New Classes scenarios: the unbounded repetition of concepts. It must be noted that
this idea is more aligned with a realistic scenario, in which the same classes may be
encountered many times, as it happens in the life of human beings. This positive
element has been kept into consideration when designing the benchmark proposed
later in Section 2.2.

2.1.3 Issues with mainstream benchmarks

The aforementioned families of scenarios are based on a few assumptions that make
it difficult to use them to model a realistic scenario of continual learning for vision
problems.

Experience composition Let us consider some of the limitations caused by the no
repetition constraint of New Classes scenarios. In many real-world environments,
repetition occurs naturally. This means that class/task-incremental learning is not
able to model scenarios in which repetition comes directly from the environment.
Examples include robotic manipulation of multiple objects, prediction of financial
trends, autonomous driving tasks, etc. A learning agent exposed to a continuous
stream of information should be able to incrementally acquire new knowledge, but
also forget unnecessary concepts and prioritize learning based on some notion of
importance. Not all the perceived information should be treated equally: if a certain
pattern never occurs again, it may be useless to still pretend to predict it correctly.
The statistical re-occurrence of concepts and their temporal relationship could be
considered important sources of information to help determine the importance of
what the agent perceives [104, 27]. It is very hard to discern what to forget and what
concepts to reinforce if all the information is treated equally.

Learning in a compartmentalized fashion hinders many of the possible insights an
agent may draw from the complexity of the environment, eventually limiting its
possibility to create its world model suitable to the changing task it has to tackle.

Another important side effect of the no repetition constraint is that the lack of repeti-
tion induces large forgetting effects. However, this forgetting is artificially induced.
Focusing on catastrophic forgetting would not be inconvenient if real-world prob-
lems were aligned with the characteristics of the class-incremental scenario [169].
However, this is not the case as repetition occurs naturally during the lifetime of
biological agents. The issues raised by the usage of New Classes scenarios can be
easily addressed by relaxing the no repetition constraint.

The New Instances scenarios are more able to model how human beings explore
the environment during their lifetime as the same concept is experienced more than
once on different occasions. This means that the no repetition constraint is not an
issue in this scenario. However, as already discussed in Section 2.1.2, depending
on the amount of variation in the experiences, the data-incremental scenario may
not present a large amount of forgetting, as it may collapse in an i.i.d. stream of
experiences featuring an unrealistic unbounded amount of repetitions. This means that
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FIGURE 2.1: MNIST (left) and derived Rotated-MNIST (middle) and Permuted-
MNIST (right) are among the most used datasets in continual learning literature.

FIGURE 2.2: CIFAR-10 (left) and CIFAR-100 (right) are among the most used object
classification datasets in continual learning literature.

these scenarios are an excellent starting point, but some additional constraints need
to be added to produce more realistic benchmarks.

Realism of content Another issue with mainstream scenarios in the vision area is
the very content of the used datasets. For historical reasons, the early works in the
continual learning field started with simple benchmarks. The idea was to show the
relevance of the catastrophic forgetting phenomenon [107] and then, later in time,
to show how the first proposed strategies could defy forgetting when working with
simple, low dimensional, input images. Because of this, MNIST [86] (Figure 2.1) and
CIFAR [81] have arguably been the most popular datasets employed in continual
learning literature so far.

These datasets share two issues that prevent them from being a proper base for re-
alistic benchmarks for robotic vision applications: low dimensionality and unrealistic
content. The first issue is self-evident: MNIST features single-channel images at a
28x28 resolution1 while CIFAR10 and CIFAR100 feature 32x32 RGB images2. On the
content side, MNIST cannot be taken as a good base for benchmarking strategies that

1MNIST website: http://yann.lecun.com/exdb/mnist/.
2CIFAR website: https://www.cs.toronto.edu/~kriz/cifar.html.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
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have to deal with natural images, but it remains a good choice when first prototyp-
ing an idea for a continual learning strategy. Concerning CIFAR, its images depict
real objects, but their low resolution prevents important details concerning both the
object itself and the surrounding environment to emerge. In natural images, details
are very important: edges, color and luminosity patches, distracting elements in the
background (etcetera) all may deeply impact the complexity of the task at hand.

Sparse images vs video streams Apart from the use of natural images, another
element of interest for vision applications is the choice of format in which the visual
stream is presented to the system. Most of the benchmarks make use of datasets
composed of sparse images, in which instances are not correlated with each other.
On the contrary, biological systems can learn from streams of images captured in
real-time. The use of datasets composed of video sessions instead of sparse images
seems more reasonable as this would reduce the gap between the experimental setup
and the real scenario.

2.2 The New Instances and Classes scenario

The New Instances and Classes (NIC) scenario was conceived as a more realistic bench-
mark family in which the assumptions found in the other two families of bench-
marks are not present. That is, differently from NI and NC, NIC was conceived to not
fall in the no-repetition and unbounded repetition extreme cases. In New Instances and
Classes scenarios, new training patterns belonging to both known and new classes
become available in subsequent training batches. This has no counterpart among
other benchmarks discussed so far. In fact, to the best of our knowledge, almost
no study explicitly addresses the NIC scenario, which we deem as the most natural
setting for many applications such as robotics vision, where: i) a variable number of
small non-i.i.d. training batches are encountered over time; ii) training batches may
contain objects already seen before as well as completely new objects.

In contrast, benchmarks of the New Instances family introduce a strong priori regard-
ing the availability in time of instances for already seen classes. That is, the assump-
tion that experiences will carry non-i.i.d batches of data is relaxed, thus allowing for
an implicit rehearsal.

Benchmarks from the New Classes family introduce the idea of encountering all in-
stances of a set of classes only once (in a single experience). This has two immediate
consequences. i) A specific class timeline is introduced. When the end of the training
stream is reached, classes seen at the beginning of the benchmark will usually be less
recognized, while classes seen towards the end of the experiences stream will usu-
ally feature a higher recognition ratio. This is why, for New Classes benchmarks, the
average accuracy over time is usually a preferred metric in place of the final accu-
racy. ii) At the same time, the base assumption makes it possible to specifically craft
the algorithmic solution to make the most of the base assumption. This becomes
even more relevant when task labels are assumed to be available at both training
and test time because this allows for a simplified subdivision of the problem. On
the contrary, when designing a solution for a benchmark from the New Instances
and Classes family, one cannot count on the aforementioned assumptions. And, in
general, continual learning algorithms designed to tackle New Classes benchmarks
can hardly be applied to NIC (or even NI) scenarios.
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NIC benchmarks can be seen as a more generalized class of benchmarks. How-
ever, with this increased generality, several new elements are to be considered. How
should be experiences crafted? Should they contain instances from a limited set of
classes? Should they contain (more or less) the same amount of instances? At which
time should be novel classes introduced? Should experience "0" mimic the availabil-
ity of richer a set of base classes? In addition, how can one generate such bench-
marks from a given dataset? Most of the benchmarks used in the continual learning
literature are built upon existing datasets by applying some algorithm able to gen-
erate corresponding instantiations (which usually differ from each other due to the
randomization of some elements). This is why "New Instances and Classes (NIC)"
should be considered a family of benchmarks: many benchmarks can be created by
changing the number of experiences, their content, etcetera.

For instance, some researchers pointed out that reducing the size of training batches
makes continual learning more challenging [103, 58, 135]. However, one may won-
der what is the lower bound for the size of training batches and if it is feasible to
train a system by gradient descent with very small non-i.i.d. incremental batches
each containing few images of a single class. It is well known that stochastic gradi-
ent descent (SGD) works well with large and i.i.d. mini-batches, but this assumption
is difficult to meet in realistic scenarios. Let us consider a robot that is learning to
recognize some objects shown by an operator (one at a time). In an ideal applica-
tion, when a new object is shown, the robot acquires a short video and immediately
updates its knowledge to become able to recognize the new object. The frames ex-
tracted from the video would constitute one or more small mini-batches containing
highly correlated patterns from a single class: a rather challenging setting to face
with standard SGD-based optimization techniques. At the same time, introduc-
ing constraints such as i) the order in which new classes are to be inserted, or ii)
if the same class can be seen again, or iii) how often a previous class should be re-
hearsed, may be unrealistic and may hinder the robot usability. It follows that this
scenario can’t be easily modeled by the means of a New Classes or New Instances
benchmark. At the same time, this scenario can be modeled by the means of a NIC
benchmark. However, properly setting the aforementioned elements (amount of ex-
periences, content, etc) is necessary to obtain realistic benchmarks.

2.2.1 New Instances and Classes v2 (NICv2)

A NIC protocol was initially introduced in [95]. That NIC protocol was specifically
tailored for the CORe50 dataset and only one specific instantiation of it was pro-
posed: NIC-79.

In that benchmark, the first training batch contains 10 classes (∼3,000 images) and
each of the subsequent 78 incremental experiences includes about 1,500 images of
5 classes. However, as shown in Figure 2.4 (left), the random generation procedure
used in [95] produces a sequence where almost all the classes are introduced in the
first 10-15 batches, making that protocol very close to a NI scenario. Figure 2.4 (left)
clearly shows this issue, making it clear that for the vast majority of the scenario no
new classes are encountered.

To make the benchmark more challenging and closer to a real application where new
objects can be discovered also later in time, we proposed a new three-way protocol
named NICv2.
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Algorithm 1 NICv2 generation pseudocode: the first batch includes one training session of
a single class within each category. Then for each of the remaining 40 classes, we randomly
sample the minimum allowed insertion point and then assign all the remaining training ses-
sions to batches in the permitted range. The size of training batches (checked at line 14)
depends on num_batches (see Table 1). Note that the algorithm might loop for unappropri-
ated values of some parameters.

1: procedure NICV2(num_runs, num_batches, max_start)
2: num_runs: number of sequences to produce. Since in continual learning the pattern presenta-

tion order has an impact on the accuracy, experiments need to be averaged over multiple runs. In
this paper we used num_runs = 10.

3: num_batches: the total number of training batches (refer to Table 1).
4: max_start: we need to limit the maximum position for the insertion point of classes to leave

some room to accommodate all their training sessions.
5: for each run in num_runs:
6: assign to B1 10 training sessions (by selecting 1 class from each category)
7: for each class C of the ramaining 40 classes:
8: random sample insertion_point ∈ [1, max_start]
9: for each training sessions S of class C:

10: assigned = f alse
11: while not assigned:
12: random sample current batch Bc with c ∈ [insertion_point, num_batches]
13: if Bc is not full:
14: assign training session S to Bc
15: assigned = true

The NICv2 protocol was conceived with the idea of balancing the class first introduc-
tion over the training batches. This is achieved by forcing the class first introduction
to be evenly distributed across the batches thus producing runs that are both more
challenging and realistic (see Figure 2.4, right). In general, the NICv2 protocol is
able to recreate realistic scenarios in which no general assumption can be made on
the order and distribution in time in which new classes may be introduced.

In addition, differently from the original NIC protocol, NICv2 can be applied to dif-
ferent datasets. Critical elements such as the number of experiences and the moment
in which new classes are introduced can be customized. The pseudo-code used to
generate the benchmarks using the NICv2 protocol is reported in Algorithm 1.

2.2.2 NICv2 for CORe50

CORe50 [95] was specifically designed as an object recognition video benchmark for
continual learning. It consists of 164,866 128×128 images of 50 domestic objects be-
longing to 10 categories (see Figure 2.3); for each object, the dataset includes 11 video
sessions (∼300 frames recorded with a Kinect 2 at 20 fps) characterized by relevant
variations in terms of lighting, background, pose and occlusions. Video sessions fea-
ture an egocentric vision of hand-held objects. This allows for emulating a scenario
where a robot has to incrementally learn to recognize objects while manipulating
them. Objects are presented to the robot by a human operator who can also provide
the labels, thus enabling a supervised classification. Such an applicative scenario
is well described in [118, 119, 117]. Because of these peculiar features, we deemed
CORe50 to be a perfect dataset to be used when benchmarking the continual learn-
ing techniques described later in this chapter.

For instance, let us consider a scenario in which an embodied agent is operating in
a complex environment subject to frequent and unpredictable changes. To operate
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FIGURE 2.3: Example images of the 50 objects in CORe50, the continual learning
video dataset used in this paper. Each column denotes one of the 10 categories. Clas-
sification experiments in this paper are object-based, so each object corresponds to a

class.

TABLE 2.1: Batch number and composition in NIC and NICv2.

Protocol # batches Initial batch Incremental Batches

# Classes # Images # Classes # Images

NIC 79 10 3,000 5 1,500
NICv2-79 79 10 3,000 5 1,500
NICv2-196 196 10 3,000 2 600
NICv2-391 391 10 3,000 1 300

in this ever-changing environment, the agent is required to learn and adapt contin-
uously. For example, in the context of object recognition, a robot should be able to
learn (without forgetting) objects belonging to never seen classes as well as improve
its recognition capabilities as new instances of already known classes are discov-
ered. Ideally, the continual learning process should be triggered by the availability
of short videos of single objects and performed online on onboard hardware with
fine-grained updates.

To model this rather complex scenario, we applied the NICv2 generation technique
to CORe50 by progressively reducing the size of the batch of data carried by each
experience. This, in turn, led to a higher number of fine-grained experiences. In
particular, in CORe50-NICv2-391 (referred to as just "NICv2-391" from now on), each
of the 390 incremental experiences includes only one training video session (∼300
images) of a single class (see Figure 2.5). It follows that this benchmark is a well-
suited modelization of the aforementioned scenario. At the same time, the NICv2
generation procedure allows for the modeling of less extreme scenarios: we also
propose NICv2-79, which fixes the issues found with the original NIC protocol (see
Figure 2.4), and NICv2-196 (see Table 2.1).

For CORe50, the test set used for NICv2 is the default test set shared by all the
CORe50 protocols [95]; it includes 3 sessions for each class, with a null intersection
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with training batches. To speed up the evaluation process (which requires one eval-
uation after each training batch) we sub-sampled the test set by selecting one frame
every second (from the original 20 fps). Because of the high correlation among suc-
cessive frames in the sequences, such a strong sub-sampling is not reducing the test
set variability and the accuracy results on the original and the downsampled version
are very close. We made available at https://vlomonaco.github.io/core50 all the
file lists of the new NICv2 protocols along with the down-sampled test set.

2.2.3 NICv2 for other datasets

As already mentioned, one of the strengths of NICv2 is its flexibility which makes it
possible to apply it to other datasets (other than CORe50).

The base assumption on which NICv2 is built is that the reference training dataset
can be split into semantic units. NICv2 allocates each of these units to a single ex-
perience, and each experience can contain one or more semantic units. In CORe50,
a semantic unit is a single video session (which depicts a single object). In general,
each semantic unit should describe a batch of correlated data (in which the correla-
tion is given by some semantic).

As such, NICv2 can be naturally applied to any video-based dataset and it is not
limited to CORe50 only. For instance, we successfully applied NICv2 to a novel
video dataset we gathered for evaluating the performance of the CORe Android
application (more on this in Section 5.1). However, NICv2 could be applied to other
kinds of datasets as well. If no semantic subdivision is possible, the dataset content
could be arbitrarily split into fixed-size experiences (for instance, using a random
ordering and splitting).

https://vlomonaco.github.io/core50
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Chapter 3

Continual Learning Algorithms in
Complex Scenarios

In the previous chapter, mainstream benchmarks have been described along with
their strengths and issues (Section 2.1). Following that, the NICv2 benchmarks were
introduced (Section 2.2), which serve as the reference benchmark for the efforts de-
scribed in this chapter. These benchmarks try to model a realistic stream of expe-
riences in which novel classes may be inserted at unpredictable moments in time.
In addition, the NICv2-391 benchmark based on the CORe50 dataset [95] features a
strongly non-i.i.d. composition of experiences.

The goal of the techniques proposed in this chapter is to allow for efficient and effec-
tive continual learning on constrained devices such as robots, mobile, and embed-
ded systems. These techniques were designed to seamlessly handle the insertion of
new classes at random moments, to handle non-i.i.d experiences, while at the same
time keeping their resource (computation, memory, time) usage low. The findings
described in this chapter have been used to design and develop real applications,
such as the ones described in Chapter 5.

3.1 AR1* and CWR*: replay-free approaches

A simple solution to deal with a rather long stream of experiences would be to store
all the data and cyclically re-train the entire model from scratch [76]. However,
this approach is rather impractical when learning from high-dimensional stream-
ing data, especially in highly constrained computational platforms and embedded
systems [87, 165].

Some replay-based techniques have been proposed to mitigate the forgetting prob-
lem, which becomes difficult to handle when learning from a long stream of expe-
riences: by maintaining some representative patterns from past experiences, new
frames can be interleaved with past ones in each mini-batch. However, this involves
extra memory (to store the past data) and computation (due to a higher number
of forward/backward steps): when designing AR1* and CWR* we asked ourselves
whether continual learning over small non-i.i.d. batches is feasible without replay.

This section introduces two novel replay-free continual learning techniques, CWR*
and AR1*, that can learn effectively even when applied to the challenging NICv2-391
benchmark (described in Sec 2.2.2). In particular, experiments show that AR1* can
outperform other state-of-the-art replay-free techniques by more than 15% accuracy
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in some cases, with a very light and constant computational and memory overhead
across training batches.

While this section explains how the difficult NICv2-79, -196, and -391 benchmarks
can be tackled without replaying instances from past experiences, in Section 3.2 a
novel technique named Latent Replay is described, which can be easily integrated
into AR1*, CWR*, and other popular algorithms (such as LwF) as well.

3.1.1 Evolving AR1 and CWR

In [103] it was shown that a simple approach like CWR+, where the fully connected
layer is implemented as a double memory, is quite effective to control forgetting in
the NC scenario. However, after the first training batch, CWR+ freezes all the layers
except the last one, thus losing the benefit of an incremental adaptation of the un-
derlying representation. AR1 [103] was then proposed to extend CWR+ by enabling
end-to-end continual training throughout the entire network; for this purpose, the
Synaptic Intelligence [189] regularization approach (similar to EWC [79]) is adopted
to constrain the change of critical weights.

In the following subsections we:

1. show how we adapted CWR+ to tackle NIC scenarios, thus making it able to
reload past weights for already known classes and to adapt them with weight-
ed contributions from different batches. As AR1 incorporates CWR+ in its
main algorithm, this modification will result in the CWR* and AR1* continual
learning strategies (Section 3.1.1).

2. show that, in a complex scenario with small and non-i.i.d. batches, Batch Nor-
malization layers thwart the continual learning process, and replacing them
with Batch Renormalization [70] can effectively tackle this problem (Section
3.1.1).

3. propose a selective weight freeze for the CNN models adopting Depth-Wise
Separable Convolutions. We show that altering spatial filters has a strong im-
pact in terms of forgetting (Section 3.1.1).

4. reduce the computational and storage complexity of AR1 (and in general
of EWC-like approaches), by introducing an alternative way to implement
weights update starting from the Fisher matrix (Section 3.1.1).

While 1. is specific to CWR+, 2., 3. and 4. can be applied to several other CL ap-
proaches as well.

From CWR+ to CWR*

CWR+, whose pseudo-code is reported in Algorithm 2 of [103] and in Algorithm 5
in the appendix, maintains two sets of weights for the output classification layer: cw
are the consolidated weights used for inference and tw the temporary weights used
for training; cw are initialized to 0 before the first batch and then iteratively updated,
while tw are reset to 0 before each training batch.

In Algorithm 2, we propose an extension of CWR+ called CWR* which works under
both NC and NIC scenarios; in particular, under NIC the coming batches include
patterns of both new and already encountered classes. For already known classes,
instead of resetting weights to 0, we reload the consolidated weights (see line 7).



3.1. AR1* and CWR*: replay-free approaches 29

Furthermore, in the consolidation step (line 13) a weighted sum is now used: the first
term represents the weight of the past and the second term is the contribution from
the current training batch. The weight wpastj used for the first term is proportional

to the ratio pastj
curj

, where pastj is the total number of patterns of class j encountered
in past batches whereas curj is their count in the current batch. In case of a large
number of small non-i.i.d. training batches, the weight for the most recent batches
may be too low thus hindering the learning process. In order to avoid this, a square
root is used in order to smooth the final value of wpastj.

Algorithm 2 CWR* pseudocode: Θ̄ are the class-shared parameters of the representation
layers; the notation cw[j] / tw[j] is used to denote the groups of consolidated / temporary
weights corresponding to class j. Note that this version continues to work under NC, which
is seen here a special case of NIC; in fact, since in NC the classes in the current batch were
never encountered before, the step at line 7 loads 0 values for classes in Bi because cwj were
initialized to 0 and in the consolidation step (line 13) wpastj values are always 0.

1: procedure CWR*
2: cw = 0
3: past = 0
4: init Θ̄ random or from pre-trained model (e.g. on ImageNet)
5: for each training batch Bi:
6: expand output layer with neurons for the new classes in Bi never seen before

7: tw[j] =

{
cw[j], if class j in Bi

0, otherwise
8: train the model with SGD on the si classes of Bi:
9: if Bi = B1 learn both Θ̄ and tw

10: else learn tw while keeping Θ̄ fixed
11: for each class j in Bi:

12: wpastj =

√
pastj
curj

, where curj is the number of patterns of class j in Bi

13: cw[j] = cw[j]·wpastj+(tw[j]−avg(tw))
wpastj+1

14: pastj = pastj + curj
15: test the model by using Θ̄ and cw

Replacing Batch Normalization with Batch Renormalization

Batch Normalization (BN) [71] is widely used in modern deep neural networks to
control internal covariate shift, thus making learning faster and more robust. In BN
the mini-batch moments (i.e., mean µmb and variance σ2

mb) are used to normalize the
input values xi as:

x̂i =
xi − µmb√

σ2
mb + ε

(3.1)

where ε is a small constant added for numerical stability, and the normalization is
per-channel. However, if mini-batches are small and/or non-i.i.d., the mini-batch
moments are not stable and BN can fail. A natural solution to reduce the moment
fluctuations would be replacing µmb, σ2

mb with global values µ, σ computed as mov-
ing averages over an initial (large-enough) training batch. After all, this is the stan-
dard approach when switching from training to inference. However, as argued in
[71], using moving averages to perform the normalization during training does not
produce the desired effects since gradient optimization and the normalization coun-
teract each other, possibly leading the model to diverge.
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Batch Renormalization (BRN) was proposed in [70] to deal with small and non-i.i.d.
mini-batches. In BRN the normalization takes place as follows:

x̂i =
xi − µmb

σmb
· r + d (3.2)

r =
σmb

σ
, d =

µmb − µ

σ
(3.3)

where µ, σ are computed as moving averages during training. By expanding r and
d in the equation 3.2, we obtain x̂i =

xi−µ
σ which clearly highlights the dependency

on the global moments. A further step is suggested in [70] to clip r in [ 1
rmax

, rmax] and
d in [−dmax, dmax]. It is worth noting that when r = 1 and d = 0, then BRN≡BN;
hence, by properly setting rmax and dmax the behavior of BRN can be moved from a
pure BN to a more stable normalization based on global statistics. In practice, the
author of [70] recommend to perform an initial stage by keeping rmax = 1, dmax = 0
in order to stabilize the moving averages µ, σ and then progressively increasing rmax
and dmax to 3 and 5, respectively.

Continual learning over small batches is an emblematic case of small and non-i.i.d.
minibatches. For example, in NICv2-391 (described in Section 2.2.2) each training
batch includes 300 patterns from a single class, and even using a mini-batch size of
300 (the full batch) patterns remain strongly correlated. Our first attempts to learn
continuously over a so long sequence of one-class batches were unsatisfactory. Even
for the most accurate strategies (e.g., AR1*) accuracy slightly increased in the first
batches from 13% to 15% but then remained steady and lower than 16-17%. We ini-
tially thought that the reason was the single-class mini-batches, making the problem
a sort of one-class classification with no negative examples. However, upon replace-
ment of BN with BRN and a proper parametrization, we were able to continuously
learn over small batches with unexpected efficacy (see Section 3.1.2).

Depthwise Layer Freezing

Depth-Wise Separable Convolutions (DWSC) are quite popular nowadays in many
successful CNN architectures such as MobileNet [66, 149], Xception [26], Efficient-
Net [166]. Classical filters in CNN are shaped as 3D volumes. For example, a
5×5×32 filter spans a spatial neighborhood of 5×5 along 32 feature maps; on the
contrary, in DWSC we first perform 32 5×5×1 spatial convolutions (an independent
convolution on each feature maps) and then combine results with a 1×1×32 filter
working as a feature map pooler. Advantages in terms of computation and weight
reduction have been pointed out by several researchers.

Inspired by previous findings with Hierarchical Temporal Memories [137, 104]
where gradient descent by HSR only affects coincidence pooling, here we propose
to fine-tune DWSC architectures by freezing depthwise spatial filters and leaving
pointwise poolers free to learn. We speculate that modifying a spatial filter (i.e. the
way a local neighborhood is processed) can be detrimental in terms of forgetting
during continual learning because it alters the semantics of what upper layers have
already learned; on the other hand, feature map pooling, which can be seen as a way
to promote feature invariance, is less prone to concept drifts.
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FIGURE 3.1: Continual Learning on CORe50, SIT - NI scenario. In the NI scenario,
all the 50 classes are discovered in the first batch and successive training batches pro-
vide new instances of the already known classes; however, since past instances are
not retained, the incremental process is prone to forgetting. In this experiment, a
MobileNet (pre-trained on ImageNet) is incrementally tuned (naive strategy) over 8
batches with different weight freeze strategies. Each curve is averaged over 10 runs

where the batch order is randomly permuted.

A simple experiment is illustrated in figure 3.1, where a MobileNet is incrementally
fine-tuned on the 8 learning batches of CORe50, SIT - NI scenario [95]. Here, no spe-
cific measure is put in place to control forgetting except early stopping the gradient
descent after 1 epoch (naive strategy). The four curves denote the classification accu-
racy when: i) all the weights are tuned; ii) weights of depthwise convolution layers
are frozen; iii) weights of pointwise convolution layers are frozen; iv) weights of all
convolution layers are frozen. Note that weights of fully connected layers (e.g. out-
put layer) are never frozen. The proposed strategy (case ii) achieves the best result
and, with respect to a full tuning, allows skipping some gradient computations and
can reduce the amount of memory used to store weight-associated data1. The com-
plementary strategy (case iii) is the worst one, thus confirming that altering spatial
filters has a strong impact in terms of forgetting.

1In per-weight adaptive learning rate methods (such as Adam [78]) extra values (i.e. running av-
erages) need to be stored for each “free” weight. Further, if a regularization method based on Fisher
matrix is used (such as EWC [79]) we need to store the optimal value for previous tasks and the Fisher
value for each weight.
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Weight Constraining by Learning Rate Modulation

The Elastic Weight Consolidation (EWC) approach [79] tries to control forgetting by
selectively constraining the model weights which are deemed to be important for
the previous tasks. To this purpose, in a classification approach, a regularization
term is added to the conventional cross-entropy loss, where the weights θk of the
model are pulled back to their optimal value θ∗k with strength Fk proportional to
their importance for the past:

L = Lcross(·) +
λ

2
·∑

k
Fk · (θk − θ∗k )

2. (3.4)

Synaptic Intelligence (SI) [189] is a lightweight variant of EWC where, instead of
updating the Fisher matrix F at the end of each batch2, Fk are obtained by integrating
the loss over the weight trajectories exploiting information already available during
gradient descent. For both approaches, the weight update rule corresponding to
equation 3.4 is:

θ
′
k = θk − η · ∂Lcross(·)

∂θk
− η · Fk · (θk − θ∗k ) (3.5)

where η is the learning rate. This equation has two drawbacks. Firstly, the value
of λ must be carefully calibrated: if its value is too high, the optimal value of some
parameters may be overshot, leading to divergence (see discussion in Section 2 of
[103]). Secondly, two copies of all model weights must be maintained to store both
θk and θ∗k , leading to double memory consumption for each weight. To overcome the
above problems, we propose to replace the update rule of equation 3.5 with:

θ
′
k = θk − η · (1− Fk

maxF
) · ∂Lcross(·)

∂θk
(3.6)

where maxF is the maximum value for weight importance (we clip to maxF the Fk
values larger than maxF). Basically, the learning rate is reduced to 0 (i.e., complete
freezing) for weights of highest importance (Fk = maxF) and maintained to η for
weights whose Fk = 0. It is worth noting that these two updated rules work dif-
ferently: the former still moves weights with high Fk in the direction opposite to
the gradient and then makes a step in direction of the past (optimal) values; the lat-
ter tends to completely freeze weights with high Fk. However, in our experiments
with AR1, the two approaches lead to similar results, and therefore the second one
is preferable since it solves the aforementioned drawbacks.

3.1.2 Experimental Results

We run several experiments on CORe50 NICv2, to validate the approaches intro-
duced in Section 3.1.1 and to compare them with a naive baseline and three state-of-
the-art replay-free approaches. In particular, for all the experiments, the following
techniques have been considered:

• CWR*: the extension of CWR+ introduced in Section 3.1.1.
2In this paper, for the EWC and AR1 implementations we use a single Fisher matrix updated over

time, following the approach described in [103].
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• AR1*: the approach introduced in [103], here implemented by replacing CWR+
with CWR* and by adopting the weight constraining by learning rate modula-
tion introduced in Section 3.1.1.

• Naive: a baseline technique where we simply continue gradient descent along
the training batches and the only measure to control forgetting is early stop-
ping.

• EWC and LFW: the techniques originally introduced in [79] and [92] and adapt-
ed to continual learning in SIT scenario as detailed in [103].

• DSLDA: the strategy recently proposed in [59], where an on-line extension of
the Linear Discriminant Analysis (LDA) classifier [133] is trained on top of a
fixed deep learning feature extractor. DSLDA obtained state-of-the-art accu-
racy on CORe50 (10 categories setting) [59], even outperforming replay-based
techniques such as iCaRL [135] and ExStream [58].

• Cumulative: the upper bound, in which the model is trained on the union of
the current batch and all the past data.

For all the experiments we used a MobileNet v1 [66] with: width multiplier = 1,
resolution multiplier = 0.5 (input 128 × 128), pre-trained on ImageNet. MobileNet
architectures provide a good tradeoff in terms of accuracy/efficiency and, in our
opinion, are well suited for porting continual learning at the edge.

For all the above techniques the MobileNet v1 architecture was modified by replac-
ing the 27 Batch Normalization layers with corresponding Batch Renormalization
layers and using (for training) a mini-batch size of 128 patterns. We used Batch
Renormalization implementation for Caffe [73] made available in [13]. This modi-
fication improves the accuracy of all the methods, making CWR* and AR1* able to
learn also in the case of 391 single class batches. Batch Renormalization hyperpa-
rameters and their schedule have been experimentally set as follows:

• Batch 1: for the first 48 iterations we keep rmax = 1, dmax = 0 to startup the
global moments; then, we progressively move rmax to 3 and dmax to 5 (as sug-
gested in [70]). The weight of the past when updating the moving averages
was set to 0.99, as suggested for (1− α) in [70].

• Subsequent batches: global moments computed on batch 1 are inherited by
batch 2 and slowly updated across the batch sequence. In this case, we noted
that continual learning over small non-i.i.d. batches benefits from more sta-
ble moments, and therefore the weight of the past for updating moving aver-
ages was set to 0.9999. Here we have no startup phase for the global moment
so the values of rmax and dmax are kept fixed across all the iterations of the
batches. While using the suggested values of rmax = 3 and dmax = 5 still works,
we noted that reducing them (i.e. relaxing batch renormalization constraints)
brings some befits. More details about the experiments and the hyperparame-
ters used are provided in the appendix.

For all the techniques we also applied depthwise layer freezing (as introduced in
Section 3.1.1) starting from Batch 2. This can be simply implemented by setting the
learning rate to 0 for the 14 non-pointwise convolution layers (13 depthwise + 1
3D) in MobileNet v1 architecture. While in NICv2 experiments this had a negligible
impact on the accuracy, we found it can be advantageous in other scenarios (see
NI curves in Figure 3.1) and, in general, this reduces computations/storage during
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FIGURE 3.2: Continual learning accuracy along the incremental training experiences
over NICv2-79, NICv2-196, and NICv2-391. None of the methods compared uses
replay techniques. Naive refers to a simple approach where the model is tuned along
the experiences and the only protection against forgetting is early stopping. LWF and
EWC are well-known methods for CL (see [92, 79]). DSLDA is a recently proposed
streaming continual learning approach [59]. The black dashed line denotes the “upper
bound” accuracy achieved by the Cumulative approach (a full training on the entire
dataset). Each experiment was averaged on 10 runs. Colored areas represent the

standard deviation of each curve3.

SGD (fewer gradient calculations, lower memory to accumulate per weight extra-
data, etc.).

Figure 3.2 shows the results of our experiments on NICv2-79, NICv2-196, and
NICv2-391. The curves are averaged over 10 runs where the training batch order
is randomly shuffled. Hyperparameters of the methods have been coarsely tuned
(i.e., without any systematic grid search) on run 0 and then kept fixed for the other
9 runs.

It can be noted that CWR* and AR1* show a very good learning trend across training
batches, with only a minor drop in accuracy when the batch granularity decreases.
The accuracy near linearly increases for most of the batches and slows down in the
final part of the sequences; we believe this is not caused by the saturation of learning
capabilities but is more likely due to the absence of examples of new classes in the
final part of the sequences (see Figure 2.2.1b). Standard deviation across runs is also
quite small denoting good stability. Naive, LWF, and EWC exhibit fair performance
on 79 batches but their efficacy significantly decreases with 196 batches and are not
able to learn in the most challenging case of 391 single-class batches. DSLDA accu-
racy is quite good and stable but remains lower than CWR* and AR1* in all three
settings. The advantage of AR1* over CWR* (due to the extra freedom to improve
the representation) reduces as the batch size decreases and is null for 391 batches.
We speculate that, in this case, the gradient steps induced by small and highly non-
i.i.d. mini-batches tend to overfit the mini-batches themselves with no improvement
in terms of generalization.

Figure 3.3 compares AR1* accuracy in the configuration with Batch Normalization
and Batch Renormalization. It is evident that for 391 batches Batch Normalization
heavily hurt the learning capabilities. However, it is worth noting that Batch Renor-
malization brings some advantages to continual learning even when using larger
batches that may include patterns from more than one class.
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FIGURE 3.3: Comparing AR1* accuracy results in the Batch Normalization vs Batch
Renormalization configurations on the three NICv2 benchmarks.

3.1.3 Performance analysis

In order to better understand and compare the performance of the proposed con-
tinual learning strategies, in Table 3.1 we also report the total run time, the maxi-
mum external memory size (where patterns from previous batches are stored), and
the number of additional trainable parameters introduced while learning across the
NICv2-391 batches. All the metrics are averaged across 10 runs.

Memory Overhead
Strategy Run Time (m) Data (MB) Params (MB)

CWR* 21,4 0 0,2
Naive 25,6 0 0
LWF 27,8 0 0
EWC 31,2 0 24,4
AR1* 39,9 0 12,2
DSLDA 79,1 0 0,2
Cumul. 2826,2 4712,3 0

TABLE 3.1: Total run time (in minutes, for both training and test), memory over-
head (in terms of maximum data storage for replay and number of additional train-
able parameters introduced) for each strategy on the NICv2-391 protocol. Please note
that: (i) all the replay-free strategies hereby listed have a constant memory / computa-
tional overhead which is fixed and independent from the number of training batches
processed; (ii) the Cumulative metrics are computed considering a re-training from

scratch after each incremental batch.

Replay-free approaches show a remarkable advantage w.r.t. the cumulative upper
bound (where the model is re-trained from scratch after each incremental batch on
the cumulated data), both in terms of speed-up and in terms of total memory over-
head. Among them, AR1* shows the best trade-off between accuracy and efficiency
with about 40 minutes to complete the run and a fixed memory overhead of only
12.4 MB for handling the additional parameters of the learning rate modulation in-
troduced in Section 3.1.1. We would also underline that the current Synaptic Intelli-
gence implementation embedded in AR1* is not optimized (gradient is recomputed
in python outside the Caffe framework) without exploiting the data already avail-
able from SGD. We believe that upon proper optimization, AR1* efficiency can be
very close to Naive one.
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Finally, it is worth noting that the advantage of weight constraining by learning
rate modulation (introduced in Section 3.1.1) for AR1* is negligible in terms of accu-
racy (less than 0.1% average improvement in NICv2-79) but relevant in terms of per
weight storage since we do not need to store about 3,2 million θ∗k values.

3.1.4 Remarks on AR1* and CWR*

The aforementioned results show that replay-free continual learning techniques can
learn over long sequences of small and highly correlated batches, even in the chal-
lenging case of one class at a time. In fact, CWR* and AR1* showed a good (near-
linear) learning trend across the training batches and proved to be very robust even
with small one-class batches. On the other hand, well-known CL techniques such
as EWC and LWF are not able to learn effectively in our experiments. We specu-
late that: (i) a regularization technique alone is not effective to protect important
weights in the upper levels when dealing with a large number of small batches; (ii)
learning the upper layer(s) “in isolation”, as CWR* and AR1* do, is very important
for continual learning, especially in SIT setting. DSLDA, which recently achieved
state-of-art accuracy on some continual learning benchmarks, performed quite well
in our experiments, but its accuracy and efficiency are lower than CWR* and AR1*.

Of course, when approaching such complex scenarios, other continual learning tech-
niques should be considered. For example, here we did not compare AR1* and
CWR* with replay-based approaches such as iCaRL [135] and GEM [99] because,
even if using an external memory to store past data may simplify the task, it brings
drawbacks in terms of extra storage/computations. Actually, some preliminary
comparisons of CWR+, AR1, and DSLDA with replay-based approaches had al-
ready been reported in [103] and [59] for CORe50 (NC scenario) showing that the
proposed replay-free approaches are still competitive when a moderate number of
patterns is maintained in the external memory by iCaRL and GEM (2,500-4,500 train-
ing images). Another interesting technique, reporting good results on CORe50, is
the Dual-Memory Recurrent Self-Organization proposed in [116]: however, the re-
sults included in that work are not directly comparable with our achievements be-
cause the aforementioned approach also exploits the temporal dimension of CORe50
videos (by using temporal windows instead of single frames).

3.2 Latent Replay: an efficient replay mechanism

Training on the edge (e.g., on light computing devices such as smartphones, smart
cameras, embedded systems, and robotic platforms) is highly desirable in several
applications where privacy, lack of network connection, and fast adaptation are real
constraints. While some steps in this direction have been recently moved [90], train-
ing on the edge often remains unfeasible. In fact, given the high demand in terms of
memory and computation, most machine learning models nowadays are trained on
powerful multi-GPU servers, and only frozen models are deployed to edge devices
for inference.

Furthermore, in some applications (e.g., robotic vision, see Figure 3.10), training a
deep model from scratch as soon as new data becomes available is prohibitive in
terms of storage/computation even if performed server-side. Continual learning
techniques, where complex models are incrementally trained on small batches of
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FIGURE 3.4: Architectural diagram of Latent Replay.

new data, can make the learning problem tractable even for CPU-only embedded
devices enabling remarkable levels of adaptiveness and autonomy.

AR1* and CWR*, which are replay-free, showed good results in tackling the complex
NICv2 benchmarks without exploiting replay techniques (see Section 3.1.2). While
those results are encouraging, the top accuracy reached by AR1* at the end of the
training sequence is in the range of 55-65% depending on the batch granularity, and
the gap w.r.t. cumulative training (∼85%) exploiting all the data at one time is quite
relevant (>20%, see Figure 3.2). Patterns replay proved to be an effective approach to
contrast forgetting in continual learning scenarios [135, 99, 143, 125]. Periodically re-
playing some representative patterns from old data helps the model retain important
information from past tasks/classes while learning new concepts. iCaRL [135] uses
well-designed entry/exit criteria (denoted as herding) to maintain a class-balanced
set of exemplars that maximize representativeness. For this purpose, we show that
a small amount of pattern replay is sufficient to significantly improve accuracy on
the NICv2-391 benchmarks (Section 3.2.1). For completeness, another class of replay
techniques named Generative Replay (also known as “Pseudo-rehearsal” [142]) exists,
where surrogates of past data are generated without explicitly storing raw instances.
These techniques look very appealing because of the storage saving; however, most
of the proposed approaches to date do not allow online generation of effective replay
patterns.
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No matter which specific replay technique is employed, replay mechanisms intro-
duce both memory (storage) and computational overhead. For standard replay tech-
niques, the memory occupation depends on the dimensionality and on the number
of instances to be stored in the replay buffer, which may be an issue when handling
high dimensional data streams. On the computation side, the constant refresh sig-
nificantly increases the required amount of computational resources because of the
extra forward and backward steps and this makes the resulting training too resource-
demanding for real-time applications. In general, replay is difficult to apply on edge
devices, where both storage and computational resources may be limited.

Starting from the results of AR1* and CWR* described in Section 3.1, and consid-
ering the preliminary results obtained by applying a simple replay mechanism, we
designed the Latent Replay technique. Different from AR1* and CWR*, Latent Re-
play is a more general technique that can be used to handle replay in conjunction
with existing continual learning algorithms.

When designing the Latent Replay technique, our goal was to reduce as much as possi-
ble the gap w.r.t. the cumulative upper bound and, at the same time, to provide an efficient
implementation strategy of CL approaches to enable nearly real-time training on the edge.

In Section 3.2.3 we compare our approach with several continual learning algorithms
and show its advantages in reaching state-of-the-art performances on two different
benchmarks: CORe50 (NICv2 benchmarks) and OpenLORIS. In addition, we show
that latent activations can be sparsified and compressed with almost no accuracy
reduction, thus allowing for a reduction of the space used to store the replay buffer.

Apart from the theoretical and experimental results here described, this technique
was successfully used to enable continual learning on smartphone devices (Section
5.1), and to enable continual learning on ultra-low-power embedded boards (Section
5.2). In addition, we used Latent Replay in conjunction with LwF [92] in the contin-
ual learning competition held at IROS 2019 (more info in Sections 3.2.3 and 5.4.1),
obtaining 2nd place in the Object Classification track.

3.2.1 Native Replay

In [103] it was shown that a very simple replay implementation (hereafter denoted as
native rehearsal or native replay), where for every training batch a random subset of the
batch patterns is added to the external storage to replace a (equally random) subset
of the external memory, is not less effective than more sophisticated approaches such
as iCaRL. Therefore, we opted for simplicity and started by expanding CWR* and
AR1* with the trivial replay approach summarized in Algorithm 3. In Figure 3.5
we compare the learning trend of CWR* and AR1* of a MobileNetV14 trained with
and without replay on CORe50 NICv2-391. We use the same protocol and hyper-
parameters introduced in Section 3.1 and a replay buffer of 1500 patterns. It is well
evident that even a moderate external memory (about 1.27% of the total training set)
is very effective to improve the accuracy of both approaches and to reduce the gap
with the cumulative upper bound that for this model is ∼85%.

To understand the influence of the external memory size we repeated the experiment
with different RMsize values: 500, 1000, 1500, and 3000. Since replay itself protects
the model from forgetting, we also run AR1* (where important weights of lower

4The network was pre-trained on ImageNet-1k.
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Algorithm 3 Pseudocode explaining how the external memory RM is populated across the
training batches. Note that the amount h of patterns to add progressively decreases to main-
tain a nearly balanced contribution from the different training batches, but no constraints
are enforced to achieve a class-balancing.

1: RM = ∅
2: RMsize = number of patterns to be stored in RM
3: for each training batch Bi:
4: train the model on shuffled Bi ∪ RM

5: h =
RMsize

i
6: Radd = random sampling h patterns from Bi

7: Rreplace =

{
∅ if i == 1
random sample h patterns from RM otherwise

8: RM = (RM− Rreplace) ∪ Radd

layers are protected from forgetting by using Synaptic Intelligence [189] regulariza-
tion) without Synaptic Intelligence protection, that is lower layers weights are left
totally unconstrained; in the following, we denote this approach as AR1*free. The
results are shown in Figure 3.6: it is worth noting that increasing the replay memory
leads to better accuracy for all the algorithms, but the gap between 1500 and 3000 is
not large and we believe 1500 is a good trade-off for this dataset. AR1*free works
slightly better than AR1* when a sufficient number of replay patterns are provided
but, as expected, accuracy is worse with light (i.e. RMsize = 500) or no replay.

It is worth noting that the best combination in Figure 3.6 (AR1*free with 3000 pat-
terns) is only 5% worse than the cumulative upper bound and a better parametriza-
tion and exploitation of the replay memory could further reduce this gap.

3.2.2 Latent Replay

In deep neural networks the layers close to the input (often denoted as repre-
sentation layers) usually perform low-level feature extraction and, after a proper
pre-training on a large dataset (e.g., ImageNet), their weights are quite stable and
reusable across applications. On the other hand, higher layers tend to extract class-
specific discriminant features and their tuning is often important to maximize accu-
racy.

With latent replay (see Figure 3.4) we denote an approach where, instead of main-
taining copies of input patterns in the external memory in the form of raw data, we
store the activations at a given layer (denoted as Latent Replay layer). To keep the
representation stable and the stored activations valid we propose to slow down the
learning at all the layers below the latent replay one and to leave the layers above
free to learn at full pace. In the limit case where lower layers are completely frozen
(i.e., slow down to 0) latent replay is functionally equivalent to replaying from the
input, but achieves a computational and storage saving thanks to the smaller frac-
tion of patterns that need to flow forward and backward across the entire network
and the typical information compression that networks perform at higher layers.

In the general case where the representation layers are not completely frozen, the ac-
tivations stored in the external memory suffer from an aging effect (i.e., as the time
passes they tend to increasingly deviate from the activations that the same pattern
would produce if feed-forwarded from the input layer). However, if the training of
these layers is sufficiently slow, the aging effect is not disruptive since the external
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FIGURE 3.5: Comparison of CWR* and AR1* on CORe50 NICv2-391 with and without
rehearsal (RMsize = 1500). Each experiment was averaged on 5 runs with different
batch ordering: colored areas represent the standard deviation of each curve. The

black dashed line denotes the reference accuracy of the cumulative upper bound.

memory has enough time to be rejuvenated with fresh patterns. When latent replay
is implemented with mini-batch SGD training: (i) in the forward step, a concatena-
tion is performed at the replay layer (on the mini-batch dimension) to join patterns
coming from the input layer with activations coming from the external storage; (ii)
the backward step is stopped just before the replay layer for the replay patterns.

3.2.3 Experiments and Results

Hereafter, while the proposed latent replay approach is architecture agnostic, we
discuss its specific design with several continual learning algorithms CWR*, AR1*,
AR1*free, and LWF over a MobileNet [66] pre-trained on ImageNet-1K. We compare
our latent replay approach with other state-of-the-art techniques on benchmarks
based on CORe50 [95] and OpenLORIS [158].

Experiments on CORe50 NICv2-391

For the CORe50 experiments:
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FIGURE 3.6: Comparison of CWR*, AR1*, and AR1*free on CORe50 NICv2-391 with
different external memory sizes (RMsize = 500, 1000, 1500 and 3000 patterns).

• we use a MobileNetV1 and focus on CWR* and AR1*, which have been already
proved to be competitive on this benchmark;

• for all the methods, the output layer (fc7) must be implemented as a dou-
ble memory with proper (pre)initialization and (post)fusion for each training
batch (for details see Section 3.1.1);

• for CWR*, the latent replay layer is the second-last layer (i.e., pool6);

• for AR1* and AR1*free, the latent replay layer can be pushed down and se-
lected according to the accuracy-efficiency trade-off discussed below;

• for AR1*free, the Synaptic Intelligence regularization is switched off.

To simplify the network design and training, we keep the proportion of original
and replay instances fixed: for example, if the training batches contain 300 instances
and the external memory 1500 instances, in a mini-batch of size 128 we concatenate
21 (128× 300/1800) original instances (of the current experience) with 107 (128 ×
1500/1800) replay instances. In this case, only 21 instances (over 128) need to travel
across the blue layers in Figure 3.4.

Concerning the learning slow-down in the representation layers, we found that an
effective (and efficient) strategy is blocking the weight changes after the first batch
(i.e., learning rate set to 0) while leaving the batch normalization moments free to
adapt to the statistics of the input instances across all the experiences. Following the
findings described in Section 3.1.1, in which it was shown that replacing BN with
Batch Renormalization (BRN) [70] is a very important element needed to achieve
handle fine-grained non-i.i.d. experiences, we replaced BN layers with BRN layers.
In the context of latent replay, if we leave the BRN moments free to adapt, the activa-
tions stored in the external memory suffer the aging effect described in Section 3.2.2.
However, we experimentally verified that, by proper setting of the global moment
mobile windows (more details are provided in Appendix B.2), the accuracy drop
due to the aging effect is quite limited and in any case the final accuracy is higher
w.r.t. the case where BRN moments in the representation layers are frozen. On the
computational side, blocking the weight changes in the representation layers allows
skipping the backward pass in the lower part of the network also for native patterns,
since updating the BRN moments only relies on the forward pass.

In Figure 3.7, we report the accuracy of AR1*free with latent replay (RMsize = 1500)
for different choices of the replay layer (reported between parenthesis). As expected,
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FIGURE 3.7: AR1*free with latent replay (RMsize = 1500) for different choices of the
latent replay layer. Setting the replay layer at the pool6 layer makes AR1*free equiv-
alent to CWR*. Setting the replay layer at the “images” layer corresponds to native
replay (same curve of Figure 3.6 for AR1*free and 1500 instances). The saturation
effect which characterizes the last training batches is due to the data distribution in
NICv2-391 (see [96]): in particular, the lack of new instances for some classes (whose
data was already introduced) slows down the accuracy trend and intensifies the effect

of activations aging.

when the replay layer is pushed down the corresponding accuracy increases, prov-
ing that a continual tuning of the representation layers is important. However, after
conv5_4/dw there is a sort of saturation and the model accuracy is no longer improv-
ing. The residual gap (∼4%) with respect to native rehearsal is not due to the weight
freezing of the lower part of the network, but to the aging effect introduced above.
This can be simply proved by implementing an “intermediate” approach that always
feeds the replay pattern from the input and stops the backward at conv5_4: such an
intermediate approach achieved an accuracy at the end of the training very close to
the native rehearsal. We believe that the accuracy drop due to the aging effect can be
further reduced by better tuning of BNR hyper-parameters and/or with the intro-
duction of a scheduling policy that can make the global moment mobile windows
wider as the continual learning progresses (i.e., more plasticity in the early stages
and more stability later).

On the Computation, Storage and Accuracy Trade-off To better evaluate the la-
tent replay w.r.t. native rehearsal, in Table 3.2 we report the relevant dimensions:
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(i) computation refers to the percentage cost in terms of operations of a partial for-
ward (from the latent replay layer on) relative to a full forward step from the input
layer; (ii) input size is the dimensionality of the instance to be stored in the external
memory (considering that we are using a MobileNetV1 with 128 × 128 × 3 inputs
to match CORe50 image size); (iii) accuracy and ∆ accuracy quantify the absolute
accuracy at the end of the training and the gap with respect to a native rehearsal,
respectively.

Layer Computation %
vs Native Rehearsal Instance Size Final Accuracy ∆ Accuracy %

vs Native Rehearsal

Images 100.00% 49152 77.30% 0.00%
conv5_1/dw 59.261% 32768 72.82% -4.49%
conv5_2/dw 50.101% 32768 73.21% -4.10%
conv5_3/dw 40.941% 32768 73.22% -4.09%
conv5_4/dw 31.781% 32768 72.24% -5.07%
conv5_5/dw 22.621% 32768 68.59% -8.71%
conv5_6/dw 13.592% 8192 65.24% -12.06%
conv6/dw 9.012% 16384 59.89% -17.42%
pool6 0.027% 1024 59.76% -17.55%

TABLE 3.2: Computation, storage, and accuracy trade-off with Latent Replay at
different layers of a MobileNetV1 ConvNet trained continually on NICv2-391 with
RMsize = 1500. Computation and instance size can be easily extrapolated from Table
B.1 in the appendix, where the network architecture is exploded by reporting neu-

rons, connections and weights at each layer.

For example, conv5_4/dw exhibits an interesting trade-off because the computation
is about 32% of the native rehearsal one, the storage is reduced to 66% (more on this
point in subsection 3.2.3) and the accuracy drop is mild (5.07%). CWR* (i.e. AR1*
with latent replay layer ≡ pool6) has a really negligible computational cost (0.027%)
with respect to native rehearsal and still provides an accuracy improvement of ∼4%
w.r.t. the non-replay case (∼60% vs ∼56% as can be seen in Figure 3.7 and Figure
3.6, respectively).

Reducing Activations Storage in Latent Replay Even if in our CORe50 case study
the external storage is quite limited (e.g., 1,500 × 32KB = 48 MB for latent replay
at conv5_4/dw), scaling up to applications with thousands of classes could require
storing much more activations and the external memory could become an issue.
Fortunately, activations of layers in the upper part of the model can be sparsified,
quantized, and encoded with almost no accuracy reduction. The authors of [47]
show that MobileNetV1 activations can be compressed up to 10 times upon proper
sparsification, encoding, and lossless entropy compression. In their experiments,
even a moderate compression leads to a slightly improved accuracy because of the
introduced regularization.

In the case of latent replay, we only need to sparsify the activations of the latent
replay layer (and not of the entire network), potentially introducing a sort of infor-
mation bottleneck. This can be easily achieved by adding an L1 term (with relative
weight) to the loss function attracting toward zero the activations of the latent re-
play layer (see [47]). We performed some preliminary experiments to sparsify ac-
tivations of layer conv5_4/dw during the first training experience starting from a
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FIGURE 3.8: Sparsification of conv5_4/dw activations for different values of α and the
corresponding accuracy after the first training batch.

non-sparsified ImageNet pre-trained model. Note that the weights of the latent re-
play layer and previous layers are frozen after the first training batch and no fur-
ther sparsification can take place. The results are shown in Figure 3.8: for α = 0
(i.e., no induced sparsification) ∼52% of activations are non-zero due to the natural
spasification effect of the Relu activation function and the accuracy is about 14%; as
we increase α, the amount of non-zero activation start decreasing. Interestingly, for
α = 0.004 we can reduce the non-zero activations from ∼52% to ∼37% by achieving
also a slight accuracy improvement (0.22%). By adding quantization and entropy
encoding (out of the scope of this work) we believe that, analogously to [47], a 10×
compression is at reach with almost no accuracy loss.

Comparison with Other Approaches While the accuracy improvement of the pro-
posed approach w.r.t. state-of-the-art replay-free techniques have been already dis-
cussed in previous sections, further comparison with other state-of-the-art continual
learning techniques may be beneficial for better appreciating its practical impact
and advantage. In particular, while AR1* and CWR* have been already proved to be
substantially better than LWF and EWC on the NICv2-391 benchmark, a comparison
with iCaRL, one of the best known replay-based techniques, is worth considering.

Unfortunately, iCaRL was conceived for incremental class learning scenarios and its
porting to NIC (whose batches also include instances of know classes) is not straight-
forward. To avoid subjective modifications, we started from the code shared by the
authors and emulated a NIC setting by: (i) always creating new virtual classes from
instances in the coming experiences; (ii) fusing virtual classes together when eval-
uating accuracies. For example, let us suppose to encounter 300 instances of class
5 in batch 2 and other 300 instances of the same class in batch 7; while two virtual
classes are created by iCaRL during training, when evaluating accuracy both classes
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FIGURE 3.9: Accuracy results on the CORe50 NICv2-391 benchmark of CWR*, AR1*,
DSLDA, iCaRL, AR1*free (conv5_4), and AR1*free (pool6). Results are averaged
across 10 runs in which the batches order is randomly shuffled. Colored areas in-
dicate the standard deviation of each curve. As an exception, iCaRL was trained only

on a single run given its extensive run time (∼14 days).

point to the real class 5. The hereby modified iCaRL implementation, with an ex-
ternal memory of 8000 instances (much more than the 1500 used by the proposed
latent replay, but in line with the settings proposed in the original paper [135]), was
run on NICv2-391, but we were not able to obtain satisfactory results. In Figure 3.9
we report the iCaRL accuracy over time and compare it with AR1*free (conv5_4/dw),
AR1* (pool6) as well as the top three performing replay-free strategies introduced
in Section 3.1: CWR*, AR1* and DSLDA. While iCaRL exhibits better performance
than LWF and EWC (as reported in Section 3.1.2), it is far from DSLDA, CWR*, and
AR1*.

Furthermore, when the algorithm has to deal with a so large number of classes
(including virtual ones) and training experiences, its efficiency becomes very low
(as also reported in [103]). In Table 3.3 we also report the total run time (training
and testing), memory overhead, and accuracy difference with respect to the cumula-
tive upper bound. We believe AR1*free (conv5_4/dw) represents a good trade-off in
terms of efficiency-efficacy with limited computational-memory overhead and only
a ∼13% distance from the cumulative upper bound. For iCaRL, the total training
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Strategy Run Time
(Minutes)

Mem. Overhead
(Data+Params, MB)

Final
Accuracy %

∆ Acc. %
vs Cumulative

CWR* 21.4 0 + 0.2 56.99% -28.27%
AR1*free (pool6) 23.7 5.8 + 12.4 59.75% -25.51%
AR1* 39.9 0 + 12.4 56.32% -28.94%
AR1*free (conv5_4/dw) 41.2 48 + 0 72.23% -13.03%
DSLDA 79.1 0 + 0.2 48.02% -37.24%
iCaRL 20185.0 375 + 0 15.65% -69.61%

TABLE 3.3: Summary of the computation, memory, and accuracy trade-off for each
strategy. Memory overhead includes both the data used for replay purposes as well
as additional trainable parameters needed for continual learning. Each metric is av-

eraged across 10 runs.

time was 14 days compared to a training time of less than 1 hour for the other tech-
niques.

Experiments on OpenLORIS

In order to show the general applicability of latent replay in different continual learn-
ing settings, we also report and compare its performance on the OpenLORIS dataset,
which has been used as the main benchmark in the recent IROS 2019 “Lifelong Robotic
Vision” competition [128].

OpenLORIS is particularly interesting for continual learning in the context of robotic
vision since its video sessions have been recorded on a real wheeled robot explor-
ing its environment (see Figure 3.10). In this case, however, the scenario is quite
different from CORe50 NICv2-391: it is based on a sequence of 12 relatively large
experiences (∼14,000 samples each) containing only new examples of the same 69
classes made available in the first experience (that is, a benchmark belonging to the
"New Instances" (NI) family, as described in Section 2.2). For this scenario:

• We use a MobileNetV2 [149] pre-trained on ImageNet-1k.

• We apply our latent replay approach to LWF [92], whose distillation steps
proved to be effective to continually learn over a moderate number or large
batches.

Seven finalists passed the first competition stage and submitted their solutions to the
organizers who finally produced the scoreboard reported in Table 3.4. The accuracy
of the proposed approach is just slightly lower than the top 1, but its inference time,
replay memory, and model size are significantly better. Since the challenge evalu-
ation criteria did not include specific metrics on training efficiency, unfortunately
from this experiment we cannot appreciate the training efficiency of our solution.

3.2.4 Remarks on Latent Replay

In this section, it has been shown that latent replay is an efficient technique that
can be used to continually learn new classes and new instances of known classes
even from small and non-i.i.d. batches. State-of-the-art CL approaches such as
AR1*, when extended with latent replay, can learn efficiently, and the achieved ac-
curacy is not far from the cumulative upper bound (about 5% in some cases). The
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OpenLORIS Challenge Results (7 finalists)

Strategy Final
Acc. %

Inference
Time (s)

Replay
Size (Sample)

Model
Size (MB)

SDU_BFA_PKU 99.56% 2,444.01 28,500 171.40
UniBo-Team (ours) 97.68% 22.41 1,500 5.90
HIK_ILG 96.86% 25.42 0 16.30
Vidit98 96.16% 112.2 13,000 9.40
NTU_LL 93.56% 4,213.76 0 467.10
Neverforget 92.93% 89.15 0 342.90
Guinness 72.9% 346.02 0 9.40

TABLE 3.4: Accuracy results at the end of the training and other metrics used for the
OpenLORIS challenge benchmark.

FIGURE 3.10: Wheeled robot used in the Lifelong Robotic Vision challenge at IROS 2019
[128] (left) and equipped with multiple sensors including two Real Sense cameras

(right).

computation-storage-accuracy trade-off can be defined according to both the target
application and the available resources so that even edge devices with no GPUs can
learn continually from short videos. In fact, latent replay can enable continual learn-
ing at the edge on smartphone devices and ultra-low-power embedded boards as
described in Sections 5.1 and 5.2 respectively.
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Chapter 4

The Avalanche Library

A sustained interest in a certain research topic naturally leads to the creation of tools
specifically designed to solve problems specific to that area. This reasoning can be
generically applied to any research area.

Firstly, a huge effort is carried out by the early investigators. Apart from the heavy
work concerning the initial theoretical efforts, they also need to implement their
ideas. For research in the Computer Science field, that means implementing the idea
as an experimental suite able to reproduce the expected results.

Secondly, a growing phase happens in which the research area is explored more ex-
tensively. During this phase, not only novel original solutions are designed, but the
boundaries of the area are incrementally delimited. The rise of different theoretical
solutions aimed at exploring the area in many original ways is a strong desiderata
for any field of human knowledge. On the contrary, the proliferation of too many
codebases, tools, and practices is hardly a desirable element.

Finally, the research area reaches a certain degree of maturity. This maturity leads
to the creation of tools that implement and consolidate the best and most common
practices.

For continual learning, the earliest efforts regarding the practical translation of re-
search ideas into code concerned the implementation of elements working with
(and often "around") mainstream Deep Learning frameworks such as Caffe, Theano-
Lasagne, TensorFlow, and PyTorch. Following the publication of the first papers and
the related open-sourced codebases, the community has some initial foundation on
which subsequent works can be built. However, it is not obvious for research groups
to adopt codebases written by other researchers. In fact, in a given field, if there is no
consensus on the tools to use (if they even exist at that moment), each research group
is usually tempted to implement their experimental suite from scratch, even if the
same building blocks and mechanisms could be found in other open-sourced code
bases. This has been quite evident in the continual learning field: during the growth
stage of the continual learning area, many research groups opted for implementing
their own solutions.

Apart from the lack of tools specifically designed for the task, the "roll-my-own"
approach was made necessary for two main reasons:

• The adoption of a varied set of Deep Learning frameworks. At the time contin-
ual learning started its early growth phase, many frameworks were still com-
peting for the role of mainstream tool for Deep Learning research (or they were
still widely used). Caffe, Theano-Lasagne, TensorFlow, and PyTorch have been
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the most used ones in the continual learning landscape. As of now, this choice
is much more restricted. Many libraries that were very popular until a few
years ago are now less used if not completely discontinued. The choice of the
Deep Learning framework to use is critical in the implementation of a contin-
ual learning code as it defines the degree of flexibility the researcher can count
on. Starting from this premise, it is easy to identify the reason why each re-
search group frequently implemented their ideas using different frameworks.

• The variety of the research landscape is another strong reason. The continual
learning area touches many elements of computer science and neuroscience
fields. With ambitious goals and little to no boundaries, research in the contin-
ual learning field quickly became very diversified in terms of goals, assump-
tions, benchmarks, and approaches. The diversification of research directions
in a field is a good measure of its maturity. If the field is not mature enough,
it is difficult to pinpoint the common building blocks and ideas upon which
codebases are built. Each research direction may be based on different assump-
tions and thus require a different approach to implement the code to carry out
experiments.

This made it difficult for continual learning researchers to adopt elements from other
codebases and, because of that, no consensus on common elements could be reached.
The choice of implementing a separate code base, each based on a different structure,
idea, and philosophy, led to a fragmentation of the continual learning landscape.
This, in turn, led to problems regarding the readability of the code and the repro-
ducibility of experiments.

There is always a good reason for a researcher to delve into other researchers’ code:
to reproduce the results of experiments, to understand a specific technique so that it
can be adapted and integrated into their novel solution, or even to just learn some-
thing new. In particular, for researchers, having their solution used and cited in
other researchers’ work is usually desirable. If the code accompanying a paper has
strong technological barriers, then the work may even get underappreciated despite
its theoretical soundness and good experimental results.

For instance, the first time the Latent Replay mechanism described in Section 3.2
was implemented, we decided to base the overall code on a customized version of
Caffe. The choice of using Caffe allowed us to port that technique into the CORe
Android application, which would not have been possible by using more modern
libraries like TensorFlow or PyTorch (more on this in Section 5.1). However, this
choice came at a cost: to make experiments reproducible, one had to manually install
relevant dependencies and build the customized Caffe library from scratch. Consid-
ering the quite complicated setup involved in this pipeline, we decided to release
a cuda-enabled dockerized version of the customized Caffe framework along with
experiments code to make things easier for other researchers. Despite our efforts to
make the code as accessible as possible by adding a comprehensive guide and helper
scripts, the attempts of adopting the latent replay idea by other researchers were hin-
dered by this technological barrier until a PyTorch version of it was released.

However, exceptions exist: the community might try to port particularly popu-
lar techniques to mainstream frameworks. However, these efforts may end up in
implementations returning results not aligned with the original ones. To give an-
other example, on a later occasion, we started an effort to port the iCaRL codebase
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for the Split-CIFAR experiments to PyTorch. We wanted to obtain an implementa-
tion perfectly aligned with the official one. However, while experiments on Split-
ImageNet were implemented using TensorFlow, experiments on Split-CIFAR were
implemented in Theano-Lasagne. Porting one deep learning code to a different li-
brary is not an easy task, especially if the starting codebase is based on legacy tools.
Many defaults are usually overlooked: weight initialization, minibatch padding,
bias initialization, how minibatches are ordered, how the batch normalization layers
statistics are updated, etcetera. Each default may be different in each deep learn-
ing library. Differences in these defaults become very pronounced when porting a
continual learning code, in which any minimal difference can lead to very different
results.

Finally, in this fragmented landscape, things could have been even more compli-
cated with the use of different programming languages. However, this problem did
not arise for continual learning. Fortunately, the area started to get popular at a mo-
ment in which Python was well established as the reference language for machine
learning and deep learning.

In the rest of this chapter, the desiderata and design principles for a continual learn-
ing library are discussed. This is followed by a description of the structure of the
Avalanche library, a community effort born inside the ContinualAI organization.

Finally, many libraries were being built at the same time (between the years 2020
and 2021), usually with one team not knowing about the other’s efforts. The most
known alternatives are described in the last part (Section 4.3) of this chapter.

4.1 Libraries for continual learning research

The teams that led the efforts towards the design and implementation of the first
general continual learning libraries started from the awareness that the continual
learning research field reached a sufficient degree of maturity and, from a code per-
spective, that the degree of fragmentation had become unmanageable. These are the
reasons why, during the second half of my Ph.D., we (the core Avalanche team) put
a huge effort into the design and implementation of the Avalanche library.

Writing a continual learning library is not an easy task. The continual learning re-
search landscape is very variegated: each direction and research niche is based on
its own set of abstractions. However, many elements are common to all continual
learning sub-areas (and thus codebases), which means that a comprehensive library
able to organize these building blocks organically is highly desirable. However, li-
braries may come in different flavors, they may be designed with different ideas in
mind, different philosophies, etcetera.

For instance, should the library be created by expanding an existing codebase re-
leased for a paper, or should it be created from scratch? Should the library be fo-
cused to solve a specific problem, or should it try to cover all aspects of continual
learning research? In addition, should the library pose constraints on how it is used?
Many libraries force a framework-alike vision, in which the user is forced to use the
library in a strict predefined way, while other libraries are more similar to a collection
of tools the user can freely use. And, of course, many "in-betweens" exist. Should
the library be tailored exclusively for research purposes or to a "research plus pro-
duction" one? Finally, the group of users who will use the library should be clearly
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defined from the beginning: will the library be used internally (in a research group,
institution, etcetera), or is it aimed at the general public?

Writing a library for such a wide research area requires a lot of effort. Starting with
clear ideas about the aforementioned elements is essential for the success of the ef-
fort. For Avalanche, we decided to implement the library from scratch with the
idea of creating a library for the general public. In fact, Avalanche was designed
to provide a shared and collaborative code base for fast prototyping, training, and
reproducible evaluation of continual learning algorithms. However, to answer the
other questions, one must first have in mind a well-defined list of desiderata for the
library. Based on those, one can easily extract the design principles that guide the
design and implementation processes.

4.1.1 Desiderata and Design Principles

Avalanche has been designed with five main principles in mind: i) Comprehensiveness
and Consistency; ii) Ease-of-Use; iii) Modularity (and Independence); iv) Modularity (and
Independence); iv) Reproducibility and Portability; v) Efficiency and Scalability. These are
important for any continual learning project, but they become essential for tackling
the most interesting research challenges and real-world applications.

Comprehensiveness The Avalanche library was created to be as general as possi-
ble. In other words, a desideratum for a continual learning library is to support as
many research directions as possible, including the most exotic approaches. This is
the reason why the main design principle for Avalanche follows from the concept of
comprehensiveness, the idea of providing an exhaustive and unifying library with end-
to-end support for continual learning research and development. A comprehensive
codebase does not only provide a unique and clear access point to researchers and
practitioners working on the topic, but also favors consistency across the library, with
a coherent and easy interaction across modules and sub-modules. Last but not least,
it promotes the consolidation of a large community able to provide better support
for the library.

Modularity In practice, apart from the goal of supporting many research direc-
tions, the comprehensiveness principle has an additional implication: to be com-
prehensive, the library should cover all the macro-blocks usually involved in a re-
search code: data loading, model definition, training, evaluation, and logging. This
is why modularity is another fundamental design principle (and desideratum). In
Avalanche, simplicity is sometimes bent in favor of modularity and reusability. This
is essential for scalability and to collaboratively bring the codebase to maturity.

Ease-of-Use The third desideratum is simplicity: to offer simple solutions to com-
plex problems and to enable for a simple usage of the library. This desideratum is
difficult to translate into a proper design principle.

The ease of use may be heavily undermined when posing strict constraints on how
the library must be used. This is something that can easily happen when designing a
library that has to cover all the parts of the codebase. For instance, design decisions
regarding the training module may introduce heavy constraints on how the user
should use the evaluation or logging modules.
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Combining these first three desiderata (comprehensiveness, modularity, and ease-of-use)
is a particularly difficult task. This is why a particular focus on module independence
is maintained through Avalanche to guarantee the stand-alone usability of individ-
ual module functionalities. This design principle also facilitates the learning of a
particular module by new users. In addition, we concentrated our efforts on the
design of an intuitive Application Programming Interface (API), an official website,
and rich documentation with a curated list of executable notebooks and examples1.

Reproducibility and Portability Reproducing research paper results is a difficult
but much needed task in machine learning [69]. The problem is exacerbated in con-
tinual learning. A critical design objective of Avalanche is to allow experimental re-
sults to be seamlessly reproduced. This allows researchers to simply integrate their
own original research into the shared codebase and compare their solution with the
existing literature, forming a virtuous circle. Hence, reproducibility is not only a
core objective of sound and consistent scientific research but also a means to speed
up the development of original continual learning solutions.

Efficiency and Scalability Computational and memory requirements in machine
learning have grown significantly throughout the last two decades [170]. Standard
deep learning libraries such as TensorFlow [105] or PyTorch [120] already focus on
efficiency and scalability as two fundamental designing principles, since modern re-
search experiments can take months to complete [150]. Avalanche is based on the
same principles: offering the end-user a seamless and transparent experience re-
gardless of the use case or the hardware platform that the library is run on.

Other implied desiderata Given the aforementioned five fundamental points, it is
worth describing a few other desiderata directly derived from those.

Neutral terminology and naming conventions A desirable element in a continual
learning library is the use of neutral terminology and naming conventions. The
decisions we made for Avalanche are described in more detail in Section 4.2.1. This
has practical implications in the naming of modules, classes, methods, etcetera.

Easy to extend, readability of internals Avalanche is strongly modular not only
to allow for easier use of the library but also to allow users to extend the library for
their needs. However, extendability should be conceived at the design level (modu-
larity alone is not enough). In other words, extending the library should not require
the user to create a separate, customized copy of the library. In addition, extendabil-
ity shouldn’t happen by implementing workarounds. Instead, a properly designed
library should already expose mechanisms to allow for its extension. This is why
Avalanche was designed to cover all mainstream research directions and, for areas
in which it fails to do so, to provide mechanisms to adapt and extend the library
behavior. This is highly desirable, especially in the continual learning field, where
the research landscape is constantly evolving.

1

The official website, documentation, notebooks, and examples are available at https://avalanche.
continualai.org.

https://avalanche.continualai.org
https://avalanche.continualai.org
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Implement best practices, but allow for customization Finally, the user should be
able to fully customize the training flow. While a library may expose a recommended
template that brings together the best practices of the field, the user should be able
to customize every aspect of it.

Community-driven collaborative effort Another, non technical, fundamental
desiderata should be considered. Developing and maintaining an open-source
project usually implies some way to collaborate with users of the project so that
external contributions can be accepted to fix bugs and implement new features.
However, this is not mandatory. Many open-source projects may just be carried
out by a closed development team. For a continual learning library, the latest ap-
proach would mark its demise. Continual learning is a very variegated and contin-
ually evolving research area, which means that any continual learning library that
doesn’t receive a constant flow of contributions from the community will almost
surely be lagging behind in terms of supported benchmarks, models, training para-
digms, etcetera.

This is why the Avalanche project was conceived as a community-driven, collabora-
tive project. The project is powered and maintained by ContinualAI, a non-profit re-
search organization and, arguably, the largest open community on Continual Learn-
ing for AI.

To allow for an effective contribution flow from the community, the project is mainly
developed by a core team, with each member of the team in charge of maintaining
a single module. Contributions, questions, and issues about a specific module are
handled by the reference maintainer. At the same time, library-wide changes are dis-
cussed by all team members to allow for changes to be consistent across the project.

4.2 Avalanche: a comprehensive CL library

Avalanche is an open-source (MIT licensed) end-to-end library for continual learning
based on PyTorch [120], devised to provide a shared and collaborative codebase for
fast prototyping, training, and evaluation of continual learning algorithms.

4.2.1 Continual Learning Framework

Recently, we have witnessed a significant attempt to formalize a general (theoretical)
framework for continual learning algorithms [96, 98, 177]. These proposals often
categorize scenarios and algorithms based on their unique properties and specific
settings. However, as as just mentioned, within the formal design of Avalanche, we
take a different approach.

Given the fast-evolving, often conflicting views of the problem, we aimed to lower
the number of assumptions to a minimum, favoring simplicity and flexibility. In
practice, this translates into providing users with a set of building blocks that can be
used in any continual learning solution without imposing any strong nomenclature,
constraining abstractions, or assumptions.

In Avalanche, data is modeled as an ordered sequence (or stream) composed of n,
usually non-iid, learning experiences:

e0, e1, . . . , en.
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FIGURE 4.1: Operational representation of Avalanche with its main modules (top),
the main object instances (middle) and the generated stream of data (bottom). A
Benchmark generates a stream of experiences ei which are sequentially accessible by
the continual learning algorithm ACL with its internal model M. The Evaluator object
directly interacting with the algorithm provides a unified interface to control and
compute several performance metrics (pi), delegating results logging to the Logger(s)

objects.

A learning experience is a set composed of one or multiple samples which can be
used to update the model. This is often referred to in the literature as batch or task.
This formulation is general enough to be used in several continual learning contexts,
such as supervised, reinforcement, or unsupervised continual learning. Avalanche
provides a general set of abstractions that do not impose any particular constraints
on the content of the experiences. For example, in a supervised training regime,
each learning experience ei can be seen as a set of triplets 〈xi, yi, ti〉, where xi and yi
represent an input and its corresponding target, respectively, while ti is the task label,
which may or may not be available.

During training, a continual learning algorithm ACL processes experiences sequen-
tially and uses them to update the model and its internal state. In Avalanche, each
algorithm has a training mode, used to update the model, and an evaluation mode,
which may be used to process streams of experiences for testing purposes.

The continual learning framework we propose can be formalized as follows.

Definition (Continual Learning Framework). A continual Learning algorithm ACL
is expected to update its internal state (e.g. its internal model M or other data struc-
tures) based on the sequential exposure to a non-stationary stream of experiences
(e1, . . . , en). The objective of ACL is to improve its performance on a set of metrics
(p1, . . . , pm) as assessed on a test stream of experiences (et

1, . . . , et
n).

4.2.2 Main Modules

The library is organized into five main modules: Benchmarks (Section 4.2.2), Train-
ing (Section 4.2.2), Evaluation (Section 4.2.2), Models (Section 4.2.2), and Logging
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Supported features

Benchmarks Split/Permuted/Rotated MNIST [99], Split Fashion Mnist [40],
Split Cifar10/100/110 [135, 103], Split CUB200, Split Ima-
geNet [135], Split TinyImageNet [31], Split/Permuted/Rotated
Omniglot [151], CORe50 [95], OpenLORIS [158], Stream51 [141],
Split-iNaturalist [31], CTrL [178], Endless-Continual-Learning
Simulator [63].

Scenarios Multi Task [87], Single Incremental Task [87], Multi Incremen-
tal Task [87], Class incremental [135, 177], Domain Incremen-
tal [177], Task Incremental [177], Task-agnostic, Online, New In-
stances, New Classes, New Instances and Classes.

Strategies Naive (Finetuning), Replay, Joint Training, CWR* [96],
GDumb [126], Cumulative, LwF [92], GEM [99], A-GEM [20],
EWC [79], Synaptic Intelligence [189], AR1 [103], Less-Forgetful
Learning [75], Gradient-Based Sample Selection (replay) [4],
CoPE [29], iCarl [135], DeepSLDA [59].

Metrics Accuracy, Loss (user specified), Confusion Matrix, Forgetting,
CPU Usage, GPU usage, RAM usage, Disk Usage, Timing, Mul-
tiply, and Accumulate [72, 35].

Loggers Text Logger, Interactive Logger, CSVLogger, Tensorboard Log-
ger [105], Weights & Biases Logger [11].

TABLE 4.1: Avalanche supported features for the Beta release (v0.1.0).

(Section 4.2.2). Table 4.1 summarizes the features provided by Avalanche at the cur-
rent stage of development. In Figure 4.1, an operational representation of the li-
brary modules and their interplay within the aforementioned reference framework
is shown.

Benchmarks

Continual learning revolves around the idea of dealing with a non-stationary stream
of experiences. An example stream from the standard SplitMNIST benchmark [189]
composed of five experiences is shown in Figure 4.2. A target system powered by
a continual learning strategy is required to learn from experiences (e.g., by consid-
ering additional classes in a class-incremental setting [106]) in order to improve its
performance or expand its set of capabilities. This means that the component in
charge of generating the data stream is usually the first building block of a continual
learning experiment. It is no surprise that a considerable amount of time is spent
defining and implementing the data loading module. The benchmarks module of-
fers a powerful set of tools one can leverage to greatly simplify this process.

The term benchmark is used in Avalanche to describe a recipe that specifies how the
stream of data is created by defining the originating dataset(s), the contents of the
stream, the amount of examples, task labels, boundaries [3], etcetera. When defining
such elements, some degree of freedom is retained to allow obtaining different bench-
mark instances. For example, different instantiations of the SplitMNIST benchmark
[189] can be obtained by setting different class assignments. Alternatively, distinct
instances of the PermutedMNIST [50] benchmark can be obtained by choosing dif-
ferent pixel permutations.
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FIGURE 4.2: Example of a generated stream in Avalanche, composed by five expe-
riences, implementing the common SplitMNIST benchmark [189]. When accessing
experience e3, the continual learning algorithm has no access to previous or future

experiences.

The benchmarks module is designed with the idea of providing an extensive set
of out-of-the-box loaders covering the most common benchmarks (i.e. SplitCI-
FAR [135], PermutedMNIST [50], etc.) through the classic submodule. A simple
example illustrating how to use the “SplitMNIST” benchmark [189] is shown in Fig-
ure 4.3. Moreover, a wide range of tools to allow for the creation of customized
benchmarks is available. The goal is to provide full support to researchers imple-
menting benchmarks that do not easily fit into the existing categories.

Most out-of-the-box benchmarks are based on the dataset implementation provided
by the torchvision library. A proper implementation is provided for other datasets
(such as CORe50 [95], Stream-51 [141], and OpenLORIS [158]). The benchmark
preparation and data loading process can seamlessly handle memory-intensive
benchmarks, such as Split-ImageNet [135], without the need to load the whole
dataset into memory in advance.

Further, the benchmarks module is entirely standalone, meaning that it can be used
independently from the rest of Avalanche.

Benchmarks creation The benchmarks module exposes a uniform API that makes
it easy to define a new continual learning benchmark.

Classic Benchmarks

1 benchmark_instance = SplitMNIST(
2 n_experiences=5, seed=1)
3 # Other useful parameters
4 # return_task_id=False/True
5 # fixed_class_order=[5, 0, 9, ...]

FIGURE 4.3: Simple instantiation of a Classic continual learning benchmark.

The classic package hosts an ever-growing set of common benchmarks and is ex-
pected to cover the usage requirements of the vast majority of researchers. How-
ever, there are situations in which implementing a novel benchmark is required.
Avalanche offers a flexible API that can be used to easily handle this situation.
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Starting from the higher-level API, Avalanche offers explicit support for creating
benchmarks that fit one of the ready-to-use scenarios. The concept of scenario is
slightly different from that of ‘benchmark’ as it describes a more general recipe in-
dependent of a specific dataset. If the benchmark to be implemented fits either in
the New Instances or New Classes scenarios [103], one can consider using one of the
specific generators nc_scenario or ni_scenario. Both generators take a pair of train
and test datasets and produce a benchmark instance. The New Classes generator
splits all the available classes in a number of subsets equal to the required number
of experiences. Patterns are then allocated to each experience by assigning all pat-
terns of the selected classes. This means that the New Classes generator can be used
as a basis to set up Task or Class-incremental learning benchmarks [177]. The New
Instances generator splits the original training set by creating experiences containing
an equal amount of patterns using a random allocation schema. The main intended
usage for this generator is to help in setting up Domain-Incremental learning bench-
marks [177]. Most classic benchmarks are based on these generators. Figure 4.4
shows a simple example of using nc_scenario.

Benchmarks Generators

1 # Nearly all datasets from torchvision
2 # are supported
3

4 mnist_train = MNIST('./mnist', train=True)
5 mnist_test = MNIST('./mnist', train=False)
6 benchmark_instance = nc_scenario(
7 train_dataset=mnist_train,
8 test_dataset=mnist_test,
9 n_experiences=n_experiences,

10 task_labels=True/False)

FIGURE 4.4: Example of using the "New Classes" benchmark generator on the MNIST
dataset.

If the benchmark does not fit into a predefined scenario, a generic generator can be
used. At the moment, Avalanche allows users to create benchmark instances from
lists of files, Caffe-style filelists [73], lists of PyTorch datasets, or even directly from
Tensors. We expect that the number of generic generators will rapidly grow in order
to cover the most common use cases and allow for maximum flexibility.

Streams and Experiences Not all continual learning benchmarks limit themselves
to describing a single stream of data. Many of them contemplate an out-of-distribu-
tion stream, a validation stream, and possibly several other arbitrary streams, each
linked to a different semantic. For instance, [20] proposes a benchmark where a
separate stream of data is used for cross-validation, while [141] defines an out-of-
distribution stream used to evaluate the novelty detection capabilities of the model.

Motivated by this remark, we decided to model benchmark instances as a compo-
sition of streams of experiences. This choice has two positive effects on the result-
ing API. Firstly, the way streams and experiences can be accessed is shared across
all benchmark instances. Secondly, this modeling of benchmark instances does not
force any preconceived schema upon researchers. Avalanche leaves the semantic as-
pects regarding the definition and usage of each stream to the creator of the bench-
mark.
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A simple example showing the versatility of this design choice concerns the test
stream: in order to allow for a proper evaluation of a continual learning strategy,
benchmarks do not only need to describe the stream of training experiences but
also need to give a proper description of a evaluation protocol. Such protocol is,
in turn, based on one or more test datasets on which appropriate metrics can be
computed. In many cases, the test data may need to be structured into a sequence of
‘test experiences’, analogously to what happens with the training data stream.

For instance, in Class-Incremental learning, the test set may be split into different
experiences, each containing only test instances related to classes encountered in the
corresponding training experience.

Avalanche currently supports two main streams: train and test, and arbitrary streams
(for instance, out-of-distribution stream, validation stream, etcetera) can be easily
added when needed.

Each experience can be obtained by iterating over one of the available streams. Fig-
ure 4.5 shows how, starting from a benchmark instance, streams can be retrieved
and used. Each experience carries a PyTorch dataset, task label(s), and other useful
benchmark-specific information that can be used for introspection. An experience
also carries a numerical identifier that defines its position in the originating stream.
In fact, experiences in a stream can be also accessed by index. This functionality
makes it easy to couple related experiences from different streams.

Main Training Loop

1 train_stream = benchmark_instance.train_stream
2 test_stream = benchmark_instance.test_stream
3

4 for idx, experience in enumerate(train_stream):
5 dataset = experience.dataset
6

7 print('Train dataset contains',
8 len(dataset), 'patterns')
9

10 for x, y, t in dataset:
11 ...
12

13 test_experience = test_stream[idx]
14 cumulative_test = test_stream[:idx+1]

FIGURE 4.5: Example of the main training loop over the stream of experiences.

Task Labels and Nomenclature Every mechanism, internal aspect, name of func-
tion and class in the benchmarks module were designed with the intent of keeping
Avalanche as neutral as possible with respect to the presence of task labels. Task
boundaries, task descriptors and task labels are widely used in the continual learn-
ing literature to define both semantic and practical aspects of a benchmark. How-
ever, the meaning of those concepts is usually blurred with the definition of the
specific benchmark to which they are applied to, making it hard to clearly pin-point
a generic way to manage them.

Based on this observation, and due to the fact that the usage of task-specific informa-
tion may become more extravagant or sophisticated in the future, we decided that
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Avalanche should not force any kind of convention. This means that the choice of
whether to use task labels and how to use them is left to the user.

Following this idea, the GenericCLScenario class, which is the common class for
all scenarios instances, allows researchers to assign task labels at pattern granular-
ity, thus allowing for experiences with zero or more task labels. We deemed this
the most natural choice for Avalanche: we believe that a continual learning library
should not constrain researchers by superimposing a certain view of the field upon
them. Instead, the idea of enabling the user to create complex setups in a simple way,
without forcing a subjective interpretation, will probably prove to be more robust as
the field continues to evolve.

Training

The training module implements both popular continual learning strategies and
a set of abstractions that make it easy for a user to implement custom continual
learning algorithms. Each strategy in Avalanche implements a method for training
(train) and a method for evaluation (eval), which can work either on single ex-
periences or on entire slices of the data stream. Currently, Avalanche provides 17
continual learning strategies (with many more to come), that can be used to train
baselines in a few lines of code, as shown in Figure 4.6. See Table 4.1 for a complete
list of the available strategies.

Training Strategies

1 strategy = Replay(model, optimizer,
2 criterion, mem_size)
3 for train_exp in scenario.train_stream:
4 strategy.train(train_exp)
5 strategy.eval(scenario.test_stream)

FIGURE 4.6: Simple instantiation of an already available strategy in Avalanche.

Training/Eval Loops In Avalanche, continual learning strategies subclass
BaseStrategy, which provides generic training and evaluation loops. These can be
extended and adapted by each strategy. For example, JointTraining implements
offline training by concatenating the entire data stream in a single dataset and train-
ing only once. The pseudo-code in Figure 4.7 shows part of the BaseStrategy.train
loop (eval has a similar structure).

Under the hood, BaseStrategy deals with most of the boilerplate code. The generic
loops are able to seamlessly handle common continual learning scenarios, indepen-
dently of differences such as the presence or absence of task labels.

Plugin System BaseStrategy provides a simple callback mechanism. This is used
by strategies, metrics, and loggers to interact with the training loop and execute
their code at the correct points using a simple interface and provides an easy in-
terface to implement new strategies by adding custom code to the generic loops.
BaseStrategy provides the global state (current mini-batch, logits, loss, . . . ) to suit-
able plugins so that they can access all the information they need. In practice, most
strategies in Avalanche are implemented via plugins. This approach has several ad-
vantages compared to a custom training loop. Firstly, the readability of the code is
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Training Structure

1 def train(experiences):
2 before_training()
3 for exp in experiences:
4 train_exp(exp)
5 after_training()
6

7 def train_exp(exp):
8 adapt_train_dataset()
9 make_train_dataloader()

10 before_training_exp()
11 for epoch in range(n_epochs):
12 before_training_epoch()
13 training_epoch()
14 after_training_epoch()
15 after_training_exp()

FIGURE 4.7: Main training structure, the skeleton of the BaseStrategy class.

enhanced since most strategies only need to specify a few methods. Secondly, this
allows for multiple strategies to be combined together. For example, we can define a
hybrid strategy that uses Elastic Weight Consolidation (EWC) [79] and replay using
the snippet of code shown in Figure 4.8.

Hybrid Strategies

1 replay = ReplayPlugin(mem_size)
2 ewc = EWCPlugin(ewc_lambda)
3 strategy = BaseStrategy(
4 model, optimizer,
5 criterion, mem_size,
6 plugins=[replay, ewc])

FIGURE 4.8: Example of an on-the-fly instantiation of hybrid strategies through Plu-
gins.

Evaluation

The performance of a CL algorithm should be assessed by monitoring multiple as-
pects of the computation [87]. The evaluation module offers a wide set of metrics
to evaluate experiments.
Avalanche’s design principle is to separate the issues of what to monitor and how
to monitor it: the evaluation module provides support for the former through the
metrics, while the logging module fulfills the latter (Section 4.2.2). Metrics do not
specify in which format their output should be displayed, while loggers do not alter
metrics logic. Metrics can work even without a logger: the strategy’s train and eval
methods return a dictionary with all the metrics logged during the experiment.

Few lines of code are sufficient to monitor a vast set of metrics: accuracy, loss, catas-
trophic forgetting, confusion matrix, timing, ram/disk/CPU/GPU usage and Multiply and
Accumulate [72] (which measures the computational cost of the model’s forward
pass in terms of floating point operations). Each metric comes with a standalone
class and a set of plugin classes aimed at emitting metric values on specific moments
during training and evaluation.
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Stand-alone Metrics Stand-alone metrics are meant to be used independently of
all Avalanche functionalities. Each metric can be instantiated as a simple Python
object. The metric will keep an internal state to store metric values. The state can
be reset, updated or returned to the user by calling the related reset, update and
result methods, respectively.

Plugin Metrics Plugin metrics are meant to be easily integrated into the Avalanche
training and evaluation loops. Plugin metrics emit a curve composed by multiple
values at different points in time. Usually, plugin metrics emit values after each
training iteration, training epoch, evaluation experience or at the end of the entire
evaluation stream. For example, EpochAccuracy reports the accuracy over all train-
ing epochs, while ExperienceLoss produces as many curves as the number of expe-
riences. Each curve monitors the evaluation accuracy of an experience at the end of
each training loop. Avalanche recommends the use of already implemented helper
functions to simplify the creation of each plugin metric. The output of these func-
tions can be passed as parameters directly to the EvaluationPlugin.

Evaluation Plugin EvaluationPlugin is the component responsible for the orches-
tration of both plugin metrics and loggers. Its role is to gather metrics outputs and
forward them to the loggers during training and evaluation loops. All the user has
to do to keep track of an experiment is to provide the strategy object with an in-
stance of the EvaluationPlugin with the target metrics and loggers as parameters.
Figure 4.9 shows how to use the evaluation plugin and metric helper functions.

Avalanche’s effort to monitor different facets of performance aims at enabling a
wider experimental assessment, which is too often focused only on the forgetting
of previous knowledge [35].

Evaluation Plugin

1 eval_plugin = EvaluationPlugin(
2 accuracy_metrics(experience=True),
3 loss_metrics(minibatch=True, stream=True),
4 forgetting_metrics(experience=True),
5 timing_metrics(minibatch=True),
6 gpu_usage_metrics(gpu_id, epoch=True),
7 loggers=[InteractiveLogger(),
8 TextLogger(open('out.txt', 'w')),
9 TensorboardLogger()])

FIGURE 4.9: Avalanche evaluation plugin (or evaluator) object instantiation example.

Logging

Nowadays, logging facilities are fundamental to monitor in real time the behavior
of an ongoing experiment (which may last from minutes to days). The Avalanche
logging module is in charge of displaying to the user the result of each plugin met-
ric during the different experiment phases. Avalanche provides five different log-
gers: TextLogger, InteractiveLogger, CSVLogger, TensorboardLogger [105], and
WandBLogger (Weights & Biases) [11]. These loggers can be used to write detailed
reports to textual files, standard output, and dashboards. As soon as a metric emits
a value, the Text Logger prints the complete metric name followed by its value in
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the destination file. The InteractiveLogger reports the same output as TextLogger,
but it also uses the tqdm package2 to display a progress bar during training and eval-
uation. TensorboardLogger and WandBLogger are able to show images and more
complex outputs, which cannot be appropriately printed on standard output or tex-
tual files.
Integrating loggers into both training and evaluation loops is straightforward. Once
created, loggers have to be passed to the EvaluationPlugin, which will be in charge
of redirecting metrics outputs to each logger during the experiment. See Figure 4.9
for an example of loggers creation.

Users can easily design their own loggers by extending the class StrategyLogger,
which provides the necessary interface to interact with the EvaluationPlugin.

Models

The Avalanche models module offers a set of simple machine learning architectures
ready to be used in experiments. The module contains versions of feedforward and
convolutional neural networks. The main purpose of these models is to let the user
focus on Avalanche features, rather than on writing lines of code to build a specific
architecture.

4.2.3 Next steps

Avalanche aims to provide a coherent, end-to-end, easily extendable library for con-
tinual learning research and development; a solid reference point and shared re-
source for researchers and practitioners working on continual learning and related
areas.

As reported in Table 4.1, the current Avalanche Beta version focuses on continual
supervised learning for vision tasks, as a significant amount of deep learning re-
search in this area was designed and assessed in this context [55]. However, being
Avalanche a community-driven effort, the plan in both the near and medium terms
is to support the integration of additional learning paradigms (e.g. Reinforcement
or Unsupervised Learning), tasks types (e.g. Detection, Segmentation), application
contexts (e.g. Natural Language Processing, Speech Recognition), and problem type
(Object Detection, Segmentation,) depending on the research community demands
and priorities.

4.3 Alternatives

Reproducibility is one of the main principles upon which Avalanche is based. Ex-
periments in the continual learning field are often challenging to reproduce due to
the different implementations of protocols, benchmarks, and strategies by different
authors. This issue of insufficient reproducibility is not limited to continual learn-
ing. The whole artificial intelligence community is affected; a number of authors
have recently discussed some possible solutions to the problem [56, 124, 131].

The advent of machine (and deep) learning libraries, mainly TensorFlow [105] and
PyTorch [120] has partially mitigated the reproducibility problem.

2https://tqdm.github.io

https://tqdm.github.io
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Using these libraries assures a standard implementation of many machine learning
building blocks, reducing ambiguities due to bespoke and different implementations
of basic concepts. However, this proved to be insufficient to cover the needs of the
research community working in the continual learning area.

The year 2020 has been a turning point for the birth of libraries specifically aimed at
the continual learning area. Before that, the community has put a lot of effort into
addressing the aforementioned problems, by providing code and libraries aimed to
increase the reproducibility of continual learning experiments [31, 68, 106, 152, 176,
177]. On the one hand, these first attempts lack the generality and the consistency
of Avalanche and, in general, of a library designed with generality in mind, espe-
cially regarding the creation of different and complex benchmarks, and the continual
support of a large community. On the other hand, they demonstrated the growing
interest of the entire community in these issues.

Another area other than continual learning that has recently seen a proliferation
of libraries and tools similar in spirit to Avalanche is reinforcement learning (RL).
One of the most popular such benchmark RL libraries is OpenAI Gym [14], within
which a multitude of different RL environments is available. A similar library is ViZ-
Doom [184], in which an agent plays the famous computer game Doom. Other rele-
vant projects in the field of reinforcement learning are Dopamine [19], which focuses
on simplicity and easy prototyping, and project Malmo [74], which is based on the
famous Minecraft game. Many of these libraries, however, only focus on the agent’s
interaction with the environment. This problem is addressed by other libraries that
include standard implementations of baselines algorithms, such as OpenAI base-
lines [34] and stable baselines [64].

Another prominent example of a collection of baseline training strategies and pre-
trained models is the natural language processing transformers library by Hugging
Face [183]. Many basic concepts upon which Avalanche is based (e.g. plugins, log-
gers, benchmarks) can also be found in more general machine learning libraries such
as PyTorch Lighting [39] and fastai [67].

Another important problem in research is the bookkeeping of experiments. As dis-
cussed in Section 4.2.2, Avalanche already implements a fine-grained and punctual
logging, which allows to visualize and save the results of different experiments.
Moreover, Avalanche could be easily integrated with standalone libraries specifi-
cally developed for experiments bookkeeping and visualization, such as Sacred [52]
or Weights and Biases (wandb) [11].

The motivations and the community needs behind the development of Avalanche
were reinforced by the recent publication of similar continual learning libraries.
Continuum3 [36] focuses on data loading and processing, and could be related to
the functionalities provided by the benchmark module of Avalanche. Sequoia4 [114] is
based on Continuum for the data loading but, in addition, it provides a playground
for research at the intersection of Continual, Reinforcement, and Self-Supervised
Learning.

As of now, Continuum and Sequoia are the main alternatives to Avalanche. Dif-
ferently from the other aforementioned efforts, these libraries share with Avalanche

3https://github.com/Continvvm/continuum
4https://github.com/lebrice/Sequoia

https://github.com/Continvvm/continuum
https://github.com/lebrice/Sequoia
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the idea of creating a comprehensive library that could cover the needs of a very
variegated set of research directions.

4.3.1 Continuum

Continuum [36] mainly focuses on the data loading aspect of the continual learning
pipeline. The goal is to provide many pre-implemented data loaders (benchmarks)
to be used out-of-the-box, as well as plain PyTorch dataset implementations. Con-
tinuum also provides a set of pre-implemented metrics such as accuracy-based ones
(accuracy over time, average incremental accuracy) and more continual learning-
specific ones such as forward transfer and backward transfer [99]. It also includes a ba-
sic logging facility able to export relevant metrics, as well as helper mechanisms to
manage the replay buffer (including the herding method described in iCaRL [135]).

Continuum has been designed with a focus on simplicity, efficiency, and extend-
ability. Custom benchmarks, metrics, loggers and replay management mechanisms
can be easily implemented and customized by overriding a set of base classes. In
addition, Continuum supports simple generators for the New Classes (NC), New
Instances (NI), and New Instances and Classes (NIC) scenarios (described in Chap-
ter 2).

Continuum shares a lot of similarities with Avalanche, especially on the benchmark
creation aspects and on how extendability can be achieved by the users. However,
Avalanche features a more comprehensive framework that extensively covers the
training aspects of continual learning experiments. Due to its simplicity, Continuum
is an excellent base on which a more complex codebase can be built. In fact, Sequoia
uses Continuum under the hood to manage (or even completely outsource) certain
aspects of the benchmark creation process.

Getting started example of Continuum

1 dataset = MNIST("my/data/path", download=True, train=True)
2 scenario = ClassIncremental(
3 dataset,
4 increment=1,
5 initial_increment=5
6 )
7

8 for task_id, train_taskset in enumerate(scenario):
9 train_taskset, val_taskset = split_train_val(train_taskset, val_split=0.1)

10 train_loader = DataLoader(train_taskset, batch_size=32, shuffle=True)
11 val_loader = DataLoader(val_taskset, batch_size=32, shuffle=True)
12

13 for x, y, t in train_loader:
14 # Run training

FIGURE 4.10: Getting started example of Continuum, showing the creation and use of
the Split-MNIST benchmark.

4.3.2 Sequoia

Sequoia [114] is an ambitious project born with the idea of providing a comprehen-
sive framework able to cover both more common (supervised learning and classifi-
cation) and less explored (continual reinforcement learning, semi-supervised learn-
ing, etcetera) areas of the continual learning research. Sequoia has been designed
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following a sound theoretical framework [114] that proposes a hierarchical organi-
zation of research settings. This hierarchy is concretely implemented as a class tree.

Differently from Continuum (and similarly to Avalanche), Sequoia covers all aspects
of continual learning experiments: benchmark creation, training, metrics, and log-
ging. On the benchmark side, Sequoia relies on Continuum to cover the dataset
implementation. On the training side, Sequoia features various out-of-the-box na-
tive strategies. At the same time, Sequoia was designed to be very flexible: because
of this, it can use strategies from Avalanche and Stable Baselines3 [132].

Sequoia offers a comprehensive theoretical and practical framework for continual
learning research. As of now, Avalanche is not able to cover all the settings managed
by Sequoia, although efforts towards adding support for Continual Reinforcement
Learning are underway in Avalanche5. Due to the variety of covered research set-
tings, Sequoia has been used as the reference framework for the challenge held at the
2nd CLVision Workshop6 in which a Continual Reinforcement Learning track based on
Monster Kong [168] was proposed.

Getting started example of Sequoia

1 # Create the setting
2 setting = TaskIncrementalSLSetting(dataset="mnist")
3 # Create the method
4 method = BaseMethod(max_epochs=1)
5 # Apply the setting to the method to generate results.
6 results = setting.apply(method)
7 print(results.summary())

FIGURE 4.11: Getting started example of Sequoia, showing the creation and use of the
Split-MNIST benchmark.

5https://github.com/ContinualAI/avalanche-rl
6https://sites.google.com/view/clvision2021

https://github.com/ContinualAI/avalanche-rl
https://sites.google.com/view/clvision2021
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Chapter 5

Continual Learning Applications

Chapters 2 and 3 covered the theoretical aspects regarding benchmarks and tech-
niques that can be used to model realistic scenarios and to learn when confronted
with such complex benchmarks. However, apart from the previously described ex-
perimental results, we argue that the best way to show how the aforementioned
achievements can be used is to propose practical applications that use these con-
cepts.

In this chapter, the CORe (C)ontinual (O)bject (Re)cognition application is described,
which demonstrates that AR1*-free with Latent Replay (Section 3.2) can be applied
in practice on a smartphone (Section 5.1). In addition, we show that this idea can
be used to enable continual learning capabilities in even more constrained devices,
such as Ultra-Low-Power (ULP) boards (described in Section 5.2), which feature ex-
tremely limited computational and memory resources.

In addition, a practical application for Recycling Code1 recognition is proposed in
Section 5.3, in which incremental self-supervision capabilities are applied to a real
application able to detect and identify recycling codes using real images captured
using smartphones with varying degrees of image quality.

Finally, an overview of participated and organized competitions is given in Section
5.4, which describes in detail two competitions featuring realistic benchmarks and
performance-based scoring mechanisms.

5.1 The CORe App

Efficiently learning at the edge is a challenging research problem for current machine
learning research. In particular, the peace of advancements within the deep learning
field has often been linked with a significant increase in computational and memory
requirements. Deep models are often trained on remote servers and only later de-
ployed with frozen learning capabilities on embedded devices. However, adapting
prediction models at the edge is fundamental to preserve the private nature of users’
data and to customize prediction models on the fly based on the specific user needs,
even without an internet connection. On-device personalization could indeed pro-
vide more targeted and adaptive functionalities based on the user interaction and
newly acquired data. However, on-device training is not only a matter of efficiency
(i.e., memory and computation) but mostly about learning from shifting data distri-
bution. Accumulating all the data seen over the lifetime of the deployed system and
re-train the whole model from scratch on all the data becomes quickly impossible,

1Wikipedia entry on Recycling codes: https://en.wikipedia.org/wiki/Recycling_codes

https://en.wikipedia.org/wiki/Recycling_codes
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FIGURE 5.1: The CORe Application User Interface.

especially with frequent real-time updates. On the other hand, just updating the pre-
diction model using only the newly available data incurs in catastrophic forgetting
[107], and in many applications retaining previous knowledge is mandatory.

This section focuses on the design and deployment of the hybrid continual learning
strategy AR1* (described in Chapter 3) on a native Android application for real-time
on-device personalization without forgetting. In Sections 3.1 and 3.2, AR1* with
Latent Replay has been already shown to be efficient and flexible on natural video
sequences constituting small non-i.i.d. batches of data. However, running that al-
gorithm on edge devices is not straightforward as it poses several additional chal-
lenges. In particular, in this section we: i) detail the implementation of the Android
application with native Java and C++ code based on Caffe framework (Section 5.1.1);
ii) discuss how AR1* can be better parametrized in terms of Accuracy-Computation-
Memory trade-off (Section 5.1.2); iii) introduce an extension of CORe50 for the life-
after-deployment experiments running on CPU-only edge devices and we assess
AR1* performances w.r.t. other state-of-the-art strategies (Section 5.1.2); iv) propose
a two phases consolidation to achieve both real-time fast update and off-line delayed
optimization (Section 5.1.1). The native Android application source code, along with
the Avalanche-based [97] scripts used to reproduce the results are made available to
further stimulate research in this area2.

2https://github.com/lrzpellegrini/CL-CORe-App

https://github.com/lrzpellegrini/CL-CORe-App
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5.1.1 CORe: an Android Application Based on Caffe

The (C)ontinual (O)bject (Re)cognition application is an Android application run-
ning on common smartphones3. The goal of CORe is to show how continual learn-
ing can solve a practical computer vision problem. The target scenario resembles
a real lifelong learning setup where the user tries to improve the object recognition
capability of its knowledge model; the user can be a robot, a static vision system, or
even a person wearing camera-equipped smart glasses.

The application starts in inference mode (Figure 5.1, left): a continuous stream of
frames is received from the rear camera and shown on the screen. In inference mode,
the application continually shows the top-3 predicted categories for the object de-
picted in the central part of the image (highlighted by a surrounding greyed-out
area). The application is packaged with a model pre-trained on the CORe50 dataset,
which consists of video sessions of objects commonly found in domestic or office
environments. CORe50 contains video sessions of 50 different objects belonging to
10 categories [95]. Considering that the goal of the application is a coarse-grained
classification, the initial model here used was pre-trained on the categories instead
of the objects. The user can switch to training mode by either selecting an existing
category or an empty slot. By selecting an existing category the user can incremen-
tally improve the recognition capability of the model for that category, which can be
useful if an object is misclassified. A new category can be added by selecting one of
the five empty slots in the last row. This triggers the image gathering phase, during
which a 20 seconds video is taken, for a total of 100 frames. The training phase is
then carried out using the AR1 algorithm with latent replay (Figure 5.1, right); in the
current version of the application latent replay takes place at the penultimate layer
of the model (pool), but alternative implementations are possible. In particular, a two
stages consolidation can be envisaged where a quick (real-time) update takes place
at the output layer and a slower (but more precise knowledge organization) is per-
formed in the background affecting deeper layers. This is also in line with biological
learning where the hippocampus can make recent knowledge immediately acces-
sible while consolidation in the cortex is carried out throughout sleep-wake cycles
[60]. The application is equipped with a MobileNetV1-1.0 in 32-bit floating-point
format working with 128x128 input images [66] and leverages a fixed-size replay
buffer of just 500 patterns for which only latent representations are kept. The ap-
plication uses the latent replay mechanism to drastically reduce the training time:
latent activations of the new images are computed while the frames are gathered so
that at the end of acquisition the sole part of the model following the latent replay
can be quickly trained with these precomputed activations. The performance/accu-
racy trade-off of this choice is discussed in detail in Section 5.1.2. It should be noted
that using the penultimate layer as the latent replay layer, the memory occupation
of a replay buffer of 500 patterns is less than 2MByte.

A custom version of the Caffe framework is used for both the inference and training
phases. Other popular deep learning libraries for mobile devices (i.e., TensorFlow-
Lite, PyTorch-Mobile) still do not support training operations as they only package
the operators strictly required for the forward pass. Moreover, to operate with these
libraries, the model has to be properly adapted and frozen. On the contrary, by
compiling Caffe and its dependencies from scratch one can exploit complete deep
learning functionalities. For comparison, the authors of [32] propose a similar An-
droid application based on TensorFlow-Lite, which uses an experimental external

3CORe App video demo: http://bit.ly/latent-replay

http://bit.ly/latent-replay
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TABLE 5.1: Final accuracy and on-device training time (in seconds). The pool variant
allows for shorter training phases while sacrificing the accuracy on new categories.

The conv5_4 variant is a good trade-off between pool and input.

AR1 variant: Pool Conv5_4 Input

Final accuracy
Initial categories 97.54% 97.16% 93.62%
New categories 65.33% 73.39% 79.07%

Training time for
a new experience on
100 new patterns,
8 epochs

Feature extraction4 8.93 6.70 -
Forward pass 0.14 125.05 436.33

Backward pass 0.04 4.82 4.81
Weights update 0 37.21 58.88

Overall 0.18 167.08 500.02

library to handle the training on the last fully connected layer. That library uses a
TensorFlow-Lite model as a fixed feature extractor.

5.1.2 Experiments

A proper benchmark must be defined in order to assess the ability of the CORe ap-
plication to learn new categories of objects. In Section 2.2.2, the complex NICv2-391
benchmark was proposed in which the system is required to continually learn from
a stream of 391 experiences. In that benchmark, each experience can either depict an
already encountered or a new object which makes it very akin to the use case covered
by the CORe application. NICv2-391 cannot be used here because CORe50 already
serves as the pretraining dataset used to populate the initial 10 categories. However,
following the idea behind NICv2, here we propose an extension of the benchmark
where new categories are encountered over time. Therefore, we collected an ex-
tended dataset containing 25 objects grouped in 5 new categories; 12 sessions (both
indoor and outdoor) are available for each object: 9 are used for training while 3 are
left for the test set. Therefore, the final benchmark consists of 225 experiences and
it is modeled as a NIC scenario by following the NICv2 generation procedure intro-
duced in Section 2.2. The dataset was captured by using different smartphones thus
obtaining videos whose quality, field-of-view, and stability are different from those
in CORe50. Our experiments are aimed at measuring the degree of forgetting on the
original CORe50 categories in a complex scenario where no video sessions depicting
objects of these categories are seen again.

In the proposed experiments, the AR1 strategy is compared against two pure-replay
strategies namely "class balanced" and "unbalanced". In order to allow for a fair
comparison, the same setup used in the application is considered: the fixed-size re-
play buffer (500 patterns) is initially filled with instances from the CORe50 dataset
by selecting the same number of instances for each class. In all the compared strate-
gies, the instances to be inserted and replaced are chosen randomly. In particular, the
“class balanced” approach balances the number of instances contained in the replay
buffer across categories while the “unbalanced” strategy does not employ any kind
of balancing mechanism and replaces a fixed amount of patterns (10) after each train-
ing experience. For the replay strategies, the result of their pool variant is reported,
in which the model layers below the last fully connected layer are kept frozen, thus
using it as a feature extractor. For AR1, the pool and conv5_4 variants identify the

4The feature extraction step is executed concurrently with the image gathering phase and does not
affect the user experience.
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FIGURE 5.2: Test accuracy computed after each training experience for each strategy.
Left: accuracy on the CORe50 categories; right: the accuracy on the new categories.

chosen latent replay layer. It is worth noting that the “unbalanced (pool)” strategy
is the same one employed in the application described in [32]. For all strategies, the
input variant identifies the replay from the input layer.

The experimental results reported in Figure 5.2 and Table 5.1 show that AR1 pro-
vides a good trade-off since it is able to learn the new categories without forgetting
the old ones. The unbalanced replay mechanism shows good learning capabilities on
the new categories but is not able to avoid forgetting on the CORe50 ones, on which
the accuracy steadily decreases. Nevertheless, this minimal replay mechanism is
still able to prevent an abrupt accuracy drop. The pool variant of the class balanced
replay is able to retain the knowledge of the CORe50 categories but it does not reach
the same accuracy performance of AR1 on the new categories. As expected, includ-
ing the representation layers in the learning process improves the overall accuracy at
the cost of increased computational overhead. The training phase of the chosen algo-
rithm has to be completed in a certain time span based on the target user experience.
The AR1 strategy allows for a fine-grained trade-off choice between accuracy and
performance based on the selected latent replay layer. Table 5.1 shows a comparison
of these different choices. Using conv5_4/dw as the latent replay layer allows for near-
optimal knowledge conservation on the original CORe categories while demonstrat-
ing a good training trend on the new ones. However, in the current version of the
application, we implemented the pool variant to maximize training efficiency. A fur-
ther optimization could be achieved by combining pool and conv5_4 according to the
two steps consolidations discussed in Section 5.1.1.

5.1.3 Remarks on the CORe App

Learning continually at the edge may open the door to several privacy-preserving
and personalized AI systems. However, on-device training is subject to many real-
world constraints, and strict computational and memory limitations. In this section,
we showed that a hybrid continual learning strategy, AR1, can provide an efficient
and effective approach for sustainable on-device personalization while controlling
the forgetting of previously acquired knowledge.
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5.2 Continual Learning on Ultra-Low-Power devices

AI-powered edge devices currently lack the ability to adapt their embedded in-
ference models to the ever-changing environment. To tackle this issue, Continual
Learning (CL) strategies aim at incrementally improving the decision capabilities
based on newly acquired data. In this section, after quantifying memory and com-
putational requirements of CL algorithms, we define a novel HW/SW extreme-edge
platform featuring a low power RISC-V octa-core cluster tailored for on-demand
incremental learning over locally sensed data. The presented multi-core HW/SW
architecture achieves a peak performance of 2.21 and 1.70 MAC/cycle, respectively,
when running forward and backward steps of the gradient descent. We report the
trade-off between memory footprint, latency, and accuracy for learning a new class
with Latent Replay (Section 3.2 when targeting the image classification task on the
NICv2-391 benchmark based on the CORe50 dataset (Section 2.2.2).

Thanks to the parallelism of the low-power cluster engine, our HW/SW platform
is 25× faster than a typical microcontroller unit (MCU) device, on which CL is still
impractical, and demonstrates an 11× gain in terms of energy consumption with
respect to mobile-class solutions.

5.2.1 Background

Novel sensors and smart devices are equipped with ultra-low-power digital process-
ing platforms that process raw data locally and extract high-level information by
applying intelligent algorithms, such as Deep Neural Networks (DNNs). While
the DNN inference capability has been already demonstrated on extreme-edge de-
vices [190, 22, 112], the training of DNN models still relies on GPU-based machines.
Once trained, the inference models are deployed on edge platforms tailored for
prediction-only tasks. However, these inference models cannot adapt to the present
environment, which may differ significantly from the training data statistics.

A way out of this rigid train-on-cloud – deploy-at-edge model is the use of Contin-
ual Learning algorithms, that aim at adapting a network model to a new class of
sensor stimuli. This process is extremely challenging because of the catastrophic for-
getting [107, 153]. Safeguarding previous knowledge is a significant concern. Regu-
larization techniques and replay-free methodologies, i.e., ones not reusing the initial
training data, can tackle this problem; alternatively, replay-based techniques safe-
guard previous knowledge with incremental training over a combination of previ-
ous and new data. Among these latter techniques, in Section 3.2 the Latent Replay
has been presented, which can be used to effectively learn new object classes based
on new samples and compressed old data.

In this section, we present a Hardware/Software platform design to run for the first
time Continual Learning algorithms at the extreme-edge on a MicroController Unit
(MCU)-class architecture. In contrast with current ultra-low-power MCUs that are
mostly tailored for DNN inference, we propose a system architecture that can run
incremental learning tasks on-demand by activating a RISC-V-based 8-core cluster
subsystem.

The contributions of this section are:

• We evaluate the computational and memory requirements of a CL algorithm
with latent replay on the CORe50 NICv2-391 benchmark with a MobileNetV1
[66] model.
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• We define a HW/SW architecture for CL at the extreme-edge based on the Paral-
lel Ultra Low Power platform (PULP) [144, 127], as well as a tensor tiling strategy
necessary to fit within the limited memory.

• We benchmark forward and backward steps for CL on PULP, and evaluate
their performance and efficiency together with the energy-accuracy trade-offs
of a MobileNetV1 network that learns over the CORe50 dataset.

The presented HW/SW design delivers an average performance of 1.84 MAC/cycle
during the learning task, thanks to an almost ideal speed-up of 7.79× gained by the
parallelization over 8-cores with respect to a single-core implementation. Employ-
ing our platform, we demonstrate Continual Learning over the CORe50 dataset by
coupling the processing engine with external memories for low-bandwidth opera-
tions. The learning of a new class can be achieved in 1.5 h by retraining only part
of the network parameters with a memory need of 70 MB for RW operations and
200 MB to store old Latent Replay data permanently. This CL setting leads to an
accuracy of 72.5%, which is only 5% lower than retraining all the layers, but on it
is 3.2× faster. Moreover, the proposed solution demonstrates to be 25× faster than
typical low-power MCUs, and, given the estimated power cost of ≈70 mW, 11×
more energy-efficient when compared to mobile-class solutions.

5.2.2 Machine Learning on Low-Power devices

Edge and extreme-edge devices have constrained memory and computing resources
that make the on-device training challenging. Federated Learning addresses this
limitation by distributing the training tasks on multiple devices [108, 80]. The work
presented by Xu et al. [185] studied the trade-offs between computation latency for
a training step and devices frequency over six mobile-class processors while aggre-
gating the results on the server side. Some devices feature a higher frequency and
power consumption with respect to others (up to 64% higher) to balance the latency
time among the different devices. Yet, the most efficient mobile-class platforms still
present a power consumption in the range of few Watts. In contrast to them, we
present an HW platform that allows training with a power budget below 100 mW.

From a platform-perspective, processing devices tailored for machine learning tasks
feature a power consumption varying between a few mW up to hundreds of
Watts [138].

We focus on flexible SW-programmable and low power devices distinguishing be-
tween 1-10 W (edge device) or <1 W (extreme-edge device) respectively. Among the
edge devices, we report the TPUEdge [51], which is developed mainly for embed-
ded inference applications, and the Qualcomm Snapdragon 845 that features a quad-
core CPU, 4 Kryo 280 Gold coupled with an embedded GPU, and a dedicated DSP,
namely the AI engine. This latter device features a power consumption up to 4.5 W,
which is above the requirement for an extreme-edge device that we target in this
section.

Moving to the ultra-low-power spectrum, the extreme-edge single-core MCUs, e.g., the
STM32 MCU series [164], feature low power consumption and compliant with the
requirements of battery-powered sensors. However, this comes at the cost of the
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FIGURE 5.3: Latent Replay computational model. New images are elaborated up to
the LR layer (1) and stored in the external memory (2). Afterwards, a mix of new

images (3) and LRs (4) are used to retrain the final layers (5).

modest computational capacity, e.g. an STM32L4 device includes a single CPU run-
ning up to 48 MHz. To address this limitation, GAP8 [44] and MrWolf [127] plat-
forms feature an MCU-based architecture accelerated by a multi-core cluster. In par-
ticular, MrWolf has a power budget as little as 150 mW when running the 8-core
cluster at 450 MHz and also supports floating-point (FP32) arithmetic. Relying on
the design principle of this latter systems, we present a HW/SW design to enable
CL at the extreme-edge.

5.2.3 CL with Latent Replay

The goal of Continual learning techniques is to fine-tune deep networks based on
new data samples, without retraining on the entire dataset. This section sketchs i) the
computational model of the CL algorithm presented in Section 3.2 when targeting
an extreme-edge platform and ii) compute its memory requirements.

Computational Model To bring CL with Latent Replay on a smart sensing plat-
form, we model the incremental learning task to operate on a set of new data coming
from a sensor, which is interfaced with an embedded digital processing engine.

Figures 3.4 and 5.3 illustrate the learning process that takes place over a set of data
samples, including both NI new images and NLR old Latent Replay vectors. These
latter are the activation feature maps of the Latent Replay (LR-th) layer, which are
computed when feeding the network with a subset of training samples.

At runtime, a set of NI new class data are sampled and converted into LR vectors.
For this purpose, the network is fed with the new data up to the Latent Replay
layer. The new activations are then mixed with the old LR tensors, and afterwards,
the learning algorithm updates the parameters of the remaining layers. Hence, the
dataset for a training step of CL is composed of old and new LR vectors. Typically,
NI/NLR = 1/5 [122].

A more in depth description of AR1* and AR1*-free with Latent Rplay can be found
in Sections 3.1 and 3.2.
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FIGURE 5.4: The proposed platform architecture for extreme-edge CL. The architecture
consists of a cluster of 8 RISC-V tightly coupled cores featuring private FPUs and two

shared L1 and L2 scratchpad memories.

Memory Requirements Consider a network model featuring N stacked layers. Be-
sides the data for the learning process, a total of Nw = ∑N−1

i=0 Nw(i) network parame-
ters have to be stored in memory, where Nw(i) represents the number of parameters
at the i-th layer. Apart from the model weights, the following additional memory
requirements are accounted for as follows:

• Na is the total amount of intermediate features computed during the forward
pass, which have to be preserved in memory for gradient computation;

• Ng is the number of gradient’s components of the network parameters to be
retrained.

• NFi is the number of parameters in the Fisher matrix, which is equal to the
number of parameters to update.

• N f w is the required memory footprint for temporarily storing activation feature
maps during the forward pass. Its size is typically negligible with respect to
other terms.

5.2.4 HW/SW platform for CL

In this section, we present our HW/SW platform design tailored for CL workloads.
We evaluate the accuracy-latency-memory trade-offs based on the described system
architecture.

HW Platform for edge learning

The proposed CL platform is based on the design principles of the PULP plat-
form [46], which combines parallel programming for high-performance and ultra-
low-power features.

The system architecture, which is depicted in Figure 5.4, is based on an MCU plat-
form accelerated by a multi-core cluster of RISC-V cores. The MCU side features
a single RISC-V core, namely the Fabric-Controller (FC), and a large set of periph-
erals. Besides the FC core, which is equipped with a private L1 data memory, the
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MCU-side of the platform includes a relatively large (256-1024 KB) on-chip L2 mem-
ory. The cluster features 8 processing elements (PE), each one including a RISC-
V CPU equipped with a private Floating-Point Unit (FPU). To avoid memory co-
herency overheads and increasing area efficiency, the cores share a 64-256 KB L1
data scratchpad memory. Additionally, a multi-channel DMA engine handles data
transfers between in-cluster and off-cluster memories.

The L2 memory is used as a temporary buffer for the peripheral data: a µDMA
unit autonomously handles the data transfers between the L2 memory and the ex-
ternal peripherals. Among them, the system can be interfaced with a large L3 off-
chip memory, through a parallel interface, and an external FLASH for data storage
through Quad-SPI, e.g., a SD FLASH memory. Both external memories feature low
power consumption when in idle state.

To efficiently implement power saving mechanisms, the FC core can switch-on the
cluster on-demand at runtime, by controlling the internal cluster DC-DC regula-
tor. Once powered-on, the FC core dispatches tasks on the 8-cores cluster, relying
both on data- or task- parallelism for efficient and fast computation. On the other
side, the system pays an energy overhead when activates the cluster computation
on-demand. Likewise, external memories can be power-gated if not running the
learning tasks.

SW stack for Continual Learning

In this section, we detail the mapping of the CL data flows on the architecture de-
fined in Figure 5.4. Because of the high memory requirements and their constant
nature, Latent Replay activations are kept in an external FLASH memory. During
the learning phase, activations are loaded into the L2 memory to be replayed. On
the other side, an external L3 DRAM memory is used to store network parameters,
gradients, and intermediate activations values. Data transfers from L3 RAM to L2
occurs in the background of the computation thanks to the pipelined µDMA opera-
tion.

CL updates the model’s parameters based on the back-propagation algorithm, which
consists of the basic operations depicted in Figure 5.5. During the Forward pass of a
network, the computational layers apply kernel convolutions over the activation val-
ues (act_in). Each convolution is reshaped as a 32-bit Floating-Point (FP32) generic
matrix multiplication (GEMM) by means of an im2col transformation applied on
the input activation tensor (act_in); the im2col tensor is stored in a shared L2 buffer.
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(SPMD) to distribute the work to the 8 cores.

The results of the forward kernels, i.e., the intermediate activation tensors, are then
stored back in L3 memory, since they are going to be used to compute the network
update step. During the Backward Pass, which runs up to the LR-th layer, the gra-
dient w.r.t. the activations (err_out) is propagated to the next layer, after applying
a convolution (GEMM) operation with the flipped (coeff ) vector (graph (2) in Fig.
5.5). Likewise, the computation of the gradients of the parameters (grad) are com-
puted using GEMM convolution kernels, which takes as inputs the act_in, computed
during the forward pass, and the err_out tensors.

Figure 5.6 represents the memory management and the parallelization scheme to im-
plement the computational graph of Figure 5.5 in the target platform. Data (i.e., gra-
dients, coefficients, activation values, or input data), which resides on the L3 mem-
ory, is loaded into the on-chip L2 and L1 memories for layer-wise processing. Given
the on-chip memory limitations, for some layers, tensor operands have to be sliced,
and computation is performed on sub-tensors. This tensor slicing is called tiling
and previous works already presented a lightweight strategy, hence implementing
a software-cache mechanism for DNN deployment [16]. In Fig. 5.6 we visualize the
tiling of the coefficients along the output-feature dimension Cout: a subset of CTILE
filters, hence a total of CTILE×Cin×Kw×Kh parameters, is transferred to the cluster
L1 memory for the computation. Inside the cluster, the FP32 GEMM is parallelized
over 8 cores, both for forward and backward passes, according to a data-parallelism
paradigm. Such scheme holds for the types of computations reported in Fig.5.5.
The operand INPUTS of Figure 5.6 refers either to the act_in or the err_out tensors.
During forward propagation and gradient computation, the parallelization operates
over the input-feature dimension Cin, whereas during backward error propagation
the workload is parallelized over the Cout dimension of the activations tensor.

5.2.5 Experimental Results

In this section, we evaluate our HW/SW design over the NICv2-391 benchmark, and
we compare our solution against other proposed CL algorithm implementations.
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FIGURE 5.7: FLASH and RAM Memory Footprint for different LR cuts.

Experimental Setup

CL Task and Dataset To benchmark our HW/SW design, we consider a CL task
consisting of learning new object classes from the CORe50 dataset [96]. For a more
in-depth description of the dataset, please refer to Chapter 2. To make the bench-
mark close to a real application, new objects are discovered sporadically over time.
Thus, the three-way NICv2 protocol introduced in Section 2.2.2 is used, where the
first insertion of the samples of a new class is balanced over the training batches
(see figures in Sections 2.2.2 and A.2). In particular, in NICv2-391, each of the 390
incremental batches includes only one training session (300 images) of a single class.

We rely on the experimental settings described in Section 3.2, where a MobileNetV1
model with input resolution of 128x128 and width multiplier 1 is used. In this sec-
tion, we indicate the individual layers of the networks with the same naming con-
vention used in that section and also reported in Figure 5.8. The model is initially
trained to distinguish only 10 of the 50 classes of the dataset. Each incremental learn-
ing step applies the gradient descent algorithm over a single batch composed of 1500
LRs vectors (30 LRs for every class) and 300 new images. This learning step iterates
for 8 epochs.

Evaluation Metrics Computation latency is measured through a cycle-accurate
simulator of the proposed architecture. The base version of the simulator, which
we extended for this study, is validated against Register Transfer Level (RTL) for the
open-source PULP platform and MrWolf, that is our reference System on a Chip (SoC).
The selected running frequency is 150 MHz. The reported accuracy represents the
overall precision reached by the network after complete learning on the CORe50
NICv2-391 benchmark.
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FIGURE 5.8: Latency-Memory-Accuracy trade-off for different LR cuts. The red
dashed lines represent the two Pareto sets. The red dot (conv1, the first layer) assumes

that we retrain the whole network.

Memory Evaluation

Figure 5.7 shows the memory footprint needed (A) to permanently store the 1500
Latent Replay activations, i.e. the ROM memory requirement, and (B) to store the
new data samples, the network parameters and gradients, the intermediate features
maps for the backward pass and the approximated Fisher matrix components. All
these values result in a memory footprint of few MBs and change over time hence
they are stored on the RAM. Note that the memory requirements vary depending on
the chosen LR layer: retraining only the last layer (indicated as mid_ f c7) requires the
storage of smaller LR vectors, gradients, and activation feature maps than selecting
any other middle layer as the LR layer (e.g. conv5_4/dw). This also explains the
higher memory demands when choosing a LR layer closer to the first one. Concern-
ing the non-volatile FLASH memory (Figure 5.7(A)), the requirement ranges from
few MB (6 MB if the last layer is the LR layer) to up to 300 MB, when retraining the
full network based on the image samples (the only CL setting not featuring LRs).
A typical-size SPI FLASH memory is therefore sufficient in all cases. Also note that
LR arrays are accessed sporadically only to perform retraining. Hence, the external
FLASH memory can idle, or even be power-gated, for the rest of the time.
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Figure 5.7(B), instead, plots the RAM requirements, which also includes the 300 LRs
related to the new images that require >60% of the overall memory space. The
memory breakdown shows that individual memory terms vary depending on the
LR layer selection. Only the size of network parameters is constant. Figure 5.8(A)
combines the RAM memory requirements with the network accuracy, which were
demonstrated to be state-of-the-art on the CORe50 dataset in Section 3.2. If setting
the LR layer as one of the last layers, the accuracy drop increases because of the
higher number of frozen parameters. If imposing a constraint of 32 MB for the exter-
nal DRAM memory, the only match is the retraining of only the last layer (mid_fc7).
But in this case, accuracy is limited to 58%, which is nearly 20% lower than the
baseline (retraining all the layers). Conversely, to reach a higher precision of 72.2%
(conv5_4/dw), 70 MB of external RAM is needed, which is achieved using a multi-
bank DRAM memory.

Latency-Accuracy Trade-off

Figure 5.9 reports the latency measured on our HW/SW platform over various com-
putation kernels, either for single-core or 8-core execution. The performance is ex-
pressed as MAC/cycle in the case of forward and backward passes for three rep-
resentative layers of our benchmark network, namely Pointwise, Depthwise, and
Fully Connected layers. Peak values of performance are achieved in Pointwise lay-
ers, reaching 2.21 MAC/cycle in forward and 1.70 MAC/cycle in backward compu-
tations. The performance measured for the forward pass results is higher than back-
ward because GEMM operates on larger vectors, hence the computation density is
higher. The speed-up achieved by the 8-cores implementation against single-core
reaches 7.79× on average, close to the theoretical limit of 8×.

Figure 5.8(B) reports the accuracy-latency trade-off on the learning task, with a clus-
ter clock frequency of 150 MHz. The latency refers to the total time to learn a new
class, which depends on the chosen Latent Replay layer. To reduce the memory ac-
cess time overhead, we consider a tiling mechanism between L1 and L2 memories,
realized using the DMA engine to minimize latency overhead (below 5% [16] with
respect to the execution latency when on all data reside in L1). The L3 to L2 over-
head instead is almost negligible because data transfers occur concurrently to the
computation on large sub-tensors. Retraining the whole network with 1500 replays
results in an accuracy of 77.3%, and the overall latency for 1-class learning is 318
min. A faster solution is obtained by choosing LR=conv5_4. In this setting, the learn-
ing latency for a new class is 98 minutes and the reached overall accuracy is 72.2%.
If we reduce the number of network layers to retrain, the accuracy drops more sub-
stantially, as shown in Fig. 5.8. Among the faster configurations, the ultra-fast so-
lution retrains only the Fully Connected layer, featuring a computation latency of
867 ms to learn a single class, but with a low 58% accuracy which sets a lower bound
for the CL algorithm. Our proposed platform opens up the possibility to perform
CL on extreme-edge nodes, which is not practical on current-generation commer-
cial MCUs. For example, compared with a state-of-the-art low-power STM32L476
running at 48 MHz, our platform runs the learning task 25× faster.

Energy Estimation

We evaluate the energy consumption based on the CORe mobile application pre-
sented in Section 5.1, which operates over training batches composed of 500 LRs
and 100 new frames belonging to a previously unseen class. The mobile-class device
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FIGURE 5.9: Measured Forward and Backward Throughput and parallelization effi-
ciency.

used for the reference design of the CORe app is a OnePlus6 featuring a Qualcomm
Snapdragon 845 processor. To estimate the energy consumption of the proposed
HW/SW platform, we refer to power measurements from the silicon prototype of
MrWolf [127], which operates at 9 MMAC/s/mW and features an average power of
70 mW when running at 150 MHz.

Given an application scenario requesting 1 inference/sec and 1 retraining step per
hour, our platform features a total energy consumption of 34.2 J per hour in the
fastest CL configuration setting (LR=mid_fc7). This implies a battery lifetime of
about 710 hours (we consider a 3100 mAh battery), which is 11× higher than a
Snapdragon845-based solution (assuming 0 Watt idle power). To gain higher ac-
curacy, hence retraining more layers, i.e., LR=conv5_4 layer, the energy consumption
increases to 1530 J per hour, therefore leading to 15.8 h of battery life.

5.2.6 Remarks on CL on ULP devices

In this section, a novel HW/SW architecture specifically tailored for the execution
of CL algorithms was presented. In particular we assessed the memory and com-
putational requirements of a replay-based CL algorithm with Latent Replay. More-
over, we showed the accuracy-latency trade-off on the proposed extreme-edge system,
which results to be 11×more energy-efficient than previous mobile-class processors.
The achieved results motivate to further explore Continual Learning on extreme-
edge devices.

5.3 Weak self-supervision for Recycling Codes recognition

Waste sorting at the household level is a virtuous process that can greatly increase
material recycling and boost circular economy. Unfortunately, the large number of
recycling codes printed on products makes this process unfriendly for many users.
In this section, we propose a vision-based mobile application to support users in
recognizing recycling codes for proper waste sorting. Our experimental results show
that the combination of deep-learning techniques, image processing pipelines, and
weakly supervised iterative training schemes (based on domain knowledge), allows
for the development of an effective application with minimum effort in terms of data
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collection and labeling, which is one of the main obstacles toward the successful
application of deep-learning techniques to real-world problems.

In particular, the proposed approach consists of an incremental training procedure
that uses weak feedback coming from the users to self-boost the performance of
the symbol detector. In the future, more extensive use of incremental and contin-
ual learning approaches may allow for more tailored learning, thus enabling user-
specific conditions to be accounted for (image quality, recurrent symbols, etcetera).

5.3.1 Background

FIGURE 5.10: Some examples of recycling symbols.

Recycling codes are used to identify the materials from which products are made,
to facilitate their recycling. Although the symbols used to depict recycling codes
are not many and their shape can be easily identified (e.g., chasing arrows in Fig-
ure 5.10), the total number of codes/materials is high5 and some of them are rarely
used. Hence, users cannot easily remember the codes and the corresponding recy-
cling rules. The aim of this work is the development of a mobile application that can
support the users in recognizing recycling codes for proper waste sorting. Ideally, an
application could directly recognize the different products from their visual aspect
without relying on the recycling code; however, due to the huge amount of existing
products and packages, their aspect variations, and the continuous launch of new
items, inferring waste categories from images is very challenging. For this reason,
most of the approaches proposed in the literature [187, 109, 12] operate in restricted
settings (e.g., the limited number of materials, uniform background, etc). Further-
more, in some cases, the visual discrimination of materials is not possible, and even
humans need to rely on the associated recycling symbols.

In the proposed approach, as a user points his smartphone camera to the zone where
the code is printed, the application must promptly recognize the symbol and display
recycling instructions. The development of such an application is not trivial because:
(i) the symbols and the associated labels (number/text) are usually small in size and
properly framing them with a smartphone camera is critical because of the close
distance necessary for the required zoom and the risk of capturing out-of-focus or

5See https://en.wikipedia.org/wiki/Recycling_codes

https://en.wikipedia.org/wiki/Recycling_codes
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blurred images; (ii) taking a single shot and sending it to a remote server for recogni-
tion requires a stable internet connection and would often lead to rejecting the cho-
sen sample thus requiring multiple attempts. Performing online recognition from
the camera video stream is better, but it requires on-device processing at a proper
frame rate.

As of today, the most obvious approach seems to be selecting a state-of-the-art Con-
volutional Neural Network (CNN) which is efficient enough for real-time inference
on a smartphone and training it as a classifier on a sufficiently wide labeled dataset.
This approach has some drawbacks:

• recycling codes are numerous and a dataset containing a sufficient number of
examples per class is not available. Collecting from scratch such a dataset is
time-consuming and finding examples of some “rare” classes can be an issue
not easy to address with data augmentation techniques;

• while on-screen feedback can guide the user in properly framing the symbols
(see Figure 5.11), it is not realistic to impose that the searched pattern is well
centered and size normalized. Therefore, we must move from a classifica-
tion to a detection task with the consequence that: i) the model complexity
increases; ii) the symbol bounding boxes need to be labeled in the training
dataset.

To solve the aforementioned critical issues, we propose a two phases approach that
combines a deep learning architecture with an image processing pipeline. The main
contributions of this work are:

• the combination of deep models with image processing pipelines (based on do-
main knowledge) to overcome the limitations of data-driven approaches when
training data are limited and does not cover all the cases;

• the definition and validation of a weakly supervised iterative training scheme.
While this is demonstrated in the context of recycling code recognition, the
approach is general enough to be applied to other real-world scenarios;

• the demonstration that recycling code recognition can be performed on-device
with good accuracy; even if some applications for recycling code recognition
already exist (see [155]) we are not aware of accompanying scientific papers or
technical descriptions and therefore we cannot make a direct comparison with
the proposed approach. However, we provide an ablation study where the
most important contributions of our proposal are isolated and benchmarked
against baseline methods;

• we release the novel dataset used in our experiments. The dataset is composed
of short video sessions gathered by users depicting recycling codes in various
conditions.

5.3.2 The approach

A graphical scheme of the proposed approach is depicted in Figure 5.13. An efficient
classification CNN (MobileNet v2 [149]) is extended with a regression head for the
prediction of the symbol position (bounding box). This model is much simpler and
more efficient than a Yolo [136] or SSD [94] since we assume that a single object of
interest is present in the image. The model is trained to localize a recycling sym-
bol (chasing arrows) in a single image: the model output is the confidence on the
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FIGURE 5.11: The acquisition interface of the proposed application. The user is asked
to frame the symbol inside the central area (with a yellow border). The external
greyed-out area is ignored during recognition but is useful to help the user center

the symbol.

symbol presence (classification) and the bounding box coordinates (regression). It is
worth noting that recycling codes of the different classes (associated with different
numbers and texts) are not discerned at this level, and therefore the classifier makes
a binary decision (symbol found vs no-symbol found). Extending the application to
work with multiple recycling symbols (e.g., circle, trashcan, etc.) is not complex and
some hints are provided in the following sections. The frames where a symbol is
found are passed to a second processing phase where an OCR algorithm is used to
extract the numbers and text identifying the recycling category.

Although the above two phases decomposition allows training the system without
a comprehensive dataset (in terms of real-world combinations of symbols, numbers,
and text), some problems persist.

In fact, the text region detectors and OCR algorithms tested, including state-of-the-
art OCR on-the-wild [163, 10], are often disturbed by the presence of graphics (e.g.
lines, drawings) in the proximity of the text and their accuracy significantly degrades
when the text is not well isolated from the background (see Figure 5.12). To solve
this problem, instead of retraining an OCR to work in the specific context of our
application6, we introduced an image post-processing pipeline that, starting from
the bounding box returned by the model, identifies and refines the text regions to be
processed by a general-purpose OCR.

Furthermore, training a regression head requires a sufficient number of bounding
box labeled examples in the training dataset, whose markup is a boring and time-
consuming task. To overcome this problem we propose a weakly supervised (itera-
tive) training where:

6Again, this would require a representative training dataset, which is difficult to collect.
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FIGURE 5.12: Some results obtained by applying the Tesseract OCR [163] to the text
regions returned by the CRAFT text detector [10]. In the first row, the predicted text
positions are highlighted in red and the OCR results are in blue. The second row
shows the heatmap used by the text detector. The number and text in the first two
columns are properly extracted, while the OCR failed in the last two columns because

of poor text region detection.

• the model is initially trained on a small recycling code dataset: the SevenPlas-
tics dataset available in Kaggle 7;

• the initial model, deployed in a beta version of the app, has been used to collect
many new examples that are labeled (both the class and the bounding box)
with self-supervision and weak user engagement;

• the model is then (iteratively) trained on the union of the initial data (full su-
pervision) and the successive examples (weak supervision), achieving a rel-
evant accuracy improvement. The weak supervision comes from end-users
in the form of the class label (the symbol depicted in the frames, without the
bounding box). The goal of the iterative training procedure is to tune the de-
tector to improve symbol localization.

5.3.3 Phase I: frame classification and bounding box regression

The model used in Phase I is a MobileNet v2 (128x128 input, depth multiplier = 1.0)
pre-trained on ImageNet [33], where:

• the output classification layer is replaced with a new layer with just 2 classes
(simbol vs no-symbols).

• a new fully connected layer with 4 neurons is attached to the second last layer
to be trained as a regressor to predict the symbol position (bounding box).

This model is trained on a subset of the Kaggle recycling code dataset consisting of
454 frames whose bounding boxes have been manually marked by us. An equal
number of negative examples (i.e., images belonging to the “no-symbol” class) are
added by randomly cropping ImageNet [33] samples8. The training is carried out for
100 epochs with the Adam optimizer. Actually, this training session is a tuning for all

7https://www.kaggle.com/piaoya/plastic-recycling-codes
8Since Kaggle images are cropped around the symbol we cannot use out-of-center portions to create

negative examples.

https://www.kaggle.com/piaoya/plastic-recycling-codes
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the levels except the two output heads whose weights are randomly initialized. As
shown in Section 5.3.6, even a small dataset of recycling codes allows the model to
reach a good binary classification accuracy. However, the symbol locations returned
by the regressor are often imprecise and do not allow to accurately crop the text
regions.

5.3.4 Phase II: box refinements and OCR
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FIGURE 5.13: Overall schema of the proposed approach.

Figure 5.13 highlights the sequence of processing steps performed for the classifi-
cation of a single frame. The CNN model of Phase I outputs a confidence score on
the presence of a recycling symbol (0.85 in the example) and a bounding box denot-
ing his position in the frame. If the confidence is lower than a threshold the frame
is immediately discarded, otherwise the bounding box position is refined (step S1).
The regions where we can expect to find numbers and text can be then hypothesized
(step S2) based on domain knowledge (i.e., the geometric shape of the symbols and
the average position/size of its textural attributes). In the case of the chasing ar-
rows symbol, the internal region should contain a number and the base region a
text: however, this is not always the case and more than two region proposals can
be passed-on if necessary. Again, since the region proposals are not accurate enough
for reliable OCR, a refinement step (S3) is necessary for segmentation. Each refined
region is then processed through Tesseract OCR and the results are passed to a multi-
frame decision-maker for final classification.

Hereafter we provide further details on steps S1, S2, S3, and the final OCR and multi-
frame decision. Intermediate results are graphically shown in Figure 5.14. Further
examples are reported in Figure 5.15. Since in this paper we focus on a chasing arrow
symbol, the image processing steps are tailored to this symbol. However, we believe
that simple variants of proposed pipelines can be designed for other common recycle
symbols. The parameters of the processing steps have been tuned by extracting
geometric statistics from the Kaggle labeled dataset.
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FIGURE 5.14: Graphical visualization of intermediate processing steps on an example
image.

S1: Symbol bounding box refinement

The rectangle returned by the CNN is used to crop a subimage
C = [xle f t, ytop, xright, ybottom], which is first converted to grayscale and then
processed as follows.

• Compute the vertical axis of symmetry xsym of C by minimizing the mean pixel
intensity abs-difference between two small regions at the right and left of each
hypothesized vertical axis. Since the considered symbol is nearly symmetric
(with respect to y) this simple step allows a better horizontal centering.

• Select a bottom region B as [xsym − w/2, ybottom − o, xsym + w/2, ybottom + o]
where w is the initial crop width, (w = xright − xle f t) and o is a 20 pixel off-
set.

• Compute the magnitude of horizontal edges (abs of Sobel vertical filter 3x3) in
B and apply a Gaussian blur (3x3) to reduce noise.

• Integrate the edge magnitude along the rows in B and select ynew_bottom as the
row with highest magnitude. The rationale behind this step is that the chaining
arrows symbol has a triangular shape and the triangle base produces strong
horizontal edges.

• The region

C1 = [xsym − w/2, ytop, xsym + w/2, ynew_bottom + o2]

is returned, where o2 is a small constant offset (6 pixels).
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FIGURE 5.15: The first row shows some examples where the proposed processing is
successful. In the second row some errors are shown; errors are typically due to a bad

initial estimation of C by the CNN.

S2: Region proposals

Two region proposals Ra and Rb can be defined at fixed positions relative to C1. Ra is
coarsely centered in the triangle center and its (width, height) are proportional to the
triangle sides. Rb is positioned below the triangle base and is as large as the triangle.
Due to the empirical nature of the above rules, Ra and Rb are enlarged (with an extra
offset) to avoid losing portions of the searched regions. Even if Ra should contain
a number (material code) and Rb a text (material acronym), this is not always the
case and a more flexible decision is necessary after OCR. Furthermore, for increased
robustness more than two proposals can be generated in this step, since the multi-
frame decision adopted is general enough to tolerate this.

S3: Regions refinement

Ra and Rb subimages are converted to grayscale and each of them is shrinked by
moving its 4 sides toward the center in order to precisely frame the text:

• Compute the magnitude of the gradient (Sobel filters 3x3) in B and apply a
Gaussian blur (3x3) to reduce noise. Because of the enlargement in the previ-
ous step we expect an external offset region where the gradient magnitude is
small.

• Integrate the magnitude over rows. Iteratively move the region top(bottom)
side toward the center until the integrated magnitude over the current row is
higher than a threshold.

• Integrate the magnitude over columns. Iteratively move the region left(right)
side toward the center until the integrated magnitude over the current column
is higher than a threshold.

OCR and multi-frame decision

The refined Ra and Rb are passed to Tesseract OCR [163], version 4.1.19. Their
grayscale intensities can be optionally inverted: in fact, we noted that Tesseract

9Tesseract 4.1.1: https://github.com/tesseract-ocr/tesseract/releases/tag/4.1.1

https://github.com/tesseract-ocr/tesseract/releases/tag/4.1.1
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works better with dark text on bright backgrounds. To decide whether to apply
the inversion, the average value of pixel intensity in an external boundary region
(likely belonging to the background) is compared with the average intensity of the
remaining pixels.

Tesseract can be configured to work with a restricted list of allowed characters. The
OCR process is executed the first time by allowing only digits [0...9]. If a valid nu-
merical symbol code is not returned, then a second attempt is made by passing a
set of alphabetical characters obtained as the union of the characters used in all the
symbol acronyms. Considering that number and text may appear in all proposed
crops, the OCR engine is run a maximum of 4 times (2 on the refined Ra and 2 on
the refined Rb) for each frame.

Even if the designed two-phase approach greatly improves single frame classifica-
tion (see Table 5.2) some frames remain critical mainly due to: out-of-focus, symbol
too close/far from the camera, excessive rotation or skew, and flares. Therefore a
multi-frame fusion, based on the sum rule and a fixed threshold, is adopted to im-
prove the overall accuracy. The pseudocode is reported in Algorithm 1. It is worth
noting that a symbol receives a score of 0.5 if either the number or the text matches,
and a full score (1.0) is assigned only in case of a simultaneous match. The threshold
used in our experiments is 1.5: this means that 2 fully matching frames need to be
associated with a given symbol before recognition or, alternatively, a higher number
of partially matching frames is necessary.

The scoring mechanism could be further improved by assigning lower scores (but
not zero) when a partial match is detected: for instance, a score of 0.25 could be
assigned to “HDPE” if the OCR returns “HOPE” which is not in the dictionary. A
normalized Levenshtein distance [89] can be used to grade scores. A further en-
hancement could be achieved by adopting an OCR working with a dictionary at
word levels instead of at character levels.

5.3.5 Iterative training

As explained in Section 5.3.3, the CNN (classifier + regressor) is first trained on a
subsample of the Kaggle SevenPlastic dataset (hereafter DB0), obtaining the model
M0 which is embedded in the first version of the application. A small group of
users was involved in a beta testing stage. When they note that the pointed symbol
code is correctly classified no further action is required; otherwise, they provide the
correct symbol code through a simplified graphical interface10; in the latter case, the
video frames of the current session are stored in the device and later transferred
to a remote workstation. At the end of the beta testing stage, we collected a total
of 129 video sessions corresponding to error cases. While the ground truth code
labels are available, the bounding boxes are missing and our goal is to avoid their
tedious and expensive manual labeling. Therefore, for each frame of each session,
we used model M0 to estimate the symbol position C and applied the steps S1, S2,
S3, and the OCR (multistep fusion is not necessary here). If after OCR both the
number and text are coherent with the ground truth symbol code we assume that
the refined box C1 (produced by S1) can be reliably used as a ground truth bounding
box: therefore, we add this frame to a new dataset P1. A new training DB1 dataset
can be then assembled as the union of DB0, P1, and N1, where N1 is an extra set

10The application allows to select the symbol from a list and to associate it to all the frames in the
current video.
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Input: A sequence of frames Fi in the current recognition session; D: A
dictionary of recognizable symbols; model: the CNN model with
classification and regression heads; S: the scores of elements in D.
Initialized to 0.

for for each frame X in Fi do
has_symbol, C = model(X)
if not has_symbol then skip frame
C1 = S1(X, C)
Ra, Rb = S2(C1)
Rare f ined, Rbre f ined = S3(Ra, Rb)
symra = OCR(Rare f ined)
symrb = OCR(Rbre f ined)
if symra in D then S[symra] += 0.5
if symrb in D then then S[symrb] += 0.5
if (exists a sym f such that S[sym f ] > threshold) and (S[sym f ] > S[symi] for
each symi != sym f ) then

return sym f

end
end
return "unknown"

Algorithm 1: Pseudo-code of the proposed approach. D is a many-to-many dic-
tionary that considers equivalences such as different numerical symbols tied to
a common text label (and viceversa). For instance, “PAP” is linked to numeri-
cal codes {20, 21, 22} while numerical code 02 is linked to text codes {“PEHD”,
“HDPE”}. The score fusion mechanism keeps these equivalences in considera-
tion (omitted for simplicity in the pseudo-code).

of negative examples (with the same size of P1) randomly sampled from ImageNet.
Finally, a new model M1 can be obtained by retraining the CNN on DB1. The whole
procedure can be iterated more times to improve the application accuracy. As the
application accuracy increases with the iterations, the amount of user supervision is
progressively reduced.

5.3.6 Experimental results

As explained in Section 5.3.5, the proposed approach has been trained incrementally.
The initial training dataset DB0 is composed of 454 frames extracted from the Kaggle
SevenPlastic dataset. Bounding boxes have been manually provided for DB0 and T0:
for each instance, we marked three bounding boxes corresponding to the ground
truth position of C, Ra, and Rb. Both DB0 and T0 have been extended with an equal
number of negative examples by randomly cropping ImageNet data.

The test set T0 used across all the evaluations has been initially collected by a group
of 9 users (each with her/his smartphone). T0 consists of 93 videos including 4519
frames and 14 different recycling symbols. The symbol class and the bounding boxes
(C, Ra, and Rb) have been manually marked.

At training iteration 1, DB1 is the union of DB0 with P1 and N1 where: (i) P1 contains
1699 frames extracted from 36 videos collected by beta users; as explained in Section
5.3.5 only the frames properly classified are selected and their symbol bounding
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boxes have been self-generated; (ii) N1 is a set of negative examples of the same size
of P1.

Finally, for training iteration 2, DB2 is obtained without further user involvement,
but using model M1 to reclassify P1 samples. This resulted in an increased number
of frames selected (from 896 to 1001) and more accurate self-generation of the ground
truth bounding boxes.

Table 5.2 reports the results obtained after training the system on DB0, DB1 and
DB2. Accuracy is reported for single frames or videos (session); as expected, the
multi-frame fusion boosts the accuracy. In general, the proposed weakly supervised
iterative training proved to be very effective: at the frame level, the classification
accuracy increased from 55.5% to 71.7% to 73.14% and, at video level from 83.9% to
89.2% to 92.5%.

The symbol binary classification of the CNN (i.e., the accuracy of) also significantly
increased after training on DB1, because of the new (disjoint) set of symbols intro-
duced. Analogous improvements can be noted in the intersection over union (IoU)
metrics of the bounding boxes.

Training Iter: 0

Train DB: DB0
Test DB: T0

Training Iter: 1

Train DB : DB1
Test DB: T0

Training Iter: 2

Train: DB2
Test DB: T0

Video classification
accuracy

83.9%
78/93 - correct

5/93 - unknown

10/93 - wrong

89.2%
83/93 - correct

3/93 - unknown

7/93 - wrong

92.5%
86/93 - correct

2/93 - unknown

5/93 - wrong

Frame classification
accuracy

55.52% 71.74% 73.14%

Symbol binary clas-
sification (CNN)

86.91% 99.76% 99.68%

C - IoU (CNN) 62.38% 80.02% 84.06%

C1 - IoU 68.45% 82.38% 84.14%

Ra refined and
Rb refined (IoU)

Upper box:

56.92%
Lower box:
63.22%
Average: 58.68%

Upper box:

66.18%
Lower box:
70.84%
Average: 67.16%

Upper box:

64.39%
Lower box:
71.37%
Average: 66.30%

TABLE 5.2: Accuracy results over training iterations.

Visual error analysis revealed that the 7 videos that were not correctly classified
after the second training iteration (see Figure 5.16) are characterized by: the lack
of the numerical codes, the presence of textual codes inside the symbol far from
the expected position, and very low quality (e.g. out of focus) images. Providing
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multiple proposals for both the text and number regions could help in solving many
of these cases.

FIGURE 5.16: Examples of residual errors after the second training iteration. In the
first and second columns, a textural code is printed inside the symbol instead of a
number, and its width extends beyond the maximum expected one, so the refined
region Ra (red rectangle) cannot include the text border. In the last example, the

image is too blurred.

In table 5.3, we report the time required by the different stages/steps measured on
a smartphone S10+ running Android 11. The most time demanding step is OCR;
however, this step is performed only when a symbol is detected and the overall user
experience remains quite fluid.

Step name Average time per
image (ms)

Phase I: Image classification and
symbol detection (CNN inference)

24.35

Phase II: S1 1.09
Phase II: S3 (both boxes) 0.48
Phase II: OCR (both boxes) 143.49

TABLE 5.3: Time required by the different phases/steps, obtained as average on 10
examples.

Ablation study

To understand the contribution of the domain-knowledge steps we performed an
ablation study consisting of two further experiments:

1. in the former we removed steps S1 (symbol bounding box refinement) and S3
(text regions bounding boxes refinement). In this case, Ra and Rb are obtained
by S2 directly applied to C. Results in Table 5.4 prove that S1 and S3 have a
very relevant role. For example the frame classification accuracy drops from
55.5% to 24.3%;

2. in the latter we focused on training iteration 1 where for the examples intro-
duced in P1 the ground truth of the symbol bounding box is given by C (and
not C1); furthermore P1 contains all the negative examples collected during
beta testing and not only those whose text and number are validated after OCR
(see Section 5.3.5). We denote this scheme as basic self-supervision. Results in
Table 5.5 show that the exploitation of domain knowledge leads to improved
accuracy.
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Training Iter: 0
Without S1 and S3

Training Iter: 0
Full system

Video classificationaccuracy

72.0%
67/93 - correct
10/93 - unknown
16/93 - wrong

83.9%
78/93 - correct
5/93 - unknown
10/93 - wrong

Frame classification accuracy 24.39% 55.52%

Ra and Rb - IoU
Upper box: 25.56%
Lower box: 27.59%
Average: 26.59%

Upper box: 56.92%
Lower box: 63.22%
Average: 58.68%

TABLE 5.4: Accuracy after training iteration 0, in the case of a full system (column 2)
and removal of S1 and S3 (column 1).

Training Iter: 1
Basic self-supervision

Training Iter: 1
Full System

Video classification accuracy

87.1%
81/93 - correct
6/93 - unknown
6/93 - wrong

89.2%
83/93 - correct
3/93 - unknown
7/93 - wrong

Frame classification accuracy 66.56% 71.74%
C - IoU
(CNN)

74.33% 80.02%

C - IoU 78.40% 82.38%

Ra and Rb - IoU
Upper box: 60.95%
Lower box: 67.13%
Average: 62.45%

Upper box: 66.18%
Lower box: 70.84%
Average: 67.16%

TABLE 5.5: Accuracy after training iteration 1, in the case of a full system (column 2)
and a basic self-supervision approach (column 1).

5.3.7 Conclusions

Final users’ engagement in waste sorting constitutes a fundamental asset towards
a greener and more sustainable processes for material recycling. However, product
heterogeneity and varying regulations (e.g. depending on geographical location)
may pose serious questions about the feasibility and accuracy levels of such classi-
fication. While the complete automation of waste sorting is far from being possible
in industrial and particularly in household settings, in this section we proposed a
vision-based mobile application that may help final users in the waste sorting pro-
cess by automatically recognizing product recycling classification with high degrees
of accuracy.

The developed methodology, based on the simple idea of focusing on recycling
codes rather than object visual aspects, blends together state-of-the-art deep learn-
ing detection techniques as well as ordinary image processing pipelines and tools.
This approach reflects a well-known recent trend in mixing machine learning mod-
els with specific domain knowledge in order to maximize task performance and re-
duce the overall amount of labeled data needed by the system. Furthermore, such
a solution has been designed to run efficiently on embedded systems (e.g. ordinary
smartphones) with highly constrained memory and computational budgets.
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Finally, we proposed an interactive training scheme to address realistic scenarios
where end-users actually contribute to the overall system predictions improvement
only through weak supervision. We believe similar continual learning procedures
may allow in the future not only for the incremental improvements in the recognition
of currently considered recycling codes but may also result in the efficient adaptation
to new recycling codes being introduced over time. Adaptation capabilities may be
even leveraged for “personalized learning”, with the simple yet effective idea of
customizing prediction models to personal, user-specific conditions (e.g. camera
settings, more frequent products to recycle, etc.) which may result in additional
performance gains.

5.4 Continual Learning Competitions

The goal of a competition is to stimulate the research community to produce new
and more effective solutions in promising research directions. For a field that has
seen a sudden increase in popularity in the last years, challenges are very impor-
tant events that can be used to bring the research community together and stimulate
discussions. Competitions are usually held in the context of workshops. If new edi-
tions of a workshop are proposed across several years, the organizers may consider
running a different challenge each year. For instance, challenges hosted at CLVision
workshops (hosted in the context of the annual CVPR conference) featured novel
elements of complexity that the participants had to overcome: the challenge hosted
in the 1st CLVision workshop proposed a difficult benchmark made of nearly 400
incremental experiences, while the challenge hosted in the 2nd CLVision workshop
proposed a complex continual reinforcement learning benchmark.

In this section, two challenges are detailed: the IROS 2019-Lifelong Robotic Vision
Competition and the 1st CLVision Workshop Challenge at CVPR 2020. Each challenge is
born with different ideas in mind, but in both these challenges, a realistic video dataset
(OpenLORIS [128] and CORe50 [95]) has been proposed. In addition, they both fea-
ture an instance-based classification problem. Another interesting point is that in both
competitions, to compute the score of submissions, some performance-related met-
rics (training and/or inference time, model size, amount of replay instances used,
etcetera) were taken into consideration. We argue that considering performance
metrics may be essential to prevent distortions in the design of continual learning
strategies submitted as solutions. Common distortions include the use of overabun-
dant replay instances, the use of extremely time-expensive computations, and the
use of excessively big models.

In the context of the IROS 2019 challenge, we participated as team "Unibo" by
proposing an algorithm based on the union of LwF [92] and Latent Replay (Sec-
tion 3.2). Our solution was able to reach the best score in terms of performance (final
model size and inference time) and 2nd place overall. In the context of the 1st CLVi-
sion challenge, I took part in the technical organization of the efforts involved in the
development of the devkit and the evaluation of the finalists’ solutions.

5.4.1 The IROS 2019 competition

Humans have the remarkable ability to learn continuously from the external envi-
ronment and the inner experience. One of the grand goals of robots is also building
an artificial “lifelong learning" agent that can shape a cultivated understanding of
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the world from the current scene and their previous knowledge via an autonomous
lifelong development. It is challenging for the robot learning process to retain ear-
lier knowledge when they encounter new tasks or information. Recent advances
in computer vision and deep learning methods have been very impressive due to
large-scale datasets, such as ImageNet [33] and COCO [93]. However, robotic vi-
sion poses unique new challenges for applying visual algorithms developed from
these computer vision datasets because they implicitly assume a fixed set of cat-
egories and time-invariant task distributions [41]. Semantic concepts change dy-
namically over time [157, 156, 159]. Thus, sizeable robotic vision datasets collected
from real-time changing environments for accelerating the research and evaluation
of robotic vision algorithms are crucial. For bridging the gap between robotic vision
and stationary computer vision fields, we utilize a real robot mounted with multiple-
high-resolution sensors (e.g., monocular/RGB-D from RealSense D435i, dual fish-
eye images from RealSense T265, LiDAR„ see Figure 5.17) to actively collect the
data from the real-world objects in several kinds of typical scenarios, like homes,
offices,campus, and malls.

This section summarizes IROS 2019-Lifelong Robotic Vision Competition (Lifelong
Object Recognition challenge) with dataset, rules, methods and results from the top
8 finalists (out of over 150 teams). Individual reports, dataset information, rules, and
released source codes can be found at the competition homepage.

In particular, this section will describe in detail the main aspects of the challenge, our
proposed solution (which achieved second place), and the winners’ solution, while
additional details (such as other winners’ solutions) are reported in the appendix
(Chapter D). For more details, we recommend that you refer to the official report [9].

FIGURE 5.17: OpenLORIS robotic platform (left) mounted with multiple sensors
(right). In OpenLORIS-Object dataset, the RGB-D data is collected from the depth

camera.

https://lifelong-robotic-vision.github.io/competition/
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Lifelong Robotic Vision - Object Recognition Challenge

This challenge aimed to explore how to leverage the knowledge learned from pre-
vious tasks that could generalize to new task effectively, and also how to efficiently
memorize of previously learned tasks. The work pathed the way for robots to be-
have like humans in terms of knowledge transfer, association, and combination ca-
pabilities.

To our best knowledge, the provided lifelong object recognition dataset OpenLORIS-
Object-v1 [158] is the first one that explicitly indicates the task difficulty under
the incremental setting, which is able to foster the lifelong/continual/incremen-
tal learning in a supervised/semi-supervised manner. Different from previous
instance/class-incremental task, the difficulty-incremental learning is to test the
model’s capability over continuous learning when faced with multiple environmen-
tal factors, such as illumination, occlusion, camera-object distances/angles, clutter,
and context information in both low and high dynamic scenes.

OpenLORIS-Object Dataset IROS 2019 competition provided the 1st version of
OpenLORIS-Object dataset for the participants. Note that our dataset has been up-
dated with twice the size in content available at the project homepage with detailed
information, visualization, downloading instructions and benchmarks on SOTA life-
long learning methods [158].

We included the common challenges that the robot is usually faced with, such as
illumination, occlusion, camera-object distance, etc. Furthermore, we explicitly de-
compose these factors from real-life environments and have quantified their diffi-
culty levels. In summary, to better understand which characteristics of robotic data
negatively influence the results of the lifelong object recognition, we independently
consider: 1) illumination, 2) occlusion, 3) object size, 4) camera-object distance, 5)
camera-object angle, and 6) clutter.

1). Illumination. The illumination can vary significantly across time, e.g., day and
night. We repeat the data collection under weak, normal, and strong lighting
conditions, respectively. The task becomes challenging with lights to be very
weak.

2). Occlusion. Occlusion happens when a part of an object is hidden by other
objects, or only a portion of the object is visible in the field of view. Occlusion
significantly increases the difficulty for recognition.

3). Object size. Small-size objects make the task challenging, like dry batteries or
glue sticks.

4). Camera-object distance. It affects actual pixels of the objects in the image.

5). Camera-object angle. The angles between the cameras and objects affect the
attributes detected from the object.

6). Clutter. The presence of other objects in the vicinity of the considered object
may interfere with the classification task.

The version of OpenLORIS-Object for this competition is a collection of 69 instances,
including 19 categories daily necessities objects under 7 scenes. For each instance, a
17 seconds video (at 30 fps) has been recorded with a depth camera delivering 500
RGB-D frames (with 260 distinguishable object views picked and provided in the

https://lifelong-robotic-vision.github.io/dataset/Data_Object-Recognition
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Level Illumination Occlusion
(percentage)

Object Size
(pixels)

1 Strong 0% > 200× 200
2 Normal 25% 30× 30− 200× 200
3 Weak 50% < 30× 30

Level Clutter Context # Classes # Instances
1 Simple

Home/office/mall 19 692 Normal
3 Complex

TABLE 5.6: Details of each 3 levels for 4 real-life robotic vision challenges.

dataset). 4 environmental factors, each has 3 level changes, are considered explic-
itly, including illumination variants during recording, occlusion percentage of the
objects, object pixel size in each frame, and the clutter of the scene. Note that the
variables of 3) object size and 4) camera-object distance are combined together be-
cause in the real-world scenarios, it is hard to distinguish the effects of these two
factors brought to the actual data collected from the mobile robots, but we can iden-
tify their joint effects on the actual pixel sizes of the objects in the frames roughly.
The variable 5) is considered as different recorded views of the objects. The defined
three difficulty levels for each factor are shown in Table. 5.6 (totally we have 12 levels
w.r.t. the environment factors across all instances). The levels 1, 2, and 3 are ranked
with increasing difficulties.

For each instance at each level, we provided 260 samples, both have RGB and depth
images. Thus, the total images provided is around 2 (RGB and depth)×260 (samples
per instance)×69 (instances) ×4 (factors per level) ×3 (difficulty levels) = 430, 560
images. Also, we have provided bounding boxes and masks for each RGB image
with Labelme [146]. The size of images under illumination, occlusion and object
pixel size factors is 424×240 pixels, and the size of images under object pixel size
factor are 424×240, 320×180, 1280×720 pixels (for 3 difficulty levels). Picked sam-
ples have been shown in Figure 5.18.

Challenge Phases and Evaluation Rules We held 2 phases for the challenge. The
preliminary contest we provided 9 batches of datasets which contain different fac-
tors and difficulty levels, for each batch, we have train/validation/test data splits.
The core of this incremental learning setting is, we need the first train on the first
batch of the dataset, and then 2nd batch, 3rd batch, until the 9th batch, and then use
the final model to obtain the test accuracy of all encounter tasks (batches). The train-
ing/validation datasets can only be accessed during the model optimizations. We
held the evluation platform on Codalab. There had been over over 150 participants
during the preliminary contest and we chose 8 teams with higher testing accurries
over all testing batches as our finalists.

For the final round, different from standard computer vision challenge [33, 93], not
only the overall accuracy on all tasks was evaluated but also the model efficiency,
including model size, memory cost, and replay size (the number of old task sam-
ples used for learning new tasks, smaller is better) were considered. Meanwhile,
instead of directly asking the participants to submit the prediction results on the test
dataset as standard deep learning challenges [33, 93], the organizers received either

https://codalab.lri.fr/competitions/581
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scene

bowl mug dollpaper cutterknife stapler thermometer

FIGURE 5.18: Picked samples of the objects from 7 scenes (column) under multiple
level environment conditions (row). The variants from top to bottom are illumination
(weak, normal, and strong); occlusion (0%, 25%, and 50%); object pixel size (< 30×
30, 30× 30− 200× 200, and > 200× 200); clutter (simple, normal and complex); and
multi-views of the objects. (Note that we use different views as training samples of

each difficulty level in each factor).

source codes or binary codes to evaluate their whole lifelong learning process to
make fair comparison. The finalists’ methods were tested by the organizers on Intel
Core i9 CPU and 1Nvidia RTX 1080 Ti GPU. For final round dataset, we randomly
shuffled the dataset with multiple factors. Data is split up to 12 batches/tasks and
each batch/task samples are from one subdirectories (there are 12 subdirectories in
total, 4 factors × 3 level/factor). Each batch includes 69 instances from 7 scenes,
about 21520 test samples, 21, 520 validation samples and 172, 200 training samples.
The metrics and corresponding grading weights are shown in Table 5.7. As can be
seen, we also provided a bonus test set which is recorded in under different context
background with some deformation. The adaptation on this bonus testing data is a
challenging task for our task.

Metric Accuracy Model Size Inference Time Replay Size
Weight 50% 8% 8% 8%

Metric Oral Presentation Accuracy on Bonus Dataset
Weight 10% 16%

TABLE 5.7: Metrics and grading criteria for final round.

Challenge Results From more than 150 registered participants, 8 teams entered
in the final phase and submitted results, codes, posters, slides and abstract papers
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(available here). Table 5.8 reports the details of all metrics (except oral presentation)
for each team.

Architectures and main ideas: All the proposed methods use end-to-end deep
learning models and employ the GPU(s) for training. For lifelong learning strate-
gies: 5 teams applied regularization methods, 2 teams utilized knowledge distil-
lation methods and 1 team used network expansion method. 4 teams applied re-
sampling mechanism to alleviate catastrophic forgetting. Meanwhile, some other
computer vision methods including saliency map, Single Shot multi-box Detection
(SSD), data augmentation are also utilized in their solutions.

Teams
Final

Acc. (%)
Model

Size (MB)
Inference
time (s)

Replay
Size (#sample)

Bonus-set
Acc. (%)

HIK_ILG 96.86 16.30 25.42 0 21.86
Unibo 97.68 5.900 22.41 1, 500 8.500

Guiness 72.90 9.400 346.0 0 10.96
Neverforget 92.93 342.9 467.1 0 1.520

SDU_BFA_PKU 99.56 171.4 2, 444 28, 500 19.54
Vidit98 96.16 9.400 112.2 1, 300 1.390

HYDRA-DI-ETRI 10.42 13.40 1, 323 21, 312 7.100
NTU_LL 93.56 467.1 4, 213 0 2.100

TABLE 5.8: IROS 2019 Lifelong Robotic Vision Challenge final results.

Challenge Methods and Teams

HIK_ILG Team The team developed the dynamic neural network, which was com-
prised of two parts: dynamic network expansion for data across dissimilar domains
and knowledge distillation for data in similar domains (See Figure 5.19). They froze
the shared convolutional layers and trained new heads for new tasks. The domain
gap was determined by measuring the accuracy of the previous model before train-
ing on current task. In order to increase the generalization ability of the trained
model, they used ImageNet pre-trained model for the shared convolutional layers,
and took more data augmentation and more batches to train head1 for base model.
Without using previous data, they discovered known instances in current task by a
single forward pass via previous model. Those correctly classified were treated as
known samples. They used these samples for knowledge distillation. They utilized
the best head over multiple heads for distillation, which is verified by experimental
results.

Unibo Team The team proposed a new Continual Learning approach based on la-
tent rehearsal, namely the replay of latent neural network activation instead of raw
images at the input level. The algorithm can be deployed on the edge with low la-
tency. With latent rehearsal they denoted an approach where instead of maintaining
in the external memory copies of input patterns in the form of raw data, they stored
the pattern activation at a given level (denoted as latent rehearsal layer). The al-
gorithm can be summarized as follow: 1) Take n patterns from the current batch;
2) Forward them through the network until the rehearsal layer; 3) Select k patterns
from the rehearsal memory; 4) Concat the original and the replay patterns; 5) For-
ward all the patterns through the rest of the network; 6) Backpropagate the loss only
until the rehearsal layer.

https://lifelong-robotic-vision.github.io/competition/
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FIGURE 5.19: The architecture of proposed dynamic neural network by
HIK_ILG Team.

The specific design they utilized with was AR1*, AR1*free and LwF CL approaches
over a MobileNet-v1 and MobileNet-v2 [149, 113, 103, 66]. Meanwhile, they opted
for simplicity and the trivial rehearsal approach summarized in Algorithm 4 is used
for memory management.

Algorithm 4 Pseudo-code explaining how the external memory M is populated
across the training batches.

Require: M = ∅
Require: Msize = number of patterns to be stored in M
For each training batch Bi do

train the model on shuffled Bi ∪M
h = Msize/i
Radd = Random sampling hpatterns from Bi

Rreplace =

{
Sample h patterns from M, if i > 1
∅, Otherwise

M = (M− Rreplace) ∪ Radd
end for

The full version of this proposed lifelong learning method can be found here with
an Android App demo for continual object recognition at the edge demo on this
YouTube link [121].

5.4.2 The 1st CLVision Challenge at CVPR 2020

The first Continual Learning in Computer Vision challenge held at CVPR in 2020 has
been one of the first opportunities to evaluate different continual learning algorithms
on a common hardware with a large set of shared evaluation metrics and 3 different
settings based on the realistic CORe50 video benchmark. In this section, we report
the main results of the competition, which counted more than 79 teams registered,
11 finalists and 2300$ in prizes. We also summarize the winning approaches, current
challenges and future research directions.

https://arxiv.org/abs/1912.01100
https://www.youtube.com/watch?v=Bs3tSjwbHa4&feature=youtu.be
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Background

Gradient-based architectures, such as neural networks trained with Stochastic Gra-
dient Descent (SGD), notably suffer from catastrophic forgetting or interference [107,
142, 45], where the network parameters are rapidly overwritten when learning over
non-stationary data distributions to model only the most recent. In the last few
years, significant progresses have been made to tame the issue. Nevertheless, com-
paring continual learning algorithms today constitutes a hard task [35]. This is
mainly due to the proliferation of different settings only covering partial aspects
of the continual learning paradigm, with diverse training and evaluation protocols,
metrics and datasets used [87, 18]. Another important question is whether such al-
gorithms, that have mostly been proved on artificial benchmarks such as MNIST
[86] or CIFAR [81], can scale and generalize to different settings and real-world ap-
plications.

The 1st Continual Learning in Computer Vision Challenge, organized within the CLVi-
sion workshop at CVPR 2020, is one of the first attempts to address these questions.
In particular, the main objectives of the competition were:

• Invite the research community to scale up continual learning approaches to
natural images and possibly on video benchmarks.

• Invite the community to work on solutions that can generalize over multiple
continual learning protocols and settings (e.g. with or without a “task” super-
vised signal).

• Provide the first opportunity for a comprehensive evaluation on a shared hard-
ware platform for a fair comparison.

Notable competitions previously organized in this area include: the Pascal 2 EU
network of excellence challenge on “covariate shift”, organized in 2005 [130, 129];
the Autonomous Lifelong Machine Learning with Drift challenge organized at NeurIPS
2018 [38] and the IROS 2019 Lifelong Robotic Vision challenge [9]. While the first
two competitions can be considered as the first continual learning challenges ever
organized, they were based on low-dimensional features benchmarks that made it
difficult to understand the scalability of the proposed methods to more complex
settings with deep learning based techniques. The latest competition, instead, has
been one of the first challenges organized within robotic vision realistic settings.
However, it lacked a general focus on computer vision applications as well as a
comprehensive evaluation on 3 different settings and 4 tracks.

For transparency and reproducibility, we openly release the finalists’ dockerized so-
lutions as well as the initial baselines at the following link: https://github.com/
vlomonaco/cvpr_clvision_challenge.

Competition

The CLVision competition was planned as a 2-phase event (pre-selection and finals),
with 4 tracks and held online from the 15th of February 2020 to the 14th of June 2020.
The pre-selection phase, based on the codalab online evaluation framework11, lasted
78 days and was followed by the finals where a dockerized solution had to be sub-
mitted for remote evaluation on a shared hardware. In the following section, the
dataset, the different tracks, the evaluation metric used and the main rules of the

11https://codalab.org

https://github.com/vlomonaco/cvpr_clvision_challenge
https://github.com/vlomonaco/cvpr_clvision_challenge
https://codalab.org
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FIGURE 5.20: Results distributions for the three tracks (NI, MT-NC and NIC) across
the 11 finalists solutions and the main evaluation metrics used for the competition:
total test accuracy (%) at the end of the training, average validation accuracy over

time (%), maximum and average RAM/Disk usage (GB).

competition are reported in detail. Finally, the main competition statistics, partici-
pants and winners are presented.

Dataset The CORe50 dataset described in [95] is used. An-in depth discussion
on this dataset and related benchmarks can be found in Chapter 2. Classification
on CORe50 can be performed at the instance (object) level (50 classes) or category
level (10 classes). The former, being a more challenging task, was the configuration
chosen for this competition. The egocentric vision of hand-held objects allows for
the emulation of a scenario where a robot has to incrementally learn to recognize
objects while manipulating them. Objects are presented to the robot by a human
operator who can also provide the labels, thus enabling a supervised classification
(such an applicative scenario is well described in [117, 158]).

Tracks Based on the CORe50 dataset, the challenge included four different tracks
based on the different settings considered:
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Team Name Team Members

HaoranZhu Haoran Zhu
ICT_VIPL Chen He, Qiyang Wan, Fengyuan Yang, Ruiping Wang, Shiguang

Shan, Xilin Chen
JimiB Giacomo Bonato, Francesco Lakj, Alex Torcinovich, Alessandro

Casella
Jodelet Quentin Jodelet, Vincent Gripon, Tsuyoshi Murata
Jun2Tong Junyong Tong, Amir Nazemi, Mohammad Javad Shafiee, Paul

Fieguth
MrGranddy Vahit Bugra Yesilkaynak, Firat Oncel, Furkan Ozcelik, Yusuf

Huseyin Sahin, Gozde Unal
Noobmaster Zhaoyang Wu, Yilin Shao, Jiaxuan Zhao, and Bingnan Hu
Sahinyu Yusuf H. Sahin, Furkan Ozcelik, Firat Oncel, Vahit Bugra

Yesilkaynak, Gozde Unal
Soony Soonyong Song, Heechul Bae, Hyonyoung Han, Youngsung Son
UT_LG Zheda Mai, Hyunwoo Kim, Jihwan Jeong, Scott Sanner
YC14600 Yu Chen, Jian Ma, Hanyuan Wang, Yuhang Ming, Jordan

Massiah, Tom Diethe

TABLE 5.9: The 11 finalists of the 1st CLVision Competition.

1. New Instances (NI): In this setting 8 training batches of the same 50 classes are
encountered over time. Each training batch is composed of different images
collected in different environmental conditions.

2. Multi-Task New Classes (MT-NC)12: In this setting the 50 different classes are
split into 9 different tasks: 10 classes in the first batch and 5 classes in the other
8. In this case the task label will be provided during training and test.

3. New Instances and Classes (NIC): this protocol is composed of 391 training
batches containing 300 images of a single class. No task label will be provided
and each batch may contain images of a class seen before as well as a com-
pletely new class.

4. All together (ALL): All the settings presented above.

Each participant of the challenge could choose in which of the main three tracks (NI,
MT-NC, NIC) to compete. Those participants that decided to participate to all the
three main tracks were automatically included in the ALL track as well, the most
difficult and ambitious track of the competition.

Evaluation Metric In the last few years, the main evaluation focus in continual
learning has always been centered around accuracy-related forgetting metrics. How-
ever, as argued by [35], this may lead to biased conclusion not accounting for the real
scalability of such techniques over an increasing number of tasks/batches and more
complex settings. For this reason, in the competition each solution was evaluated
across a number of metrics:

12Multi-Task-NC constitutes a simplified variation of the originally proposed New Classes (NC)
protocol [95] (where the task label is not provided during train and test).
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1. Final accuracy on the test set13: computed only at the end of the training proce-
dure.

2. Average accuracy over time on the validation set: computed at every batch/task.

3. Total training/test time: total running time from start to end of the main function
(in minutes).

4. RAM usage: total memory occupation of the process and its eventual sub-
processes. It is computed at every epoch (in MB).

5. Disk usage: only of additional data produced during training (like replay pat-
terns) and additionally stored parameters. It is computed at every epoch (in
MB).

The final aggregation metric (CLscore) is the weighted average of the 1-5 metrics (0.3,
0.1, 0.15, 0.125, 0.125 respectively).

Rules and Evaluation Infrastructure In order to provide a fair evaluation while
not constraining each participants to simplistic solutions due to a limited server-side
computational budget, the challenge was based on the following rules:

1. The challenge was based on the Codalab platform. For the pre-selection phase,
each team was asked to run the experiments locally on their machines with the
help of a Python repository to easily load the data and generate the submission
file (with all the necessary data to execute the submission remotely and verify
the adherence to the competition rules if needed). The submission file, once
uploaded, was used to compute the CLScore which determined the ranking in
each scoreboard (one for each track).

2. It was possible to optimize the data loader, but not to change the data order or
the protocol itself.

3. The top 11 teams in the scoreboard at the end of the pre-selection phase were
selected for the final evaluation.

4. The final evaluation consisted in a remote evaluation of the final submission for
each team. This is to make sure the final ranking was computed in the same
computational environment for a fair comparison. In this phase, experiments
were run remotely for all the teams over a 32 CPU cores, 1 NVIDIA Titan X
GPU, 64 GB RAM Linux system. The max running time was capped at 5 hours
for each submission/track.

5. Each team selected for the final evaluation had to submit a single dockerized
solution which had to contain the exact same solution submitted for the last
codalab evaluation. The initial docker image (provided in the initial challenge
repository) could have been customized at will but without exceeding 5 GB.

It is worth noting that only the test accuracy was considered in the ranking of the
pre-selection phase of the challenge, since the evaluation was run on participants’
local hardware. However, since it was not possible to submit a different solution for
the final evaluation, this ensured the competition was not biased on the sole accuracy
metric.

13Accuracy in CORe50 is computed on a fixed test set. Rationale behind this choice is explained in
[95]
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The financial budget for the challenge was entirely allocated for the monetary prizes
in order to stimulate participation:

• 800$ for the participant with highest average score accross the three tracks (e.g
the ALL track).

• 500$ for the participant with highest score on the NI track.

• 500$ for the participant with highest score on the MT-NC track.

• 500$ for the participant with highest score on the NIC track.

These prizes were kindly sponsored by Intel Labs (China), while the remote evalua-
tion was performed thanks to the hardware provided by the University of Bologna.

Participants and Finalists The challenge counted the participation of 79 teams
worldwide that competed during the pre-selection phase. From those 79 teams only
11 qualified to the finals with a total of 46 people involved and an average team
components number of 4. In Table 5.9 the 11 finalist teams and their members are
reported.

Continual Learning Approaches

In this section we discuss the baselines made available as well as the continual learn-
ing approaches of the winning teams in more details. On the official competition
website an extended report for each of the finalist team detailing their approach is
also publicly available.14

Baselines In order to better understand the challenge complexity and the compet-
itiveness of the proposed solutions, three main baselines were included for each of
the 4 tracks:

• Naive: This is the basic finetuning strategy, where the standard SGD optimiza-
tion process is continued on the new batches/tasks without any additional
regularization constraint, architectural adjustment or memory replay process.

• Rehearsal: In this baseline the Naive approach is augmented with a basic replay
process with a growing external memory, where 20 images for each batch are
stored.

• AR1* with Latent Replay: a recently proposed strategy [121] showing compet-
itive results on CORe50 with a shared, non fine-tuned hyper-parametrization
across the three main tracks.

Team ICT_VIPL General techniques for all tracks. To improve their performance
the ICT_VIPL team used: (1) Heavy Augmentation with the Python imgaug library15;
(2) resize the input image to 224×224 to encourage more knowledge transfer from
the ImageNet pretrained model; (3) employ an additional exemplar memory for
episodic memory replay to alleviate catastrophic forgetting (randomly select 2 ∼ 3%
of the training samples); (4) striking a balance between performance and model ca-
pacity by using a moderately deep network ResNet-50. As for efficiency, they lever-
aged the PyTorch Dataloader module for multi-thread speed-up.

14https://sites.google.com/view/clvision2020/challenge
15https://imgaug.readthedocs.io

https://sites.google.com/view/clvision2020/challenge
https://imgaug.readthedocs.io
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Special techniques for individual tracks. For NI track, there is no special design
over the general techniques above and they only tune the best hyper-parameters.
For Multi-Task-NC track, they carefully design a pipeline that disentangles repre-
sentation and classifier learning, which shows very high accuracy and the pipeline
is as below (Di is the set of exemplars for Task i and |Di| is its size):

For Task 0: (1) Train the feature extractor f (x) and the first head c0(z) with all training
samples; (2) Select N samples randomly and store them in the exemplar memory
(|D0| = N).

For Task i (i = 1, 2, . . . , 8): (1) Train head ci(z) with all training samples of Task i; (2)
Drop some samples randomly from the previous memory, keep |Dj| = N

i+1 (for all
j < i); (3) Select N

i+1 samples from Task i randomly and store them in the exemplar
memory (|Di| = N

i+1 ); (4) Fine-tune the feature extractor f (x) with all samples in
the memory ∪jDj(j ≤ i). (since the feature extractor alone cannot classify images,
a temporary head c(z) is used for training); (5) Fine-tune each head cj(z) with the
corresponding samples in the memory Dj(j ≤ i).

For NIC track, based on the assumption that the neural network estimates Bayesian
a posteriori probilitities [139], the network outputs are divided by the prior prob-
ability for each class inspired by the trick that handles class imbalance [15]. Such
a technique can prevent the classifier from biasing minority class (predict to newly
added classes) especially in the first few increments.

Team Jodelet The proposed solution consists in the concatenation of a pre-trained
deep convolutional neural network used as a feature extractor and an online trained
logistic regression combined with a small reservoir memory [21] used for rehearsal.

Since the guiding principle of the proposed solution is to limit as much as possible
the computational complexity, the model is trained in an online continual learning
setting: each training example is only used once. In order to further decrease the
memory and computational complexity of the solution at the cost of a slight de-
crease of the accuracy, the pre-trained feature extractor is fixed and is not fine-tuned
during the training procedure. As a result, it is not necessary to apply the gradi-
ent descent algorithm to the large feature extractor and the produced representation
is fixed. Therefore, it is possible to store the feature representation in the reservoir
memory instead of the whole input raw image. In addition to the memory gain,
this implies that the replay patterns do not have to go through the feature extractor
again, effectively decreasing the computational complexity of the proposed solution.

Among the different architectures and training procedures considered for the fea-
ture extractor, ResNet-50 [61] trained by Facebook AI using the Semi-Weakly Super-
vised Learning procedure [186] was selected. This training procedure relies on the
use of a teacher model and 940 million public images in addition to the ImageNet
dataset [145]. Compared with the reference training procedure in which the feature
extractor is solely trained on the ImageNet dataset, this novel training procedure al-
lows for a consequent increase of the accuracy without modifying the architecture:
while the difference of Top-1 accuracy between both training procedures for ResNet-
50 is about 5.0% on Imagenet, the difference increases up to 11.1% on the NIC track
of the challenge. Moreover, it should be noted that on the three tracks of the chal-
lenge, ResNet-18 feature extractor trained using this new procedure is able to reach
an accuracy comparable with the one of the reference ResNet-50 feature extractor
trained only on ImageNet, while being considerably smaller and faster.
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For reasons of consistency, the same hyperparameters have been used for the three
tracks of the challenge and have been selected using a grid search.

Team UT_LG Batch-level Experience Replay with Review In most Experience Re-
play based methods, the incoming mini-batch is concatenated with another mini-
batch of samples retrieved from the memory buffer. Then, they simply takes an SGD
step with the concatenated samples, followed by an update of the memory [21, 17].
Team UT_LG method makes two modifications. Firstly, to reduce the number of re-
trieval and update steps, they concatenate the memory examples at the batch level
instead of at the mini-batch level. Concretely, for every epoch, they draw a batch
of data DM randomly from memory with size replay_sz, concatenate it with the
current batch and conduct the gradient descent parameters update. Moreover, they
add a review step before the final testing, where they draw a batch of size DR from
memory and conduct the gradient update again. To prevent overfitting, the learning
rate in the review step is usually lower than the learning rate used when process-
ing incoming batches. The overall training procedure is presented in Algorithm 2.
Data Preprocessing (1) Centering-cropping the image with a (100, 100) window to
make the target object occupy more pixels in the image. (2) Resizing the cropped im-
age to (224, 224) to ensure no size discrepancy between the input of the pre-trained
model and the training images. (3) Pixel-level and spatial-level data augmentation
to improve generalization. The details of their implementation can be found in [100]

Procedure BERRD, mem_sz, replay_sz, review_sz, lr_replay, lr_review
M← {} ∗mem_sz
for t ∈ {1, . . . , T} do

for epochs do
if t > 1 then

DM
replay_sz∼ M

Dtrain = DM ∪ Dt
else

Dtrain = Dt
end
θ ← SGD(Dtrain, θ, lr_replay)

end
M← UpdateMemory(Dt,M, mem_sz)

end

DR
review_sz∼ M

θ ← SGD(DR, θ, lr_review)
return θ

Algorithm 2: Batch-level Experience Replay with Review

Team Yc14600 The use of episodic memories in continual learning is an efficient
way to prevent the phenomenon of catastrophic forgetting. In recent studies, several
gradient-based approaches have been developed to make more efficient use of com-
pact episodic memories. The essential idea is to use gradients produced by samples
from episodic memories to constrain the gradients produced by new samples, e.g. by
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ensuring the inner product of the pair of gradients is non-negative [99] as follows:

〈gt, gk〉 =
〈

∂L(xt, θ)

∂θ
,

∂L(xk, θ)

∂θ

〉
≥ 0, ∀k < t (5.1)

where t and k are time indices, xt denotes a new sample from the current task, and
xk denotes a sample from the episodic memory. Thus, the updates of parameters are
forced to preserve the performance on previous tasks as much as possible. 5.1 indi-
cates larger cosine similarities between gradients produced by current and previous
tasks result in improved generalisation. This in turn indicates that samples that lead
to the most diverse gradients provide the most difficulty during learning.

Through empirical studies the team members found that the discrimination ability
of representations strongly correlates with the diversity of gradients, and more dis-
criminative representations lead to more consistent gradients. They use this insight
to introduce an extra objective Discriminative Representation Loss (DRL) into the
optimization objective of classification tasks in continual learning. Instead of explic-
itly refining gradients during training process, DRL helps with decreasing gradient
diversity by optimizing the representations. As defined in 5.2, DRL consists of two
parts: one is for minimizing the similarities of representations between samples from
different classes (Lbt), the other is for minimizing the similarities of representations
between samples from a same class (Lwi) for preserving information of representa-
tions for future tasks.

min
Θ
LDR = min

Θ
(Lbt + Lwi),

Lbt =
1

Bbt

L

∑
l=1

B

∑
i=1

B

∑
j=1,yj 6=yi

〈hl,i, hl,j〉,

Lwi =
1

Bwi

L

∑
l=1

B

∑
i=1

B

∑
j=1,j 6=i,yj=yi

〈hl,i, hl,j〉.

(5.2)

where Θ denotes the parameters of the model, L is the number of layers of the model,
B is training batch size. Bbt and Bwi denote the number of pairs of samples in the
training batch that are from different classes and the same class, respectively, hl,i is
the output of layer l by input xi and yi is the label of xi. Please refer to [24] for more
details.

Competition Results

In this section we detail the main results of the competition for each of the main three
tracks (NI, MT-NC & NIC) as well as the averaged track ALL, which determined the
overall winner of the challenge. For each track the teams are ranked as follows: i)
each metric is normalized across between 0 and 1; ii) the CLscore is computed as a
weighted average; ii) results are ordered in descending order.

In the next sections we report the results with their absolute values to better grasp
the quality of the solutions proposed and their portability in different applicative
contexts.

New Instances (NI) Track In Table 5.10 the main results for the New Instances (NI)
track are reported. In Table C.1, additional details (not taken into account for the
evaluation) for each solution are shown. In this track, the UT_LG obtained the best
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FIGURE 5.21: Percentage (%) of finalists solutions for each track employing an ar-
chitectural, regularization or rehearsal strategy. Percentages do not sum to 100% since

many approached used hybrid strategies. Better viewed in colors.

CLScore with a small gap w.r.t. its competitors. The test accuracy tops 91% for the
winning team, showing competitive performance also in real-world non-stationary
applications. It is worth noting that the top-4 solutions all employed a rehearsal-
based technique, only in one case supported by a regularization counterpart.

Multi-Task NC (MT-NC) Track For the MT-NC track, results are reported in Table
5.11 and additional details in Table C.2 of the Appendix. In this scenario, arguably
the easiest since it provided an additional supervised signal (the Task label) the AR1
baseline resulted as the best scoring solution. In fact, while achieving lower accu-
racy results than the other top-7 solutions, it offered a more efficient algorithmic
proposal in terms of both memory and computation (even without a careful hyper-
parametrization). It is also interesting to note that, in this scenario, it is possible to
achieve impressive accuracy performance (∼99%) within reasonable computation
and memory constraints as shown by the ICT_VIPL team, the only solution who
opted for a disk-based exemplars memorization.

New Instances (NIC) Track The NIC track results are reported in Table 5.12. Ad-
ditional details of each solution are also made available in Table C.3. Only 7 over 11
finalist teams submitted a solution for this track. In this case, it is possible to observe
generally lower accuracy results and an increase in the running times across the 391
batches.

All (ALL) Track Finally in Table 5.13 the results averaged across tracks are reported
for the ALL scoreboard. Also in this case the competing teams were 7 over a total
of 11 with UT_LG as the winning team. With an average testing accuracy of ∼92%,
a average memory consumption of ∼10 GB and a running time of ∼68 minutes, its
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TEAM NAME
TEST ACC

(%)
VAL ACCavg

(%)
RUNtime

(M)
RAMavg

(MB)
RAMmax

(MB)
DISKavg

(MB)
DISKmax

(MB) CLscore

UT_LG 0.91 0.90 63.78 11429 11643 0 0 0.692
YC14600 0.88 0.85 22.58 17336 18446 0 0 0.648
ICT_VIPL 0.95 0.93 113.70 2459 2460 422 750 0.629
JODELET 0.84 0.85 3.11 18805 18829 0 0 0.612
SOONY 0.85 0.81 25.57 16662 17000 0 0 0.602
JIMIB 0.91 0.89 248.82 19110 25767 0 0 0.573
JUN2TONG 0.84 0.76 62.48 20968 23252 0 0 0.550
SAHINYU 0.88 0.81 156.64 26229 32176 0 0 0.538
AR1 0.75 0.73 17.18 10550 10838 0 0 0.520
NOOBMASTER 0.85 0.75 74.54 31750 39627 0 0 0.504
MRGRANDDY 0.88 0.84 249.28 28384 33636 0 0 0.501
NAIVE 0.66 0.56 2.61 18809 18830 0 0 0.349
REHEARSAL 0.64 0.56 3.79 21685 21704 0 0 0.326
HAORANZHU 0.70 0.67 366.22 21646 21688 0 0 0.263

AVG 0.82 0.78 100.74 18987 21135 30.13 53.57 0.52

TABLE 5.10: NI track results for the 11 finalists of the competition and the three base-
lines.

relatively simple solution suggests continual learning for practical object recognition
applications to be feasible in the real-world, even with a large number of small non-
i.i.d. bathes.

Discussion Given the main competition results and the additional solutions de-
tails reported in Appendix C, we can formulate a number of observations to better
understand current issues, consolidated approaches and possible future directions
for competitive continual learning algorithms tested on real-world computer vision
applications.

In particular, we note:

• Different difficulty for different scenarios: averaging the 11 finalists test accuracy
results we can easily deduce that the MT-NC track or scenario was easier than
the NI one (∼85% vs ∼82%), while the NIC track was the most difficult with a
average accuracy of ∼72%. This is not totally surprising, considering that the
MT-NC setting allows access to the additional task labels and the NI scenario
does not include dramatic distributional shifts, while the NIC one includes a
substantially larger number of smaller training batches. Moreover, a number
of researchers already pointed out how different training/testing regimes im-
pacts forgetting and the continual learning process [110, 103, 57].

• 100% of the teams used a pre-trained model: All the solutions, for all the tracks
started from a pre-trained model on ImageNet. While starting from a pre-
trained model is notably becoming a standard for real-world computer vision
applications, we find it interesting to point out such a pervasive use in the chal-
lenge. While this does not mean pre-trained model should be used for every
continual learning algorithm in general, it strongly suggests that for solving
real-world computer vision application today, pre-training is mostly needed.

• ∼90% of the teams used a rehearsal strategy: rehearsal constitutes today one of
the easiest and effective solution to continual learning where previous works
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TEAM NAME
TEST ACC

(%)
VAL ACCavg

(%)
RUNtime

(M)
RAMavg

(MB)
RAMmax

(MB)
DISKavg

(MB)
DISKmax

(MB) CLscore

AR1 0.93 0.53 16.02 10263 14971 0 0 0.693
UT_LG 0.95 0.55 19.02 13793 16095 0 0 0.691
YC14600 0.97 0.54 11.81 15870 19403 0 0 0.686
SOONY 0.97 0.55 55.02 14005 16049 0 0 0.679
JODELET 0.97 0.55 2.55 17893 23728 0 0 0.679
JUN2TONG 0.96 0.55 28.80 18488 19588 0 0 0.671
ICT_VIPL 0.99 0.55 25.20 2432 2432 562 562 0.630
REHEARSAL 0.87 0.51 4.49 20446 28329 0 0 0.626
JIMIB 0.95 0.78 204.56 21002 24528 0 0 0.607
MRGRANDDY 0.94 0.54 46.52 27904 32921 0 0 0.604
NOOBMASTER 0.95 0.53 68.07 27899 32910 0 0 0.597
HAORANZHU 0.57 0.32 343.50 21223 28366 0 0 0.351
NAIVE 0.02 0.13 3.41 17897 23726 0 0 0.318

AVG 0.85 0.51 63.77 17624 21773 43.27 43.27 0.60

TABLE 5.11: NC track results for the 11 finalists of the competition and the three
baselines. Teams not appearing in the table did not compete in this track.

TEAM NAME
TEST ACC

(%)
VAL ACCavg

(%)
RUNtime

(M)
RAMavg

(MB)
RAMmax

(MB)
DISKavg

(MB)
DISKmax

(MB) CLscore

UT_LG 0.91 0.58 123.22 6706 7135 0 0 0.706
JODELET 0.83 0.54 14.12 10576 11949 0 0 0.694
AR1 0.71 0.48 28.19 3307 4467 0 0 0.693
ICT_VIPL 0.90 0.56 91.29 2485 2486 192 375 0.625
YC14600 0.89 0.57 160.24 16069 21550 0 0 0.586
REHEARSAL 0.74 0.50 60.32 15038 19488 0 0 0.585
SOONY 0.82 0.52 280.39 12933 14241 0 0 0.533
JIMIB 0.87 0.56 272.98 13873 21000 0 0 0.533
NOOBMASTER 0.47 0.32 300.15 14492 18262 0 0 0.346
NAIVE 0.02 0.02 9.45 10583 11917 0 0 0.331

AVG 0.72 0.47 134.03 10606 13249 19.22 37.50 0.56

TABLE 5.12: NIC track results for the 11 finalists of the competition and the three
baselines. Teams not appearing in the table did not compete in this track.

[58] have shown that even a very small percentage of previously encountered
training data can have huge impacts on the final accuracy performance. Hence,
it is not surprising that a large number of teams opted to use it for maximizing
the CLscore, which only slightly penalized its usage.

• ∼45% of the teams used a regularization approach: regularization strategies have
been extensively used in the competition. It worth noting though, that only 1
team used it alone and not in conjunction with a plain rehearsal or architectural
approaches.

• only ∼27% of the teams used an architectural approach: less then one third of the
participants did use an architectural approach but only on conjunction with
a rehearsal or regularization one. This evidence reinforces the hypothesis that
architectural-only approaches are difficult to scale efficiently over a large num-
ber of tasks or batches [147].
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TEAM NAME
TEST ACC

(%)
VAL ACCavg

(%)
RUNtime

(M)
RAMavg

(MB)
RAMmax

(MB)
DISKavg

(MB)
DISKmax

(MB) CLscore

UT_LG 0.92 0.68 68.67 10643 11624 0 0 0.694
JODELET 0.88 0.64 6.59 15758 18169 0 0 0.680
AR1 0.80 0.58 20.46 8040 10092 0 0 0.663
YC14600 0.91 0.65 64.88 16425 19800 0 0 0.653
ICT_VIPL 0.95 0.68 76.73 2459 2459 392 562 0.617
SOONY 0.88 0.63 120.33 14533 15763 0 0 0.612
REHEARSAL 0.75 0.52 22.87 19056 23174 0 0 0.570
JIMIB 0.91 0.74 242.12 17995 23765 0 0 0.542
NOOBMASTER 0.76 0.53 147.59 24714 30266 0 0 0.464
NAIVE 0.23 0.24 5.16 15763 18158 0 0 0.327

AVG 0.80 0.59 77.54 14539 17327 39.22 56.25 0.58

TABLE 5.13: ALL track results for the 11 finalists of the competition and the three
baselines. Teams not appearing in the table did not compete in this track.

• Increasing replay usage with track complexity: as shown in Figure 5.21, it is worth
noting that as the track complexity increased, the proposed solutions tended
to include more replay mechanisms. For example, for the NIC track, all the
approaches included rehearsal, often used in conjunction with a regularization
or architectural approach.

• High memory replay size: it is interesting to note that many CL solutions em-
ploying rehearsal have chosen to use a growing memory replay buffer rather
than a fixed one with an average maximum memory size (across teams and
tracks) of ∼26k patterns. This is a very large number considering that is about
∼21% of the total CORe50 training set images.

• Different hyper-parameters selection: An important note to make is about the hy-
perparameters selection and its implication to algorithms generalization and
robustness. Almost all participants’ solutions involved a carefully fine-tuned
hyper-parameters selection which was different based on the continual sce-
nario tackled. This somehow highlights the weakness of state-of-the-art al-
gorithms and their inability to truly generalize to novel situations never en-
countered before. A notably exception is the AR1 baseline, which performed
reasonably well in all the tracks with a shared hyperparametrization.

Conclusions and Future Improvements

The 1st Continual Learning for Computer Vision Challenge held at CVPR2020 has been
one of the first large-scale continual learning competition ever organized with a
raised benchmark complexity and targeting real-word applications in computer vi-
sion. This challenge allowed every continual learning algorithm to be fairly evalu-
ated with shared and unifying criteria and pushing the CL community to work on
more realistic benchmarks than the more common MNIST or CIFAR.

After a carefully investigation and analysis of the competition results we can con-
clude that continual learning algorithms are mostly ready to face real-world set-
tings involving high-dimensional video streams. This is mostly thanks to hybrid
approaches often combined with plain replay mechanisms. However, it remains un-
clear if such techniques can scale over longer data sequences and without such an
extensive use of replay.
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Despite the significant participation and success of the 1st edition of the challenge,
a number of possible improvements and suggestions for future continual learning
competitions can be formulated:

• Discourage over-engineered solutions: one of the main goal of the competition
was to evaluate the applicability of current continual learning algorithms on
real-world computer vision problems. However, given the substantial free-
dom given through the competition rules to achieve this goal, we have no-
ticed a number of over-engineered solutions aimed at improving the CLscore
but not really significant in terms of novelty of scientific interest. This in turns
forced every other participants to focus on over-engineering rather than on the
core continual learning issues. For example, data loading or compression al-
gorithms may be useful to decrease memory and compute overheads but may
be applicable to most of the solutions proposed, making them less interesting
and out of the scope of competition. For this reason, we believe that finding a
good trade-off between realism and scientific interest of the competition will
be fundamental for future challenges in this area. We suggest for example to
block the possibility to optimize the data loading algorithms and to count the
number of replay patterns rather than their bytes overhead.

• Automatize evaluation: in the current settings of the challenge the evaluation
was client-side (on the participants machines) for the pre-selection phase and
on a server-side shared hardware for the finals. To ensure the fairness of the
results and the competition rules adherence, the code that generated each sub-
mission had to be included as well. However, an always-available remote
docker evaluation similar to the one proposed for the AnimalAI Olympics
[28], would allow a single phase competition with an always coherent and up-
dated scoreboard, stimulating in turns teams participation and retention over
the competition period. This would also alleviate some burdens at the organi-
zation levels, reducing the amount of manual interventions.

• Add scalability metrics: An interesting idea to tame the challenge complexity
while still providing a good venue for assessing continual learning algorithms
advancement, would be to include other than the already proposed metrics, a
number of derivative ones taking into account their trend over time rather than
their absolute value. This would help to better understand their scalability on
more complex problems and longer tasks/batches sequences and incentivize
efficient solutions with constant memory/computation overheads.

• Encourage the focus on original learning strategies: Another important possible
improvement of the competition would be setting up a number of incentives
and disincentives to explore interesting research directions in continual learn-
ing. For example, the usage of pre-trained models has been extensively used
for the competition by all the participants. However it would have been also
interesting to see proposals not taking advantage of it as well. In the next com-
petition edition we plan to discourage the use of pre-trained models, different
hyperparameters for each setting track and increase the memory usage weight
associated to the CLscore.
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Chapter 6

Conclusions and Future Challenges

This chapter summarizes the contributions presented in this thesis. For each contri-
bution, in the context of enabling continual learning capabilities in real-life applica-
tions, possible future research directions are discussed.

6.1 Realistic benchmarks

The scenarios discussed in Chapter 2 were designed with the idea of better modeling
real-life situations. In particular, benchmarks of the NIC family introduce the idea
that no assumptions on the possibility and frequency of encountering new and old
concepts over time (repetition of concepts) should be made when designing contin-
ual learning strategies able to operate in realistic scenarios for embodied (and other
environment-aware) agents. In this context, NICv2 was proposed, in which new
classes of objects are inserted in random moments during the experiences stream.
The NICv2 generation procedure was then applied to the CORe50 dataset [95] to
produce the NICv2-79, -196, and -391 benchmarks. In particular, the latter one fea-
tures the following elements of complexity, which made it an excellent reference
throughout the thesis:

• a long stream of 391 incremental training experiences. As far as we know, no
benchmark with such a high amount of experiences has been proposed in the
literature;

• non-i.i.d. experiences. As experiences are composed of a single video depict-
ing an object, the training instances (frames) are highly correlated. In addition,
strategies have to account for a single-class composition of the training data,
which poses an important challenge;

• instance-based recognition. We deem this element, which is also shared with
NICv2-79 and -196 benchmarks, as a very important aspect of these bench-
marks: while mainstream evaluation protocols focus on the category-based ob-
ject recognition task, many practical applications may leverage instance recog-
nition capabilities, in which specific objects are recognized in an environment.

Research directions The definition of realistic benchmarks is not an easy task. We
argue that, while the NICv2 benchmarks here proposed move in the correct direc-
tion, much more can be done to close the gap between current artificial benchmarks
and real scenarios. For instance, while both the original NIC [95] and the proposed
NICv2 benchmarks successfully get rid of the no-repetition constraint, it may make
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sense to introduce elements able to better simulate realistic events, such as the sud-
den availability of abundant data about a certain class in a short time span, the fact
that data about a class may be available again at a variable distance in time, the intro-
duction of signals able to communicate the fact that remembering a certain concept
is not required anymore, etcetera.

6.2 Effective continual learning techniques

In Chapter 3, efficient techniques such as AR1* and latent replay have been de-
scribed. These techniques can effectively handle complex benchmarks such as
NICv2-391. In addition, thanks to their flexibility, they can be seamlessly used in
class-incremental and domain-incremental scenarios. Not only these techniques can
outperform popular strategies such as iCaRL [135] and DSLDA [59] on the accuracy
side, but they are also able to handle the training phase efficiently, thus allowing for
their deployment on embedded, mobile, and robotic systems.

In particular, it was shown in Section 3.1 that replay-free techniques can be applied
to handle complex benchmarks of the NICv2 family. This is a very important step
able to prove that, even in the extreme case of 391 incremental experiences, replay
is not strictly necessary to obtain a stable accuracy increase in time. With the intro-
duction of Latent Replay (described in Section 3.2) the gap with the upper bound
represented by the cumulative (joint training) approach is further reduced. With
latent replay, we showed that replay can be highly beneficial even when instances
are replayed at intermediate layers of the model. Moreover, we showed that this
approach offers many accuracy/performance tradeoffs, which is ideal for practical
applications. Such scalability is hardly found in mainstream techniques.

Research directions As described in Section 1.3.1, continual learning approaches
are very varied and a precise direction for future works is hard to define. However,
by taking the idea of developing real-life scenarios and applications as the main goal,
a few macro-directions can be pointed out with enough confidence.

One of the main challenges in deep learning research is to effectively enable the use
of abundant unlabeled data. While this is an open research direction in the deep
learning field, it is even more relevant for continual learning research. In fact, real-
life applications for embodied agents would be able to leverage a massive amount
of unlabeled data coming from sensors. We argue that continual learning strategies
should feature mechanisms able to improve the internal knowledge model incre-
mentally by using this massive amount of data. These mechanisms should be able
to cooperate with more classic supervised continual learning approaches to form a
single effective learning system.

Another promising research direction is to design expansion techniques able to both
expand and contract the model capacity in scenarios such as NIC, where the no-
repetition idea does not hold, and when task labels and boundaries are not available
at test time. We argue that proper capacity expansion techniques will be essential
to enable lifelong learning capabilities in intelligent agents, no matter if they are
embodied or server-powered ones.
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6.3 Continual learning libraries

Chapter 4 opens with a discussion on the desiderata and design principles for a con-
tinual learning library. The Avalanche library described in Section 4.2 was designed
to adhere to these principles. Its modularity and comprehensiveness allows for both
new and expert users to quickly adopt the library as the base for their experimental
setup. The current modules offered by the library (benchmarks, training, models,
metrics, and logging) try to cover all aspects of a CL research codebase in a simple
and integrated way. Avalanche was developed in a community effort inside the Con-
tinualAI organization and it is one of the most popular continual learning research
libraries.

Research directions Continual learning is a constantly evolving research field.
Novel research directions, along with their scenarios, benchmarks, and techniques
are regularly proposed in the literature. These new efforts are based on assump-
tions and tools that will hardly be already covered by an existing library. In other
words, a successful continual learning library needs to be constantly expanded by
adding new tools and modules. Thanks to the open contribution approach, the li-
brary is constantly evolving to accommodate these new needs. However, contribu-
tions regarding the deeper structure of the library usually come from a core team of
maintainers.

In this context, the most natural evolution for Avalanche is to expand its capabil-
ities in terms of support for object detection and segmentation, continual unsupervised
learning, and distributed training. In addition, an effort in integrating the contin-
ual reinforcement learning paradigm already produced a prototype fork of Avalanche
(avalanche-rl1).

Finally, the Reproducible Continual Learning project2 was created to verify that the
Avalanche implementations of popular continual learning techniques are aligned
with the results reported in the original papers. Considering that one of the main
goals of Avalanche is to enhance the reproducibility of experiments, the RCL effort
will be constantly expanded to make sure that the proposed implementations are
correct.

6.4 Practical applications

The final category of contributions regards the practical applications described in
Chapter 5. In particular, the Continual Object Recognition (CORe) application,
which is the first of its kind, was described in Section 5.1. This Android applica-
tion allows the user to incrementally i) learn to recognize new objects, ii) increase the
recognition capabilities on existing classes. The application can complete all training
and inference-time tasks offline, without using ad-hoc accelerators. In Section 5.2,
the deployment of the AR1* and Latent Replay techniques in an Ultra-Low-Power
(ULP) embedded board is described. As of our knowledge, no such extreme deploy-
ment scenario has ever been attempted for continual learning techniques.

Research directions In the context of practical vision applications, the natural ex-
tension of the aforementioned works is moving towards the detection task. Apart

1Avlanche-RL: https://github.com/ContinualAI/avalanche-rl
2RCL: https://github.com/ContinualAI/reproducible-continual-learning

https://github.com/ContinualAI/avalanche-rl
https://github.com/ContinualAI/reproducible-continual-learning
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from very few recent works [1], this direction is not much explored in current con-
tinual learning literature. However, we argue that classification capabilities may not
be enough for the majority of embodied systems.
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Appendix A

Details of CWR* and AR1*
experiments

This appendix contains the extended information regarding the structure of NICv2
benchmarks not already covered in Section 2.2.2, a list of hyperparameters used to
obtain the experimental results found in Section 3.1.2 as well as technical details
regarding the reference hardware and software setup. In addition, considering that
the CWR* (described in Section 3.1.1) is based on CWR+, the pseudocode for CWR+
is here reported.

A.1 The original CWR+ Strategy

The original CWR+ strategy pseudocode is reported for completeness in Algorithm
5.

The CWR+ strategy was originally targeted at the NC scenario and is not well suited
for NI and NIC scenarios due to the fact that previous weights of the CWR layer
are overwritten in successive batches (see line 11). This is not an issue in the NC
scenario, where each class is encountered in exactly one batch, because class-specific
weights are initialized once and are never updated again.

CWR* addresses this issue by updating previously learned weights instead of over-
writing them.

Algorithm 5 CWR+ pseudocode for NC scenario where each training batch Bi includes pat-
terns of new classes only: Θ̄ are the class-shared parameters of the representation layers;
the notation cw[j] / tw[j] is used to denote the groups of consolidated / temporary weights
corresponding to class j. The mean-shift in line 11 allows to adapt the scale of parameters
trained in different batches (see Section 3.2 of [103]).

1: procedure CWR+
2: cw = 0
3: init Θ̄ random or from pre-trained model (e.g. on ImageNet)
4: for each training batch Bi:
5: expand output layer with neurons for the new classes in Bi
6: tw = 0 (for all neurons in the output layer)
7: train the model with SGD on the si classes of Bi:
8: if Bi = B1 learn both Θ̄ and tw
9: else learn tw while keeping Θ̄ fixed

10: for each class j among the si classes in Bi
11: cw[j] = tw[j]− avg(tw)
12: test each class j by using Θ̄ and cw
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FIGURE A.1: Classes encountered over time in the first run NICv2-79.

FIGURE A.2: Classes encountered over time in the first run NICv2-196.

A.2 Additional NICv2 visual

Section 2.2.2 introduces the NICv2 benchmarks based on the CORe50 dataset. In
particular, Figure 2.4 depicts the NIC and NICv2 benchmarks, both featuring 79
training experiences. In addition, a visual representation of the CORe50-NICv2-391
benchmark is provided in Figure 2.5. The figures here reported (Figure A.1 and
A.2) complete the visual description of the benchmarks described in Chapter 2 by
providing a representation of the first run of the NICv2-79 (standalone figure) and
NICv2-196 benchmarks. In these figures, each row denotes a class. Colors are used
to group the 50 classes in the 10 categories. Each column denotes a training batch.
A colored block in a (row, column) cell is used to indicate that at least one training
session of the row class is present in the column batch. The red-framed cells denote
the first introduction of a class. Gray vertical bands highlight experiences where at
least one class is seen for the first time.

A.3 Implementation and Experiments Details

For each of the proposed scenarios and strategies, a test accuracy curve was obtained
by averaging over 10 different runs. Each run differs from the others by the order of
the encountered batches.

All our experiments were executed in a “Ubuntu 16.04” Docker environment using
a single GPU. See table A.1 for more details of the host setup. In our experiments we
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TABLE A.1: Experimental setup for CWR* and AR1* experiments.

Component Model/Version

Operating System Debian 8.3
Docker 18.06.1
Nvidia Driver 390.48 (CUDA 9.0, CuDNN 7)
CPU Intel(R) Xeon(R) CPU E5-2650
GPU GTX 1080 Ti (11 GB VRAM)
RAM 64 GB DDR3 (1600 MHz)

used a customized version of the Caffe [73] framework. More details can be found
in the reference project source code1.

A.3.1 Hyperparameters

The hyperparameters used in our experiments are described in tables A.2 and A.3.
Values reported in table A.3 follow the naming scheme used in [103]. Please note
that:

• for AR1* we used two different learning rates: one for the CWR layer and
one for the remaining part of the net. This choice can be simply explained by
considering that the CWR layer update procedure in AR1* is inherited from
the original CWR* strategy. We empirically observed that the overall model
performance largely benefits from the use of an higher learning rate for the
CWR layer.

• the proposed “Weight Constraining by Learning Rate Modulation” approach
was applied to the AR1* strategy only. While this approach could be easily
applied to EWC as well, in our experiments we did not change the behavior
of the original EWC algorithm. This will allow for a more direct and unbiased
comparison of the proposed strategies.

TABLE A.2: Batch ReNormalization parameters.

Parameters NICv2-79 NICv2-196 NICv2-391

Rmax 1.25 1.25 1.5
Dmax 0.5 0.5 2.5
Moving Avg. update rate 0.9999 0.9999 0.9999

1https://github.com/lrzpellegrini/Fine-Grained-Continual-Learning

https://github.com/lrzpellegrini/Fine-Grained-Continual-Learning
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TABLE A.3: Hyperparameter values used in our experiments. The selection was per-
formed on run 0, and hyperparameters were then fixed for runs 1, . . . , 9. We used the
same set of hyperparameters for the NICv2 79, 196 and 391 scenarios. In this table we

use to the same notation introduced in [103].

Naive

Parameters MobileNet V1

Head Maximal
B1: epochs, η (learn. rate) 2, 0.001
Bi, i > 1: epochs, η (learn. rate) 2, 0.000035

LWF

Parameters MobileNet V1

Head Maximal
λ 0.1
B1: epochs, η (learn. rate) 2, 0.001
Bi, i > 1: epochs, η (learn. rate) 2, 0.00005

EWC

Parameters MobileNet V1

Head Maximal
maxF 0.001
λ 2.0e6
B1: epochs, η (learn. rate) 2, 0.001
Bi, i > 1: epochs, η (learn. rate) 2, 0.0001

CWR*

Parameters MobileNet V1

Head Maximal
B1: epochs, η (learn. rate) 4, 0.001
Bi, i > 1: epochs, η (learn. rate) 4, 0.001

AR1

Parameters MobileNet V1

Head Maximal
w1, wi(i > 1) 0.5, 0.5
maxF 0.001
B1: epochs, η (learn. rate) 4, 0.001
Bi, i > 1: epochs 4

η (learn. rate, CWR layer) 0.001
η (learn. rate,other layers) 0.0001

DSLDA

Parameters MobileNet V1

shrinkage 1e-4
sigma plastic
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Appendix B

Details of Latent Replay
experiments

This appendix contains the useful information regarding the structure of model used
to experiment with the latent replay technique. In particular, the architecture and
related performance/memory occupation metrics are reported in Section B.1. In ad-
dition, the hyperparameters and the hardware/software setup for the experiments
found in Section 3.2.3 are reported in B.2 and B.3.

B.1 Model Architecture and Memory Trade-off

In order to assess the trade-off between accuracy, computation, and memory usage
we ran AR1* free using different latent replay layers. Table B.1 shows the details of
the model we used, which is based on the MobileNetV1 [66], with the only difference
that Batch Norm layers have been replaced with Batch ReNorm ones. The network
architecture is reported in Table B.1.

TABLE B.1: The architecture of the model used in our experiments. The neurons,
weights, and operations are reported for each layer. Those information, along with
the results reported in Table 3.2, can be used to identify the most appropriate trade-off
between accuracy, computation and used memory depending on the problem context.

Layer Neurons Operations Weights

Images 49152 - -
conv1 131072 3670016 896
conv2_1/dw 131072 1310720 320
conv2_1/sep 262144 8650752 2112
conv2_2/dw 65536 655360 640
conv2_2/sep 131072 8519680 8320
conv3_1/dw 131072 1310720 1280
conv3_1/sep 131072 16908288 16512
conv3_2/dw 32768 327680 1280
conv3_2/sep 65536 8454144 33024
conv4_1/dw 65536 655360 2560
conv4_1/sep 65536 16842752 65792
conv4_2/dw 16384 163840 2560
conv4_2/sep 32768 8421376 131584
conv5_1/dw 32768 327680 5120
conv5_1/sep 32768 16809984 262656
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conv5_2/dw 32768 327680 5120
conv5_2/sep 32768 16809984 262656
conv5_3/dw 32768 327680 5120
conv5_3/sep 32768 16809984 262656
conv5_4/dw 32768 327680 5120
conv5_4/sep 32768 16809984 262656
conv5_5/dw 32768 327680 5120
conv5_5/sep 32768 16809984 262656
conv5_6/dw 8192 81920 5120
conv5_6/sep 16384 8404992 525312
conv6/dw 16384 163840 10240
conv6/sep 16384 16793600 1049600
pool6 1024 16384 0
fc7 50 51250 51250

Total 187,09M 3,35M

B.2 Hyperparameters

The hyperparameters used for the Latent Replay (described in Section 3.2) experi-
ments are reported in tables B.2 and B.3. Please note that:

• The same naming scheme used in [103] is used.

• For AR1* and AR1*free we used a higher learning rate for the CWR layer, as
described in Section A.3.1.

• In order to optimize the results for the two different replay types (native re-
hearsal and latent replay) we chose two different values for the moving aver-
age update rate of the BatchReNorm layers [70]. We found out that an higher
value of the update rate was better suited for the latent version.

• Excluding the aforementioned update rate, we used the same hyperparameters
for both the native and latent rehearsal-based experiments.

TABLE B.2: Hyperparameter values used in our experiments. The selection was per-
formed on run 0, and hyperparameters were then fixed for runs 1, 2, 3, 4. As an ex-

ception for the long running time (∼ 14 days), iCaRL was trained only on run 0.

CWR*

Parameters MobileNet V1

Head Maximal
B1: epochs, η (learn. rate) 4, 0.001
Bi, i > 1: epochs, η (learn. rate) 4, 0.003

AR1*

Parameters MobileNet V1

Head Maximal
w1, wi(i > 1) 0.5, 0.5
maxF 0.001
B1: epochs, η (learn. rate) 4, 0.001
Bi, i > 1: epochs 4
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η (learn. rate, CWR layer) 0.003
η (learn. rate,other layers) 0.0003

AR1* free

Parameters MobileNet V1

Head Maximal
B1: epochs, η (learn. rate) 4, 0.001
Bi, i > 1: epochs 4

η (learn. rate, CWR layer) 0.003
η (learn. rate,other layers) 0.0003

DSLDA

Parameters MobileNet V1

Shrinkage 1e-4
Σ plastic

iCaRL

Parameters MobileNet V1

B1: epochs, η (learn. rate) 40, 0.01
Bi, i > 1: epochs, η (learn. rate) 4, 0.001
K 8000

TABLE B.3: Batch ReNormalization parameters. The reported parameters were used
in our experiments on the NICv2-391 scenario involving the CWR*, AR1* and AR1*

free algorithms.

Parameters Latent Replay Native Rehearsal

Rmax 1.25 1.25
Dmax 0.5 0.5
Moving Avg. update rate 0.99995 0.9999

B.3 Implementation and Experiments Details

For each proposed strategy, a test accuracy curve was obtained by averaging over 5
different runs. The same experimental setup used when experimenting with CWR*
and AR1* (described in Section 3.1.2) has been followed, so that each run differs
from the others by the order of the encountered experiences. Our experiments were
executed in a "Ubuntu 16.04" Docker environment with a custom version of the Caffe
[73] framework using a single GPU. See table B.4 for more details of the host setup.

TABLE B.4: Experimental setup for Latent Replay experiments.

Component Model/Version

Operating System Debian 8.3
Docker 18.06.1
Nvidia Driver 430.40 (CUDA 9.0, CuDNN 7)
CPU Intel(R) Xeon(R) CPU E5-2650
GPU GTX 1080 Ti (11 GB VRAM)
RAM 64 GB DDR3 (1600 MHz)
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Appendix C

Additional details of the 1st
CLVision Challenge

In this appendix, additional details for the solutions submitted at the 1st CLVision
Challenge are provided (described in detail in Section 5.4.2). In the following tables,
each team and track are reported (see Table C.1, Table C.2, and Table C.2). In par-
ticular, we report: i) the model type; ii) if the model was pre-trained; iii) the type of
strategy used; iv) the number of eventual replay examples; v) the number of training
epochs per batch; vi) the mini-batch size used.
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Appendix D

Additional details of the IROS 2019
LRV Challenge

This appendix includes additional data regarding the Lifelong Robotic Vision com-
petition held at IROS 2019 (object classification track). In particular, while Section
5.4.1 includes more information regarding the challenge itself and our proposed so-
lution, here additional technical details about other participants’ solutions are re-
ported. For a comprehensive description of the challenge, we recommend referring
to the final challenge report [9].

D.1 Challenge Method of other participants

Guinness Team The core backend of the approach was the learning without for-
getting (LwF) [92]. Figure D.1 illustrates its training strategy. They deployed a pre-
trained MobileNet-v2 [149], in which the weights up to the bottleneck are retained as
θp (θp here was fine tuned during training) and they trained the bottleneck weights
from scratch. Based on LwF, they retained the θold that is trained by previous tasks to
construct the regularization term for training new weights θnew. It should be noted
that there was no replay of previous task images in this structure and only the up-
dated θnew was retained after training. Empirically, they loaded the initial pretrained
weights θp when processing a new task and θp was going to be fine tuned during the
training. Details of training scheme are included in Algorithm 6.

Conv

𝜃𝑝

Conv…

Old task image

New task image

𝜃𝑜

𝜃𝑛

So
ft

m
ax

So
ft

m
ax

𝑌𝑜

𝑌𝑛

+

𝐿𝑜

𝐿𝑛

Labels 𝐿

BackPropagate

(Frozen)

FIGURE D.1: LwF training strategy proposed by the Guinness Team.
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Algorithm 6 Training details (Guinness Team)

Inputs:
Training images X, labels Y of the new task and the pretrained parameters θp

Initialize:
Yo ←Mθ̂p,θo

(X)
θn ← Xavier-init(θn)
Load the pretrained weights θp to the new model

Train:
θ∗p, θ∗n ← argmin

θ̂p,θ̂n

(λLo(Y, Yo) + Ln(Y, Yn))

θo ← θn

Neverforget Team The approach was based on Elastic Weight Consolidation
(EWC) [79].

As is shown in the Figure D.2, the darker area means a smaller loss or a better solu-
tion to the task. First, the parameters of the model are initialized as θ0 and finetuned
as θa for Task A. Then, If the model continues to learn Task B and finetuned as θb1,
the loss of Task A is getting much larger, and it will suffer from the forgetting prob-
lem. Instead, the Fisher Information Matrix is utilized to measure the importance of
each parameter. If the parameter of the previous task is important, the parameter
adjustment in this direction will be constrained and relatively small, if the param-
eter of the previous task is less important, there will be more space for parameter
adjustment in this direction. Assume the importance (the second derivative of log-
like function) of parameter θ2 is more than θ1, in Task B, the parameter of the neural
network will adjust more in θ1 direction. Thus, the model will gain knowledge of
Task B while preserving the knowledge of Task A simultaneously. The ResNet-101
[61] was used as the backbone network. The task was sequentially trained on the
training set.

FIGURE D.2: EWC architecture in Neverforget Team’s Solution.

SDU_BFA_PKU Team The approach disentangled this problem with two aspects:
background removal problem (See Figure D.4) and classification problem.
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FIGURE D.3: The architecture proposed by the SDU_BFA_PKU Team.

First, they utilized saliency detection method to remove the background noise. Cas-
caded partial decoder framework which contains two branches is applied to get im-
age saliency map. In each branch, they used a fast and effective partial decoder.
The first branch generates an initial saliency map which is utilized to refine the fea-
tures of the second branch. For classification problem with catastrophic forgetting,
they utilized knowledge distillation to prevent it. They used an auto-encoder as a
teacher translator, and an encoder as student translator, which has same architec-
ture with teacher translator encoder. The model is aim to project saliency maps from
teacher network and student network to same space. Specifically, For i-th task, they
regarded (i− 1)-th model as teacher network, and i-th model as student network. In
order to extract the factor from the teacher network, they trained the teacher transla-
tor in an unsupervised way by assigning the reconstruction loss at the beginning of
every task training process. Then they utilized student translator to translate student
network’s saliency map output, computed L1 loss between teacher network output
and student network. In order to save computational and storage size, they used
MobileNet-v2 as backbone model [149].
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FIGURE D.4: A background removal demo in SDU_BFA_PKU Team’s solution.

Vidit98 Team This approach sampled validation data from the buffer and use it as
replay data. It intelligently creates the replay memory for a task. Here suppose a
network is trained on a task tn and it learns some feature representation of the im-
ages in the task, when trained on the task tn+1 it learns the feature representation for
images in task tn+1, but as the distribution of data is task tn+1 is different, accuracy
drops for images in task tn. The replay memory was an efficient representation of
previous tasks data whose information was lost. The replay data was sampled from
the validation of all the previous tasks. The network on task tn is trained and the ac-
curacy of batches of validation data is saved. Next, when trained on task ti (i > n),
the accuracy of same batches of validation data of task tn is calculated. Then they
stored the top k batches from validation data of task tn whose accuracy has dropped
the most. This is done for all the tasks t0 to ti−1. Training for task ti+1 they combined
the replay data and training data to train for the particular task. The algorithm is
shown in Algorithm 7. The backbone model they used is MobileNet-v2 [149]. Code
is made available.

Algorithm 7 Intelligent resampling method (Vidit98 Team)

Results: Replay_Data
Initialization:

Fi, val_datai, tn, acc[], best_acc[], topk
While data in val_datai do:

prec = Accuracy(Fi(data))
Add prec to acc[]

end
if i == n then:

Add acc to best_acc
else

diff = best_acc− acc
sort_diff = sort(diff)
Add topk elements corresponding to sort_diff from val_datai to Replay_Data;

HYDRA-DI-ETRI Team The team proposed a selective feature learning method to
eliminate irrelevant objects in target images. A Single Shot multibox Detection (SSD)
algorithm selected desired objects [94]. The SSD algorithm alleviated performance
degradation by noisy objects. Then SSD weights were trained with annotated images
in task 1, and the refined dataset was fed into a traditional MobileNet [66].

https://github.com/vidit98/Lifelong_Object_Recognition
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FIGURE D.5: Region of interest analysis in HYDRA-DI-ETRI Team’s solution.

FIGURE D.6: Software architecture for selective feature learning in HYDRA-DI-ETRI
Team’s solution.

The team also analyzed OpenLORIS-Object dataset to design object recognition soft-
ware (See Figure D.6), and find that target objects in the dataset coexist with unla-
beled objects. The region of interest analysis is illustrated in Figure D.5. Therefore,
they proposed a selective feature learning method by eliminating irrelevant features
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in training dataset. The selective learning procedure is as follows: 1) extracting tar-
get objects from training dataset by an object detection algorithm, 2) feeding the
refined dataset into a deep neural network to predict labels. In their software, they
applied to a SSD as the object detection algorithm due to convenience of flexible
feature network design and proper detection performances.

NTU_LL Team The team utilized a combination of Synaptic Intelligence (SI) based
regularization method and data augmentation [189] (See Figure D.7). The augmen-
tation strategies they applied were Color Jitter and Blur. ResNet-18 was used for
backbone model [61].

Resnet-18
CNN
f(Θ )

Tasks

1

2

u

1. Data Augmentation
Gaussian Blur

Color Jitter

Horizontal Flip

Random affine

2. Regularization of Train Loss
(SI)

Generalizing to environmental
variations

Shielding parameters important to
previous tasks

FIGURE D.7: Solution architecture proposed by the NTU_LL Team.

D.2 Finalists Information

HIK_ILG Team
Title: Dynamic Neural Network for Incremental Learning
Members: Liang Ma1, Jianwen Wu1, Qiaoyong Zhong1, Di Xie1 and Shiliang Pu1

Affiliation: 1 Hikvision Research Institute, Hangzhou, China.

Unibo Team
Title: Efficient Continual Learning with Latent Rehearsal
Members: Gabriele Graffieti1, Lorenzo Pellegrini1, Vincenzo Lomonaco1 and Davide
Maltoni1

Affiliation: 1University of Bologna, Bologna, Italy.

Guinness Team
Title: Learning Without Forgetting Approaches for Lifelong Robotic Vision
Members: Zhengwei Wang1, Eoin Brophy2 and Tomás E. Ward2

Affiliation: 1Zhengwei Wang is with V-SENSE, School of Computer Science and
Statistics, Trinity College Dublin, Dublin, Irleand; 2Eoin Brophy and Tomás E. Ward
are with the Inisht Centre for Data Analytics, School of Computing, Dublin City Uni-
versity, Dublin, Ireland.

Neverforget Team
Title: A Small Step to Remember: Study of Single Model VS Dynamic Model
Members: Liguang Zhou1,2

Affiliation: 1The Chinese University of Hong Kong (Shenzhen),Shenzhen, China,
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2Shenzhen Institute of Artificial Intelligence and Robotics for Society, China.

SDU_BFA_PKU Team
Title: SDKD: Saliency Detection with Knowledge Distillation
Members: Lin Yang1,2,3

Affiliation: 1Peking University, Beijing, China, 2Shandong University, Qingdao, China,
3Beijing Film Academy, Beijing, China.

Vidit98 Team
Title: Intelligent Replay Sampling for Lifelong Object Recognition
Members: Vidit Goel1, Debdoot Sheet1 and Somesh Kumar1

Affiliation: 1Indian Institute of Technology, Kharagpur, India.

HYDRA-DI-ETRI Team
Title: Selective Feature Learning with Filtering Out Noisy Objects in Background
Images
Members: Soonyong Song1, Heechul Bae1, Hyonyoung Han1 and Youngsung Son1

Affiliation: 1Electronics and Telecommunications Research Institute (ETRI), Korea.

NTU_LL Team
Title: Lifelong Learning with Regularization and Data Augmentation
Members: Duvindu Piyasena1, Sathursan Kanagarajah1, Siew-Kei Lam1 and Meiqing
Wu1

Affiliation: 1Nanyang Technological University, Singapore.
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[80] Jakub Konečný et al. “Federated Optimization: Distributed Machine Learn-
ing for On-Device Intelligence”. In: (2016).

[81] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. Tech. rep. 2009.

[82] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Commun. ACM 60.6
(May 2017), pp. 84–90. ISSN: 0001-0782.

[83] John K. Kruschke. “ALCOVE: an exemplar-based connectionist model of cat-
egory learning”. In: Psychological review 99 1 (1992), pp. 22–44.

[84] Abhishek Kumar and Hal Daume. “Learning Task Grouping and Overlap
in Multi-Task Learning”. In: Proceedings of the 29th International Coference on
International Conference on Machine Learning. ICML’12. Edinburgh, Scotland:
Omnipress, 2012, pp. 1723–1730. ISBN: 9781450312851.

[85] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Na-
ture 521.7553 (May 2015), pp. 436–444. ISSN: 1476-4687.

[86] Yann LeCun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[87] Timothée Lesort et al. “Continual Learning for Robotics: Definition, Frame-
work, Learning Strategies, Opportunities and Challenges”. en. In: Information
Fusion 58 (2020), pp. 52–68. ISSN: 1566-2535.

[88] Timothée Lesort et al. “Generative Models from the perspective of Continual
Learning”. In: 2019 International Joint Conference on Neural Networks (IJCNN).
July 2019, pp. 1–8.

[89] Vladimir I Levenshtein et al. “Binary codes capable of correcting deletions,
insertions, and reversals”. In: Soviet physics doklady. Vol. 10. 8. Soviet Union.
1966, pp. 707–710.

[90] Dawei Li et al. “RILOD: Near Real-Time Incremental Learning for Object De-
tection at the Edge”. In: Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing. SEC ’19. Arlington, Virginia: Association for Computing Machin-
ery, 2019, pp. 113–126. ISBN: 9781450367332.

[91] Xilai Li et al. “Learn to Grow: A Continual Structure Learning Framework for
Overcoming Catastrophic Forgetting”. In: Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 3925–3934.

[92] Zhizhong Li and Derek Hoiem. “Learning without Forgetting”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 40.12 (Dec. 2018),
pp. 2935–2947. ISSN: 1939-3539.

https://www.pnas.org/content/114/13/3521.full.pdf
https://www.pnas.org/content/114/13/3521.full.pdf


Bibliography 145

[93] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European
Conference on Computer Vision (ECCV). Springer. 2014, pp. 740–755.

[94] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European conference on
computer vision. Springer. 2016, pp. 21–37.

[95] Vincenzo Lomonaco and Davide Maltoni. “CORe50: a New Dataset and
Benchmark for Continuous Object Recognition”. In: Proceedings of the
1st Annual Conference on Robot Learning. Ed. by Sergey Levine, Vincent
Vanhoucke, and Ken Goldberg. Vol. 78. Proceedings of Machine Learning
Research. PMLR, Nov. 2017, pp. 17–26.

[96] Vincenzo Lomonaco, Davide Maltoni, and Lorenzo Pellegrini. “Rehearsal-
Free Continual Learning over Small Non-I.I.D. Batches”. In: CVPR Workshop
on Continual Learning for Computer Vision. 2020, pp. 246–247.

[97] Vincenzo Lomonaco et al. “Avalanche: An End-to-End Library for Continual
Learning”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops. June 2021, pp. 3600–3610.

[98] Vincenzo Lomonaco et al. “Continual Reinforcement Learning in 3D Non-
Stationary Environments”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops. 2020, pp. 248–249.

[99] David Lopez-Paz and Marc’Aurelio Ranzato. “Gradient Episodic Memory
for Continual Learning”. In: Proceedings of the 31st International Conference
on Neural Information Processing Systems. NIPS’17. 2017, pp. 6470–6479. ISBN:
9781510860964.

[100] Zheda Mai et al. Batch-level Experience Replay with Review for Continual Learn-
ing. 2020. arXiv: 2007.05683 [cs.LG].

[101] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. “Piggyback: Adapting a
Single Network to Multiple Tasks by Learning to Mask Weights”. In: Com-
puter Vision – ECCV 2018. Ed. by Vittorio Ferrari et al. Cham: Springer Inter-
national Publishing, 2018, pp. 72–88. ISBN: 978-3-030-01225-0.

[102] Arun Mallya and Svetlana Lazebnik. “PackNet: Adding Multiple Tasks to a
Single Network by Iterative Pruning”. In: 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. June 2018, pp. 7765–7773.

[103] Davide Maltoni and Vincenzo Lomonaco. “Continuous learning in single-
incremental-task scenarios”. In: Neural Networks 116 (2019), pp. 56–73. ISSN:
0893-6080.

[104] Davide Maltoni and Vincenzo Lomonaco. “Semi-supervised Tuning from
Temporal Coherence”. In: 23rd International Conference on Pattern Recognition
(ICPR 2016). 2016, pp. 2509–2514. ISBN: 978-1-5090-4847-2.

[105] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015.

[106] Marc Masana et al. Class-incremental learning: survey and performance evaluation
on image classification. 2021. arXiv: 2010.15277 [cs.LG].

[107] Michael McCloskey and Neal J. Cohen. “Catastrophic Interference in Con-
nectionist Networks: The Sequential Learning Problem”. In: ed. by Gordon
H. Bower. Vol. 24. Psychology of Learning and Motivation. Academic Press,
1989, pp. 109–165.

https://arxiv.org/abs/2007.05683
https://arxiv.org/abs/2010.15277


146 Bibliography

[108] Brendan McMahan et al. “Communication-Efficient Learning of Deep
Networks from Decentralized Data”. In: Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. Ed. by Aarti Singh and
Jerry Zhu. Vol. 54. Proceedings of Machine Learning Research. PMLR, Apr.
2017, pp. 1273–1282.

[109] Vigneshkumaran Meeradevi Sharavana Raju K. “Automatic Plastic Waste
Segregation And Sorting Using Deep Learning Model”. In: International Jour-
nal of Scientific & Technology Research 9.2 (Feb. 2020), pp. 5773–5777. ISSN: 2277-
8616.

[110] Seyed Iman Mirzadeh et al. “Understanding the Role of Training Regimes
in Continual Learning”. In: Advances in Neural Information Processing Systems.
Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 7308–
7320.

[111] Tom M. Mitchell and Sebastian Thrun. “Explanation-Based Neural Network
Learning for Robot Control”. In: Advances in Neural Information Processing Sys-
tems 5, [NIPS Conference]. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 1992, pp. 287–294. ISBN: 1558602747.

[112] M. G. Sarwar Murshed et al. “Machine Learning at the Network Edge: A
Survey”. In: ACM Comput. Surv. 54.8 (Oct. 2021). ISSN: 0360-0300.

[113] Giang Nguyen et al. ContCap: A scalable framework for continual image caption-
ing. 2020. arXiv: 1909.08745 [cs.CV].

[114] Fabrice Normandin et al. Sequoia: A Software Framework to Unify Continual
Learning Research. 2021.

[115] German I. Parisi et al. “Continual lifelong learning with neural networks: A
review”. In: Neural Networks 113 (May 2019), pp. 54–71. ISSN: 08936080.

[116] German I. Parisi et al. “Lifelong Learning of Spatiotemporal Represen-
tations With Dual-Memory Recurrent Self-Organization”. In: Frontiers in
Neurorobotics 12 (Nov. 2018), pp. 1–20. ISSN: 1662-5218.

[117] Giulia Pasquale et al. “Are we done with object recognition? The iCub robot’s
perspective”. In: Robotics and Autonomous Systems 112 (2019), pp. 260–281.
ISSN: 0921-8890.

[118] Giulia Pasquale et al. On the Fly Object Recognition on the R1, Your Personal
Humanoid - IIT. https://www.youtube.com/watch?v=HdmDYIL48H4. 2017.

[119] Giulia Pasquale et al. “Teaching iCub to recognize objects using deep Con-
volutional Neural Networks”. In: Proceedings of Workshop on Machine Learning
for Interactive Systems. 2015, pp. 21–25.

[120] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems. Ed.
by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

[121] Lorenzo Pellegrini et al. “Latent Replay for Real-Time Continual Learning”.
In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Oct. 2020, pp. 10203–10209.

[122] Lorenzo Pellegrini et al. “Latent replay for real-time continual learning”. In:
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2020.

https://arxiv.org/abs/1909.08745
https://www.youtube.com/watch?v=HdmDYIL48H4


Bibliography 147

[123] Anastasia Pentina and Christoph H Lampert. “Lifelong Learning with Non-
i.i.d. Tasks”. In: Advances in Neural Information Processing Systems. Ed. by C.
Cortes et al. Vol. 28. Curran Associates, Inc., 2015.

[124] Joelle Pineau et al. “Improving Reproducibility in Machine Learning
Research(A Report from the NeurIPS 2019 Reproducibility Program)”. In:
Journal of Machine Learning Research 22.164 (2021), pp. 1–20.

[125] Jary Pomponi et al. “Efficient Continual Learning in Neural Networks with
Embedding Regularization”. en. In: Neurocomputing (2020). ISSN: 0925-2312.

[126] Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania. “GDumb: A Sim-
ple Approach That Questions Our Progress in Continual Learning”. en. In:
Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2020, pp. 524–
540. ISBN: 978-3-030-58536-5.

[127] Antonio Pullini et al. “Mr. wolf: A 1 gflop/s energy-proportional parallel ul-
tra low power soc for iot edge processing”. In: ESSCIRC 2018-IEEE 44th Eu-
ropean Solid State Circuits Conference (ESSCIRC). IEEE. 2018, pp. 274–277.

[128] Qi She et al. OpenLORIS Dataset. https : / / lifelong - robotic - vision .
github.io/dataset/Data_Object-Recognition.html. 2019.

[129] Joaquin Quionero-Candela et al. Dataset shift in machine learning. The MIT
Press, 2009.

[130] Joaquin Quionero-Candela et al. “Pascale 2 challenge: Learning when test
and training inputs have different distributions challenge”. In: 2005.

[131] Edward Raff. “A Step Toward Quantifying Independently Reproducible Ma-
chine Learning Research”. In: Advances in Neural Information Processing Sys-
tems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

[132] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Im-
plementations”. In: Journal of Machine Learning Research 22.268 (2021), pp. 1–
8.

[133] C. Radhakrishna Rao. “The Utilization of Multiple Measurements in Prob-
lems of Biological Classification”. In: Journal of the Royal Statistical Society: Se-
ries B (Methodological) 10.2 (1948), pp. 159–193. ISSN: 0035-9246.

[134] Dushyant Rao et al. “Continual Unsupervised Representation Learning”. In:
Proceedings of the 33rd International Conference on Neural Information Processing
Systems. Red Hook, NY, USA: Curran Associates Inc., 2019.

[135] Sylvestre-Alvise Rebuffi et al. “iCaRL: Incremental Classifier and Represen-
tation Learning”. In: Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition. 2017, pp. 2001–2010.

[136] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object De-
tection”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2016, pp. 779–788.

[137] Erik M. Rehn and Davide Maltoni. “Incremental Learning by Message Pass-
ing in Hierarchical Temporal Memory”. In: Neural Computation 26.8 (Aug.
2014), pp. 1763–1809. ISSN: 0899-7667.

[138] Albert Reuther et al. “Survey and Benchmarking of Machine Learning
Accelerators”. In: 2019 IEEE High Performance Extreme Computing Conference
(HPEC). Sept. 2019, pp. 1–9.

https://lifelong-robotic-vision.github.io/dataset/Data_Object-Recognition.html
https://lifelong-robotic-vision.github.io/dataset/Data_Object-Recognition.html


148 Bibliography

[139] Michael D Richard and Richard P Lippmann. “Neural Network Classifiers
Estimate Bayesian a Posteriori Probabilities”. In: Neural Computation 3.4
(1991), pp. 461–483.

[140] Mark Bishop Ring. “Continual Learning in Reinforcement Environments”.
UMI Order No. GAX95-06083. PhD thesis. USA, 1994.

[141] Ryne Roady et al. “Stream-51: Streaming classification and novelty detection
from videos”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops. 2020, pp. 228–229.

[142] Anthony Robins. “Catastrophic Forgetting, Rehearsal and Pseudorehearsal”.
In: Connection Science 7.2 (1995), pp. 123–146. ISSN: 13600494.

[143] David Rolnick et al. “Experience Replay for Continual Learning”. In: Ad-
vances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019.

[144] Davide Rossi et al. “PULP: A parallel ultra low power platform for next gen-
eration IoT applications”. In: 27th IEEE Hot Chips Symposium, HCS 2015. In-
stitute of Electrical and Electronics Engineers Inc. 2016, pp. 1–39.

[145] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Chal-
lenge”. In: International Journal of Computer Vision 115.3 (Apr. 2015), pp. 211–
252. ISSN: 1573-1405.

[146] Bryan C Russell et al. “LabelMe: a database and web-based tool for image
annotation”. In: International Journal of Computer Vision 77.1-3 (2008), pp. 157–
173.

[147] Andrei A. Rusu et al. Progressive Neural Networks. 2016. arXiv: 1606.04671
[cs.LG].

[148] Paul Ruvolo and Eric Eaton. “ELLA: An Efficient Lifelong Learning Algo-
rithm”. In: Proceedings of the 30th International Conference on Machine Learning.
Ed. by Sanjoy Dasgupta and David McAllester. Vol. 28. Proceedings of Ma-
chine Learning Research 1. Atlanta, Georgia, USA: PMLR, June 2013, pp. 507–
515.

[149] Mark Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottle-
necks”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. June 2018, pp. 4510–4520.

[150] Roy Schwartz et al. “Green AI”. In: Commun. ACM 63.12 (Nov. 2020), pp. 54–
63. ISSN: 0001-0782.

[151] Jonathan Schwarz et al. “Progress & Compress: A Scalable Framework for
Continual Learning”. en. In: International Conference on Machine Learning.
2018, pp. 4528–4537.

[152] Joan Serra et al. “Overcoming Catastrophic Forgetting with Hard Attention
to the Task”. In: Proceedings of the 35th International Conference on Machine
Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of
Machine Learning Research. Stockholmsmässan, Stockholm Sweden: PMLR,
Oct. 2018, pp. 4548–4557.

[153] Joan Serra et al. “Overcoming Catastrophic Forgetting with Hard Attention to
the Task”. In: Proceedings of the 35th International Conference on Machine Learn-
ing. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine
Learning Research. PMLR, Oct. 2018, pp. 4548–4557.

https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1606.04671


Bibliography 149

[154] Ajmal Shahbaz et al. International Workshop on Continual Semi-Supervised
Learning: Introduction, Benchmarks and Baselines. 2021.

[155] David Shapiro. RecyClean. https://devpost.com/software/resin- id-
sorter. 2020.

[156] Qi She and Rosa HM Chan. “Stochastic Dynamical Systems Based Latent
Structure Discovery in High-Dimensional Time Series”. In: 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2018, pp. 886–890.

[157] Qi She and Anqi Wu. “Neural Dynamics Discovery via Gaussian Process Re-
current Neural Networks”. In: Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference. Ed. by Ryan P. Adams and Vibhav Gogate. Vol. 115.
Proceedings of Machine Learning Research. PMLR, July 2020, pp. 454–464.

[158] Qi She et al. “OpenLORIS-Object: A Robotic Vision Dataset and Benchmark
for Lifelong Deep Learning”. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA). May 2020, pp. 4767–4773.

[159] Qi She et al. “Reduced-rank linear dynamical systems”. In: Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI). 2018.

[160] Hanul Shin et al. “Continual Learning with Deep Generative Replay”. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems. NIPS’17. Long Beach, California, USA: Curran Associates Inc., 2017,
pp. 2994–3003. ISBN: 9781510860964.

[161] Daniel L. Silver and Robert E. Mercer. “The Task Rehearsal Method of Life-
Long Learning: Overcoming Impoverished Data”. In: Advances in Artificial
Intelligence. Ed. by Robin Cohen and Bruce Spencer. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 90–101. ISBN: 978-3-540-47922-2.

[162] Daniel L. Silver and Ryan Poirier. “Sequential Consolidation of Learned Task
Knowledge”. In: Advances in Artificial Intelligence. Ed. by Ahmed Y. Tawfik
and Scott D. Goodwin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 217–232. ISBN: 978-3-540-24840-8.

[163] R. Smith. “An Overview of the Tesseract OCR Engine”. In: Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007). Vol. 2. 2007,
pp. 629–633.

[164] STM32 Stmicroelectronics. stm32h743 datasheet. 2018.

[165] Niko Sünderhauf et al. “The limits and potentials of deep learning for
robotics”. In: The International Journal of Robotics Research 37.4-5 (Apr. 2018),
pp. 405–420. ISSN: 0278-3649.

[166] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks”. In: Proceedings of the 36th International Confer-
ence on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhut-
dinov. Vol. 97. Proceedings of Machine Learning Research. PMLR, Sept. 2019,
pp. 6105–6114.

[167] Fumihide Tanaka and Masayuki Yamamura. “An approach to lifelong rein-
forcement learning through multiple environments”. In: 6th European Work-
shop on Learning Robots. 1997, pp. 93–99.

[168] Norman Tasfi. PyGame Learning Environment. https://github.com/ntasfi/
PyGame-Learning-Environment. 2016.

https://devpost.com/software/resin-id-sorter
https://devpost.com/software/resin-id-sorter
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment


150 Bibliography

[169] Anh Thai et al. “Does Continual Learning = Catastrophic Forgetting?” In:
arXiv (2021). arXiv: 2101.07295.

[170] Neil C. Thompson et al. The Computational Limits of Deep Learning. 2020. arXiv:
2007.05558 [cs.LG].

[171] Sebastian Thrun. Explanation-Based Neural Network Learning: A Lifelong Learn-
ing Approach. USA: Kluwer Academic Publishers, 1996. ISBN: 0792397169.

[172] Sebastian Thrun and Tom M. Mitchell. “Lifelong robot learning”. In: Robotics
and Autonomous Systems 15.1 (1995). The Biology and Technology of Intelli-
gent Autonomous Agents, pp. 25–46. ISSN: 0921-8890.

[173] Alan M. Turing. “Computing Machinery and Intelligence”. In: Parsing the
Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking
Computer. Ed. by Robert Epstein, Gary Roberts, and Grace Beber. Dordrecht:
Springer Netherlands, 2009, pp. 23–65. ISBN: 978-1-4020-6710-5.

[174] Anastasiia Usmanova et al. “A distillation-based approach integrating con-
tinual learning and federated learning for pervasive services”. In: (2021).

[175] Gido M. van de Ven, Hava T. Siegelmann, and Andreas S. Tolias. “Brain-
inspired replay for continual learning with artificial neural networks”. In:
Nature Communications 11.1 (Aug. 2020), p. 4069. ISSN: 2041-1723.

[176] Gido M. van de Ven and Andreas S. Tolias. Generative replay with feedback con-
nections as a general strategy for continual learning. 2019. arXiv: 1809.10635
[cs.LG].

[177] Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learn-
ing. 2019. arXiv: 1904.07734 [cs.LG].

[178] Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. “Efficient Contin-
ual Learning with Modular Networks and Task-Driven Priors”. In: 9th Inter-
national Conference on Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net, 2021.

[179] Liyuan Wang et al. “ORDisCo: Effective and Efficient Usage of Incremental
Unlabeled Data for Semi-Supervised Continual Learning”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
June 2021, pp. 5383–5392.

[180] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. “Growing a Brain: Fine-
Tuning by Increasing Model Capacity”. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). July 2017, pp. 3029–3038.

[181] Juyang Weng et al. “Autonomous Mental Development by Robots and Ani-
mals”. In: Science 291.5504 (2001), pp. 599–600. eprint: https://www.science.
org/doi/pdf/10.1126/science.291.5504.599.

[182] Aaron Wilson et al. “Multi-Task Reinforcement Learning: A Hierarchical
Bayesian Approach”. In: Proceedings of the 24th International Conference
on Machine Learning. ICML ’07. Corvalis, Oregon, USA: Association for
Computing Machinery, 2007, pp. 1015–1022. ISBN: 9781595937933.

[183] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Pro-
cessing”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Online: Association for Compu-
tational Linguistics, Oct. 2020, pp. 38–45.

https://arxiv.org/abs/2101.07295
https://arxiv.org/abs/2007.05558
https://arxiv.org/abs/1809.10635
https://arxiv.org/abs/1809.10635
https://arxiv.org/abs/1904.07734
https://www.science.org/doi/pdf/10.1126/science.291.5504.599
https://www.science.org/doi/pdf/10.1126/science.291.5504.599


Bibliography 151

[184] Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. “ViZDoom
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