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Abstract

The importance of networks, in their broad sense, is rapidly and massively

growing in modern-day society thanks to unprecedented communication ca-

pabilities offered by technology. The next generation wireless networks will

face a scenario of ultra-densely connected objects requiring high data-rates,

practically 100% reliable quality of service, and extremely low latency. In

this context, the radio spectrum will be a primary resource to be preserved

and not wasted. Moreover, using artificial intelligence (AI)-based technolo-

gies will make the networks more intelligent but, eventually, more vulnerable

to malicious users. Therefore, the need for intelligent and automatic systems

for in-depth spectrum analysis and monitoring will pave the way for a new

set of opportunities and potential challenges.

This thesis proposes a novel framework for automatic spectrum patrolling

and the extraction of wireless network analytics. It aims to enhance the phys-

ical layer security of next generation wireless networks through the extraction

and the analysis of dedicated analytical features. The framework consists of a

spectrum sensing phase, carried out by a patrol composed of numerous radio-

frequency (RF) sensing devices, followed by the extraction of a set of wireless

network analytics. The methodology developed is blind, allowing spectrum

sensing and analytics extraction of a network whose key features (i.e., number

of nodes, physical layer signals, medium access protocol (MAC) and routing

protocols) are unknown. Because of the wireless medium, over-the-air signals

captured by the sensors are mixed; therefore, blind source separation (BSS)

and measurement association are used to estimate the number of sources and

separate the traffic patterns. After the separation, we put together a set of

methodologies for extracting useful features of the wireless network. Firstly,
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a method for locating uncooperative wireless network nodes using power

measurements collected by sensors is proposed. In particular, received signal

strength (RSS) is extracted from the separated signals, and localization is

performed through conventional least squares (LS) and maximum likelihood

estimation (MLE) techniques. Then, the logical topology of the wireless net-

work is inferred. In particular, we detect directed data flows among nodes by

identifying causal relationships between the separated transmitted patterns.

We compare causal inference methods that use the time series of the sep-

arated traffic profiles (i.e., Granger causality (GC), transfer entropy (TE),

and conditional transfer entropy (CTE)) with a novel solution based on a

neural network (NN) that exploits distilled time-based features. Finally, we

propose a machine learning (ML)-based methodology for the classification of

application-level traffic patterns of wireless network users.

The whole framework is validated on an ad-hoc wireless network account-

ing for MAC protocol, packet collisions, nodes mobility, the spatial density of

sensors, and channel impairments, such as path-loss, shadowing, and noise.

The numerical results obtained by extensive and exhaustive simulations show

that the proposed framework is consistent and can achieve the required per-

formance.

Based on the evolution of wireless networks, the importance of security,

and ongoing research trends, we will soon witness an increase in interest in

the proposed framework.
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Mathematical Notation

Throughout the thesis, capital boldface letters denote matrices, lowercase

bold letters denote vectors, (·)T stands for transposition, (·)−1 indicates the

inverse operator, trace(·) is the trace operator, || · ||p is the lp-norm, | · | is the
module operator, ⊙ stands for the element-wise product. With vi,j, vi,:, and

v:,j, we represent, respectively, the element, the ith row, and the jth column

of the matrix V (when unambiguous, the ith row of V is vi), and with vi,j:k

we select the elements between the jth and the kth entry of the ith row

of V, extremes included. IN indicates the N × N identity matrix. We use

N (µ, σ2) to denote a real Gaussian distribution with mean µ and variance

σ2, U(a, b) to denote a uniform distribution between a and b, E{·} to denote

the expectation operator, ⟨·⟩ to indicate the sample mean operator and 1{A}

is the indicator function equal to one when A is true and zero otherwise.
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Chapter 1

Introduction

In future 6G communication systems, billions of wireless devices (sensors,

connected vehicles, smart infrastructures, etc.) will overwhelmingly demand

radio spectrum resources to ensure high communication reliability. Conse-

quently, strict regulation and real-time monitoring of radio spectrum usage

will be of paramount importance. For this reason, a considerable research

effort is trying to exploit such a precious resource to push technology towards

the limits of communication to densify networks, increase bandwidth, reduce

latency, and increase reliability [1, 2].

Next generation wireless networks will have to provide extremely high

data rates and radically new applications, which require a new wireless radio

technology paradigm. As reported by IBM, by 2025, an estimated 75 billion

connected internet of things (IoT) devices are expected to generate over 600

zettabytes (or 600 trillion of bytes) of data [3, 4]. Current communication

systems, designed on conventional communication theories, significantly limit

further performance improvements and lead to severe limitations. Presum-

ably, 6G will continue to benefit from the technological advancements of 5G,

but new strategies will undoubtedly be needed to make the next step-change.

Compliance with these needs requires intelligent adaptive learning and de-

cision making devices. Future smart 6G mobile terminals are expected to

autonomously access the free portions of the spectrum with the aid of so-

phisticated spectral efficiency learning and inference tools to enhance the

3



4 Chapter 1 – Introduction

quality of the communications.

Thanks to such remarkable advances, 6G systems will become the nervous

systems of our society.

However, it seems that a small effort has been made to ensure the re-

siliency of such a nervous system. This aspect is even more exacerbated by

the upcoming revolution of artificial intelligence (AI), making our devices

smart and efficient on one side but much more vulnerable on the other [5–9].

Such vulnerabilities can lead to different forms of unauthorized uses, such as

lower-tier devices accessing spectrum reserved for higher-tier devices, unau-

thorized devices accessing licensed spectrum using software radios, jammers,

or denial of service attacks. Techniques must be developed to detect such

unauthorized access. In this sense, large-scale spectrum patrolling is emerg-

ing as a critical aspect for detecting improper spectrum usage in a technology-

dependent society. In this context, more in-depth knowledge of how a net-

work uses the wireless medium and, thus, the network’s structure, may con-

tribute to developing a much more effective spectrum monitoring [10].

In 6G, cognitive radio (CR) will unlock its full potential, enabling an au-

tomated society of heterogeneous mobile systems and networks [11,12]. How-

ever, this paradigm raises security problems, e.g., jamming, because malicious

secondary users (SUs) can sense the spectrum and interfere with different sig-

nals at different time instants on different channels. In fact, considering the

jamming problem, it is often assumed that attackers adopt a strategy that

does not change with time. Suppose the jammers are also equipped with

CR technology. In that case, it is highly predictable that such outlaws may

adapt their attack strategy according to the dynamics of the environment as

well as to the strategy of the legitimate SUs. For this reason, it is expected

that 5G and 6G technologies will cause the birth of a new category of smart

jammers, enhanced with AI, that will be able to learn the mechanisms of the

wireless networks to devise and deploy advanced jamming tactics [13–20].
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- Dynamic and optimized access

6G Wireless Network

to the RF medium

- Multiple users connected to

a 6G base station

- Monitors the RF spectrum

Spectrum Patrol

- Communicate with the regulator
- Senses the RF spectrum and

Smart Jammer

interferes with the network

- Collects the data from the patrol

Regulator

- Acts to secure the network

Figure 1.1: An illustration of a next generation wireless network interfered by a smart
jammer. A spectrum patrol, e.g., an unmanned aerial vehicle (UAV), senses the radio-
frequency (RF) medium and sends the data to the authority or regulator. The regulator
extracts a set of analytics from the data to acquire as much information as possible about
the scenario and eventually detect the jammer.

1.1 Spectrum Patrolling

A mechanism of spectrum patrolling can be adopted to enhance the security

of next generation CR technology [21]. Fig. 1.1 depicts a wireless network

scenario in which a spectrum patrol, represented by a UAV, collects the data

about the RF scene. Such data is then forwarded to the authority that

extracts a set of wireless network analytics, acting as a fusion center. The

analytics are then used, e.g., to detect the anomalies and the malicious users

(e.g., the jammer) that are interfering with the network.

The patrol can be either a dedicated device or a network provided by the

authority (as depicted in Fig. 1.2) or a crowdsourcing-based system. The

users periodically sense the spectrum and send distilled data to operators or

the regulator [21]. Such data can be processed to extract a set of analytics
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Figure 1.2: An example of urban scenario where a cloud of RF sensors aboard UAVs
monitors a wireless network to extract analytics. Alternatively, sensors could be deployed
in fixed positions within the network landscape.

that provide the authority with a complete picture of the RF scene. This

enables the regulator to detect the presence of anomalies or malicious users

in the observed network and act to secure it.

While we require communications with almost 100% reliability, our shared

resource, the spectrum, is still monitored by regulators with lab-grade spec-

trum analyzers whose huge cost and thirst for energy make spectrum mon-

itoring ineffective, slow, outdated, sporadic and extremely sensitive to the

scalability problem. We believe that everything around us will be amazingly

intelligent in the next decade, giving rise to what is conceptualized as internet

of intelligent things (IoIT) [2, 22]. The high number of intelligent devices,

enhanced by AI capabilities, will act as an extensive low-cost heterogeneous

spectrum sensors network. Accordingly, large-scale crowdsourcing paradigms

will lead to a revolution in spectrum sensing and monitoring, opening the way

to a new branch of distributed crowdsourcing-based methodologies. This

revolution will enormously increase the effectiveness of spectrum patrolling

across the environment, making this tool a precious resource [21].
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PU3

- Activity: video streaming
- Position: {x3; y3; z3}
- Authorized

PU2

- Activity: web navigation
- Position: {x2; y2; z2}
- Authorized

PU4

- Activity: chat
- Position: {x4; y4; z4}
- Authorized

AP

- Activity: backbone router
- Position: {x5; y5; z5}
- Authorized

PU1

- Activity: web navigation
- Position: {x1; y1; z1}
- Authorized

Patrol unit

Patrol fusion center

Wireless device

Jammer

- Activity: jamming
- Position: {xJ ; yJ ; zJ}
- Unauthorized

Figure 1.3: An example of a spectrum patrolling scenario composed of the nodes of a
wireless network, many patrol units equipped with RF sensors, and a fusion center. The
patrol units collect the over-the-air power profiles transmitted by the nodes and send them
to the fusion center. The fusion center, which can also be an authority (or regulator)
extracts the wireless network analytics and gets a detailed description of the analyzed
network. Such information can be used to secure the network from malicious users (i.e.,
jammers) and optimize spectrum usage.

1.2 Wireless Network Analytics

The extrapolation and the collection of non-trivial features of the wireless

network, from the physical to the application levels, will be crucial in de-

tecting anomalies (e.g., jammers and unauthorized spectrum utilizers), opti-

mizing the communications and reusing the spectrum [23, 24]. For example,

Fig. 1.3 shows how a patrol composed of a set of RF sensors transmits all

the acquired data to a fusion center in charge of merging and processing all

the observations. The fusion center extracts the wireless network analyt-

ics and gets a detailed, comprehensive view of the observed network. Such

information can enhance wireless network’s security and optimize spectrum

usage. In this section, we would like to propose a set of characteristics that

will hopefully allow the patrol to orchestrate and protect a next generation

wireless network and its users.

Multiple Transmitter Localization The first crucial information that

comes to mind when thinking about a patrol monitoring a network is the
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position of its nodes. Considering the imposing will of security and privacy

preservation, it is strongly believed that multiple non-collaborative trans-

mitter localization will gain attention in the upcoming years. This analytic

allows the authority to localize the possible sources of interference. Once all

the other analytics are extracted, the complete knowledge about the observed

network can be used to identify the malicious users and remove them.

Topology Inference How can the patrol protect the wireless network

without knowing its logical structure? Indeed, the possibility of reconstruct-

ing a network’s structure from a few observed quantities at some nodes (or

at the edges) with little, if not zero, prior knowledge, is one tricky task that

will enhance the capability of spectrum patrolling. If the problem appears

rather complicated for a wired network, it can be even more challenging in

a wireless scenario because of interference, path-loss, shadowing, fading, and

the so-called hidden terminal problem. While connectivity between the nodes

could be inferred based upon the distance between them, since many nodes

can be within the range of others, guessing which ones are communicating

might better rely on their activity patterns.

Traffic Classification On large-scale network infrastructures, identifying

malicious use of resources and orchestrating security operations such as fire-

walling and filtering unwanted traffic is paramount. In such a scenario, in-

depth knowledge of the composition of traffic and the identification of trends

in application usage may help CRs improve network design and provisioning.

It is easy to think that the patrol should be provided with a smart control

unit that classifies the activity of the nodes to detect anomalies within the

monitored network. These activities can span across the whole ISO-OSI

stack, from the physical access to the channel to the application level. Un-

derstanding the type of traffic generated by the users of a wireless network is

crucial for identifying malicious transmitters. Hence, the traffic profiles gen-

erated by a jammer can be spotted thanks to the recognition of an unusual

transmission pattern.
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1.3 Aims of this Work

This work proposes a novel framework for extracting a set of analytics from

a target wireless network in stealth mode by observing over-the-air spatial

and temporal spectrum usage through RF sensors (i.e., the spectrum patrol).

The methodology developed is blind, allowing the analysis of a network whose

key features (i.e., number of nodes, physical layer signals, and medium ac-

cess protocol (MAC) and routing protocols) are unknown. Fig. 1.4 shows the

complete logical structure of the proposed framework. Because of the wireless

medium, over-the-air signals captured by the sensors are mixed; therefore,

blind source separation (BSS) and measurement association are used to sep-

arate traffic patterns. Then, the separated traffic profiles are used to extract

the network analytics. The main stages of the research carried out during

the Ph.D. period are briefly described in the following.

1.3.1 Blind Source Separation

Each RF sensor that composes the patrol collects a mixture of over-the-air

received powers from all the nodes of the observed network. All the collected

mixtures are sent to a fusion center, which can be either part of the patrol or

the authority supervising the area. The set of acquired mixtures is processed

to separate the traffic profiles generated by each wireless network node. This

reconstruction phase lays the foundation for the extraction procedure of the

analytics.

Research Questions

A signal separation stage based on BSS, which involves fast independent

component analysis (F-ICA) and principal component analysis (PCA), has

been proposed. As depicted in Fig. 1.4, the procedure consists of estimating

the number of unknown sources, a preliminary signal conditioning, and the

unmixing of the traffic profiles. In this sense, a novel and efficient solution

to the permutation problem has been proposed. Such a solution requires

a coarse estimate of the position of the network node. Therefore, multiple
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Z

BLIND SOURCE SEPARATION

ICA

X̃

ASSOCIATION
ỸX
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Figure 1.4: A logical block schematic representation of the proposed framework. The
spectrum patrol collects the over-the-air traffic profiles generated by the wireless network
nodes. Then, BSS is performed to unmix the received signals. The last stage is the
extraction of network analytics.

transmitter localization can be performed before the measurement associa-

tion. The research on BSS tackles the following research questions.

• Q1 - Is it possible to extract information about a network via RF sensors

that collect only received powers?

• Q2 - Is it possible to estimate the number of transmitters?

• Q3 - Is it possible to separate over-the-air signals to get the transmitted

traffic profiles of each node?

1.3.2 Transmitters Localization

There have been several fundamental contributions on localization over the

past decade: numerous algorithms have been developed and tested exploit-

ing different wireless signals, such as WiFi and ultra wideband (UWB), the

problem of multi-target localization using groups of cooperating sensors has
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also been widely investigated, also for scalable and distributed localization

algorithms. However, most of the works found in the literature assume that

the targets can exchange information with the anchors, or patrol, thus con-

tributing to the localization process. Only a few works tackle the localization

problem without active interaction between the targets and the sensors. A

minimal subset of them considers the most common channel impairments

(i.e., shadowing, multiple paths) in the localization process.

Research Questions

After the unmixing, the received signal strength (RSS)-based localization of

multiple unknown targets is performed. The innovative proposed method-

ology is based on a filtering procedure for the extraction of the RSS from

the unmixed sequences and maximum likelihood estimation (MLE)-based

localization. Considering that this particular problem has not been widely

investigated yet, the proposed solution has been compared with the only al-

ternative found in the literature. Moreover, an expression of the Cramèr-Rao

lower bound (CRLB) for the specific problem has been derived analytically

and used as a benchmark to evaluate the algorithm’s performance. The

transmitter localization part tackles the following research questions.

• Q4 - Is the RSS-based localization of multiple unknown transmitters

possible?

• Q5 - Is the proposed approach better than the current state-of-the-art?

• Q6 - How many sensors are needed to perform the localization?

• Q7 - How many transmitters can be localized simultaneously?

• Q8 - What is the impact of channel impairments on localization per-

formance?

The non-collaborative transmitter localization problem is approached from

a different point of view in Chapter 8. In that case, the objective is to propose

an automatic navigation system for a spectrum patrol composed of a fleet of
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UAVs. The proposed solution allows the fleet to navigate a scenario and find

the best spatial configuration to localize a wireless transmitter. The patrol

can use this system in synergy with the network analytics tool to localize a

malicious user (i.e., jammer) and secure a wireless network.

1.3.3 Topology inference

Recently, the topic of wireless network topology inference has gained a lot

of prominence due to the evolution of the networks toward an effective CR

paradigm. Therefore, various approaches are proposed in the literature to ex-

tract the topology of a network observing only the power profiles transmitted

(and received) by its nodes. In this sense, some researchers are exploiting the

concept of causality, with all its philosophical background, to make a logical

association between network nodes and infer its topology. There is vast liter-

ature in the field of causality, a topic that was not born with any connection

with the world of telecommunications. Since the concept of causality has a

philosophical origin, there is not only one correct analytical model to express

it. At the moment, many researchers are diving into the numerous possible

model formulations for detecting causality between two events, looking for

a methodology that can help infer the topology of a wireless network. This

is currently an open topic and it will certainly be widely investigated in the

upcoming years.

Research Questions

The second analytic that is extracted is the wireless network topology. An

innovative technique for the topology inference that exploits the concept of

causality and is based on machine learning (ML) has been proposed. In par-

ticular, this technique involves a feature extraction phase in which statistical

features related to the inter-arrival time of the packets transmitted by the

network nodes are obtained from the unmixed data. Then, a binary classifier

is properly trained and used to detect the presence of causality between the

traffic profiles generated by the nodes. This allows the identification of the

possible logical links between network nodes. The topology inference part
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tackles the following research questions.

• Q9 - Can the logical topology of a wireless network be inferred from

external?

• Q10 - Can the causality inference approach be improved?

• Q11 - How many sensors are needed to reach a prescribed performance?

• Q12 - What is the impact of channel impairments on topology infer-

ence?

1.3.4 Traffic Classification

While traffic classification in wired networks has been extensively investi-

gated, very few works address the problem in wireless systems, although

the emergence of CR technology makes this aspect rather important. More

in-depth knowledge of how a network uses the wireless medium and, thus,

classifying its users’ activities may contribute to the development of effective

spectrum sharing strategies. In this context, it is desirable to automatically

recognize the user-level application generating a given stream of packets from

direct observation of the RF scene [25, 26]. The impact of AI in such a par-

ticular and delicate task has to be considered. Recently, new ML-based ap-

proaches for traffic classification in non-collaborative wireless networks using

low-cost RF sensors have been proposed. In these works, the authors were

able to classify different types of applications, i.e., streaming, chat, browsing.

This race to the use of AI is dictated by the fact that this particular problem

can be very easily formulated in a very suitable way for the ML methodolo-

gies. The ferment of the ML community in this area is already making itself

heard loudly, and this trend will only grow in the near future.

Research Questions

The last information extracted about the network is the type of traffic gen-

erated by the nodes. In fact, a novel ML-based methodology for the classi-

fication of the application-level traffic generated by the nodes of a wireless
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network has been proposed. After extracting distilled time-based features

from the unmixed data, a multi-class classification is performed. In par-

ticular, the algorithms can distinguish between three types of traffic: video

streaming, web navigation, and chat. In this regard, in the numerical results,

four well-known ML classifiers have been tested and compared: PCA, kernel

principal component analysis (KPCA), support vector machine (SVM), and

neural network (NN). The traffic classification part tackles the following

research questions.

• Q13 - Can the application-level traffic generated by the nodes of a wire-

less network be classified from external?

• Q14 - What is the impact of channel impairments on traffic classifica-

tion?

• Q15 - How long do we need to observe the network to perform the

classification?

• Q16 - How many sensors are needed to reach a prescribed performance?

1.4 Document Organization

This document is organized as follows. Chapter 2 introduces the scenario and

the system model. In particular, the propagation issues and channel impair-

ments of a realistic scenario are modeled. Chapter 3 provides an overview of

the blind source separation problem and describes the proposed solutions. In

Chapter 4, the multiple transmitter localization problem is tackled. Chap-

ter 5 introduces the topology inference problem and details the proposed

ML-based solution. The traffic classification problem is tackled in Chap-

ter 6. Chapter 7 provides the validation of the proposed framework through

extensive numerical results. In Chapter 8, a navigation system for a spec-

trum patrol composed of a fleet of UAVs is studied. Finally, conclusions

are drawn in Chapter 9, followed by the complete list of publications made

during this Ph.D.



Chapter 2

Scenario and Physical Layer

Model

2.1 Cases of Interest

This section identifies three cases of interest that help us underline the impor-

tance of spectrum patrol and network analytics extraction. In particular, we

sketch three scenarios in which the adoption of a spectrum patroller enhances

networks security.

Cognitive Radio Networks

In a general CR scenario, a primary wireless network might wish to know

if another network uses the same spectrum (legitimately or not). In this

case, the wireless nodes can schedule a periodic sensing phase to sense the

RF medium [27–29]. Once the primary network collects the RF spectrum

samples, it can detect an eventual unknown adversarial network and extract

some key information about it. Once this information about the adversar-

ial network is extracted, the primary network can make decisions about the

spectrum usage, perform communication optimization based on the adver-

sarial network’s behavior, or notify spectrum regulators about violations by

non-legitimate communications. In this scenario, the time spent to sense the

spectrum reduces the primary network’s throughput while gaining insight

15
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into the spectrum usage.

Defense Scenario

In a defense scenario, a network of RF sensors can be deployed in an un-

known environment to detect and extract information about an adversarial

network’s structure. The sensors can collect over-the-air received power pro-

files and perform an in-depth analysis of the adversarial network without the

need to be part of it. The extraction of key information about the adversar-

ial network might help, e.g., detecting and studying an adversarial tactical

network that exchanges data between soldiers. Such operation enhances the

security of the soldiers and might prevent them from taking potentially fatal

risks.

Industrial Security

In an industrial scenario, a set of machines (i.e., an assembly line) commu-

nicating and synchronizing their tasks through a wireless connection might

be highly vulnerable to jamming attacks. A malicious transmitter might

disrupt the inter-machine communications and slow down or stop the pro-

duction process, causing inconveniences and substantial money losses.

A spectrum patrol, deployed in the production environment, can sense

the spectrum and search for the jammer to secure the communications.

2.2 Scenario

Let us consider a scenario, depicted in Fig. 2.1, with a non-collaborative

wireless network of N nodes (the network in the following) and a network

of M RF sensors (the sensors in the following) randomly deployed on a two-

dimensional landscape. Without loss of generality, the numerical results

are derived considering the position (x̃m, ỹm) of the mth sensor uniformly

distributed, i.e.,

x̃m, ỹm ∼ U(−L/2, L/2), (2.1)
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where L is the side length of a squared landscape. We assume that the

technical specifications of the network (i.e., number of nodes, physical layer

signals, and MAC and routing protocols) are unknown.

Since no interaction is expected between the observed network and the

sensors, all the subsequent tasks are performed without demodulating the

received signals, so that a simple energy detector (ED) receiver suffices [28,

30,31].

Each sensor can measure only the instantaneous received power over short

time intervals and send such information to a fusion center that performs

inference and network analytics. In this setting, the goal is to design a

framework of automatic network analysis tools that exploit only features

observable by the temporal evolution of the packets flow between the devices.

2.3 Physical Layer Model

Let us consider the equivalent low-pass representation of the signal received

by the mth sensor

rm(t) =
N∑

n=1

qn(t)gm,n + νm(t) (2.2)

where qn(t) is the signal transmitted by node n, gm,n is the channel gain

between node n and sensor m due to path-loss (which in turn depends on

the distance dm,n between the two and line-of-sight (LOS)/non-line-of-sight

(NLOS) condition), antenna gains at the nodes and the sensors, and the

carrier frequency, and νm(t) is the additive white Gaussian noise (AWGN)

with independent, identically distributed (i.i.d.) real and imaginary parts,

each with two-sided power spectral density N0.

For the sake of extracting the wireless network analytics, we seek to collect

the transmitted power profiles for each node. Let us define such profile at

node n as a vector of K samples pn = (pn,1, pn,2, . . . , pn,K)
T, whose elements

pn,k =
1

Tb

∫ kTb

(k−1)Tb

|qn(t)|2dt k = 1, . . . , K (2.3)

correspond to the transmitted power calculated over short intervals of du-
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Figure 2.1: A cloud of randomly distributed RF sensors (in blue) across the wireless
network landscape (in orange).

ration Tb such that Tob = KTb. Then, let us collect the transmitted power

profiles in the matrix

P = (p1,p2, . . . ,pN)
T ∈ RN×K . (2.4)

Similarly, the output of the RF sensor m is a vector,

xm = (xm,1, xm,2, . . . , xm,K)
T , (2.5)

whose samples correspond to the received power within Tb, i.e.,

xm,k =
1

Tb

∫ kTb

(k−1)Tb

|rm(t)|2dt k = 1, . . . , K. (2.6)

The samples (2.6) are obtained by an ED, as depicted in Fig. 2.2, composed

of a bandpass zonal filter with bandwidth W (the same of the transmitted

signals), followed by a square-law device and an integrator with finite inte-

gration time Tb [28,30]. Collecting the measured powers of all sensors in the
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(·)2 1

Tb

∫ kTb

(k−1)Tb

(·) dtin out

Figure 2.2: An illustration of the ED: bandpass zonal filter followed by a square-law
device and finite time integrator.

matrix

X = (x1,x2, . . . ,xM)T ∈ RM×K ,

it is possible to relate X with P by

X = HP+N, (2.7)

whereH ∈ RM×N is the matrix of power gains hm,n = |gm,n|2, andN ∈ RM×K

is the matrix of noise power samples at the output of the ED.

In deriving (2.7) we consider that the signals emitted by the network

nodes are mutually uncorrelated and uncorrelated with the noise.

Note that matrix X contains the traffic patterns of the wireless network,

i.e., the matrix P implicitly. However, extracting the desired packet flows

is quite challenging because of multiple access interference, packet collisions,

and physical layer impairments such as propagation and noise.

2.3.1 Thermal Noise

The equivalent low-pass representation of the signal in (2.2) contains the

AWGN with i.i.d. real and imaginary parts, each with-two sided power spec-

tral density N0. If we consider the noise power samples at the output of the

ED we have

nm,k =
1

Tb

∫ kTb

(k−1)Tb

|νm(t)|2dt, (2.8)

where nm,k is an element of N ∈ RM×K . Thus, nm,k is a sum of independent

squared standard normal random variables (r.v.s). Therefore, in general, the
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elements of N are i.i.d. central chi-squared r.v.s with a number of degrees

of freedom NDOF = 2WTb [30]. The intervals duration, Tb, is chosen such

that NDOF = 2WTb is an integer. It has been proved that, if NDOF is large

enough, by the central limit theorem, the chi-squared distribution can be

approximated with a normal random variable. Thus, we can approximate

the distribution of the elements of N as

nm,k ∼ N (σ2
N, 2σ

4
N/NDOF), (2.9)

where σ2
N = 2N0W [28, 30].

2.3.2 Shadowing

To properly assess the performance of the proposed frameworks we believe

that shadowing has to be taken into account. In fact, in a real scenario,

the impact of obstructions in the propagation environment might strongly

affect the proposed methodology’s capability of extracting wireless network

analytics. The channel gain consists of two components

hm,n = h′
m,ne

σSsm,n , (2.10)

where h′
m,n is the path gain, and sm,n ∼ N (0, 1) are i.i.d. Gaussian r.v.s to

model log-normal shadowing with intensity σS [32].

The shadowing parameter is usually expressed as the standard deviation

of the channel loss in deciBel by

σS(dB) =
10

ln 10
σS. (2.11)

In Chapter 7, the impact of shadowing on the performance of the proposed

algorithms is evaluated. In particular, the novel methodologies are tested

both in strong and mild shadowing regimes and compared to the solutions

found in the literature.
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Blind Source Separation

The analytics extraction requires the temporal characterization of the trans-

mitted packets for each node of the wireless network. Therefore, a recon-

struction of the temporal traffic profiles, P, as if they were measured at each

node, is needed. However, because of the wireless medium, sensors observe a

mixture of the signals emitted by the nodes, (2.7), and an unmixing operation

is required to extract P [33, 34].

In literature, various methods for separating mixed signals have been

proposed, e.g., matrix factorization [35] and tensor decomposition [36,37], to

name a few. In this work, we adopt an approach based on the combination

of PCA and independent component analysis (ICA) techniques [38], and we

compare it with a more straightforward approach named spatial filtering

(SF). We then propose a novel solution to the measurement association

problem. Since the unmixing operation is not perfect because of noise and

shadowing, the output Y of BSS contains residual transmitted power profiles

from other nodes (crosstalk), which is removed by an excision filter.

3.1 Problem Statement

BSS recovers the source signals P in (2.7), from a set of observed quantities

X, when the mixing matrix H is unknown [33]. Let us consider the mixing

model given by (2.7)

21
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Figure 3.1: A block scheme of the blind source separation process.

X = HP+N, (3.1)

where P ∈ RN×K , H ∈ RM×N , N ∈ RM×K , X ∈ RM×K , N is the number

of sources, and M is the number of observations. The goal of the BSS is to

find the unmixing matrix W ∈ RM×N , as depicted in Fig. 3.1, such that

P̂ = WTX, (3.2)

where P̂ is an estimate of P. In other words, we aim to find the weights wi,j

that separate the components in P.

Let us make some assumptions:

• The mixture signal is zero mean. This means that each row of X is

zero mean. To satisfy this assumption, it might be necessary to center

the observations before the separation process.

• The sources have non-Gaussian distributions. This assumption is fur-

ther detailed in Section 3.1.1.

• The number of independent observers is larger than (or equal to) the

number of sources, i.e.,

M ≥ N. (3.3)

Thus, in this setting the problem is overdetermined.

In literature, there are numerous solutions for the BSS problem in dif-

ferent scenarios with various types of source signals. In most cases, the

complexity of the problem requires an iterative approach that estimates the

sources.
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In this work, we adopted a methodology based on ICA. ICA is a data pro-

cessing method that finds statistically independent and non-Gaussian com-

ponents from data.

3.1.1 Independence and non-Gaussianity

Let us recall some definitions.

Independence. Two random variables y1 and y2 are said to be independent

if

p(y1, y2) = p(y1)p(y2). (3.4)

Non-correlation. Two random variables y1 and y2 are said to be uncorre-

lated if

E[y21, y22] = 0. (3.5)

Independence implies non-correlation but not viceversa. One of the assump-

tions made for BSS is that the sources are non-Gaussian. This is because,

otherwise, ICA cannot resolve the independent directions due to symme-

tries. The joint density of unit variance Gaussians is symmetric, so it does

not contain information about the directions of the unmixing matrix. Thus,

the unmixing matrix cannot be estimated in that case.

Example. Let us consider N = 2 source signals, rows of P, such that

p1,p2 ∼ N (0, IN), (3.6)

where I is a 2× 2 identity matrix. We then observe

X = AP, (3.7)

where A is the mixing matrix, and X follows a Gaussian distribution with

zero mean and covariance given by

E[XXT] = E[APPTAT] = AAT. (3.8)

Thus,

X ∼ N (0,AAT). (3.9)
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Figure 3.2: Examples of positively and negatively skewed distributions.

Now, let R be an arbitrary orthogonal matrix such that RRT = IN . We now

define the matrix A′ as

A′ = AR. (3.10)

If the data has been mixed with A′ instead of A, we would observe X′ = A′P

which follows a Gaussian distribution with zero mean and covariance given

by

E[X′X′T] = E[A′PPTA′T] = A′A′T = A′RRTA′T = AAT. (3.11)

Thus,

x′ ∼ N (0,AAT) (3.12)

and this implies that A is an arbitrary rotational component that cannot be

determined from the data.

Then, why does ICA need a measure of non-Gaussianity to separate the

components?

The central limit theorem states that the distribution of the sum of in-

dependent random variables, which itself is a random variable, tends toward

a Gaussian distribution as the number of terms in the sum increases. Ac-

cording to this, a mixture signal is “more” Gaussian than each of the sources

since it is a linear combination of them. Therefore, if we want to estimate
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the sources, we aim to find the components ŷ that are as less Gaussian as

possible. The optimal W is the matrix that maximizes the non-Gaussianity

of ŷ = WTX, since this will make ŷ ≈ y.

But how do we measure non-Gaussianity?

Skewness

Skewness characterizes the asymmetry of a distribution around its mean, as

depicted in Fig. 3.2

• A distribution with positive skewness has a tail pulled in the positive

direction.

• A negatively skewed distribution has a tail pulled in the negative di-

rection.

Kurtosis

Kurtosis measures the peakedness or the flatness of a distribution with re-

spect to a normal distribution, as shown in Fig. 3.3.

• If kurtosis is zero, the distribution is Gaussian or mesokurtic.

• If kurtosis is positive, the distribution is called supergaussian or lep-

tokurtic.

• If kurtosis is negative, the distribution is called subgaussian or platykur-

tic.

Both these characteristics can be used to measure the non-Gaussianity

of a distribution. Kurtosis also has the advantage of being computationally

cheap.
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Figure 3.3: Shape of a distribution with respect to its kurtosis.

3.2 Whitening, Node Counting, and

Dimensionality Reduction

Signal separation can be effective if a pre-processing stage manipulates the

data so that there are N mixtures centered and whitened at its output [33].

Since the number of network nodes N is unknown, this stage has to estimate

the number of sources.

3.2.1 Whitening

Firstly, we center the mixtures subtracting the row-wise mean fromX. Then,

we apply a linear transformation to the observations to make their compo-

nents uncorrelated with unit variance. The whitened signal, X̃, is written

as

X̃ = QX, (3.13)

where Q is the whitening matrix, and depends on the linear transforma-

tion chosen for the whitening. In this work PCA has been used.
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Starting from the sample covariance matrix of the observations

Σ =
1

K
XXT, (3.14)

we perform the eigenvalue decomposition

Σ = UΛUT, (3.15)

where U is the orthogonal matrix containing the eigenvectors, and Λ is a di-

agonal matrix of the eigenvalues, Λi, with i = 1, . . . ,M , sorted in descending

order. Thus, the whitening matrix is

Q = Λ− 1
2UT. (3.16)

This process removes the linear correlation between the observations such

that the decomposed vectors are orthogonal to each other but not necessarily

independent.

We can now consider the complete mixing matrix

H̃ = QH = Λ−1/2UTH. (3.17)

such that

X̃ = Λ−1/2UTX

= Λ−1/2UTHP

= H̃P.

(3.18)

It has been proven that whitening makes the complete mixing matrix

orthogonal [39].

3.2.2 Node Counting

To estimate the number of sources N̂ generating the mixture, we count the

significant eigenvalues of the sample covariance matrixΣ. This operation can
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Figure 3.4: An illustration of the eigenvalue selection procedure. The green line shows
the amplitude of the eigenvalues, the red dashed line represents the threshold, and the
blue dotted line highlights the number of eigenvalues selected.

be performed adopting a model order selection approach based on minimum

description length (MDL) criteria [40,41], or using a threshold.

Minimum Description Length

The MDL criterion consists of the following minimization problem

N̂ = argmin
n∈{1,..,M}

{MDL(n)} (3.19)

with

MDL(n) =− log

(∏M
i=n+1 Λ

1/(M−n)
i

1
M−n

∑M
i=n+1 Λi

)(M−n)K

+
1

2
n(2M − n) logK

where n is the unknown model order.
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Threshold (Scree Plot)

Instead, using a threshold approach, the number of sources generating the

mixture is given by the number of significant eigenvalues, i.e.,

“N =
M∑

i=1

1{Λi>Λ̄} (3.20)

with Λ̄ = w ·(Λ1−ΛM), where w ∈ [0, 1] is the eigenvalue selection parameter

chosen, e.g., according to the scree plot approach [42].

In PCA, the eigenvalue selection threshold is often set on a percentage

of the difference between the largest and the smallest eigenvalues. This ap-

proach is known as scree plot and is reported in the literature about PCA [42].

An example of a scree plot taken from our simulation setup is presented in

Fig. 3.4. Because the smallest eigenvalues assume almost zero values, we

selected a threshold w that ensures that the relevant eigenvalues are always

considered and never discarded. In other words, the value of the parameter

w has been chosen to obtain the best performances for the source counting

procedure.

3.2.3 Dimensionality Reduction

The ICA method for BSS requires that the number of observations equals

the number of sources (or components) to separate. We hypothesized that

M ≥ N , thus, we have to be sure that the dimensionality of the mixtures is

reduced from M to N .

Since the number of sources, N̂ , has been estimated, we project the mix-

ture onto the subspace spanned by the eigenvectors corresponding to the N̂

largest eigenvalues, reducing the dimensionality from M to N̂ . If the count-

ing process is successful, the estimated number of sources will equal the real

one, so that N̂ = N .
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Considering the matrix Λ in (3.16), defined as

Λ =




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λM



, (3.21)

dropping to zero the eigenvalues λk with N̂ < k ≤M we obtain

Λ̃ =




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λN̂



. (3.22)

Then, we can define a new projection matrix, Q̃, obtained from the first

N̂ rows of Q, so that the whitened mixture is

X̃ = Q̃X. (3.23)

3.3 Independent Component Analysis

ICA is a data processing method that finds statistically independent and

non-Gaussian components from data. In our setting, ICA is applied to X̃

to reconstruct the transmitted power profiles P in (2.7). Its output is an

unmixing matrix W ∈ RN̂×N̂ such that

Ỹ = WTX̃ (3.24)

where Ỹ ∈ RN̂×K is the matrix of the separated components. We pro-

pose Fast-ICA, an iterative algorithm with kurtosis as a measure of non-

Gaussianity, and decorrelation based on the Gram-Schmidt orthonormaliza-

tion [38, 39]. The estimation of the n-th column of the unmixing matrix

requires the following steps:
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1) Estimate w:,n using the update rule [38, eq. 20]

w:,n ← 4

Ö
⟨x̃1,: ⊙ (w̃T

:,nX̃)3⟩
. . .

⟨x̃N̂,: ⊙ (w̃T
:,nX̃)3⟩

è
− 3w̃:,n. (3.25)

.

2) Subtract from w:,n its projections on the components w:,i with i =

1, . . . , n− 1. That is

w:,n = w:,n −
n−1∑

i=1

(wT
:,nw:,i)w:,i. (3.26)

3) Normalize w:,n as

w:,n =
w:,n

||w:,n||2
. (3.27)

4) Repeat from step (1) until the convergence condition is reached.

The complete iterative method is reported in Algorithm 1, where ϵt is the

termination parameter.

F-ICA algorithm has two main issues.

1) The separation process does not preserve the energy of the source sig-

nals. Luckily, the time characterization of the signals is sufficient for

the extraction of wireless network analytics. Thus, information about

the energy of the source signals is not needed.

2) The order of recovered signals is not preserved; thus, P could be ob-

tained from Ỹ through a permutation of the rows. In the next section,

a novel solution to this issue, tailored for our scenario is proposed.

3.4 Association Problem

We propose two variants of an iterative method to associate the reconstructed

sequences to the network nodes and measure the correctness of this matching.
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Algorithm 1: Fast-ICA for BSS

Input : Whitened signals X̃, ϵt > 0, N̂
Output: Unmixing matrix W

1 ϵ←∞
2 W← random initialization such that ||W||1 = 1

3 W̃←W

4 for n from 1 to N̂ do

5 while ϵ ≥ ϵt do

6 wi,n←4
〈
x̃i,: ⊙ (w̃T

:,nX̃)3
〉
− 3w̃i,n, ∀i=1, .., N̂

7 w:,n ← w:,n −
∑n−1

i=1 (w
T
:,nw:,i)w:,i

8 w:,n ← w:,n

||w:,n||2
9 ϵ =

∑N̂
m=1 |wm,n − w̃m,n|

10 w̃:,n ← w:,n

11 end

12 end

Variant 1. For a given a permutation of the rows of the unmixed signal Ỹ,

a path-loss law is applied to mimic the signal propagation to each sensor. This

corresponds to a mixing operation but, this time, considering Ỹ as source

signal, instead of P. Subsequently, a row-by-row correlation between the

real mixed matrix X and the one obtained by mixing Ỹ is performed. The

maximum of the correlation quantifies the correctness of the permutation.

This operation is repeated for each possible permutation of the rows of Ỹ

and the permutation with the highest correlation peak is chosen and used to

get P. This method works remarkably well but requires an exhaustive search

among all the possible permutations, with complexity O(N !).

Variant 2. When dealing with large networks, we propose the following

lightweight alternative. On this purpose, let us define the matrix D ∈ RM×N̂ ,

whose elements dm,n are the distances between sensor m and node n. Let

us hypothesize that the position of the network nodes is known, so that the

distances between the nodes and the sensors can be estimated. As will be

shown in Section 4, the network nodes localization can be performed by the

sensor network in a phase preceding the signal association [43,44]. Moreover,
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Algorithm 2: Unmixed signals association.

Input : Unmixed signal Ỹ, N̂ , D
Output: Aligned unmixed signal Y

1 for n from 1 to N̂ do
2 i ← argminm

{
dm,n

}

3 for j from 1 to length of ỹ:,1 do

4 peaksj ← max
{
corr(ỹj,:;xi,:)

}†
5 end

6 k ← argmaxj
{
peaks

}

7 Yn,: ← ỹk,:

8 Ỹ ← Ỹ/ỹk,:
‡

9 end

† corr(a;b) operator returns the cross-correlation between vectors a and b.
‡ A/ak,: operator removes the kth row from the matrix A.

as will be clarified in Chapter 7.2, only a coarse estimate of nodes position

is required in this phase.

The proposed algorithm is the following.

• First, we select a node n from a list of all the nodes of the network and

find its nearest RF sensor m.

• Then, we correlate the sequence measured at sensor m with all the

unmixed sequences (rows of Ỹ) separately.

• The row ỹj,: that shows the highest positive correlation is associated

with n and, thus, is copied into the nth row of Y.

• Then, we remove node n from the list, delete the jth sequence from Ỹ

and iterate the algorithm.

The method is detailed in Algorithm 2. Its complexity is O(N̂ log N̂),

which is also acceptable when dealing with large networks.

3.5 Spatial Filtering

As an alternative to BSS, we propose another approach [45] where a path-loss

law is used to weight the sensors measurements and reconstruct the source
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signals via linear filtering. The estimation of the number of sources, N̂ , is

obtained via the MDL criteria (3.20) or the threshold method 3.20. Then, we

build the matrix α ∈ RM×N̂ of weights inversely proportional to the path-loss

between sensor m and node n as

αm,n = (dm,n)
−η

where η is the filtering parameter. The matrix Y ∈ RN̂×K containing the

temporal power profiles reconstructed for all the N̂ nodes is given by

Y = αTX.

As a result, the traffic profiles generated by distant nodes are filtered out,

to some extent, by the weights αm,n. This approach is simpler than the BSS

algorithm based on ICA, but it requires the choice of a filtering parameter

η that has to be tuned depending on the specific propagation scenario and

sensor and nodes deployment. Note that the parameter η regulates the inten-

sity of the spatial filtering and might not reflect the true path-loss exponent.

Furthermore, the performance of this algorithm is strongly influenced by the

presence of shadowing, as shown in Chapter 7.

3.6 Excision Filter

The algorithms for the extraction of the wireless network analytics are based

on the temporal characterization of the packet flows exchanged by the nodes.

To extract temporal features, it is necessary to process the time series in Y

to obtain sequences of 0s and 1s; this is carried out by an excision filter that

forces to zero power samples due to crosstalk. The output of the filter is the

matrix Z with elements

zn,k =

{
1 if yn,k ≥ ζn

0 otherwise
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where the threshold ζn is set as a fraction q ∈ [0, 1] of the maximum of yn,:,

i.e.,

ζn = q ·max
k
{yn,k}, n = 1, . . . , N̂ . (3.28)
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Chapter 4

Multiple Transmitter

Localization

4.1 Problem Statement

We propose a novel methodology for locating packet-based non-collaborative

wireless network nodes using over-the-air power profiles captured by RF sen-

sors. In particular, as already mentioned, the sensors do not have access to

the target network and ignore its main features (i.e., the number of nodes,

modulation type, and MAC). Hence, the RF sensors can only measure the

aggregate power received by the nodes. Then, a fusion center processes the

power measurements to estimate the position of the nodes. This problem

is challenging because nodes may transmit simultaneously in the same fre-

quency band, sensors can be placed in an unfavorable geometrical configu-

ration, and sensing is hindered by path-loss, shadowing, and measurement

noise.

Another localization problem is tackled in Chapter 8. In particular, we

propose a navigation system which allows a fleet of UAVs to navigate across

a scenario and find the best spatial configuration to localize a wireless trans-

mitter. The patrol can use this system in synergy with the network analytics

tool to localize a malicious user (i.e., jammer) and secure a wireless network.

37
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Figure 4.1: An example of scenario with N = 5, M = 8, and σ = 3dB. The red circles are
the network nodes (or targets), the blue triangles are the RF sensors and the grey circles
represent the estimate of the position of the nodes through the BSS-MLE methodology.

4.1.1 Existing Works

Over the past decades, several fundamental contributions on localization have

been exploiting different technologies, such as WiFi and UWB [46–51]. Fur-

thermore, the problem of multi-target localization using groups of cooper-

ating sensors has also been widely investigated [52, 53], including an origi-

nal framework that ensures scalability and distributed implementation [48].

However, all the above works assume that the targets can exchange informa-

tion with the anchors, thus contributing to localization. In [54], a device-free

multiple target localization technique based on sensor radars is proposed.

In [55], the authors propose an algorithm for the simultaneous localization

of multiple non-collaborative users through RSS measurements carried out

by a UAV. This methodology is based on a score map constructed using the
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Figure 4.2: Block scheme of the complete methodology: target nodes (T1, T2, . . . ), RF
sensors (S1,S2, . . . ), node counting (principal component analysis (PCA)), received power
profiles separation (fast independent component analysis (F-ICA)), transmitted power
profile reconstruction (RSS extraction), and localization.

power measured by a UAV moving across the scenario. Then, a set of ML

algorithms are applied to the score map to estimate the number and the po-

sitions of the transmitters. In [56], the authors propose a particle simulation

algorithm for the localization of wireless transmitters leveraging many RF

sensors distributed on a grid.

In this work, we propose a novel solution for the localization of multiple

unknown transmitters via BSS [57]. The processing chain depicted in Fig. 4.2

shows the stages of the algorithm, while an example of a typical scenario is

shown in Fig. 4.1. Firstly, a BSS is performed to count the number of tar-

gets and reconstruct the power profiles transmitted by them. Then, through

a non-linear filtering procedure, the RSS associated with each sensor-target

couple is extracted. After this filtering step, the sensors can localize the

target nodes separately using any conventional positioning technique based

on RSS. For instance, in this work, localization is performed through least

squares (LS) and MLE techniques. In the numerical results, the methodol-

ogy’s performance is derived in different shadowing regimes and varying the

sensors’ spatial density, and it is compared with the solution proposed in [56].

4.2 Received Signal Strength Extraction

Although the F-ICA technique applied in the power-domain suits this sce-

nario, it presents a relevant issue. The reconstructed signals are scaled and
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do not preserve the original power. For this reason, another processing stage

is necessary to perform the RSS-based localization.

Let us normalize the reconstructed power profiles Y such that Ỹ has

elements ỹn,k = 1 if node n is transmitting in the k-th bin, and ỹn,k = 0

otherwise. Such normalization can be performed using the excision filter, i.e,

ỹn,k = 1{yn,k≥ζn}. (4.1)

where ζn = q ·maxk{yn,k} is a normalization threshold chosen as a fraction

q ∈ [0, 1] of the maximum power of the transmit profile of target node n.

Thus, each row ỹn can be seen as a mask that, multiplied element-wise by

the m-th row of X, xm, forces to zero all the power samples received by

sensor m that have not been transmitted by node n. Fig. 4.3 depicts the

procedure with an example of two partially overlapped transmissions, where

the normalized reconstructed power profile ỹ1, when multiplied element-wise

by, e.g., x1, forces to zero all the power samples received by sensor S1 that

have not been transmitted by node T1. Then, the received signal strength

between the target node n and the sensorm, RSSn,m, is obtained by averaging

over the non-zero entries of the result of the element-wise product. Such

process can be expressed in a compact form as

RSSm,n =

∑K
k=1 xm,k ỹn,k
||xm ⊙ ỹn||0

m = 1, . . . ,M n = 1, . . . , N, (4.2)

where ⊙ stands for the element-wise product. The averaging ensures that

the RSS is estimated within a time frame of duration Tob.

4.3 Localization

The position estimation is obtained through a two-dimensional RSS-based

localization algorithm.1 Let us assume the targets are located at unknown

coordinates (xn, yn) with n = 1, . . . , N and the RF sensors are at known

1For simplicity, height differences between nodes and sensors are considered negligible
with respect to the distance between them.
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Figure 4.3: The RSS extraction process for two non-collaborative transmitters.

positions (x̃m, ỹm) withm = 1, . . . ,M . In this work, two well-known solutions

for the localization of single targets (the generic node n in the following) are

considered.

4.3.1 Least Squares

Let us build a matrix B, that contains RSS measurements obtained through

(4.1)-(4.2) and the sensors position, with rows

bs = (2x̃m, 2ỹm,RSS
−1/ν
m,n ,−1) (4.3)

for m = 1, . . . ,M , and a vector

q = (x̃2
1 + ỹ21, . . . , x̃

2
M + ỹ2M)T. (4.4)

Let us also define the two unknowns, D2 = x2
n + y2n and P = (Ptxh0)

1
ν ,

where Ptx is the transmit power of the nodes. The localization problem can

be formulated as a system of linear equations

Bp = q, (4.5)
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where p = (xn, yn, P,D
2)T is the desired solution which can be obtained by

the ordinary LS method [58]

p̂ = argmin
p∈R4

{||Bp− q||22} = (BTB)−1BTq. (4.6)

4.3.2 Maximum Likelihood

Without any prior statistical knowledge about the transmit power and loca-

tion, the ML estimation of the n-th target location is given by [58,59]

(x̂n, ŷn) = argmin
(xn,yn)∈R2

{
M∑

i=1

(
ln (RSSi,nd

2ν
i,n)−

1

M

M∑

j=1

ln (RSSj,nd
2ν
j,n)
)2
} (4.7)

where di,n =
√
(xn − x̃i)2 + (yn − ỹi)2. The objective function (4.7) is dif-

ferentiable with respect to (xn, yn), hence it is possible to find the minimum

in closed form or via the gradient descent method. However, if the target

nodes are arranged in an unfavorable configuration, there can be several lo-

cal minima. For this reason, the monitored area has been discretized into

a two-dimensional grid, and the grid point that gives the minimum value of

(4.7) is chosen. The finer the grid, the more accurate the estimation is at the

cost of an increased computational burden.

4.3.3 Particle Simulation

The solution proposed in this work has been compared with the localization

algorithm presented in [56]. In fact, in [56] the authors propose an RSS-based

particle simulation algorithm for the localization of a set of non-collaborative

wireless transmitters using a network of RF sensors deployed on a grid. The

method also accounts for shadowing, so it perfectly fits our scenario.

The main idea comes from a physical interpretation. All the RF sensors

are considered as fixed particles. In addition, there are N estimated trans-

mitters located at some positions which are considered as particles that are
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allowed to move during the iterations of a particle simulation. The average

received power, which the sensors would receive from the transmitters at the

positions estimated by the algorithm, can be calculated using a path-loss law.

The difference between the measured receive power and the power estimated

through the path-loss law (in log domain) is called potential. Instead of di-

rectly minimizing the localization error, which is not available, the authors

try to minimize the total potential. A positive (negative) potential indicates

that a sensor measures a higher (lower) receive power than the one which

would be expected from the transmitter at the estimated position. Based on

this interpretation, a force from each sensor on each estimated transmitter

is introduced. The magnitude of this force is determined by the absolute

value of the potential and decays quadratically with the distance (e.g., grav-

itational force). Hence, the closer a sensor is to a transmitter and/or the

larger the potential, the stronger the induced force. Finally, the potential

sign determines whether a sensor pulls the estimated transmitters towards

itself or pushes them away, depending on whether they measure a too weak

or a too strong receive power, respectively.

It can be noted that without any random effects (i.e., shadowing) the

forces would be zero when the estimated positions of the transmitters coin-

cide with the real ones, such that equilibrium would be established. However,

equilibria can also be established in points where non-zero forces cancel each

other out, freezing the algorithm in local minima. A transmit power estima-

tion is incorporated to enable also the localization of unknown transmitters.

The performance of such localization method is used as a benchmark in

Chapter 7.

4.4 Cramèr-Rao Lower Bound

To assess the asymptotical improvement of the localization performance of

the proposed algorithms, the CRLB has been derived. In particular, con-

sidering the RSS-based localization of a single transmitter n through the

observations of M RF sensors, the received power at the m-th sensor is
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Pm,n = Ptxhm,n = Ptxh
′
m,ne

σSsm,n , (4.8)

where Ptx is the transmit power, and the path-loss model is of power-law

type with channel gain h′
m,n = h0(

d0
dm,n

)ν , path-loss exponent ν and reference

distance d0. Thus, the received signal strength is

RSSm,n = 10 log10 Pm,n

= 10 log10(Ptxh0d0
ν)− 10ν log10 dm,n + 10 log10 e

σSsm,n

= RSS(d0)− 10ν log10 dm,n +
10

ln 10
σSsm,n

= P̄m,n + sm,nσS
dB,

(4.9)

where P̄m,n is the true RSSm,n expressed in deciBelWatt, sm,n ∼ N (0, 1) and

σS
dB is the shadowing parameter expressed in deciBel. For the sake of clarity,

in the following, we will refer to σS
dB as σS.

To derive the CRLB we need to define:

• the unknown parameters vector ln = (xn, yn)
T;

• the vector of observables (or measurements)

RSSn = (RSS1,n,RSS2,n, . . . ,RSSM,n). (4.10)

Knowing that RSSm,n ∼ N (P̄m,n, σS
2), if the measurements at different

sensors are independent, the distribution of the observables given the un-

known parameters is

f(RSSn, ln) =
M∏

m=1

f(RSSm,n, ln)

=
M∏

m=1

1√
2πσS

2
e
− 1

2σS
2 (RSSm,n−P̄m,n)2

.

(4.11)

Then, the log-likelihood of the observables given the unknown parameters
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is

ln f(RSSn, ln) =
M∑

m=1

−1

2
ln 2πσS

2− 1

2σS
2
(RSSm,n−RSS(d0)+ 10ν log10 dm,n).

(4.12)

The elements of Fisher’s information matrix (FIM) can now be calculated

as

[I(ln)]1,1 = −E
ï

∂2

∂xn
2
ln f(RSSn, ln)

ò
, (4.13)

[I(ln)]1,2 = −E
ï

∂2

∂xnyn
ln f(RSSn, ln)

ò
, (4.14)

[I(ln)]2,1 = −E
ï

∂2

∂ynxn

ln f(RSSn, ln)

ò
, (4.15)

[I(ln)]2,2 = −E
ï

∂2

∂yn2
ln f(RSSn, ln)

ò
. (4.16)

The complete 2× 2 FIM is then

I(ln) =
100ν2

σS
2(ln 10)2

[ ∑M
m=1

(xm−xn)2

d4m,n

∑M
m=1

(xm−xn)(ym−yn)
d4m,n∑M

m=1
(xm−xn)(ym−yn)

d4m,n

∑M
m=1

(ym−yn)2

d4m,n

]
, (4.17)

and the lower bound of the root mean squared error (RMSE) is

RMSEn ≥
»

[I−1(ln)]1,1 + [I−1(ln)]2,2 . (4.18)
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Chapter 5

Topology Inference

5.1 Problem Statement

As a reminder, we assume that the technical specifications of the network

(i.e., physical layer signals, MAC and routing protocols) are unknown. The

topology of the network is represented by a directed graph and its associated

adjacency matrix A ∈ {0, 1}N×N where

ai,j =

{
1 if information flows from node i to j

0 otherwise.

For example, with reference to Fig. 5.1, a1,2 = 1 and a1,3 = 0 mean that

information flows from node 1 to node 2 but not from node 1 to node 3.

The goal is to find an estimate of the adjacency matrix, “A, of the wireless

network from raw RF measurements carried out by sensors within an obser-

vation window of duration Tob. Since no interaction is expected between the

observed network and the sensors, all the subsequent tasks, summarized in

Fig. 5.2, are performed without demodulating the received signals, so that a

simple ED receiver suffices [28,30,31].

5.1.1 Existing works

Different approaches and methodologies for network topology inference have

been proposed in the literature. Some of them rely on access to the packet’s

47
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Figure 5.1: An example of directed graph representing a wireless network’s logical topol-
ogy. The dashed links in red represent the absence of flow of information between the
nodes.

content, which is not always feasible and may increment the network over-

head [60, 61]. In [62], a path inference approach that exploits routing in-

formation within packets is proposed. Others fall into the network tomog-

raphy category, which requires access to information at endpoints [63, 64].

For example, in [65], a low-complexity inference algorithm based on the

Kullback–Leibler (KL) divergence that requires a link rate estimation is de-

veloped. Without accessing the packet content, the solution proposed in [66]

exploits spectral coherence based on the Lomb-Scargle periodogram to mea-

sure causality between two signals. Such an approach relies upon the no-

tion of correlation, which, in principle, does not necessarily imply causation.

In [67], a Bayesian nonparametric model to learn the topology of an unknown

ad-hoc network is proposed; the solution is based on a hidden semi-Markov

model (HSMM) for segmenting nodes transmission activity.

A different research field that contributes to topology inference is repre-

sented by graph signal processing (GSP) applied to networks. Graph learning

as an edge subset selection problem or a neighborhood-based sparse linear

regression is proposed in [68]. In [69], non-linear structural equation mod-

els for detecting the topology of a graph from the observations of a process



49 Chapter 5 – Topology Inference

EXCISION
FILTER

TOPOLOGY
INFERENCE

Z Â
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Figure 5.2: Block scheme of the wireless network topology inference: sensor network,
data pre-processing and inference.

propagating through it are investigated. In [70], a novel method based on an

elastic net solver [71], that performs well even in scenarios where the data are

highly correlated, is presented. However, topology inference in GSP assumes

that the network is subject to a diffusion process, i.e., there is a piece of

information propagating among all the nodes.

Causality

The task of network topology inference can be seen as learning temporal

causal structures among multiple time series. This has roots in the causal

inference problem described by Pearl [72] and Granger [73–75]. In partic-

ular, the Granger test based on an auto-regressive (AR) model introduced

in [73] has become the basis for further causal analysis and topology infer-

ence methods. An approach for causal inference on networks involving a

specific formulation of Granger causality (GC), named asymmetric Granger

causality (AGC), is exploited in [76], where the parametric tests are carried

out over groups of time series. Hawkes point processes are a statistical tool

to model causal relationships, and recently their connection with GC has

been investigated [77]. Multivariate Hawkes processes for topology inference

through causal analysis between time series are exploited in [78,79]. Another

well-known tool for causal inference is based on the information-theoretic

measure, named transfer entropy (TE), proposed in [80]. In [81], the authors

propose a TE-based topology inference approach and evaluate its robustness

with respect to GC. To overcome some limits of TE, [82] proposes conditional

entropy (CE), an approach for causal inference on networks that is optimum

under certain Markovian assumptions. A non-parametric learning method
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related to GC and TE that measure the impact of one node activity over

another is developed in [83]. An interesting feature of this approach is that

prior knowledge of the underlying network protocol is not needed.

5.2 Causality Inference

Identifying the relationship between a cause and its effect is known as causal

reasoning. In the last centuries, many philosophers and scientists raised in-

terest in causal inference, the process of studying the response of an effect

variable when there is a change in its cause. The objective of causal inference

is to provide evidence of the relationship hypothesized by causal reasoning.

The study of causal inference has been embraced by many scientists across

many scientific and humanistic areas. From econometric [73], to computa-

tional neuroscience and neuroimaging [84–86], to psychology [87], up to the

telecommunications [76,81].

The techniques for causality inference can be based on the analysis of

observational data or time series, as in our case. The operating principle

is more or less the same for all the causal inference methodologies: the ac-

quired data are analyzed and used to build a proper decision test that is

able to detect the causality between a possible cause and the possible effect.

The most famous state-of-the-art causality inference approaches to detect

causality from time series are briefly explained in the following sections.

5.2.1 Granger Causality

GC test methods are based on linear L-order AR models. In particular,

considering a pair of time series zi and zj (i.e., two rows of Z that correspond

to the transmitted power profiles of nodes i and j, respectively) two models
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(hypotheses) can be formulated

H1 : zj,k =
L∑

l=1

βlzj,k−l +
L∑

l=1

γlzi,k−l + εk (5.1)

H0 : zj,k =
L∑

l=1

δlzj,k−l + ωk (5.2)

where {βl}Ll=1, {γl}Ll=1, and {δl}Ll=1 are the regression coefficients, and εk,

ωk, are samples of independent AWGN. The model (5.1) corresponds to

hypothesis H1 and considers the possibility of a causal relationship between

the two time series. At the same time, (5.2) is the null hypothesis H0 and

excludes the contribution of the past values of zi in the prediction of zj. Note

that (5.2) can be seen as a particular case of (5.1) where γl = 0, l = 1, . . . , L.

This means that if zi Granger causes zj the prediction error of model (5.1) is

less than the one of (5.2). On the other hand, if zi has no causal influence on

zj the errors are approximately equal. In [74,75] a GC test based on squared

sum of residuals is proposed

GCi→j =

∑T
t=1 |ωt|2 −

∑T
t=1 |εt|

2

∑T
t=1 |εt|

2
· T − 2K − 1

K

H1

≷
H0

θ (5.3)

where T = K − L and K is the time series length. Since both εk and ωk

are Gaussian distributed, the sum of squared residuals follows a central chi-

squared distribution and the test (5.3) is then the ratio of chi-squared r.v.’s

which results in a F -distribution [74]

GCi→j ∼ F(L, T − 2L− 1).

The test threshold θ can be set fixing the false alarm probability. Alterna-

tively, in [88] a useful tool for quantifying the degree of connectivity between

two nodes i and j, named causal magnitude, is defined as

Fi→j = log

Å
V(ω)

V(ϵ)

ã
(5.4)
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where ω = (ω1, . . . , ωT ), ϵ = (ϵ1, . . . , ϵT ) and V(·) is the unbiased estimator

of the variance.

5.2.2 Transfer Entropy

In [80], a model-independent method is proposed to measure the information

flow between two random processes by a specific type of conditional mutual

information named TE. Considering two time series zi and zj, modeled as

random processes, the TE from node i to node j can be expressed as

TEi→j(R,Q) = I(zj,k; zi,k−1:k−R, zj,k−1:k−Q)

= E
ß
log2

p(zj,k|zi,k−1:k−R, zj,k−1:k−Q)

p(zj,k|zj,k−1:k−Q)

™ (5.5)

where z−i and z−j denote the past samples of zi and zj up to time instant k,

respectively. In general, evaluating conditional probability densities requires

the knowledge of infinite past samples of zi and zj. However, in this particular

application, TE is calculated considering only R and Q past samples of zi and

zj, respectively. The decision threshold θ is obtained by the null distribution

of the TE, estimated from an appropriate manipulation of the time series [81],

setting a predefined false-alarm probability. Then, the test becomes

TEi→j

H1

≷
H0

θ. (5.6)

The flow of information from node i to node j might take some time to

generate a response, i.e., sending an acknowledgment (ACK). To predict

the causal interaction, the lags R and Q should be very large and, thus, the

algorithm’s complexity gets overwhelming. Hence, an additional interaction

delay parameter, n0, to select the past values of the time series, is proposed

in [89]. The definition of TE is then modified as

TEi→j(R,Q, n0) = I(zj,k; zi,k−n0−1:k−n0−R, zj,k−1:k−Q). (5.7)

Note that the interaction delay has been considered only on the time series
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zi. This because the useful information on zj,k has been extracted from its

past zj,n−1:n−Q, and only the influence of zi need to be investigated.

Conditional transfer entropy

If for a given node i, we evaluate the TEj→i(R,Q, n0) , ∀ j = 1, . . . , N with j ̸=
i and then apply the binary hypothesis test for each of the pairs {i, j}, we
identify the set of possible neighbours of i. However, TE is a simplified ver-

sion of CE and, as shown in [45], it tends to overestimate the number of

links. For this reason, the set of possible neighbours is tested again with a

variant of TE called conditional transfer entropy (CTE), where the effects of

all the possible neighbours on the causal inference are taken into account.

If for a given node i, we evaluate TEi→j(R,Q, n0), j = 1, . . . , N with

j ̸= i, and then apply the binary hypothesis test for each pair {i, j}, we
identify the set of possible neighbours of node i. Then, to avoid the presence

of spurious links, the set of possible neighbors should be tested again with a

variant of TE called CTE, where the effects of all the possible neighbors on

the causal inference are taken into account. CTE from node i to j is defined

as

CTEi→j(R,Q, n0, g)

= I(zj,k; zi,k−n0−1:k−n0−R|zj,k−1:k−Q, zg,k−1:k−Q)
(5.8)

where g = 1, . . . , N with g ̸= i, j. For a complete description of the CTE

algorithm and all its details, please refer to [81].

5.3 Causality Detection with

Machine Learning

The previously described methods compute a test based on the entire time

series. We now propose a different approach that uses time-based features to

infer the presence of causality via binary classification [90].
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5.3.1 Feature Extraction

Indeed, in case of traffic flow from node i to node j, a packet-ACK time

relation is expected to be found, as depicted in Fig. 5.3. The method might

also apply to protocols that do not support ACKs. In that case, temporal

features are extracted from the inter-transmission time between the end of

a packet sent by node i and the following transmission from node j. We

indicate with τ i→j the time elapsed between the end of a packet sent by node

i and the beginning of a packet from node j. If ai,j = 1 the packet transmitted

by node j is likely to be an ACK, but we are not certain. We only suppose

that, if the packet transmitted by node j is an ACK, the statistical features

estimated from τ i→j, i.e., the sample mean, will significantly change with

respect to the case in which the packet is not an ACK.

Denoting with Nta the number of time-to-acks detected within the obser-

vation window, Tob, three main relevant features characterize the statistic of

the time-to-ack τ i→j:

• Sample mean

Mτ i→j =
1

Nta

Nta∑

p=1

τ i→j
p (5.9)

• Sample variance

Vτ i→j =
1

Nta − 1

Nta∑

p=1

(τ i→j
p −Mτ i→j)2 (5.10)

• Kurtosis

Kτ i→j =
mi→j

4

(mi→j
2 )2

(5.11)

where mi→j
4 and mi→j

2 are respectively the 4th and the 2nd order mo-

ments, estimated from samples as

mi→j
q =

1

Nta

Nta∑

p=1

(τ i→j
p −Mτ i→j)q. (5.12)
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Figure 5.3: An example of successful transmission of data packets between nodes N1 and
N2 is shown. In this case node N1 is connected to node N2 but not to node N3. Notice
how the time-to-ack τ1→2 and τ1→3 differ each other.

The causal magnitude Fi→j in (5.4) can be considered as an additional feature

to incorporate the benefits of GC for the classification. In the previous

example, if the packet transmitted by node j is an ACK, the statistical

features estimated from τ i→j, e.g., the sample mean, will significantly change

with respect to the case in which the packet is not an ACK.

5.3.2 Causality Detection

If we consider, e.g., only two features, they can be represented on a plane

such as the one reported in Fig. 5.4. Each red and blue point in the figure

represents a couple {Mτ i→j ,Vτ i→j} extracted from time series measured at

nodes i and j. In particular, a red point corresponds to the presence of a di-

rected link from i to j, i.e., ai,j = 1, while a blue point represents the absence

of the link, that is ai,j = 0. The color gradient shows the decision boundary

identified by the classification algorithm. After a proper training phase, a

classification algorithm (i.e., NN) can identify a boundary that separates the

two classes. Accordingly, this approach needs a preliminary step where the

features calculated from time series obtained by real or simulated networks
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Figure 5.4: Example of a two-dimensional normalized features space. In red: points
corresponding to the presence of a link (ai,j = 1). In blue: points representing couples of
nodes that are not connected (ai,j = 0). The color gradient shows the decision boundary
identified by the classification algorithm.

are collected and used for training. As it is shown in Fig. 5.4 the two groups

of points are not linearly separable, therefore a NN has been selected as a

proper classification algorithm in this work [91,92].

More features can be used as well, such as higher-order moments (with

Kurtosis, we stopped at order four) or cumulants of the time-to-ACK distri-

bution. Also, the causal magnitude Fi→j can be considered as an additional

feature to incorporate the benefits of GC for the classification. In Fig. 5.5

the input layer has size 4, meaning that the features used as input for the

classification are 4: Mτ i→j , Vτ i→j , Kτ i→j , Fi→j.

Once the boundary has been found, it is possible to classify new points
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Figure 5.5: The structure of the 2-hidden-layer NN used to infer the presence/absence
of the links.

on-the-fly according to their position on the features space. In this way, we

first classify every possible link and then merge all the outcomes to obtain

the network topology. Such an approach applies to statistical time-division

multiplexing (STDM)-based networks, which encompasses a variety of mul-

tiple access algorithms (e.g., CSMA/CA), and appear to be lightweight than

known methods under certain conditions.
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Chapter 6

Traffic Classification

6.1 Problem Statement

Here we propose a ML-based approach for traffic classification in wireless net-

works using low-cost RF sensors, as depicted in Fig. 6.1, where such sensors

do not need to be part of the network to perform classification. In particu-

lar, the signal unmixed through the BSS is processed to classify the traffic

patterns of the users of a wireless network. The problem can be modeled

as a multi class (or multinomial) classification, which consists in classifying

instances into three or more classes. In this work, three different traffic pro-

files have been simulated: video streaming, chat, and web navigation. Fig. 6.2

shows an example of the packet profiles generated by the wireless network

users for all three classes. It is evident how a time relation between the nodes’

transmission can be found and used to discriminate between the three appli-

cation types. We compare the performance of classifiers, such as SVMs and

NNs, and statistical tools, such as PCA and KPCA, to assess their ability to

classify these traffic patterns.

6.1.1 Existing Works

Many approaches and methodologies for traffic classification are proposed

in the literature [93, 94]. Such methodologies can be grouped into three

main categories [95]. Port-based classification is used when the protocols

59
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Figure 6.1: System overview: the network of sensors monitoring the traffic patterns
among the wireless network nodes.

are assigned to a well-known transport-layer port (i.e., TCP, HTTP). The

main issue with this method is that many applications use dynamic port-

negotiation mechanisms to guarantee user privacy. Payload-based classifiers

inspect the content of packets beyond the transport layer headers, looking for

features in packet payloads that can distinguish an application protocol from

the others. These classifiers are usually used when traffic is not encrypted

or enclosed into other application-level protocols. Statistical classification

analyses statistical attributes, also called features, of the received traffic to

perform classification through learning algorithms [93]. This methodology

can be applied to encrypted traffic because the content of packets is never

exploited, and it is lightweight in terms of sensing, but it can be less accurate

than payload-based classifiers.

While traffic classification in wired networks has been extensively investi-

gated, very few works address the problem in wireless systems, although the

emergence of CR technology makes this aspect rather important [95].
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Figure 6.2: An example of user packet profiles for the three activities considered.

6.2 Features Extraction

The traffic profiles depicted in Fig. 6.2 show particular characteristics. Video

streaming traffic can be considered a dense stream of packets containing a

relatively large volume of data. In contrast, chat traffic can be seen as sparse

groups of packets representing the messages sent and received by the user.

Web navigation, instead, produces a more variable traffic profile with respect

to the other activities. Let us denote with Nta the number of inter-arrival

times detected within the observation window. Similarly to the topology

inference methodology, there are four relevant features which characterize

the statistic of packets’ inter-arrival time that can be distilled:

• Sample mean

Mτ =
1

Nta

Nta∑

k=1

τk. (6.1)

• Sample variance

Vτ =
1

Nta − 1

N∑

k=1

ta(τk −Mτ )
2. (6.2)
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• Kurtosis

Kτ =
m4

m2
2

(6.3)

where m4 and m2 are respectively the 4th and the 2nd order moments,

estimated from samples as

mq =
1

Nta

Nta∑

k=1

(τk −Mτ )
q. (6.4)

• Rate of packets, Rp, i.e., number of packet arrivals per second.

6.3 Survey of ML Classifiers

Let us define the feature matrix Φ ∈ RF×D where D is the number of points

while F is the number of features extrapolated for each point, i.e., F = 4

according to Section 6.2.

The matrix Φ is related to the association matrix t ∈ RD×C , where

C is the number of classes (or categories); C = 3 in the current setting.

The element tdc of t is 1 when the dth observation belongs to the cth class,

otherwise its value is set to −1.
We now briefly review the algorithms adopted for over-the-air traffic clas-

sification: PCA, KPCA, SVM, and NN.

PCA

PCA is a widely known algorithm in exploratory data analysis. Considering

the cth class, given the centered training set Φc, the algorithm remaps the

training data from the feature space RF in a subspace RP (where P < F is

the number of principal components selected) that minimizes the information

loss between the projected data and the original ones. The best subspace

over which to project the data depends on the training set distribution and

the number of components selected P . Iterating this process for all the C

classes, we obtain a set of subspaces, one for each class, where to project

the data. For the multi-class classification purpose, we seek to find which
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subspaces give a better representation of the test data. For this reason, firstly,

we project the test data set over all the subspaces already found. Then, data

are remapped to their original space, and the Euclidean distance between

the original data and the remapped ones is calculated for each subspace of

the set. The class corresponding to the subspace that gives the minimum

Euclidean distance is the classifier’s output.

KPCA

This approach takes inspiration from the standard PCA and overcomes the

limitation of the linear mapping that corresponds to finding linear boundaries

in the original feature space. This constraint represents a severe limitation

in many applications and can sharply decrease the classification accuracy.

KPCA first maps the data with a non-linear function, then applies the stan-

dard PCA to find a linear boundary in the new feature space. Such boundary

becomes non-linear, going back to the original feature space. A crucial point

in KPCA is selecting a non-linear function that leads to linearly separable

data in the new feature space. In the literature, when the data distribution

is unknown, the radial basis function (RBF) kernel is often proposed as the

right candidate to accomplish this task [96]. Suppose we have a generic point

ϕd that corresponds to a vector of length F , we can apply the RBF as follows

Kϕf,d
= e−γ||ϕd−ϕf,d||22 with f = 1, 2, . . . , F (6.5)

where γ is a kernel parameter (inversely proportional to the width of the

Gaussian function) that must be appropriately set, and Kϕf,d
is the fth

component of the point ϕd in the kernel space. Overall the starting vector

ϕd is mapped in a vector Kϕd
of length F . Applying now the PCA to the

new data set obtained remapping all the training points, it is possible to find

non-linear boundaries in the starting feature space for a better classification.

It is good practice to center the points mapped with the RBF because the

mapping in the new feature space could be non-zero mean.
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Support vector machine

The SVM constructs a set of hyperplanes in high-dimensional space that

can be used for tasks like classification or regression [90, 92]. Hence, it is a

parametric learning algorithm whose error function includes a regularization

term as follows:

g(w) =
D∑

d=1

ln
Ä
1 + e−yd(ϕ

T
d w)
ä
+ ω||w||22 (6.6)

where w is the vector of the weights of the SVM model, and ω is the regu-

larization parameter.

NN

Considering the case study of this work, the groups of points of the three

classes are not linearly separable; therefore, a shallow NN has been chosen as

a fourth classification algorithm [91,97]. In particular, we adopt a 2-hidden-

layer feed-forward NN. The well-known k-fold cross-validation method has

been chosen to avoid overfitting. During the training phase, the network

tracks the function described by the features matrix and finds the classifica-

tion region’s boundary. Once the boundaries have been found it is possible

to classify new points according to their position on the hyperplane.
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Framework Validation

This chapter presents a set of tests that validate the proposed framework

for spectrum patrolling and the extraction of wireless network analytics. In

particular, Section 7.1 details the simulation parameters that have been used

throughout all the proposed tests. Instead, the specific parameters, which

are different for each test, are listed in the respective subsections.

7.1 Simulation Setup

As a case study, we recreated an IEEE802.11s ad-hoc network, operating at

f0 = 2.412GHz, using a simulator developed through the ns3 platform. The

wireless network landscape is a square area of side 10m. The propagation

scenario is characterized by omnidirectional antennas at the nodes and the

sensors, path-loss, log-normal shadowing, and thermal noise. The path-loss

model is of power-law type with channel gain h′
m,n = h0(

d0
dm,n

)ν where the

path-loss exponent is ν = 3, the reference distance is d0 = 1m, and h0 =

−60.1 dB [98]. The transmit power of the nodes is PT = 10 dBm, while the

thermal noise power for both nodes and sensors is σ2
N = −93 dBm. The RF

sensors have aW = 20MHz bandwidth and continuously sense the spectrum,

with an ED integration time of Tb = 10µs.1 The shadowing parameter σ

is expressed in deciBel as σ(dB) = 10σ/ ln 10. Two types of packets are

1Note how the number of degrees of freedom, Ndof = 2WTb = 400, is considerably high
in this configuration.

65
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Table 7.1: Set of parameters used in the tests described in Section 7.2

Parameter Set A0 A1 A2 B0 B1 B2 C0 C1 C2

ρS (nodes/m
2) 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1

σS (dB) 0 3 6 0 3 6 0 3 6

present in the target network, data packets with size 1024Byte, and ACK

packets of 112Byte. Each node has an offered traffic of 1Mb/s. Regarding

the signal processing chain, the loss parameter of the spatial filter, used as a

benchmark, is set to η = 4.

7.2 Blind Source Separation

7.2.1 Parameter Setting and Figures of Merit

To evaluate the performance of BSS we define the reconstruction error as

Re =
#of wrong samples

# of total samples
=
||Z− P̄||1
N ·K

where the matrix P̄ has elements p̄n,k = 1 if node n is transmitting in the

kth bin, i.e., pn,k > 0, and 0 otherwise. Note that the extraction of the

network analytics exploits temporal statistics of the transmitted signals, so

the quality of the reconstructed traffic profiles needs not to account for the

recovered transmit power error. Hence, P̄ can be interpreted as normalization

of P to discard irrelevant amplitude-related information. The accuracy of

the time series reconstructed is degraded by noise and shadowing, while the

node-source association could be affected by uncertainties on node positions.

We model position uncertainty as a Gaussian distributed r.v. with standard

deviation σP added to each node’s coordinates. To characterize the impact of

the number of sensors on the performance of the source separation methods,

we define the density of sensors ρS, as the number of sensors per square

meter. The nine parameters configurations used in this test are summarized

in Table 7.1 [99].
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Figure 7.1: BSS algorithm performance varying the standard deviation σP of the location
uncertainty, the shadowing parameter σS and the density ρS.

7.2.2 Reconstruction Error vs. Position Uncertainty

In Fig. 7.1, the BSS algorithm has been tested varying the standard devia-

tion σP(%), defined as percentage of the side of the landscape, the shadowing

parameter σS, and the density ρS. The figure depicts how Re increases when

σP gets higher, even at relatively high density, i.e., ρS = 0.3. Moreover, the

curves translate upward when the shadowing intensity increases, reaching an

error Re = 16% with σS = 6dB and σP = 20%. In Fig. 7.2 the performance

of BSS is compared to the SF benchmark method described in Section 3.5.

The figure shows how the filtering parameter η strongly influences SF per-

formance. It outperforms the BSS algorithm in many cases, but requires

an experimental tuning that might not always be possible. Moreover, in

the presence of strong shadowing, the performance of this method rapidly
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Figure 7.2: Performance of BSS compared to the SF parametric method varying ρS and
σS according to Table 7.1.

degrades.

7.3 Multiple Transmitter Localization

7.3.1 Parameter Setting and Figures of Merit

Regarding the node counting process, the eigenvalue selection parameter is

set to w = 10−4 via scree plot [42], which ensures the best accuracy in the

specific scenario, while in the RSS extraction phase, the threshold parameter

is set to q = 0.7. The observation time is Tob = 1 s, corresponding to K =

100 · 103 power samples. We can estimate and update the target nodes

position every Tob = 1 s. For grid-based search in the MLE algorithm, the

area is split into equal square cells of side 0.01m. The parameters of the
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Table 7.2: Probability of correct estimation of the number of transmitters, “N , as a
function of ρ and σ.

ρ→
σ(dB) ↓

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

1 0.83 0.98 0.98 0.99 1 1 1 1 1 1

3 0.78 0.97 0.98 0.99 0.99 1 1 1 1 1

5 0.69 0.91 0.94 0.95 0.99 1 1 1 1 1

7 0.57 0.73 0.87 0.91 0.94 0.97 0.98 0.99 1 1

9 0.37 0.48 0.72 0.75 0.83 0.83 0.86 0.88 0.94 0.95

particle simulation algorithm where set to h = 0.1 and Niterations = 500

according to [56].

All the results reported in this section are extracted by the simulations of

Nnet = 2000 different wireless networks where the position of the nodes and

the sensors is random within the area with the only constraint that the nodes

and sensors are spaced apart by at least 5m. Fig. 4.1 shows an example of a

simulation scenario with a network of N = 5 nodes and M = 8 sensors. The

clouds of grey circles are position estimates of the nodes at different Monte

Carlo (MC) instances using the proposed methodology with MLE location

estimation.

For each MC run, the localization error, defined as the Euclidean distance

between the actual target position and the estimated one, and its RMSE have

been recorded. 2 Since both the sensors’ and the nodes’ spatial configuration

significantly influence the position estimate, the localization error may devi-

ate considerably from its average. Therefore, besides the average, 80-th and

20-th percentiles, standard deviation, and RMSE of the location error are

also considered. The number of MC iterations for each network realization

is 1000.

2The RMSE for each MC simulation has been calculated over 200 independent realiza-
tions of shadowing.
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Figure 7.3: Comparison between the mean and the standard deviation of the localization
error of the three algorithms (BSS-LS, BSS-MLE and particle simulation (denoted as PS))
varying the ratio between the number of sensors and nodes, ρ, in a mild shadowing regime
with σS = 1dB.

7.3.2 Number of Sensors and Shadowing

Our purpose is to study the effect of the number of sensors and the shad-

owing parameter on the localization performance. To make the results more

understandable, we define the ratio ρ = M/N . In particular, in the simu-

lations N ∈ {3, . . . , 10} and M is selected accordingly. The performance of

the node counting is shown in Table 7.2. In particular, the table reports the

probability of correct counting, calculated as the ratio between the number

of MC instances where the number of nodes is estimated correctly and the

total number of MC instances, varying ρ and σS. As expected, the accuracy

of the estimation degrades when the shadowing intensity σS increases, but

such degradation can be counteracted by increasing the number of sensors.
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Figure 7.4: The 20-th and 80-th percentiles and the mean localization error, for both
BSS-MLE and particle simulation, varying the shadowing parameter σS(dB) for ρ = 1.8
and ρ = 4.

The following results on localization performance are obtained consid-

ering 1000 MC instances with the correct node count. Fig. 7.3 shows the

average value and the standard deviation of the localization error for the two

proposed localization approaches and the solution based on particle simu-

lation presented in [56], varying the ratio ρ. As it can be evinced, when ρ

increases, the error decreases, showing that a more significant number of sen-

sors positively influences the localization performance. Notably, the particle

simulation algorithm requires a larger ρ to reach the same performance of the

BSS-MLE approach. Moreover, Fig 7.4 shows how increasing the shadowing

parameter σS, the quality of the location estimation degrades significantly.

Is it also shown how the ML approach can compensate for the error due to



72 Chapter 7 – Framework Validation

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

ρ

R
M
S
E

[m
]

ML80%

MLavg

ML20%

ML80%(IS)

MLavg (IS)

ML20%(IS)

CRLB

Figure 7.5: The 20-th and 80-th percentiles and the RMSE of BSS-MLE localization
with the proposed BSS compared with the ideal BSS (denoted as IS) varying ρ with
σ = 5dB. The CRLB is used as a benchmark to assess the asymptotical improvement of
the localization performance.

the presence of strong shadowing with a further increase in ρ. Considering a

mild shadowing regime with σS = 1dB, and ρ = 4, the average localization

error drops to 1m when the proposed methodology is combined with MLE.

Instead, considering a strong shadowing scenario with σS = 7dB, the error

reaches 9m with ρ = 1.8 and 5m with ρ = 4. In general, the BSS-MLE

approach performs better in all the scenarios, proving to be less sensitive to

shadowing with respect to the BSS-LS and the particle simulation approach,

and presenting an acceptable error for a RSS-based localization methodology.

It is also important to note that increasing ρ and decreasing σS the per-

formance of the BSS improves with benefits on the localization step. As

proof of this behavior, Fig. 7.5 compares the performance with the case of



73 Chapter 7 – Framework Validation

ideal separation (IS), i.e., considering a hypothetical BSS that perfectly re-

constructs the transmitted power profiles. As can be noticed, increasing ρ,

the error introduced by the BSS decreases, and the performance obtained

coincides with the ideal one. Moreover, in Fig. 7.5 the performance of the

BSS-MLE approach is compared to the CRLB (4.18). As expected, the pro-

posed solution tends to approach the CRLB as ρ increases. For example, for

N = 1 and ρ = 50 the RMSE deviates from the CRLB by 0.07m.

7.3.3 Computational Complexity Analysis

In [56] the authors state that the computational complexity of the particle

simulation algorithm, considering that each iteration involves a set of sim-

ple operations in the order of O(NM), is given mainly by the number of

iterations and can be expressed as O(NMNiterations).

Similarly, our novel methodology considers the MLE, which involves a

set of simple operations in the order of O(NM). These operations are re-

peated for each point of the grid, so the complexity of the algorithm results

O(NMNgrid), where Ngrid is the number of grid points.

Thus, the complexities of the two algorithms are comparable despite pre-

senting different localization performances.

7.4 Topology Inference

In this section, we present several tests to evaluate the performance of the

whole processing chain, the impact of channel impairments on BSS, and

compare the state-of-the-art solutions in topology inference with the NN-

based method.

7.4.1 Parameter Settings and Figures of Merit

Regarding the signal processing chain, the excision filter threshold, ζn, is set

as in (3.28) with q = 0.7, and the termination parameter of the F-ICA is set

to ϵt = 10−5. The results presented in this section are obtained from the data
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extracted by the simulations of Mtop = 100 different mesh topologies, such

as the one depicted in Fig. 7.6. Then, 100 Monte Carlo trials are performed

for each topology to change the nodes and sensors’ position randomly.

In a real wireless network, the adjacency matrix A is sparse, hence the

number of links to be detected is much lower than the number of possible

connections. Thus, the standard non-weighted metrics (i.e., accuracy) are not

suitable for evaluating topology inference performance. Therefore, we adopt

the detection probability (or recall), pi,jD , and the false alarm probability (or

false positive rate), pi,jFA, of the directed link from node i to node j, defined

as

pi,jD = P{(âi,j = 1|ai,j = 1}
pi,jFA = P{âi,j = 1|ai,j = 0}.

In Fig. 7.6, we show the detection and false alarm probabilities for some

of the links of the network, using our NN-based approach, estimated from the

results of Monte Carlo trials in which the position of the nodes vary inside the

landscape, but the network maintain the same logical topology. Moreover,

the true adjacency matrix A, some of the adjacency matrices Â estimated

during the Monte Carlo trials, and the matrix summarizing pi,jD and pi,jFA for

each possible link of the network, are shown. In the following, pD and pFA

are, respectively, the detection and false alarm probabilities averaged over all

the network links to summarize the topology inference performance.

The algorithm used for classification is a 2-hidden-layer feed-forward NN

with 40 neurons in the first hidden layer and 10 in the second one. All the

layers are fully connected, and the activation functions are ReLU for the

hidden layers and softmax for the output layer. The considered features are

the mean, variance, kurtosis, and GCs causal magnitude. Thus, the input

layer has a size of 4. The network is trained with the features extracted

by the links of 70 different simulated topologies for 5000 epochs (iterations

of the stochastic gradient descent algorithm) with an initial learning rate of

0.1. The learning rate decreases by a factor of 10 after 3000 epochs [91]. A

k-fold cross-validation is performed to avoid overfitting with a validation set
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Figure 7.6: (a) The directed graph representing the real topology of the network, whose
adjacency matrix A is shown in (b); (c) and (d) show examples of the inferred topol-
ogy graph and adjacency matrices Â estimated over the Monte Carlo trials of the same
topology depicted in (a) while varying the position of the nodes and the sensors in the
landscape; (e) visualization of the performance where pi,jD and pi,jFA indicates the probabil-
ity of detection and false alarm of the directed link from node i to node j, calculated over
100 Monte Carlo trials; the corresponding matrix of pi,jD and pi,jFA is shown in (f).

composed by the features extracted by the links of 30 different topologies.

The simulated configurations used in training and testing differ in the number

of connections, the number of nodes, their position (i.e., network topology),

and the position of the sensors. For the F−test of GC a time lag L = 4 is set

according to the Akaike information criterion (AIC) [41, 100], while for the

CTE the parameters R = 2, Q = 1, and n0 = 3, are chosen. For the decision

threshold, the false alarm probability is set to 10−2 for both algorithms.

The inferred topologies have to be considered instantaneous, i.e., the

topology of the network in a time horizon confined by the observation time,
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Tob = 1 s in this case, which corresponds to K = 100 · 103 samples.3 This

way, the proposed framework can capture the network’s dynamical behavior,

including nodes that join and leave the system.

7.4.2 Topology Inference and Number of Nodes

After BSS, the time series are processed to extract the topology information.

In this section, the state-of-the-art methods for topology inference described

in Chapter 5 are compared varying the density of wireless nodes per square

meter, ρN. In this test, the BSS was performed with ρS = 0.3 sensors/m2,

σS = 3dB and σP = 0. Note that increasing the number of nodes in the

landscape leads to an increase in collision probability, which results in net-

work congestion. The NN has been trained only once on the data captured

with ρN = 0.06 nodes/m2. A variation on the density of nodes ρN affects the

topology inference when it significantly deviates from the density considered

for the training. As depicted in Fig. 7.7, pD for NN is comparable with that

of GC when the density of nodes is close to the one used for training. How-

ever, when the nodes’ density doubles compared to that considered for the

training, GC outperforms the NN. On the contrary, when considering pFA

the NN is better than GC regardless of the density of nodes. As far as CTE

is concerned, it presents the lower pFA, but the pD is lower than the other

methods. Therefore, the error in the reconstruction impacts more CTE than

the other approaches.

7.4.3 Impact of shadowing

On this point, it is important to study the accuracy of the algorithms in

scenarios with different propagation characteristics. Fig. 7.8 shows how in-

creasing σS degrades the accuracy of the algorithms, as expected. In this

case, we set the density of sensors ρS = 0.3 sensors/m2, the density of nodes

ρN = 0.06 nodes/m2, and σP = 0. Even in this scenario, CTE presents a false

3The topology of the network can be obtained by collecting several instantaneous
topologies and mixing all the estimations to have a topology representation on a broader
time horizon, as suggested in [74]
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Figure 7.7: pD and pFA of the topology inference algorithms as a function of the density
of nodes ρN for ρS = 0.3 sensors/m2 and σS = 3dB.

alarm rate lower than the other methods, but pD is still the lowest. Further-

more, even if the NN outperforms the other methods for low σS, increasing

the shadowing intensity results in a substantial increment of pFA.

7.4.4 Impact of nodes mobility

In this test, the effect of the nodes’ mobility on the performance of the topol-

ogy inference is investigated. The mobility model chosen is the Random

Walk [101]; within an observation window Tob, each node moves along a

random direction with speed v. In Fig. 7.9, the performance of the topol-

ogy inference varying the speed of the nodes is shown. In particular, we set

v = 2, 10, 20m/s to simulate human walking, a slow vehicle (i.e., low-altitude
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Figure 7.8: pD and pFA of the topology inference algorithms as a function of the shad-
owing parameter σS(dB) for ρS = 0.3 sensors/m2.

UAV) and a fast vehicle, respectively. As the figure highlights, the topology

inference is strongly affected by the network nodes’ mobility. More specifi-

cally, in case of v = 2m/s the performance is preserved. With v = 10m/s

the inference is degraded, with a detection probability reduced to 70%, while

in case of v = 20m/s, topology inference is compromised. This is due to the

inability of BSS to reconstruct the power profile transmitted by the nodes

correctly.

7.4.5 Computational Complexity Analysis

This section discusses the computational complexity of the topology inference

algorithms as a function of the number of network nodes.
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Figure 7.9: pD and pFA of the topology inference algorithms in the parameter setting
A1 varying the velocity v of the wireless network nodes.

• Granger causality. A linear regression like (5.1) with K data points

and 2L parameters has complexityO(K4L2+8L3). Similarly, including

the linear regression in (5.2), and considering that L3 ≪ K and that

there areN2−N couples of nodes in the network, the overall complexity

is O(N2K4L2).

• NN-based method. Since the training phase can be executed offline,

we account for only the forward propagation in the complexity of the

NN. The number of operations strictly depends on the number of

neurons and layers and can be treated as a constant B. Thus, the

complexity of the NN is O(N2B). The forward propagation is preceded

by the feature extraction, whose complexity is dominated by the most

computational expensive feature to extract, the causal magnitude — for
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this reason, considering that L2 ≪ B, the complete ML-based method

has overall complexity O(N2KB).

• Conditional transfer entropy. The complexity is O(N2KC1) and

O(N2KC2) for the two steps of the algorithm, respectively [81, 102].

C1 and C2 are two constants that take into account the operations for

the choice of the interaction delay and the number of bootstraps iter-

ations in both steps. Combining the two steps, the overall complexity

is O(N2K(C1 + C2)).

Although the three algorithms have the same complexity trends, O(N2K),

considering a typical range of values for N in a practical scenario, the time

complexity of the NN results considerably lower than the CTE. In fact, since

in general B ≪ C1+C2, although they are constant factors, their values can

differ by several orders of magnitude, so they are relevant for comparing

the algorithms. This means that, in cases similar to those analyzed in this

section, the impact of such constant factors is not negligible. To provide a

qualitative example, for N = 6, inferring the complete topology requires an

average execution time tGC = 8.09 s for GC, and tNN = 8.13 s for a NN that

includes the GCs causal magnitude as a feature. In the same setting, the

execution of CTE requires tCTE = 117.26 s.

7.5 Traffic Classification

This section presents several tests performed to compare the classification

algorithms and reveal when a RF-based traffic classification is possible with

satisfactory performance.

7.5.1 Parameter Settings and Figures of Merit

As a figure of merit, we define the accuracy as the number of traffic streams

correctly classified over all the tested ones. Since the number of test points

for each class is the same, this figure of merit perfectly suits this case study.

The wireless network under test is based on the IEEE 802.11n standard and
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Figure 7.10: Accuracy varying the number of sensors M with an observation window of
1 s.

is composed of an access point (AP) and N = 3 devices, all randomly placed

in the area. The number of classes considered is C = 3, corresponding to

three different patterns of activities generated by the users: web navigation,

video stream and chat. The results presented in this section are obtained from

NS-3 simulations of 100 different scenarios. More precisely, in each scenario,

the position of the nodes, the position of the sensors, and the shadowing

are chosen randomly, while each user generates its traffic profile according to

one of the three patterns (an example is reported in Fig. 6.2). The excision

filter threshold ζ is set with q = 0.9. For the PCA algorithm the number of

components is set to P = 1, while for KPCA is P = 3 and γ = 30. The SVM

parameter ω is set to 0.1. The NN has 40 nodes in the first hidden layer and

20 in the second one. All the layers are fully connected, and the activation
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Figure 7.11: Accuracy as a function of the observation window duration for M = 15
sensors.

functions are ReLU for the hidden layers and softmax for the output layer.

The network is trained with 1500 points for 2500 epochs (iterations of the

stochastic gradient descent algorithm) with an initial learning rate of 10−4.

The learning rate decreases by a factor 10 after 2000 epochs.

7.5.2 Accuracy vs. number of RF sensors

In this test, we studied the performance of the classifiers as a function of

the number of RF sensors distributed in the landscape. The shadowing

parameter is set to σS = 2dB and σS = 5dB, respectively. As expected, the

reconstruction error of the BSS increases when a low number of sensors is

used. In Fig. 7.10, it is shown how the quality of the classification of the

algorithms falls as M drops below 15 sensors. Note that, the performance
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of the PCA results less effective than the other algorithms. In particular,

Fig. 7.10 shows that the NN is the most suitable classifier in this scenario.

According to the next section, the observation window is set to 1 s.

7.5.3 Accuracy vs. observation window

This test aims to find a proper acquisition window duration to guarantee

that the algorithm reaches the maximum achievable accuracy. The number

of sensors is M = 15, and the shadowing parameter is σS = 2dB. With this

aim, Fig. 7.11 shows how the accuracy of the classification algorithms de-

pends on the window width. As expected, if the capture window is too short

(i.e., 20ms), the accuracy degrades significantly. This behavior is related

to the time scale for which the features selected are meaningful. Moreover,

the figure shows that the NN outperforms the other algorithms even with a

short observation window (i.e., 30ms). This is probably due to the different

training procedures.
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Chapter 8

Reinforcement Learning-Based

UAVs Patrolling

This chapter aims to propose an automatic navigation system for a spectrum

patrol composed of a fleet of UAVs. The proposed solution allows the fleet

to navigate a scenario and find the best spatial configuration to localize a

wireless transmitter [103,104]. An illustration of this scenario is proposed in

Fig. 8.1.

The UAVs have to localize and track the transmitter, navigating through

the scenario in complete autonomy. The drones can benefit from the exten-

sive use of ML algorithms to accomplish these tasks, especially reinforcement

learning (RL) [9]. The patrol can use this system in synergy with the net-

work analytics tool to localize a malicious user (i.e., jammer) and secure a

wireless network.

8.1 Problem Statement

Let us consider a swarm of N UAVs and a target wireless transmitter (i.e., a

malicious user) moving inside a squared field of side L, as depicted in Fig. 8.2.

The area is represented as a grid, in which cells are 1 × 1 m2 width. Each

UAV, or agent, occupies a grid cell and can move one cell north, south, east,

west, or remain in its current position for a total of Na = 5 possible actions.

85
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Figure 8.1: Example of wireless network setup withN = 3 UAVs that localize a malicious
transmitter (mounted on a rover) and forward the information to a base station (BS) (i.e.,
the regulator).

The cell occupied by an agent at the t-th time instant defines its state st. An

action brings the agents from the state st to st+1. The number of possible

states Ns is the number of grid cells and varies according to its dimension.

An action is not allowed if it would cause a collision between two agents or

between an agent and an obstacle in the environment. Let us suppose that

the UAVs can estimate the transmitter’s position through a simple RSS-

based method. We aim to develop a RL-based tool that allows the agents to

find the optimal placement to perform localization of the transmitter. The

well-known multi-agent Q-learning algorithm is used to let the agents explore

the space and find the best spatial configuration to perform localization [105].

Each time an agent makes a move, it is rewarded with a prize depending on

the transmitter’s estimated distance and the geometric dilution of precision

(GDOP). In Section 8.2, the development of the RL algorithm is described

in detail.
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Figure 8.2: An example of grid representation of the environment where the agents can
move, searching for the optimal spatial configuration to localize the transmitter (rover).

8.2 Multi-Agent Q-Learning

Q-learning is an off-policy temporal difference look-up table-based RL algo-

rithm. Tabular methods are the simplest but most effective forms of RL

algorithms, where states and actions are collected in a large matrix or ta-

ble [105]. Although the computational burden due to the look-up table is

remarkable, table-based methods reach very accurate solutions in most cases.

8.2.1 Update Rule

Q-learning learns an action-value function, approximated by a Q-table, of

size Ns×Na, whose elements are Q-values. The Q-learning step update rule

is the following [105]

Q(st, at)←Q(st, at)+

+ α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
,

(8.1)

where Q(st, at) is the Q-value related to the state st and the action at, rt+1

is the reward calculated at the t+ 1 time instant, α is the learning rate and
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γ is the discount factor. At each step, the agent will decide whether to act

randomly or follow the update rule. This choice depends on a parameter ϵ.

The higher ϵ is, the less likely the agent will take a random action. This

parameter regulates the trade-off between exploration (random action) and

exploitation (greedy action). There are various approaches to setting the

value of ϵ. The two main ones foresee respectively to set ϵ to a fixed low

value (ϵ-greedy method) or to start with a high ϵ value and then decrease

it as the episodes go by (ϵ-decay method). The ϵ parameter is used when

selecting specific actions based on the calculated Q values; setting ϵ = 0

means choosing the highest Q value among all the stored Q values for a

specific state. This causes an issue in exploration, as the algorithm can

easily get stuck at local optima.

Therefore, in this work, we introduce randomness using the ϵ-decay method.

In this particular scenario, we adopted a variant of the classic Q-learning

where multiple agents are considered. In fact, each UAV will update its

Q-table, also based on the other agents’ information.

8.2.2 Rewards

Rewards are the most crucial part of the algorithm. They define the purpose

of the problem and the behavior of the agents. Considering that it is a local-

ization problem, the rewards should depend on the quality of the estimation

of the target’s position. A well-known figure of merit for a successful local-

ization is the GDOP. In wireless sensor networks, the anchor node position’s

geometry has a significant influence on the positioning accuracy. For this

reason, GDOP has been used to relate the agents’ spatial disposition to the

accuracy of the target position estimation. Let us define the matrix H as

follows

H =

â
x̂−x1

d1

ŷ−y1
d1

1
x̂−x2

d2

ŷ−y2
d2

1
...

...
...

x̂−xN

dN

ŷ−yN
dN

1

ì

, (8.2)
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where (x̂, ŷ) is the estimated position of the target. Then, ÷GDOP is given by

÷GDOP =
»

trace(HTH)−1. (8.3)

The closest ÷GDOP is to 1, the better the target localization is. Another

important index of good localization performance is the distance between the

agent and the transmitter. The closer the UAVs are to the target, the less

is the error in estimating its position. The rewards are normalized according

to the size of the environment and ensure the convergence of the algorithm.

They are always negative except when the best configuration is reached. This

occurs when the average distance between the agents and the target is less

than a threshold distance d0 and 1 ≤ ÷GDOP ≤ 1.3. Only in this case, the

reward becomes r = r0.

Each step of the algorithm, ÷GDOP and the distances between the agents

and the target are estimated. Then, the corresponding reward is calculated

by

r =

ß r0
A
, if dn ≤ d0 and 1 ≤ ÷GDOP ≤ 1.3

−k−dn
A

, otherwise
, (8.4)

where k is a scalar linearly dependent on ÷GDOP, dn is the average distance

between the three UAVs and the target, and A is the area of the environment.

In particular, k is calculated by

k = m ÷GDOP + k0, (8.5)

where m and k0 are tunable parameters.

When all the agents receive the reward r0
A
, the episode is interrupted.

8.3 Algorithm Validation

This section presents several figures of merit of the RL-based algorithm to

evaluate its performance in different conditions.

The number of episodes is kept constant in the simulations, while the

number of steps changes according to the grid size. Moreover, the agents’
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initial position, as well as the target position (in the center of the grid), are

fixed.

Three square grids of size L equal to 10m, 20m, 30m, corresponding

to a number of available states Ns equal to 100, 400, and 900, respectively,

are considered. The number of episodes is Nep = 1000, while the number

of steps per episode is set to 100, 200, 1000 in the three grids respectively.

The number of steps varies according to the size of the environment. The

smaller it is, the fewer iterations will be required to complete the algorithm.

The experiments are repeated 500 times, and the corresponding performance

is averaged. The terminal state is reached when all the episode steps are

completed, or the agents get the maximum reward. The parameters are set

to r0 = 10000, m = 150, and k0 = 160, while the multi-agent Q-learning

parameters are α = 0.2, and γ = 0.99.

An increase in the size of the environment drops the performance of the

Q-learning algorithm. In general, considering large grids, the algorithm’s

success is not guaranteed. In that case, more complicated methods that

approximate the high number of states (i.e., deep Q-learning) are suggested.

8.3.1 Rewards

In this test, we study the average rewards received by the agents during the

execution of the Q-learning algorithm.

As depicted in Fig. 8.3, the average reward received by the agents in the

last episodes is almost the same for the three scenarios. Although the higher

reward is r0, its value reached after 1000 episodes is lower; this is due to the

randomness of the algorithm and to the discretization of the environment

that, in some cases, might prevent the agents from reaching the optimal

configuration. However, in the first half of the episodes, the averaged reward

rises fast in the smaller scenarios while it shows a linear dependence with the

number of episodes in case of L = 30 m. This means that, in this case, the

algorithm requires more episodes to learn the optimal policy. To compare

the three scenarios, the rewards are denormalized.
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Figure 8.3: Average reward for the agents as a function of the number of episodes in
three different environments.

8.3.2 GDOP

This test analyzes the average ÷GDOP per episode, as shown in Fig. 8.4. Since

the ÷GDOP tends to infinity when the agents reach some particularly bad

configuration, and since the agents start the first episode from an unfavorable

position, the ÷GDOP is very high at the beginning.

However, as shown in Fig. 8.4, it decreases to a floor around 1. As for the

rewards, the ÷GDOP saturates earlier in the smaller environments, while it

shows a linear dependence with the number of episodes in case of L = 30m.

8.3.3 Localization Error

In the final test, we studied how the localization accuracy varies during the

episodes of the RL algorithm. As a figure of merit for the localization algo-

rithm, we used the RMSE. As depicted in Fig. 8.5, as the number of episodes
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Figure 8.4: Average ◊�GDOP for the agents as a function of the number of episodes in
three different environments.

increases, the RMSE decreases. Again, the RMSE reaches its minimum ear-

lier in small environments, while it shows an almost linear dependence with

the number of episodes when L = 30 m.

8.3.4 Conclusions

The purpose of this chapter is to propose a viable RL-based navigation al-

gorithm to enable a swarm of UAVs to find the best spatial configuration to

localize a non-cooperative transmitter in an unknown environment. In partic-

ular, to govern the UAVs we adopt the well-known multi-agent Q-learning al-

gorithm, designing an ad-hoc reward function based on the distance between

the UAVs and the target, and on the estimated GDOP. Numerical results

show how the proposed algorithm performs well, reaching a RMSE < 1m

at the end of the last episode in the three scenarios. The main limit of
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Figure 8.5: RMSE of location estimation as a function of the number of episodes in three
different environments.

the proposed solution is the size of its Q-table; in fact, it starts performing

worse when the dimension of the environment, and so the number of possible

states, increases. A patrol can adopt the proposed system to perform spec-

trum monitoring and localization of a malicious user, i.e., a jammer, aided

by the wireless network analytics tools discussed in the previous chapters.
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Chapter 9

Conclusions

The objective of this thesis was the development of a novel framework for

the extraction of a set of analytics of a non-collaborative wireless network

whose key features are unknown. The analysis is performed exploiting only

the over-the-air power profiles captured by RF sensors.

The framework combines BSS, measurement association, excision filter-

ing, and analytics extraction algorithms. The analytics extracted are the

number and position of the target network nodes, their logical topology and

the application-level traffic generated by the nodes.

To answer Q1, the framework validation showed that extracting the an-

alytics of a wireless network from external is possible with satisfactory per-

formance. In particular, the research outcomes for novel methodologies for

the extraction of network analytics are further described.

Blind Source Separation

The proposed BSS methodology, based on F-ICA, has been proven effective

in the validation scenario. To answer Q2, the node counting tests proved that

estimating the number of transmitters from the mixture of signals collected

by the RF sensors is possible. Moreover, the reconstruction error of the

BSS algorithm reaches Re = 4% in a mild shadowing regime. Thus, the

mixtures can be unmixed with relatively high performance, even when the

position of the target nodes, necessary for the permutation algorithm, is
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roughly estimated. This provides the answer to Q3 (Is it possible to separate

over-the-air signals to get the transmitted traffic profiles of each node?).

Multiple Transmitter Localization

This work proved that it is possible to localize nodes of a non collaborative

packet-based wireless network using only over-the-air power profiles captured

by RF sensors. This provides the answer to Q4 (Is the RSS-based localization

of multiple unknown transmitters possible?).

To answer Q5 (Is the proposed approach better than the current state-of-

the-art?), the results confirmed the satisfactory performance of the proposed

solution, showing how BSS combined with MLE outperformed a state-of-the-

art algorithm in realistic channels with noise and shadowing.

Furthermore, to answer Q6, Q7, and Q8 we found that in a mild shadow-

ing regime, even with relatively few sensors, i.e., ρ ≈ 1, the localization error

can be small when MLE position estimation is adopted. We also showed that

the performance degradation due to BSS is tolerable considering that it can

locate multiple transmitters.

Finally, Chapter 8 presented a viable RL-based navigation algorithm that

enables a swarm of UAVs to find the best spatial configuration to localize a

non-cooperative transmitter in an unknown environment. A spectrum patrol

equipped with the proposed system can monitor a wide area and identify and

localize a malicious user with the help of network analytics.

Topology Inference

To answer Q9, the logical topology has been successfully extracted.

This step is performed by adopting state-of-the-art causal inference meth-

ods such as Granger causality (GC) and conditional transfer entropy (CTE),

which exploit the times series of traffic profiles, and a novel solution based on

a properly designed and trained NN that makes use of distilled time-based

features. This provides the answer to Q10 (Can the causality inference ap-

proach be improved?).

The numerical results accounting for packet collisions, nodes mobility, and
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realistic channel impairments, such as noise, and shadowing, revealed that

topology inference of a wireless network is possible, even with a relatively

low number of sensors. Moreover, we found that in mild shadowing regimes

and low mobility, the performance in terms of probability of detection and

probability of false alarm is remarkably good, especially for the proposed

NN-based solution. These considerations, provided in Sections 7.4.2, 7.4.3,

and 7.4.4 answer to Q11 and Q12.

Traffic Classification

A user traffic classification framework for wireless networks based on RF

measurements has been proposed. To answer Q13, the classification method-

ology validation showed that the classification of the application-level traffic

generated by the nodes of a wireless network from external is possible.

We showed that, after the BSS, the NN outperforms the other classifiers

achieving remarkable performance also in case of propagation impairments

(e.g., shadowing), and with a short observation window (30ms). This answers

to Q14 and Q15.

To answer Q16 (How many sensors are needed to reach a prescribed per-

formance?), the analysis of the proposed solution revealed that the number

of RF sensors strongly impacts the performance of the algorithms. For ex-

ample, in the considered scenario M = 15 sensors were necessary to classify

the traffic of N = 3 nodes with satisfactory performance. This is because

traffic classification is affected by imperfect power profile reconstruction of

the transmitted signals at the nodes.
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