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ABSTRACT

Inverse problems are at the core of many challenging applications arising in the field of natural

sciences, medicine, engineering and industry. Variational and learning models provide estimated

solutions of inverse problems as the outcome of specific reconstruction maps. More precisely, in the

variational approach, the result of the reconstruction map is the solution of a regularized minimiza-

tion problem designed to encode information on the acquisition process and prior knowledge on

the solution. Whereas, in the learning approach, the reconstruction map is a parametric function

whose parameters are identified by solving a minimization problem depending on a large set of data.

In this thesis, we go beyond this apparent dichotomy between variational and learning models and

we show they can be harmoniously merged in unified hybrid frameworks preserving their main

advantages. We develop several highly efficient methods based on both these model-driven and

data-driven strategies, for which we provide in most cases a detailed convergence analysis.

The arising algorithms are applied to solve real inverse problems involving images and time series.

For each task, we show the proposed schemes improve the performances of many other existing

methods in terms of both computational burden and quality of the solution.

In the first part, we focus on gradient-based regularized variational models which are shown to be

effective for segmentation purposes and for thermal and medical image enhancement. We consider

gradient sparsity-promoting regularized models for which we develop different strategies to esti-

mate the regularization strength. Furthermore, we introduce a novel gradient-based Plug-and-Play

convergent scheme considering a deep learning based denoiser trained on the gradient domain.

In the second part, we address the tasks of natural image deblurring, image and video super reso-

lution microscopy and positioning time series prediction, through deep learning based methods.

We boost the performances of widely used supervised, such as end-to-end trained convolutional and

recurrent neural networks, and unsupervised deep learning strategies, such as Deep Image Prior,

by penalizing the training losses with those handcrafted regularization terms typically used in the

variational framework.

Keywords: inverse problems, variational models, learning models, convolutional neural networks,

deep image prior, image super resolution, image deblurring, time series prediction.
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Introduction

Various tasks in signal processing can be casted as inverse problems, namely they rely on the esti-

mation of unknown variables from indirect observations. The inverse problems are typically hard

to solve since the observations present a low level of information about the unknowns.

In the last decades, variational and learning paradigms have been adopted to address this issue and

to provide approximate solutions of such problems.

Approaches based on the variational framework estimate the unknowns as the solutions of uncon-

strained and constrained minimization problems including fidelity and regularization terms. The

fidelity term is task-specific and encodes information about the degradation affecting the measure-

ments. The regularization term is typically defined to induce prior knowledge on the estimate.

Designing effective variational models is not a straightforward issue, since it requires deep knowl-

edge about the physics of the acquisition process and a complex modeling of the statistics of the

unknowns.

The availability of a huge amount of data, the development of more advanced algorithms capable

to handle highly complex models and the rise of the graphics processing units (GPUs) heightening

the processing power, has led the growth of deep learning which has revolutioned the field of in-

verse problems in signal processing. More specifically, the learning approach considers non-linear

parametric networks whose parameters are calibrated to the task at hand by exploiting a varied set

of training examples. These highly representative networks extract high-level features from a train-

ing set and then transfer this information to unseen data. Conversely to variational approaches,

these learning approaches reach state-of-the-art performances but they are not theoretically well-

understood and, moreover, they can perform poorly for data whose statistics is not well described

by the fixed training set.

The aim of this thesis is to design highly efficient methods merging the advantages of both varia-

tional and deep learning frameworks. The arising schemes are then adapted to solve several image

related tasks in the field of medicine, biology and remote sensing, and time series related tasks for

structural monitoring in engineering.

Due to the COVID-19 pandemic and the consequent travel restrictions, for the author was not

possible to go abroad. However, this thesis is the result of his remote collaboration with various

research teams working on different fields of applied mathematics and engineering.

The main research group is affiliated to the Mathematics Department of the University of Bologna,

where the author joined the PhD program in Mathematics. The other groups are based in the

Department of Civil, Chemical, Environmental and Materials Engineering of the University of

Bologna, in the Department of Physics, Informatics and Mathematics of the University of Modena
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and Reggio Emilia, in the Department of Electronic Engineering of Tor Vergata in Rome, in the

Institute of Computer Graphics and Vision of the Graz University of Technology and in the I3S

Laboratory at the Université Côte d’Azur in Sophia-Antipolis.

Contribution and Outline

This thesis is organized in three parts and considers eight chapters. In Part I we develop some

preliminaries and we set the notations used in the following dissertation. In Part II we focus on

variational models, whereas Part III relies on learning models, for real image and time series inverse

problems.

Part I is divided in two chapters:

• In Chapter 1 we describe the inverse problems of reference, namely system identification and

image restoration.

• In Chapter 2 we first motivate the reason why these two tasks can be regarded as ill-posed

problems. Then, we show that estimated solutions can be provided by adopting variational

and learning models. Furthermore, we show how understanding both in a Bayesian frame-

work helps us to provide useful insights into the design of proper energy functions and training

losses for the variational and learning framework, respectively. As far as variational models

are concerned, we first highlight merits and drawbacks of handcrafted regularization and, in

particular, we focus on Tikhonov and Total Variation based regularizers. Then, we introduce

learning-based regularizers. More precisely, we focus on the so-called deep Plug-and-Play

regularizers and the Regularization by Denoising functional. As far as learning models are

concerned, we first refer to pure learning models exploiting large datasets and high represen-

tative functions, like deep neural networks. Then, we go beyond standard end-to-end trained

models by introducing the so-called Deep Image Prior framework. According to this frame-

work, high-level features can be captured by the sole structure of a neural network fitted to

a single degraded measurement, thus avoiding the need of a training set.

Part II is divided in three chapters in which we show how to solve different image related tasks

through variational models.

• In Chapter 3 we propose a new super resolution algorithm which can handle either single or

multiple images. It is based on a Total Variation regularization approach and implements a

fully automated choice of all the parameters. The proposed algorithm is used to mitigate the

problem of relatively poor spatial resolution in thermal remote sensing applications.

• In Chapter 4 we consider constrained and unconstrained variational models for single image

super resolution based on the assumption that the gradient of the target image is sparse. We

enforce this assumption by considering both an isotropic and an anisotropic `0 regularization

on the image gradient for promoting piecewise constant solutions. Thus, we propose algo-

rithms addressing the problem of joint single image super resolution and image partitioning.



The algorithms rely on novel efficient Alternating Direction Method of Multipliers schemes

whose substeps are solved efficiently by means of hard-thresholding and standard conjugate-

gradient solvers or, upon suitable assumptions, admit closed-form solutions. Finally, we prove

a fixed-point convergence theorem for the arising schemes.

• In Chapter 5 we propose a novel gradient-based Plug-and-Play algorithm and we apply it

to restore CT images. The plugged denoiser is implemented as a deep Convolutional Neural

Network trained on the gradient domain and not on the image one, as in state-of-the-art works

on Plug-and-Play. We further consider a hybrid algorithm combining the gradient-based

denoiser with the Total Variation functional. The proposed frameworks rely on the Half-

Quadratic Splitting scheme for which we prove a general fixed-point convergence theorem,

under weak assumptions on both the involved denoisers.

Part III is divided in three chapters in which we show how to solve several image and time series

related tasks by exploiting deep neural networks.

• In Chapter 6 we propose a deep learning-based architecture for super resolution in fluorescence

microscopy which aims at localizing the molecules in high density frames acquired by single

molecule localization techniques. The neural network is trained considering a loss function

composed by an `2-norm based term regularized by non-negative and `0-based constraints.

The `0 term is relaxed through its continuous `0 counterpart. The arising approach, is

parameter-free, more flexible, faster and provides more precise molecule localization maps

if compared to the other state-of-the-art methods.

• In Chapter 7 we propose a regularized Deep Image Prior unconstrained model combining

an `2-norm based term with separable space-variant regularizers whose local regularization

parameters are automatically estimated. In order to enable the application of a broad range

of regularizers, we propose a novel Morozov’s discrepancy principle constrained formulation

of Deep Image Prior. The proposed unconstrained and constrained models are solved via the

Alternating Direction Method of Multipliers. The arising algorithms are shown to be robust

with respect to the choice of hyperparameters.

Furthermore, we present a new deep learning-based algorithm that extends Deep Image Prior

to super resolution for time-lapse microscopy videos. The arising algorithm introduces some

novelties: the weights of the Deep Image Prior network architecture are initialized for each of

the frames according to a new recursive updating rule combined with an efficient early stop-

ping criterion and, finally, the Deep Image Prior loss function is penalized by the handcrafted

Total Variation-based term.

• In Chapter 8 we propose to solve three tasks in Global Navigation Satellite Systems time

series analysis, namely denoising, prediction and jump detection, by using the LSTM-Full

architecture, based on long short-term memory recurrent neural networks.
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Chapter 1

Understanding the world through

signals

The world we live in is full of signals which are the most common ways of communication. Among

the most widespread form of signals we mention sounds, videos and images. However, any physical

quantity exhibiting variation in space or time can be regarded as a signal.

Understanding the Earth’s physical phenomena has always been the primary goal for scientists

from all over the world and signals play a fundamental role for the purpose since they convey

information about the object of study. The latter can be interpreted as an emitting source whose

emitted energy is then acquired by a system endowed with a receiver. The system serves as a

converter transforming the emitted signal, in the following referred to as input signal or object, into

another form of energy which is referred to as output signal or measurement.

For instance, a microphone (system) converts an acoustic signal (input signal) to a voltage waveform

(output signal), a camera (system) converts light energy (input signal) into electrical energy (output

signal) or a GPS device (system) converts a radio wave (input signal) into real-time positioning

data (output signal).

The output signal represents the response of the system to a given external stimulus, thus revealing

important information about the object of study.

As an example, in structural monitoring applications, real-time positioning data, provided by the

Global Navigation Satellite Systems technology, can be used to infer the stability of a building.

Moreover, in bio-medicine, images recorded from sources of radiation, as it happens in Computed

Tomography, Magnetic Resonance Imaging or fluorescence microscopy, are used to support the

diagnosis or to reveal important biomedical insights.

Sounds, videos and images, are analog signals meaning that they are defined on continuous

domains and they have continuous values. This continuous representation is not compatible with

the computers used to process such data. Therefore, a digital representation with discrete time

or space domain and amplitude quantized values is usually provided by a recorder. Such digital

representation stems from the need to efficient process and store the information carried by the

signals. Consequently, whilst analog signals can be mathematically described as functions defined

on a continuous domain, digital signals can be viewed as vectors whose components represent

7



8 1. Understanding the world through signals

Figure 1.1: A schematic representation of the emitting, transforming, recording and storing phases

in a signal acquisition process.

samples of such analog data.

The signal acquisition process can be mainly divided in four phases: emitting, transforming,

recording and storing phases (see Figure 1.1 for a schematic representation). Unfortunately, during

these phases, many sources of error due to the digitization and compression of the signal and/or to

other impairments happening during the transmission, may corrupt the recorded measurement with

aberrations, thus negatively affecting a subsequent signal analysis and limiting the understanding

of the phenomenon at hand. Digital signal processing strategies aim at manipulating the discrete

corrupted signals to improve their quality, storage efficiency and/or also to extract interesting and

reliable insights.

In real applications, either the system or its input or output may be unknown and their identi-

fication represents an important challenge. The level of knowledge permits classifying the problems

in two broad classes, namely forward problems and inverse problems. In the following part of this

chapter, we describe these two classes of problems and we introduce two famous tasks in signal

processing, namely system identification (SI) and image restoration (IR) both belonging to the

class of inverse problems.

1.1 Forward and inverse problems in signal processing

Given an open set Ωy ⊂ Rdy , in the following we refer to an analog signal y as the function

y : Ωy → Rcy lying in an Hilbert space, where Ωy is called acquisition domain.

By setting dy = 1, 2, 3, the function y is referred to as 1-dimensional (1D), 2-dimensional (2D) and

3-dimensional (3D) signal, respectively. Furthermore, when cy = 1 or cy > 1 the signal y is referred

to as single-channel or multiple channel signal, respectively. In particular, when dy = 2 and cy = 1,

y is referred to as gray scale image, or single-channel image, whereas when cy > 1, y is referred to

as multi-channel image. As an example, when cy = 3, y assumes values on three color channels, as

in the case of YCbCr or RGB images.

The first step of any signal processing strategy is to develop a model describing the behaviour

of the real system at hand using mathematical tools. We assume u ∈ X is the input signal convey-
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ing information about a physical object, whereas we denote by b0 ∈ Y the output of the system.

The physical process mapping u to b0 is modeled as a continuous map A between the Hilbert spaces

X and Y. In formula:

b0 = A(u), (1.1)

where the map A is referred to as system in the following.

Numerous applications and scientific disciplines rely on the prediction of the effect b0 of a given

cause u, or conversely, on the estimation of the unknown cause u producing the observed effect b0.

These two tasks are referred to as forward problem and inverse problem, respectively.

u

u

b0

b0

data

data

unknown

unknown

A

A−1

Forward Problem

Inverse Problem

The solution of a forward problem is usually a physical quantity with a low level of information.

Conversely, the inverse problem aims at retrieving the information lost during the acquisition.

However, in real applications, we only dispose of b, a degraded counterpart of b0. The presence of

these measurement errors, which are mostly related to the emitting and recording phases of the

signal acquisition process, is typically modeled as a random noise operator N . The acquisition

model of reference, relating the object u to the corrupted measurement b, reads:

b = N (A(u)) . (1.2)

Inverse problems are usually more challenging than forward problems and this can be somehow

explained by recalling a typical mathematical property which is known as ill-posedness.

According to the definition given by the mathematician J. Hadamard in the early 20th century [1],

a well-posed problem is a problem whose solution satisfies the following requirements:

• existence

• uniqueness

• continuous dependence on the initial data.

On the contrary, the solution of an ill-posed problem does not fulfil at least one of the previous

conditions.

It is well-known that forward problems are usually well-posed problems whereas the associated

inverse problems are ill-posed problems [2, 3]. The well-posedness of forward problems is mainly

due to the continuity of the system A. Nevertheless, sometimes the range of A does not coincide

with the whole space Y. Therefore, as far as inverse problems are concerned, the solution u may

not exist since, in general, b 6∈ range(A). Moreover, as a consequence of the loss of information

happening during the acquisition process, two very distant objects can have measurements which
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are very close, hence the solution of an inverse problem could be not unique. Finally, the inverse

of the map A is, in general, not continuous, hence we may have two similar measurements such

that the corresponding objects are very distant, that is the solution of the inverse problem does

not depend continuously on the data and is very sensitive to measurement errors.

The acquisition model (1.2) considers b and u as analog signals, namely they are thought as

uninterrupted observations (e.g. on a time or space domain) of some physical quantities. However,

this analog representation is not compatible with the current instrumentation and computer tech-

nology. In the following, the vector u ∈ Rn denotes the discretization of the object u, the vector

b0,b ∈ Rm denote the discretizations of b0 and b, respectively. Finally, by A : Rn → Rm we refer

to the discrete counterpart of the system A.

In real applications, A and u may be treated either as data or unknowns. The task of identifying

them can be casted as an inverse problem. In the following sections, we will introduce the two

inverse problems of interest, namely system identification and image restoration. The following

table summarises the substantial differences between the two tasks.

System Identification Image Restoration

Input signal (u) Known Unknown

System (A) Unknown Known

Output signal (b) Known Known

1.1.1 Aliasing: the curse of digitization

In this thesis we deal with 1D and 2D signals, and more precisely with time series and images.

We now briefly show some issues occurring when moving from their analog to their digital for-

mulation and we discuss about the aliasing phenomena causing two different signals to become

indistinguishable after sampling.

A time series u is a 1D analog signal defined on a time domain Ωu ⊂ R, representing the time

interval during which the variable u is observed. The discrete counterpart of u is simply a finite

sequence of values separated in time.

In Figure 1.2a we show a sinusoidal time series u(t) = sin(t) for t ∈ Ωu := [0, 12π]. In Figure 1.2b

we represent its discrete counterpart u ∈ Rn sampled at a frequency fs :=
1

∆t
, where ∆t =

π

10
,

that is u is sampled in n = 120 equally spaced points. Therefore, the discrete signal can be thought

as a vector whose i-th component is defined as ui = u(ti), where ti = i ·∆t for i = 1 . . . n.

However, sampling the analog signal may cause profound effects that must be either avoided or

accounted for. We discuss about these implications by using a numerical example.

The analog signal u in Figure 1.2a has period T0 = 2π. However, in Figure 1.2c we can observe that

when the sampling rate ∆t is high the signal is undersampled and its periodicity appears aliased

into a signal of lower frequency content. It can be shown that to avoid this issue the sampling

frequency fs should exceed the Nyquist frequency fNyq [3]:

fs > fNyq :=
2

T0
.

We now consider an image u, that is an analog 2D signal defined on space domain Ωu ⊂ R2.

The discrete counterpart of the image u is a matrix U ∈ RNr×Nc whose elements are referred to
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(a) (b) (c)

Figure 1.2: (a) analog sinusoidal signal of period T0 = 2π. (b) analog signal (blue line) and digital

signal sampled at ∆t = π
10 (red markers). (c) analog signal (blue line) and aliased signal sampled

at ∆t = 3
2π (red markers).

as pixels. We stress that it is a common practice to refer to the discrete image U also as a vector

u ∈ Rn obtained by simply stacking the columns of U. Hence, n = Nr ·Nc.

In Figure 1.3a we depict the apple image having an high pixel count (2500 × 1500 pixels) so

that it can be considered as an analog signal u. In Figure 1.3b we report its sampled version U

corresponding to a very rough discretization grid (25× 25 pixels).

As it happens for 1D signals, the sampling should be done by avoiding the aliasing artifacts. Indeed,

the aliasing phenomenon can also occur in spatially sampled signals causing the so-called Moiré

patterns.

As an example, in Figure 1.4a we depict the stripes image (600 × 600 pixels) having an high

spatial frequency and in Figure 1.4b we show its sampled counterpart (150 × 150 pixels) where

the Moirè pattern is clearly visible. In this case, aliasing is generally avoided by applying low-pass

filters to the analog signal before sampling. In Figure 1.4c we report the image (150× 150 pixels)

obtained by applying to the stripes image a low pass filter before sampling and, in this case, we

can observe the Moirè artifacts are clearly suppressed.

1.1.2 Noise models

The noise corrupting the acquired data is the result of the contribution of different sources. For

simplicity, in (1.2) we have assumed it is modeled as the random operator N . We now list the noise

models we will use throughout the following chapters.

Gaussian noise. A noise arising in many applications is the Additive White Gaussian Noise

(AWGN). Hence, we assume N is a zero-mean m-dimensional multivariate random variable nor-

mally distributed with covariance matrix Σ = σ2Im, where by Im we denote the identity matrix

with m rows and columns. In particular, we denote by e ∈ Rm the additive component, sampled

from N , affecting b. More specifically, the entries ei of e, for i = 1 . . .m, are identically indepen-

dently distributed (i.i.d.) realizations of the distribution. Hence, the probability density function

of the random vector e, reads:
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(a) (b)

Figure 1.3: Spatial discretization for 2D signals. (a) analog apple. (b) sampled apple.

(a) (b) (c)

Figure 1.4: Aliasing and Moirè patters for 2D signals. (a) analog stripes. (b) aliased sampled

stripes with Moirè patterns. (c) non aliased sampled stripes.

p(e) =
m∏
i=1

p(ei) =
m∏
i=1

1

σ
√

2π
exp

(
− e2

i

2σ2

)
=

1

σ
√

2π
exp

(
−‖e‖

2
2

2σ2

)
.

The AWGN model is widely used since, in most cases, it produces a reasonable and satisfying

approximation of the observed noise.

Poisson noise. In bio-medical imaging problems a more effective noise model follows a Poisson

distribution. Differently from AWGN, Poisson noise is a signal-dependent noise, since its standard

deviation σ depends on the intensity of the signal. Hence, we assume bi, the i-th component of b,

is the realization of a Poisson random variable whose probability density function reads:

p(bi) =
µbii e

−µi

bi!

where by µi we refer to the mean value for i = 1 . . .m.
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The mean value µi is directly proportional to the the number of photons hitting the sensors and, as

a consequence, the same holds for the noise standard deviation σi which is related to µi according

to this formula σi =
√
µi. We remark that when the number of photons is sufficiently large, the

Poisson distribution can be approximated by a Gaussian distribution.

Brownian noise. When treating signals defined on a time domain the AWGN model is usually

combined with the Brownian noise model, which is produced by a Brownian motion and, in the

literature, it is also known as random walk noise model. Differently from AWGN which can be

produced by randomly choosing each sample independently, Brownian noise is produced by adding

a random offset (usually a realization of a univariate normal distribution) to each sample to obtain

the next one, hence two consecutive samples are not independent and identically distributed as it

happens for AWGN.

1.2 System identification

A system can be thought as a transducer converting an input signal into an output signal which is,

sometimes, easier to observe/read and to handle [4]. System Identification (SI) aims at estimating

a real system using a dataset of input-output pairs describing its behaviour. Based on the litera-

ture, SI is used in many fields of industry and science, such as astronomy, biology, medicine and

engineering. Particularly, in this thesis we are interested in SI applied to design and implement

control systems or to plan and monitor engineering projects, as for example proposed in [5, 6]. The

efficiency of SI strictly relies on the design of the dataset which can be either obtained from a stored

database or collected by exciting the real system with predefined inputs. A pre-processing of the

given data, applied to ensure they are within an acceptable range, to remove meaningless trends

or noise, to fill missing data or to simply adjust the size of the data, can increase the performances

of the method used to solve the SI task. Among the most used pre-processing techniques we men-

tion: magnitude scaling which is particularly useful to adjust the magnitude of the data, filtering

employed to remove noise and trends, interpolation which aims at estimating missing points in

small datasets and resampling that is typically used to reduce the number of data points to a more

manageable value.

In the next section we show how the SI task can be read as an inverse problem, whereas in

Chapter 2 we show how an estimate of the real system can be provided.

1.2.1 System identification as inverse problem

A mathematical model for a real system can be derived from first principles which have a relatively

small amount of parameters to be identified, all of them having a precise physical interpretation.

This happens, for example, with those real systems described by partial differential equations which

define the connection between the involved variables.

In real applications, we usually have available input and output of the real system and not physical

laws describing its behaviour. Let D := {(uj ,bj)}j=1...N with uj ∈ Rn and bj ∈ Rm, be a dataset

of input-output pairs describing an unknown system A : Rn → Rm. By assuming additive noise,
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we have:

bj = A(uj) + ej for j = 1 . . . N, (1.3)

where the component ej ∈ Rm corrupting bj includes both Brownian noise and Gaussian noise.

The strategy is to consider a general purpose family of models containing many parameters which

are adapted to the real system at hand by exploiting the set of data D. Therefore, we assume

A belongs to a parametric space of operators TΘ := {T(·,θ) : Rn → Rm | θ ∈ Θ}, where by

Θ ⊂ Rp we denote the space of parameters. In other words, we assume there exists θ ∈ Θ such

that A = T(·,θ).

Upon these assumptions, the model in (1.3) is said parametric, whereas when minimal or no prior

assumptions on the structure of A are made, the model is referred to as non-parametric. Although

the non-parametric approach is more practical and flexible in cases where system’s physical insights

are unavailable, it makes the modeling task significantly more complex, as the model class options

are extremely rich and there are more unknowns that need to be considered.

Therefore, the SI task of reference reads as the following inverse problem:

find A ∈ TΘ, s.t bj = A(uj) + ej for j = 1 . . . N. (1.4)

We remark that differently from first principles the parameters have no physical or logical inter-

pretation. However, looking for the parameters of the system is an ill-posed inverse problem (see

Chapter 2), making the identification task (1.4) extremely challenging in real applications.

For example, we can assume TΘ is a parametric space of linear operators with respect to the

vector of parameters θ, hence A is assumed to be linear.

Among the most widespread parametric linear models we mention the finite impulse response (FIR)

model [7], which can be regarded as a particular instance of (1.3). More precisely, the FIR model

reads:

bj = θ · uj + ej ∀j = 1 . . . N, (1.5)

where we assume the output bj are scalars, the input uj are n-dimensional vectors, for j = 1 . . . N ,

and θ ∈ Rn represents the vector of parameters to be identified. The N equations in (1.5) can be

written as an N × n linear system. Therefore, assuming a FIR model entails that estimating θ is

equivalent to solve a linear system. Whenever a non linear model is considered, which is the most

interesting case, other strategies must be used to identify the parameters. We remark that linear

models fails when the real system exhibits a strong non-linear behavior, as it happens for time

series prediction. Indeed, in this case, the systems involved are highly non-linear and, in terms of

representativeness of the phenomenon, a non-linear model is more advantageous. The interested

reader can refer to [7] for further information on linear and non-linear models.

In the following chapters we will assume A belongs to the class of Neural Networks as non-linear

models [7] and we will show how to estimate the set of parameters.
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Figure 1.5: In time series prediction, a batch of h samples (red squares) is used for the prediction

of un+1 (red dot). Finally, the predicted value can be compared to the measured one (blue dot),

for example to detect some anomalies.

An example of SI task: time series prediction

Let us consider a time series u defined on the time domain T := [0, T ] ⊂ R, with T > 0. For each

t ∈ [0, T ], we assume u(t) ∈ R describes a measurement of a phenomenon evolving in the time

interval T . We consider u ∈ Rn such that ui = u(ti) where ti ∈ T for i = 1 . . . n.

Prediction is one of the most important tasks in time series analysis. More precisely, from the

knowledge of u the prediction task aims at estimating the value un+1 which is sampled at a time

step t > T . The model describing the behaviour of the time series is unknown. Therefore, in

practice, we consider a general purpose non-linear parametric model such that the prediction task

can be regarded as a particular instance of the SI inverse problem (1.4). Therefore, we need to

estimate a non-linear map A ∈ TΘ such that:

ui = A(ui−1, . . . ,ui−h) for i = h+ 1, . . . , n. (1.6)

where we assume the predicted values depends on a batch of h < n previous samples. If we are able

to provide a reliable on-line prediction of the time series behaviour, by comparing the predicted

and the measured signals, we can extract meaningful insights, such as an abnormal behaviour of

the phenomenon of study. In Figure 1.5 we report a schematic representation of the time series

prediction task.

1.3 Image restoration

Nowadays, several applications such as digital photography, positron emission tomography (PET),

magnetic resonance imaging (MRI) and computed tomography (CT), make use of signals which

can be somehow visualized as 2D or 3D images, so as to allow a better subsequent analysis of the

object under study. The image acquisition process can be mainly divided in two sub-processes: the

image formation and the image recording processes.

The image formation process is performed by an imaging system being able to convert a par-

ticular radiation (visible light, X-rays, microwaves or ultrasounds) into an electrical impulse which
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can be measured by a recorder. Typical sources of the degradation occurring during the image

formation are: scattering of light between the object and the imaging system or their sudden move-

ments during the acquisition, light diffraction phenomenon limiting the resolution to features of

the order of illuminating wavelength, lenses limited spatial extent and imperfections and, finally,

the digitization since an average of the illumination over regions rather than a sampling at discrete

points is performed.

The image recording process is performed by the recorder measuring the electrical impulse and

placing the measurements on an array of pixels. The degradation introduced in this case, is usually

referred to as noise which is mainly due to the following causes: the usage of finite exposure time

introducing stochastic perturbations from the random arrival of photons, the optical imperfections,

the aliasing of high-frequency during the sampling, the digitization causing quatization errors, and

finally, any further compression action.

Therefore, the image recorded is not only a discrete representation of the original object but it is,

generally, corrupted by these sources of degradation.

The task of image restoration (IR) aims at inverting the degradation process, thus estimating the

unknown clean image being given the corrupted data.

1.3.1 Image restoration as inverse problem

In the following discussion we consider gray-level images, however everything could be extended

to the multi-channel case. Furthermore, we assume AWGN as noise model since it will be the one

mainly used in the next chapters.

We describe the whole image acquisition process through the following linear model:

b = b0 + e, with b0 = Au, (1.7)

where the forward operator A ∈ Rm×n is a known linear operator describing the image formation

process, b ∈ Rm and u ∈ Rn represent the vectorized degraded and the unknown clean images and

b0 ∈ Rm is the noise-free observation, whereas, upon AWGN assumptions, e ∈ Rm is sampled from

a zero-mean Gaussian distribution of standard deviation σe.

Therefore, the IR task reads as the following inverse problem:

find u ∈ Rn, s.t b = b0 + e with b0 = Au. (1.8)

We remark that, differently from the SI task (1.4), the sole unknown of the IR problem is the clean

image. In real applications, the imaging system A is typically dependent on few parameters which

can be thought as unknowns of the IR problem (blind deconvolution). However, in this thesis, we

assume A is fully known or, at least, these parameters can be can be manually set.

Finally, it is well-known that the discrete inverse problem in (1.8) is ill-posed (see Chapter 2),

making the IR task extremely challenging in real applications.

1.3.2 Forward operators

The definition of the imaging system A in (1.7) strictly depends on the IR task considered. In this

thesis we focus on three important tasks arising in the field of image restoration, namely image
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denoising, image deblurring and image super resolution. The acquisition models for all these tasks

can be obtained from (1.7) by simply changing the forward linear operator A.

In this section we briefly introduce the blurring and downsampling operators.

Blurring operator

In the continuous setting, the blurring operator is usually described by a Fredholm integral equation

of the first kind:

b0(x) =

∫
Ω
k(x, y)u(y)dy, ∀x ∈ Ω, (1.9)

where we assume the noise-free observation b0 and the object u are defined on the same space-

domain Ω, while k(x, y) represents the kernel function which is referred to as blur kernel or point

spread function (PSF).

More precisely, the action of k on an image consisting of a single point source would lead to a

spread of the intensity around the point, that is the reason why it is referred to as PSF.

The PSF k is assumed to have a compact support [8] and to satisfy the following constraints:

k(x, y) ≥ 0 ∀x, y ∈ Ω,∫
Ω
k(x, y)dy = 1 ∀x ∈ Ω.

For simplicity, we further consider the PSF to be space invariant, i.e., invariant with respect to

translations, namely:

k(x, y) = k(x− y) ∀x, y ∈ Ω.

Hence, (1.9) takes the form of a convolutional product, that is:

b0(x) =

∫
Ω
k(x− y)u(y)dy = (k ∗ u)(x) ∀x ∈ Ω. (1.10)

As an example of a space invariant PSF, we mention the Gaussian blur kernel defined as:

k(x− y) =
1

σk
√

2π
exp(−‖x− y‖

2
2

2σ2
k

),

where σk is the standard deviation of the Gaussian related to the width of the blur.

As an example, in Figure 1.6a we depict the clean flower image and in the upper left corner a

Gaussian kernel, whereas in Figure 1.6b we report the blurred data.

Upon the assumption of a space invariant PSF, the deblurring task reads as the inverse problem

(1.8) by setting the imaging system A as a discretization of the convolution in (1.10), e.g. obtained

by applying standard quadrature formulas [2, 9]. We refer to this discrete operator as blur matrix,

which is denoted by H in the following. We assume that the convolution is performed without

stride, then n = m in (1.8) and H ∈ Rn×n. We finally remark that H is defined as an operator

acting on vectorized images.
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(a) (b)

Figure 1.6: (a) Gaussian kernel and the clean flower image. (b) blurred flower image. The

Gaussian kernel has been obtained by using the Matlab function fspecial. The blurred image has

been obtained by using the Matlab function imfilter.

The structure of H depends both on the definition of k and on the boundary conditions fixed.

More precisely, as shown in Figure 1.6a, the blur kernel acts also on the boundary of the image,

hence what is outside the acquisition domain Ω influences the blur inside Ω. The choice of boundary

conditions depends on the image considered and has a drastic influence on the quality of the restored

image. We now revise two particular cases of boundary conditions which will be exploited in the

following chapters.

If the data have a dark background, it is natural to assume Dirichlet boundary conditions,

namely to suppose the original image to be zero outside the acquisition domain. By adopting

Dirichlet boundary conditions the arising matrix H has the structure of a block Toeplitz matrix

with Toeplitz blocks [2, 9].

Periodic boundary conditions are among the most widespread choices. In this case, the blur matrix

H is a block circulant matrix with circulant blocks (BCCB) [2, 9]. A nice property of BCCB

matrices is that they can be diagonalized by the 2D Fourier transform F ∈ Rn×n, hence:

H = FHΛF, (1.11)

where Λ ∈ Rn×n is a diagonal matrix, FH is the adjoint of F.

The latter equality is an interesting result since that it allows to compute a blurred image without

directly constructing H [2, 9]. Indeed, this can be cumbersome and computationally intractable

expecially when dealing with large-scale images since the number of rows and columns of H equals

the number of pixels of an image. Upon periodic boundary conditions, computing a blurred data,

which is equivalent to the computation of matrix-vector products of the form Hz or HHz with

z ∈ Rn, can be performed element-wise in the Fourier domain.
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Downsampling operator

In some contexts there are also physical limitations in the acquisition process. The sensor is

composed of a limited number of photodiodes whose density is directly proportional to the quality

of the computed images. One might thinks that it could be possible to improve the quality of the

data, keeping the same size of the sensor, by increasing the density of photodiodes.

However, little photodiodes get a smaller amount of light, thus worsening the quality of the acquired

image. Furthermore, the greater the density of photodiodes the more expensive is the hardware.

Differently from the deblurring task, the super resolution task takes into account this limitation

and introduces it in the acquisition model.

In super resolution the system A ∈ Rm×n in (1.7) is usually defined as the product of a blur matrix

H ∈ Rn×n and a downsampling matrix S ∈ Rm×n.

Formally, given an integer L > 1 we define the downsampling matrix as the linear operator S ∈
Rm×n linking high resolution (HR) images to low resolution (LR) ones, where we denote by m and

n the sizes of the LR and HR vectorized images, respectively, such that n = L2m. The integer L

is usually referred to as downsampling factor.

In Figure 1.7 we report the action of a downsampling operator on an image of dimension 530× 350

(Figure 1.7a) while changing L = 4, 8 (Figure 1.7b and 1.7c, respectively). The clear effect of the

downsampling is the loss of details of an image.

(a) 530 × 350 (b) 135 × 90 (c) 68 × 45

Figure 1.7: Action of a downsampling operator while changing the downsampling factor. In (a) the

original HR image. In (b) a LR image obtained setting L = 4. In (c) a LR image obtained setting

L = 8.

There are plenty of downsampling operators. The first we mention is the averaging operator.

Let L be the downsampling factor and X ∈ RNr×Nc an HR image whose vectorized counterpart is

denoted by x ∈ Rn where n = Nr ·Nc. The averaging operator averages pixels by patches of size
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L× L, so that it returns y ∈ Rm with m = nr · nc, which is the vectorized counterpart of the LR

image Y ∈ Rnr×nc such that Nr = L · nr and Nc = L · nc. In formula:

S(x) = y, (1.12)

where Y = MXNH and the matrices M ∈ Rnr×Nr and N ∈ Rnc×Nc read:

M =


1L 0L · · · 0L

0L 1L · · ·
...

...
. . .

...

0L 0L · · · 1L

 , N =


1L 0L · · · 0L

0L 1L · · ·
...

...
. . .

...

0L 0L · · · 1L

 , (1.13)

where by 1L, 0L ∈ R1×L we denote a vector of ones divided by L and a vector of zeros, respectively.

Moreover, the adjoint SH ∈ Rn×m of S reads:

SH(y) = x, (1.14)

where by x ∈ Rn we refer to the vectorized counterpart of X = MHYN.

Another widespread downsampling operator is the decimation operator which removes selected

rows and columns. In Figure 1.8 we provide an example of the action of a decimation operator S

on an HR image of size n = 16 (Nr = 4 and Nc = 4), by setting L = 2.

The adjoint operator SH ∈ Rn×m interpolates the decimated image with zeros (see Figure 1.8).

SHS

Figure 1.8: Action of the decimation operator S and its adjoint SH . S acts on a 4× 4 image with

L = 2, SH acts on a 2× 2 image with L = 2.

In general, the downsampling operators are unstructured and, in particular, they cannot be

diagonalized by the 2D discrete Fourier Transform, thus we cannot exploit the nice properties

highlighted for the blurring operator in (1.11). As a consequence, the computation of matrix-vector

products of the form Sz and SHw for z ∈ Rn and w ∈ Rm cannot be a-priori fastly computed.

Finally, we remark that the downsampling operators are not an injective function. For example,

in Figure 1.9 we consider two chess-like images of dimension 4 × 4 and we apply the averaging

operator setting L = 2. It is evident how these images have the same LR counterpart making the

process of retrieving the HR image more challenging due to the lack of uniqueness.
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Figure 1.9: Two different chess-like 4× 4 images and their avereged downsampling with L = 2.

Some examples of IR tasks: denoising, deblurring and super resolution

Image denoising. The denoising task aims at removing noise from the image preserving the main

content of the data. The presence of noise is mainly due to atmospheric disturbances which can

negatively affect the transmission of the signal, to the digitization process when photon counting of

the camera sensor occurs or periodic fluctuations in the emitted electromagnetic radiation intensity.

Hence, a clean image U ∈ RNr×Nc and a noisy image B ∈ RNr×Nc are related by the following

acquisition model:

b = u + e, (1.15)

which is a particular instance of (1.7) by assuming b and u are the vectorizations of B and U,

respectively, where n = m = Nr ·Nc, and A is equal to the identity operator of Rn.

Image deblurring. The deblurring task aims at providing sharper data by removing the blur

which can be due to an intrinsic limit of the acquisition device, to the movement of the subject,

to an improper holding of the device by the user, to dirty lens or wrong focusing. The acquisition

model that relates a clean image U ∈ RNr×Nc and a noisy and blurred image B ∈ RNr×Nc reads:

b = Hu + e, (1.16)

which is a particular instance of (1.7) where we assume A = H ∈ Rn×n which is the blur matrix

described in the section 1.3.2. In the following we consider only blur matrices derived by the

convolution with a zero-mean Gaussian kernels of standard deviation σH.

Image super resolution. The task of image super resolution aims at enhancing the spatial

resolution by representing on finer pixel grid the acquired low resolution data in order to highlight

small but meaningful details. The spatial resolution, namely the pixel density of an image, is usually

limited due to physical and cost constraints. For example in fluorescence microscopy the resolution

is physically limited by the light diffraction limit, whereas in thermal imaging high resolution

cameras require an extreme waste of money. Hence, a clean high resolution image U ∈ RNr×Nc

and a noisy, blurred and low resolution image B ∈ Rnr×nc are related by the following acquisition

model:

b = SHu + e, (1.17)
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which is a particular instance of (1.7) by assuming b ∈ Rm is the vectorization of the low resolution

image B where m = nr · nc, u ∈ Rn is the vectorization of the unknown high resolution image U

where n = Nr ·Nc and A ∈ Rm×n is the product of a blur matrix H ∈ Rn×n and the downsampling

matrix S ∈ Rm×n described previously.

In Figure 1.10 we provide a schematic representation of the acquisition models of these three

tasks for the cat image. For all these tasks we aim at estimating the unknown clean image by

using the sole degraded acquisition and assuming the imaging system is known.

Figure 1.10: Upper panel: sketch of the image denoising acquisition model for the cat image.

Middle panel: sketch of the image deblurring acquisition model for cat image. Lower panel: sketch

of the super resolution acquisition model for the cat image. The convolution is performed with a

Gaussian kernel, the black arrow denote the action of a downsampling operator. The aim of the

these three tasks is to retrieve the clean cat image from the given degraded data.



Chapter 2

To ill-posedness and beyond

In Chapter 1 we have introduced the inverse problems of interest, namely system identification and

image restoration. In this chapter, based on linear algebra considerations, we first motivate why

they are both referred to as ill-posed problems. Then, we show how to provide reliable estimates

of their solutions through variational and learning approaches which can be harmoniously merged

in unified hybrid frameworks so as to overcome their respective limits.

2.1 Ill-posedness and regularization

Upon linearity assumptions, both the SI task (1.4) and the IR task (1.8) require the solution of a

linear system:

y = Kx, (2.1)

where K ∈ Rm×n is the matrix defining the linear system, x ∈ Rn is the vector of unknowns and

y ∈ Rm represent the data.

Depending on the task, the matrix K could be either a tall, wide or square matrix, that is m > n,

m < n or m = n, respectively. As an example, in the SI task we usually have m > n since the

number of observations is higher than the number of parameters, hence in this case the matrix

defining the linear system is tall. On the contrary, if we consider the super-resolution or deblurring

tasks, as we have seen, the matrix is wide or square, respectively.

Let us consider the singular value decomposition (SVD) of K:

K = WΣVT , (2.2)

where W ∈ Rm×m and V ∈ Rn×n are orthonormal matrices, and Σ ∈ Rm×n reads:

Σ =


σ1 · · · 0
...

. . .
...

0 · · · σn

 if m = n, Σ =


σ1 · · · 0 0 · · · 0
...

. . .
...

...
...

...

0 · · · σm 0 · · · 0

 if m < n,

23
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Σ =



σ1 · · · 0
...

. . .
...

0 · · · σn

0 · · · 0
... · · ·

...

0 · · · 0


if m > n. (2.3)

The scalars σ1 ≥ σ2 ≥ . . . σmin(m,n) ≥ 0 denote the singular values of K. When K is not square,

and hence not invertible, we can still consider its pseudo-inverse matrix K+ defined through its

SVD decomposition:

K+ = WΣ+VT ,

where Σ+ is formed from Σ by taking the reciprocal of all the singular values.

Since K is not invertible, one may thus think to solve the linear system (2.1) by considering the

following ”pseudo-inverse solution”:

x̃ = K+y = VΣ+WTy =
r∑
i=1

wT
i y

σi
vi, (2.4)

with wi, vi denoting the i-th column of W and V, respectively, and r := rank(K).

Typically, the matrix K presents very small singular values and, in general, the data y is af-

fected by small perturbations. As an example, when dealing with image deblurring, in [9] it has

been observed that, in the continuous domain, the blur kernel (a compact operator) does not have a

bounded inverse which gets reflected in an high condition number of its finite dimensional approx-

imation. Therefore, by (2.4) we deduce that these small singular values lead to an amplification of

the perturbations in the data. This somehow suggests an explanation to the sensitiveness of inverse

problems solution to measurement errors, i.e. small errors in the measurements induce large errors

in the resulting estimated solution.

We remark that when m ≤ n the linear system (2.1) is underdetermined, therefore it has infinite

solutions. In particular x̃ solves the linear system (2.1) and is the solution with the minimum norm.

In formula:

x̃ = arg min
x∈Rn

‖x‖22 s.t. Kx = y. (2.5)

If m > n the linear system is ovedetermined with, in general, no solutions. However, a least-square

solution can still be provided. If the matrix K is full column rank, then x̃ equals the least-square

solution. In formula:

x̃ = arg min
x∈Rn

‖Kx− y‖22. (2.6)

The instability to noise has stimulated the researchers to work both on the theory of inverse

problems and on the development of efficient strategies to provide approximate (and reliable) solu-

tions so as to overcome the ill-posedness. There exist several strategies preventing the amplification
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of the noisy perturbations. A common approach in the theory of inverse problems is regularization,

which is referred to as the process of replacing the ill-posed inverse problem of reference with an

approximate stable and well-posed one, whose solution exists and continuously depends on the

observation.

Among the possible regularization methods we mention the truncated SVD approach, which con-

sists in cutting the smallest r − k singular values, with k ∈ N properly fixed such that k < r, and

truncate the sum in (2.4), so as to prevent noise amplification. In formula:

x̃k =

k∑
i=1

wT
i y

σi
vi.

An equivalent strategy considers an iterative algorithm solving the least-square optimization prob-

lem, as the one in (2.6). To avoid the noise amplification, the idea is to early stop the iterative

process solving (2.6) by fixing a maximum number of iterations (itr). As an example, in Figure 2.1a

we report the coffee image and in Figure 2.1b we report its blurred and noisy simulated acquisi-

tion obtained by applying to the original image the model (1.16) assuming AWGN with standard

deviation σe = 0.01 and setting σH = 1.2. In Figure 2.1f we plot the PSNR behaviour as function

of the iterations of a gradient-descent method solving the least-square problem. We can observe

the PSNR first increases then it starts worsening, reaching the maximum at itr= 4. In Figures

2.1c, 2.1d and 2.1e we depict the iterates at itr= 2, 4, 11, respectively. As a general comment, the

solution at itr= 2 looks too smooth, whereas in the one computed at itr= 11 the noise is amplified.

The best solution both in terms of PSNR and visual inspection is reached at itr= 4.

For further details concerning these methods we refer the interested reader to the books [2, 9, 10].

The most efficient regularization strategies, are variational and learning methods. So far, a

plethora of literature has been devoted to the development of such strategies [11, 12, 13, 14, 15].

The common idea of variational and learning approaches is to develop a reconstruction map, whose

definition depends on the inverse problem considered, to recover the unknowns from the data.

According to the learning framework the reconstruction map can be interpreted as a parametric

function whose parameters are identified by solving a minimization problem, whereas in the varia-

tional approach the outcome of the reconstruction function is a minimum of a penalized minimiza-

tion problem. The challenge of variational methods is the design of specific regularized objectives

reflecting prior knowledge on the solutions and tailored on the task considered. The learning formu-

lation is attractive because it overcomes these limitations. However, it requires a training set whose

collection can be costly, and moreover, the minimization problem to be solved is typically more

difficult than the one considered by variational methods. In this thesis we exploit both variational

and learning models to solve the IR task (1.8), whereas we consider the sole learning approach for

the SI task (1.4).

2.2 Variational models

The variational approach for the IR task (1.8) defines the reconstruction map Evar : Rm → Rn,

such that computing Evar(b) is equivalent to solve the following unconstrained and constrained

minimization problems:
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(a) original (b) degraded

(c) itr=2 (d) itr=4 (e) itr=11

(f) PSNR plot

Figure 2.1: (a) original coffee image. (b) blurred and noisy coffee image obtained by applying

the model (1.16) setting σH = 1.2 and considering AWGN with σe = 0.01. (c)-(d)-(e) solutions

at iterations 2,4 and 11, respectively. (f) PSNR behaviour as functions of the iterations of the

gradient-descent algorithm solving the least-square problem.

Evar(b) :=


u∗ ∈ arg min

u∈Rn
D(u,A,b) + λR(u), (2.7)

u∗ ∈ arg min
u∈Rn

D(u,A,b) s.t. R(u) ≤ cR, (2.8)

u∗ ∈ arg min
u∈Rn

R(u) s.t. D(u,A,b) ≤ cD. (2.9)

where u∗ ∈ Rn is an estimate of the real solution u ∈ Rn, the positive scalar λ is referred to as

regularization parameter and balances the contribution of the two functionals D and R which are

usually called fidelity term and regularization term, respectively. The functional D measures the

discrepancy between the measurement b and the noise free observation Au. The regularization

term R encodes prior knowledge on the solution by penalizing undesired properties. The positive

scalars cR and cD represent the strength of the constraints. Differently from the parameter λ, they

usually have a physical meaning. For example, the value of cD in (2.9) usually depends on the
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amount of noise, whereas the value of cR in (2.8) can reflect the number of non-zero pixel or the

maximum value of the norm of the desired image.

The grand challenges of variational approaches are: (i) the definition of the fidelity term D depend-

ing on the assumptions on the noise, (ii) the design of regularizers R capturing the complexity of

the image statistics and (iii) the proper setup of the parameter λ, cD and cR.

We now briefly review the interesting link between a Bayesian framework [16] and the variational

model (2.7) which helps us to provide a rigorous framework to derive the data fidelity and the

regularization terms from probability density functions (pdfs).

In the Bayesian framework we interpret data and unknowns of (1.8) as random variables, although

in this part we use the same notation. According to the Bayes’ theorem, given the observation b,

the posterior probability p(u|b,A) is defined as the ratio of the product between the data likelihood

p(b|u,A) and the prior p(u), and the evidence term p(b,A). In formula:

p(u|b,A) =
p(b|u,A)p(u)

p(b,A)
. (2.10)

The data likelihood p(b|u,A) defines a probability density on b given u and A. Then, by consid-

ering the forward model (1.7), it corresponds to the pdf of the noise:

p(b|u,A) = p(b−Ab) = p(e).

Finally, the prior term p(u) defines a distribution on the unknown of the problem encoding all the

knowledge about the desired solution.

Therefore, the posterior distribution p(u|b,A) encodes both information about the acquisition

model (1.7) and prior assumptions on the solution. To extract meaningful points from the posterior

probability distribution a popular choice is to use the mode of the posterior, namely the solution

that maximizes the posterior probability, which is known as the maximum a-posteriori (MAP)

estimator. In formula:

uMAP ∈ arg max
u∈Rn

p(u|b,A). (2.11)

By definition (2.10) and by neglecting constant terms and taking the negative logarithm, (2.11) is

equivalent to the following minimization problem:

uMAP ∈ arg min
u∈Rn

− log (p(b|u,A))− log (p(u)) . (2.12)

By comparing (2.12) and the variational model in (2.7), we deduce that:

D(u,A,b) := −log (p(b|u,A)) , λR(u) := −log (p(u)) . (2.13)

Thus, the fidelity encodes information about the acquisition model whereas the regularizer allows

to incorporate statistical knowledge about the solution.

Fidelity term

In (1.7), due to the AWGN assumptions with zero-mean and variance σ2
e, the likelihood reads:

p(b|u,A) =
1

2πσ2
e

exp

(
− 1

2σ2
e

‖Au− b‖22
)
.
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By considering the negative logarithm and neglecting the constant terms we get the corresponding

`2-norm based data fidelity term:

D(u,A,b) =
1

2σ2
e

‖Au− b‖22. (2.14)

Upon Poisson noise model assumptions, the corresponding fidelity equals the Kullback Leibler (KL)

divergence, namely:

D(u,A,b) =

m∑
i=1

(
biln

(
bi

(Au)i

)
+ (Au)i − bi

)
.

In conclusion, the likelihood and the corresponding data fidelity term can be often directly deduced

from the problem at hand, whereas defining the prior, and consequently the regularizer, requires

knowledge about the structure of the solution thus being a more challenging problem.

Handcrafted regularization terms

Among the first regularizers proposed in the literature we mention the handcrafted Tikhonov

regularization. In his pioneering work [17] Tikhonov defines the following `2-norm based regularizer:

R(u) = ‖Lu‖22, (2.15)

where L equals the identity operator (zero-order Tikhonov regularization). Later, (2.15) was ex-

tended to both a gradient- and a Laplacian-based `2-norm terms (first-order and second-order

Tikhonov regularization) by considering L equal to the discrete gradient and to the discrete Lapla-

cian operator, respectively.

In Bayesian terms, these regularizers come from a zero-mean white Gaussian prior with variance

γ2, namely:

p(u) ∼ exp

(
− 1

2γ2

n∑
i

‖(Lu)i‖22

)
, (2.16)

thus according to (2.13) the regularization parameter is somehow related to the inverse of γ2.

The Tikhonov regularizers are convex and differentiable, hence, for example, upon Gaussian noise

assumptions on b, by replacing (2.14) and (2.15) in (2.7), the arising objective is convex and can

be minimized through standard gradient-based algorithms [18]. Moreover, we remark that, in this

case, the solution of the variational model is unique if the intersection of the null space of both

operators A and L only includes the zero vector, i.e. Ker(A) ∩Ker(L) = {0}.
However, Tikhonov-based regularization is not effective since it favors dark images (when L is fixed

as the identity operator) or smooth images with unsharp edges (when L is equal to either the

discrete gradient or Laplacian) while the objects to be restored usually manifest sharp features.

Thus, it is essential to define regularizers tailored to encode information about the transitions

of color intensities in different areas of the image. These regularizers should reflect some properties

we expect the discrete gradient of the unknown image has, in order to preserve discontinuities and

edges. It is well-known that natural images often admit very sparse approximations in the gradi-

ent domain and the theory of compressed sensing [19] provides many gradient sparsity-promoting
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regularizers. Among them, we mention the Total Variation (TV) regularizer, introduced by Rudin,

Osher, and Fatemi in their seminal paper [20], which has been the most investigated regularizer

and the landmark for the development of modern regularization techniques in imaging [13].

Given a vectorized image u ∈ Rn, the TV regularizer is defined as follows:

TV(u) := ‖Du‖1 =

n∑
i=1

(
|(Dhu)i|2 + |(Dvu)i|2

)1/2
, (2.17)

where by D = (Dh; Dv) ∈ R2n×n we denote the discrete gradient such that Dh ∈ Rn, Dv ∈ Rn are

the first order finite difference discrete operators along the horizontal and vertical axes, respectively.

The TV regularizer is still convex but non-differentiable. However, this is not a limitation since

many optimization algorithms for non-smooth functionals can be still exploited [18].

We stress that TV can be derived from a prior distribution. Indeed, it is natural to consider the

unknown image as a Markov random field (MRF), namely a particular property of the image at

the i-th pixel depends on the neighboring pixels. The prior distribution for a MRF is the so-called

Gibbs prior, and the TV functional is derived as the negative logarithm of the Laplace distribution

pdf, which reads as a particular instance of Gibbs priors.

In Figure 2.2a we report the original checkboard image and in Figure 2.2b we depict a simulated

corrupted noisy and blurred counterpart. In order to highlight the importance of the selection of a

proper regularizer, we depict in Figure 2.2c the solution of the standard least-square problem, that

is we solve (2.7) for a deblurring task assuming no prior is available (λ = 0). In Figure 2.2d and

2.2e we compare the first order Tikhonov with the TV restoration. The former struggles to retrieve

sharp edges and to efficiently promote piecewise constant patches, whereas the latter provides a

largely better solution.

Even if, the TV-based regularizer has clear mathematical properties and can be interpreted

in a Bayesian framework, due to its formulation, it struggles to reflect the complexity of image

statistics. For example in Figure 2.3a we consider the degraded skyscraper image and we report

the TV restoration Figure 2.3b. The restored image is denoised and sharp edges are preserved,

however, homogeneous regions of the image such as the sky are not well restored and looks patchy.

This issue is known in the literature as staircasing phenomenon and originates from the fact that

TV favors piecewise constant solutions.

The TV regularizer has been extended in various ways by considering, for example, higher-order

derivatives [21, 22] to overcome staircasing. Moreover, in order to induce better sparsity on the

gradient domain the `1-norm in (2.17) has been replaced with non-convex `p-norms with 0 < p < 1

[23, 24] or with the non-convex non-continuous `0 pseudo norm [25].

Beyond handcrafted regularization terms

Nowadays, it has been recognized that among the possible strategies to model efficient regularizers,

learning from data represents the most efficient alternative. The fast development of learning-

based techniques in the field of imaging inverse problems has allowed the definition of data-driven

regularizers which have largely outperformed the handcrafted ones. Thus, variational and learning

strategies are no more perceived as separate methods but can be easily combined in an hybrid
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(a) original (b) degraded (c) least-square solution

(d) Tikhonov restoration (e) TV restoration

Figure 2.2: Comparing Tikhonov and TV restorations. (a) original checkboard image. (b) blurred

and noisy simulated acquisition obtained by applying (1.16) setting σH = 1 and AWGN with

σe = 0.01. (c) least-square solution. (d) First order Tikhonov restoration (λ = 0.05). (e) TV

restoration (λ = 0.01).

framework exploiting the merits of both. Given a dataset {(ui,bi)}i=1...N of clean-degraded images,

the core idea of these hybrid methods is to build flexible high-parametrized regularizers Rθ whose

parameters θ are learnt by exploiting the considered dataset, e.g. in [26] or more recently in [27].

Once a proper set of parameters θ∗ has been identified, a possible strategy is to replace R with

Rθ∗ in (2.7) and to apply standard optimization techniques to find the estimated solution. For a

complete review of these strategies the reader can refer to [12, 28].

Among these hybrid regularization techniques in this thesis we are mostly interested in the so-

called Plug-and-Play (PnP) regularizers [29] and their later development known as Regularization

by Denoising (RED) functional [30]. The idea behind PnP is to exploit the modular structure of

standard iterative proximal algorithms, such as the Alternating Direction Method of Multipliers

(ADMM) or the Half-Quadratic Splitting (HQS) [31], solving the variational model in (2.7) when

considering a generic regularizer R. The arising iterative scheme requires the solution of two or

more proximal sub-problems related to the fidelity and to the regularization terms. Then, according

to the PnP framework, the proximal mapping of the generic regularizer R is replaced with existing

denoising algorithms like non-local means [32] and BM3D [33] which have been found capable to

induce effective priors on the solution. Very recently, in [34, 35, 36, 37] also deep learning-based

denoising algorithms have been used in the PnP framework. To show the effectiveness of such

approach if compared to TV restoration, in Figure 2.3c we report the restored image provided by

applying the PnP method [34] to the degraded skyscraper image depicted in Figure 2.3a. How-
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(a) noisy and blurred (b) TV estimation (c) PnP estimation

Figure 2.3: Comparing between TV and PnP restorations. The starting image is obtained corrupt-

ing the original image according to the model (1.16) setting σH = 0.5 and AWGN with σe = 0.1.

ever, as we will see in Chapter 5, only upon restrictive assumptions, the PnP iterative scheme

comes from a variational model.

In [30] the authors have introduced the RED regularizer which exploits the regularization by denois-

ing principle, i.e. the capability of denoisers to induce regularization on the solution. Differently

from PnP, the RED framework solves the variational model (2.7) by setting the regularizer as:

R(u) =
1

2
uT (u− D(u)), (2.18)

where D(·) can be chosen as any off-the-shelf denoiser. By assuming the differentiability, local

homogeneity, Jacobian symmetry and filter passivity of D(·), in [30] the authors prove that R is

convex and ∇R(u) = u− D(u). However, although the two approaches exploit the same principle

the link between RED and PnP, is not still well-understood.

2.3 Learning models

In the previous section, we have introduced the variational framework considering a reconstruction

map Evar defined through a regularized minimization problem, namely the approximate solution

of an inverse problem is seen as a minimizer of a particular energy functional encoding both prior

knowledge on the solution and information about the acquisition process.

The availability of large datasets with enough samples to approximate real-world data distributions,

the incredible boost in computer technology providing GPUs and their increased memory, have



32 2. To ill-posedness and beyond

paved the way to the recent success of learning. In the following sections we show how pure

learning models can be used to solve both the SI and IR tasks.

Learning models for system identification

Let D := {(uj ,bj)}j=1...N be a set of input-output signals describing an unknown real system A.

The learning approach for the SI task (1.4) defines the reconstruction map ESI
learn : Rn → Rm such

that:

ESI
learn := T(·,θ∗) ∈ arg min

Tθ ,θ∈Θ
L(θ,D,Tθ) + λR(θ), (2.19)

where L is a measure of error, R is a regularizer on the parameters which is considered to avoid

overfitting and θ∗ is the learnt set of parameters such that ESI
learn = T(·,θ∗) is an estimate of A.

Once the learning step is complete, ESI
learn can be directly used to predict the output of the system

given new unseen (not in the dataset) inputs.

Understanding the learning minimization problem (2.19) as a statistical inference can pro-

vide useful insights into the selection of L and R. Let us define B := {b1, . . . ,bN} and U :=

{u1, . . . ,uN}. By assuming that the N example pairs (b1,u1), . . . (bN ,uN ) are i.i.d., the likelihood

distribution reads:

p(B|U ,θ) =
N∏
j=1

p(bj |uj ,θ). (2.20)

We remark that in this case we have a family of pdfs parametrized by θ. The i.i.d. assumption

entails that each pdf in the product (2.20) has the same distribution and shares the same parameters.

We can extract useful points from the likelihood distribution defined in (2.20) by considering the

maximum likelihood estimator (MAE). Hence, by neglecting constant terms the functional L can

be defined as the negative log-likelihood of (2.20):

L(θ,D,Tθ) = −log p(B|U ,θ) = −
N∑
j=1

log(p(bj |uj ,θ)) =
1

2σ2

N∑
j=1

(bj −T(uj ,θ))2, (2.21)

where the last equality follows assuming bj is affected by the sole Gaussian noise of variance σ2.

We stress that in this field prior knowledge on the solution A is implicitly provided when assuming

the system belongs to the parametric space of operators TΘ and when considering the set of examples

D for the parameter identification.

However, in Figure 2.4 we show that in real applications the MAE is prone to overfit. We consider

a distribution of points {(xj , yj)}j=1...11 ⊂ R2 which are depicted in Figure 2.4a (blue dots). We

assume the dependence between the variables is described by a polynomial model of degree M .

Namely, we assume A ∈ TΘ := {T(x,θ) = θ0 + θ1x+ · · ·+ θMx
M , ∀x ∈ R|θ ∈ RM+1}. Upon these

assumptions, we solve the optimization problem (2.19) where L is fixed as in (2.21) and λ = 0.

In Figure 2.4a we report the model (black line) obtained setting M = 1, whereas in Figure 2.4b

we depict the model obtained considering M = 7. In the latter case, we can observe the model

interpolates the points (overfitting), whereas we remark that the goal of SI is to achieve good
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(a) M=1 (b) M=7 (c) M=7 with Gaussian prior

Figure 2.4: Comparisons between MAE and MAP estimation for SI task. (a) MAE when considering

a family of polynomials of degree M = 1. (b) MAE when considering a family of polynomials of

degree M = 7. (c) MAP when considering a family of polynomials of degree M = 7 and a Gaussian

prior on the parameters of the model.

generalization by making accurate predictions for new (unseen) data.

By analyzing the computed parameters, we observe that their magnitudes are too high. We can

further define a prior on the distribution of these parameters θ to mitigate the effect of huge

parameter values. Then, we compute the posterior distribution p(θ|U ,B), which according to the

Bayes’ theorem reads:

p(θ|U ,B) =
p(B|U ,θ)p(θ)

p(B|U)
. (2.22)

By considering a MAP estimator we get the minimization problem in (2.19), where we set R(θ) =

−log (p(θ)). If we now assume a Gaussian prior with variance γ2, we obtain R(θ) =
1

2γ2
‖θ‖22. In

Figure 2.4c we show the smoothing effect of this Gaussian prior when considering the family of

polynomials with degree M = 7.

Learning models for image restoration

Another interesting strategy to provide a reliable solution of the linear IR task (1.8) is to directly

solve the inverse problem by computing Â, the ”regularized” counterpart of the inverse of A.

Similarly to the SI task, we assume the structure of Â is known. Hence, Â belongs to a parametric

space of operators T̂Θ = {T̂(·,θ) : Rm → Rn| θ ∈ Θ} where Θ ⊂ Rp is the space of parameters. Let

D := {(uj ,bj)}j=1...N be a set of ground-truth images and their corresponding measurements. The

learning approach for the IR task (1.8) defines the following reconstruction map E IR
learn : Rm → Rn

defined as:

E IR
learn := T̂(·,θ∗) ∈ arg min

T̂θ ,θ∈Θ

L(θ,D, T̂θ) + λR(θ), (2.23)
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where by L we denote a measure of error whose definition depends on the dataset D and on the IR

task considered and by R we denote a regularizer defined on the set of parameters. For example

the loss function and the regularizer are usually defined as:

L(θ,D, T̂θ) =

N∑
i=1

‖T̂(A†(bi),θ)− ui‖22, R(θ) = ‖θ‖22, (2.24)

where A† can be chosen as the identity operator or a coarse approximation of the inverse of A.

We remark that in the variational approach the outcome of the reconstruction map E IR
var in (2.7) is

equivalent to a regularized minimization problem, in the learning approach the reconstruction map

E IR
learn is the solution of a minimization problem and can be directly used to invert the degradation

process. More precisely, given an unseen degraded image b, E IR
learn(b) := T(A†b,θ∗) is an estimate

of the unknown clean image u.

As an example, in Figure 2.5 we show how, exploiting the learning framework, we can efficiently

solve the super resolution task. In particular, in Figure 2.5a we show the original HR zebra image

(580× 380), whereas in Figure 2.5b we show its LR counterpart (145× 95). In Figure 2.5c we show

the HR outcome of the Bicubic interpolation algorithm. We consider the Bicubic interpolation as

coarse approximation A† and we estimate the parameters θ∗ by solving (2.23) once defined L and

R as in (2.24) setting λ = 0.001. We consider T̂Θ as the class of Neural Networks whose structure

is equal to the VDSR neural network described in [38]. Then, our result is depicted in Figure 2.5d.

(a) HR (b) LR

(c) Bicubic HR estimation (d) VDSR HR estimation

Figure 2.5: (a) original HR zebra image. (b) LR zebra image. (C) HR image obtained applying

the Bicubic algorithm. (d) HR image obtained applying a learning model using the VDSR neural

network.
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Beyond learning models for image restoration

The idea of learning an approximation of the inverse of A to solve an IR task is interesting and has

several advantages but also many limitations. The approach does not require neither the definition

of a suitable regularizer inducing desired properties on the solution or information on the acquisition

process, which are key points of the variational approach. However, the learning approach requires

a large dataset of degraded-clean images, and in practice, this is not always possible (e.g. in medical

imagery). Moreover, it has been proved to be largely dependent on the dataset fixed, thus being

not efficient for data which are far from the distribution described by the fixed dataset.

Very recently, another approach called Deep Image Prior (DIP) has been proposed in [39] for

solving many IR tasks such as denoising, deblurring, super resolution and inpaiting. In particular,

the idea is to parametrize the solution u through a randomly initialized CNN f depending on a set

of parameters θ ∈ Rp and to consider the following optimization problem:

arg min
θ∈Rp

‖Af(θ, z)− b‖22, (2.25)

where z is a fixed input and A is the forward operator defining the IR task. Then, an estimate u∗ of

the solution u is given by computing f(θ∗, z) where θ∗ is obtained by early-stopping the iterative

algorithm solving (2.25). The DIP approach is somewhat surprising since shows that the sole

parametrization through a CNN is able to capture most of the low-level image statistics, differently

from other standard learning based strategies which require large sets of training data. In practice,

what has been observed is that during the optimization, more and more details are added (see

Figure (2.6)). However, an appropriate stopping criterion is essential to avoiding overfitting. Thus,

we stress that, as well as the PnP framework, the DIP approach can be regarded as an hybrid

approach in-between variational and learning models. More precisely, similarly to learning models

the optimization is performed on the set of parameters (of a CNN), but as well as for standard

variational models the optimization step must be repeated when considering a different data b. We

will inspect in details the DIP framework in Chapter 7.

Figure 2.6: Deep Image Prior scheme. The unknown clean image is parametrized by a CNN f and

the optimization is performed in the space of parameters. The iterative process is early-stopped at

the iterate K-th to avoid overfitting.
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Chapter 3

Super resolution for thermal imaging

Thermal imaging is the process of converting infrared radiation (heat) into visible images that

depict the spatial distribution of temperature differences in a scene viewed by a thermal camera.

The continuous growth of thermal remote sensing applications, for example, to investigate energy

leak detection in buildings [40] or to support precision agriculture [41], has been determining an

increasing demand for better spatial resolution, in order to analyse finer details of surface tem-

perature patterns. The spatial resolution affects temperature readings, especially for objects of a

comparable or smaller size than the pixel footprint. This feature is crucial for thermal remote sens-

ing applications, where the measurement of the surface temperature of hot spots and cold spots,

as well as average values on homogeneous surfaces, is often the primary goal.

However, the limited spatial resolution of the sensors operating in the thermal band (wavelengths

in the range 8-14 microns) [42] makes the use of SR methods particularly appealing to overcome

hardware technological limitations. In the literature, many approaches based on different criteria

(interpolation or regularized variational) have been proposed to solve the single image super res-

olution (SISR) and the multiple image super resolution (MISR) tasks in the context of thermal

images. In the field of SR for thermal remote sensing, although all the existing approaches provide

satisfying performances, they have some downsides [43], namely some are not fully automatic and

require a costly parameter set-up, others apply either to single or to multiple image super resolu-

tion.

A possible strategy is to estimate the unknown HR image u ∈ Rn through variational models

where the TV functional is considered as regularizer. This is equivalent to solve the following

unconstrained optimization problem:

u∗(λ) ∈ arg min
u∈Rn

Φ(u, λ) ≡ 1

2
‖Au− b‖22 + λTV(u), (3.1)

where by u∗(λ) we denote the solution corresponding to the fixed choice of λ > 0 and by A we

refer to the super resolution forward operator. However, it is well-known that a critical issue of

this model is the correct selection of the parameter λ balancing the strength of the regularization.

39
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Contribution

This chapter is based on the publication [43] where we propose an automatic `2-TV based varia-

tional method for thermal images SR. Unlike many other existing methods [44, 45, 46, 47, 48], the

algorithm is fully automatic, e.g. all the parameters are adaptively chosen, it is suited for both

SISR and MISR of thermal images, preserves a limited computational cost and its reconstruction

show better radiometric quality. For these features, it is possibly implementable in the thermal

camera firmware. More precisely, inspired by [49], we consider a fully automatic method devel-

oped on two loops where the `2-TV problems arising in the inner loop are solved by means of

the Forward Backward Splitting (FBS) algorithm (see Appendix B). We propose a new updating

rule for the regularization parameter which is estimated iteratively along the optimization process.

Furthermore, we show a decreasing behaviour of the sequence of regularization parameter which

guarantees the convergence of our approach. Our proposal improves both the quality of the results

and the convergence speed of the algorithm in [49] when tested on thermal images.

3.1 On the choice of the regularization parameter

In this section we review some standard strategies for the automatic estimation of the parameter

parameter λ in (3.1) for the generic IR task (1.7). We focus on those strategies exploiting only the

information encoded in b, thus avoiding learning-based strategies relying on a data set of examples.

Tipically, the selection of a proper value of λ is done through trial-and-error procedures, namely

several values of the regularization parameter are sampled from a fixed bounded interval [λmin, λmax]

and then used in (3.1). The optimal parameter is selected as the one providing the best solution in

terms of a fixed metric or visual inspection. Other widely investigated approaches for automatically

tuning the regularization parameter are the Generalized CrossValidation (GCV) [50] and the L-

curve method [51]. More precisely, the GCV defines the optimal regularization parameter as the

solution of the following optimization problem:

λ∗ ∈ arg min
λ∈R+

‖Au∗(λ)− b‖22. (3.2)

The L-curve method selects several regularization parameters and builds the so-called L-curve plot

by placing the values TV(u∗(λ)) on the x-axis and the values of the residual norm ‖Au∗(λ)− b‖22
on the y-axis. The optimal λ is the one corresponding to a corner in the L-curve plot.

However, in spite of their good performances, the computational cost of both GCV and L-curve is

still too high for real-time applications. Indeed, they require the solution of several optimization

problems as the one in (3.1) which are usually solved through iterative schemes [18] and do not

admit closed-form solutions, thus being cumbersome especially when dealing with high-dimensional

data.

To overcome this limitation, in [52, 53, 54, 55], to name a few, the authors develop some strategies

to estimate the regularization strength along the iterations of the optimization algorithm chosen for

solving the `2-TV problem (3.1). All of them exploit the so-called Morozov discrepancy principle

[56]. By considering the acquisition model (1.7), the core assumption of this principle is that the

optimal solution u should satisfy the equation ‖Au − b‖22 = ‖e‖22, where the right hand side is
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equal, in expectation, to the quantity σ2
em.

Therefore, the discrepancy principle looks for an estimate of u belonging to the set:

Dσe = {u ∈ Rn| ‖Au− b‖2 < δ = τσe
√
m}, (3.3)

where τ is chosen such that τ > 1 (over-estimating the noise level) or τ < 1 (under-estimating the

noise level).

The Morozov discrepancy principle provides good restorations but strongly depends on the knowl-

edge of the noise variance and can perform poorly when a bad estimate is considered.

An interesting idea for an automatic estimation of the strength of the regularization was de-

veloped in [49] where the authors propose a novel adaptive rule for an `2-TV model solving the

deblurring task. Their method is inspired by the continuation strategies used in [57, 58] to solve

problems of form (3.1) in a compressed sensing framework.

A common practice in this framework is to make use of the empirical reduction rule:

λk = r · λk−1, (3.4)

where r ∈ [0, 1] is called reduction factor and is usually chosen as a constant value and k represents

the index of the iterative optimization process.

In [49] the authors assume the sequence of regularization parameters {λk}k∈N follows the evolution

of the objective functional Φ in (3.1) and reads:

λk =
Φ(u∗(λk−1), λk−1)

Φ(u∗(λk−2), λk−2)
· λk−1, (3.5)

thus without requiring any information about the noise level.

More precisely, the method described in [49] is developed on two loops. The outer loop updates

the regularization parameter according to the formula reported in (3.5). The inner loop, for a fixed

λk finds u∗(λk) by solving (3.1) through the iterative FBS method whose starting guess is chosen

equal to u∗(λk−1). The latter initialization is also known as warm start and guarantees a faster

convergence speed of the FBS algorithm. The close connection between the regularization param-

eter definition and the functional values let the iterative algorithm to automatically stop when the

objective functional Φ maintains the same value for two successive outer iterations.

In other words, upon suitable initializations, the method in [49] solves a sequence of `2-TV min-

imization problems which only differ by the magnitude of the regularization parameter defined

according to the rule in (3.5).

3.2 ASRp: an automatic super resolution algorithm

In the Section 2.1 we have shown the link between the ill-conditioning of the operators defining

the IR tasks and the ill-posedness of the related inverse problem. The SR acquisition model

(1.17) considers the blurring operator which is known to be an ill-conditioned operator and the

downsampling operator which is non injective (see Figure 1.9). Therefore, the SR task which aims

at retrieving an HR image from one or more than one LR image, is an ill-posed inverse problem.
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When only one LR image is available the SR task refers to as single image super resolution task,

whereas when more LR images are available the SR task refers to as multiple image super resolution

task. A possible estimate of the unknown HR image can be provided through variational models.

Let G = {Bj}rj=1 be a set of LR images of dimension nr × nc, representing the same scene. An

estimate of the HR image U ∈ RNr×Nc , such that Nr = L · nr and Nc = L · nc with L > 1, can be

provided by solving the following constrained minimization problem:

u∗ ∈ arg min
u∈Rn

TV(u), s.t.
1

2r

r∑
j=1

‖SjHju− bj‖22 ≤ δ, δ > 0 (3.6)

where δ is related to the noise standard deviation, u ∈ Rn, with n = L2 · nr · nc, and bj ∈ Rm,

with m = nr ·nc, are vectors obtained by lexicographically reordering the 2D HR and LR images U

and Bj , respectively, for j = 1 . . . r. The matrices Sj and Hj represent the downsampling and the

blur operators modelling the data acquisition process of each LR image. We assume that the same

zero-mean Gaussian blur, of variance σ2
H, and downsampling operators, with downsampling factor

L, apply to each LR image in the acquisition set G; therefore, H = Hj and S = Sj and ∀j = 1 . . . r.

We now describe the Adaptive Super Resolution algorithm introduced in [43], which is referred

to as ASRp, in the following.

We solve the constrained minimization problem (3.6) through a sequence of unconstrained penalized

problems of the form:

u∗(λk) = arg min
u∈Rn

Φ(u, λk) ≡
1

2r

r∑
j=1

‖SHu− bj‖22 + λkTV(u), k = 0, 1, . . . (3.7)

where we assume the sequence {λk}k∈N is monotonically decreasing. This property ensures that

the sequence {u∗(λk)}k∈N converges to the solution of (3.6) as demonstrated in [59].

Moreover, we observe that Φ(·, λ) is a strictly convex function therefore, for each λ > 0, there exists

a unique minimizer u∗(λ).

In the following Theorem 3.1 and Theorem 3.2 we describe the proposed rule for choosing a suitable

decreasing sequence {λk}k∈N.

Theorem 3.1. Let be λt and λs two positive regularization parameters satisfying λt < λs and

u∗(λt) and u∗(λs) the minimizers of Φ(·, λt) and Φ(·, λs), respectively. Then,

Φ(u∗(λt), λt) < Φ(u∗(λs), λs).

Proof. Let us consider λt < λs. By definition of Φ we have:

1

2r

r∑
j=1

‖SHu∗(λt)− bj‖22 + λtTV(u∗(λt)) <
1

2r

r∑
j=1

‖SHu∗(λs)− bj‖22 + λtTV(u∗(λs)) < (3.8)

<
1

2r

r∑
j=1

‖SHu∗(λs)− bj‖22 + λsTV(u∗(λs)). (3.9)

The inequality (3.9) follows from the assumption λt < λs. Hence, Φ(u∗(λt), λt) < Φ(u∗(λs), λs).



3.2 ASRp: an automatic super resolution algorithm 43

Theorem 3.2. Let uinit be the warm start for the iterative process solving (3.7) when k = 0, and

let λ0 be a proper initialization of the sequence of regularization parameters {λk}k∈N. Let u∗(λk)

for k = 0, 1, . . . be defined as in (3.7) and set p ≥ 1. If we define:

λk =


Φ(u∗(λk−1), λk−1)

Φ(uinit, λ0)
· λk−1, k ≤ p

Φ(u∗(λk−1), λk−1)

Φ(u∗(λk−1−p), λk−1−p)
· λk−1, k ≥ p+ 1,

(3.10)

then λk < λk−1, ∀k ≥ 1.

Proof. By induction on k.

Case k = 1. By definition Φ(u∗(λ0), λ0) < Φ(uinit, λ0), therefore the formula in (3.10) entails

λ1 < λ0.

Moreover, from Theorem 3.1 it follows that:

Φ(u∗(λ1), λ1) < Φ(u∗(λ0), λ0) < Φ(uinit, λ0). (3.11)

Case k = 2. By (3.10) and (3.11) follows:

Φ(u∗(λ1), λ1)

Φ(u∗(λ0), λ0)
< 1,

Φ(u∗(λ1), λ1)

Φ(uinit, λ0)
< 1,

hence, we have λ2 < λ1. Therefore, from Theorem 3.1:

Φ(u∗(λ2), λ2) < Φ(u∗(λ1), λ1) < Φ(u∗(λ0), λ0) < Φ(uinit, λ0).

Case k > 2. Let us assume that λk−1 < λk−2 < · · · < λ0. Then:

Φ(u∗(λk−1), λk−1) < Φ(u∗(λk−2), λk−2) < · · · < Φ(uinit, λ0).

Hence
Φ(u∗(λk−1), λk−1)

Φ(u∗(λk−1−p), λk−1−p)
< 1,

Φ(u∗(λk−1), λk−1)

Φ(uinit, λ0)
< 1.

For p ≥ 1, by applying (3.10) we get λk < λk−1.

Implementation notes

In the following we illustrate the implementation details of the proposed ASRp algorithm where p

refers to the parameter for the computation of the sequence {λk}k∈N according to (3.10).

The starting guess uinit of the iterative process is essential for the convergence speed of the

method. Many existing variational methods use bicubic or bilinear interpolated HR images, but

their quality is often not satisfactory. We propose an initial artefact free HR image obtained by a

smoothing filter:

uinit =
1

r

r∑
j=1

(HTSTbj). (3.12)
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We observe that, since the acquired images are not constant, we avoid the trivial case uinit constant;

hence TV(uinit) is different from zero. Concerning the starting value λ0, we set:

λ0 =
1

2r

r∑
j=1

‖SHuinit − bj‖22
2TV(uinit)

. (3.13)

We note that this choice guarantees that the value of the objective function Φ(uinit, λ0) is the

average of the initial residual norms, i.e. :

Φ(uinit, λ0) =
1

r

r∑
j=1

‖SHuinit − bj‖22. (3.14)

As in [49], for each value λk, k = 0, 1, . . ., the vector u∗(λk) solving the minimization problem (3.7)

is computed by applying the Accelerated Forward Backwards algorithm (AFB), reported in detail

in Appendix B. The AFB method implements the Fast Iterative Shrinkage Thresholding strategy

(FISTA) [60], while solving the arising TV-regularized denoising subproblem with the Chambolle

algorithm [61].

The application of (3.12)-(3.13) to compute the starting guess and (3.10) to update the regu-

larization parameters λk yields the ASRp algorithm whose steps are listed in Algorithm 1.

The algorithm iterations (index k) are stopped on the basis of a relative error tolerance τe, while

τf represents the tolerance for the inner iterations of the AFB algorithm. Both the tolerances are

fixed equal to 10−5.

Algorithm 1 – ASRp: Adaptive Super-Resolution algorithm

input: H ∈ Rn×n, S ∈ Rm×n, G, p, r, τe, τf
output: u∗

1: k = 0; uinit =
(∑r

j=1(HTSTbj)
)
/r ;

2: λ0 =
(∑r

j=1‖SHuinit − bj‖22
)
/ (2rTV(uinit))

3: [u∗(λ0)] = AFB(uinit, λ0,H,S,G, r, τf ) (see Algorithm 13)

4: repeat

5: k = k + 1

6: if k ≥ p+ 1, R = Φ(u∗(λk−1), λk−1)/Φ(u∗(λk−1−p), λk−1−p)

else R = Φ(u∗(λk−1), λk−1)/Φ(uinit, λ0)

7: λk = R · λk−1

8: [u∗(λk)] = AFB(u∗(λk−1), λk,H,S,G, r, τf ) (see Algorithm 13)

9: until ‖u∗(λk)− u∗(λk−1)‖ ≤ τe‖u∗(λk)‖
10: u∗ = uk

3.3 Numerical results

We now apply the proposed ASRp on the dataset described in the previous section in order to show

its effectiveness in the field of thermal imagery.
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Initialization, parameters and evaluation metrics. All the parameters and all the variables

are initialized as described in Algorithm 1. For what concerns the blurring matrix H, based on

technical information of the acquisition camera, we fix σH = 1.4. Morever, as downsampling

matrix S we consider the decimation operator whose upsampling factor L is fixed equal to 4 in

all the experiments. For the simulated data, we evaluate the quality of the SR reconstructions by

means of Peak-Signal-to-Noise-Ratio (PSNR) and Structure Similarity index (SSIM), while when

no ground-truth image is available the quality of the results is assessed by visual inspection.

Comparisons. We carry on some comparisons with respect to interpolation approaches such

as Nearest Neighbour (NN), Bicubic and the SR method proposed in [62] which is termed as

RISR. Furthermore, we compare our ASRp with the variational approach proposed in [49] and the

Enhanced Deep Super Resolution (EDSR) neural network [63].

(a) (b)

Figure 3.1: (a) High Resolution 480 × 640 I1 image with regions of interest (ROI) R1, R2 and R3 for the

quantitative analysis of super-resolution results. (b) High Resolution 480 × 640 I2 image with regions of

interest (ROI) R1, R2 and R3 for the quantitative analysis of super resolution results.

Materials

In order to evaluate the performance of the proposed ASRp algorithm, in [43], we have tested two

different situations, by considering thermal images acquired both from an airborne platform and

from the ground.

Aerial thermal image. The first test image is constituted by an aerial thermal image of size

480 × 640 pixels, representing the School of Engineering of Bologna University. It is part of the

thermal aerial survey over the city of Bologna, held on 14 March 2016. The aerial image used for

the simulations is denoted by I1 in the following and is shown in Figure 3.1a. The flight height was

set to approximately 800 metres above the ground, in order to obtain a ground sampling distance

of about 0.5 m. More than 2,500 frames were acquired to cover a total area of about 11 km2. In

this scenario, SR offers both the opportunity to appreciate finer details of the imaged surfaces and
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to increase flight height and consequently reduce the number of frames to cover the same area. For

more details the interested reader can refer to [43] and references therein.

Terrestrial thermal image. The second test image is taken from a set of 50 terrestrial ther-

mal images of size 480 × 640 pixels. The subject of the thermal image is the façade of Palazzo

D’Accursio, an historical building in Bologna. The terrestrial image used for the simulations is

denoted by I2 in the following and it is shown in Figure 3.1b. In this scenario, capturing the whole

subject in a single image implies the setting of the camera to a considerable distance or the use of

an optic with a wider field of view. In both cases, the increased ground sampling distance produces

a detail loss, which may be partially recovered through the application of SR. For more details the

interested reader can refer to [43] and references therein.

Simulated thermal image datasets. We use I1 and I2 as ground-truth and we build simulated

datasets of 32 LR thermal images by first applying small rotations and translations to I1 and I2

and then downsampling by a factor L = 4. The interested reader can refer to [43] for more details.

In the following, we call I1 and I2 both the single images and the relative datasets; it will be clear

from the context if we refer to one or more images.

Experimentation

Results by varying the hyperparameter p. We first analyze the performance of the ASRp

method on the simulated data by varying the value of the parameter p involved in the update rule

reported in (3.10). In Figure 3.2 we plot the results obtained with p = 1,p = 2 and p = 3 for SISR

of I1 and I2 images. We remark that when choosing p = 1 our implementation equals the one

proposed in [49]. The plots show how the choice of the positive integer p of the method, introduced

in (3.10), affects the quality of the HR reconstruction, underlying the importance of a proper choice

for the regularization parameter. In all the tests both for SISR and MISR carried out, we observe

the same steeper decreasing behaviour of the objective function, together with the faster increase

of the PSNR when we use p = 2 instead of p = 1. Moreover, we find out that the value p ≥ 3

does not improve the PSNR. Hence, (3.10) represents a substantial improvement of the update rule

introduced in [49]. In the following we fix p = 2 and we refer to our method as ASR2.

Comparisons on simulated datasets. In the following, we name our method ASR2 s when a

single LR image is available, whereas we name our method as ASR2 m when more than one LR

images are available. Our ASR2 m assumes the starting LR images are acquired from the same

point of view, hence we adopt the same registration procedure described in [62].

In Table 3.1, we compare the performances of our ASR2 s and ASR2 m methods with the other

competitors. The ASR2 s and ASR2 m methods show the best performances in terms of the SSIM

and PSNR metrics, respectively, while their execution time is higher than the one provided by the

EDSR, which is the second best method. However, we remark that the EDSR algorithm required

a couple of days long training phase on a fixed set of examples and, moreover, the model trained

fits only for a specific magnification factor.

In Figures 3.3a and 3.3b we plot the trends of the PSNR parameter of ASR2 m and the computa-

tional time while the number of input images increases. We deduce that an increasing number of
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Figure 3.2: Comparison of ASRp results on SISR for p = 1 (blue dotted line), p = 2 (red continuous line)

and p = 3 (green dashed line). On the left: Φ(u∗(λk), λk) as a function of the outer iteration number for I1

(a) and I2 (c). On the right: PSNR values as a function of the outer iteration number for I1 (b) and I2 (d).

LR images positively affect the PSNR while the workload remains almost unchanged.

In Figure 3.4 we compare the reconstructed details of the I1 image (all the crops are represented

in the same colour map). The ASR2 methods (both in case of SISR and MISR), which use the

TV regularization, produce images with the sharpest contours; in particular, the black circle cor-

responding to a cold spike is better detected by the ASR2 s algorithm.

Evaluating the radiometric quality. A detailed radiometric evaluation of the HR images

obtained with the SR algorithms (both in the case of single and multiple SR) is performed by

identifying in I1 and I2 some Regions Of Interest (ROI) since in thermal images, the PSNR and

SSIM parameters are not sufficient to evaluate the HR reconstructions. The ROIs chosen for our

analysis are highlighted by the yellow, red and green boxes in Figure 3.1a and 3.1b. They contain

different interesting features for the quantitative analysis. We distinguish between the ROIs R1

and R2, containing hot-cold spots or sharp edges, and R3 representing flat surfaces. In R1 and R2,

we compute the following absolute errors:

∆TM = |TM (Y )− TM (X)|, ∆Tm = |Tm(Y )− Tm(X)|, (3.15)

where TM and Tm are the maximum and minimum temperature values, respectively. By Y and

X we denote the ground truth image and the HR computed image. Conversely, we evaluate the

quality of the flat region R3 through the standard deviation std = 1/(n− 1)
∑n

i=1(Xi− X̄)2 where

Xi are the values of the pixels in R3, and X̄ is their mean. The values for each ROI are reported
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Table 3.1: Comparison among the proposed ASR2 s and ASR2 m methods, the NN, the Bicubic, the RISR

and the EDSR methods in case of SR for the test images I1 and I2. ASR2 m and RISR consider 32 LR

images. The column ”time” represents the computation time in seconds.

Test Method PSNR SSIM time (s)

I1

Bicubic 37.803 0.470 0.08

NN 36.473 0.447 0.25

EDSR 39.499 0.524 5.998

RISR 39.193 0.528 1894.63

ASR2 s 39.408 0.566 254.09

ASR2 m 40.482 0.549 187.11

I2

Bicubic 34.236 0.540 0.004

NN 32.000 0.504 0.01

EDSR 37.414 0.564 6.299

RISR 35.204 0.545 2031.61

ASR2 s 36.638 0.605 221.78

ASR2 m 37.483 0.555 155.66

Figure 3.3: Results of the ASR2 m algorithm using an increasing number of input images for the test images

I1 and I2. (a) PSNR versus the number of input images. I1: green dashed line; I2: blue continuous line. (b)

Execution times in seconds. I1: green bars; I2: blue bars.

in Tables 3.2 and 3.3 where we highlight the best results according to the following observations.

Column R1 in Table 3.2 is relative to a single cold spike; hence a small value of ∆Tm represents the

ability of the method to capture such feature. The minimum value ∆Tm, represented in boldface, is

obtained by the ASR2 s. On the contrary, in Table 3.3 column R1 is relative to several hot spikes.

In this case, small value ∆TM represents the capacity of the method to reproduce such situation

and the best result, highlighted in column ∆TM , is obtained by the ASR2 s. ASR2 s outperforms

the other methods of more than 60% on both the cold spike (for I1) and hot spike (for I2). Column

R2 of both tables represents an edge and the average value, between ∆TM and ∆Tm, evaluates its

quality. In both cases, ASR2 m reaches the best value. Finally the R3 columns of tables 3.2 and 3.3

are relative to homogeneous surfaces. In this case, the best results are obtained by the minimum

value of the standard deviation which is reached by ASR2 m for I2 and by the RISR method for

I1 (we observe that in Table 3.3 all the methods show a very similar performance).



3.3 Numerical results 49

Figure 3.4: Comparisons among HR images obtained by different methods (detail of I1 image). All

the images are depicted in the same color map. (a) Ground truth image. (b) Bicubic HR image.

(c) EDSR HR image. (d)RISR HR image. (e) ASR2 s HR image. (f) ASR2 m HR image.

Table 3.2: Results of the tests on the I1 image with different methods. ∆TM and ∆Tm are defined in (3.15)

and are expressed in Celsius degrees; std is the standard deviation. For each ROI, highlighted in bold font

are the values that best reproduce the regions specific features.

Method
R1 R2 R3

∆Tm (∆TM + ∆Tm)/2 std

NN 13.405 0.732 0.136

Bicubic 17.605 2.123 0.135

EDSR 13.300 1.015 0.143

ASR2 s 4.382 0.698 0.179

RISR 15.813 1.688 0.131

ASR2 m 12.795 0.346 0.132

Experiments on real data. The last experiment considers the set of 50 thermal images of

size 480 × 640 representing the same scene of I2 described previously. Those images are given as

registered LR input to the super-resolution methods. Two portions of the HR images, obtained by

the methods NN, Bicubic, EDSR, RISR, ASR2 s and ASR2 m are shown in Figure 3.5.

We observe that in the ASR2 s images (Figure 3.5c) the edges are well enhanced but the noise is

still visible in the background, while the ASR2 m method produces very well defined HR image

details compared to the other methods. The NN, Bicubic and EDSR methods show many artifacts

when they reconstruct small details such as the round arches (Figures 3.5a, 3.5b, 3.5c). The RISR

method returns an high quality HR image but with an artificial texture pattern (Figure 3.5d). We

point out that all the crops are represented with the same colour map.
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Table 3.3: Results of the tests on the I2 image with different methods. ∆TM and ∆Tm are defined in (3.15)

and are expressed in Celsius degrees; std is the standard deviation. For each ROI, highlighted in bold font

are the values that best reproduce the regions specific features.

Method
R1 R2 R3

∆TM (∆TM + ∆Tm)/2 std

NN 1.295 11.644 0.036

Bicubic 0.336 2.133 0.026

EDSR 1.191 0.672 0.035

ASR2 s 0.434 2.261 0.028

RISR 1.557 6.004 0.020

ASR2 m 1.139 0.646 0.017

Figure 3.5: Window detail of the SR reconstructed images by different methods. (a) NN. (b) Bicubic.

(c)EDSR. (d) RISR. (e) ASR2 s. (f) ASR2 m.



Chapter 4

Inverse Potts models for joint image

super resolution and segmentation

Single image super resolution and Image Partitioning (IP) are two very popular tasks in the field

of image processing. We recall that in SISR, the objective is to enhance the spatial resolution of

a given LR and possibly blurred and noisy image so as to retrieve a HR version enhancing the

quality of the LR data. The LR data acquisition model of reference is the one reported in (1.17).

In this chapter we assume AWGN with standard deviation σe. In IP (a technique which is often

referred to as image segmentation), the objective is to extract, from a given digital image, regions

of interest on the basis of geometric/semantic information. Such task is typically performed to

facilitate subsequent data classification and labeling.

A standard approach to extract a suitable IP from LR data consists in solving the SISR and the

IP tasks in a disjoint sequential manner. A clear limitation of such sequential strategy is that the

quality of the partitioning obtained as final result depends on the quality of the super-resolved

image obtained after performing the former reconstruction step. Typically, this depends on the

SISR model used and on the accurate choice of its hyperparameters.

To overcome these limitations, a joint SR and IP approach performing both tasks at the same time

has been proposed, e.g., in [64, 65] based on a Bayesian approach and, more recently, in [66] based

on learning strategies.

In a variety of works [67, 68, 69, 70], Storath et al. consider the inverse Potts regularization

model for joint image restoration and segmentation. Such approach belongs to the class of vari-

ational models and uses a regularizer defined in terms of the `0-type gradient smoothing prior

introduced in [25], where the latter has been shown to favour a significant image smoothing which

preserves salient image edges and eliminate insignificant details, thus favouring simplified and

almost-partitioned reconstructions that can be easily used for subsequent segmentation purposes.

Furthermore, a constrained `0-gradient based variational model was proposed in [71] and applied

to image denoising problems. This alternative approach can be used in place of the unconstrained

ones proposed by Storath et al., whenever information on the number of jumps (i.e. image discon-

tinuities) of the desired solution is available.

51
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Therefore, the inverse Potts modeling, based on `0-gradient regularization, suggests an alter-

native approach to Bayesian and learning strategies. To estimate an HR partitioned image u∗ we

can solve the following unconstrained variational model:

u∗ ∈ arg min
u∈Rn

1

2
‖SHu− b‖22+λR`0(u), (4.1)

or the following constrained variational model:

u∗ ∈ arg min
u∈Rn

1

2
‖SHu− b‖22 s.t. R`0(u) ≤ cR`0 ∈ N, (4.2)

where R`0 : Rn → R is the `0-based term promoting gradient-sparsity and the positive scalars λ

and cR`0 define the strength of the regularization.

Contribution

This chapter is mainly based on the publication [72] and on the preprint [73].

Inspired by the works [67, 68, 69, 70], in [72] we extend the inverse Potts models to SISR.

In particular, We consider two unconstrained variational models where an `0-gradient regulariza-

tion term is considered both in a coupled (isotropic) and decoupled (anisotropic) form, the latter

being better suited for directionally-biased images. To solve the model efficiently, we propose an

ADMM algorithm which decomposes the original problem into substeps cheaply solved by means

of direct hard-thresholding and standard iterative Conjugate Gradient (CG) linear solvers. Our

variable splitting differs from the one introduced by Storath et al. in [67, 68, 69], where the non-

convex substeps are solved by means either of approximate graph-cuts approaches [74] or dynamic

programming algorithms. For the proposed ADMM algorithms, fixed-point convergence is proved.

In the proposed methods, the most expensive step was shown to be the CG type solver required to

solve the linear system arising in the quadratic substeps of the ADMM scheme which, in the case

of large-scale data, can of course be a computational burden preventing the model to be used in

practice. Therefore, in [73] under specific structural assumptions on the down-sampling operator S,

we make use of the strategy introduced in [75] where the authors show that the quadratic substep

can be solved in closed-form by using Fourier-based techniques combined with the application of

the Woodbury’s formula. Analogously, we extend to the SISR problem the constrained `0-based

formulation proposed in [71] for image denoising only. Also in this case, we consider the latter

efficient ADMM algorithm for solving the constrained model.

4.1 On isotropic and anisotropic `0-gradient SR models

Before introducing the definition of the `0-gradient regularizer, we recall the definition of a partition.

Definition 4.1 (Partition). Given n,K ∈ N such that 1 ≤ K ≤ N . A K-partition of {1, . . . , n} is

the set Γ = {Γ1, . . . ,ΓK} of non-empty subsets Γi for i = 1 . . .K, such that for all Γi ∈ Γ:

• Γi ⊂ {1, . . . , N}, for i = 1 . . .K,

• Γi ∩ Γj = ∅, for i, j = 1 . . .K, with i 6= j,
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• ∪Ki=1Γi = {1, . . . , N}.

In the following, given a generic x ∈ Rn and an element Γi of a K-partition Γ of {1, . . . , n}, we

denote by xΓi the subvector extracted from x whose entries are specified by the indexes in Γi.

Then, we define the `0 functional with respect to the a K-partition Γ as the function ‖·‖Γ0 : Rn → R+

such that:

‖x‖Γ0 :=
K∑
i=1

|‖xΓi‖|0, (4.3)

where |·|0 denotes the non-zero counting scalar function which is equal to 0 whenever the argument

is zero and one otherwise and ‖·‖ stands for any `p norm, p ≥ 1.

As a particular instance of (4.3), if K = n and Γi = {i} for all i = 1 . . . n, then the `0 functional

counts the number of non-zero entries of the vector x ∈ Rn.

By choosing the standard Euclidead norm (i.e. p = 2) in (4.3) and by recalling D ∈ R2n×n

denotes the discrete finite difference operator defined as the block matrix (Dh; Dv), with Dh,Dv ∈
Rn×n being the first order difference operator along the horizontal and vertical axes, respectively,

we define the `0-gradient regularizer as the function R`0 : Rn → R+ as:

R`0(u) = ‖Du‖Γ0 . (4.4)

According to the choice of Γ we can define our isotropic and anistropic `0-gradient regularizers.

Isotropic `0-gradient regularizer. By choosing Γ as a n-partition of {1, . . . , 2n} such that

each Γi = {i, i + n} for i = 1 . . . n, i.e. Γi is the set containing the indices corresponding to the

vertical and horizontal differences at the i-th pixel, the function R`0 in (4.4) penalizes the number

of jumps in u in terms of the non-zero values of its gradient magnitudes, jointly accounted for each

pixel. In the following we denote by RI
`0

the `0-gradient regularizer (4.4) upon the aforementioned

choice for Γ and we refer to it as isotropic `0-gradient regularizer. Notice that 0 ≤ RI
`0

(x) ≤ n for

all x ∈ Rn.

To improve the readability of the following sections, when considering the isotropic regularization,

by Γ we will always refer to the aforementioned partition. Thus, in this context, given a generic

x ∈ R2n we will denote by xΓi the subvector of x whose entries are (xi,xi+n) for i = 1 . . . n and we

will omit Γ when using the ”norm-notation” of the `0 functional in (4.3). Hence, when referring to

the function RI
`0

we have:

RI
`0(u) := ‖Du‖0.

Anisotropic `0-gradient regularizer. By choosing Γ as a 2n-partition {1, . . . , 2n} such that

each Γi = {i} for i = 1 . . . 2n, the function R`0 in (4.4) counts the number of non-zero components

of the vector Du. In the following we denote by RA
`0

the `0-gradient regularizer (4.4) upon the

aforementioned choice for Γ and we refer to it as anisotropic `0-gradient regularizer. Notice that

0 ≤ RA
`0

(x) ≤ n, for all x ∈ Rn.

We will omit Γ when using the ”norm-notation” in (4.3). Hence, when referring to the function

RA
`0

we have:

RA
`0(u) := ‖Du‖0 = ‖Dhu‖0 + ‖Dvu‖0,
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where the second equality follows by the assumption on Γ and by the definition of D.

For the sake of readability, in the anisotropic context, for each generic vector x the `0 functional

in (4.3) will refer to a functional counting the non-zero entries of x.

The isotropic `0-gradient unconstrained/constrained models

For solving (1.17) we introduce two RI
`0

-regularized SISR models, in an unconstrained and in a

constrained fashion. Due to the non-convexity of the regularization under consideration, we remark

that such formulations are indeed not equivalent, hence they deserve a separate discussion.

In [72] we have considered the unconstrained inverse Potts model for the problem of SISR. It

computes solutions u∗ as:

u∗ ∈ arg min
u∈Rn

1

2
‖SHu− b‖22+λ‖Du‖0, (4.5)

where the `2 fidelity term describes the presence of additive white Gaussian noise statistics and

λ > 0 denotes the regularization parameter.

In [73] we have defined the analogous constrained model, inspired by the formulation proposed

in [71] for simple image denoising problems (i.e. with no forward operator) and adapted here to

the SISR task. It computes solutions u∗ as:

u∗ ∈ arg min
u∈Rn

1

2
‖SHu− b‖22 s.t. ‖Du‖0 ≤ α ∈ N. (4.6)

The parameter α can be interpreted as the number of expected jumps in the desired solution.

Choosing a proper value of α in (4.6) may be more practical than choosing λ in (4.5) whenever

edge-maps specifying the number of edges for adjusting the flatness of the output are available. On

the other hand, the choice of λ may be driven by standard a-posteriori parameter rules as the ones

described in Chapter 3.

The anisotropic `0-gradient unconstrained model

In [72] we have further considered also the anistropic `0-gradient regularized model for SISR, which

computes solutions u∗ as:

u∗ ∈ arg min
u∈Rn

1

2
‖SHu− b‖22+λ (‖Dhu‖0 + ‖Dvu‖0) , (4.7)

where we consider the same regularization parameter λ > 0 for both the gradient directions.

We stress that, by definition, both the isotropic and anisotropic `0-gradient regularizers penalize

low-amplitude structures while preserving edges in the images, thus favouring sharp piecewise con-

stant reconstructions which are particularly desirable for image segmentation problems. Thereore,

the outcomes of the models (4.5), (4.6) and (4.7) are simplified, piecewise constant images which are

amenable for precise IP. We finally remark the connection of these `0-gradient regularized models

with the piecewise constant Mumford-Shah model, as analyzed, for example in [76].
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4.2 ADMM optimization for the `0-gradient SR models

To numerically solve problems (4.5), (4.6) and (4.7) we propose to use the ADMM, a common

optimization strategy which has been largely studied both in convex [77] and in non-convex [78]

regimes. The ADMM iterations are defined in terms of a suitable variable splitting which differs

from the one introduced by Storath et al. in [67, 68, 69] and allows us to efficiently solve the

arising ADMM sub-problems either by standard fast solvers or via closed forms, as described in

the following.

Variable splitting: the isotropic unconstrained case

Following [72], the optimization problem in (4.5) can be equivalently reformulated in terms of an

auxiliary variable z ∈ R2n defined by z := Du as:

arg min
u∈Rn, z∈R2n

1

2
‖SHu− b‖22 + λ‖z‖0 (4.8)

s.t. z = Du.

By choosing an increasing sequence {βk}k∈N of the penalty parameter, for a given initialization

u0 ∈ Rn and z0 ∈ R2n we seek for minimisers of (4.5) by iterating the following scheme:
zk+1 ∈ arg min

z∈R2n

λ‖z‖0 +
βk

2
‖z− (Duk +

λk

βk
)‖22

uk+1 = arg min
u∈Rn

1

2
‖SHu− b‖22 +

βk

2
‖Du− (zk+1 − λ

k

βk
)‖22

λk+1 = λk − βk(zk+1 −Duk+1).

(U-SISR-I)

In Theorem 4.3, under suitable assumptions on the gradient operator D and on the growth of

{βk}k∈N, we show a fixed-point convergence result for the sequence {uk}k∈N generated. In partic-

ular, we will assume βk = k(1 + ε)k, ε > 0 for each k (see Remark 4.4).

Variable splitting: the isotropic constrained case

Similarly, we can reformulate the constrained optimization problem (4.6) as:

arg min
u∈Rn, z∈R2n

1

2
‖SHu− b‖22 + i{‖·‖0≤α}(z) (4.9)

s.t. z := Du,

where i{‖·‖0≤α}(·) : R2n → {0,+∞} denotes the indicator function of the non-convex set {z ∈ R2n :

‖z‖0 ≤ α}. By following [71] and considering a sequence of increasing penalty parameters {βk}k∈N,

we thus seek for an approximation of an optimal solution of (4.9) by iterating the following scheme

for initial u0 ∈ Rn and z0 ∈ R2n:
zk+1 ∈ arg min

z∈R2n

i{‖·‖0≤α}(z) +
βk

2
‖z− (Duk +

λk

βk
)‖22

uk+1 = arg min
u∈Rn

1

2
‖SHu− b‖22 +

βk

2
‖Du− (zk+1 − λ

k

βk
)‖22

λk+1 = λk − βk(zk+1 −Duk+1).

(C-SISR-I)
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Variable splitting: the anisotropic unconstrained case

We can reformulate the unconstrained optimization problem (4.7) as:

arg min
u∈Rn, t,s∈Rn

1

2
‖SHu− b‖22 + λ (‖t‖0 + ‖s‖0) (4.10)

s.t. t = Dhu

s = Dvu. (4.11)

In particular, for a given initialization u0 ∈ Rn, t0 ∈ Rn and s0 ∈ Rn, under suitable assumptions

on the gradient operator D, a fixed-point convergence result (see Theorem 4.2) for the sequence

{uk}k∈N generated by the iteration:

tk+1 ∈ arg min
t∈Rn

λ‖t‖0 +
βkt
2
‖t− (Dhu

k +
λk

βk
)‖22

sk+1 ∈ arg min
s∈Rn

λ‖s‖0 +
βks
2
‖s− (Dvu

k +
λk

βk
)‖22

uk+1 = arg min
u∈Rn

1

2
‖SHu− b‖22 +

βkt
2
‖Dhu− (tk+1 − λ

k

βkt
)‖22+

+
βks
2
‖Dvu− (sk+1 − λ

k

βks
)‖22

λk+1
t = λkt − βkt (tk+1 −Dhu

k+1)

λk+1
s = λks − βks (sk+1 −Dvu

k+1)

(U-SISR-A)

is given for two increasing sequences of penalty parameters {βkt }k∈N and {βks }k∈N such that βkt =

βks = k(1 + ε)k, ε > 0 for each k.

We now provide more details on how to solve the different substeps for both ADMM schemes

(U-SISR-I), (C-SISR-I) and (U-SISR-A).

Solving the `0 sub-steps

Due to the structure of the `0 functional defined in (4.3), the objective function corresponding to

the z-subproblem in (U-SISR-I) is separable. Hence, denoting by vk the vector Duk+ λk

βk
a solution

zk+1 ∈ R2n can thus be computed by solving n 2D-optimization problems of the form:

arg min
x∈R2

δk‖x‖0 + ‖x− vkΓi‖
2
2, i = 1 . . . n, (4.12)

where δk = 2λ
βk

. To solve (4.12), we apply the 2D hard-thresholding operator HTδk to vk as in [25].

Then, for i = 1 . . . n:

zk+1
Γi

= HT2
δk(vkΓi) =

0 if ‖vkΓi‖
2
2 < 2δk,

vkΓi , if ‖vkΓi‖
2
2 ≥ 2δk.

The steps for the solution of the `0 subproblem in (U-SISR-I) are summarized in Algorithm 2.

Concerning the constrained algorithm (C-SISR-I), a solution of the corresponding `0 substep

associated to z can be computed by projecting vk by following [71, Proposition 1]:

zk+1 =

vk, if ‖vk‖0 ≤ α,

ṽk otherwise,
, with ṽkΓi :=

vkΓi i ∈ {(1), . . . , (α)}

0 i ∈ {(α+ 1), . . . , (n)}
,
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Algorithm 2 – `0 sub-step for (U-SISR-I)

input: Duk ∈ R2n, λk > 0, βk > 0, λ > 0

output: zk+1

1: vk ← Duk + λk

βk

2: for i = 1 . . . n do

3: zk+1
Γi
←

0 if ||vkΓi ||
2
2 <

2λ
βk

vkΓi otherwise

4: end for

and the indexes (1), . . . (n) are computed by sorting in descending order the `2 norms of the sub-

vectors vkΓi for i = 1 . . . n, and relabelling them accordingly. In other words, zk+1 is computed by

replacing by zero the n− α subvectors vkΓi of vk with the smallest `2 norm.

The steps for the solution of the `0 subproblem in (C-SISR-I) case are summarized in Algorithm 3.

Algorithm 3 – `0 sub-step for (C-SISR-I)

input: Duk ∈ R2n, λk > 0, βk > 0, α ∈ N
output: zk+1

1: vk ← Duk + λk

βk

2: Compute {(1), . . . , (n)} by sorting the subvectors of vk in descending order in terms of their `2

norm and compute ṽk.

3: Compute:

zk+1 =

vk, if ‖vk‖0 ≤ α

ṽk otherwise.

Finally, due to decomposability of the `0 functional (4.3), the objective functions in (U-SISR-A)

relative to the t-subproblem and s-subproblem are separable. Hence, this corresponds to solve the

n 1D-optimization problems of the form:

arg min
x∈R

δkt |x|0 + (x− (fkt )i)
2
2, i = 1 . . . n, (4.13)

arg min
x∈R

δks |x|0 + (x− (fks )i)
2
2, i = 1 . . . n, (4.14)

where δkt = 2λ
βkt

, δks = 2λ
βks

and (fkt )i = (Dhu
k +

λkt
βkt

)i, (fks )i = (Dvu
k + λks

βks
)i. Solving the problems

(4.13) and (4.14) correspond to compute the proximal mapping of |·|0 with parameter δkt and δks
evaluated in (fkt )i and (fks )i, respectively, which is nothing but the 1D hard-thresholding operator

[79]. Then:

tk+1
i = HT1

δkt
((fkt )i) =

0 if |(fkt )i| < 2δkt

(fkt )i, if |(fkt )i| ≥ 2δkt

sk+1
i = HT1

δks
((fks )i) =

0 if |(fks )i| < 2δks

(fks )i, if |(fks )i| ≥ 2δks .
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The steps for the solution of the `0 subproblems in (U-SISR-A) are summarized in Algorithm 4.

Algorithm 4 – `0 sub-step for (U-SISR-A)

input: Dhu
k ∈ Rn,Dvu

k ∈ Rn, λkt > 0,λks > 0, βkt > 0,βks > 0, λ > 0

output: tk+1, sk+1

1: fkt ← Duk + λk

βkt

2: fks ← Duk + λk

βks
3: for i = 1 . . . n do

4: tk+1
i ←

0 if |(fkt )i| < 2λ
βkt

(fkt )i otherwise

5: sk+1
i ←

0 if |(fks )i| < 2λ
βks

(fks )i otherwise

6: end for

Solving the `2-`2 sub-steps: exploiting the structure of H, S and D

We now consider the quadratic problems in (U-SISR-I), (C-SISR-I) and (U-SISR-A). The first order

optimality conditions lead to the solution of large-size linear systems, whose coefficient matrix

is symmetric and positive definite. As we have seen in Chapter 1, due to the presence of the

downsampling operator S, the use of the discrete Fourier transforms to solve the system is here

not possible, as the product matrix SH does not have a block-circulant structure. To solve these

quadratic problems efficiently, we have two alternatives:

• CG algorithm with a warm-start initialisation at every iteration.

• Closed form solution as in [75] provided suitable assumptions on S.

We now discuss about the latter approach and we show how it can be implemented.

On the structure of H. By recalling section 1.3.2 we remark that due to the space-invariant

assumption on the blur kernel, the matrix H ∈ Rn×n is a 2D convolution matrix. Assuming periodic

boundary conditions, H thus takes the form of a BCCB, hence it can be easily diagonalized by the

2D discrete Fourier Transform, whose unitary matrix is denoted by F ∈ Rn×n, as:

H = FHΛF with FHF = FFH = In, (4.15)

where Λ ∈ Rn×n is diagonal.

On the structure of S. We consider a down-sampling matrix S ∈ Rm×n in the form of a

decimation operator removing selected rows and columns from the vectorized image it is applied

to (see 1.3.2). Following [75], we assume in particular that the operator SH ∈ Rn×m interpolates

the decimated image with zeros. The matrix S is thus unstructured and, in particular, it cannot

be diagonalized by the 2D discrete Fourier Transform. However, following [75] some considerations
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can still be done to improve the computational efficiency. For an integer d, denoting by Jd ∈ Rd×d

a matrix of all ones, by 1d the d-dimensional vector of ones and by Id ∈ Rd×d the identity matrix,

the following chain of identities holds:

FSHSFH :=
1

L2
(JL ⊗ Inr)⊗ (JL ⊗ Inc) (4.16)

=
1

L2

(
1L1TL ⊗ InrInr

)
⊗
(
1L1TL ⊗ IncInc

)
(4.17)

=
1

L2

(
(1L ⊗ Inr)

(
1TL ⊗ Inr

))
⊗
(
(1L ⊗ Inc)

(
1TL ⊗ Inc

))
(4.18)

=
1

L2
((1L ⊗ Inr)⊗ (1L ⊗ Inc))

(
1TL ⊗ Inr

)
⊗
(
1TL ⊗ Inc

)
, (4.19)

where we recall that nr and nc are the number of rows and columns of the LR image such that

nr · nc = m and ⊗ denotes the standard Kronecker product.

On the structure of D. As far as the operator D is concerned, assuming periodic boundary

conditions, we have that both the matrices Dh and Dv are BCCB, hence they can be diagonalized

by Fourier transforms as:

Dh = FHΣhF and Dv = FHΣvF, (4.20)

with Σh ∈ Rn×n and Σv ∈ Rn×n diagonal matrices. As a consequence, the product DHD =

DH
h Dh + DH

v Dv, corresponding to the Laplace operator, can be expressed by:

DHD = FH
(
ΣH
hΣh + ΣH

v Σv

)
F. (4.21)

That said, we now focus our attention on the solution of the `2-`2 subproblems required for the

computation of uk+1 both in (U-SISR-I) and (C-SISR-I). For the sake of brevity we omit the

discussion about the `2-`2 subproblem arising in (U-SISR-A). However we remark that in such a

case we can proceed analogously.

By optimality, the desired uk+1 is the solution of the following linear system:(
HHSHSH + βkDHD

)
uk+1 =

(
HHSHb + βkDH(zk+1 − λ

k

βk
)

)
. (4.22)

To reduce the computational complexity of the linear system in (4.22) a direct solver is desirable.

We remark that due to the structure of the decimation operator S, the product SH cannot be

diagonalized in the frequency domain, thus preventing any direct computation of uk+1 in terms

of fast Fourier solvers. However, following [75], upon the aforementioned considerations on the

operators H,S and D we can manipulate (4.22) in terms of F and FH to deduce the following chain

of equalities: (
FHΛHFSHSFHΛF + βkFH

(
ΣH
hΣh + ΣH

v Σv

)
F
)

uk+1 = rk (4.23)(
FHΛH 1

L2
(JL ⊗ Inr)⊗ (JL ⊗ Inc) ΛF + βkFH

(
ΣH
hΣh + ΣH

v Σv

)
F

)
uk+1 = rk (4.24)(

ΛH 1

L2
(JL ⊗ Inr)⊗ (JL ⊗ Inc) ΛF + βk

(
ΣH
hΣh + ΣH

v Σv

)
F

)
uk+1 = Frk (4.25)



60 4. Inverse Potts models for joint image super resolution and segmentation

(
1

L2
ΛHΛ + βkΣH

hΣh + ΣH
v Σv

)
Fuk+1 = Frk, (4.26)

where we define:

rk := HHSHb + βkDH

(
zk+1 − λ

k

βk

)
, Λ :=

(
1TL ⊗ Inr

)
⊗
(
1TL ⊗ Inc

)
Λ. (4.27)

From (4.26), we can thus deduce:

uk+1 = FH

(
1

L2
ΛHΛ + βkΣH

hΣh + ΣH
v Σv

)−1

Frk. (4.28)

By using now the Woodbury formula [80] to determine the expression of uk+1 we have:

uk+1 =
1

βk
FHΨFrk − 1

βk
FHΨΛH

(
βkL2Im + ΛΨΛH

)−1
ΛHΨFrk, (4.29)

where Ψ := F
(
DHD

)−1
FH . In order to overcome the fact that the discrete Laplace operator

DHD may not invertible, we can follow [75] and add a regularization term σL‖u‖22 depending on a

small constant 0 < σL � 1 to make the operator Ψ invertible and the iteration (4.29) well-defined,

so that ΨσL :=
(
ΣH
h Σh + ΣH

v Σv + σLIn
)−1

.

Expression (4.29) provides now an efficient formula to compute at each k ≥ 1 the quantity uk+1

since it only requires the inversion of diagonal matrices through standard FFT evaluations. We

remark that such update is not possible for a general down-sampling operator S (such as, e.g., the

Lanczos interpolation operator, often employed in the context of SISR problems), as the chain of

equalities (4.16)-(4.19) is no longer true. Algorithm 5 reports the main step for the solution of the

`2-`2 subproblem (4.15).

Algorithm 5 – Fast solution of `2-`2 problems

input: b ∈ Rm, S ∈ Rm×n, H ∈ Rn×n, Dh ∈ Rn×n, Dv ∈ Rn×n, zk+1 ∈ R2n, βk > 0, 0 < σL � 1

output: uk+1

1: H = FHΛF

2: Dh = FHΣhF

3: Dv = FHΣvF

% Compute Λ and Ψ

4: Λ←
(
1TL ⊗ Inr

)
⊗
(
1TL ⊗ Inc

)
Λ

5: Ψ←
(
ΣH
x Σx + ΣH

y Σy + σLIn
)−1

% Compute the solution of the linear system

6: rk ← HHSHb + βkDH(zk+1 − λ
k

βk
)

7: uk+1 ← 1

βk
FHΨFrk − 1

βk
FHΨΛH

(
βkL2Im + ΛΨΛH

)−1
ΛHΨFrk.

4.3 Convergence analysis

In [72] we prove a fixed-point convergence theorem for the iterative schemes (U-SISR-A) and

(U-SISR-I). We first recall Theorem 4.1 addressing the existence of minimizers for the optimization

problems (4.7) and (4.5).
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Theorem 4.1. The solution sets of both the anisotropic (4.7) and isotropic (4.7) unconstrained

problems are non-empty.

Proof. The proof can be found in [67, Theorem 1], in the case of a general forward operator A.

Theorem 4.2. Let the ADMM iterations (U-SISR-A) be defined under the following conditions:

A.1 {βkt }k∈N,{βks }k∈N are increasing sequences such that
∑+∞

k=1

√
k
βkt

< +∞,
∑+∞

k=1

√
k
βks

< +∞

and βks
βkt
→ c 6= 0.

A.2 Dh and Dv are full rank.

Then, the sequences {tk}k∈N, {sk}k∈N, {uk}k∈N converge, i.e.:

tk −→ t∗, sk −→ s∗, uk −→ u∗,

with t∗ = Dhu
∗ and s∗ = Dvu

∗.

Proof. We consider the ADMM sequences {uk}k∈N, {tk}k∈N, {sk}k∈N, defined for (U-SISR-A). We

want to show that there exists u∗ such that:

uk → u∗, tk → Dhu
∗, sk → Dvu

∗.

To shorten the proof, we remark that everything proved for the sequences {tk}k∈N,{βkt }k∈N, {λkt }k∈N
and {Dhu

k}k∈N can be deduced for {sk}k∈N, {βks }k∈N, {λks}k∈N and {Dvu
k}k∈N in the same way.

We start defining the following functionals:

Ghk(t) := λ‖t‖0 +
βkt
2
‖t−

(
Dhu

k +
λkt
βkt

)
‖22,

Fk(u) :=
1

2
‖SHu− b‖22 +

βkt
2
‖Dhu−

(
tk+1 − λ

k
t

βkt

)
‖22 +

βks
2
‖Dvu−

(
sk+1 − λ

k
s

βks

)
‖22.

Step 1 There holds:

‖tk+1 −Dhu
k − λ

k
t

βkt
‖2 ≤

√
2λn

βkt
. (4.30)

This inequality can be trivially shown by the minimality of tk+1 for the `0 subproblem in (U-SISR-A)

which entails Ghk(tk+1) ≤ Ghk(Dhu
k +

λkt
βkt

), therefore we get:

λ‖tk+1‖0 +
βkt
2
‖tk+1 − (Dhu

k +
λkt
βkt

)‖22 ≤ λ‖Dhu
k +

λkt
βkt
‖0 ≤ λn,

by definition of ‖·‖0 in (4.3), where we recall n is the dimension of the vector uk. By neglecting

the first term on the Left Hand Side (LHS) of the above inequality, we deduce (4.30).
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Step 2 From the minimality of uk+1 in square problem of (U-SISR-A) we have: Fk(u
k+1) ≤

Fk(u
k) for every k. By definition of Fk and applying (4.30) and its analogous related to the

sequences {sk}k∈N, {βks }k∈N, {λks}k∈N and {Dvu
k}k∈N, we deduce:

1

2
‖SHuk+1 − b‖22 +

βkt
2
‖Dhu

k+1 − tk+1 +
λkt
βkt
‖22+

βks
2
‖Dvu

k+1 − sk+1 +
λks
βks
‖22 ≤ (4.31)

≤ 1

2
‖SHuk − b‖22 + 2λn.

Since the all the terms on the LHS of (4.31) are nonnegative, the following inequality holds:

1

2
‖SHuk+1 − b‖22 ≤

1

2
‖SHuk − b‖22 + 2λn ≤ . . . ≤ 1

2
‖SHu0 − b‖22 + 2λnk.

From (4.31) and by the sub-additivity property of the square root we can also derive the following

inequality:

‖Dhu
k+1 − tk+1 +

λkt
βkt
‖2 ≤

√
1

βkt
‖SHu0 − b‖2 +

√
4λn

k

βkt
. (4.32)

Step 3 We show that the sequences {Dhu
k}k∈N and {Dvu

k}k∈N are Cauchy sequences, hence

they converge. We prove this for {Dhu
k}k∈N, the proof for {Dvu

k}k∈N is identical.

‖Dhu
k+1 −Dhu

k‖2 ≤ ‖Dhu
k+1 − tk+1 +

λkt
βkt
‖2 + ‖Dhu

k − tk+1 +
λkt
βkt
‖2.

By assumption A.1 applied on the RHS of (4.32) we deduce:

‖Dhu
k+1 − tk+1 +

λkt
βkt
‖2 → 0, (4.33)

which, combined with (4.30) entails that {Dhu
k}k∈N is a Cauchy sequence. Hence it converges to

a point t∗. Similarly, {Dvs
k}k∈N converges to a point s∗.

Step 4 We prove now the convergence to the same point of the sequences {tk}k∈N and {Dhu
k}k∈N.

By writing the Lagrangian parameter formulas (U-SISR-A) as:

λk+1
t

βkt
= Dhu

k+1 − tk+1 +
λkt
βkt
, (4.34)

and from (4.33) we deduce that
‖λk+1

t ‖2
βkt

→ 0. By monotonicity of the {βkt }k∈N we then deduce that

‖λkt ‖2
βkt
→ 0. Hence:

‖Dhu
k+1 − tk+1‖2 ≤

‖λk+1
t ‖2 + ‖λkt ‖2

βkt
,

where both quantities on the RHS tend to 0 as k →∞. Therefore, by the uniqueness of the limit,

tk −→ t∗ and Dhu
k −→ t∗. Similarly, sk −→ s∗ and Dvu

k −→ s∗.
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Step 5 We can now prove convergence of the sequence {uk}k∈N. For simplicity, let us define the

quantities A := SH and Mk :=
1

βkt
ATA + DT

hDh +
βks
βkt

DT
v Dv, for every k. By A.2, we observe

that the matrix Mk is invertible for all k and that the optimality condition of the square problem

in (U-SISR-A) reads:

Mku
k = DT

h (tk+1 − λ
k
t

βk
) +

βks
βkt

DT
v (sk+1 − λ

k
s

βk
) +

1

βkt
ATb.

Since tk+1 → t∗, sk+1 → s∗,
λkt
βkt
→ 0, λks

βks
→ 0, and by Assumptions A.1 and A.2, we have

that 1
βkt

ATb → 0 so that the RHS converges pointwise to z∗ = DT
h t
∗ + cDT

v s
∗. Additionally, the

sequence M−1
k converges pointwise to M∗. We thus have that uk = M−1

k Mku
k →M∗z∗ := u∗.

We now want to show that t∗ = Dhu
∗ and, similarly, that s∗ = Dvu

∗. We show the details only

for the former case. By the triangle inequality we get:

‖t∗ −Dhu
∗‖2 ≤‖t∗ −Dhu

k‖2 + ‖Dhu
k −Dhu

∗‖2 ≤ ‖t∗ −Dhu
k‖2 + ‖Dh‖2‖uk − u∗‖2,

where both terms tend to 0 since Dhu
k → t∗ and uk → u∗.

Theorem 4.3. Let the ADMM iterations (U-SISR-I) be defined under the following conditions:

I.1 {βk}k∈N is an increasing sequence such that
∑+∞

k

√
k
βk
< +∞

I.2 D is full rank.

Then, {zk}k∈N −→ z∗, {uk}k∈N −→ u∗ and z∗ = Du∗.

Proof. The proof of Theorem (4.3) follows the same steps as the previous one. The only main

difference in it is the definiton of Mk, which reads in this case:

Mk :=
1

βk
ATA + DTD =

1

βk
ATA + DT

hDh + DT
v Dv.

By proceeding similarly as above the conclusion holds.

Remark 4.4. We remark that the full rank assumption on the operators Dh and Dv is verified, for

instance, if Dirichlet boundary conditions are assumed. Thus, an artificial image zero-padding of

the image can be considered. As far as the growth condition on the penalty parameters is con-

cerned, A sufficient condition which guarantees the required growth of the penalty sequences is

βkt = βks = O(k(1 + ε)k), 0 < ε � 1. We remark that in [67] a geometric growth was assumed.

Unfortunately, this is not enough for our theoretical convergence result to hold. However, our nu-

merical experiments, however, show numerical convergence even when periodic boundary conditions

and less severe growth conditions on the penalty sequences are used. A theoretical convergence

proof in this case is left for future research as well as a convergence analysis for the constrained

scheme (C-SISR-I).
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4.4 Numerical results

In this section, we evaluate the performances of the our unconstrained isotropic and anisotropic `0-

gradient models. In particular, we refer to the implementations solving the unconstrained isotropic

`0-gradient model (4.5) as TV0I, to the unconstrained anisotropic model in (4.7) as TV0A and

to the constrained isotropic `0-gradient model in (4.6) as c-TV0I. We superscript ”CG” or ”F” to

these terms, whether the implementation solves the `2-`2 substep by means of CG algorithm or the

FFT-based formula inspired by [75].

Initialisation, parameters and evaluation metrics. We initialise u0 in our models as u0 =

STb. Given the non-convexity of problem (4.5), (4.7) and (4.6) the choice of a wise initialisation

is important. However, in [73] we tested several ones, namely the aforementioned one, the zero

image and the I-TV initialisations and we have observed all the methods look stable w.r.t. this

choice. The variables t0, s0, z0 as well as λ0
t ,λ

0
s,λ

0 in (U-SISR-I), (C-SISR-I) and (U-SISR-A)

are set to 0. To ensure the convergence results provided by Theorems 4.2 and 4.3, the penalty

sequences are chosen such that βk = k(1 + ε)k with ε = 10−4. Note that for such small choice of ε,

k(1 + ε)k ≈ k, i.e. the growth of {βk}k∈N is almost linear. The process is stopped when the relative

change between consecutive iterates uk is lower than 10−3. For simulated data, we evaluate the

quality of the SR outputs by means of Peak-Signal-to-Noise-Ratio (PSNR) and Structure Similarity

index (SSIM) as well as the Jaccard index (Jac), an evaluation metric in the range [0, 1] measuring

the ratio between correctly detected points and false detections. While PSNR and SSIM are good

choices to quantify reconstruction quality, the Jaccard index is more appropriate for segmentation

purposes as it assesses correct versus false pixel localisation.

Comparisons. We compare our methods with several variational and learning methods. More

precisely, we consider gradient-sparse regularization models such as convex isotropic TV (I-TV)

[81], non-convex capped TV (c-TV) [82] and anisotropic fractional TV [83] (A-TV1/2) which, for

consistency, have been implemented within the same ADMM optimisation framework. Finally, we

add comparisons with the results obtained by two state-of-the-art Deep Learning-based approaches.

The former is the Content Adaptive Resampler (CAR) [84] convolutional neural network, which is

characterised by a downsampler-upsampler structure. For that, we use a pre-trained model taking

into account only the trained upsampler part. The latter is the Image Restoration Convolutional

Neural Network (IRCNN) [85], which is a Plug-and-Play method based on Half Quadratic Splitting

optimization.

Convergence analysis on synthetic data and computational cost comparisons

Based on 4.2 and 4.3, we validate the convergence properties of the proposed unconstrained isotropic

and anisotropic `0-gradient ADMM algorithms and comment on their parameter sensitivity.

For this first example, LR data were generated by applying (1.17) to the HR 428 × 600 grayscale

image in Figure 4.1a. Namely, Gaussian blur with σH = 1, L = 4 down-sampling and AGWN

with standard deviation σe = 0.01 were applied to get the LR image in Figure 4.1b. In Figure 4.1c

and 4.1d we report the results computed by TV0ICG for two different values of the regularization

parameter λ ∈ {0.005, 0.01}. As expected, the jump-sparse regularization flattens out many de-
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tails in the reconstruction, promoting a cartoon-like reconstruction: the higher the regularization

parameter λ, the more simplified the reconstruction. We further add a close-up of two ROIs: the

blue square contains both fine details (filaments, yellow arrows) and corner points (green arrows),

the red one textured details. We report in the captions of Figure 4.1c and 4.1d the values RI
`0

(u∗)

which correspond to the number of gradient jumps on the output image. Clearly, choosing a larger

λ promotes more jump-sparsity, so that the number of jumps of u∗ is smaller.

(a) HR (b) LR (x4)

(c) RI
`0

(u∗)=24067, λ = 0.005 (d) RI
`0

(u∗)=18547, λ = 0.01

Figure 4.1: Results obtained for λ ∈ {0.005, 0.01} by TV0ICG on a synthetic image.

We then validate the algorithmic convergence behaviour w.r.t. the choice of the penalty sequences

{βkt }k∈N, {βks }k∈N, {βk}k∈N. Namely, in Figure 4.2b and 4.2a we report the behaviour of the ob-

jective functions in (4.5) and (4.7) along the ADMM iterations for different choices of the penalty

sequences (left). We choose βk = βkt = βks ≡ 10 for all k (blue line), βk = βkt = βks = k0.5 (red line)

and βk = βkt = βks = k(1 + ε)k with ε = 10−4 (yellow line). On the same plots we further show

the decay of the quadratic data term (right). We observe that when the penalty sequence fulfil

the required growth condition, then the convergence is nicely monotone, whereas for the other two

choices, the decay exhibits oscillations while preserving a globally decreasing trend. Numerically,

this suggests that possibly less severe growth conditions may be employed, such as a sufficiently

large constant values of the penalty parameters. A further study on this is left for future research.

To confirm the improved computational performance of our ADMM algorithm w.r.t. to the one

proposed in [68] and adapted to solve the SR problem (4.5), we report in Table 4.1 a comparison

table both in terms of number of iterations-to-convergence and computational times. We stress

that the poor performance of the ADMM algorithm in [68] is due here to the large computational

cost required to solve the `0 gradient steps via inner optimization routines. This, combined with the

use of CG solvers makes the overall cost much higher in comparison to our more explicit splitting.

Furthermore, we report the iterations till convergence and the computational time of TV0IF which
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(a) (b)

Figure 4.2: Values of the objective functions (left y-axis) and of the fidelity term (right y-axis)

in (4.7) (a) and (4.5) (b), along iterations, for λ = 0.01. The penalty sequences are chosen as

βk = βkt = βks ≡ 10 (blue), βk = βkt = βks = k0.5 (red), βk = βkt = βks = k(1 + ε)k with ε = 10−4

(yellow).

uses the closed-form Fourier-based strategy proposed in [75].

Method [68] TV0ICG TV0IF

iter 1905 59 57

time (s) 2866.31 195.99 4.75

Table 4.1: Iterations till convergence (iter) and computational times (in seconds) for different

methods solving (4.5) setting b equal the LR image depicted in Figure 4.1b.

On the choice of the regularization parameter

To favour comparisons between the constrained and the unconstrained isotropic `0-gradient regu-

larized models, we fix the hyperparameter αr related with the value α for c-TV0IF and we estimate

the regularization parameter λ of the unconstrained method so that the reconstruction computed

by TV0IF has (approximately) the same number of jumps as the solution of the constrained model.

As an example, in Figure 4.3 we report two natural images of size 480×320 and their simulated LR

acquisitions of size 240 × 160. We compute the HR solutions obtained by solving the constrained

and the unconstrained models by setting αr = α/n = 0.16 and choosing λ accordingly. We observe

that the proposed choices of the hyperparamters α and λ produce comparable images. As a gen-

eral comment, it is evident that there is no relation between the magnitude of λ and the level of

partition, namely for different images different regularization parameters λ are required to obtain

the same values of RI
`0

(u∗).

In the experiment reported in Figure 4.4 we increase the regularization strength in both algorithms.

To do so, we decrease the value of the parameter αr in the constrained proposal c-TV0IF from 0.25

to 0.07 (so as to promote less and less jumps in the final image) and compare with the corresponding
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(a) GT (b) LR (L = 2) (c) αr = 0.15,

RI
`0

(u∗) = 24161

(d) λ = 0.00830,

RI
`0

(u∗) = 24160

(e) GT (f) LR (L = 2) (g) αr = 0.15,

RI
`0

(u∗) = 24181

(h) λ = 0.02084,

RI
`0

(u∗) = 24133

Figure 4.3: Natural GT images of size 481 × 321 ((a) and (e)). Simulated LR acquisitions ac-

cording to image formation model (1.17) by setting L = 2, σe = 0.01, σH = 1.0 ((b) and (f)).

Reconstructions obtained by c-TV0IF ((c) and (g)). Reconstructions obtained by TV0IF ((d) and

(h)).

choice for the unconstrained TV0IF so as to have a similar value for RI
`0

(u∗) in the final image.

As previously noticed, the effect of increasing the proposed regularization is a reduced number

of partitions in the restored image corresponding to a lower number of classes in a possible later

classification.

QR code recognition

The first application we consider is the problem of QR detection. As described, e.g., in [86], images

of QR codes are often scanned by means of portable devices with limited resolution. Furthermore,

QR scans are often taken from a distance and in non-optimal optical conditions so that blur and

noise further limit the amount of visible information, thus making the use of artefact-free SR

approaches crucial.

For the following tests, we first generate a binary QR code image of size 250×250, then we simulate

several LR acquisitions according to the model (1.17) for different levels of degradation. We consider

three test cases: σe = 0.01 and σH = 1 (TEST 1), σe = 0.05 and σH = 1 (TEST 2), and σe = 0.01

and σH = 4 (TEST 3). We compare the results obtained by our models with the competitors listed

above. For each method, we select the model parameters maximising the Jaccard index. To avoid

non-binary outputs (required for Jaccard index computations), for all models we post-process the

SR results by means of an adaptive Otsu thresholding and re-compute the evaluation metrics on

the binarised output, see Table 4.2.

In Figure 4.5 we report the results obtained by the different methods for the TEST 2 image before

(red frame) and after (blue frame) binarization. We observe that due to the sharp nature of the the
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(a) αr = 0.25 (10.90s) (b) αr = 0.17 (15.32s) (c) αr = 0.10 (28.38s) (d) αr = 0.07 (44.18s)

(e) λ = 0.005 (7.77s) (f) λ = 0.01 (10.46s) (g) λ = 0.02 (13.32s) (h) λ = 0.04 (18.88s)

Figure 4.4: Reconstructions with increasing regularization (L = 2). (a)-(d) Images obtained by

c-TV0IF. (e)-(h) Images obtained by TV0IF.

`0-gradient regularizer, the TV0ACG and TV0ICG results are almost binary so they do not benefit

much from the post-processing step in terms of Jaccard index values as much as the other methods

do. In Figure 4.6 we report a zoom of the best results obtained before binarization by all methods

starting from the highly corrupted TEST 3 LR image.

The quantitative evaluation of the results in terms of PSNR, SSIM and Jaccard index for the

three different test cases is reported in Table 4.2. Without any binarization, the TV0ACG model

outperforms all the others as far as the PSNR, SSIM and Jaccard indices are concerned. The

simplified geometry of the QR images considered (i.e. the sole presence of horizontal/vertical edges)

makes in fact this kind of data tailored for such geometrically-biased regularizations. Furthermore,

the highly non-convex jump-sparsification forces the ouptut to be almost binary, without the need

of any further post-processing binarization, as it is required by all the other regularizations to

achieve comparable (if not better) quality scores. This simple example shows that the image

simplification intrinsically favoured by the use of `0-gradient regularizers shall limits the need of

post-processing techniques in view of further segmentation analysis. As far as the deep-learning

results are concerned, we remark that the CAR network in this experiment is used in a transfer

learning mode, with no noisy nor blurred images observed in the training phase. For a fairer

comparison, we thus consider the IRCNN PnP network which is capable to handle different levels

of degradations, although it is shown to fail in the presence of highly-degraded data, see Figure 4.6.

Detail-preserving image cartoonisation

In [25] `0-gradient regularization was extensively shown to be effective on several image smoothing

applications such as image cartoonisation and JPG compression artefact removal. Here, we consider

a scenario where analogous tasks are performed along with a resolution improvement. To do so, we

consider an RGB LR cartoon-type image of size 170× 170 with not discernible details due to noise

and blur artefacts caused by image compression and apply gradient-sparse SR models. As no ground
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TV0ICG TV0ICG-BTV0ACG-BTV0ACGIRCNN-BIRCNN

CAR-BCARA-TV1/2-BA-TV1/2I-TV-BI-TV

Figure 4.5: QR SR results obtained by different methods on TEST2 image before (red frames) and

after (blue frames) binarisation.

IRCNN TV0ACGI-TVLR (x4) c-TV

Figure 4.6: Details of QR code SR outputs for TEST 3 image.

truth is available for this example, for all models we empirically select the parameters producing

the best visual output. In Figure 4.7 we report two close-ups of the computed SR reconstructions

marked by blue and red boxes. The blue box highlights small details which are poorly discernible in

the LR image, while the red box considers a patch of the face with some blunt edges and a small (but

meaningful!) face mole (see green box). We see that both TV0ACG and TV0ICG reconstructions

are sharper and more cartoonised than the ones obtained by the other models. However, we still

observe anisotropic artifacts in the TV0ACG reconstructions (the retrieved face-mole is squared).

Furthermore, the well-known I-TV and c-TV loss of contrast reconstruction artefact makes small

details hardly discernible. Due to the high-level of compression artefacts, both IRCNN and CAR

perform poorly.
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Table 4.2: Quantitative evaluation of SR models performance on QR for three different TEST images and

methods. By “-B” we denote results after binarization. In each column we colour red the best method, blue

the second-best.

LR Method PSNR PSNR-B SSIM SSIM-B Jac

TEST 1

TV0ICG 22.5199 29.0809 0.9423 0.9873 0.9980

TV0ACG 32.5943 35.8478 0.9913 0.9989 0.9999

I-TV 23.3845 26.3357 0.9489 0.9762 0.9963

c-TV 19.4522 36.7496 0.8849 0.9977 0.9997

A-TV1/2 18.6328 36.7496 0.8594 0.9989 0.9997

CAR 20.2460 27.8163 0.8159 0.9801 0.9966

IRCNN 25.0589 35.3363 0.9622 0.9992 0.9995

TEST 2

TV0ICG 19.3318 18.6308 0.8766 0.9156 0.9781

TV0ACG 22.6887 22.6256 0.9242 0.9653 0.9912

I-TV 18.1101 18.9848 0.8012 0.9171 0.9798

c-TV 18.7331 21.3473 0.8211 0.9595 0.9882

A-TV1/2 19.2182 22.5108 0.8664 0.9660 0.9910

CAR 18.1320 26.7831 0.7493 0.9805 0.9906

IRCNN 21.4314 26.3968 0.9057 0.9850 0.9902

TEST 3

TV0ICG 18.3763 19.7532 0.8634 0.9294 0.9831

TV0ACG 19.2908 21.9341 0.8861 0.9556 0.9897

I-TV 17.9552 20.1585 0.8222 0.9282 0.9846

c-TV 16.9580 22.4648 0.7915 0.9605 0.9917

A-TV1/2 17.0785 20.6874 0.7706 0.9372 0.9863

CAR 11.1809 11.5412 0.4057 0.6342 0.8887

IRCNN 14.2915 12.5640 0.6342 0.6565 0.9133

On the effectiveness of a joint SR and IP approach

In this paragraph we show the effectiveness of the joint SR and IP approach as a pre-processing

step before segmentation. In Figure 4.8 and 4.9 some results are reported. More precisely, for

given unknown piecewise constant (Figure 4.8a) and natural (Figure 4.8g) HR image data, the

super-resolved results obtained by applying TV0ICG are reported in Figure 4.8c and Figure 4.8i,

respectively. As it can be clearly seen, the method provides an accurate partitioning of both images

which can be a precious pre-processing for further tasks. To motivate this further, we report in

Figure 4.8f, in Figure 4.8l and in Figure 4.9d an example of how a good joint SR and IP process

helps detecting the objects of interest which are there shown in terms of a given binary mask

computed through standard segmentation algorithms or super-imposed to the image, respectively.

Cell detection

Table 4.3: Quantitative comparisons of SR and segmentation performance among different methods

on the EVICAN dataset. Confidence intervals with 95% of confidence.

Method PSNR SSIM Jaccard

A-TV1/2 [32.0277,35.6011] [0.7473,0.8775] [0.7767,0.8541]

TV0ICG [31.9137,35.5359] [0.7458,0.8778] [0.7775,0.8622]

IRCNN [32.9723,35.9698] [0.7871,0.9070] [0.5501,0.7531]
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TV0ACG TV0ICGIRCNNCARc-TVI-TVLR (x4)

Figure 4.7: Detail-preserving image cartoonisation by SR models. For I-TV, c-TV, TV0ACG and

TV0ICG the regularisation parameters are chosen as λ: 0.08, 0.05, 0.02, 0.02, respectively.

Standard light-microscopes suffer from a limited resolving power which often causes blur arte-

facts and limits spatial resolution in images. In such conditions, the performance of simple seg-

mentation algorithms extracting isolated cells as well as cell clusters is often very limited and may

benefit significantly from the use of a joint super-resolution image restoration pre-processing. We

thus test the proposed `0-gradient SR model to segment a dataset of 30 light-microscope images

extracted from the EVICAN dataset [87]. We apply the TV0ICG algorithm and its competitors on

LR acquisitions obtained by applying the linear degradation model (1.17) to the original images,

considered here as Ground Truth (GT) with the following values of parameters: L = 3, σH = 2 and

σe = 0.02. In Figure 4.10 we show the results for one test image in the dataset. Due to our interest

in analysing the effectiveness of the proposed methods in pre-processing images for segmentation,

we compute for each SR output image a binary mask by applying the cell-segmentation Matlab

toolbox1 based on edge detection and morphology. For the different methods, the segmented regions

are shown in Figure 4.10c - 4.10e, while in Table 4.3 the confidence intervals (95% of confidence)

of the PSNR, SSIM and Jaccard values computed on the whole dataset are reported. Thanks to

its strong smoothing properties, the `0-gradient sparsity enforced by the TV0ICG method allows

for a better detection of the two isolated cells (green boxes) as well as the cell cluster (red boxes),

resulting in higher Jaccard index values, as expected.

1https://www.mathworks.com/help/images/detecting-a-cell

https://www.mathworks.com/help/images/detecting-a-cell-using-image-segmentation.html
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(a) GT (b) LR data (L = 3) (c) Joint SR & IP [72]

(d) Mask on GT (e) Mask on (b) (f) Mask on (c)

(g) GT (h) LR data (L = 3) (i) Joint SR & IP [72]

(j) Mask on GT (k) Mask on (h) (l) Mask on (i)

Figure 4.8: Joint SISR and IP of a piecewise constant (upper rows) and natural image (lower

rows). The simulated LR acquisitions are corrupted according to model (1.17) by setting L = 3,

σe = 0.01, σH = 1.0. The SR images have been obtained by appyling the algorithm TV0ICG setting

λ = 0.0024 and λ = 0.023, respectively.
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(a) LR data (b) GT + mask (c) Sequential SR + IP (d) Joint SR & IP

Figure 4.9: Cell detection on low- and super-resolved data. Masks computed on the cells of interest

are coloured cyan. (a) LR image (L = 5). (b) GT image with superimposed mask. (c) SR image

computed by first applying the bicubic interpolation algorithm to the LR data and then the IP

algorithm based on the gradient smoothing described in [25]. (d) SR image obtained from LR data

by applying TV0ICG.

(a) GT (b) LR(x3) (c) A-TV1/2 (d) IRCNN (e) TV0ICG

Figure 4.10: Cell detection results. In (b)-(c) the green and red squares indicate two isolate cells

and a cell cluster, respectively. Computed masks are coloured cyan. In (c)-(e) the Jaccard index

are 0.9013, 0.7007, 0.9320, respectively.





Chapter 5

Plug-and-Play gradient-based

denoisers for CT image enhancement

Nowadays X-rays CT systems are designed to acquire images of almost every part of the human

body. As a result, tomographic images are quite different from each other and they may contain

several objects of various size, shape, and contrast with respect to the background. Moreover,

the objective of the imaging task can be to identify small and low-contrasted objects, as a breast

microcalcification, a tumoral mass, a larger bone with neat edges or a very thin vessel. In some

cases, it is also necessary to subsequently segment the object or an area of interest in the restored

image, to help the diagnosis. We assume the CT image b is corrupted according to the acquisition

model (1.16) by considering AWGN of standard deviation σe. An estimate u∗ ∈ Rn of u can be

obtained by exploiting the variational framework, namely:

u∗ ∈ arg min
u∈Rn

1

2
‖Au− b‖22 + λR(u), (5.1)

where byR we have denoted the regularization term which induces prior information on the estimate

u∗ by reflecting, for example, sparsity patterns, smoothness or geometric assumptions. It is well-

known that regularizers defined on the gradient domain may enhance medical image reconstructions

both in terms of shape recovering and noise removal [88, 89].

Very recently, in [90, 91] the authors proposed to adopt a Plug-and-Play scheme to restore CT

images. The Plug-and-Play framework was firstly proposed in [29], where the authors strikingly

showed that any off-the-shelf denoiser can be used to induce regularization on the desired solution.

In particular, by adding an auxiliary variable z = u, the authors in [29] apply the ADMM scheme

to solve (5.1). Hence, by setting β > 0 we obtain:
uk+1 = arg min

u∈Rn

1

2
‖Au− b‖22 +

β

2
‖u− (zk − λ

k

β
)‖22

zk+1 ∈ arg min
z∈Rn

λR(z) +
β

2
‖z− (uk +

λk

β
)‖22

λk+1 = λk − β(zk+1 − uk+1).

(5.2)

The modular structure of ADMM allows to deal with the fidelity and the regularization terms,

separately. It is worth noting that the second step equals the proximal map of R with parameter λ
β

75
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applied to uk + λk

β and can be interpreted as a denoising operation. Therefore, in [29] the authors

proposed to replace the substep related to R with any off-the-shelf denoiser DσD(·) : Rn → Rn,

whose strength depends on the parameter σD :=
λ

β
, thus leading to the following iterative scheme:


uk+1 ∈ arg min

u∈Rn

1

2
‖Au− b‖22 +

β

2
‖u− (zk − λ

k

β
)‖22

zk+1 = DσD(uk +
λk

β
)

λk+1 = λk − β(zk+1 − uk+1).

(ADMM-PnP)

Hence, by means of splitting strategies the authors in [29] have created a flexible framework to

easily force regularization by using denoising algorithms.

Contribution

We propose a PnP framework specifying a gradient-based CNN denoiser, to solve the deblurring

task, through CNN networks trained to restore the corrupted image gradients. So far, among the

wide literature of PnP, the embedded deep learning based denoisers have always considered only

the image space. Moreover, motivated by the apparent complementarity of external and internal

denoisers, we also propose a hybrid PnP scheme combining the Total Variation and our CNN-based

denoiser. The considered PnP frameworks rely on the HQS algorithm for which we derive a fixed

point convergence proof upon weak assumptions on the considered denoisers. This chapter is mainly

based on the publication [92] in which we apply this novel PnP algorithm for the enhancement of

CT images.

5.1 A short survey on Plug-and-Play

So far, a large number of papers on PnP have been published analyzing different aspects of the

scheme, such as the proximal algorithm or the included denoiser. In particular, the considered

proximal algorithms are the ADMM, the HQS or the FISTA [29, 34, 93, 94, 95]. Furthermore, in

the last few years, PnP methods have been analyzed both in the consensus equilibrium (CE) and

in the learning to optimize (L2O) frameworks [96, 97].

Focusing on the choice of the plugged denoiser, several proposals have already been successfully

tested and they are usually labelled as internal or external denoisers [98]. Internal denoisers are

tailored to define features onto the observed data. As consequence, they struggle to deal with

several different image features simultaneously. Examples are the proximal maps of handcrafted

regularizers, the BM3D [33] and the Non-Local Mean (NLM) filter [32]. External denoisers are

related to an outer set of degraded-clean images, so they can fail when dealing with unseen noise

variance and image patterns. Early studies made use of Gaussian Mixture Models (GMMs) [99] and

trained nonlinear reaction diffusion based denoisers [100] as external denoisers. Since nowadays deep

learning based architectures lead to outstanding performances for denoising images [101, 102], PnP

frameworks are also equipped with pre-trained CNN-based denoisers in works such as [34, 35, 103].

The aforementioned approaches exploit either external or internal denoisers; very recently some



5.2 A hybrid Plug-and-Play scheme 77

generalizations to handle multiple internal and/or external denoisers have been proposed in [104,

105]. In their seminal work the authors have not discussed theoretical convergence properties of the

Plug-and-Play framework. The scheme ADMM-PnP is guaranteed to converge to the minimum u∗

in (5.1) when DσD(·) is the proximal map of a convex, closed and proper function R [77, 106]. Then,

according to the Moreau’s Theorem [107], DσD(·) is required to be non-expansive, conservative

and differentiable. However, in [93] the authors have shown that, in general, the most famous

denoisers are expansive maps. Nevertheless, by considering an increasing sequence {βk}k∈N of

penalty parameters and assuming DσD(·) is a bounded denoiser, in [94], a fixed-point convergence

theorem is proved for the scheme ADMM-PnP.

5.2 A hybrid Plug-and-Play scheme

We replace the optimization problem (5.1) by the following one:

u∗ ∈ arg min
u∈Rn

{
1

2
‖Au− b‖22 + λR1(L1u) + ηR2(L2u)

}
, (5.3)

where we assume R1 and R2 are positive and convex real-valued maps:

R1 : Rl1 → R+, R2 : Rl2 → R+, (5.4)

with l1 and l2 positive integers, L1 ∈ Rl1×n and L2 ∈ Rl2×n. Hence, instead considering one

regularizer we consider two different regularization terms.

We now make use of the HQS iterative method described in [108, 109] as numerical solver to

compute u∗. By introducing the auxiliary variables t ∈ Rl1 and z ∈ Rl2 subject to t := L1u and

z := L2u, the following penalized half-quadratic function is taken into account:

L(u, t, z; ρt, ρz) :=
1

2
‖Au− b‖22 + λR1(t) + ηR2(z) +

ρt

2
‖L1u− t‖22 +

ρz

2
‖L2u− z‖22. (5.5)

At each iteration k, the HQS algorithm performs this alternated minimization scheme w.r.t. t, z

and the primal variable u:



tk+1 ∈ arg min
t∈Rl1

λR1(t) +
ρtk
2
‖L1uk − t‖22 (5.6)

zk+1 ∈ arg min
z∈Rl2

ηR2(z) +
ρzk
2
‖L2uk − z‖22 (5.7)

uk+1 = arg min
u∈Rn

1

2
‖Au− b‖22 +

ρtk
2
‖L1u− tk+1‖22 +

ρzk
2
‖L2u− zk+1‖22, (5.8)

where {ρtk}k∈N and {ρzk)k∈N are two non-decreasing sequences of positive penalty parameters.

The key feature of HQS is that the prior related sub-steps (5.6) and (5.7) are specified through

the proximal maps of R1 and R2, respectively, which are mathematically equivalent to regularized

denoising problems. The PnP framework exploits both this equivalence and the modular structure

of the algorithm by replacing such proximal maps with any off-the-shelf denoiser.
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To define our hybrid PnP scheme, we introduce a pre-trained learning-based denoiser Dext
σ and

an image-specific denoiser Dint
γ . These denoisers depend on the positive parameters σ and γ which

are related to the noise-level in the images to denoise, so that the greater σ and γ, the stronger the

smoothing effect is. In particular, in our scheme we choose two sequences {σk}k∈N and {γk}k∈N
such that, at step k, Dext

σk
and Dint

γk
replace the sub-steps (5.6) and (5.7), respectively. A standard

assumption in PnP is that σk and γk are both related with the penalty parameters ρtk and ρzk
through these formulas:

σk :=

√
α

ρtk
, γk :=

√
β

ρzk
, (5.9)

where α and β are chosen positive scaling factors. A sketch of the resulting hybrid PnP framework

is reported in Algorithm 6.

Algorithm 6 Hybrid PnP HQS scheme

Input: α, β and {ρtk}k∈N, {ρzk}k∈N, A, L1, L2, b, u1, K.

Output: uK .

for k = 1 . . . K do

tk+1 = Dext
σk

(L1uk)

zk+1 = Dint
γk

(L2uk)

uk+1 = arg min
u∈Rn

1

2
‖Au− b‖22 +

ρtk
2
‖L1u− tk+1‖22 +

ρzk
2
‖L2u− zk+1‖22

end for

We remark that under some quite general assumptions on the denoisers and on the sequences

{ρtk}k∈N and {ρzk}k∈N, the iterates defined in Algorithm 6 converge to a fixed-point (û∗, t̂∗, ẑ∗).

In the following section, an in-depth discussion on the hypothesis and the fixed-point convergence

theorem are reported.

5.2.1 A fixed-point convergence theorem for the hybrid Plug-and-Play scheme

To analyze the convergence properties of Algorithm 6, we start observing that if the denoisers

Dext
σ and Dint

γ are the proximal maps of two convex functions R1 and R2, respectively, then the

scheme admits a variational structure and the convergence to a global minimum u∗ of the objective

function in (5.3) is guaranteed [108, 109]. However, in [93] the authors observe that a denoiser is a

proximal map when it is non-expansive with symmetric gradient, thus limiting the set of suitable

denoisers. In the effort of allowing less strict conditions on the involved denoisers, we show in this

section that the proposed Algorithm 6 satisfies a fixed-point convergence theorem provided only

their boundedness.

Definition 5.1 (Bounded Denoiser [94]). A bounded denoiser with parameter ε is a function

Dε : Rl → Rl such that for any t ∈ Rl the following inequality holds:

‖Dε(t)− t‖22 ≤ ε2CD, (5.10)

for a constant CD independent of ε.
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The previous definition entails that given the sequence {εk}k∈N, Dεk converges to the identity func-

tion of Rl as εk → 0.

In order to state and prove the following fixed-point theorem, we make some assumptions.

Given {ρtk}k∈N and {ρzk}k∈N non-decreasing positive sequences, L1 ∈ Rl1×n, L2 ∈ Rl2×n as input

for Algorithm 6, then we assume:

1. Dext
σ and Dint

γ are bounded denoisers.

2. L1 and L2 are full-rank matrices.

3.
∑+∞

k=1

√
k

ρzk
< +∞,

∑+∞
k=1

√
k

ρtk
< +∞ and

ρzk
ρtk
→ c where c ∈ R+.

Theorem 5.1 (Fixed-point convergence theorem for the hybrid PnP Algorithm 6). Given the

assumptions 1-3, there exist t̂∗ ∈ Rl1 , ẑ∗ ∈ Rl2 and û∗ ∈ Rn such that, for k → ∞, the following

relations hold:

tk → t̂∗, L1uk → t̂∗, zk → ẑ∗, L2uk → ẑ∗, uk → û∗,

where tk, zk,uk are computed as in Algorithm 6 at step k.

Proof. By observing that uk+1 is the optimal solution of the minimization problem (5.8), and by

using the relations in (5.9) and the assumption 1, we get the following chain of inequalities:

1

2
‖Auk+1 − b‖22 +

ρtk
2
‖tk+1 − L1uk+1‖22 +

ρzk
2
‖zk+1 − L2uk+1‖22 ≤ (5.11)

≤ 1

2
‖Auk − b‖22 +

ρtk
2
‖tk+1 − L1uk‖22 +

ρzk
2
‖zk+1 − L2uk‖22=

=
1

2
‖Auk − b‖22 +

ρtk
2
‖Dext

σk
(L1uk)− L1uk‖22 +

ρzk
2
‖Dint

γk
(L2uk)− L2uk‖22≤

≤ 1

2
‖Auk − b‖22 +

ρtk
2
σ2
kCDext +

ρzk
2
γ2
kCDint =

=
1

2
‖Auk − b‖22 +

α

2
CDext +

β

2
CDint ≤

=
1

2
‖Auk − b‖22 + C̃,

with C̃ :=
α

2
CDext +

β

2
CDint .

Since all the considered terms in (5.11) are positive, the following inequalities hold:

1

2
‖Auk+1 − b‖22 ≤

1

2
‖Auk − b‖22 + C̃ ≤ · · · ≤ 1

2
‖Au1 − b‖22 + kC̃. (5.12)

For the same reason, using (5.11) and (5.12) we get:

‖tk+1 − L1uk+1‖2 ≤
√

1

ρtk
‖Au1 − b‖2 +

√
2C̃k

ρtk
, (5.13)
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‖zk+1 − L2uk+1‖2 ≤

√
1

ρzk
‖Au1 − b‖2 +

√
2C̃k

ρzk
. (5.14)

We now prove that the sequences {tk}k∈N and {zk}k∈N are Cauchy sequences. Starting from the

expressions of tk+1 and zk+1 in Algorithm 6, applying the definition of bounded denoiser and the

estimates (5.13) and (5.14) the following inequalities hold:

‖tk+1 − tk‖2 ≤ ‖Dext
σk

(L1uk)− L1uk‖2 + ‖L1uk − tk‖2 ≤

≤
√
α

ρtk

√
CDext +

√
1

ρtk−1

‖Au1 − b‖2 +

√
2C̃(k − 1)

ρtk−1

(5.15)

‖zk+1 − zk‖2 ≤ ‖Dint
γk

(L2uk)− L2uk‖2 + ‖L2uk − zk‖2 ≤

≤

√
β

ρzk

√
CDint +

√
1

ρzk−1

‖Au1 − b‖2 +

√
2C̃(k − 1)

ρzk−1

.
(5.16)

By assumption 3 {zk}k∈N and {tk}k∈N are Cauchy sequences. Hence, there exist t̂∗ and ẑ∗ such

that tk → t̂∗ and zk → ẑ∗.

Furthermore, the following inequalities (which use (5.13) and (5.14), respectively) state that L1uk+1 →
t̂∗ and L2uk+1 → ẑ∗:

‖L1uk+1 − t̂∗‖2 ≤ ‖L1uk+1 − tk+1‖2 + ‖tk+1 − t̂∗‖2, (5.17)

‖L2uk+1 − ẑ∗‖2 ≤ ‖L2uk+1 − zk+1‖2 + ‖zk+1 − ẑ∗‖2. (5.18)

Now, we prove the convergence of the sequence {uk}k∈N computed as in Algorithm 6. At step k,

uk+1 is the solution of the convex minimization problem (5.8), therefore the first order optimality

conditions lead:(
1

ρtk
ATA + LT1 L1 +

ρzk
ρtk

LT2 L2

)
uk+1 =

1

ρtk
ATb + LT1 tk+1 +

ρzk
ρtk

LT2 zk+1. (5.19)

If we define Mk := 1
ρtk

ATA + LT1 L1 +
ρzk
ρtk

LT2 L2, then ∀ k > 1, Mk is invertible for assumption 2.

Hence, we can write for each k:

uk+1 = M−1
k

(
1

ρtk
ATb + LT1 tk+1 +

ρzk
ρtk

LT2 zk+1

)
. (5.20)

We observe that the two sequences in the right hand side of (5.20), represented by {M−1
k }k∈N

and by the term in parenthesis, are convergent pointwise (by assumption 3 and by considering the

convergence of the sequences {tk}k∈N and {zk}k∈N). By denoting as u∗ the product of the two

limits, we have proved that uk → û∗.

This concludes the proof.
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Remark 5.2. We point out that this general proof applies also to the algorithm proposed in [34],

for which no convergence results can be found in the literature. Moreover, we believe that with a

small effort, our convergence result dealing with multiple denoisers can be extended to the ADMM

scheme.

Remark 5.3. The fixed-point convergence Theorem 5.1 entails that the iterations enter in a steady-

state and does not guarantee that the fixed-point û∗ is the minimum u∗ of an implicit defined

regularized objective as in (5.3). However, in the experimental part, we have shown that the

reached fixed-point û∗ is a very good approximation of the desired image u.

5.2.2 On the choice of external and internal denoisers

As regards the choice of the external denoiser, due to the state-of-the-art performances in denoising

task reached by deep learning strategies [101, 102], we embed a deep CNN denoiser DCNN
σ as

Dext
σ . Previous studies have already successfully inspected a CNN-based PnP [34, 35] whose CNN

denoisers act directly only on the image-domain.

Conversely, our denoiser acts on the image through an operator L1, which we set equal to the

discrete gradient D = (Dh; Dv), where Dh,Dv ∈ Rn×n are the finite differences discretization of

first order derivative operators along the horizontal and vertical axes, respectively.

To investigate the effectiveness provided by the proposed learnt gradient-based denoiser, we consider

the case where only the external denoiser is plugged in (thus excluding the internal prior): we label

this scheme as GCNN. We will explain in the implementation notes how we have implemented the

action of the CNN with respect to the choice of the operator L1. The general scheme of GCNN is

reported in Algorithm 7.

Algorithm 7 GCNN.

Input: α and {ρtk}k∈N, A,D, b, u1, K.

Output: uK .

for k = 1 . . . K do

tk+1 = DCNN
σk

(Duk)

uk+1 = arg min
u∈Rn

{
1

2
‖Au− b‖22 +

ρtk
2
‖Du− tk+1‖22

}
end for

We fix as internal denoiser a scheme based on the TV. The properties of edge preserving and

noise suppressing of the TV in many image processing applications are well-established. We recall

the definition of the TV function:

TV(u) :=
n∑
i=1

‖(Du)i‖2 =
n∑
i=1

(√
(Dhu)2

i + (Dvu)2
i

)
, (5.21)

where (Du)i := ((Dhu)i, (Dvu)i) ∈ R2, for i = 1 . . . n denotes the discrete image gradient computed

at pixel i along the horizontal and vertical axes, separately. Hence, the function R2 in (5.3) is set

as:

R2 : R2×n → R
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x→
n∑
i=1

‖xi‖2 with xi ∈ R2, (5.22)

where we assume L2 = D. Upon this assumption, we remark that, in Algorithm 6, Dint
γk

reads as

the proximal map of R2 with parameter γ2
k = η

ρzk
.

The method obtained with the described choices of CNN as external denoiser and TV functional

as internal denoiser is reported in Algorithm 8. In the following, we will denote it as GCNN-TV.

Algorithm 8 GCNN-TV.

Input: α, β and {ρtk}k∈N, {ρzk}k∈N, A, b, u1, K.

Output: uK .

for k = 1 . . . K do

tk+1 = DCNN
σk

(Duk)

zk+1 = proxR2
(Duk)

uk+1 = arg min
u∈Rn

1

2
‖Au− b‖22 +

ρtk
2
‖Du− tk+1‖22 +

ρzk
2
‖Du− zk+1‖22

end for

Remark 5.4. By the way, we remark that when L1 = I, Algorithm 7 is equivalent to the approach

proposed in [34] and denoted as ICNN in the following, whereas we label ICNN-TV the algorithm

obtained by adding the TV internal prior to ICNN (following the pattern of Algorithm 8).

Implementation notes

We now refer to particular implementation choices when the proposed algorithms are applied to

image deblurring, as considered in our numerical experiments. Here, we refer GCNN-TV and

ICNN-TV algorithms. At each iteration k, the minimization problem on the primal variable u is

solved by applying the first order optimality conditions leading to the following linear system:

(ATA + ρtkL
T
1 L1 + ρzkD

TD)uk+1 = ATb + ρtkL
T
1 tk+1 + ρzkD

T zk+1. (5.23)

This linear system (5.23) is solvable if the coefficient matrix has full-rank, that is if the following

condition holds:

Ker(ATA) ∩Ker(DTD) ∩Ker(LT1 L1) = {0}, (5.24)

where by Ker we denote the null space of a matrix and 0 represents the n-dimensional null vector.

The condition (5.24) is satisfied both for L1 = I and for L1 = D. Indeed, A represents a blurring

operator, which is a low-pass filter, whereas the regularization matrix D is a difference operator,

i.e. a high-pass filter. The solution of (5.23) is given by:

uk+1 = (ATA + ρtkL
T
1 L1 + ρzkD

TD)−1(ATb + ρtkL
T
1 tk+1 + ρzkD

T zk+1). (5.25)

The direct computation of the analytical solution (5.25) requires the inversion of a high dimensional

matrix. By assuming periodic boundary conditions ATA, DTD and LT1 L1 are BCCB matrices

which can be diagonalized by the 2D FFT. Hence, the solution of (5.23) can be efficiently computed.

Similarly, uk+1 in Algorithm 7 can be computed by setting ρzk = 0.
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(a) I-Net architecture scheme [34].
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(b) G-Net architecture scheme.

Figure 5.1: I-Net and G-Net architecture schemes. BN represents the batch normalization and

m-DConv denotes m-dilated convolution.

Concerning the update of zk in Algorithm 8, we observe that it reduces to the solution of n bi-

dimensional optimization problems which can be computed in a closed form by using the proximal

map of the L2-norm.

To implement the CNN based external denoiser DCNN
σ we adopt the widely used DnCNN ar-

chitecture proposed in [34]. We refer to this architecture, which is shown in Figure 5.1a, as I-Net.

It is constituted by seven dilated convolutional layers [110] activated by ReLu functions.

For the CNN training, we consider the Train400 image dataset [100]. It contains 400 gray-scale

natural images of size 180×180 obtained by cropping larger images from the Berkeley Segmentation

dataset [111]. We make use in our implementation of the 25 denoisers used in [34], each one trained

on a single noise level in the range [2, 50] with step 2. As represented in Figure 5.2a, the I-Net is

trained to remove noise from the noisy input images.

Our proposal considers the case L1 = D. In this case, we add the linear Feature Extractor (FE)

computing the discrete image gradient at the end of the I-Net architecture, thus obtaining the

G-Net network depicted in Figure 5.1b. Therefore, in order to compute the iterate tk+1 as in (5.6),

the G-Net is trained to give as output the noisy-free gradient image taking as input the noisy images

as I-Net (Figure 5.2b). We use the ADAM optimizer (see Appendix A) with the Tensorflow default

parameters and we set the epochs number to 150. The correspondence between the iteration k of

the algorithms and one of the 25 available networks is performed as in [34].

5.3 Numerical results

In this section, we describe the results obtained by testing the proposed schemes on the task of

image denoising and deblurring. We validate our methods both on a synthetic image, characterized

by elements of interest for CT medical purposes, and on real CT images. All the ground truth

images have values in the range [0, 255].
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(b) CNN denoiser for gradient restoration.

Figure 5.2: Trained schemes for denoising.

Comparisons. Our methods are compared with the baseline TV regularization implemented in

the standard ADMM algorithm, which uses the discrepancy principle [112] for the estimation of

the regularization parameter, the approach proposed in [34] which is referred to as ICNN in the

following, the standard PnP with BM3D and NLM chosen as denoisers and a very recent method

[105] which combines a truncated L1-norm computed on the wavelet operator applied to the signal

and BM3D (BM3D-WL1), therefore two internal denoisers. To complete our comparison, we also

consider the ICNN-TV algorithm.

Initialization, parameter and evaluation metrics. For a quality assessment of the results,

we create artificially blurred and noisy images from a ground truth (GT) image and we compute

the Structural Similarity Index Measure (SSIM) and the Peak Signal-to-Noise-Ratio (PSNR) [113]

between the restored image and the ground-truth. Moreover, to quantify noise removal, we compute

the standard deviation on uniform regions of interest of the restored images.

For all the proposed algorithms the input parameters α and β are heuristically chosen to compute

a solution satisfying the discrepancy principle. The algorithms perform at most K = 30 iterations.

The first iterate u1 is initialized as a vector of zeros. Concerning the choice of {ρtk}k∈N and {ρzk}k∈N,

we have set ρtk = ρzk = k(1 + ε)k, with ε > 0, satisfying the conditions required in the fixed-point

convergence theorem stated in section 5.2.1. All the hyperparameters of the competitors have been

fixed in order to provide a solution which satisfies the discrepancy principle.

Results on a synthetic test problem

We start our experiments by considering the numerical simulation acting on the gray-scale 512×512

synthetic image reported in Figure 5.3a. The image is designed to test the algorithms performance

in the case of low and high contrast objects, with curved and straight borders: the ground truth
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image contains many circles of different diameter but uniform intensity; each row has homogeneous

circles, with enhancing contrast, from top to bottom, with respect to the uniform background. The

fourth row contains crosses of different thickness and high contrast. To build our test problems we

consider the acquisition model in (1.16). Thus, we blur the ground truth image using a Gaussian

15 × 15 kernel with zero mean and standard deviation σH = 1.2, then we introduce AWGN with

standard deviation σe in { 10
255 ,

15
255 ,

20
255}. In Figure 5.3b we show the corrupted image obtained with

σe = 15
255 . In Figure 5.3a and 5.3b, we also depict three close-ups on the regions bounded by red

squares.

(a) Ground truth (b) Corrupted

Figure 5.3: Ground truth gray-scale test image and a simulated degraded acquisition. In (a) the

green square highlights the uniform patch used to evaluate ROI-std. In (a) and (b) three close-ups

(red boxes) are depicted alongside the images.

In Figure 5.4, for each method we report the three restored zooms in the same range of gray

levels. For what concerns the low-contrast circles, reported in the first two rows, it is evident

that the hybrid approaches (such as BM3D-WL1, ICNN-TV and GCNN-TV) outperform the other

algorithms which exploit only one denoiser (TV, NLM, BM3D,ICNN, GCNN). Indeed, TV (Figure

5.4a) and NLM (Figure 5.4b) struggle to retrieve the small circles, whereas BM3D deforms the

shape of the objects (Figure 5.4c). We highlight that the smallest circle is visible in the ICNN

reconstruction (Figures 5.4e) and it is further enhanced in the GCNN restoration 5.4f. Focusing

on the restoration of an object, the one-pixel thick cross, with a different shape and contrast, we

observe that BM3D, ICNN and GCNN achieve the highest enhancement (see the last row of Figure

5.4). However we remark that, even in this case, TV and NLM tend to suppress very thin details.

In Figure 5.5 we plot the pixel intensities of a horizontal image row passing through all the

lowest-contrasted circles, to better inspect the effects of adding the TV internal prior to the ICNN

and GCNN schemes on the most challenging objects. The plot in Figure 5.5a reflects the typical

loss-of-contrast drawback of the TV prior, oversmoothing the two smallest circles. Adding the TV

prior to ICNN and GCNN algorithms removes the residual noise, especially visible in the largest

circle, while enhancing the edges.

To test the robustness of the proposed models with respect to the noise, we analyze the results,

reported in Table 5.1, obtained by the considered methods when different variances of the AWGN

are considered. We observe that, in terms of PSNR, the GCNN method gets the best values in
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(a) TV (b) NLM (c) BM3D (d) BM3D-WL1 (e) ICNN (f) GCNN (g) ICNN-TV (h) GCNN-TV

Figure 5.4: Three close-ups for each reconstruction by different methods obtained for the synthetic

image.

all the cases, thus confirming the effectiveness of the proposed CNN denoiser defined on the image

gradient domain. When we introduce the contribution of the TV-based internal prior, the PSNR

values decrease, even if the global denoising effect due to TV is visually evident, as previously

underlined. To confirm this, we report in Table 5.1 the standard deviation (ROI-std) computed

on the constant region marked by the green bounding square in Figure 5.3a. The TV and NLM

methods always have the lowest values, whereas the proposed hybrid approaches ICNN-TV and

GCNN-TV are more effective in case of high noise.

Results on real CT medical images

We now consider two X-ray Computed Tomography images to compare the effectiveness of the

proposed schemes. In order to illustrate the advantages of our proposals, according to their features

highlighted in the synthetic case, we examine a head and chest CT images containing small and

low-contrasted details.

CT head image for epidural hemorrhage detection

The considered head tomographic image is downloaded from an open source dataset1. It shows an

intracranial hemorrhage, which requires a rapid and intensive medical treatment based on the ac-

curate localization of the blood in the CT image obtained by segmentation algorithms (represented

as the red region in Figure 5.6a). If the image is severely corrupted, the segmentation procedure

may fail. As an example, after blurring the ground truth image with a Gaussian kernel of size

15×15 and standard deviation 0.5 and adding AWGN with standard deviation 25, we compute the

segmentation mask by an online open source software 2. The segmented region is shown in red in

1https://www.kaggle.com/vbookshelf/computed-tomography-ct-images
2 http://brain.test.woza.work/

https://www.kaggle.com/vbookshelf/computed-tomography-ct-images
http://brain.test.woza.work/
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(a)

(b) (c)

(d) (e)

Figure 5.5: Intensity line profiles on the 90th row cutting the lowest contrasted circles. The blue

and orange lines represent the ground truth and the restored image profiles for different methods,

respectively.

Figure 5.6b. To highlight the importance of deblurring and denoising the image before segmenting

it, we show the red mask computed on one restored image in Figure 5.6c.

In Figure 5.7 we report three close-ups for each method. The first one highlights the central

part of the head CT image containing blood vessels, whereas the second zoom shows a portion of

the cerebral cortex with sulci. The third zoom of the figure focuses onto the epidural hemorrhage

(pointed by the magenta arrow). In Table 5.2 we report the PSNR computed between the re-

stored image and the ground truth, and the Jaccard similarity coefficient (Jac) between the masks

computed on the ground truth and the restored images. By a visual comparison, we observe that

TV, NLM, BM3D-WL1 output images look too smooth and blocky whereas the BM3D deforms

the anatomical contours. We highlight that the GCNN method accurately restores the vessels and

sulci borders and it gets the highest PSNR value, reflecting the effectiveness of the gradient-based

regularization. As regard the Jaccard values, the best ones are achieved by the hybrid frameworks

(i.e. ICNN-TV and GCNN-TV), where the smoothing effect of the TV-based denoiser improves

the border detectability, making the restored images suitable for segmentation tasks.
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AWGN of σe = 10
255 AWGN of σe = 15

255 AWGN of σe = 20
255

PSNR ROI-std ROI-PSNR ROI-std PSNR ROI-std

TV 30.8085 0.0271 28.6664 0.0507 27.4028 0.0772

NLM 32.6266 0.0896 31.3772 0.1122 30.1042 0.1382

BM3D 32.1221 0.3657 31.3283 0.5785 30.4806 0.7281

BM3D-WL1 31.7616 0.3974 30.7724 0.5802 30.2951 0.7779

ICNN 34.1838 0.4398 33.0519 0.5555 32.9788 0.7851

GCNN 34.7078 0.4749 33.9640 0.6568 33.2446 0.8189

ICNN-TV 32.3531 0.4081 31.3775 0.4798 30.4499 0.5553

GCNN-TV 33.2648 0.1706 31.7743 0.2512 30.6453 0.3129

Table 5.1: Measures computed on restored images varying the standard deviation of the AWGN.

The two best PSNR and ROI-std (standard deviation computed inside the green square in Figure

5.3a) values for each AWGN are highlighted in blue and green, respectively. The first best is

highlighted in bold.

(a) GT + mask (b) Corrupted + mask (c) Restored + mask

Figure 5.6: Head tomographic image with epidural hemorrhage. Computed masks are coloured

red.

Restoration of low-dose CT real chest image

We now consider a Computed Tomography open source dataset3 of real chest images. In Figure

5.8a we focus on one image (ID: 0005) of the dataset. We point out that it contains many different

objects, varying in size, dimension and gray intensity. To simulate a low-dose CT reconstructed

image, which is characterized by high noise, after blurring the image by using a Gaussian kernel of

dimension 15×15 with standard deviation 0.5, we add AWGN with high standard deviation equals

to 25. In Figure 5.8b we show the very noisy corrupted image where small and low-contrasted

details are not well detectable.

In Figure 5.9 we report three close-ups of the restorations showing different details of the image.

In the first close-up we observe that in some cases the borders of the ascending aorta and superior

vena cava sections pointed by the arrow are not well distinguishable as in the ground truth image.

In particular, we notice that the GCNN method produces the best image. The second crop contains

thin vessels immersed in the dark pulmonary background. The images obtained with TV, NML

and BM3D-WL1 algorithms are too smooth and some details are hardly visible. In the BM3D and

3https://www.kaggle.com/kmader/siim-medical-images

https://www.kaggle.com/kmader/siim-medical-images
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(a) GT (b) corrupted (c) TV (d) NLM (e) BM3D

(f) BM3D-WL1 (g) ICNN (h) GCNN (i) ICNN-TV (j) GCNN-TV

Figure 5.7: Three close-ups for each reconstruction by different methods obtained for the head CT

image. The magenta arrows highlight the epidural hemorrhages.

ICNN-based output images the circular sections of the vessels are distorted into triangular shapes,

whereas the images obtained with gradient-based CNN restore very well the path of the main

vessels, without oversmoothing. In the third row, the close-ups show that only GCNN and GCNN-

TV well recover the circular shape of the vertebral canal and GCNN outperforms the competitors

in identifying the transverse process edges (Figures 5.9h and 5.9j).

To deeper analyse the improvement given by the gradient-based CNN over the image-based one, we

plot in Figure 5.10 the profiles relative to the green segments depicted in Figure 5.8a over the first

and third crops. The first plot (Figure 5.10a) refers to a large homogeneous object and it is evident
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TV NLM BM3D BM3D-WL1 ICNN GCNN ICNN-TV GCNN-TV

PSNR 30.6781 28.4723 31.7320 31.9917 33.0800 33.5881 32.2843 32.0872

Jac 0.9471 0.8827 0.9313 0.9500 0.9387 0.9398 0.9557 0.9504

Table 5.2: PSNR and Jaccard computed on restored image. The two best PSNR and Jaccard

values are highlighted in green and blue, respectively. The first best is highlighted in bold.

(a) Ground truth (b) Corrupted

Figure 5.8: Low-dose CT chest image (ID: 0005). In (a) the green square highlights the uniform

patch used to evaluate ROI-std.

that the GCNN red line better fits the blue line corresponding to the ground truth and that the

orange ICNN profile oversmoothes. The profile over the spinous process (Figure 5.10b) highlights

that GCNN better restores thin objects. We can conclude for the restoration of this image that

the use of a gradient-based CNN denoiser has advantages such as a better enhancing of the objects

contours and the preservation of small details, over the use of an image-based CNN denoiser.

Finally, to measure the reconstruction quality and the residual noise, we compute the PSNR

and SSIM measures on the whole image and the standard deviation on a flat region indicated by the

green square in Figure 5.8a. From the Table 5.3, we observe that the GCNN method attains both the

best PSNR and SSIM. The BM3D algorithm achieves the second best PSNR but it often deformates

the curve boundary contours of the objects (as in Figure 5.9e). Regarding the ROI-std measure, as

expected, the TV method gets the lowest standard deviation on the region of interest. Moreover,

we observe that the addition of TV as internal prior in the CNN-based methods considerably lowers

the standard deviation values, as confirmed by ICNN-TV and GCNN-TV columns.

At last, Figure 5.11 generalises the results of Table 5.2. We have in fact executed the GCNN

and ICNN algorithms on 100 images from the whole chest dataset and computed the boxplots

relative to the PSNR (Figure 5.11a) and the SSIM (Figure 5.11b) metrics. These statistics validate

the results discussed on one single image and confirm that GCNN outperforms ICNN.
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TV NLM BM3D BM3D-WL1 ICNN GCNN ICNN-TV GCNN-TV

PSNR 32.1727 30.9899 34.7675 32.9104 34.1673 35.0309 34.0946 33.5789

SSIM 0.9297 0.9129 0.9499 0.9358 0.9474 0.9546 0.9466 0.9443

ROI-std 0.1746 0.3017 0.6569 0.5816 1.1136 1.2366 0.2844 0.3460

Table 5.3: Standard deviation computed on the region of interest inside the green square in Figure

5.8a, for the Low-Dose CT chest images.

(a) GT (b) corrupted (c) TV (d) NLM (e) BM3D

(f) BM3D-WL1 (g) ICNN (h) GCNN (i) ICNN-TV (j) GCNN-TV

Figure 5.9: Three close-ups for each reconstruction by different methods obtained for the chest

low-dose CT image. The magenta arrows highlight a region of interest.
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(a) (b)

Figure 5.10: Intensity line profiles on the horizontal lines depicted in Figure 5.9a, over the aorta

(left) and on the spinous process of the vertebra (right). The blue, orange and red lines represent

the ground truth, the ICNN and the GCNN restored image profiles, respectively.

(a) (b)

Figure 5.11: Boxplots of the PSNR values (a) and SSIM values (b) computed on 100 chest images

by ICNN algorithm (yellow ones) and GCNN algorithm (orange ones).
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Chapter 6

DeepCEL0 for super resolution in

fluorescence microscopy

The spatial resolution of images acquired by fluorescence microscopy refers to the shortest distance

at which two fluorescent entities are perceived separately by the camera system.

As a consequence of the light diffraction phenomena, lens with a uniformly illuminated circle aper-

ture generate patterns known as Airy disks [114], namely the fluorescent emitters to be imaged are

represented as blobs and not as isolated spots of light. The ability of the microscope to distinguish

two relatively close entities is bounded by the well-known diffraction limit [115] that represents an

intrinsic constraint of the optical acquisition device. More precisely, according to the Abbe’s crite-

rion, the smallest resolvable distance by a light microscope corresponds roughly to half the optical

wavelength, that is about 200 nanometers (nm) [116], thus compromising the direct observation of

structures at nanoscale such as proteins, microtubules, mitochondria and less complex molecules.

In the last decades, super-resolution microscopy techniques have revolutionized light microscopy

biological imaging allowing biologists to see beyond the diffraction limit [117]. Among them we men-

tion Single-Molecule Localization Microscopy (SMLM) strategies, which retrieve the localization

maps by sequentially activating and imaging a small percentage of photoswitchable fluorophores

(emitters) in the Field of View (FOV). More precisely, these SMLM techniques provide a stack of

diffraction-limited frames, containing blobs (Airy disks), modeled by Gaussian PSFs [118]. Each

frame is then analyzed separately with the aim of providing high precision localization maps of

the emitters. Finally, after the individual processing is performed, all the frames are re-combined

together to finally obtain a unique super-resolved image overcoming the diffraction limit.

The sparser the set of activated emitters per frame, the more precise the localization is. However,

considering sparse frames takes a longer acquisition time thus limiting the ability to capture fast

dynamics within live specimens. Conversely, a high density of activated emitters negatively affects

the quality of the super-resolved image in terms of localization precision. Indeed, localization in

high-density settings, that are characterized by overlapping PSFs, represents a challenging task for

all the existing sophisticated localization software tools [119, 120, 121].

In this chapter, by b ∈ Rm+ we refer to the vectorized frame acquired by PALM/STORM

techniques representing a sparse set of activated molecules on a coarse pixel-grid of dimension

95
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nr × nc such that m = nr · nc, whereas by u ∈ Rn+ we denote the localization map referred to b,

that is a vectorized image defined on a L-time thinner pixel-grid of dimension Nr ×Nc, such that

Nr = L · nr and Nc = L · nc and n = Nr ·Nc.

The acquisition of the PALM/STORM diffraction-limited image b reads:

b = N (SHu), (6.1)

where by N we denote the random variable modeling the presence of both data dependent Poisson

noise and AWGN with mean zero and standard deviation σe, which are typical aberrations in

fluorescence imaging [122, 123, 124]. The Gaussian blurring operator H of standard deviation σH

models the presence of the typical Airy disk patterns (blobs) in the LR acquisition and the operator

S refers to the downsampling operator linking the HR localization map, represented on a fine pixel

grid, to the PALM/STORM acquired image, defined on a L-time coarser pixel grid.

Let D := {(bk,uk)}k=1...K be a set of K 2D-image pairs, where bk ∈ Rm denotes the simulated

diffraction-limited frame and uk ∈ Rn denotes its HR localization map. In this chapter we develop

a learning-based strategy solving (6.1) by training a particular deep architecture fθ : Rn → Rn

with weights θ. We consider the following regularized loss function:

θ∗ ∈ arg min
θ∈Rp

1

K

(
K∑
k=1

L(fθ,bk,uk,A
†) +R(fθ,bk,A

†)

)
, (6.2)

where L denotes the penalty function, R the regularizer and by A† : Rm → Rn we refer to

a coarse super resolution algorithm. Once provided the final set of trained weights θ∗ and a

PALM/STORM acquisition b, an approximation u∗ of the HR localization map u is obtained by

computing fθ∗(A†(b)).

Contribution

This chapter is based on the publication [125] where we propose a learning-based method termed

DeepCEL0, to perform high precision molecule localization. The method merges the main advan-

tages of [126, 127], two state-of-the-art approaches belonging to the class of learning and variational

methods, respectively. More specifically, we consider the encoder-decoder architecture proposed in

[126]. We add positivity constraints to the model through the insertion of a ReLU layer in the

network architecture. Moreover, we propose to include in the loss the CEL0 penalty [128] which

has been shown to be an effective regularizer for variational methods in SR fluorescence microscopy

[127]. Thus, DeepCEL0 supplies a quite fast and parameter-free deep-learning method capable to

provide high precision localization maps.

6.1 A short survey on super resolution in fluorescence microscopy

Approaches based on diverse rationale, from blinking statistics [129, 130, 131], standard Gaussian

fitting or centroid estimation [132] and subtraction of the model PSF [133, 134, 135] to on-grid [136,

137, 138, 127, 139] and off-the-grid [140, 141] methods with sparsity-promoting regularizer, have

been proposed to retrieve the localization map u from the high-density PALM/STORM acquisition
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b.

More specifically, the idea behind on-grid approaches is the creation of a fine-grained grid to model

the locations of activated emitters. Among them, we find regularized variational approaches such

as CEL0 [127] which exploits the Continuous Exact `0 regularizer [128] as regularizer.

In contrast to on-grid methods, the so-called off-the-grid super resolution methods, such as ADCG

[140] and TVSTORM [141], work in a greedy way over the space of measures adding new molecules

at each iteration and then optimize their positions and/or amplitudes in the continuum.

In the last few years, many deep learning-based approaches exploiting CNNs have been proposed.

Among the methods belonging to this class we mention DeepSTORM [126] which is trained on

artificially generated frames, and tested directly on experimental data, thus avoiding to collect a

huge amount of training samples related to the particular experiment under study. Another deep

learning-based approach named DECODE [142] has been recently developed. DECODE is able to

simultaneously detect and localize the emitters and to predict both the probability of detection

and the uncertainity of localization for each emitter in high-density data.

For the sake of clarity, in the following paragraphs, we briefly review the CEL0 and the DeepSTORM

models for super resolution in fluorescence microscopy.

Super resolution fluorescence microscopy using CEL0. It is worth noting that the unknown

high-precision localization map u in (6.1) is sparse. Therefore, a quite common approach, to

provide an estimate u∗ of the unknown u, exploits the variational framework by considering sparsity

constraints through the `0 penalization. In [127] the authors consider the continuous relaxation

ΦCEL0 : Rn → R of the `0 penalization, which is named as CEL0 penalizer [128] and reads:

ΦCEL0(u) :=

n∑
i=1

λCEL0 −
‖ci‖

2

(
|ui| −

√
2λCEL0

‖ci‖

)2

1Vi , (6.3)

where by 1Vi we denote the characteristic function of the set Vi := {ui ∈ R
∣∣|ui| < √

2λCEL0
‖ci‖ }, by

ci we denote the i-th column of the matrix SH for i = 1 . . . n, whereas the positive scalar λCEL0

balances the strength of the sparsity induced by the CEL0 penalizer.

Therefore, the CEL0-based method retrieve the high precision localization map u∗ by solving the

following unconstrained optimization problem:

u∗ ∈ arg min
u∈Rn

1

2
‖SHu− b‖22 + ΦCEL0(u) + 1≥0(u), (6.4)

where 1≥0(·) is the characteristic function of the positive octant of Rn constraining the computed

estimation u∗ to have positive entries.

For its numerical solution, in [127] the authors make use of the iterative reweighted `1 (IRL1)

strategy [143] which is tailored to handle non-smooth non-convex optimization problems and ensures

the convergence to a critical point of (6.4) [128].

Despite being among the most effective methods in the field of SMLM, the accuracy of CEL0

reconstructions strictly depends on the choice of the regularization parameter balancing the `2 and

the sparsity-promoting terms, thus drastically limiting its usage in real experiments. Moreover, the

IRL1 strategy makes the whole reconstruction process much slower than learning-based methods.
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Super resolution fluorescence microscopy using DeepSTORM. In [126] the authors have

introduced a fast and parameter-free deep learning-based method termed as DeepSTORM, which

makes use of a CNN to provide the estimate u∗. More specifically, the training loss is a particular

instance of the one reported in (6.2) and reads:

θ∗ ∈ arg min
θ∈Rp

1

K

(
K∑
k=1

‖Gfθ(NN(bk))−Guk‖22 + ‖fθ(NN(bk))‖1

)
, (6.5)

where by NN we denote the coarse Nearest Neighbour super resolution algorithm, by G ∈ Rn×n we

refer to a Gaussian blurring with standard deviation σG = 1. Once provided the final set of trained

weights θ∗ and a PALM/STORM acquisition b, an approximation u∗ of the HR localization map

u is obtained by computing fθ∗(NN(b)).

As far as the training set is concerned, one of the main novelties of DeepSTORM is that it can

provide good performances on real images even if it is trained only on a synthetic dataset created

using an ImageJ plug-in called ThunderStorm [144]. Despite being a fast and parameter-free super-

resolution microscopy algorithm able to manage high-density data, DeepSTORM is not capable to

reconstruct the localization maps with high precision.

6.2 The proposed DeepCEL0

The proposal developed in [125] combines the learning-based approach DeepSTORM and the

sparsity-constrained variational approach CEL0. In particular, we aim at providing a method

which preserves the main advantages of both, namely the ability of CEL0 to retrieve high precision

localization maps and the fast and parameter-free computation provided by DeepSTORM. There-

fore, following the idea of [126], we train a CNN architecture fθ : Rn → Rn based on the following

regularized loss function:

θ∗ ∈ arg min
θ∈Rp

1

K

(
K∑
k=1

‖Gfθ(NN(bk))−Guk‖22 + ΦCEL0(fθ(NN(bk)))

)
. (6.6)

This loss presents two main differences, if compared to (6.5). First, the `1-regularizer is replaced

by the CEL0 regularizer in order to guarantee better sparse reconstructions. Second, we consider

a non-negativity promoting CNN architecture fθ which is a slightly modified version of the CNN

architecture used in [126], in order to force non-negativity constraints on the reconstructed solutions.

A non-negativity promoting deep architecture

The considered CNN architecture, denoted as fθ in (6.6), is a modified version of the one proposed

in [126]. For the sake of brevity, we call convolutional layer the composition of convolutional

filters with a batch normalization layer followed by a ReLu non-linearity as activation function

(see Appendix A). The original architecture is an encoder-decoder and it is composed of seven

convolutional layers. Each layer uses 3× 3 kernels of different depth equal to 32, 64, 128 and 512,
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respectively. In the encoder part, the filters’ depth increases, and a 2 × 2 max-pooling is used

as downscaling operator to compress the features. In the decoder part, the layers are interleaved

with a nearest neighbour upsampling operator and the filters’ depth decreases. At the end of

the network, another layer is added to compute the pixel-wise prediction. This layer is a 1 × 1

convolutional filter. In the original implementation, this last layer uses a linear activation function,

i.e., the identity. In order to induce non-negativity constraints to the computed solution, we replace

the activation layer with ReLu.

Training set and implementation notes

In the experimental section, we evaluate how our method performs when dealing with an upsam-

pling factor L equal to 4. According to this choice, we now describe the considered synthetic

training set D = {(bk,uk)}k=1...K . In the following, we refer to bk as the input image and to uk

as the target image, respectively.

As well as for DeepSTORM [126], we generate a synthetic dataset made up of 20 high density

images. The emitters are positioned on a FOV of size 64× 64 pixels such that each pixel has size

of 100 nm. We extract from these high density images, K = 10000 patches of size 26 × 26. By

projecting the emitter positions on a 4-times thinner pixel grid, we build the target images uk of

size 104× 104.

The input images bk for k = 1 . . .K are constructed corrupting the synthetic images in order to

simulate the experimental conditions. More precisely, we first blur all the 26 × 26 patches with a

discrete Gaussian kernel and add Poisson and Gaussian noisy components. Then, these corrupted

patches are upsampled by a factor equals 4 through the NN interpolation algorithm.

We stress that, in real applications, the standard deviation of the PSF considered, if unknown, can

be estimated using the Abbe’s criterion which requires the light wavelength and the numerical aper-

ture of the optical device used for acquiring the experimental data under study. Furthermore, the

amount of noise can be either calculated directly from the microscope and detector characteristics

or even through several mathematical techniques [145, 146].

We use this synthetic dataset to train the proposed DeepCEL0 by minimizing the loss function

defined in (6.6). We train the network for 100 epochs on batches containing 16 samples using Adam

optimizer and setting the learning rate equal to 0.001.

In (6.6), we set G as a fixed Gaussian blurring operator, whose standard deviation σG=1. More-

over, we remark that the contribution of the CEL0 regularization term can be weighted using the

parameter λCEL0. It is worth noting that in this deep learning-based framework the parameter

λCEL0 has not the same meaning of the regularization parameter in the variational approach (6.4).

Indeed, in the former case it does not directly correspond to a degree of sparsity of the computed

solution. In our experiments, we tested different values for λCEL0 but we observed that setting it

to 100 provides outstanding results for all the tests.
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6.3 Numerical results

We now apply the proposed DeepCEL0 both on simulated and real diffraction-limited data, in

order to highlight its effectiveness in the field of fluorescence microscopy.

Evaluation metrics. We assess the quality of the high resolution localization maps provided

by our method and the competitors both on synthetic and real PALM/STORM images through

quality metrics and visual inspections. When the ground-truth (GT) images are available, the

performances are evaluated by pairing the GT molecules with the estimated ones: a match between

a GT and an estimated molecule is created when the distance between their localizations is lower

than a set tolerance δ, whose standard values, if expressed in terms of pixels, are 2, 4 and 6. Such

a tolerance δ is chosen lower than the Full-width at Half Maximum (FWHM) of the estimated

Gaussian PSF modeling the Airy pattern. In the following, the matched estimated molecules

up to the given tolerance are defined as True Positive (TP) molecules; the remaining estimated

molecules are referred to as False Positive (FP) molecules; and finally, the GT molecules with no

match are categorized as False Negative (FN) molecules. Beyond the estimated molecules, it is

important to take into account the pixels of the GT images not corresponding to any molecule,

which are labelled as True Negative (TN) molecules. The performances are assessed by computing

the following evaluation metrics:

Jaccard(%) =
TP

TP + FP + FN
× 100, (6.7)

Sensitivity(%) =
TP

TP + FN
× 100, (6.8)

Specificity(%) =
TN

TN + FP
× 100. (6.9)

In order to quantify the level of corruption in the simulated data, we consider the signal-to-noise

ratio (SNR) in decibel (dB).

Comparisons. We compare our approach with the state-of-the-art algorithms CEL0 and Deep-

STORM on both high density synthetic and real SMLM PALM/STORM low resolution images

whose level of corruption ranges from SNR = 15dB to SNR = 10 dB.

Finally, in order to inspect the role of the non-negativity constraints, we train the non-negativity

promoting CNN used in DeepCEL0 by considering the `1 regularized loss function in (6.5). In the

following, the method is referred to as DeepSTORM-ReLu.

Furthermore, we run DeepSTORM and DeepSTORM-ReLu by selecting the regularization parame-

ters values in the range [1,200]. In brief, DeepSTORM does not achieve any significant improvement

in the reconstructions of the localization maps. Therefore, for all the experiments, the regulariza-

tion parameter is fixed equal to 1, as in its standard formulation [126]. Instead, for what concerns

DeepSTORM-ReLu, we found the best results by setting the regularization parameter equal to 10.

So, in the following sections, only the best results obtained for DeepSTORM-ReLu are reported.
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Localization on synthetic test images with theoretical PSF

DeepSTORM algorithm could provide a fast SR image reconstruction, although it is not tailored to

provide high precision localization maps of the emitters. Conversely, CEL0 is designed to localize

the molecules but presents two main flaws: the method is strongly dependent on the choice of the

regularization parameter and the overall computation process is largely slower than the one provided

by DeepSTORM. Once the network has been trained, the proposed DeepCEL0 and DeepSTORM

share a comparable computational time for SR image reconstruction. Moreover, as we demonstrate

in the following, DeepCEL0 is also able to effectively localize the molecules.

First of all, to validate the ability of the proposed method to discriminate two or more neigh-

boring emitters, we construct three different synthetic test scenarios as GT images, simulating high

resolution fluorescence microscopy localization maps on a FOV of 512 × 512 pixels of size 25 nm.

The two first scenarios, referred as Test 1a and Test 2a, represent two molecules, arranged on the

256th column, at distance of 25 nm and 75 nm, respectively. The other scenario, referred as Test

3a, shows four molecules disposed on a circle of a radius equal to 125 nm. Two molecules are

arranged on the 256th column whereas the others are arranged on the 256th row. Once set L = 4,

by down-sampling the GT images according to the model in (6.1), we simulate the acquisition of

128× 128 LR diffraction-limited frames, where the PSF is modeled by a Gaussian function whose

FWHM is equal to 258.21 nm, that is σH ≈ 110 nm.

In the lower panel of Figure 6.1, we report the close-ups (×10 zooming) of the Region of Interest

(ROI), namely the central zone of the 512× 512 images where the synthetic spots are located, for

the GT and Nearest Neighbour (NN), DeepSTORM, DeepCEL0 and CEL0 super resolved recon-

structions. All the reconstructions reported have been normalized in the interval [0,1].

The zooms related to these methods are highlighted by blue, purple, green, red and yellow boxes,

respectively. It is noteworthy that in the purple box the NN ×4 upsampled image is reported in

order to visualize the LR image at the same dimensions of the GT image. For the CEL0 method,

we depict two different reconstructions obtained by setting two different regularization parameters

for each test case. In the upper panel of Figure 6.1, we draw the line profiles corresponding to the

256th column of the 512 × 512 GT, NN and DeepCEL0 images. For all the three tests, the two

molecules arranged on the 256th column correspond to the two peaks in the line profile of the GT

image (see the blue line and blue box), whereas we observe they are completely overlapped and

indistinguishable in the diffraction limited NN upsampled image’s line profile (see purple line and

purple box).

As qualitative results, in Test 1a, Test 2a and Test 3a, DeepCEL0 is able to well approximate

the positions of the two molecules (see the red dashed line and red box). In all the three tests

considered, the synthetic molecules are placed at a distance which is largely smaller than FWHM.

In particular, Test 3a is the most challenging scenario since the number of molecules to estimate is

greater than two. DeepCEL0 provides broadly better performances than DeepSTORM and more

stable performances with respect to the CEL0 method. Indeed, DeepSTORM (see green box)

does not separate the two synthetic molecules and provides a large number of FP molecules, thus

confirming it is not designed to produce accurate localization maps. CEL0 (see yellow boxes),

as expected, provides highly accurate localization maps, but, as we can observe, its performances
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are highly sensitive to the choice of the regularization parameter. Furthermore, it is remarkable

how different scenarios require different optimal parameters. On the contrary, the results provided

by DeepCEL0 have been computed by using the same architecture trained setting λCEL0 = 100.

Therefore, these tests prove the effectiveness of our approach retrieving highly precise localization

maps and more stability with respect to the choice of the hyperparameter λCEL0, if compared to

the CEL0 method.

λCEL0 = 0.011 λCEL0 = 0.007 λCEL0 = 0.038 λCEL0 = 0.011 λCEL0 = 0.011 λCEL0 = 0.031

Figure 6.1: Localization on synthetic test images Line profiles crossing the 256th column of GT,

NN and DeepCEL0 images for Test 1a, Test 2a, Test 3a (upper panel from left to right). Close-ups

(x10) on the ROI of GT (blue box), NN (purple box), DeepSTORM (green box), DeepCEL0 (red

box) and CEL0 with two different regularization parameters (yellow box) for Test 1a, Test 2a, Test

3a (lower panel from left to right).

Localization on a realistic dataset with theoretical PSF

We now consider a more realistic dataset provided by the 2013 SMLM challenge1. The dataset is

a stack of 361 different frames used as GT localization maps in our analysis. A total number of

81049 emitters are counted: for each frame 217 fluorophores are activated on average. The frames

simulate realistic high density acquisitions of 8 tubes of diameter size equal to 30 nm depicted

on a FOV of 256 × 256 pixels of size 25 nm. We simulate LR diffraction-limited acquisitions by

applying the image formation model in (6.1) setting L = 4, thus representing the GT scenarios on

1https://srm.epfl.ch/Challenge/ChallengeSimulatedData

https://srm.epfl.ch/Challenge/ChallengeSimulatedData
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a coarser grid of 64× 64 pixels of size 100 nm. The PSF is modeled by using a Gaussian function

of FWHM = 258.21 nm (≈ σH = 110 nm). We further corrupt the LR frames by adding Poisson

noise and Gaussian noise with different standard deviations, such that SNR = 10 dB, 12 dB, 15

dB, respectively referred to as Test 2b, Test 3b, Test 4b. Finally, we consider a more realistic

scenario, referred to as Test 1b, where the frames are corrupted by Poisson noise and Gaussian

noise components of different standard deviations.

In Table 6.1, we report the results expressed in terms of Jaccard index for δ set as 2,4,6 pixels,

corresponding to a tolerance of 50,100,150 nm, respectively. The sensitivity and specificity values,

instead, are computed only with respect to the tolerance δ = 2, which expresses a more faithful

compliance of the reconstructions compared to the GT.

DeepSTORM, DeepSTORM-ReLu and DeepCEL0 models are trained on the synthetic images

described previously such that the PSF is set to satisfy the experimental conditions described

above and the noise aberration leads to an SNR value equals 15 dB on average. These three trained

models are used for all the four tests considered. For the sake of a fair comparison, for each test

we estimate the CEL0 regularization parameter by a trial and error procedure sampling 30 values

over the range [1e-3, 1] on randomly chosen 8 frames among the stacked ones. In the following, we

refer to the best regularization parameter for CEL0 as the one maximazing the Jaccard index with

tolerance δ equals 2.

In Table 6.1, we report for each test (Test 1b, 2b, 3b, 4b) the results of CEL0, DeepSTORM,

DeepSTORM-ReLu and DeepCEL0. For what concerns CEL0, in the first row referred to each

test, we draw the results obtained with respect to the best regularization parameters, whereas, in

the second row, we show the results obtained by choosing as regularization parameter the best one

obtained for Test 4b. We stress that for the trained methods the regularization parameter is fixed

as described in the previous sections.

We inspect in depth Test 2b, the most challenging one due to a low SNR value. In Figure 6.2,

we report the sum of all the stacked reconstructed SR frames provided by the competing methods

alongside the stacked GT and LR frames. In particular, for GT and all the methods, above the

magenta line we report the activated molecules as white spots, whereas below the magenta line

we depict the normalized images. The three close-ups (×4 zooming) show three region of interest,

where the tubulins seems completely overlapped in the LR acquisition.

As a general comment, on the one side, DeepSTORM struggles to provide high precision localization

maps: very low Jaccard values for all the tests and tolerances are obtained. For all the tests, the

sensitivity reaches the highest possible value but at the expense of a very low specificity, meaning

that this result is completely biased since it provides a very huge number of FP molecules (more

than 50000). As an example, for Test 2b, this aspect is evident from Figure 6.2d.

On the other side, CEL0 reaches the best performances on Test 4b and competing performances

on Test 3b, but poor results on Test 1b and Test 2b that represent the most realistic scenarios.

Conversely to the above mentioned competing methods, DeepCEL0 provides satisfying results for

all the tests with respect to the Jaccard, sensitivity and specificity indexes, thus confirming the

effectiveness of the novelties introduced, namely the combination of non-negativity constraints and

the usage of a CEL0 regularized loss function. In particular, Figure 6.2f confirms once again how
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our proposal can better provide more faithful localization maps with less FP molecules if compared

to the other competing methods. We investigate the addition of the sole non-negativity constraints

by showing the evaluation metrics (Table 6.1) and the visual reconstructions (Figure 6.2e) obtained

by DeepSTORM-ReLu. Our experiments confirm that the non-negativity promoting CNN is the

component of DeepCEL0 which contributes the most to an improvement of the evaluation metrics.

Indeed, Table 6.1 highlights how DeepSTORM-ReLu clearly outperforms DeepSTORM, although

with globally slightly lower performances than DeepCEL0. Moreover, a visual comparison between

the reconstructions of DeepSTORM-ReLu and DeepCEL0 emphasises how the contribution of the

CEL0 penalty in the loss of DeepCEL0 allows the method to better induce sparsity, by suppressing

false positives, and to retrieve more faithful structures.

Finally, an interesting aspect to underline is that, even if DeepCEL0 is trained on images with

SNR equals 15 dB on average and uses for all the experiments the same value of the regularization

parameter, the trained models seem stable at varying the level of corruption (Test 1b, Test 2b,

Test 3b, Test 4b). This stability is not still valid for CEL0 which shows a strong dependence on

the choice of the regularization parameter as highlighted by the results in Table 6.1.

Table 6.1: Performance evaluation for localization on 2013 SMLM challenge realistic dataset with

theoretical PSF in terms of Jaccard Index, sensitivity and specificity. The first and second best

Jaccard Index values are highlighted in red and blue, respectively.

Test Method Jaccard (%) Sensitivity(%) Specificity (%)

δ = 2 δ = 4 δ = 6 δ = 2 δ = 2

1b

CEL0
41.64 49.46 51.65 56.22 99.88

35.94 43.93 46.70 67.74 99.71

DeepSTORM 0.38 0.38 0.38 100.00 13.17

DeepSTORM-ReLu 56.34 67.55 70.50 73.73 99.90

DeepCEL0 58.96 68.94 71.55 70.89 99.95

2b

CEL0
42.29 50.21 51.48 49.08 99.95

17.13 28.64 33.16 51.15 99.34

DeepSTORM 0.38 0.38 0.38 100.00 13.34

DeepSTORM-ReLu 51.86 65.93 69.70 70.51 99.88

DeepCEL0 54.83 68.49 71.37 65.44 99.94

3b

CEL0
62.17 63.60 64.32 65.90 99.98

48.19 50.46 51.38 73.73 99.82

DeepSTORM 0.38 0.38 0.38 100.00 13.53

DeepSTORM-ReLu 58.10 67.54 70.08 76.04 99.90

DeepCEL0 61.13 69.66 71.55 69.59 99.95

4b

CEL0 68.27 70.33 71.02 78.34 99.95

DeepSTORM 0.38 0.38 0.38 100.00 12.65

DeepSTORM-ReLu 59.49 69.11 71.76 75.12 99.91

DeepCEL0 61.48 69.80 72.33 70.12 99.96
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Localization on a realistic dataset without theoretical PSF

In the previous paragraph, we have considered a realistic dataset for which all the simulated ac-

quisitions were constructed applying to the ground truth images the forward model (6.1), thus the

sources of degradation were exactly known, i.e., the PSF and the type of noise (mixed Poisson and

Gaussian). Therefore, we now consider the Microtubules dataset from the 2016 SMLM challenge2.

This experimental datasets consist of sequences of frames from realistic stained biological samples

acquired according to a 2D modality. More precisely, these simulated data are created using a

sophisticated simulator considering specificities of the fluo dyes and camera. The dataset is a stack

of 2500 different frames depicting high density acquisitions (2 emitters per µm2) of 3 microtubules

on a FOV of 6.4× 6.4× 1.5 µm (64× 64 pixels of size 100 nm). Since in this case we do not know

the theoretical PSF, the FWHM has been estimated through trial and error procedures and set

equal to 447,45 nm (≈ 190nm ).

The regularization parameter used for the CEL0 reconstruction, equals 1.85, and it has been heuris-

tically selected in order to maximize the Jaccard (δ = 0) index. The other models are trained on

a synthetic training set constructed considering the estimated PSF.

In Figure 6.3, we depict the LR image (Figure 6.3a) alongside the GT image (Figure 6.3b) and

the reconstructions (setting L = 4) obtained by all the considered methods. In particular, below

the green line, we show the normalized images, whereas above the green line, we report the maps

representing the activated molecules depicted in white. To highlight the differences between the

competing methods we consider three close-ups (×4 zooming). All the considerations raised on the

previous subparagraph hold also in this case. The DeepCEL0 reconstruction (Figure 6.3f) reaches

39.43 as Jaccard index setting δ = 0, whereas CEL0 (Figure 6.3c), DeepSTORM (Figure 6.3d) and

DeepSTORM-ReLu (Figure 6.3e) reconstructions achieve 35.73, 2.32 and 34.38, respectively. This

proves once again DeepCEL0 is able to localize the emitters with high precision. Furthermore,

the binary maps show that DeepCEL0 preserves better the shape of the tubulins if compared with

CEL0 and DeepSTORM reconstructions. Moreover, by comparing the close-ups of the DeepCEL0

and DeepSTORM-ReLu solutions it is evident how the addition of the CEL0 based regularizer

helps to improve the localization and to suppress FP molecules.

Localization on a real dataset

As final evaluation test, we compare DeepCEL0 with CEL0, DeepSTORM and DeepSTORM-ReLu

on a real high density dataset of tubulins that is part of the 2013 IEEE ISBI SMLM challenge.

The dataset refers to a real acquisition stack representing a field of view of 128× 128 pixels of size

100 nm over 500 different consecutive frames. The PSF is modeled by using a Gaussian function of

FWHM = 351.8 nm, that is σH ≈ 150 nm [147]. We aim at representing the acquired LR frames

on a finer pixel grid of a factor L = 4. CEL0 reconstruction considers the regularization parameter

equal to 0.5 as suggested by [148]. All the learning-based models, are trained by considering the

above underlined PSF.

In Figure 6.4, we report the normalized LR image, i.e., the sum of all the stacked LR frames.

2https://srm.epfl.ch/Challenge/ChallengeSimulatedData

https://srm.epfl.ch/Challenge/ChallengeSimulatedData
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Moreover we depict the reconstructions provided by all the considered competitors. Above the

green line we show the image with the activated molecules as white spots, whereas, below the

green line the normalized images are reported. Finally, three close-ups are considered to better

underline the differences between the competing methods. All the considerations highlighted for

the simulated scenarios are still valid in this case. We here appreciate the influence of the L0

regularization both in CEL0 (Figure 6.4b) and DeepCEL0 (Figure 6.4e) reconstructions. Indeed,

they look sharper than the solution provided by DeepSTORM (Figure 6.4c). Finally, if compared

with CEL0, DeepCEL0 better separates the diverse tubulins and better preserves the shapes.
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(a) LR (b) GT (c) CEL0

(d) DeepSTORM (e) DeepSTORM-ReLu (f) DeepCEL0

Figure 6.2: Image reconstruction results of the whole stack for the 2013 SMLM challenge realistic

dataset with theoretical PSF. The first half of the images shows the binarized versions of the images.

The second half of the images shows the normalized counterparts.
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(a) LR (b) GT (c) CEL0

(d) DeepSTORM (e) DeepSTORM-ReLu (f) DeepCEL0

Figure 6.3: Image reconstruction results of the whole stack for the 2016 SMLM challenge realistic

dataset without theoretical PSF. The first half of the images shows the binarized versions of the

images. The second half of the images shows the normalized counterparts.
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(a) LR (b) CEL0 (c) DeepSTORM

(d) DeepSTORM-ReLu (e) DeepCEL0

Figure 6.4: Image reconstruction results of the whole stack for the IEEE ISBI tubulins dataset.

The first half of the images shows the binarized versions of the images. The second half of the

images shows the normalized counterparts.





Chapter 7

Deep Image Prior for image and video

restoration

In the last decade, supervised deep learning-based approaches have shown state-of-the-art perfor-

mances in the field of imaging inverse problems [11] due to their capability to learn the correlation

between degraded images and their cleaned counterparts by exploiting high representative models,

like Deep Neural Network (DNN) architectures, and an outer training set of degraded-clean exam-

ple pairs. However, in general, they have several issues, including the lack of generalization when

not trained with enough data. Moreover, in many real applications, such as medical imaging, it is

practically impossible to build a labeled dataset with both ground truth and degraded data [149].

All these reasons have motivated researchers to inspect the so-called unsupervised deep learning

approaches avoiding the usage of training sets [150, 151, 152, 153].

Deep Image Prior [39] is among the most promising methods belonging to this class. The DIP frame-

work leverages the fact that the architecture of a deep Convolutional Neural Network generator

reproduces natural images more easily than random noise, thus inducing an implicit regularization.

More specifically, by recalling the acquisition model for the generic IR task (1.7) and considering

a CNN f : Rp × RN → Rn, the DIP approach combines the following unconstrained minimization

problem:

arg min
θ∈Rp

L(θ) :=
1

2
‖Af(θ, z)− b‖22 (7.1)

with a regularization by early-stopping procedure to compute a set of weights θ∗. An estimate

u∗ of the unknown u is then obtained computing f(θ∗, z), where z ∈ RN represents a sample of

a uniform distribution. We remark that the set of weights θ∗ is computed by applying standard

gradient-based iterative algorithms to the problem (7.1) and early stopping the iterative process.

The reason why we need to early-stop the optimization process will be clear in the following lines.

In Figure 7.1a we show the so-called DIP high impedance to noise property. We plot the

behaviour of L as a function of the iterations (itr) of the gradient-based algorithm applied to solve

(7.1). The operator A in (7.1) is set equal to the identity operator, whereas for b we consider four

different choices: the cat natural image, the cat image affected by AWGN, the pure noise image

sampled from a Gaussian distribution and, finally, the cat image after randomly permuting the

111
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(a)

(b)

Figure 7.1: (a) Plot of L defined in (7.1) for different choices of b: original cat image (blue line),

noisy cat image (red line), Gaussian sample (yellow line), shuffled cat image (purple line). (b)

Outputs at different iterations of the optimization process solving (7.1) when b is set as the noisy

cat image and A as the identity operator.

pixels.

As a general comment, the optimization looks much easier for the first two choices, if compared to

the last two for which it is evident a significant ”impedance”. In Figure 7.1b we depict the outputs

at different iterations, when b is set as the noisy cat image. We can observe that in the limit the

parametrization provided by the CNN can overfit the noise as well (itr = 5000), although it does

so very reluctantly (Figure 7.1a) and at itr = 1400 we obtain an almost perfect restoration. In

other words, in the first iterates of the optimization process the CNN parametrization offers high

impedance to noise and low impedance to signal.

Up to now, researchers have mostly worked on a theoretical analysis of DIP [12, 154, 155] as

well as to boost its performance. Inspired by the standard variational regularization methods, in

[156, 157, 158, 159, 160, 161] the authors improved the DIP performance by adding an explicit pe-

nalization term R to the objective in (7.1) to avoid the issue of overfitting. Hence, the optimization
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problem (7.1) is replaced by the following regularized one:

arg min
θ∈Rp

1

2
‖Af(θ, z)− b‖22 + λR(f(θ, z)). (7.2)

More precisely, in [156, 159, 161] R is set as the standard Total Variation [20], whereas in [160] the

authors consider the RED regularizer [30].

Furthermore, the selection of the regularization parameter λ in (7.2) is an essential issue that

this approach inherits from the class of variational regularization methods [15]. A wise choice

of regularization parameter is obviously crucial for obtaining useful approximate solutions to ill-

posed problems. Indeed, replacing (7.1) with (7.2) induces better regularized solutions, provided a

suitable value for λ depending both on the level of degradation of the acquired image and on the

considered problem. As we have seen in Chapter 3, in the literature there exist various strategies

for choosing the parameter λ, such as the Morozov’s discrepancy principle, the generalized cross-

validation (GCV) and the L-curve method. However, it is well-known that such strategies can

present different limitations: they are not at all easy to apply for every regularizer; they can

provide either over or under smoothed solutions; they may often require to solve (7.2) many times

for different values of λ, making the overall procedure computationally expensive. For these reasons,

in this context it is a common practice to manually tune the regularization parameter by trial-and-

error procedures [156, 157, 159, 160, 161], thus leading to an high demanding workload.

Contribution

Section 7.1 is based on the publication [158] and on the pre-print [162], where we provided two

different DIP-based optimization models which share the property of automatically balancing the

effect of the regularization. First, we consider an unconstrained model as the one in (7.2) where

the regularization term is additively separable. The strength of the regularization is pixelwise

weighted by a set (one for each pixel) of automatically estimated regularization parameters whose

definition is based on local patterns. Furthermore, we propose to reformulate the standard regu-

larized unconstrained DIP optimization problem (7.2) as a constrained one, whose constraints are

set in accordance to the discrepancy principle. Finally, both arising unconstrained and constrained

optimization problems are solved via ADMM.

Section 7.2 is based on the publication [157] where we proposed a novel deep learning-based algo-

rithm that extends the well-known DIP to Time-Lapse Microscopy Video Super Resolution, thus

not requiring any training set. The proposed method, termed Recursive Deep Prior Video intro-

duces some novelties: the weights of the DIP network architecture are initialized for each of the

video frames according to a new recursive updating rule combined with an efficient early stopping

criterion. Finally, for each frame the proposed method considers (7.2) by setting the regularizer

equal to either the handcrafted isotropic or anisotropic Total Variation.
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7.1 Constrained and unconstrained Deep Image Prior models for

image restoration

In this section, we introduce two regularized unconstrained and constrained DIP optimization

models and we solve them within the ADMM framework.

7.1.1 Unconstrained model

To address problem (7.2), the approaches described in [156, 159, 161] consider the handcrafted Total

Variation regularizer with a single regularization parameter, which does not allow to adapt the

regularization to the local image patterns. In our unconstrained model, we replace the regularizer

in (7.2) and the parameter λ with a flexible space variant regularizer which considers a set of local

regularization parameters λi, for i = 1 . . . n, weighting the strength of the regularization for each

pixel. The resulting unconstrained regularized DIP model reads:

arg min
θ∈Rp

1

2
‖Af(θ, z)− g‖22 +

n∑
i=1

λiRi((Af(θ, z))Ii), (7.3)

where Ii for i = 1 . . . n are a partition of the set I := {1, . . . , l}, Ri are real-valued functions rep-

resenting the local components of the regularizer, A : Rn → Rl is a generic operator and l is a

positive integer such that l ≥ n. The functions Ri and the local parameters λi usually represent

local energies defined on a neighbourhood of the i-th pixel thus forcing prior information based

on local patterns. Considering a vector v in Rl, for every i = 1, . . . n we denote vIi ∈ R|Ii| as the

vector specified by the components of v whose indexes are in Ii.

Examples of regularization terms belonging to this class are the Tikhonov-like and the Total Vari-

ation ones. For instance, in the Tikhonov-based regularizers, A is usually chosen as the identity

or the Laplacian operators, whereas Ri : R → R is chosen as the square function. Concerning the

isotropic Total Variation, A represents the discrete gradient and Ri : R2 → R is chosen as the

`2-norm function.

By adding an auxiliary variable v := Af(θ, z), the optimization problem (7.3) is equivalent to

the following formulation:

arg min
θ∈Rp,v∈Rl

1

2
‖Af(θ, z)− g‖22 +

n∑
i=1

λiRi(vIi) (7.4)

s.t. Af(θ, z) = v.

As iterative solver we consider the ADMM scheme. The augmented Lagrangian function related

to the problem (7.4) reads:

L(θ,v,µv) =
1

2
‖Af(θ, z)− g‖22 +

n∑
i=1

λiRi(vIi)

+
βv
2
‖Af(θ, z)− v‖22 + 〈µv,Af(θ, z)− v〉, (7.5)
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where βv is a positive scalar, called penalty parameter, and µv is the Lagrangian parameter associ-

ated with the constraint Af(θ, z) = v. According to the ADMM framework, we seek for its saddle

point by minimizing with respect to the primal variables θ and v, alternatively, and by maximizing

with respect to the dual variable µv. Upon suitable initialization of the involved variables, the k-th

iteration of the ADMM iterative algorithm reads as follows:



θk+1 ∈ arg min
θ∈Rp

1

2
‖Af(θ, z)− g‖22 +

βv
2

∥∥∥∥Af(θ, z)− vk +
µkv
βv

∥∥∥∥2

2

(7.6)

vk+1 ∈ arg min
v∈Rl

n∑
i=1

λkiRi(vIi) +
βv
2

∥∥∥∥v − (Af(θk+1, z) +
µkv
βv

)∥∥∥∥2

2

(7.7)

µk+1
v = µkv + βv(Af(θk+1, z)− vk+1). (7.8)

In our implementation, the first problem (7.6) is solved inexactly by applying one iteration of

a gradient-based method using back-propagation to compute the gradient. We observe that this

optimization problem is very similar to the one solved in the classical DIP framework (7.1). In this

particular case, we force Af(θk+1, z) to be close to vk − µkv
βv

. From a numerical point of view, this

squared `2-norm term provides a stabilizing and robustifying effect to the DIP minimization.

Concerning the optimization problem in (7.7), if the proximal map of Ri can be easily computed

for all i = 1 . . . n, then the problem can be efficiently solved in a closed form by applying the

proximity operator of Ri to the n components of Af(θk+1, z) + µkv
βv

. Such hypotheses on Ri are not

so restrictive. For example both Tikhonov-like and isotropic Total Variation regularizers satisfy

these assumptions since the Ri are set as the square or `2-norm functions. In our implementation,

we chose to vary the set of local regularization parameters λi along the iterations. In particular,

their formulation is inspired by [163] and reads:

λki =
1

2n

‖Af(θk+1, z)− g‖22
Ri ((Af(θk+1, z))Ii)

. (7.9)

This entails that the smaller is the value of the local component function the greater is the regu-

larization provided at pixel i.

Remark 7.1. The value of the penalty parameter βv is hand-tuned. However, in the experimental

part we empirically show that the choice of this hyperparameter does not affect the performance of

the method as much as the choice of the regularization parameter when dealing with model (7.2).

In detail, we empirically demonstrate that the performance of the proposed model is not sensitive

to this penalty parameter βv for all considered test problems if chosen in a reasonable set.

7.1.2 Constrained model

The starting point of this approach is again the regularized DIP optimization problem in (7.2).

Differently from the unconstrained model described in Section 7.1.1, we here assume R : Rn → R
is a generic regularizer. The constrained model we refer to in the following reads as:

arg min
θ∈Rp

R(f(θ, z)) s.t. f(θ, z) ∈ Dσe , (7.10)
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where Dσe is defined as:

Dσe := {f(θ, z) ∈ Rn | ‖Af(θ, z)− g‖22 ≤ τσ2
em} (7.11)

with τ being a positive scalar and σe being the standard deviation of the noise affecting g. The

constrained model (7.10) exploits the Morozov’s discrepancy principle by simply extending [55, 54].

We propose to solve (7.10) via ADMM. By introducing two auxiliary variables t := f(θ, z) and

r := Af(θ, z)−g, two positive penalty parameters βt and βr, the augmented Lagrangian functional

is defined as:

L(θ, t, r;µt,µr) = R(t) + iBδ(r) + 〈µt, f(θ, z)− t〉+
βt
2
‖t− f(θ, z)‖2

+ 〈µr,Af(θ, z)− g − r〉+
βr
2
‖r− (Af(θ, z)− g)‖2,

(7.12)

where iBδ is the indicator function of the ball Bδ ⊂ Rm, centered in 0 ∈ Rm, of radius δ :=
√
τσ2m,

and µt, µr are the Lagrangian parameters related to the auxiliary variables. Hence, we consider

the following iterative scheme:



θk+1 ∈ arg min
θ∈Rp

βr
2

∥∥∥∥rk − (Af(θ, z)− g +
µkr
βr

)∥∥∥∥2

2

+
βt
2

∥∥∥∥f(θ, z)− tk +
µkt
βt

∥∥∥∥2

2

(7.13)

tk+1 = arg min
t∈Rn

R(t) +
βt
2

∥∥∥∥t− (f(θk+1, z) +
µkt
βt

)∥∥∥∥2

2

(7.14)

rk+1 = arg min
r∈Rm

iBρ(r) +
βr
2

∥∥∥∥r− (Af(θk+1, z)− g +
µkr
βr

)∥∥∥∥2

2

(7.15)

µk+1
t = µkt + βt(f(θk+1, z)− tk+1) (7.16)

µk+1
r = µkr + βr(

(
Af(θk+1, z)− g

)
− rk+1). (7.17)

This proposed ADMM scheme sequentially updates the primal variables θ, t and r and the dual

variables µt, µr. Similarly to the standard DIP framework solving (7.1), the first step in (7.13)

updates the network’s weights performing one back-propagation step. The update of t, provided

by the second step reported in (7.14), strictly depends on the choice of the regularizer. However,

problem (7.14) is mathematically equivalent to a proximal map, therefore it can admit a closed

form solution or it can be solved through either fixed point or gradient descent strategies as in

[160]. The update of r is a simple projection onto the ball Bδ.

We stress that our general approach (7.10), largely differs from model (7.2) proposed in [39],

since it overcomes the problem of tuning the regularization parameter provided the noise standard

deviation σe. In practice, it is sufficient to consider a good estimate of σe which can be computed

by applying the efficient algorithms described in [164, 165].

Finally, we point out that the penalty parameters βt and βr are hand-tuned. The considerations

highlighted for the penalty βv in Remark 7.1 also apply to these two hyperparameters.

7.1.3 Numerical results

In this section, we show the results of some numerical experiments carried out to highlight the main

benefits of the suggested unconstrained and constrained models and to evaluate their effectiveness
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in solving image deblurring and denoising tasks on synthetic natural images as well as real medical

ones.

Implementation details. Regarding the choice of the regularizer, both models allow a certain

freedom of choice. For the unconstrained model, we consider the handcrafted space variant Total

Variation and in the following we refer to it as DIP-WTV. Upon this assumption the set of regu-

larization parameters is defined according to the formula given by (7.9).

Concerning the constrained model (7.10), we set the regularizer R equal to the RED regularizer

[30]. We refer to this approach as cDIP-RED in the following. The cDIP-RED approach requires

the knowledge of the noise standard deviation affecting the acquired image which we estimate by

applying the algorithm described in [164], even if for the simulated tests we do know it. The

parameter τ in (7.10) is set equal to 1 for all the experiments. For both models and for all the

experiments performed we stop the related ADMM iterative process after 5000 iterations.

As deep neural network architecture we consider a generative CNN encoder-decoder architecture,

as suggested in [39], whose number of weights θ is about 2 millions.

The input z is a 3D random input tensor sampled from a uniform distribution having the same

size of the unknown image and 32 channels. In the experiments, we follow the common practice in

the DIP framework [160, 39] and use Adam [166] to update the set of parameters θ according to

(7.6) and (7.13). As typically done, we also perturb in each iteration the input z by a component

sampled from a Gaussian distribution with zero mean and standard deviation equal to 1
30 and we

compute the final output as the average of all iterates.

Evaluation metrics, comparisons and test set. We perform several tests by varying the level

of degradation and evaluate the performances through qualitative visual comparisons and quan-

titatively by PSNR and SSIM metrics. The proposed approaches DIP-WTV and cDIP-RED are

compared with the standard DIP [39] and the DeepRED [160] algorithms. We point out that in

[160] the authors prove that DeepRED outperforms other several approaches as far as the deblur-

ring and denoising tasks are concerned. Moreover, we underline that in their implementation, to

enforce the regularization, the authors implement a strategy that increases the magnitude of the

regularization parameter λ, along the iterations, when the computed solution starts overfitting

the corrupted image. More precisely, when the PSNR value between the restored image and the

degraded image is greater than a given threshold γ the regularization parameter is increased by

adding a given constant.

In Figure 7.2, we depict the images used in the numerical simulations. We consider a test set of five

red-green-blue (RGB) natural images belonging to the Set5 dataset [167], two black-white (BW)

natural images and one chest CT image of a patient affected by COVID-19 already post-processed

into a 2D image after the acquisition. We treat all the images belonging to Set5 as ground truths

as well as the watercastle BW image. In our experiments, the simulated acquired images are cre-

ated by applying the image formation model (1.16) to the related ground truths. In particular,

to simulate blurred data we assume that A = H represents the discretization of a convolutional

product with a Gaussian kernel of standard deviation σH. We remark that the level of degradation

of the simulated acquisition is specified by the magnitudes of σe and σH. Finally, we stress that
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the skyscraper BW image and the real chest CT image are affected by artifacts. Since no ground

truths are available for these images, the comparisons among the methods are carried out through

visual inspection.

Butterfly Bird Head Woman

Baby Watercastle Skyscraper chest CT

Figure 7.2: The test images employed in the numerical experiments. Butterfly : RGB image 256×
256 pixels, Bird : RGB image 288× 288 pixels, Head : RGB image 256× 256 pixels, Woman: RGB

224× 320 pixels, Baby : RGB 512× 512 pixels, Watercastle: BW 320× 480 pixels, Skyscraper : BW

256× 256 pixels, chest CT : BW 512× 512 pixels.

Stability with respect to hyperparameters and empirical convergence

In this section, we describe the advantages which the models previously suggested bring over the

considered competitors. In the first part, we empirically show the proposed approaches avoid the

typical noise overfitting of DIP. Then, we underline how the suggested methods are more robust with

respect to the choice of the hyperparameters than DeepRED. Finally, we empirically demonstrate

that solutions of the proposed approaches satisfy the Morozov’s discrepancy principle.

No overfitting. In the first test, we highlight the sensitivity of the standard DIP algorithm with

respect to the choice of the optimal number of iterations to be performed and we compare it with

DIP-WTV and cDIP-RED. For all experiments in this section we set the ADMM penalties βv = 1,

βt = 0.5 and βr = 1. We consider the woman, bird, and baby images and we simulate the noisy

acquisitions by corrupting the ground truths with an AWGN component of standard deviation

σe = 35. Then, we apply DIP, DIP-WTV, and cDIP-RED and in the upper panel of Figure 7.3 we

depict the behaviour of the PSNR metric along the performed iterations. In order to analyze the

relation between the noise level of the simulated acquisition and the optimal number of iterations

to be performed by DIP, DIP-WTV and cDIP-RED, in lower panel of Figure 7.3, we report the

behavior of the PSNR metric along the iterations while the level of corruption changes. In partic-



7.1 Constrained and unconstrained Deep Image Prior models for image restoration 119

(a) DIP (b) DIP-WTV (c) cDIP-RED

(d) DIP (e) DIP-WTV (f) cDIP-RED

Figure 7.3: The PSNR values achieved by DIP, DIP-WTV and cDIP-RED along the iterations. In

(a)-(b)-(c) the DIP, DIP-WTV and cDIP-RED are tested on three different RGB images degraded

setting σe = 35. In (d)-(e)-(f) DIP, DIP-WTV and cDIP-RED, respectively, are tested on the

butterfly RGB image corrupted with different noise levels.

ular, we consider the butterfly test images and we corrupt it by AWGN with σe = 25, 35, 50. As a

general comment, Figure 7.3 shows that standard DIP starts overfitting the corrupted image along

the iterative process. Moreover, for the DIP approach, this test highlights that the number of iter-

ations to reach the best PSNR strongly depends on the image considered (Figure 7.3a), and on the

level of corruption (Figure 7.3d). Conversely, the DIP-WTV (Figures 7.3b and 7.3e) and cDIP-RED

(Figures 7.3c and 7.3f) schemes do not overfit the corrupted data while the PSNR does not decrease.

No regularization parameter is required. The DeepRED algorithm overcomes the problem

of overfitting by adding the RED regularizer to the objective minimized by the standard DIP, pro-

vided a proper value for the regularization parameter λ. In this section, we highlight the sensitivity

of the DeepRED algorithm with respect to the choice of the hyparameters defining the sequence

of the regularization parameters, namely the threshold γ and the starting value of the regulariza-

tion parameter λ0. In Figure 7.4a, we show the behaviour of the PSNR for different values of the

threshold γ. The degraded image is obtained by corrupting the butterfly image with an AWGN

component setting σe = 35. The parameter λ0 is fixed equal to 0.005 while the increasing factor

equals 0.03. For high values of the threshold, the regularization contribution is too weak thus the

PSNR starts decreasing, which means DeepRED starts overfitting the degraded image. For low

values of the threshold, the regularization parameter starts becoming high thus too much regular-
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(a) DeepRED varying γ (b) DeepRED varying λ0

(c) DIP-WTV varying βv (d) cDIP-RED varying βt and βr

Figure 7.4: The PSNR values achieved by DIP, DIP-WTV and cDIP-RED along the iterations for

the butterfly RGB image with σe = 35.

ization is enforced. The best compromise for this butterfly test problem is γ = 22. However, in our

experiments we observe that this value depends once again on both the image and the noise level

considered and cannot be fixed a priori. In Figure 7.4b, we report the PSNR behaviour obtained

by fixing γ = 22 and by changing the starting value of the regularization parameter λ0. We observe

the output of the DeepRED in 5000 iterates largely depends on the choice of this hyperparameter.

We stress that DeepRED is implemented in the ADMM framework which requires the tuning of

the penalty parameter. In our experiments, the DeepRED penalty parameter is set equal to 0.5 as

suggested by the authors in [160].

The main feature of DIP-WTV and cDIP-RED is that the introduced regularization has no param-

eters to be estimated. In the case of DIP-WTV, the space variant regularization parameters are

automatically estimated along the iterations, whereas the constrained formulation of cDIP-RED

allows to automatically estimate the strength of the regularization by the Morozov’s discrepancy

principle.

Stability with respect to ADMM penalties βv, βt and βr. We remark that for the DIP-

WTV and cDIP-RED approaches we just need to hand tune the ADMM penalties βv, βt and βr.

However, in order to prove the stability of these methodologies with respect to the choice of these



7.1 Constrained and unconstrained Deep Image Prior models for image restoration 121

parameters, in Figures 7.4c and 7.4d we depict the PSNR behaviour provided by DIP-WTV and

cDIP-RED on the previous test image by setting different values for βv, βt and βr. We stress that

the range for the ADMM penalties for DIP-WTV and cDIP-RED has been deduced by the values

suggested in [160] for their ADMM implementation.

From these figures we can conclude that for the DIP-WTV and the cDIP-RED methods the ADMM

penalties affect the convergence speed, but the PSNR behaviour of both the approaches is stable

along the iterations and no noise-overfitting is present for any of the configurations considered.

Moreover, we also observe that these different configurations provide comparable restorations in

terms of visual quality in 5000 iterations. Furthermore, to maximize the performances of the cDIP-

RED method we should set βt < βr. This is due to the fact that a bigger value of βr provides more

consistency with the initial data. Finally, we stress that the PSNR behaviour reported in Figures

7.4c and 7.4d for the particular butterfly test problem are common to all the other tests performed.

All these considerations allow us to state that DIP-WTV and cDIP-RED are more robust than DIP

and DeepRED with respect to the choice of the hyperparameters values. Moreover, independently

on the ADMM penalties parameters setting, if compared to the standard DIP, we can redstop

DIP-WTV and cDIP-RED being confident that these methods do not overfit noise.

Satisfying the Morozov’s discrepancy principle. In Figure 7.5, we consider once again

the denoising test on the butterfly image described previously. We analyze the behaviour of the

constraint ratio ‖f(θ(k), z) − g‖/δ as a function of the iterations number. We remark that a

constraint ratio equal to 1 entails the corresponding iterate is almost at the boundary of Dσe

defined in (7.11). We observe that DIP and DeepRED (setting γ = 24) slowly overfit the simulated

noisy acquisition and converge to an interior point of Dσe . On the other hand, DeepRED (with

γ = 22), DIP-WTV and cDIP-RED converge to a solution which lies on the boundary of Dσe and

hence implicitly satisfy the discrepancy principle. We stress that we empirically observe the same

behaviour for all the other experiments performed. As a general comment, this test confirms once

again how the performances of DeepRED largely depend on the choice of the hyperparameter γ

defining the strength of the regularization. Moreover, we empirically show a more robust convergent

behaviour of DIP-WTV and cDIP-RED avoiding costly parameter tuning.

Denoising task

We validate DIP-WTV and cDIP-RED by comparing them with DIP and DeepRED on the Set5

[167] dataset for the denoising task. The starting noisy images are created by corrupting the ground

truth images with an AWGN component of standard deviation equals to 25 and 50. We remark

once again that for the cDIP-RED approach we estimate the noise standard deviation even if we

know its value. The performances are evaluated by means of the PSNR metric and, in addition, by

a visual comparison. In particular, Figures 7.6 and 7.7 report the restored baby and butterfly images

starting from the data with the highest level of corruption considered. In Table 7.1 we report the

mean values of the PSNR metric on Set5. For the DIP algorithm we have selected for each image

the number of iteration maximizing the PSNR value. For DeepRED we set the ADMM penalty

equal to 0.5, whereas we have selected the threshold γ and the starting regularization parameter λ0
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Figure 7.5: The constraint ratio’s trend along the iterations obtained by applying DIP, DeepRED

(with γ = 22 and γ = 24), DIP-WTV and cDIP-RED to the butterfly RGB image corrupted by

AWGN with σe = 35.

in order to maximize the PSNR for each image. For DIP-WTV and cDIP-RED we set for all the

images βv = 1 and βt = 0.5 and βr = 1, respectively. For DeepRED, DIP-WTV and cDIP-RED

the restored images have been obtained performing 5000 iterations.

The results reported in Table 7.1 show that cDIP-RED outperforms DIP and provides slightly

better performances with respect to DeepRED in terms of PSNR metric. We remark that cDIP-

RED does not require any hand-tuning of the regularization parameter. Concerning DIP-WTV,

we observe that it provides better performances than DIP. Moreover, we stress that it has shown

more robustness to the choice of the hyperparameters with respect to the DeepRED and it has

the lowest number of hyperparameters to be set. Unfortunately, the handcrafted Total Variation

regularizer is not as effective as RED regularization for natural images, which manifests in lower

PSNR scores for DIP-WTV. In Figures 7.6 and 7.7, we report the simulated noisy acquisitions of

the baby and butterfly images setting σe = 50 and the restored images obtained by DIP, DeepRED,

DIP-WTV and cDIP-RED. Moreover, in the captions, we highlight the PSNR values. As a general

comment, the DIP algorithm struggles to recover the image texture. The cDIP-RED restorations

look sharper and more faithful to the ground truth than the ones obtained by DeepRED and

DIP-WTV as underlined by the close-ups.

Table 7.1: PSNR mean values for the Set5 for two level of noise. In blue we highlight the best

PSNR value.

σe Noisy DIP DeepRED DIP-WTV cDIP-RED

PSNR
25 25.46 32.29 32.91 32.48 32.95

50 19.89 27.87 28.15 27.98 28.34
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(a) GT (b) noisy (c) DIP

(d) DeepRED (e) DIP-WTV (f) cDIP-RED

Figure 7.6: Restored images for the baby test problem setting σe = 50. The PSNR values are:

Noisy: 19.84 dB, DIP: 27.85 dB, DeepRED: 28.32 dB, DIP-WTV: 28.26 dB, cDIP-RED: 28.43 dB.

(a) GT (b) noisy (c) DIP

(d) DeepRED (e) DIP-WTV (f) cDIP-RED

Figure 7.7: Restored images for the butterfly test problem setting σe = 50. The PSNR values are:

Noisy: 19.88 dB, DIP: 27.81 dB, DeepRED: 28.13 dB, DIP-WTV: 28.01 dB, cDIP-RED: 28.69 dB.

Deblurring task

In this section, we compare DIP-WTV and cDIP-RED with DIP and DeepRED on the Set5 [167]

dataset for the deblurring task. The starting degraded images are constructed by setting the

standard deviation of the noise σe = 10 and the standard deviation of the Gaussian blur σH = 2.
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(a) GT (b) noisy (c) DIP

(d) DeepRED (e) DIP-WTV (f) cDIP-RED

Figure 7.8: Restored images for the watercastle test problem with σe = 5 and σH = 1.6. The PSNR

and SSIM values are: Noisy: 22.87 dB - 0.76, DIP: 25.81 dB - 0.87, DeepRED: 26.23 dB - 0.89,

DIP-WTV: 25.87 dB - 0.88, cDIP-RED: 26.28 dB - 0.89.

The performances have been evaluated by means of the PSNR and SSIM metrics. In Table 7.2,

we report the mean values of the PSNR and SSIM metrics. Moreover, we consider the skyscraper

and the watercastle images and we add blur and noise by setting σe = 10 and σH = 0.8 for the

first image, σe = 5 and σH = 1.6 for the second. The simulated degraded acquisitions are drawn

in Figures 7.8b and 7.9b, respectively. In Figures 7.9 and 7.8, we report the results obtained by

applying DIP, DeepRED, DIP-WTV and cDIP-RED and in the caption we report the PSNR and

SSIM metrics. For the DIP and DeepRED we set all the hyperparameters in order to maximize the

PSNR. For DIP-WTV and cDIP-RED we set for all the tests βv = 1.5 and βt = 1.5 and βr = 2,

respectively. For DeepRED, DIP-WTV, and cDIP-RED the restored images have been obtained

performing 5000 iterations.

From Table 7.2 we observe again that DeepRED and cDIP-RED reach comparable performances on

Set5. However, we stress that, differently from DeepRED, the cDIP-RED scheme does not require

to fix the regularization parameter. Moreover, DIP-WTV outperforms the standard DIP. For the

watercastle image, DeepRED, and cDIP-RED reach similar performances in terms of PSNR and

SSIM metrics, however the DeepRED restoration looks noisier than the one provided by cDIP-

RED. Finally, DIP-WTV always performs better than the standard DIP.

Concerning the skyscraper we do not have a ground truth available, therefore we can compare

the results only through visual inspection. Indeed, it is clear from Figure 7.9a that the skyscraper

image is affected by jpeg-compression artifacts. In order to simulate a more realistic acquisition, we

further corrupt this compressed image with blur and noise (Figure 7.8b). The close-ups in Figure

7.9 highlight that the output cDIP-RED suppress the artifacts and outperforms the restorations

provided by DIP, DeepRED and DIP-WTV in terms of visual quality. In particular, cDIP-RED
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(a) Compressed acquisition (b) Blurry and noisy (c) DIP

(d) DeepRED (e) DIP-WTV (f) cDIP-RED

Figure 7.9: Restored images for the skyscraper test problem with with σe = 10 and σH = 0.8.

can retrieve better the details and remove the artifacts and the noise.

Table 7.2: PSNR and SSIM mean values for the Set5 considering Gaussian blur with σH = 2 and

the noise-level σe = 10. In blue we highlight the best PSNR and SSIM values.

Blurred DIP DeepRED DIP-WTV cDIP-RED

PSNR 25.93 30.08 30.81 30.56 30.90

SSIM 0.81 0.91 0.92 0.92 0.93

Artifact removal for a chest CT image

Finally, we show how our methods can be effective for retrieving one real medical chest CT image

of a patient affected by COVID-19 [168]. In Figure 7.10a we report the acquired data together

with the close-ups of two details (inflammation zones) in the lungs backside where are visible the

effects of the interstitial pneumonia caused by COVID-19 disease. From these panels the standard

artifacts related to the discrete angles sampling typical of the CT application are clearly visible. In

Figures 7.10b and 7.10c, we show the restored images provided by our DIP-WTV and cDIP-RED

approaches, respectively. Generally, all finer structures, such as the inflammation details, alveoli

and bronchioles, are sufficiently well retrieved, as highlighted by the close-ups. Finally, it is evident

that the restoration provided by cDIP-RED looks sharper than the one restored by DIP-WTV.
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(a) Acquired chest CT

(b) DIP-WTV (c) cDIP-RED

Figure 7.10: Reconstructed images for the real CT problem. In (a) we report the acquired data, in

(b)-(c) we report the restored images obtained by DIP-WTV and cDIP-RED, respectively.

7.2 Deep Prior for video super resolution in time-lapse microscopy

Light Time-Lapse Microscopy (TLM) imaging is successfully used to acquire and record biological

experiments based on Organ-On-Chip (OOC) platforms, which are miniaturized microfluidic de-

vices mimicking in-vitro complex 3D cellular micro-environments [169], such as cell migration [170]

or multi-cellular interaction [171, 172].

After acquisition by TLM, the live cell videos are analyzed by means of sophisticated computerized

algorithms with the aim of finding biological insights embedded within cell motility. The way in

which cells move, indeed, has been discovered meaningful to understand biological processes, such

as wound healing [173] and morphogenesis [174] but also cancer growth and spread of metastasis

[175]. Usually, the automated exploitation of such devices includes the localization and tracking of

cells through increasingly cutting-edge single particle tracking software [176, 177].

Cell trajectories are then coded in time and space domain by extracting some motility descriptors

useful to uncover and quantitatively evaluate the response to target therapeutic agents [178, 179].

However, the reached biological conclusions can be compromised by the experimental set-up of

TLM in terms of spatiotemporal resolution [180, 181].

First of all, a suitably high frame rate is required to entirely capture and then to accurately esti-

mate the duration of biological events such as apoptosis or cell-cell interaction. Not less relevant,

a high spatial resolution implies many benefits for the video analysis. The higher pixel density,

characterizing the so-called High Resolution images with respect to Low Resolution ones, reveals to

be essential to better distinguish particles within a video and hence to effectively dissect intricate
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Figure 7.11: Encoder-Decoder architecture with long skip connections. In the legend on the right:

CN2 stands for Convolutional layer with stride 2, BN for batch normalization, LeRe for Leaky

ReLu activation, CN1 for Convolutional layer with stride 1, US for Lanczos Upsampling, Sig for

sigmoid activation. The image z is the random input image of the RDPV method and the SR

frame is the computed output.

biological phenomena involving multiple cell populations.

Multi-cellular interaction may constitute an example: during interaction, the distance among cells

reduces until they overlap. A high spatial resolution may decrease cell detection and tracking errors

showing more defined and detailed shapes and edges. As a result, a more reliable tracking pos-

itively affects the trustworthiness of the motility descriptors extracted from the trajectories thus

uncovering unbiased biological findings.

Unfortunately, acquiring HR images is not always possible, due to the high cost of the high per-

forming acquisition instruments and physical constraints, such as the optical zoom provided by

the camera. However, if a higher magnification is feasible, it does not certainly guarantee a better

image clarity. In addition, HR images related to long-term experiments, i.e., from hours to days,

can reach a size from tens to hundreds of gigabytes, thus requiring very high processing capabil-

ities. A fair compromise between high computational requirements and the preservation of the

biological informative content may be represented by the adoption of super resolution algorithms:

experiments can be acquired at a LR and then post-processed by means of SR algorithms.

7.2.1 The proposed Recursive Deep Prior for Videos

In the field of TLM videos it is not possible to have available large datasets of low resolution

and high resolution sequences of frames, and moreover, even if the frames recorded belong to the

same experiment, some conditions may change from one video to another, thus making supervised

learning methods not suitable. Therefore, motivated by the interesting properties of DIP, in [157]

we extended this unsupervised method to address the task of video super resolution in TLM. We

now describe the proposed method.

First, we consider the TV-regularized DIP model adapted to the super resolution task, which reads:
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arg min
θ∈Rp

1

2
‖SHfθ(z)− yt‖22,+λTVp(fθ(z)), (7.18)

where by fθ we denote the encoder-decoder CNN architecture sketched in Figure 7.11 whose set

of weights is denoted by θ, yt is the low resolution TLM video frame at time t and z is a random

image sampled from a uniform distribution having the same spatial size of the unknown HR frame.

By TVp we denote the anisotropic Total Variation when p = 1 and the isotropic Total Variation

when p = 2.

The proposed video super resolution method applies on one video frame at a time. Therefore,

given yt, the LR frame at time t, the method reconstruct the super resolved (SR) frame ut com-

puting fθ∗t (z), where θ∗ is obtained by early-stopping the optimization process solving (7.18) as for

the standard DIP approach.

However, some novelties are introduced. A scheme of the proposed method is depicted in Figure

7.12. The process reconstructing the SR frame at time t is divided in two steps: the initializa-

tion and the computation steps. The computation step involves the iterative process solving the

optimization problem (7.18), by means of standard iterative gradient-based algorithms, and the

reconstruction process computing the SR counterpart of the LR frame yt. The output of the com-

putation step are the reconstructed SR frame ut and the set of weights θ∗t such that ut = fθ∗t (z).

The initialization step defines the starting point of the optimization process, namely the set of

weights θ initializing the fixed CNN architecture before optimization.

Given the TLM LR frame yt, in order to exploit the correlations among neighboring frames, before

optimization, the fixed encoder-decoder architecture is initialized by the set of weights θ∗t−1 which

is the output of the computation phase at time t− 1. Furthermore, the computation step, depicted

in Figure 7.12 (green square), involves the iterative process solving (7.18) which is early-stopped by

means of an adaptive criterion looking at a sliding window of a fixed size including the values of the

objective function computed along the iterations. The process is stopped when these values start

flattening and reach a steady-state. When λ = 0 in (7.18), the method is referred to as Recursive

Deep Prior Video (RDPV), whereas when λ > 0, the method is referred to as RDPV-TVi when we

choose the isotropic TV (p=2) or RDPV-TVa when we consider the anisotropic TV (p=1).

7.2.2 Numerical results

In this section we report some numerical results in order to validate the efficiency of the RDPV

and its TV-based variants, on synthetic as well as real videos from OOC experiments related to

tumor-immune interaction.

Materials: synthetic and real data. The dataset of synthetic videos analyzed is based on

the work by [180], where the authors derive a stochastic particle model to artificially mimic the

migration of immune cells towards a target tumor cell and their consequent interaction. A total

amount of 100 synthetic videos is generated. Each video represents a region of interest of 288 ×
288 pixels containing 16 immune cells and one target tumor cell. A total number of 100 frames

is collected for each video emulating a video frame acquisition of 20 seconds. The theoretical
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Figure 7.12: RDPV scheme.

trajectories of the total 1600 immune cells (16 for each of the 100 synthetic videos), obtained as

result of the implementation of the stochastic particle model, are here considered as ground truth

trajectories (GT trajectories). In the following, we will refer to the described atlas of videos as

original or noise-free synthetic videos or simply as synthetic videos. The original videos are further

corrupted by adding white Gaussian noise with standard deviation equal to 0.001.

The proposed approach is validated on two sets of real cell videos, namely Videos Type 1 and Videos

Type 2, each one containing 10 videos, respectively. Each video represents a Region of Interest

(ROI) of 288 × 288 pixels with a tumor cell occupying its center. Each video frame has been

acquired every two minutes. Videos Type 1 counts 31 frames, while Videos Type 2 are composed

by 57 frames. For the sake of brevity we here omit further information about the considered

data. However, the interested reader can refer to [157] and references therein. We stress that the

original synthetic and real videos are used as ground-truths in the following. In order to obtain LR

frames, all the videos have been downsampled by a factor equal to 4 using the standard Bicubic

interpolation and then reconstructed by SR methods setting L = 4.

Evaluation metrics. A two-fold evaluation process is carried on. Both synthetic and real videos

are involved in a test to verify image similarity between original HR (described previously) and

reconstructed SR video frames based on the computation of the PSNR metric. For both synthetic

and real videos, the average PSNR values computed over all the video frames are calculated.

The original synthetic videos are also utilized to evaluate how the performance of the tracking

software is affected by the proposed SR algorithms. The tracking algorithm used is the Cell

Hunter (CH) [180] software using the Circular Hough Transform (CHT) [182] for localizing the
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cell and the Munkres’ algorithm [183] for the assignment of the trajectories. More specifically,

immune cell trajectories detected from the tracking algorithm on LR videos (LR trajectories),

on original HR videos (HR trajectories) and on SR videos (SR trajectories) are compared with

the theoretical/ground truth trajectories (GT trajectories), i.e., trajectories directly obtained from

the implementation of the stochastic particle model in the creation phase of the synthetic videos

[180]. This kind of analysis is accomplished only on synthetic videos because theoretical trajectories

are not available in real contexts. The tracking algorithm could fail by missing trajectories or by

associating tracts corresponding to different detected trajectories to a single ground truth trajectory.

For this reason, tracking performances are assessed by computing the percentage of detected cell

trajectories with respect to the total number of the ground truth ones and the so-called swapping

error [184] that measures the average number of swaps per trajectory.

Comparisons. We compare the implemented RDPV, RDPV-TVi and RDPV-TVa with some of

the best performing trained methods, ESRGAN [185], proSRGAN, proSR, proSRs [186], RCAN

[187], EDSR [63], all of them applied one frame at time. Moreover, we consider also the Deep Prior

Video (DPV) method, which applies the standard DIP frame by frame without considering any

initialization.

Implementation details. The computation step requires the usage of a gradient-based algo-

rithm to solve (7.18). As suggested in [39], in our experiments, we use the ADAM scheme by

fixing the learning rate at 10−3. The core idea of the automatic early stopping procedure, is to

stop the iterations based on the behaviour of the objective function in (7.18). More precisely, this

technique considers a window (patience) of consecutive values of the objective function and then,

if there is not enough decrease during the iterative process, the algorithms are stopped before a

fixed maximum number of iterations is reached.

For the first frame of synthetic videos, we impose a maximum of 1000 iterations with early stopping

starting from 500 iterations (patience = 50). For the subsequent frames, due to the initialization

step, the number of iterations can be reduced: we set a maximum of 500 iterations with early stop-

ping starting from 300 iterations (patience = 50). For the first frame of real videos, we impose a

maximum of 3000 iterations with early stopping starting from 2000 iterations (patience = 50). For

the subsequent frames the number of iterations is reduced: we set a maximum of 2000 iterations

with early stopping starting from 1000 iterations (patience = 50). For a fair comparison, we set the

maximum number of iterations for DPV as the number of iterations performed by RDPV according

to the aforementioned stopping criterion.

These hyperparameters, i.e., the maximum number of iterations and the starting of the early stop-

ping rule, are chosen in order to provide a fair compromise between reconstruction quality and

computational time. Since the best reconstructions are obtained when the loss starts flattening

and reaches a steady-state, the starting of the early stopping rule is imposed at about half of

the maximum number of iterations. Postponing the starting of the early stopping rule makes the

network more prone to over-learn the image statistics also reproducing the noise affecting the LR

frame in the SR reconstruction. Moreover, we remark that for all the processed synthetic and real

frames, the early stopping ends the iterative process before the maximum number of iterations is
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reached.

Concerning the proposed regularized methods (RDPV-TVa and RDPV-TVi), we set the trade-off

parameter λ in (7.18) equal to 0.008 for all the reconstructed videos. In our experiments, compa-

rable performances are obtained in terms of PSNR if the λ is chosen in the range [10−3, 10−2].

The importance of super resolution on cell tracking

Video analysis usually starts with cell localization and tracking. The errors made by tracking algo-

rithms in this phase can propagate and heavily compromise the extrapolated biological conclusions.

When the spatial resolution is low, the tracking software could fail in its localization task.

In order to corroborate this statement, in Figure 7.13 we show how the localization algorithm

(CHT) acts on LR and SR frames obtained by a coarse SR algorithm (Bicubic interpolation) and

the proposed RDPV, respectively. More precisely, the left panel of Figure 7.13 depicts an example

of cell localization on the LR synthetic video frame where localized cells are marked as red circles

and missed cells are pointed out by black arrows. As a result, we observe that some cells are missed,

and others are identified as unique entities because partially overlapped. The bicubic outcome re-

veals to be blurred with the contour of the cells not sharp. As a consequence, this smoothing effect

damages the edge detection of the circular-shaped objects by the CHT. Indeed, as depicted in the

central panel of Figure 7.13, the lack of fine details may lead to inaccurate localization. It is evident

how the software is able to distinguish cells but misses some of them. As shown in the right panel

of Figure 7.13 the proposed RDPV allows increasing the trustworthiness of tracking software in

localizing cells so that overcoming the limitation of coarse results obtained by the standard bicubic

algorithm. This simple test does not only highlight an interesting connection between pixel density

and tracking performances, but also the importance of good quality SR reconstructions.

Figure 7.13: Immune cell localization on synthetic videos. Example of cell localization by means

of Cell Hunter software on a LR frame (left panel) and the corresponding SR counterparts recon-

structed by the Bicubic method (central panel) and the proposed RDPV method (right panel).

A visual comparison between GT, HR, SR, and LR trajectories on synthetic video frames is provided

in Figure 7.14. A zoom is supplied for a better visualization of the LR trajectories. Conversely to

LR trajectories, the appearance of HR and SR trajectories is very similar to that of GT ones. From

a quantitative point of view, the percentage of total number of detected LR trajectories on the 100

synthetic videos with respect to the overall number of the GT ones (1600) is equal to 51%, while

it reaches the 100% for the detection of both the HR and the SR trajectories. The swapping error
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Figure 7.14: Visual representation of immune cell trajectories on synthetic videos. Ground-truth

(GT) trajectories directly obtained from the implementation of the model in the creation phase of

the synthetic videos (upper-left panel). High resolution (HR) trajectories identified by Cell Hunter

software on the original HR video (upper-right panel). Super resolution (SR) trajectories identified

by Cell Hunter software on the SR video, reconstructed by the proposed RDPV method (lower-

left panel). Lower resolution (LR) trajectories identified by Cell Hunter software on the LR video

(lower-right panel). A zoom of LR trajectories is provided for a better visualization (Zoomed LR).

counts 18.4, 3 and 3.5 swaps per trajectory, for the LR, HR and SR trajectories, respectively. This

is a consequence of the previously underlined CHT errors made on LR video frames (Figure 7.13),

since the estimation of trajectories is strictly correlated to the detection of cells frame by frame.

Finally, in Figure 7.15 an example of a Video Type 1 frame reconstructed with RDPV is shown.

The favorable effect of super resolution on cell localization, edge map detection and cell tracking is

also highlighted. The application of the RDPV algorithm allows us to reduce the false occurrences

during the cell localization phase (Cell localization in Figure 7.15), to successfully separate cells in

contact (Edge detector in Figure 7.15) and to effectively construct cell trajectories (Cell tracking

in Figure 7.15 ).

Image quality evaluation on synthetic cell videos

So far, we have underlined the importance of the high spatial resolution for TLM videos in order

to get a successful tracking. In Figure 7.13, we test the CHT localization algorithm on the SR

output of the bicubic algorithm, highlighting that sophisticated SR algorithms are required in or-

der to retrieve fine image details. In Figure 7.16, we show the distributions of the average PSNR

values computed over all the frames of each of the 100 synthetic videos for all the above mentioned

methods. Figure 7.16a refers to the original synthetic videos, whereas Figure 7.16b refers to the

corrupted synthetic videos. The proposed RDPV and RDPV-TVi algorithms always outperform
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Figure 7.15: More effective cell motility evaluation moving from Lower Resolution to Super Reso-

lution videos. The number of false occurrences during the cell localization phase is reduced (Cell

localization); cells in contact are separated thanks to an efficient edge detection (Edge detector);

cell trajectories are effectively constructed (Cell tracking).

the standard DPV. This is because RDPV implements the new recursive updating rule which takes

into account the knowledge acquired by the previous reconstructed frames. Moreover, the regu-

larization term within RDPV-TVi adds to the model prior information on the solution that are

not completely captured by the fixed CNN architecture. Very promising results are achieved from

the comparisons with the trained networks. Comparable performances are observed on noise-free

artificial videos (Figure 7.16a). Better performances are achieved on corrupted artificial videos

(Figure 7.16b). This is because one of the main drawbacks of trained architecture is the instability

with respect to the presence of noise components in the input data. They are not able to filter out

the added noise from test images if the training dataset does not present a considerable number

of noisy-images at different levels of noise. Anyway, this necessity might be limiting in practical

applications. The presented results stress the importance of developing an algorithm whose output

is not dependent on a fixed set of image examples.

According to such quantitative results, we depict images obtained by the worst and the best trained

methods (ESRGAN and RCAN, respectively) alongside GT, LR, DPV, RDPV and RDPV-TVi im-

ages. More specifically, Figure 7.17 highlights one of the video frames from the corrupted synthetic
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videos. We observe RCAN achieves promising porformances in terms of average PSNR but, as

emerged from Figure 7.17, the immune cells shape appears distort (red and green arrows). The

same warping also holds for the ESRGAN method. The standard DPV, instead, is not able to

guarantee a fine result, conversely to RDPV which, on its part, has the drawback to not effectively

separate some of the immune cells (red and green arrows). The addition of TV regularization

(RDPV-TVi) leads to optimal results both in terms of immune cell shape and differentiation.

(a) (b)

Figure 7.16: (a) Quantitative results in terms of PSNR on synthetic videos (σ = 0, upper panel)

and (b) their corrupted counterparts (σ = 0.001, lower panel). Boxplots comprise the average

values of PSNR computed over all the frames of each synthetic video.

corrupted LR ESRGAN

RCAN DPV RDPV RDPV-TVi

GT

Figure 7.17: Synthetic Frame reconstruction close-ups (x2), L = 4, σe = 0.001.
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Image quality evaluation on real cell videos

We finally validate the proposed approach on videos from two diverse OOC experiments by ex-

ploiting tumor-immune interaction: Videos Type 1 and Videos Type 2. In Figure 7.18a and Figure

7.18b, we show the average PSNR values for Video Type 1 and Video Type 2, respectively. The

average PSNR values are computed over all the frames of each of the real videos of the two types.

The proposed methods RDPV,RDPV-TVi and RDPV-TVa outperform the standard DPV both

for Video Type 1 and Video Type 2 in terms of average PSNR. We stress that the addition of both

isotropic and anisotropic Total Variation improve the performances of the RDPV, confirming once

again the importance of these additional terms. For what concerns the comparisons with the trained

architecture, RDPV, RDPV-TVi and RDPV-TVa outperform them in terms of average PSNR on

Video Type 1 (Figure 7.18a) and reach comparable performances on Video Type 2 (Figure 7.18b).

Not less relevant, from the PSNR distributions shown in the boxplots in Figure 7.18, it is re-

markable to see that the distributions of the average PSNR values have a high variance whereas

unsupervised methods have more stationary performances over all the tests executed on real videos.

This is more evident for the average PSNR distributions on Video Type 1 (Figure 7.18a). This

highlights a stronger sensitivity to the given input frames for the trained methods with respect to

the unsupervised ones. We stress that, for each of the two video types, even if the frames recorded

belong to the same experiment, some conditions may change from one video (or even frames) to

another, such as the brightness of the FOV. Indeed, analyzing the acquired videos, we observe that

sudden changes of luminosity are evident especially for Videos Type 1, thus negatively affecting the

performances of trained methods in some cases. This confirms the need of unsupervised methods

for TLM videos super resolution, since it not feasible to collect a dataset accounting all the possible

real boundary conditions.

As qualitative evaluation, in Figure 7.19 we depict a video frame example (from Videos Type 2)

obtained by the worst and the best trained methods (ESRGAN and RCAN, respectively) alongside

GT, LR, DPV, RDPV and RDPV-TVi images. In Figure 7.19, three regions of interest are closed-up

and highlighted by using three different coloured squares: red, green and blue. All the approaches

increase the resolution of the starting LR frame and in particular all of them are able to separate

the cells belonging to the cluster within the red square. As it is evident the trained approaches

introduce artifacts alongside the cell cluster (red square). Such artifacts can dramatically affect the

cell tracking software in the localization phase thus identifying false positive cell candidates. We

observe that all the unsupervised methods reach quite similar results with respect to the ground-

truth image. However, the cells within the cluster look better separated for the image obtained

by RDPV-TVi, thus confirming that the addition of the Total Variation regularizer improves the

results.
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(a) (b)

Figure 7.18: (a) Quantitative results in terms of PSNR on real Videos Type 1 (upper panel) and

Type 2 (lower panel). Boxplots comprise the average values of PSNR computed over all the frames

of each real video.

GT LR ESRGAN RCAN

DPV RDPV RDPV-TVa RDPV-TVi

Figure 7.19: Real Frame of Videos Type 2, L = 4.Three regions of interest are also closed-up and

highlighted by blue, green and red squares.



Chapter 8

Recurrent Neural Networks for GNSS

time series modeling

Global Navigation Satellite System (GNSS) is the standard generic term for satellite navigation

systems that provide autonomous geo-spatial positioning with global coverage. More precisely,

GNSS refers to a constellation of satellites, constantly orbiting around the Earth, which transmit

positioning and timing data to GNSS receivers. The receivers are endowed of small chips which are

able to capture and analyze the signal emitted by a satellite in order to determine their location

on the Earth. Examples of GNSS constellation include Europe’s Galileo, the USA’s NAVSTAR

Global Positioning System (GPS), Russia’s Global’naya Navigatsionnaya Sputnikovaya Sistema

(GLONASS) and China’s BeiDou Navigation Satellite System.

A common operation to find an object location using its distances to three other known points

or stations is called 3D-trilateration. In Figure 8.1 we provide a scheme of the 3D-trilateration used

by GNSS technology to find the position of a receiver R on the Earth. Given a satellite S1, the

information sent to the receiver R are: the satellite position xS1 and the recorded time tS1. The

receiver has a quartz cristals internal clock, therefore it measures the time tR the signal arrives.

Then, the distance d1 between the satellite S1 and the receiver R is approximated as the product

of the speed of light c and the difference tR1 − tS1. Unfortunately, one satellite is not enough to

provide a precise location of R on the Earth since the intersection between the sphere of center S1

and ray d1 and the Earth is a large area. Mathematically, in order to narrow down the area we

need at least three satellites. In principle, three satellites should be enough to identify the exact

location of R on the Earth but, in practice, more satellites are needed. This is due to the many

reasons: the receiver uses quartz cristals clock which do not provide precise timing as much as the

atomic clock used by satellites and the line of sight can be obstructed thus negatively affecting the

transmission. All these sources of error compromise the accuracy of the computed distances, hence

having access to more than three satellites is also a benefit to reduce the error. Generally, the more

signals from satellites are used in the position estimation the more accurate the GNSS unit can

estimate the position.

Nowadays GNSS, is mainly used for many monitoring applications. Thanks to the capability

of these systems to provide continuously acquired data, which are converted in three-dimensional

137
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Figure 8.1: 3D-trilateration scheme in GNSS technology.

coordinates after data processing, the monitoring is usually performed through time series analysis.

GNSS monitoring can have different purposes depending on the monitored object and the data

processing varies consequently. Moreover, the analysis can have different goals: sometimes a signal-

denoising is required in order to allow more accurate characterization of the signals, whereas in other

cases the goal is a reliable prediction of the coordinates that will be obtained from the incoming

data. For GNSS time series many forecasting models have been proposed, based on ARMA, ARIMA

and Kalman methods [188, 189, 190, 191, 192], and many denoising models, based on moving

averages, sequential filtering and, recently, based on deep learning [193, 194, 195]. The class of DNN

algorithms provides a family of networks, suited for sequential data processing, called Recurrent

Neural Networks (RNNs). Among them Long Short-Term Memory (LSTM) models, introduced at

the beginning to solve vanishing gradient problems which affect all the RNNs [196, 197, 198], has

showed its strength for almost all of the time dependent problems. The LSTM is characterized by

a gated structure which allows it to store past sequence features in its memory block, bringing out

them in the output and preserving long term dependences. LSTM approach has achieved grateful

results in speech recognition [199, 200], hand-writing recognition [201] and recently in Traffic Flow

Prediction [202], Real Time Autonomous Vehicle Navigation [203].

Contribution

In this chapter we consider a RNN for prediction and denoising of GNSS time series. The im-

plemented network adds to the LSTM layer an activation hyperbolic tangent layer and a Fully

Connected layer. We provide specific hints on the hyperparameters choice for solving the denoising

and prediction tasks. This chapter is based on the conference paper [204].
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8.1 The proposed LSTM-Full neural network

In this section we review the main notions about RNNs. In particular, we focus on the LSTM

architecture which represents a powerful tool for sequential data processing. Finally, we describe

our model LSTM-Full model.

Recurrent Neural Networks

RNNs are a family of Neural Networks (see Appendix A) suited for time series processing. In RNNs

the output at previous time steps affects the output at the current time step so as they are able to

catch long term dependencies in sequential data. Given a starting hidden layer vector h0, then for

each time step t and for each input vector xt the forward equations of a general RNN are:

ht =Whhht−1 + Uxhxt + bh (8.1)

yt =Φ(ht) (8.2)

where Whh denotes the hidden-to-hidden weight matrix, Uxh the input-to-hidden weight matrix, bh

the bias vector and Φ is a pointwise non-linear activation function. The main difference between

Feed Forward Neural Networks (FNNs) (see Appendix A) and RNN, is that the latter have a

temporal structure. As for FFNNs, gradient based algorithms are used to optimize a loss function

respect to the unknown weights and the Back Propagation Through Time (BPTT) algorithm is

employed to compute the gradients. One drawback of RNNs is that BPTT algorithm computes

gradients that tend to vanish or explode due to the fact that we are composing many times the

same non linear function Φ [196, 197].

The most effective model used in applications are gated RNNs such as Long Short-Term Memory

(LSTM) nets. A LSTM network [205] is made up of LSTM units showed in Figure 8.2b. Generally,

a LSTM unit is composed of a cell which is able to record the main information over long time

intervals [198] and three different gates: the forget gate, the input gate and the output gate. These

gates have the task to supervise the flow of information and prevent vanishing gradient problems.

The forget gate uses a sigmoid function to decide which information has to be taken into account

in the previous cell state. The input gate decides which new information has to be stored in the

cell memory. The output gate decides the contents of the output vector. Each gate takes the same

input: xt the current input and ht−1 the previous hidden layer vector. The LSTM unit forward

equations are presented below:

ft =σ(Ufxt + Wfht−1 + bf ) (8.3)

it =σ(Uixt + Wiht−1 + bi) (8.4)

gt =tanh(Ugxt + Wght−1 + bg) (8.5)

ct =it ∗ gt + ft ∗ ct−1 (8.6)

ot =σ(Uoxt + Woht−1 + bo) (8.7)

ht =tanh(ct) ∗ ot (8.8)
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where ∗ represents the pointwise product, ft, it,ot are respectively the forget gate, the input gate

and the output gate vectors at time t, ct is the cell vector at time t and the terms U and W in

each equation are the weight matrices.

Figure 8.2: (a) Complete process used in this study. (b) LSTM unit.

The LSTM-Full architecture

Given the input sequence xt ∈ Rh at time t, the model we propose is a RNN-based model whose

equations are:

h1
t =Φ(xt,h

1
t−1) (8.9)

h2
t =tanh(h2

t ) (8.10)

yt =Wh2h
2
t + bh2 , (8.11)

where Φ is taken as the LSTM unit with the forward equations (8.3)-(8.8). We add after the classic

LSTM unit: an activation tanh layer and then a full connected layer that realizes a product between

the matrix of weights Wh2 and the hidden vector h2
t .

A crucial point of this architecture is the choice of the dimension of the vector h1
t which represents

the ”memory” of our model (it depends on h1
t−1) and, from a computational perspective, influences

the number of the weights of the whole architecture. We remark that for each input vector xt, the

hidden layer vector h1
t has the same dimension. In the following we indicate by H the length of the

LSTM hidden vector and we refer to the model described by equations (8.9)-(8.11) as LSTM-Full.

We can estimate the weights on the LSTM-Full model within a supervised learning framework.

Therefore, we need to define the form of the input and the form of the label vectors. We now

consider an observed time series {ui}i=1...T where T is the number of samples. By recalling the

model of reference (1.6), we here assume the unknown system A is approximated by the LSTM-Full

parametric model. The T − h input vector of the model are defined as follows:

xt−h = [ut−1, . . . ,ut−h], t ∈ [h+ 1, T ], (8.12)
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where h is the so-called sliding window parameter representing the length of each vector xt. The

T − h label vector are defined as shown below:

yt−h = [ut,ut+1, . . .ut+s−1], t ∈ [h+ 1, T ], (8.13)

where s represents the number of rows of the weights matrix Wh2 . For example, if s = 1 the length

of the label vector is one. In other words, we use h time steps to predict a single value of the time

series.

In the following analysis the dataset is divided in two disjoint subsets: the training set (taken as

70% of the whole data set) and the test set (30% of the whole data set). The first is used to

optimize the model parameters, whereas the other is employed to evaluate model accuracy (see

Figure 8.2a).

8.2 Numerical results

In this section we carry out an objective analysis in order to investigate the properties of the

proposed LSTM-Full method and demonstrate its effectiveness. We consider three sets of data in

order to evaluate the efficiency of the designed LSTM-Full network in GNSS time series analysis.

The first time series is a synthetic one, which allows to compare the output of the network to a

known “ground truth” and has been created taking into account the well-known characteristics

of a geodetic time series of daily positions. The second time series derives from a real GNSS

permanent station that daily processes the data using a static approach and it is characterized by

a comparatively high signal to noise ratio. The third time series comes from a monitoring GNSS

station used for early warning monitoring and it is characterized by a low signal compared to the

measurements.

8.2.1 A synthetic time series

To create a synthetic time series that simulates properly a real GNSS one, it is important to

understand which are the main characteristics of the GNSS positioning. Using GNSS signals a

receiver can estimate its position, with different levels of accuracy, measuring the transmitting

time of GNSS signals emitted from four or more GNSS satellites and knowing the position of each

satellite during the time. The signal crosses the atmosphere with a speed close to the speed of light

depending on the physical characteristics of the atmosphere that change continuously. Therefore a

GNSS receiver installed on a building roof or on a stable rock can measure during the time some

periodical effects due to the seasonal thermal dilatation or solid earth and ocean tides. For all these

reasons a GNSS time series can be composed by some periodical terms and, as literature shows, a

noisy component which is the sum of a white noise that follows a normal distribution and a random

walk noise. The theoretical synthetic time series is constructed as follows:

u0
t = Asin(2πft) + q for t = 1 . . . 4000, (8.14)

where we choose q = 0.01, A = 0.01, f =
1

365
. We assume that u, q, A are expressed in meters

(m) whereas t is expressed in days (d) and f is expressed in d−1. In order to represent a realistic
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case study we add: e a Gaussian noise component, with mean equal to zero and standard deviation

p = 2 mm and r a random walk noise or red noise component generated using a normal distribution

with mean zero and standard deviation equal to 0.03 mm. Hence, we construct the raw time-series

as follows:

ut = u0
t + et + rt for t = 1 . . . 4000. (8.15)

Since in our model we use the activation tanh layer, we scale all the time series values in [−1, 1].

This pre-processing increases the net performances. The scaled time series u and u0 are shown in

Figure 8.3a using the green and blue dots, respectively.

Figure 8.3: (a) Plot over 4000 days of the raw synthetic time series (green dots) and the theoretical sinusoidal

signal (line blue). (b) Predicted time steps over 730 days (red dots) compared with the raw signal (green

dots) and the theoretical sinuisoidal signal (blue line).(c) ACF over 400 lag of the raw time series. (d) ACF

of the prediction error over 365 lags.

Synthetic time series analysis

The purposes of this analysis are to evaluate (i) if the model proposed can predict the theoretical

time series u0 defined in (8.14) using only the raw signal u defined in (8.15), (ii) if the model

proposed can filter the raw data, (iii) the sensitivity of the proposed method to the choice of

the parameters H representing the complexity of the learning model used and h representing the

information. Concerning the parameter s we fix it equal to 1.

In the following we indicate by u∗ the solution constructed with the LSTM-Full algorithm. All

of them represent a 730 days solution. In the first column of Table 8.1 we report the results of
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MSE(u0,u∗), over different choices of the sliding window parameter h. The choice of the sliding

window parameter is a crucial point and in practice it should be a trade off between the training

time and the prediction performance. Here we suggest, when possible, to choose h as the lag

with the highest Autocorrelation Function (ACF) value of raw data (see Figure 8.3c); this seems

necessary if we want to compute a less scattered solution.

In Figure 8.3b (red-dot line) we depict the solution for h = 365, since that the time series

considered has an annual seasonality. In the second column of Table 8.1 we report the STD and

we observe that the scattering is reduced while the sliding window dimension increases. The best

improvements in terms of MSE (48% less than raw data) is reached choosing h = 183 whereas

the best improvements in denoising is reached choosing h = 365 (49% less than raw data). As we

expect the computational training time increases when the input size, that is h, increases. In Figure

8.3d we report the ACF plot of the differences between the theoretical time steps and the predicted

time steps. The plot highlights that there is no relevant correlation within prediction errors, as a

good prediction is expected to be. All the previous results are computed setting H = 30.

h MSE(u0,u∗) (mm) STD(u0,u∗) (mm) time (s)

7 1.276 0.718 7.862

14 1.212 0.687 9.953

30 1.245 0.693 15.115

183 1.198 0.690 59.482

365 1.206 0.678 105.21

Table 8.1: All the results are computed setting H = 30. Columns 1 and 2 show respectively the MSE(u0,u∗)

and STD(u0,u∗) values, where u0 is the theoretical signal and u∗ is the predicted signal, for different length

of the input, both in millimeters. The raw time series has a MSE equal to 2.327 millimeters and a STD

equal to 1.329 millimeters. Column 3 shows the computational training time, in seconds, choosing different

input size.

In Table 8.2 we report the summary of the analysis carried out choosing different values for the

parameter H and setting s = 365. As it emerges from the first and the second column of Table 8.2

the best results in terms of MSE and of STD are obtained setting H = 5 (50 % less for MSE and

51 % less for STD respect to raw data). In the third column we report the computational training

time that again increases while the parameter H increases.

H MSE(u0,u∗) (mm) STD(u0,u∗) (mm) time (s)

5 1.169 0.646 109.174

30 1.205 0.678 115.049

100 1.309 0.727 224.441

300 1.262 0.708 2801.995

Table 8.2: All the results are computed setting s = 365. Columns 1 and 2 show respectively the MSE(u0,u∗)

and STD(u0,u∗) values, where u0 is the theoretical signal and u∗ is the predicted signal, for different length

of H. The raw time series has a MSE equal to 2.327 millimeters and a STD equal to 1.329 millimeters.

Column 3 shows the computational training time, in seconds, choosing different values of H.
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8.2.2 A real static time series: an offshore gas platform

The first real time series, hereafter called “static” due to the GNSS data processing used, is 11 years

long and each time step represents a daily solution. It is acquired by a permanent station on an

off-shore platform, which is maneged by Eni S.p.A., an Italian multinational oil and gas company.

It has three different components: North, East and Up components. The North component is

depicted in Figure 8.4a using green dots. It is for sure the most accurate time series obtainable by

GNSS technology because each solution is the mean of the observations recorded with a sampling

time of 30 seconds during 24 hours. Since these kind of time series are generally used for tectonic

plate motion or landslide monitoring it is important to have accurate and no noise solutions. The

analysis that we conduct refers to those applications where the goal is the characterization of the

periodical signals and in this case a signal denoising can improve the results.

Figure 8.4: (a) Plot of the raw North Component of the Static Time Series (green dots) and the

filtered time series (red dots). (b) ACF over 400 lag of the raw time series. (c) Plot of 509 filtered

time steps (red dots), computed choosing s=365, compared with the raw time steps (green dots).

Static time series analysis

So far we have proved the effectiveness of the proposed LSTM-Full method on a test problem,

we now want to evaluate our model on the real time series described in Section 8.2.2. Since the
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ultimate goal for this time series is to remove the noisy components, we set the hidden vectors

length parameter H equal to 5. In the following we indicate with u and u∗h the raw time steps

and the filtered solution respect to the sliding window parameter h, with p0 and ph the 5th-degree

regression polynomials respect to u and u∗h. In order to evaluate the scattering of raw data and

of u∗h, we consider the value STD(ph − u∗h). In the first column of Table 8.3 we compute the STD

values of the filtered time series over different choices of the sliding window parameter s. The best

result is achieved using h equal to 365, which is the lag with the highest autocorrelation function

value, shown in Figure 8.4b. In Figure 8.4c we plot the filtered time series values obtained using

h = 365 compared with the raw North Component of the static time series. In the second column

of Table 8.3 we report the computational training time, which increases while h increases, as it

is for the synthetic case. In Table 8.4 we report the STD values for the North Component, East

Component and Up Component of our real static time series, using a sliding window parameter

equal to 365.

s STD(ps − u∗h) (mm) time (s)

7 0.563 8.026

14 0.481 10.153

30 0.432 15.348

183 0.432 66.314

365 0.423 183.304

Table 8.3: Column 1 shows the STD values for the North Component, in millimeters, for different

size of the sliding window parameter. The raw time series have a STD value equal to 0.975

millimeters. Column 2 shows the computational training time in seconds choosing different input

size.

Component STD(ps − u∗h) (mm) STD(p0 − u) (mm)

N 0.423 0.975

E 0.559 1.031

U 1.221 2.808

Table 8.4: In the first column: STD values in millimeters for the North, East and Up component

of the real static time series, using a sliding window parameter equal to 365. In the second column:

the STD values of the raw signals for each component.

We consider the original offshore time series and we add artificial jumps of different magnitudes.

In Figure 8.5a we report the differences plot between the raw time series and the one obtained

by adding the jump, namely red line for the jump of magnitude 2 mm, blue line for the jump of

magnitude 4 mm and purple line for the jump of magnitude 6 mm. In Figure 8.5b, 8.5c, 8.5d we

report the plots of the differences between the predicted signal with LSTM-Full and the measured

one. We point out that the hyperparameters for LSTM-Full have been set such that H = 50,
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h = 365 and s = 5. Therefore, the model predict the time series values of the following 5 days with

input vectors of length 365. We can observe that the LSTM-Full model is capable to detect the

sole time steps with jumps.

(a) artificial jumps (b) 6 mm

(c) 4 mm (d) 2 mm

Figure 8.5: Jump detection for the static time series. (a) Differences between the original time

series and the one with artificial jumps. (b)-(c)-(d) differences between LSTM-Full outcomes and

measured data with jumps.

8.2.3 A real kinematic time series: the Garisenda tower

The second real GNSS time series, hereafter called “kinematic”, derives from higher frequency (1Hz)

coordinates solutions, that were estimated using a kinematic approach during the data processing.

The time span considered for the test is about 30 days and every sample represents a solution per

second. As for the static time series, our data set is made up of North, East and Up components.

The GNSS station is located on the top of the Garisenda tower of Bologna (Italy) which is one

of the most important features of Bologna’s cultural heritage, but it is notoriously affected by

problems of stability. The adjacent Asinelli tower (50 meters taller than the Garisenda) constitutes

an example of an unavoidable obstacle to satellite signals, which may affect GNSS solutions and

have to be considered a habitual problem in these applications. This is an example of the so-called

GPS multipath phenomena which is caused by the reception of signals arrived not only directly

from satellites, but also reflected or diffracted from the local objects. At the beginning of the year

2011, a monitoring system was installed on the Garisenda tower in order to monitor its structural

behavior. In 2013, the Department of Civil, Environmental and Materials Engineering of Bologna

University installed a permanent GNSS station on the roof of the Garisenda for the double purpose

of monitoring the building and testing the satellite technology for this type of application. The
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interested reader can refer to [195] for further details. In Figure 8.6a we depict the components of

this time series. This is a completely different scenario respect to the previous one because we have a

solution every second and for this reason, the redundancy of the system and the accuracy are lower.

This approach can be suitable for early warning applications where it is much more important to

have as soon as possible information about unexpected changes respect to the normal movement.

Since this kinematic time series is used for structure monitoring such as bridge monitoring or critical

landslides where a fast movement of the object can be critical for the safety of life, here the ultimate

goal of our analysis is to develop a method capable to give an accurate prediction of the incoming

coordinates to improve the capability to detect some anomalies.

(a) Garisenda time series components (b) ACF plots

Figure 8.6: (a) Plot of the raw Nord, East and Up Components of the Garisenda Time Series (blue

dots). (b) ACF of the raw time series. The images are taken from [195].

N E U

MM 3.3 2.2 5.1

LSTM-Full (s=1) 2.0 1.1 2.9

LSTM-Full (s=5) 2.6 1.8 4.4

Red. MM 42% 23% 27%

Red. LSTM-Full (s=1) 65% 62% 58%

Red. LSTM-Full (s=5) 38% 20% 25%

Table 8.5: Upper panel: STD(x̃ − ỹ) values in millimeters for the N,E,U components of the

Garisenda time series, in millimeters, for the MM and LSTM-Full with s = 1 and s = 5 approaches.

Lower panel: percentage of reduction when comparing STD(x̃− ỹ) with STD(x̃).

Kinematic time series analysis

In the case of the kinematic time series described in Section 8.2.3, the aim of the LSTM-Full model

is to give an accurate prediction for the incoming time steps, since we want to apply this model

for structural monitoring. Since we are not seeking for a filtered solution, we fix the dimension of

the LSTM hidden vectors at 100. The lag with the highest value of the ACF is 86164 (the number
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of seconds in a sideral day), shown Figure 8.6b, and it is impossible to use it as sliding window

parameter, due to the computational cost of the algorithm. Therefore, in this case, we heuristically

set h = 300. In order to evaluate the efficiency of the proposed method we use the STD value of

the difference between the raw data x̃ and the predicted time steps ỹ. In upper panel of Table 8.5

we report the STD values, in millimeters, by comparing our learning approach setting s = 1 and

s = 5 and the method proposed in [195] using sequential filtering. Moreover, in the lower panel of

Table 8.5 we report the percentage of reduction of STD(x̃− ỹ) with respect to STD(x̃) for all the

three components. The latter values for the N,E and U components are 5.7 mm, 2.9 mm and 6.9

mm, respectively. As a general comment, in both cases the LSTM-Full approach outperforms the

MM method, however we observe that its accuracy starts decreasing when s increases.



Conclusions

The common thread among the chapters of this thesis was to present efficient algorithmic solutions

to solve image restoration and system identification tasks by using variational, learning and hybrid

paradigms.

In Chapter 3 we have proposed ASR2, a flexible algorithm for SISR and MISR applied to thermal

images. The proposed method is based on a `2-TV regularized approach and includes an adap-

tive and low-cost computation of the regularization parameter, thus resulting fully automatic and

computationally efficient. A detailed analysis has been conducted, comparing the proposed algo-

rithm with the EDSR [63], one of the most performing Deep Neural Networks for SR, and RISR

[62], one of the most recent algorithms designed for thermal image SR. The experimental results

prove the strength of the proposed approach in terms of visual evaluation, e.g. PSNR and SSIM.

A careful radiometric analysis confirms the reliable reconstructions of sharp details and isolated

hot or cold spots, which are essential in thermal imagery and many remote sensing applications.

This proposal gains at least 60% accuracy in reconstructing temperature peaks compared to the

EDSR and RISR, and removes at least 45% of noise. The flexibility of the approach makes it par-

ticularly suitable for both aerial and terrestrial thermal remote sensing, especially for applications

involving the detection and delineation of hot spots or temperature anomalies at a finer spatial scale.

In Chapter 4 we proposed constrained and unconstrained variational models, for joint single-image

super-resolution and image partitioning, based on the use of an `0-type jump penalizer, combined

with `2 data fidelity, for favoring sharp gradient smoothing. The use of non-convex jump-sparse

regularizations has been considered in [67, 68, 69]. To overcome the computational limitations

required by the use of ADMM splitting strategies considered in these works, we have implemented

a novel ADMM algorithm allowing for the efficient numerical solution of the models by means of di-

rect hard-thresholding or standard CG solvers or, upon a specific assumption on the down-sampling

operator, by diagonalization in the Fourier domain. Our implementations are 15-times faster when

the CG solver is used, 700-times faster when using FFT, than the approach in [67].

The methods are validated on synthetic data and tested on real-world examples where gradient-

sparse super-resolved outputs are required in view of a subsequent accurate detection/segmentation

step (such as QR code recognition and cell detection). By numerous comparisons with convex and

non-convex variational approaches, and with state-of-the-art deep learning methods [85, 84], we

show that the proposed approaches significantly improves classification precision, while limiting at

the same time smoothing and loss-of-contrast artifacts in comparison with classical convex regular-
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izations. Further work should address the use of analogous algorithms for the joint modelling of SR

and segmentation problems via, e.g., Mumford-Shah functionals [68]. Furthermore, the extension

of the convergence results to other gradient discretisations and to less restrictive growth conditions

for the sequence of penalty parameters is envisaged.

In Chapter 5 we have proposed a new PnP method using learnt gradient-based priors applied to

CT medical image restoration. We considered a Half-Quadratic Splitting minimization algorithms

where the denoising step is executed by a CNN acting on the image gradients (GCNN method). We

also considered a hybrid regularization where we added a Total Variation functional in the GCNN

scheme (GCNN-TV). The numerical experiments on synthetic and real CT medical images show

that the proposed GCNN well recovers the curve contours of flat and low-contrast objects, as well

as thin vessels. The GCNN-TV further smooths homogeneous area such as backgrounds and small

low-contrast objects on very noisy images and its restoration appears suitable for segmentation.

The obtained image enhancements confirm that the proposed PnP gradient-based regularization

is effective for the restoration of medical CT images, since the competitors, namely other PnP

algorithms considering different denoisers defined on the image-domain, get lower quality indices.

In Chapter 6 we presented a deep learning-based method called DeepCEL0 for precise single

molecule localization in high density fluorescence microscopy settings. The proposed method brings

together the benefits of two well-known standard methods in the field, i.e., DeepSTORM [126] and

CEL0 [127], introducing a network architecture with two main novelties: a continuous `0-penalized

training loss function and the adoption of non-negativity constraints on the solution through a

ReLu layer. Compared to the standard methods, numerical results show the stability of DeepCEL0

at varying the level of corruption and its ability to provide very high precision localization maps,

without detriment to computational cost. Moreover, the method is parameter-free and can be easily

tested and applied on real data after a training phase on only synthetic data. The promising results

make the methods easy to perform in disparate real applications exploiting fluorescence microscopy.

In the first part of Chapter 7 we proposed a constrained and an unconstrained DIP optimization

models which automatically estimate the strength of the regularization. The unconstrained one

uses a space variant handcrafted regularizer whose local regularization parameters are adaptively

defined along the optimization process, whereas the constrained model is tailored for a generic reg-

ularizer and implicitly forces solutions satisfying the discrepancy principle. Particularly, we used

the space variant Total Variation and the RED regularizer in the implementation for the uncon-

strained and the constrained models, respectively. The main strengths of the developed frameworks

are threefold: it is not required to set proper values for the regularization parameter, the schemes

implemented are more robust with respect to the selection of the hyperparameters than other state-

of-the-art DIP-based methods [39, 160], and both schemes avoid the typical overfitting behaviour

of the DIP framework. The numerical experiments on image denoising and deblurring show better

results of the developed approaches with respect to state-of-the-art strategies with the great ad-

vantage of avoiding costly parameter tuning.



In the second part of Chapter 7 we presented a novel approach called Recursive Deep Prior Video

to overcome the limitation of low resolution in time-lapse microscopy scenario for organ-on-chip

applications, within the so-called super-resolution context. The main novelties of the approach

refer to the recursive initialization of the weights of the DIP network architecture combined with

an efficient early stopping criterion. In addition, the DIP loss function has been penalized by Total

Variation-based terms. The method has been validated on synthetic, i.e., artificially generated, as

well as real videos from OOC experiments related to tumor-immune interaction and compared to

the most effective state-of-the-art approaches in the context of trained methods. The proposed ap-

proach demonstrated to be feasible to real-time applications due to the unsupervised architecture,

robust to noise thanks to the regularization terms, and able to effectively work in combination with

state-of-the-art edge localization and edge detection methods for the task of object recognition and

biological experiment characterization. Future works will address the problem of improving the

effectiveness of the approach in terms of parallelization and of implementation in the routine use

of microfluidic devices to accelerate the uptake of OOC experiments.

In Chapter 8 we considered the LSTM-Full Network architecture which has been applied for the

first time to address the denoising, prediction and jump-detection tasks of GNSS time series. The

performances depend on the choice of the sliding window parameter and of the hidden vectors size

of the LSTM layer. The experiments suggest to choose the sliding window parameter as the lag

with the highest value of the autocorrelation function, when the computational resources allow it.

The hidden vectors size should be choosen small if the task is denoising, otherwise, it should be

higher to give an accurate prediction on incoming data, so as to better detect jumps. The method

provide accurate prediction, if compared to [195], and is capable to detect discontinuities even when

dealing with high noise data.





Appendix A

Deep Learning

In this appendix we give a short survey on Deep Learning, a branch of computer science, which

develops algorithms that learn from the data. After a concise introduction to Machine Learning, we

introduce the neural networks. We begin explaining the perceptron and subsequently we introduce

DNNs. Next, we illustrate some algorithms commonly used to train DNNs, namely SGD and

Adam. In the last section we introduce the CNNs, very suitable models for image related tasks.

For a complete overview the interested reader can refer to [206].

Machine learning basics

Machine learning can be considered as a sort of applied statistics, because its main purpose is

to statistically estimate functions which are complicated to evaluate with common programming

paradigms. In particular, machine learning algorithms are able to learn from data or experience.

The computer scientist Tom M. Mitchell in [207] gave a concise and widely accepted definition of

learning algorithm, that we report here.

Definition A.1. A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E.

To create a machine learning algorithm, we could consider a variety of experiences E, measures of

performance P or tasks T. The functioning of this kind of machine learning algorithms consists of

two parts:

• Learning stage: during this step, a set of examples is provided to the algorithm that develops

its own logic to solve the task.

• Inference stage: in this step the algorithm performs the task on a new input not previously

given in the set of examples.

The possible tasks T range from the easier one, like classification and regression, to the more chal-

lenging like transcription, translation and synthesis.
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The performance measure P is closely related to the type of task and the type of experience used

in the algorithm. In some cases we measure the accuracy of the model, that is the percentage of

examples for which the model perform the task in the proper manner. The choice of P is often

difficult and influences the learning capabilities of the method. In practice, we are also interested

to determine how well a machine learning algorithm will work in the real world. Hence, the per-

formance is measured on a test set of data, not previously seen during the learning phase.

Dependently on the form of experience E we identify three category of learning based algorithms:

• Supervised learning: each example in the dataset is linked with a target or label which is

the result of the task. Many deep learning algorithms can be included in this class.

• Unsupervised learning: the input data is provided without the corresponding output label.

Usually the goal of this kind of algorithms is to learn implicitly/explicitly the probability

distribution that generated the dataset. This approach is useful for tasks like denoising,

synthesis or density estimation.

• Reinforcement learning: the input data is not a fixed dataset. The algorithm is free to

perform a task, only at the end it receives a feedback. If the action is wrong the model

receives a negative feedback and, for this reason, is forced to change its strategy. Otherwise,

if the action is correct the model receives a positive reward and it keeps on using its strategy.

For a comprehensive perspective on the fundamentals of machine learning the reader can refer to

[208, 209].

A.1 Neural networks

Artificial neural networks are a class of learning algorithms, characterized by a computing system

inspired by biological neural networks that form the brain. The key feature of these systems is the

connection between a collection of computational nodes or units, commonly called neurons because

they mimic biological neurons. Each connection transmit a signal or an information from a neuron

to the following one, as synapses do. Formally a neural network is a directed and weighted graph:

each neuron is a node and each connection is an edge. These networks learn from the data through

a training process, as explained in the previous section. During the learning stage, the network

adjusts its parameters, the weights of the edges, called synaptic weights.

Perceptron

The first neural network was proposed by the American psychologist Frank Rosenblatt in 1958,

combining the biological findings of Donald Hebb and the idea of McCulloch-Pitts’ neuron. This

architecture, represented in Figure A.1, took the name of Rosenblatt Perceptron. Formally we

provide this mathematical definition:
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Definition A.2. Given an input x ∈ RD, a weights vector w ∈ RD, a bias (or threshold) b ∈ R
and an activation function φ : R→ {0, 1}, the Perceptron is a function f : RD → {0, 1} defined as

f(x) = φ(w · x + b) = φ

(
D∑
i=1

wixi + b

)
.

In his work, Rosenblatt considered the Heaviside step function as activation and showed the Percep-

tron model learns binary classifiers of separable data. Furthermore the Perceptron, with a suitable

choice of weights and threshold, was proved to represent the logical operations AND, OR and NOT.

However, as stated by the cognitive scientist Marvin Minsky and the matematician Seymour Papert

in [210], this simple architecture has numerous drawbacks:

• a Perceptron is not able to determine if the number of active inputs is odd or even.

• a Perceptron is incapable to learn the XOR operation (exclusive disjunction).

• a Perceptron can approximate only linearly separable functions.

The interest in Neural Networks had steadily decreased due to the criticisms highlighted by Minsky

and Papert, researchers had been overly optimistic and without results their funding was cut. This

period is called First AI winter.

x0

x1

...

xD

w0

w1

...

wD

Σ φ

Inputs Weights

Sum Activation

Output

Figure A.1: Perceptron architecture

Deep neural networks

Machine Learning experts thought that a multilayer perceptron could have overcome the problems

of perceptron. However, they were limited by the technology available in that period. An imple-

mentation of their ideas would have been too expensive. Only in the eighties, a series of innovations

in the computer science field, led to Multilayer Feedforward Networks. The architecture of this kind

of networks can be represented as a directed weighted acyclic graph. This means that there are no

loops inside the network and the data is processed trough a sequence of neuron layers connected in

series. There are no connections that bridge the output of the model into itself and for this reason
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they are also called feedforward networks. A representative example of these architectures is the

multilayer Perceptron (MLP). This kind of networks can either perform regression or classification

tasks, depending on the choice of the activation function φ. In Figure A.2 we depict an example of

MLP architecture.

...
...

...

Inputs
Hidden

Layer 1

Hidden

Layer 2

Output

Layer
Outputs

Figure A.2: Multilayer Perceptron architecture

Usually, the architecture of a deep neural network follows this structure:

• The input layer is made up of N units, where N is the dimension of the features vector. These

input units do not perform any computation on the data, they only pass the information to

the following layers.

• A series of L layers of neurons called hidden layers, where L ≥ 2. The last layer, called output

layer, is composed of K neurons, where K ≥ 1.

• A group of synaptic weights that represent the strength of the connections between neurons

of successive layers.

In order to illustrate more clearly how a deep neural network works, we introduce some notations.

At first let us consider the input x ∈ RN . Then let us denote the number of layers by L and the

number of neurons by NL. Obviously N0 corresponds to the size of the input layer and NL to the

size of the output layer. Hence N0 = N and NL = K. We organize the synaptic weights in weight

matrices W (i) ∈ RNi×Ni−1 where an element W
(i)
sr encodes the weight between the r-th neuron in

the (i − 1)-th layer and the s-th neuron in the i-th layer. Thus each matrix W (i) for i = 1, . . . , L

contains the weights of the edges which connect the (i − 1)-th layer to the i-th. In addition we

denote the bias vectors b(i) ∈ RNi for i = 1, . . . , L and the activation function of the s-th neuron

in the i-th layer as g
(i)
s : R→ R. In a more compact form, we define the activation function of the

i-th layer as f (i) : RNi → RNi where f (i)(a) = (g
(i)
1 (a1), . . . , g

(i)
Ni

(aNi)).

From a computational point of view, a deep neural network is a function N : RN → RK whose

output is computed using Algorithm 9. Commonly, the dimension of every layer, the activation

functions of each neuron and the depth of the network are fixed and are called hyperparameters.

This class of parameters is chosen before the learning stage following heuristic strategies. Thus,
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Algorithm 9 – Feed Forward Neural Network N(x)

input: x, L, Ni, W
(i), b(i), f (i).

output: N(x).

h(0) = x

for i = 1, . . . , L do

a(i) = b(i) +W (i)h(i−1)

h(i) = f (i)(a(i))

end for

return h(L) →N(x)

during the actual training process, a Feed Forward Neural Network learns only the weight matrices

and the bias vectors.

The key feature of each neuron is its activation function. Referring to the biological neural

networks, an activation function is a formalization of the action potential firing in a neuron, trig-

gered by an input signal. Mathematically, these functions regulate how the signal/information

propagates through the network. As previously said, the activation functions have to be fixed. Fre-

quently their choice is motivated by learning algorithms that we will describe later. Some functions

prevent few problems during the learning phase. For this reason, we first define some activation

layers commonly used.

Definition A.3 (Sigmoid).

φ(x) = σ(x) =
1

1 + e−x
. (A.1)

Definition A.4 (Hyperbolic Tangent).

φ(x) = tanh(x) =
(ex − e−x)

(ex + e−x)
. (A.2)

Definition A.5 (ReLu).

φ(x) = ReLu(x) = max(0, x) =

x for x > 0

0 for x < 0.
(A.3)

Definition A.6 (Heaviside step function).

φ(x) = H(x) =


1 for x > 0

1
2 for x = 0

0 for x < 0.

(A.4)

A.2 Training deep neural networks

A feed forward neural network can be considered as function depending on a set of weights and

biases which are denoted by θ = {(W (i), b(i)) for i = 1, . . . , L}, in the following. Thus, formally
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(a) Sigmoid (b) tanh (c) ReLu (d) Heaviside

Figure A.3: Plots of the activation functions

a DNN is defined as a function N(x; θ) parameterized by θ. To improve the behavior of the

algorithm a performance measure P is considered. Unfortunately, in some cases P is intractable,

therefore, we prefer to optimize the algorithm indirectly. More precisely, we shift the learning

problem to the optimization of a cost function J(θ) which is linked to P. Hence, the optimization

in learning problems differs from pure optimization: in the latter the minimization of a functional

is the problem itself, in the former one, the initial learning problem is reduced to a straightforward

optimization problem.

Commonly, the cost function is written as an average over dataset:

J(θ) = Ep̂ [L(N(x; θ), y)] , (A.5)

where L is a loss function, N(x; θ) is the predicted output when x is the input, y the target output

and p̂ is the empirical distribution of the data. Despite its simple form, we only have a training set

M = {(xi, yi)}ni=1 and p̂ is not given, thus we have to consider an estimation of J(θ). A common

choice is the empirical risk defined as follows:

J̄(θ) =
1

n

n∑
i=1

L(N(xi; θ), yi). (A.6)

A plenty of optimization algorithms using first and second order derivatives could be used to

minimize the functional J̄(θ) in (A.6). A well-known and representative algorithm is gradient

descent, which optimizes a function following the opposite direction of its gradient. This strategy

is also known as steepest descent. See Algorithm 10 for a formal description. Obviously, gradient

descent can be used only when the cost function to be minimized is differentiable.

Figure A.4 represents an example of several iterations performed by the gradient descent algorithm

to find the minimum on an elliptic paraboloid. For the sake of clarity, we only depict the level sets

of the paraboloid. For a complete overview on numerical optimization methods refer to [31].

Backpropagation

An analytical expression for the gradient can be computed in a straightforward manner using the

chain rule. However, the evaluation of this type of expression is usually computationally expensive.

The back-propagation algorithm, also called backprop, allows us to calculate the partial derivatives

in an amount of time linearly proportional to the depth of the computational graph related to the

neural network. A computational graph is a directed graph where each node represents a variable
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Algorithm 10 – Gradient Descent algorithm for the function J̄(θ)

input: J̄ , θ0, α ∈ R+, θold = θ0.

output: θ∗.

θold = θ0

repeat

θnew = θold − α∇J̄(θold)

θold = θnew

until the stopping test is satisfied

θ∗ = θold

return θ∗

θ0

θ1

θ2

θ3

θ4

Figure A.4: Illustration of gradient descent on a series of level sets

or a function. Hence, functions can feed their output into other functions and variable can feed

their value into functions. We can associate each network with the computational graph that

represents J̄ and use backprop to compute ∇J̄ . This algorithm is often misunderstood as being a

learning/optimization method. Instead, it is a clever algorithm very suitable for the computation

of derivatives in a computational graph. Its application in a learning framework was initially

proposed in [211]. The application independent version of this algorithm is also called reverse-

mode differentiation.

For the sake of clarity, we present the backpropagation method only for the single layer perceptron

in Figure A.1. The generalization to multi-layer networks takes advantage of the fact that complex

architectures can be considered as compositions of simpler ones. The interested reader can refer

to to [212] for a comprehensive description of the backpropagation algorithm. We now compute a

partial derivative of only one term in J̄ , which is the sum over all the examples in the training set.

By using the chain rule we have:

∂L(N(x; θ), y)

∂wi
=
∂L(N(x; θ), y)

∂φ

∂φ

∂wi
=
∂L(N(x; θ), y)

∂φ

∂φ

∂Σ

∂Σ

∂wi
. (A.7)

This equation provides us a decomposition for all the partial derivatives. From a computational

point of view it is cheaper to save the first two factors in the decomposition. We observe the only

term that changes, with respect to the choice of the index i, is the last one, which can be easily



160 A. Deep Learning

computed. In formula:

∂Σ

∂wi
=
∂ (w · x)

∂wi
=
∂
(∑D

j=1wjxj

)
∂wi

= xi. (A.8)

The choice of the activation function φ influences the second term of the decomposition. For this

reason, we restrict ourselves to a small set of activation functions (depicted in Figure A.3) whose

derivatives has convenient properties. The equation (A.7) shows that only local derivatives are

necessary, hence the nodes in the computational graph can be considered independently. There-

fore, for example, Tensorflow builds a computational graph with extra nodes that compute the

derivatives of the pre-existing nodes. Whereas, PyTorch implicitly does the same computations

without exposing the computational graph.

Whatever the architecture of the net is, the backpropagation algorithm can be divided into two

main steps:

1. Feedforward step: the examples in the training set are given to the computational graph

which computes and store the outputs of the network and their related derivatives.

2. Backprop step: the computational graph is visited in the opposite direction to stack the

local derivatives in order to obtain all the partial derivatives.

Stochastic Gradient Descent (SGD)

Usually the cost function J̄ is the sum of a loss function over the training examples. For this reason,

as the size of dataset increases, the computation of ∇J̄ becomes too expensive. Stochastic gradient

descent is a modified version of steepest descent, that cuts down the computational time required

to obtain the gradients. Instead of the exact gradient, SGD uses an approximation. Initially, given

an integer m � n, on each iteration of the algorithm a sample of m examples is drawn from the

initial dataset. This subset is called minibatch and is defined as B = {(xs(i), ys(i))}mi=1 where s(i)

is an index drawn uniformly from the set of indices. The size of minibatch is held fixed for all the

iterations. Depending on the minibatch, we subsequently use an approximation of the gradient

defined as:

gB(θ) =
1

m

m∑
i=1

∇L(N(xs(i); θ), ys(i)). (A.9)

A formal description of SGD is reported in Algorithm 11. The strategy of SGD has less theoretical

guarantees than the gradient descent. However, SGD often obtains small values of the objective

function in less computational time.

The momentum method is a modified version of SGD. It is physically inspired and it was proposed

in order to accelerate learning in case of noisy gradients or losses with high curvature. A loss

can be considered as a potential energy and the parameters initialization is equivalent to putting a

particle in some location in the hyperspace. The optimization process is equivalent to simulating the

movements of the particle due to the potential energy. Differently from SGD, in which we suppose

that the particle has zero initial velocity, in momentum we give to the particle a random initial

velocity and, at each iteration, we update the particle’s velocity and its position. The presence

of this additional term guarantees an improved convergence rate. For this reason the momentum
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Algorithm 11 – Stochastic gradient Descent algorithm for the function J̄(θ)

input: J̄ , θ, α ∈ R+, m ∈ N ∩ [1, n], stopping.

output: θ.

repeat

B ← sample a minibatch of size m from the training set

θ = θ − αgB(θ)

until stopping is satisfied

return θ

algorithm is considered an accelerated variant of SGD. A formal description of the momentum

method is reported in Algorithm 12.

Algorithm 12 – SGD with momentum update for the function J̄(θ)

input: J̄ , θ, α ∈ R+, γ ∈ R+, m ∈ N ∩ [1, n], v, stopping.

output: θ.

repeat

B ← sample a minibatch of size m from the training set

v = γv − αgB(θ)

θ = θ + v

until stopping is satisfied

return θ

Adaptive algorithms

The methods we previously mentioned use the same global learning rate at each iteration. In prac-

tice, the choice of a global learning rate is difficult, mainly because the magnitude of the gradients

can change during the training. Motivated by these problems, researchers started developing a new

class of adaptive methods. The most commons are RMSprop and Adam. For a complete review

the interested reader can refer to [213].

• RMSprop at each iteration updates a variable v, commonly called running average of squared

gradients, and uses it to compute the parameter update. In formulas:

v = ηv + (1− η)g2
B(θ) (A.10)

θ = θ − α√
δ + v

gB(θ), (A.11)

where η is the decay rate (usually set to 0.9), α the learning rate and δ is a small constant

used to stabilize division by small numbers (usually set to ≈ 10−6).

• Adam in some sense, can be considered as an RMSprop with a momentum update. In

addition to v, the running average of gradients is computed at each iteration and saved in
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the variable m. In formulas:

m = η1m+ (1− η1)gB(θ) (A.12)

v = η2v + (1− η2)g2
B(θ), (A.13)

where η1 and η2 are small numbers close to 1. In [166], the authors proposed to set η1 = 0.9

and η2 = 0.999. These two variables m and v are biased estimates of the first and the second

moment. Before the update, a bias-corrected versions of m and v are considered:

m̂ =
m

1− ηt1
, v̂ =

v

1− ηt2
, (A.14)

where t represents the number of iteration in which we are computing these quantities. Then

m̂ and v̂ are used to update the parameters as follows:

θ = θ − α√
v̂ + δ

m̂. (A.15)

Overfitting and underfitting

The functional J(θ) defined in (A.5), is the expectation on the training set. We would like to define

a cost function which depends on the data-generating distribution p̂, in order to have a neural

network that generalizes its results also on unobserved data. However, in many application p̂ is

unknown and only a finite dataset of examples is available. Commonly, to study the generalization

capabilities of a neural network, the dataset is splitted into two parts: the training set and the test

set. Only the available examples in the training set are used in the learning phase. The data we

do not use in the training stage, are then used in a testing phase to measure the performances of

the network. Here, we define two problems that machine learning algorithms may encounter:

• Underfitting occurs when the model is unable to perform well on the training set.

• Overfitting occurs when the model is not capable to generalize to unseen data, namely, the

difference between the performances on the training set and the test set is too large.

The tradeoff between these two issues can be found modifying the model’s capacity. Roughly

speaking, the capacity of a model is the model’s ability to represent a wide sets of function, and

in our case, the capacity corresponds to the number of hyper-parameters. The development of a

new machine learning algorithm is time consuming. For this reason it is important to have a wide

knowledge of machine learning systems, rather than blindly guessing. In some applications, there

exist procedural algorithms that work much better than a black-box neural network. There are

only a few heuristic rules which guide the design of an algorithm. Some researchers criticize the lack

of rigorous criteria for choosing one architecture over another. In particular, in [214], the author

compares the entire machine learning field to alchemy. In this thesis, we chose architectures with

high performances in tasks similar to the one we want to address. Building new types of neural

networks to solve image and time series related inverse problems is out of the scope of this thesis.
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A.3 Convolutional networks

Convolutional neural networks, also known as CNNs, are a type neural networks specialized for

processing data with a grid topology. In particular they are very suitable for computer vision tasks.

The name indicates that in at least one layer the network uses a convolution in place of a matrix

multiplication. Before explaining how a convolutional layer works, here we provide some useful

definitions.

Definition A.7. Given two functions k : R2 → R and i : R2 → R, the convolution of k and i is

written as k ∗ i and it is defined as follows:

f(x, y) = k(x, y) ∗ i(x, y) =

∫
R2

k(s, r)i(x− s, y − r) ds dr. (A.16)

Definition A.8. Given two functions K : Z2 → R and I : Z2 → R, the discrete convolution of K

and I is written as K ∗ I and it is defined as follows:

F (x, y) = K(x, y) ∗ I(x, y) =
∑
s

∑
r

K(s, r)I(x− s, y − r). (A.17)

Usually, following the convolutional network terminology:

• I is said input,

• K is called kernel,

• F is the output of the convolution operation and it is called feature map.

In practice, many deep learning libraries implement a sliding dot product or cross-correlation

which works similarly to convolution. Developers use this strategy because convolution has the

input flipped respect to the kernel. This means that as s or r increases, the index into the input

decreases, but the index into the kernel increases.

Definition A.9. Given two functions K : Z2 → R and I : Z2 → R, the cross-correlation of K and

I is written as K ∗ I and it is defined as follows:

F (x, y) = I(x, y) ? K(x, y) =
∑
s

∑
r

I(x+ s, y + r)K(s, r). (A.18)

When we work with images the domain is no more Z2 but the indexes are restricted to the

image’s pixels and the kernel’s entries. Hence we consider I ∈ Rh×w and K ∈ Rk1×k2 . Obviously,

under these assumptions, some terms in (A.17) and (A.18) are not defined because their indexes

are out of bounds. Hence we explain two methods to set the elements out of the boundary:

• Valid padding: the convolution kernel K is only allowed to visit positions where the kernel

is entirely contained within the input I. Every pixel in the feature map is function of the same

number of input’s pixels. In this case, the height and width of the output are h− k1 + 1 and

w− k2 + 1, respectively. An example is depicted on the left in Figure A.5 and in Figure A.6.

The shrinkage of the output’s dimension become a problem as the number of convolutional

layers increases and is highly dependent to the kernel’s size.
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• Same padding: the input I is padded with zeros so that the feature map will have the

same dimension of the input. In this case we can stack as much convolutional layer as we

want. Hence, the architecture is no more limited by the kernel’s size. However, this choice

underrepresents the border’s pixels respect to the ones in the middle of the input. An example

this padding is depicted on the right in Figure A.5.

Figure A.5: On the left an example of valid padding and on the right an example of same padding

a b c

d e f

g h i
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y z
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+ey+fz

dw+ex+

+gy+hz

ew+fx+

+hy+iz

I K F = I ? K

Figure A.6: An example of 2-D convolution without kernel flipping (cross-correlation) using valid

padding

There exist a lot of modified convolutional layers. In this thesis we use only the dilated convolution,

initially proposed in [110] and [215]. For an in-depth review of the arithmetic of convolution in

deep learning refer to [216] or see Chapter 9 of [206].

Given the kernel K ∈ Rk1×k2 and the dilation factor d ∈ Z+, the kernel of the dilated convolution

layer is Kd ∈ Rk1(d)×k2(d) is obtained inserting d− 1 spaces between the elements of K, so k1(d) =

k1d − d + 1 and k2(d) = k2d − d + 1. In view of the previous definition, a regular convolution

corresponds to a dilated convolution with dilation factor d = 1. In Figure A.7 we represent the

same kernel with different dilation factors. This type of convolution expands the receptive field of

the layer without increasing the kernel size.

Another important part of convolutional networks are the pooling functions. Generally, pooling

is used to make the representation invariant respect a set of transformations like rotation or scaling.

The invariance property is useful in a classification tasks: we want the algorithm to recognize an

object, independently from its orientation. In other tasks, like image reconstruction, preserving
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(a) d = 1 (b) d = 2 (c) d = 3

Figure A.7: Dilated convolutional filters

the information in an exact location it is very important: we want the method to reconstruct also

the finer details. Therefore, in this thesis we do not pay attention to this class of pooling functions

and we will not explain formally how pooling works. The interested reader can refer to [206] for

more details.

In a machine learning algorithm with convolutional layers, the kernel weights are obtained during

the training phase. The use of convolution has some improvements compared to the traditional

neural networks:

• Each entries of the kernel is used at every position of the input (except for the boundary

pixels). Hence, the parameters are shared and used more than once. This property, called

parameter sharing, makes the computation more efficient than a matrix multiplication and

can be executed in parallel using a GPU. Moreover, the memory required to store a kernel

K is smaller than the one needed for a full matrix.

• In a common neural network an output unit is influenced by all the input units in the previous

layer (see Figure A.8). In a CNN an output unit depends on a small set of input units (see

Figure A.9). The size of the set is related to the dimension of the convolutional kernel. This

property, called sparse interactions, reduces the size of the features tensor and improves

the model’s efficiency. The interactions between larger portions of the input can be described

stacking more convolutional layers.

x1 x2 x3 x4 x5

s1 s2 s3 s4 s5

Figure A.8: Example of fully connected layer

• A convolutional layer is independent from the input dimensions. Hence, mathematically a

CNN which works on images could be used without regard for the image size.
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x1 x2 x3 x4 x5

s1 s2 s3 s4 s5

Figure A.9: Example of sparse connectivity

• The parameter sharing condition is linked to the equivariance property. In practice, let T

be a translation and N a DNN we have T (N(x)) = N(T (x)). This means the feature map

of a shifted input coincides with the shifted feature map of the initial input. This property

characterizes only standard convolution, changing the stride of convolution equivariance does

not hold. Moreover, convolution is not naturally equivariant to scaling or rotation.



Appendix B

Accelerated Forward Backward

(AFB) algorithm

We describe the numerical procedure used to compute the solution of problem (3.7) for a fixed λk.

Let us define the starting values x0 = uk−1 and y0 = x0, t0 = 1, then by iterating on m until

convergence:

v = ym −
β

2r

r∑
j=1

HTST (SHxm − bj) (B.1)

xm+1 = arg min
u∈Rn

{
λkTV(u) +

1

2β
‖ym − β(v − u)‖2

}
(B.2)

tm+1 = 1 +

√
1 + 4t2m

2
, α =

(
tm − 1

tm+1

)
(B.3)

ym+1 = xm + α (xm+1 − xm) . (B.4)

In order to guarantee the convergence of the FISTA iterations, we should choose the parameter β

so that 0 < β < 2/α, where α is the unknown Lipschitz constant related to the data discrepancy.

In our experiments we use β = 10−2 which always heuristically ensured a convergent behavior. We

observe that (B.2) is a denoising problem that is efficiently solved by the Chambolle algorithm [61],

thus obtaining an Accelerated Forward-Backward (AFB) procedure.

Following [61], the solution of problem (B.2) is defined as:

xm+1 = v − βp(Nm+1).

Setting p(0) = 0, each component (`, µ) of p is iteratively computed as follows:

p
(n+1)
`,µ =

p
(n)
`,µ + τW

(n)
`,µ

1 + τ
∣∣∣W(n)

`,µ

∣∣∣ , p(0) = 0, n = 0, . . . , Nm (B.5)

where the components (`, µ) of W(n) are defined by means of the discrete gradient D, using the

forward finite differences, and by the discrete divergence operator div, i.e.:

W
(n)
`,µ = D

(
div(p(n))− v

β

)
`,µ

.
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168 B. Accelerated Forward Backward (AFB) algorithm

The steps of the final AFB algorithm are reported in Algorithm 13.

As suggested in [61] the optimal condition for stability and convergence is τ ≤ 1/4; we set τ = 1/8.

The values of the indices (`, µ) are the rows and columns of the HR image. The input H represents

the blur matrix, S is the downsampling operator, G contains the set of low-resolution lexicographi-

cally reordered images bj , r is the number of low resolution images. The outer iterations (index m)

of algorithm AFB in Algorithm 13 are stopped on the basis of the relative distance of the objective

function Φ at two successive iterations and τf is the tolerance parameter.

Algorithm 13 – AFB: Accelerated Forward-Backward algorithm

input: uk−1 ∈ Rn, λk,H ∈ Rn×n,S ∈ Rm×n,G, r, τf
output: xm

1: x0 = uk−1, y0 = x0, m = 0, τ = 0.25, β = 10−2, t0 = 1 ;

2: repeat

3: v = ym − λk
r

∑r
j=1 HTST (SHxm − bj)

4: n = 0, p
(n)
`,µ = 0, ∀`, µ

5: repeat

6: compute p
(n+1)
`,µ as in (B.5)

7: n = n+ 1

8: until max`,µ |p
(n)
`,µ − p

(n−1)
`,µ | < 0.1 ·max`,µ |p(n)|

9: xm+1 = v − βp

10: tm+1 = 1 +

√
1+4t2m

2

11: ym+1 = xm + tm−1
tm+1

(xm+1 − xm)

12: m = m+ 1

13: until |Φ(xm, λk)− Φ(xm−1, λk)| ≤ τfΦ(xm, λk)
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Denis Krndija, Thomas Seufferlein, Thomas M Gress, and Hans A Kestler. Significantly

improved precision of cell migration analysis in time-lapse video microscopy through use of

a fully automated tracking system. BMC cell biology, 11(1):24, 2010.

[185] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen

Change Loy. ESRGAN: Enhanced super-resolution generative adversarial networks. In Pro-

ceedings of the European Conference on Computer Vision (ECCV), pages 0–0, 2018.

[186] Yifan Wang, Federico Perazzi, Brian McWilliams, Alexander Sorkine-Hornung, Olga Sorkine-

Hornung, and Christopher Schroers. A fully progressive approach to single-image super-

resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops, pages 864–873, 2018.

[187] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-

resolution using very deep residual channel attention networks. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 286–301, 2018.

[188] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and Forecasting.

Springer New York, 1996.

[189] Jingzhou Xin, Jianting Zhou, Simon Yang, Xiaoqing Li, and Yu Wang. Bridge structure defor-

mation prediction based on GNSS data using Kalman−ARIMA−GARCH model. Sensors

(Basel, Switzerland), 18, 01 2018.

[190] X. Luo, M. Mayer, and B. Heck. Analysing time series of GNSS residuals by means of

AR(I)MA processes. In VII Hotine-Marussi Symposium on Mathematical Geodesy, pages

129–134. Springer Berlin Heidelberg, 2012.

[191] Ping-Feng Pai and Chih-Sheng Lin. A hybrid ARIMA and support vector machines model

in stock price forecasting. Omega, 33(6):497–505, 2005.



184 BIBLIOGRAPHY

[192] Xiaoguang Luo. GPS Stochastic Modelling - Signal Quality Measures and ARMA Processes.

Springer, 01 2013.

[193] José Lima and J Casaca. Smoothing GNSS Time Series with asymmetric simple moving

averages. Journal of Civil Engineering and Architecture, 6, 06 2012.

[194] Changhui Jiang, Shuai Chen, Yuwei Chen, Boya Zhang, Ziyi Feng, Hui Zhou, and Yuming Bo.

A MEMS IMU de-noising method using long short term memory recurrent neural networks

(LSTM− RNN). Sensors, 18:3470, 10 2018.

[195] Stefano Gandolfi, Luca Poluzzi, and Luca Tavasci. Structural monitoring using GNSS tech-

nology and sequential filtering. In Proceedings for FIG Working Week, 05 2015.

[196] Y Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient

descent is difficult. IEEE transactions on neural networks / a publication of the IEEE Neural

Networks Council, 5:157–66, 02 1994.

[197] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and

problem solutions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 6(2):107–116, 04 1998.

[198] Claudio Gallicchio. Short-Term Memory of Deep RNN. In Proceedings for European Sympo-

sium on Artificial Neural Networks, 02 2018.

[199] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech recognition with

Deep Bidirectional LSTM. In 2013 IEEE Workshop on Automatic Speech Recognition and

Understanding, ASRU 2013 - Proceedings, pages 273–278, 12 2013.

[200] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep

recurrent neural networks. ICASSP, IEEE International Conference on Acoustics, Speech

and Signal Processing - Proceedings, 38, 03 2013.

[201] Alex Graves. Generating sequences with recurrent neural networks. ArXiv: 1308.0850, 08

2013.

[202] Yuelei Xiao and Yang Yin. Hybrid LSTM neural network for short-term traffic flow prediction.

Information, 10:105, 03 2019.

[203] Hee-Un Kim and Tae-Suk Bae. Deep learning-based GNSS network-based real-time kinematic

improvement for autonomous ground vehicle navigation. Journal of Sensors, 2019:1–8, 03

2019.

[204] Elena Loli Piccolomini, Stefano Gandolfi, Luca Poluzzi, Luca Tavasci, Pasquale Cascarano,

and Andrea Pascucci. Recurrent neural networks applied to gnss time series for denoising

and prediction. In 26th International Symposium on Temporal Representation and Reasoning

(TIME 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[205] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9:1735–80, 12 1997.



BIBLIOGRAPHY 185

[206] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[207] Tom M Mitchell et al. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):870–877,

1997.

[208] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[209] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[210] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Ge-

ometry. MIT Press, 1969.

[211] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations

by back-propagating errors. nature, 323(6088):533–536, 1986.
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