
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN MATEMATICA
Ciclo 34

Settore Concorsuale: 01/A5 - ANALISI NUMERICA
Settore Scientifico Disciplinare: MAT/08 - ANALISI NUMERICA

Tensor-Train decomposition for image
classification problems

Presentata da: Domitilla Brandoni

Coordinatore Dottorato Supervisore
Prof.ssa Valeria Simoncini Prof.ssa Valeria Simoncini

Co-supervisore
Dott.ssa Margherita Porcelli

Esame finale 2022

Spero che un giorno tu abbia il coraggio di scappare da ogni cosa che ti rende infelice
(La città incantata, Hayao Miyazaki)

A chi mi ha sostenuta in questo percorso.

Contents

Introduction i

Notation and preliminary definitions v

1 Tensor tools 1
1.1 Tensor computations . 1
1.2 Tensor decompositions . 6

1.2.1 Canonical Polyadic (CP) decomposition 6
1.2.2 The Higher-Order Singular Value Decomposition (HOSVD) 9
1.2.3 Tensor-Train (TT) decomposition 15

2 Image classification with tensor models 25
2.1 Least Squares classification algorithm . 26
2.2 HOSVD classification algorithm . 27
2.3 Tensor-Train classification algorithm . 30

2.3.1 Higher-order classification algorithm 32
2.4 Numerical experiments . 33

2.4.1 Implementation details . 34
2.4.2 Classification performance . 34
2.4.3 A classification test in higher dimensional setting 36
2.4.4 Numerical experiments with truncated methods 37
2.4.5 Performance using statistical classification measures 38
2.4.6 Closing considerations . 39

3 Proximal gradient methods 41
3.1 The proximal gradient method . 41
3.2 The block proximal gradient method . 46
3.3 The Proximal Alternating Linearized Minimization (PALM) algorithm . 49

4 The spectral Proximal Alternating Linearized Minimization (sPALM)
algorithm 57
4.1 The spectral steplength . 57
4.2 The spectral PALM algorithm . 59

5 Matrix and tensor Dictionary Learning (DL) problem 63
5.1 Matrix Dictionary Learning problem . 65

5.1.1 Sparse coding . 66
5.1.2 Dictionary update . 68

5.2 Tensor methods . 70
5.2.1 K-HOSVD . 70
5.2.2 HO-SuKro . 71
5.2.3 GRADTENSOR . 73
5.2.4 K-CPD . 75

6 Proximal methods for Dictionary Learning 79
6.1 Proximal matrix methods . 79
6.2 Tensor proximal methods for a new Tensor-Train formulation of the DL

problem . 86

7 Dictionary Learning for image classification 93
7.1 The classification problem . 93
7.2 Numerical experiments . 96

7.2.1 Implementation details . 96
7.2.2 Preliminary tests on the matrix DL formulation 97
7.2.3 Numerical experiments on the tensor DL formulation 99
7.2.4 Truncated approach for memory saving 100
7.2.5 A classification example in 4D setting 102

7.3 Closing considerations . 105

Conclusions 107

A Description of the databases 109

Introduction

The interest around automatic object classification has been growing in these years
thanks to the large amount of data available and the swift increase of computing perfor-
mance [41]. A great effort has been put in reproducing the human ability of recognizing
objects in different conditions (i.e. illumination, view point, occlusion, scale and back-
ground variations), with consequences in several applications such as medical imaging,
driverless cars and security services [84, 75]. This is done by algorithmically teaching the
computer how to automatically recognize different quantities, and it is at the core of ma-
chine learning methodologies. All the algorithms used to address this task are known as
classification algorithms and are based on the detection of features that can help classify
an object, i.e., recognize that a certain object belongs to a well defined class (e.g., an
image represents a dog rather than an airplane). Object and image classification is part
of the more general area of artificial intelligence, which consists of developing algorith-
mic and engineering strategies for making automatic decisions and operations. From a
mathematical point of view, widely different approaches have been employed and further
developed, from logistic regression to neural networks [36], and a major role is played by
the underlying algebraic tools used to represent and approximate the processed data.

In this thesis we examine two different tensor-based models for image classification, in
which tensors are used both to represent the data and to construct the reference dataset
for further analysis and classification. It has been acknowledged in many applications
that tensors allow to preserve the multidimensional structure of the data and the neigh-
boring relations among image pixels [18, 45]. The intensive analytical and algorithmic
work in tensor decompositions in the past few decades [48] has led to the development of
different successful procedures that rely on different ways to represent and approximate
a tensor. Among the available techniques, we have considered Tensor-Train (TT) decom-
position [60], whose memory requirements do not seem to suffer from the so-called “curse
of dimensionality”, that is the exponentially growing memory requirements as the data
dimensions increase. In addition, the quality of TT approximations does not significantly
deteriorate when using truncation strategies to further limit memory consumptions.

Before tensors, matrix-based tools have been extensively used for image processing.
Due to its optimality properties, the Singular Value Decomposition (SVD) has been the
major workhorse for data compression and image classification (see [28] and references
therein). However, transforming image datasets into matrices requires squeezing all
information of the data into two dimensions: each image is vectorized so as to fit into

i

a single vector, and all features such as illumination, viewpoint, object class, etc. are
mixed together. The use of multidimensional tensors allows one to preserve both the
pixel two-dimensional structure of the image and the different inherent image properties,
strongly motivating the broad use of tensor methodologies in image processing, and in
particular for classification purposes, see, e.g., [28, 67, 78].

The first model we study in this thesis determines a reduced TT-based dataset that
can be used to classify a new object. The TT decomposition determines basis vectors
that allow to capture the main attributes of the original database in a reduced space,
while being able to serve as an accurate reference for each object class. As an original
contribution of this thesis, we derive a new Tensor-Train classification algorithm. In ad-
dition to coping with the curse of dimensionality, the approach shows great performance
in terms of CPU time and classification success rate irrespective of the image size over
the number of images in each class, overcoming related problems occurring with other
(matrix) classification methods.

The second part of the thesis is devoted to the study of another mathematical model
that can be used to address classification tasks: Dictionary Learning (DL). This process
aims to determine a sufficiently descriptive reference set – called dictionary and described
by a large matrix D – of the considered data population, and a representation of a data
sample as a sparse linear combination of the columns of this dictionary matrix. The
dictionary can be fixed or learned from data. In the first approach D can be determined
using the characteristics of the problem and only the coefficients of the sparse linear
combination need to be determined. In the second approach both the data and the
variables are learnt from data. This makes the model more flexible and appropriate for
different types of data going from signal to image processing. In the case one wants to
represent a collection of p observations sets Y ∈ Rn×p, the sparse representations are
collected in a matrix X ∈ Rk×p so that

Y ≈ DX,

where the approximation is required to be accurate according to some measure. Both the
sparsity constraint and the nonlinearity due to the learnt dictionary make the underlying
mathematical problem extremely difficult to treat. The most popular approaches known
in literature, see [26] and references therein for a review, employ an iterative optimiza-
tion strategy that alternates the updating of D by fixing X (dictionary update) and then
the updating X by fixing D (sparse coding). The main drawback of these approaches
is the lack of convergence guarantees mainly due to the use of greedy algorithms ([74])
for the sparse coding step. To overcome this problem, the Proximal Alternating Lin-
earized Minimization (PALM) algorithm can be used. Developed in [9], it is specifically
designed for general nonconvex and nonsmooth composite optimization problems that
includes several DL formulations, such as [2]. PALM is an iterative block coordinate
algorithm also relying on an alternating procedure. In each variable block, a gradient
step is performed on the regular part of the function followed by a proximal step on the
nonsmooth part. Since this gradient method is based on first order information, conver-

ii

gence can be slow. Thus, we propose a new proximal approach, named spectral PALM
(sPALM), with global guaranteed convergence and the use of second order information
in the gradient step. The new approach is particularly well suited for the DL problem.

One of the main issues when dealing with large data is limiting memory requirements,
since the dictionary D can be very memory consuming. To this end we propose a new
Tensor-Train formulation of the DL problem in which the dictionaryD is replaced with its
Tensor-Train decomposition. This allows a more compact representation of data leading
to memory savings without spoiling the classification performance. Once the sparse
representation is available, it can be used for classification purposes with satisfactory
success rate.

The results in this work open a venue to the use of more general, also additive,
tensor structures in the dictionary term D, see,e.g., [22, 34], for early explorations, that
may be able to better represent hidden properties in the data. This may also lead to
new interpretations of the sparsity constraints and a more effective design of the current
matrix X.

The original contribution of this thesis in the context of Tensor-Train based classifi-
cation algorithms for image classification problems is based on the works [15, 16] and is
contained in Chapters 2, 4, 6 and 7.

iii

iv

Notation and preliminary definitions

We introduce some notation and we recall definitions that will be used throughout the
thesis.

a vector
A rectangular matrix
AT transpose of the matrix A
A higher-order tensor

int(Ω) interior of the set Ω
∇f gradient of the function f
‖ · ‖F Frobenius norm
‖ · ‖2 Euclidean norm
‖ · ‖0 zero norm
〈·, ·〉 scalar product

Table 1: Table of notation.

Definition 1. Given two matrices A ∈ Rm1×m2 and B ∈ Rn1×n2 the Kronecker product
of A and B is denoted by A⊗B ∈ Rm1n1×n2m2 and is defined as

A⊗B =

a11B a12B . . . a1m2B
a21B a22B . . . a2m2B
...

...
am11B am12B . . . am1m2B

 .
Definition 2 ([5, p. 14]). Given a function f : Rn → (−∞,+∞], its domain is defined
as

dom(f) = {x ∈ Rn s.t. f(x) < +∞} .

Definition 3 ([5, p. 14]). A function f : Rn → [−∞,+∞] is called proper if it does not
attain the value −∞ and if there exists at least one x ∈ Rn such that f(x) < +∞, that
is dom(f) is non-empty.

v

Definition 4 ([5, Definition 5.1]). Let f : Rn → (−∞,+∞] and Lf ≥ 0. Then f is
said to be Lf -smooth over Ω ⊆ Rn if it is differentiable over Ω and satisfies the following
inequality

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x− y‖2

for all x, y ∈ Ω.

From this definition if a function f is Lf -smooth, then it is also L̄f -smooth with any
L̄f > Lf . We refer to L̄f as smoothness parameter of the function f and we will call
Lipschitz constant the smallest possible smoothness parameter of a given function.

Definition 5. Given a non-empty and closed set Ω ⊂ Rn, the indicator function δΩ :
Rn → (−∞,+∞] for all a ∈ Rn is given by

δΩ(a) =

{
0 if a ∈ Ω,

+∞ otherwise.

vi

Chapter 1

Tensor tools

In this chapter we describe some basic aspects of tensor computations and we explore
three different tensor decompositions that will be used throughout this thesis.

1.1 Tensor computations
Definition 1.1.1 ([48, p. 455]). A tensor A ∈ RI1×···×IN is an element of the tensor
product of N vector spaces, each of which has its own coordinate system. The order of a
tensor is the number of its dimensions, also known as ways or modes.

In a nutshell an Nth-order tensor can be defined as an N dimensional array. For
example, a vector is a first-order tensor and a matrix is a second-order tensor. The fibers
of a tensor are defined by fixing every index but one and correspond to matrix rows and
columns in a higher-order setting. They are always considered as column vectors when
extracted from the original tensor. Two-dimensional sections of a tensor are called slices,
that are defined by fixing all but two indices [48]. The slices of a third-order tensor are
usually denoted by Ai,:,: (horizontal slices), A:,j,: (lateral slices), A:,:,k (frontal slices).

Definition 1.1.2 ([48, p. 458]). The inner product of two N th-order tensors A, B ∈
Rd1×d2×···×dN is the sum of the products of their entries, i.e.

〈A,B〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
in=1

ai1,i2,...,inbi1,i2,...,in (1.1)

The norm associated to this scalar product is the Frobenius norm ‖A‖2
F = 〈A,A〉.

Notice that if A and B are second-order tensors, i.e. matrices, (1.1) reduces to the
standard definition of the matrix scalar product.

In several tensor decompositions the concept of unfolding a tensor into a matrix is
crucial. The unfolding, also known as matricization or flattening, consists in reordering
the elements of an N -way array into a matrix. In this thesis we consider two different

1

1. Tensor tools

types of unfolding of a tensor A ∈ Rd1×d2×···×dN , that we will refer to as mode-n unfolding
and reshape.
The mode-n unfolding
Given an Nth-order tensor A ∈ Rd1×d2×···×dN , its mode-n unfolding ([48]), denoted by
A(n), arranges the mode-n fibers to be the columns of the resulting matrix. More pre-
cisely, the tensor element (i1, i2, . . . , in) is mapped to the matrix element (in, j), where

j = 1 +
N∑
k=1
k 6=n

(ik − 1)jk jk =
k−1∏
m=1
m 6=n

dm. (1.2)

Different orderings of the columns for the mode-n unfolding can be used as long as
the operations defined on the flattened tensors are consistent [47, 48].
The reshape
The reshape ([18, 60]) of a tensor A ∈ Rd1×d2×···×dN , denoted here as A[k], is a (d1d2 . . . dk)
by (dk+1dk+2 . . . dN) matrix, whose elements are taken columnwise from A, that is

A[k](i1 . . . ik, ik+1 . . . iN) = A(i1, . . . , ik, ik+1, . . . iN). (1.3)

The multi-index i1 . . . iN is defined here as

i1 . . . iN = i1 + (i2 − 1)d1 + · · ·+ (iN − 1)d1 . . . dN−1.

Other conventions for defining the multi-index can be used, see for example [19]. Given an
Nth-order tensor A, it is possible to have N unfoldings and N−1 reshapes. Furthermore
the mode-1 unfolding of an Nth-order tensor is equivalent to the reshape along the first
mode.

Remark 1.1.1. Given a tensor A ∈ Rd1×···×dN , then(
A[N−1]

)T
= A(N).

To prove this equivalence is sufficient to observe that the multi-index i1 . . . iN−1 is equiv-
alent to the column index j associated to the mode-N unfolding defined in (1.2).

The next example illustrates the differences between the mode-n unfolding and the
reshape of a third-order tensor A ∈ R3×2×3.

Example 1.1.1. Consider the tensor A ∈ R3×2×3, whose frontal slices are given by

A1 =

 1 2
3 4
5 6

 , A2 =

 7 8
9 10
11 12

 , A3 =

 13 14
15 16
17 18

 .

Then the three mode-n unfoldings are given by

A(1) =

 1 2 7 8 13 14
3 4 9 10 15 16
5 6 11 12 17 18

 ,

2

1. Tensor tools

A(2) =

(
1 3 5 7 9 11 13 15 17
2 4 6 8 10 12 14 16 18

)
,

A(3) =

 1 3 5 2 4 6
7 9 11 8 10 12
13 15 17 14 16 18

 .

The reshapes along mode-1 and mode-2 are given by

A[1] =

 1 2 7 8 13 14
3 4 9 10 15 16
5 6 11 12 17 18

 , A[2] =

1 7 13
3 9 15
5 11 17
2 8 14
4 10 16
6 12 18

 ,

As already mentioned, we can observe that A(1) = A[1] and A(3) =
(
A[2]

)T .

Now we introduce two important tensor operations: the n-mode product, which is a
tensor by matrix operation and the

(
m
n

)
-product, which is a tensor by tensor operation.

Definition 1.1.3 ([48, p. 460]). Given a tensor A ∈ Rd1×···×dn×···×dN and a matrix U ∈
Rj×dn the n-mode matrix product of A with U is denoted by A×nU ∈ Rd1×···×dn−1×j×dn+1×···×dN

and its entries are given by

(A×n U)i1,...,in−1,j,in+1,...,iN =
dn∑
in=1

ai1,i2,...,in,...,iNuj,in .

If A ∈ Rd1×d2 is a matrix and U ∈ Rj×d1 , then the 1-mode multiplication of A with
U corresponds to the matrix multiplication

A×1 U = UA (UA)(i, j) =

d1∑
i1=1

uj,i1ai1,i.

Furthermore, if A ∈ Rd1×d2 and V ∈ Rj×d2 , the 2-mode multiplication is equivalent
to matrix multiplication with V T from the right:

A×2 V = AV T (AV T)(i, j) =

d2∑
i2=1

ai,i2vj,i2 .

We also recall that the n-mode product satisfies the following important commuta-
tivity property ([48, p. 461])

A×n U ×m V = A×m V ×n U ∀m 6= n,

3

1. Tensor tools

where A ∈ Rd1×···×dn×···×dm×···×dN , U ∈ Rj×dn and V ∈ Rj×dm . Therefore, in a series of
multiplications the product order of distinct modes is irrelevant. If the modes are the
same, i.e. m = n, then

A×n U ×n V = A×n (V U).

Proposition 1.1.1 ([48]). Let A ∈ Rd1×···×dN and Un ∈ Rjn×dn for n = 1, . . . , N .
Consider

B = A×1 U1 ×2 · · · ×N UN ,

then the mode-n unfolding of B is given by

B(n) = UnA(n) (UN ⊗ · · · ⊗ Un+1 ⊗ Un−1 ⊗ · · · ⊗ U1)T .

In a similar way to the n-mode product, in [18] the
(
m
n

)
-product of a tensor is intro-

duced.

Definition 1.1.4 ([18]). The
(
m
n

)
-product of a tensor A ∈ Rd1×d2×···×dN with a tensor

B ∈ Rj1×j2×···×jM , such that dn = jm, is defined as

C = A×mn B,

where C ∈ Rd1×···×dn−1×dn+1×···×dN×j1×···×jm−1×jm+1×···×jM . Its entries are given by

C(i1, . . . , in−1, in+1, . . . , iN , j1, . . . jm−1, jm+1, . . . , jM) =
dn∑
i=1

A(i1, . . . , in−1, i, in+1, . . . , iN)B(j1, . . . , jm−1, i, jm+1, . . . , jM).

The next result provides a relation between the n-mode product and the
(
m
n

)
-product.

Proposition 1.1.2. Let A ∈ Rd1×d2×d3 and B ∈ Rd3×···×dN , then(
A×1

3 B
)

[N−1]
=
(
B ×1 A[2]

)
[N−2]

.

Proof. First, we write
(
B ×1 A[2]

)
in the index form

(
B ×1 A[2]

)
(i1i2, i3, . . . , iN) =

d3∑
j=1

A[2](i1i2, j)B(j, i3 . . . , iN)

=

d3∑
j=1

A(i1, i2, j)B(j, i3 . . . , iN) =
(
A×1

3 B
)

(i1, i2, . . . , iN).

(1.4)

The result follows by observing that i1i2i3 . . . iN−1 = i1 . . . iN−1.

4

1. Tensor tools

Finally, we introduce one of the most important concepts in tensor computations: the
tensor rank. Even if the definition of tensor rank is analogue to the definition of matrix
rank, the properties of tensor and matrix ranks are quite different as stated in [48].

Definition 1.1.5 ([48, p. 458]). Given N vectors x(1) ∈ Rd1 , . . . , x(N) ∈ RdN , their outer
product x(1) ◦ x(2) ◦ · · · ◦ x(N) is an N th-order tensor A ∈ Rd1×···×dN whose entries are
given by

A(i1, i2, . . . , iN) = x
(1)
i1
x

(2)
i2
. . . x

(N)
iN
, ∀ 1 ≤ in ≤ dn n = 1, . . . , N.

Definition 1.1.6 ([48, p. 458]). An N th-order tensor A is rank 1 if it can be written as
the outer product of N vectors x(1), x(2), . . . , x(N), i.e.

A = x(1) ◦ x(2) ◦ · · · ◦ x(N).

Definition 1.1.7 ([24, Definition 2]). The n-rank of A is the dimension of the vector
space spanned by the n-mode vectors and is denoted by ρn = rankn(A).

For the n-rank the following relation holds:

rankn(A) = rank(A(n)). (1.5)

Example 1.1.2. Consider the tensor A ∈ R6×2×3, whose frontal slices are given by

A1 =

1 2
2 4
3 6
4 8
5 10
6 12

 , A2 =

11 12
13 14
15 16
17 18
19 20
21 22

 , A3 =

31 32
33 34
35 36
37 38
39 40
41 42

 .

Then the 1−rank is not maximum and in particular ρ1 = 5 since the first two columns
of A(1) are proportional. On the other hand, ρ2 and ρ3 are maximum and are equal to 2
and 3 respectively.

Definition 1.1.8 ([24, Definition 4]). Given A ∈ Rd1×···×dN we define its rank as the
minimal number of rank-one tensors that yield A as a linear combination and we denote
it by ρ = rank(A).

Note that, as observed in [48], the problem of determining the rank of an Nth-order
tensor is NP-hard. However for some tensors it is possible to compute exactly or estimate
the rank (see [48, Tables 3.2-3.3]). The following remark provides an upper bound for
the rank of a third-order tensor.

Remark 1.1.2 ([48]). If A ∈ Rd1×d2×d3 is a third-order tensor, then the following in-
equality holds

rank(A) ≤ min {d1d2, d1d3, d2d3} .

5

1. Tensor tools

1.2 Tensor decompositions
This section is devoted to the description of three different tensor decompositions: Canon-
ical Polyadic decomposition (CP) which decomposes a tensor into a sum of rank one
tensors, High-Order Singular Value Decomposition (HOSVD), which generalizes of the
matrix SVD to N -mode tensors and Tensor-Train (TT) decomposition, which decom-
poses an N dimensional tensor in a product of third-order tensors.

1.2.1 Canonical Polyadic (CP) decomposition

The Canonical Polyadic (CP) decomposition decomposes an Nth-order tensor X ∈
Rd1×···×dN in a finite sum of rank one tensors, that is

X =

ρ∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (1.6)

where a(i)
r ∈ Rdi , ∀i = 1, . . . , N , ∀r = 1, . . . , ρ. In several contexts, it can be useful to

consider unit norm factors a(i)
r . Thus, (1.6) can be written as follows.

X =

ρ∑
r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (1.7)

where λr ≥ 0 contains the information of the norms of a(i)
r and are decreasingly ordered

(i.e. λ1 ≥ λ2 ≥ · · · ≥ λρ). A visualization of the CP decomposition for a third-order
tensor is given in Figure 1.1.

Figure 1.1: Visualization of the CP decomposition for a third-order tensor.

Recalling Definition 1.1.8, ρ is the rank of X . Thus, determining the exact CP de-
composition of a tensor A is strictly related to determining its rank which is an NP-hard
problem. To avoid the exact computation of ρ, some procedures determine CP approxi-
mations with increasing ranks R until the approximation of X is sufficiently good ([48]).
Before moving to the numerical strategies used to determine the CP Decomposition, we
introduce two important matrix operations that will be useful in the discussion.

6

1. Tensor tools

Definition 1.2.1 ([48, p. 462]). Given two matrices A ∈ Rd1×j and B ∈ Rd2×j the
Kathri-Rao product between A and B is a real d1d2× j matrix denoted by A�B and its
entries are given by

A�B = (a1 ⊗ b1, . . . , aj ⊗ bj) .

The vectors ak, bk, k = 1, . . . , j denote the columns of A and B, respectively.

Definition 1.2.2 ([48, p. 462]). Given two matrices A, B ∈ Rd1×d2, their Hadamard
product is denoted as A ∗B and is defined as follows

A ∗B =

 a11b11 . . . a1d2b1d2

...
...

ad11bd11 . . . ad1d2bd1d2

 .

As previously mentioned, determining the exact CP decomposition for a tensor can
be difficult or even not possible. Thus, we consider the following setting. Given a tensor
X we want to approximate it with a tensor X̃ that has a CP structure of rank ρ, i.e.

min
X̃

∥∥∥X − X̃∥∥∥
F
, where X̃ =

ρ∑
r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r . (1.8)

One of the most used approaches to compute the CP Decomposition of a tensor X is
the alternating least squares (ALS). The underlying idea of this algorithm is to update
one term of the decomposition while keeping the others fixed. More precisely, let A(i) be
the matrix obtained by collecting the vectors a(i)

r , ∀r = 1, . . . , ρ.

A(i) =
[
a

(i)
1 , . . . , a

(i)
ρ

]
i = 1, . . . , N,

then the mode-n unfolding of a tensor X can be written as

X(n) = A(n)Λ
(
A(N) � · · · � A(n+1) � A(n−1) � · · · � A(1)

)
, (1.9)

where Λ ∈ Rρ×ρ = diag(λ1, . . . , λρ). Thus, A(n) can be determined as the least squares
solution of (1.9). The whole procedure is summarized in Algorithm 1.

Notice that the ALS procedure does not guarantee the convergence to a global min-
imum or a stationary point of (1.8) but only the decrease of the objective function at
each iteration ([48]). For further properties and a more detailed discussion on the CP
decomposition we refer to [48] and references therein.

Example 1.2.1. Let X ∈ Rni×ne×np be the tensor representing a database of black and
white images of np handwritten digits, reshaped as vectors with ni components. The
number of images per digit is denoted as ne and we refer to this variable as “expression”.
In this example we consider the MNIST database (see Appendix A) with ni = 784,
ne = 2676 and np = 10. We approximate its CP decomposition with ρ = 100. In

7

1. Tensor tools

Algorithm 1 CP-ALS [48]

Require: Tensor X ∈ Rd1×···×dN , tensor rank ρ, initial values for A(1), . . . , A(N)

1: for it = 1, . . . , do
2: for n = 1, . . . , N do
3: Set V ←

(
A(1)TA(1)

)
∗ · · · ∗

(
A(n−1)TA(n−1)

)
∗
(
A(n+1)TA(n+1)

)
∗ · · · ∗

(
A(N)TA(N)

)
4: Set A(n) = X(n)

(
A(N) � · · · � A(n+1) � A(n−1) � · · · � A(1)

)
V †

5: Compute the norm of the columns of A(n) and update Λ
6: end for
7: end for

0 20 40 60 80 100

104.5

105

r

λ
r

MNIST

Figure 1.2: Value of λr, r = 1, . . . , ρ from the CP decomposition of the MNIST database X .

Figure 1.2, the values of λr, for r = 1, . . . , ρ are summarized. A significant decrease
can be observed between the first and the third value of λ, while for r > 3 the decrease
is almost linear. However λ1 and λρ differ only by one order of magnitude suggesting
that the original tensor X does not have a low rank structure. Recalling Remark 1.1.2,
rank(X) ≤ 7840, which is much larger than the chosen rank ρ.

The CP decomposition of X can be used to approximate a specific digit p̂ in an ex-
pression ê as

X (:, ê, p̂) =

ρ∑
r=1

λra
(1)
r ◦ a(2)

r (ê) ◦ a(N)
r (p̂),

where a(1)
r , a(2)

r and a(3)
r are unit norm vectors.

In Figure 1.3 we report the approximation of the zero digit (p̂ = 1) in the first
expression (ê = 1) with ρ = 5, while in Figure 1.4a we report the approximation of the
digit 8 (p̂ = 9) in expression 76 (ê = 76) using the same rank ρ = 5. It is worth to observe
that the chosen value of the rank enables us to achieve a good visual approximation of
the handwritten digit 0, that is easier to represent. On the other hand, for more difficult
digits such as 8, a higher value of ρ should be considered, as shown in Figure 1.4b where

8

1. Tensor tools

Figure 1.3: Approximation of the handwritten digit 0 in expression 1 using ρ = 5.

(a) (b)

Figure 1.4: Approximation of the handwritten digit 8 in expression 76 using ρ = 5 (left) and
ρ = 10 (right).

the approximation is computed with ρ = 10.

1.2.2 The Higher-Order Singular Value Decomposition (HOSVD)

The Higher-Order Singular Value Decomposition (HOSVD) decomposes an Nth-order
tensor A into a core tensor S, with the same order of A, multiplied by N orthogo-
nal matrices along the different modes. Thus, the HOSVD is a Tucker decomposition
when the involved matrices are orthogonal and the core tensor has the property of all-
orthogonality. More precisely, the Tucker decomposition, introduced in [77], decomposes
an Nth-order tensor A into a core tensor X and N matrices F1, . . . , FN as follows

A = X ×1 F1 ×2 · · · ×N FN . (1.10)

A well-known variant of this decomposition for third-order tensors is Tucker2, which
corresponds to set a factor matrix equal to the identity (see [61, Definition 9]). For
instance, given A ∈ Rd1×d2×d3 , Tucker2 can have the following form

A = X ×1 F1 ×3 F3, (1.11)

where X ∈ Rd1×d2×d3 . A complete description of the Tucker decomposition, its variants
and the algorithms used to compute it can be found in [48]. In this Section we only

9

1. Tensor tools

Algorithm 2 HOSVD [24]

Require: Tensor A ∈ RI1×···×IN

1: for n = 1, . . . , N do
2: Consider the unfolding A(n) of A
3: compute the SVD of A(n), A(n) = UΣV T ;
4: Set the n-th orthogonal matrix of the HOSVD U (n) = U .
5: end for
6: Compute S = A×1

(
U (1)

)T ×2

(
U (2)

)T ×3 · · · ×N
(
U (N)

)T
analyze the HOSVD and we refer to the work of De Lathawer, De Moor and Vandewalle
in [24].

First, we report a result of [24], that provides the existence of the HOSVD for every
N dimensional tensor and gives a constructive way to compute it. In the following Sin=α

denotes the subtensor obtained from S by fixing the index in equal to α. For example,
if S is a third-order tensor, Si2=α = S:,α,:.

Theorem 1.2.1 ([24, Theorem 2]). Every N th-order tensor A ∈ Cd1×···×dN can be fac-
torized as

A = S ×1 U
(1) ×2 U

(2) ×3 · · · ×N U (N) (1.12)

where

i. the matrices U (n) = (u
(n)
1 u

(n)
2 . . . u

(n)
In

) ∈ Cdn×dn are unitary and the vector u(n)
i is

the i-th n-mode singular vector for n = 1, . . . , N ;

ii. the core tensor S ∈ Cd1×···×dN is a complex N th-order tensor whose subtensors
Sin=α, have the properties of

(a) all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal for all pos-
sible values of n in the sense of the scalar product (1.1)

〈Sin=α,Sin=β〉 = 0 ∀α 6= β; (1.13)

(b) ordering:

‖Sin=1‖F ≥ ‖Sin=2‖F ≥ · · · ≥ ‖Sin=In‖F ≥ 0 ∀ n = 1, . . . , N, (1.14)

where the Frobenius norms ‖Sin=i‖F are the n-mode singular values and are
denoted by σ(n)

i .

The proof of Theorem 1.2.1, reported in [24], relates the HOSVD of a tensor with the
SVDs of its unfoldings. More precisely, each orthogonal matrix U (n), with n = 1, . . . , N is
the matrix containing the left singular vectors of the ith unfolding of A. This procedure
can be used to derive Algorithm 2. The HOSVD of a third-order tensor is visualized in
Figure 1.5.

10

1. Tensor tools

Figure 1.5: Visualization of the HOSVD for a third-order tenor.

Remark 1.2.1 ([24]). Consider the HOSVD of a tensor A given in (1.12). Then, n-
mode singular values are ordered in a decreasing order, i.e.

σ
(n)
1 ≥ σ

(n)
2 ≥ · · · ≥ σ

(n)
In
≥ 0 ∀ n = 1, . . . , N.

Remark 1.2.2 ([24, Property 8]). Consider the HOSVD of a tensor A given in (1.12).
Then, ‖A‖F = ‖S‖F .

Remark 1.2.3 ([24, Property 4]). The n-mode singular values are uniquely defined.
Furthermore for real-valued tensors, the n-mode singular vectors are unique up to a sign
change or a multiplication with an orthogonal matrix.

Remark 1.2.4 ([24, Property 5]). If A ∈ Cd1×d2, then (1.12) reduces to the SVD. From
Theorem 1.2.1 we have

A = S ×1 U ×2 V, (1.15)

with S ∈ Cd1×d2,U ∈ Cd1×d1 and V ∈ Cd2×d2. Now using the properties of the n-mode
product we can rewrite (1.15) as

A = USV T .

In particular, since S has the properties of all-orthogonality and ordering, S is a diagonal
matrix containing the singular values of A in a decreasing order.

Remark 1.2.4 shows that the n-mode singular values and the n-mode singular vec-
tors are the higher-order analogue of the left/right singular vectors and singular values,
respectively.

It is also possible to express the HOSVD as an expansion of mutually orthogonal
rank-one tensors ([24])

A =

d1∑
i1=1

d2∑
i2=1

· · ·
dN∑
iN=1

S(i1, i2, . . . , iN)u
(1)
i1
u

(2)
i2
. . . u

(N)
iN
. (1.16)

11

1. Tensor tools

Figure 1.6 shows one term of the sum (1.16) for a third-order tensor.

Figure 1.6: Visualization of one term of a triadic decomposition .

Consider a tensor A ∈ Rd1×d2×···×dN . As observed in [28], in some settings the dimen-
sion of one mode can be larger than the product of the dimensions of the other modes.
For example, in image processing we may have that the dimension of the pixel space is
larger than the product of the features dimensions, i.e. d1 > d2d3 . . . dN . Then, it can be
shown that the following condition for the core tensor holds

Si1=α = 0 α > d2d3 . . . dN .

Thus, we can rewrite (1.12) by omitting the zero part of the core tensor

A = S̃ ×1 Ũ
(1) ×2 U

(2) ×3 · · · ×N U (N) (1.17)

where S̃ ∈ Rd2d3...dN×d2×···×dN and Ũ (1) ∈ Rd1×d2d3...dN . This variant of the HOSVD is
known as thin HOSVD. Notice that if A ∈ Rd1×d2 the thin HOSVD corresponds to the
thin SVD. Indeed, when d1 > d2 the SVD can be written as

A = U

(
S
0

)
V T . (1.18)

Then the matrix U can be partitioned in two blocks U = (U1, U2), where U (1)
2 in (1.18)

is multiplied with the zero block of the diagonal matrix containing the singular values.
Thus, using this observation, (1.18) can be written as

A = U1SV
T ,

which is known as thin SVD of A.

12

1. Tensor tools

0 100 200 300 400

10−2

10−1

100

σ
(1

)
i

1-mode

2 4 6 8 10

10−1

100

σ
(2

)
i

2-mode

0 10 20 30 40

10−1

100

σ
(3

)
i

3-mode

Figure 1.7: Singular values of the Orl database A ∈ R10304×10×40.

Example 1.2.2. Consider a third-order tensor 1 A ∈ R10304×10×40 representing the Orl
database (see Appendix A). We consider its HOSVD and we report in Figure 1.7 the
singular values along the different modes. The number of singular values in the first
mode is smaller than the number of pixels of each image ni, because a thin HOSVD
is considered. Thus, the number of 1-mode singular values is equal to nenp. We also
report in Figure 1.8 the first singular vector of A, u(1)

1 . Similarly to the matrix setting,
also in higher-order settings the first 1-mode singular vector contains the most important
information of the database. Thus for a face database, such as the Orl, the first singular
vector represents a face. This is due to the fact that U (1) contains the left singular vectors
of the first unfolding of A which is indeed the matrix obtained by storing the vectorized
version of each image in the database one after the other. Thus, u(1)

1 is nothing but the
first principal component of A(1), that is the linear combination of the images with the
largest variance.

1To further exploit the properties of a database of images a fourth-order tensor can be considered.
In such a way each image can be represented as a matrix and the neighboring relations among pixels are
better preserved. In the following chapters higher-order settings will be discussed, but in this example
we just consider a third-order tensor by using only the first dimension for the pixel space, according to
several works in the literature such as [78].

13

1. Tensor tools

Figure 1.8: Matricization of the first 1-mode singular vector of A ∈ R10304×10×40.

The truncated HOSVD

In several applications, we are interested in compressing information without loosing
representative power. Thus, a truncated version of the HOSVD can be considered. Un-
fortunately, for the HOSVD the property of best approximation of the SVD cannot be
derived. Nevertheless, the following theorem provides an upper bound on the approxi-
mation error.

Theorem 1.2.2 ([24, Property 10]). Let A ∈ Rd1×d2×···×dN and consider its HOSVD
defined in Theorem 1.2.1. Denote by rn(1 ≤ n ≤ N) the n-mode rank of A and define a
tensor Â by discarding the n smallest n-mode singular values σ(n)

d′n+1, σ
(n)
d′n+2, . . . , σ

(n)
rn for

given values of d′n. Then

‖A − Â‖2
F ≤

r1∑
i1=d′1+1

(
σ

(1)
i1

)2

+

r2∑
i2=d′2+1

(
σ

(2)
i2

)2

+ · · ·+
dN∑

iN=d′N+1

(
σ

(N)
iN

)2

.

Proof. Denoting as Ŝ the tensor obtained from S by setting equal to zero the n smallest

14

1. Tensor tools

n-mode singular values, we have that

‖A − Â‖2
F = ‖S − Ŝ‖2

F

=

r1∑
i1=1

r2∑
i2=1

· · ·
rN∑
iN=1

s2
i1,i2,...,iN

−
d′1∑
i1=1

d′2∑
i2=1

· · ·
d′N∑
iN=1

s2
i1,i2,...,iN

=

r1∑
i1=d′1+1

r2∑
i2=d′2+1

· · ·
rN∑

iN=d′N+1

s2
i1,i2,...,iN

≤
r1∑

i1=d′1+1

r2∑
i2=1

· · ·
rN∑
iN=1

s2
i1,i2,...,iN

+

r1∑
i1=1

r2∑
i2=d′2+1

· · ·
rN∑
iN=1

s2
i1,i2,...,iN

+ . . .

+

r1∑
i1=1

r2∑
i2=1

· · ·
rN∑

iN=d′N+1

s2
i1,i2,...,iN

=

r1∑
i1=d′1+1

(
σ

(1)
i1

)2

+

r2∑
i2=d′2+1

(
σ

(2)
i2

)2

+ · · ·+
rN∑

iN=d′N+1

(
σ

(N)
iN

)2

.

Example 1.2.3. Consider the tensor A ∈ R10304×10×40 described in Example 1.2.2. De-
fine now Â by discarding the 50 smallest 1-mode singular values. The approximation
error is ‖A − Â‖2

F = 3.796057 · 107 and the sum of the discarded singular values is
3.796057 ·107. In this example the approximation error is equal to the upper bound, since
the truncation is performed just along one mode. Indeed, from the proof of Theorem 1.2.2
we can notice that if the truncation is performed just along one mode of the tensor, the
upper bound becomes an equality.

1.2.3 Tensor-Train (TT) decomposition

The Tensor-Train Decomposition was introduced by Oseledets in 2010 ([60]) to overcome
one of the main drawbacks of the Tucker format. As already mentioned, for the HOSVD
of a tensor A we have to store in memory the core tensor S and N unitary matrices.
This becomes unattractive for large N . Thus, to prevent the curse of dimensionality,
the Tensor-Train Decomposition decomposes an Nth-order tensor in a product of third-
order tensors. Furthermore using an SVD based algorithm to determine the factors of
the decomposition, the approximation properties of the HOSVD are preserved.

Let A ∈ Rd1×···×dN , then its Tensor-Train Decomposition is given by ([60])

A(i1, . . . , iN) = G1(i1, :)G2(:, i2, :) . . .GN−1(:, iN−1, :)GN(:, iN) (1.19)

where

15

1. Tensor tools

i. G1 ∈ Rr1×d1 , GN ∈ RrN−1×dN and Gk ∈ Rrk−1×dk×rk , for k = 2, . . . , N − 1 are called
TT-cores,

ii. rk for k = 1, . . . , N are called TT-ranks and r0 = rN = 1,

iii. r = max
1≤k≤N

rk is called maximal TT-rank.

In index form, the definition (1.19) can be written as

A(i1, . . . , iN) =
∑

α1,...,αN−1

G1(i1, α1)G2(α1, i2, α2) . . . GN(αN−1, iN)

Definition 1.2.3 ([60, p. 2297]). A tensor A ∈ Rd1×···×dN is said to be in TT-format if
its elements are given by (1.19).

A classical visualization of the decomposition of a third-order tensor in index form is
given in Figure 1.9.

Figure 1.9: Visualization of the Tensor Train Decomposition in index form.

This graphical representation means the following. The rectangular nodes contain
the indices ik of the original tensor and at least one auxiliary index. The circular nodes
contain only one auxiliary index. Two rectangular nodes are connected if and only if
they have a common auxiliary index αk. To evaluate the entry of a tensor, we have to
multiply the elements of the tensors corresponding to the rectangular nodes and then
perform the summation over all auxiliary indices. Since Figure 1.9 is similar to a train
with carriages, the corresponding decomposition is called Tensor-Train Decomposition
([60]).

We next recall one of the main theorems for the Tensor-Train Decomposition, which
also gives a constructive way to compute it.

Theorem 1.2.3 ([60, Theorem 2.1]). If for each unfolding matrix A[k] of form (1.3) of
a tensor A ∈ Rd1×···×dN with

rank(A[k]) = rk, (1.20)

then there exists a decomposition (1.19) with TT-ranks not higher than rk.

Proof. Consider the first unfolding of A and its dyadic decomposition A[1] = UV T , which
can be written in the index form

A[1](i1, i2i3 . . . iN) =

r1∑
α1=1

U(i1, α1)V (α1, i2 . . . iN),

16

1. Tensor tools

since rank(A[1]) = r1. Then, the first TT-core is given by the matrix G1 such that
G1(i1, α1) = U(i1, α1). The matrix V can be expressed as

V = AT[1]U(UTU)−1 = AT[1]W,

or in the index form

V (α1, i2 . . . iN) =

d1∑
i1=1

A(i1, . . . , iN)W (i1, α1).

It is possible to treat the matrix V as an (N − 1)th-order tensor

V(α1i2, i3, . . . , iN) = V (α1, i2 . . . iN).

Now, consider the unfoldings V[k](α1i2 . . . ik, ik+1 . . . iN) for k = 2, . . . , N . It can be shown
that rank(V[k]) ≤ rk. Thus, since (1.20) holds,

A[k](i1 . . . ik, ik+1 . . . iN) =

rk∑
β=1

F (i1 . . . ik, β)G(β, ik+1 . . . iN).

Using the last expression we have

V[k](α1i2 . . . ik+1, ik+2 . . . iN) =

d1∑
i1=1

A[k](i1 . . . ik, ik+1 . . . iN)W (i1, α1)

=

d1∑
i1=1

rk∑
β=1

F (i1 . . . ik, β)G(β, ik+1 . . . iN)W (i1, α1)

=

rk∑
β=1

H(α1i2 . . . ik, β)G(β, ik+1 . . . iN),

(1.21)

where

H(α1i2 . . . ik, β) =

d1∑
i1=1

F (i1 . . . ik, β)W (i1, α1).

From (1.21) we have that rank(V[k]) ≤ rk, ∀ k = 1, . . . , N . Now if we consider the
unfolding V[1], we have

V[1](α1i2, i3 . . . iN) =

r2∑
α2=1

G2(α1i2, α2)V ′(α2, i3 . . . iN).

Then we set (G2)[2] = G2 and we iterate this process to find the other core tensors Gk,
for k = 3, . . . , N .

17

1. Tensor tools

Algorithm 3 TT-SVD [76, p.31-32]

Require: Tensor A ∈ Rd1×···×dN

1: Compute the size of the first unfolding of A, A1:

Nl = d1, Nr =
N∏
k=2

dk;

2: create a copy of the original tensorM1 = A;
3: unfoldM1 into the computed dimensions: M1 = reshape(M, [Nl, Nr]);
4: compute the thin SVD of M1, M1 = UΣV T ;
5: set the first core tensor G1 := U ;
6: recompute M2 = ΣV T = UTM and let [∼, r1] = size(U);
7: for k = 2, . . . , N − 1 do
8: Compute

Nl = dk, Nr =
Nr

dk
;

9: set Mk = reshape(Mk, [rk−1 ·Nl, Nr]);
10: compute the thin SVD of Mk, Mk = UΣV T ;
11: Set Gk = reshape(U, [rk−1, dk, rk]);
12: Compute Mk+1 = UTMk and let [∼, rk] = size(U).
13: end for
14: GN := MN

The proof of Theorem 1.2.3 gives a way to compute the TT decomposition of an
Nth-order tensor A (see Algorithm 3).

Remark 1.2.5. Let G1 ∈ Rd1×r1 be the first core of the TT decomposition of a tensor
A ∈ Rd1×···×dN computed using Algorithm 3. Then G1 = U (1) where U (1) is the first
factor matrix of the HOSVD of A. This follows directly from the equivalence between the
mode-1 unfolding and the reshape along the first mode.

As stated in [18], using Definition 1.1.4 for the
(
m
n

)
-mode product, (1.19) can be

written as
A = G1 ×1

2 G2 ×1
3 G3 ×1

3 · · · ×1
3 GN . (1.22)

Thus, if A is a third-order tensor, then

A = G2 ×1 G1 ×3 G
T
3 , (1.23)

18

1. Tensor tools

since

A(i1, i2, i3) = G1(i1, :)×1
2 G2(:, i2, :)×1

3 G3(:, i3) =
∑
α1,α2

G1(i1, α1)G2(α1, i2, α2)G3(α2, i3)

=
∑
α2

(G2 ×1 G1)(i1, i2, α2)G3(α2, i3) = (G2 ×1 G1 ×3 G
T
3)(i1, i2, i3).

A standard visualization of (1.23) is given in Figure 1.10.

Figure 1.10: Visualization of the Tensor-Train Decomposition of a third-order tensor using the(
m
n

)
-mode product.

We notice that for a third-order tensor the Tensor-Train Decomposition corresponds
to the classical Tucker2 decomposition (1.11). We recall that, in a third-order setting,
this decomposition enables us to write a tensor A ∈ Rd1×d2×d3 as the product of a core
tensor and two matrices. In particular, using Tucker2, A can be decomposed as follows

A = X ×1 U ×3 V.

Thus, if we determine X , U , V using the TT-SVD algorithm we obtain (1.23). We
illustrate the Tensor-Train Decomposition of a third-order tensor for image data in the
following example.

Example 1.2.4. Let A ∈ R10304×10×40 be the tensor representing the Orl database de-
scribed in Example 1.2.2 and consider its Tensor-Train decomposition. Then the singular
values of the matricesM1 andM2 defined in Algorithm 3, are summarized in Figure 1.11.
According to Remark 1.2.5, the singular values of M1 are equivalent to the 1-mode sin-
gular values of A reported in Example 1.2.2.

We next derive some results on the relation between the TT decomposition of an
Nth-order tensor and its reshapes.

19

1. Tensor tools

0 100 200 300 400

103

104

105

σ
(1

)
i

1-mode

0 10 20 30 40

104

105

σ
(2

)
i

2-mode

Figure 1.11: Singular values of the matrices M1, M2 for the Orl database A ∈ R10304×10×40.

Proposition 1.2.1. Let A ∈ Rd1×···×dN and consider its Tensor-Train decomposition
with TT-cores G1, G2, . . . , GN . Then the reshape along the mode N − 1 of A is given by

A[N−1] = (Id2...dN ⊗G1)
(
Id3...dN−1

⊗G2

)
. . .
(
Id3...dN−1

⊗GN−2

)
GN−1GN , (1.24)

where Gn = (Gn)[2], for n = 2, . . . , N − 1 and Ik ∈ Rk×k denotes the identity matrix.

Proof. The Tensor-Train decomposition of A using the
(
m
n

)
-mode product as follows

A = G1 ×1
2 G2 ×1

3 · · · ×1
3 GN .

Then denoting as G2,N−1 := G2×1
3 · · ·×1

3GN−1, the reshape along the mode N−1 is given
by

A[N−1] =
(
G2,N−1 ×1 G1 ×N GT

N

)
[N−1]

=
(
G2,N−1 ×1 G1 ×2 Id2 ×3 · · · ×N−1 IdN−1

×N GT
N

)
[N−1]

=
((
G2,N−1 ×1 G1 ×2 Id2 ×3 · · · ×N−1 IdN−1

×N GT
N

)
(N)

)T
= (Id2...dN−1

⊗G1)
((
G2,N−1

)
(N)

)T
GN .

Now we consider the mode-N unfolding of G2,N−1. The idea is to separate one TT core
at a time using Proposition 1.1.2.(

G2,N−1
(N)

)T
=
(
G2 ×1

3 G3,N−1
)

[N−1]
=
(
G3,N−1 ×1 G2

)
[N−2]

=
((
G3,N−1 ×1 G2 ×2 Id3 ×3 · · · ×N−1 IdN−1

)
(N−1)

)T
= (Id3...dN−1

⊗G2)
((
G3,N−1

)
(N−1)

)T
.

Repeating this procedure for each TT-core, we obtain the result.

20

1. Tensor tools

In case of a third-order tensor A ∈ Rd1×d2×d3 , using Proposition 1.2.1, we have that

A[2] = (Id2 ⊗G1)G2G3, (1.25)

where G2 = (G2)[2] and Id2 ∈ Rd2×d2 is the identity matrix.

Proposition 1.2.2. Let A ∈ Rd1×d2×d3 and consider its Tensor-Train decomposition
with TT-cores G1, G2, G3. Then the reshape along the first mode of A is given by

A[1] = G1 (G2)[1] (I ⊗G3) (1.26)

Proof. The result follows directly from Proposition 1.1.1 by observing that A(1) = A[1].

The truncated TT-SVD

As for the HOSVD, rank truncation strategies are commonly employed in the TT setting.
Indeed, the best rank rk approximation via SVD can be computed instead of the exact
SVD. Then the introduced error can be estimated as shown in the following theorem.

Theorem 1.2.4 ([60, Theorem 2.2]). Suppose that the unfoldings A[k] of the tensor
A ∈ Rd1×···×dN can be approximated by matrices of low rank Âk

A[k] = Âk + Ek, rank(Âk) = rk, ‖Ek‖ = εk, k = 1, . . . , N − 1. (1.27)

Then TT-SVD computes a tensor B in the TT-format with TT-ranks rk and

‖A − B‖F ≤

√√√√N−1∑
k=1

ε2k.

Following Theorem 1.2.4, we can consider a variant of Algorithm 3 in which the
truncated SVD instead of the exact one is computed. This truncated TT-SVD is reported
in Algorithm 4.

Example 1.2.5. Consider a tensor A ∈ Rd1×···×dN and its TT approximation B, com-
puted via the TT-SVD algorithm by keeping the first m singular values of the unfolding
matrices A[k]. Then, for the approximation property of the SVD the error obtained for

each unfolding is equal to the sum of the discarded singular values, i.e. ε2k =

rk∑
s=m+1

(σks)2.

Thus, using Theorem 1.2.4

‖A − B‖F ≤

√√√√N−1∑
k=1

rk∑
s=m+1

(σks)2,

where σks , k = 1, . . . , rk are the singular values of A[k].

21

1. Tensor tools

Algorithm 4 Truncated TT-SVD [60, Algorithm 1]

Require: Tensor A ∈ Rd1×···×dN , accuracy ε
1: Compute the truncation parameter δ = ε√

d−1
‖A‖F

2: Compute the size of the first unfolding of A, A[1]:

Nl = d1, Nr =
N∏
k=2

dk;

3: create a copy of the original tensorM1 = A;
4: unfoldM1 into the computed dimensions: M1 = reshape(M1, [Nl, Nr]);
5: compute the truncated SVD of M1, M1 = U1Σ1V

T
1 + E1, where ‖E1‖F ≤ δ and

r1 = rank(U1);
6: set the first core tensor G1 := U ;
7: compute M2 = Σ1V

T
1 = UT

1 M ;
8: for k = 2, . . . , N − 1 do
9: Compute

Nl = dk, Nr =
Nr

dk
;

10: set Mk = reshape(Mk, [rk−1 ·Nl, Nr]);
11: compute the truncated SVD of Mk, Mk = UkΣkV

T
k + Ek, where ‖Ek‖F ≤ δ and

rk = rank(Uk);
12: Set Gk = reshape(Uk, [rk−1, dk, rk]);
13: Compute Mk+1 = UT

k Mk.
14: end for
15: GN := MN

16: return TT-cores Gk ∈ Rrk−1×dk×rk for k = 1, . . . , N s.t.
‖A −G1 ×1

2 G2 ×1
3 · · · ×1

3 GN‖F ≤ ε

Corollary 1.2.1 ([60, Corollary 2.4]). Given a tensor A ∈ Rd1×dN and rank bounds
rk, the best approximation to A in the Frobenius norm with TT-ranks bounded by rk
always exists (denote it by Abest), and the TT-approximation computed by the TT-SVD
algorithm is quasi optimal, that is

‖A − B‖F ≤
√

(N − 1)‖A −A(best)‖F .

An example on the approximation error follows.

Example 1.2.6. Consider A ∈ R10304×10×40 and let B be the tensor in the TT-format
obtained by using the TT-SVD algorithm with r1 = 350. The approximation error is
‖A−B‖2

F = 3.796057·107 and the sum of the discarded singular values is 3.796057·107. As
for the HOSVD, when the truncation is performed just along the first mode the inequality

22

1. Tensor tools

in Theorem 1.2.4 becomes an equality. Indeed, computing the truncated SVD of the first
unfolding of A we obtain

A[1] = U1ΣV T
1 + E1 = G1M2 + E1,

where E1 is the error matrix obtained by discarding the smallest 50 singular values of
A[1] and G1 is the matrix containing the first 350 left singular vectors of A[1]. Now using
the properties of the Frobenius norm we have√√√√ 400∑

s=351

(σ1
s)

2 = ‖E1‖F = ‖A[1]−M2×1G1‖F = ‖A−M2×1G1‖F = ‖A−G2×3G
T
3×1G1‖F ,

where the last equality holds since no truncation is performed on the second mode.

In many image applications one may be interested in different truncations depending
on the mode of the tensor. For example, consider a database of images with ni pixels of
np persons in ne expressions A ∈ Rni×ne×np . Then, for classification problems, the trun-
cation performed on the first mode may be different from the truncation performed on
the second mode, since the “pixel” mode is usually more redundant than the “expression”
mode. In such situations instead of using the same δ for each mode as in Algorithm 4,
one can consider different truncation parameters for each TT-core. One possible choice
is to truncate each Uk to its first `k columns according to a parameter πk

`k = max
J

{∑J
j=1 σj(Mk)∑Ii
j=1 σj(Mk)

≤ πk

}
k = 1, . . . , N − 1,

where πk is such that `k ≥ 1 for k = 1, . . . , N − 1. This selection is in agreement with
the truncation guidelines discussed in [20, 39, 49].

23

1. Tensor tools

24

Chapter 2

Image classification with tensor models

The material of this chapter is based on the publication [16].
Numerical linear algebra tools, and primarily the Singular Value Decomposition

(SVD) have been extensively used to automatically process images in computations for
classification purposes, see, e.g., [28] and its references. In this context, a database of
np persons in ne expressions is stored as np distinct matrices Ap ∈ Rni×ne , p = 1, . . . , np,
where ni is the number of pixels of each image. SVD-based classification algorithms work
pretty well when the number of image pixels is greater than the number of features, oth-
erwise the classification performance drops significantly. This suggests that alternative
strategies should be used, since the latter condition often occurs in realistic applications
where very many images need to be analyzed.

More recently, it has been shown that multilinear algebra and the algebra of higher-
order tensors (see, e.g., [48]) can offer a more powerful mathematical framework for
analyzing and addressing the multi-factor structure of image ensembles. For instance, the
Weizmann database in [78] - where TensorFaces are introduced - is composed by 28 male
subjects in 15 poses, 4 illumination conditions and 3 expressions, and it is represented by
a 5-way tensor. Then the HOSVD is used to classify the image of an unknown person.
Other tensor-based approaches have been proposed in a large variety of contexts; for
instance, in [39] Face Recognition is performed using tensor-tensor decompositions, while
in [14] the classification problem is expressed using the Kronecker Product Equation
(KPE) in a randomization context.

In this chapter we describe some known tensor-based classification algorithms, and we
introduce a classification strategy associated with the Tensor-Train decomposition. This
tensor decomposition has been shown to have great potential in multivariate function
approximation and compression, and it is particularly amenable to truncation strategies
yielding low-rank tensor approximations.

In the tensor setting, a database of images with ni pixels, np persons and ne expres-
sions for each person is splitted in a training set and a test set. The first is composed by
all the persons in ñe < ne expressions and is represented either as a third-order tensor
A ∈ Rni×ñe×np or as a fourth-order tensor A ∈ Rn1×n2×ñe×np with n1n2 = ni. The second

25

2. Image classification with tensor models

Algorithm 5 Least Squares
1: Input: z ∈ Rni input image and A.
2: for e = 1, . . . , ne do
3: Solve for xe in (2.1) and set re = z − Aexe 1

4: end for
5: ê = argmin

e
(‖re‖)

6: p̂ = argmax
p
|xê(p)|

7: Output: Classify z as person p̂

is composed by all the persons in the remaining expressions and is used to validate the
classification algorithm. More precisely, given an image z from the test set, represented
by a vector in Rni , we want to determine which of the np persons, the new image is
closest to. To this end we define a distance dist(z,A:,:,p) of z from each person p of the
given database, for p = 1, . . . , np. In the following discussion the space “expression e”
spanned by all images of the np persons in expression e is denoted as Ee.

2.1 Least Squares classification algorithm
The Least Squares classification algorithm is a simple minded strategy that merely fo-
cuses on the comparison between the new image z ∈ Rni to be classified and the matrices
obtained by considering all images in each given expression. More precisely, for each ex-
pression e = 1, . . . , ne let Ae := A:,e,:, where the columns of Ae have been scaled to have
unit Euclidean norm. Consider the following least squares problem

min
x
‖z − Aex‖2. (2.1)

The solution of (2.1), xe represents the coordinates in the space Ee. Let re = z − Aexe
be the associated residual that indicates how far z is from being a linear combination of
the columns of Ae and the distance of z from Ee is measured by ‖re‖2. Then compute

ê = argmine‖re‖2,

to determine the space Eê in which z is better represented and classify z as person p̂,
where p̂ = argmaxp|xê(p)|. Note that p̂ indicates the column of Aê that contributes most
in the linear combination Aêxê. A version of this classification algorithm is given in
Algorithm 5.

Problem (2.1) has a unique solution when ni > np and Ae has full column rank. This
is quite common in image databases (see Appendix A). On the other hand when this
condition is not fulfilled one can for example consider the unique solution x(LS)

e of (2.1)
1Each slice of A, that is Ae, is normalized before solving (2.1).

26

2. Image classification with tensor models

that minimizes the Euclidean norm of ‖x‖2. In particular, x(LS)
e can be computed as

x
(LS)
e = (Ae)T y, where y is the solution of

Ae (Ae)T y = z.

2.2 HOSVD classification algorithm
Using the HOSVD described in section 1.2.2, the tensor A ∈ Rni×ne×np can be written
as follows

A = S ×i F ×e G×p H, (2.2)

where ×i, ×e, ×p are the 1-mode, 2-mode, 3-mode multiplications, respectively2; F , G
and H are the factor matrices of the HOSVD and S is the core tensor. Notice that
G ∈ Rne×ne , H ∈ Rnp×np and, if ni > nenp then S ∈ Rnenp×ne×np , F ∈ Rni×nenp ,
otherwise, S ∈ Rni×ne×np , F ∈ Rni×ni . Recalling that the aim of the algorithm is to
classify a new image, we separate the information on the pixels and the expressions from
the information on the persons, i.e we consider C = S ×i F ×e G. Then for a fixed
expression e

Ae = CeHT e = 1, 2, . . . , ne, (2.3)

where Ae and Ce are the matrices obtained by fixing the second index of A and C equal
to e. Hence each column p of Ae can be written as a linear combination of the columns
of Ce as follows

a(e)
p = CehTp , (2.4)

where hTp , the p-th column of HT , are the coordinates of a(e)
p in the basis Ce. Note that

the coordinates of person p in different bases Ce are the same. Now let z ∈ Rni be the
new image to be classified. The coordinates of z in the expression basis can be found by
solving a least squares problem

α̂e = argminαe‖C
eαe − z‖2, e = 1, . . . , ne. (2.5)

Then, for each e = 1, . . . , ne and for each p = 1, . . . , np

DHO(e, p) = ‖α̂e − hTp ‖2.

Note that if Ce is full column rank, then the least squares problem (2.5) has a unique
solution, otherwise the solution is not unique, but the solution with smallest norm can
be obtained by using the SVD of Ce for its computation ([35, section 5.5]).

A preliminary version of the classification algorithm, described in [28], is given in
Algorithm 6. Since the solution of ne least squares problems can be computationally
demanding, in [28] a variant of Algorithm 6 is presented. Assume that ni � nenp and

2×i is the image-mode multiplication, ×e is the expression-mode multiplication, ×p is the person-
mode multiplication.

27

2. Image classification with tensor models

Algorithm 6 Face Recognition (preliminary version)[28, p.173]
Require: z test image.
1: for e = 1, 2, . . . , ne do
2: Compute α̂e = minαe ‖Ceαe − z‖2

3: for p = 1, 2, . . . , np do
4: DHO(e, p) = ‖α̂e − hTp ‖2

5: end for
6: end for
7: d1 = min(DHO);
8: [d2, p̂] = min(d1).
9: Output: Classify z as person p̂

consider F ∈ Rni×nenp obtained by means of a thin HOSVD. Then, enlarge F so that it
becomes square and orthogonal, that is

F̂ = (F F⊥) (2.6)

If we set Be = S ×i F ×e G, we have

‖Ceαe − z‖2
2 = ‖F̂ (FBeαe − z)‖2

2 =

∥∥∥∥(Beαe − F T z
−(F⊥)T z

)∥∥∥∥2

2

= ‖Beαe − F T z‖2
2 + ‖(F⊥)T z‖2

2.

Thus, we can solve ne least squares problems, by first computing ẑ = F T z

min
αe
‖Beαe − ẑ‖2 e = 1, . . . , ne. (2.7)

Since the matrix Be is smaller than Ce, it is cheaper to solve (2.7) instead of (2.5). To
further reduce work, the thin QR-Decomposition of Be can be computed.

This procedure is summarized in Algorithm 7. If ni < nenp, like in the Extended Yale
Database, F ∈ Rni×ni is a square orthogonal matrix, so in equation (2.6) we consider
F̂ = F and both Algorithm 6 and Algorithm 7 can be used.

There is a tight connection between the LS-based method and the HOSVD classifi-
cation, given that for each expression e the matrix Ae is the same.

Proposition 2.2.1. Let xe be the solution to (2.1) in the LS-based method, and let α̂e
be the solution to (2.5) in the HOSVD method. Then α̂e = HTxe. Letting I:,p be the p-th
column of the canonical basis, it then holds

DHO(e, p) = ‖α̂e − hTp ‖2 = ‖xe − I:,p‖2.

28

2. Image classification with tensor models

Algorithm 7 Face Recognition [28, p.174]
Require: z test image.
1: Compute ẑ = F T z:
2: for e = 1, . . . , ne do
3: Compute the thin QR-Decomposition of Be

4: Denote as α̂e the solution of Reαe = QT
e ẑ

5: for p = 1, . . . , np do
6: DHO(e, p) = ‖α̂e − hp‖2.
7: end for
8: end for
9: d1 = min(DHO);
10: [d2, p̂] = min(d1)
11: Output: Classify z as person p̂

Proof. The least squares solution α̂e is given by α̂e = ((Ce)
TCe)

−1(Ce)
T z, while the least

squares solution xe is given by xe = ((Ae)TAe)−1(Ae)T z. Substituting Ae = CeHT we
obtain

xe = ((Ae)TAe)−1(Ae)T z = (H(Ce)TCeHT)−1H(Ce)T z

= H−T ((Ce)TCe)−1(Ce)T z = H−T α̂e,

which proves the first assertion. For the second assertion, since α̂e = HTxe, we have
‖α̂e − hTp ‖2 = ‖HTxe − HT I:,p‖2 = ‖HT (xe − I:,p)‖2. From the orthogonality of H the
result follows.

Assume that z and Ae have both been scaled to have unit norm columns, so that the
entries of xe are all not greater than one in absolute value. It follows that for a fixed e,
finding the minimum of DHO(e, p) corresponds to finding the largest entry of xe, the p̂-th
entry, which is closest to one. Hence, the difference between the two methods lays in the
way the “best” expression is chosen. In the basic least squares method the expression
corresponding to the smallest residual norm is selected, whereas in HOSVD all is based
on the quantity ‖xe − I:,p‖. This implies that the HOSVD and LS methods compute
the same quantities, but the stopping criterion changes, which is thus responsible of
possible discrepancies in the performance of the two approaches. Table 2.1 displays the
differences and similarities between the least-squares and the HOSVD formulations for
the classification of a single image: the test set is composed by the person p in the
last expression, while all the other np persons in the remaining expressions are used
as training set. We report the classification result of each method by displaying p̂ for
each database. The method LS2 corresponds to Algorithm 5, in which lines 5 and 6 are
replaced with [ê, p̂] = argminD(e, p) = argmin‖xe−I:,p‖. According to Proposition 2.2.1,
the same classification results are obtained using either HOSVD or LS2.

Another classification algorithm based on HOSVD is presented in [67], where the
training set is decomposed as in (2.2). The tensor L = S(1 : r, 1 : s, :) ×3 H is then

29

2. Image classification with tensor models

Database p LS LS2 HOSVD
Orl 14 18 14 14

COIL-20 1 1 1 1
Faces95 5 50 57 57
Faces96 59 77 59 59

Ext’d Yale shrunk 9 10 6 6

Table 2.1: Value of p̂ for least squares based algorithms and the algorithm based on HOSVD
with respect to different subjects p of five different databases.

Algorithm 8 HOSVD2[67, p.999]
Require: z test image, A training sets
1: Compute the HOSVD of A = S ×1 F ×2 G×3 H.
2: for p = 1, . . . , np do
3: Compute L = S(1 : r, 1 : s, :)×3 H and store the first k singular vectors of

Lp = L(:, :, p) in a matrix Bp

4: Compute d(p) = ‖zp −Bp(Bp)T zp‖2

5: end for
6: Output: Classify z as person p̂ = argminp(d)

computed3, and for every person p the first k singular vectors of Lp = L:,:,p are stored in a
matrix Bp to take the most relevant characteristic of each class. Let z ∈ Rni be the image
of an unknown person in an unknown expression to be classified. The following least
squares problem measures how far z is from being a linear combination of the columns
of Bp for each p = 1, . . . , np:

d(p) := min
x
‖zp −Bpx‖2, where zp = F (1 : r, :)T z. (2.8)

Using the orthogonality of the columns of Bp, the solution of (2.8) is given by xp =
(Bp)T zp and d(p) = ‖zp −Bp(Bp)T zp‖2. As for the previous algorithms z is classified as
person p̂ = argminp(d). The whole procedure is summarized in Algorithm 8. In Section
2.4 we will refer to this algorithm as HOSVD2. We conclude this brief description by
noticing that HOSVD2 requires the computation of an HOSVD of the training tensor
and np SVDs to determine the matrices Bp, p = 1, . . . , np. This can be computationally
expensive when np is large.

2.3 Tensor-Train classification algorithm
In this section, we derive a new Tensor-Train classification algorithm following the scheme
of Algorithm 6. We first write the data tensor for each expression e, by means of a TT-

3The parameters r, s can be set arbitrarily and depend on the desired data compression.

30

2. Image classification with tensor models

based basis for Ee. Then we define the associated distance to be minimized.
Using (1.23), A:,e,: can be written as

A:,e,: = Ge
2 ×i G1 ×p GT

3 ∀ e = 1, . . . , ne, (2.9)

where Ge
2 = (G2):,e,: is a matrix. Thus, the image of a person p in the expression e is

A:,e,p = G1G
e
2g
p
3, where gp3 = (G3):,p . (2.10)

As in the HOSVD setting we want to separate the information on the person from the
information on the pixels and on the expressions. Thus, we set C = G2 ×i G1 so that
(2.10) becomes

A:,e,p = Cegp3, with Ce = C:,e,: = G1G
e
2. (2.11)

This can be interpreted as follows. The columns of Ce are a basis for Ee while gp3, the
p-th column of G3, holds the coordinates of person p in this basis. Note that the same
gp3 holds the coordinates of all the images of person p in the different expression bases
[28, p.173].

Given the image z of an unknown person in an unknown expression, we want to
find the coordinates αe of z in all the ne bases {Ce}e=1,...,ne and then compare each αe
for e = 1, . . . , ne with the coordinates of all np persons in the same basis, which are
represented by the columns of G3. More precisely, for each e = 1, . . . , ne compute

min
αe
‖Ceαe − z‖2, (2.12)

and then, for each e = 1, . . . , ne and for each p = 1, . . . , np define the distance between
z and the person p in expression e as

DTT (e, p) := ‖α̂e − gp3‖2, (2.13)

where α̂e is the solution of (2.12). Hence, the distance between z and person p is given
by

dist(z,A:,:,p) = min
e
DTT (e, p).

The computation in (2.12) can be performed by means of the reduced QR decom-
position of Ge

2, that is Ge
2 = QeRe. The coordinates of z in Ee are thus given by

α̂e = R(e)−1
Q(e)TGT

1 z and so (2.13) becomes

DTT (e, p) = ‖R(e)−1
Q(e)TGT

1 z − g
p
3‖2 p = 1, . . . , np,

where gp3 = (G3):,p. The overall procedure is summarized in Algorithm 9.

Remark 2.3.1. Let Ae = A(:, e, :) in (2.10). Then a result analogous to that in Propo-
sition 2.2.1 can be derived, that is the distance DTT satisfies

DTT (e, p) = ‖xe − I:,p‖

where xe = argminx ‖Aex− z‖.

31

2. Image classification with tensor models

Algorithm 9 TT3D
Input: z test image G1, G2, G3.
Compute ẑ = GT

1 z:
for e = 1, . . . , ne do

Solve Ge
2αe = ẑ for αe

for p = 1, . . . , np do
DTT (e, p) = ‖αe − gp3‖2 where gp3 = G3(:, p).

end for
end for
(ê, p̂) = argmin

e,p
(DTT)

Output: Classify z as person p̂

2.3.1 Higher-order classification algorithm

Several authors in the literature have observed that image classification can be improved
by considering images as matrices I ∈ Rn1×n2 instead of vectors, thus adding a forth
dimension to the problem; see, e.g., [39]. Here we represent the same database as a
fourth-order tensor A ∈ Rn1×n2×ne×np written in TT-form as

A = G1 ×1
2 G2 ×1

3 G3 ×1
3 G4,

where G1 ∈ Rn1×n1 , G2 ∈ Rn1×n2×nenp , G3 ∈ Rnenp×ne×np , and G4 ∈ Rnp×np (see Section
1.2.3). Thus, the image of a person p in expression e in the database is given by

A:,:,e,p = G2 ×1 G1 ×3 (G
(e)
3)T ×3 g

(p)
4 , (2.14)

where G(e)
3 = (G3):,e,: ∈ Rnenp×np and g(p)

4 = (G4):,p ∈ Rnp . Let C(e) = G2×1G1×3 (G
(e)
3)T .

Then (2.14) becomes
A:,:,e,p = C(e) ×3 g

(p)
4 .

The classification strategy is then analogous to that for the three-dimensional case. In
particular, given an image z ∈ Rn1n2 of an unknown person in an unknown expression,
we define the distance of z from person p as

DTT4(e, p) = ‖α̂e − g(p)
4 ‖2,

where
α̂e = argminαe‖(C

(e)
(3))

Tαe − z‖2.

A version of the classification algorithm is given in Algorithm 10. We recall that C(e)
(3)

denotes the mode-3 unfolding of C(e) defined in Section 1.1.
The TT format naturally extends to the higher-dimensional setting. For instance,

suppose that A is an Nth-order tensor representing our database, further assume that

32

2. Image classification with tensor models

Algorithm 10 TT 4D
Input: z test image, G1, G2, G3, G4.
Compute G12 = G2 ×1 G1:
for e = 1, . . . , ne do

Compute C(e) = G12 ×3 (G
(e)
3)T , where G(e)

3 = G3(:, e, :)

Solve minαe ‖(C
(e)
(3))

Tαe − z‖2 for αe
for p = 1, . . . , np do
DTT4(e, p) = ‖αe − gp4‖2 where gp4 = G4(:, p).

end for
end for
(ê, p̂) = argmin

e,p
(DTT4)

Output: Classify z as person p̂

the first two modes are the pixel modes (as in TT4D) and the last one is the person
mode. All the other TT-cores (Gi)i=2,...,N−1 represent the variation of the images of the
database in terms of facial expression, view angles, illumination,etc. According to (3.3)
A can be written in the following way:

A = G1 ×1
2 G2 ×1

3 G3 ×1
3 · · · ×1

3 GN−1 ×1
3 GN .

Thus, person p in a specific combination of all the other (N−3) features can be expressed
as

A:,:,i3,...,iN−1,p = G1 ×1
2 G2 ×1

3 G
(i3)
3 ×1

3 · · · ×1
3 G

(iN−1)
N−1 ×

1
3 (GN):,p . (2.15)

Let C(i3,...,iN−1) = G1 ×1
2 G2 ×1

3 G
(i3)
3 ×1

3 · · · ×1
3 G

(iN−1)
N−1 . Then, (2.15) becomes

A:,:,i3,...,iN−1,p = C(i3,...,iN−1) ×3 g
(p)
N , (2.16)

where g(p)
N = GN(:, p).

Given an image vector z ∈ Rn1n2 of an unknown person in an unknown combination
of the (N − 3) features, we define the distance between z and the person p as

DTTN(i3, . . . , iN−1, p) = ‖α̂i3,...,iN−1
− g(p)

N ‖,

where
α̂i3,...,iN−1

= argmin
αi3,...,iN−1

‖(C(i3,...,iN−1)

(3))Tαi3,...,iN−1
− z‖.

2.4 Numerical experiments
In this section we compare all the tensor classification algorithms and we explore the
advantages in using a Tensor-Train formulation in terms of memory requirements, CPU

33

2. Image classification with tensor models

time and classification performance on several image databases. Moreover, in Section
2.4.3 a classification example in higher dimensional setting for the TT-based algorithm is
reported. Before showing classification results, some implementation issues are discussed.

2.4.1 Implementation details

In the following numerical experiments we compare all the aforementioned tensor classifi-
cation algorithms implemented in Matlab. All the numerical experiments were conducted
on a 4 × Intel(R) Core(TM) i7-4500U CPU @ 1.80 GHz and 8GB RAM using Matlab
R2019b. For each run the training set and the test set are defined as follows. The s%
of the ne expressions, denoted as ñe, is used for each person as training set and the
remaining ones as test set. The expressions used as training set are chosen randomly.
The training set is stored in a tensor A ∈ Rni×ñe×np for LS, HOSVD, HOSVD2 and
TT3D and in a 4th-order tensor A ∈ Rn1×n2×ñe×np for TT4D. As performance measure
we consider either the median success rate or the median values of precision, accuracy
and recall among 20 consecutive runs.

2.4.2 Classification performance

In this section we first report on our numerical experiments where we use the success
rate as performance measure. We report results for s = 80%, 50%; except for HOSVD2,
the tensor methods were not overly sensitive to the choice of this parameter. In Table 2.2
we report the success rate of all considered algorithms, namely matrix SVD, tensor SVD
(HOSVD, HOSVD2), three- and four-dimensional TT (TT 3D and TT 4D) and simple
least squares (LS) method. For all datasets except the large MNIST ones, all percentages
correspond to the average of 20 consecutive runs.

Table 2.2 shows that all the tensor methods work well when ni > ne, i.e. with the
Orl, COIL-20, Faces95 and Faces96 datasets.

However, in many applications it happens that ni < ne because of the huge number
of features available. In such situations HOSVD2 cannot be used if r and s are set equal
to ni and ne respectively (i.e. no truncation is performed on S) or as long as Bp is a
tall matrix. It is also interesting to observe that LS works quite well for the datasets
where the third variable does not provide a real classification feature, that is for the two
MNIST sets.

Memory requirements of the tensor methods can be quite different. Given the tensor
A ∈ Rni×ne×np , the following table summarizes the maximum storage requirements:

Method Memory allocations
HOSVD ninenp + n2

i + n2
e + n2

p

TT 3D n2
i + ninenp + n2

p

LS ninenp
HOSVD2 ninenp + n2

p + n2
enp

34

2. Image classification with tensor models

s% Database HOSVD TT 3D TT 4D LS HOSVD2

80

Orl 94.44% 96.65% 96.69% 95.81% 97.63%
COIL-20 97.50% 99.35% 99.35% 99.17% 99.95%
Faces95 86.56% 87.15% 91.03% 86.44% 88.87%
Faces96 97.68% 100% 98.50% 97.23% 99.36%

Ext’d Yale shrunk 99.08% 99.24% 98.72% 99.78% 69.04%
MNIST 92.27% 91.05% 91.03% 92.69% 87.95%

Fashion MNIST 78.63% 79.20% 77.74% 84.76% 45.91%
MIT-CBCL 100% 100% 100% 100% 39.77%

50

Orl 91.38% 92.96% 92.75% 89.93% 95.20%
COIL-20 96.10% 98.90% 96.71% 98.04% 99.24%
Faces95 96.25% 83.90% 87.50% 80.24% 88.87%
Faces96 97.34% 97.94% 99.33% 96.87% 98.04%

Ext’d Yale shrunk 98.70% 98.74% 98.99% 99.64% 99.91%
MNIST 90.87% 89.12% 89.12% 89.83% 37.68%

Fashion MNIST 74.58% 75.22% 74.57% 81.31% 33.16%
MIT-CBCL 100% 100% 100% 100% 99.98%

Table 2.2: Success rate (as percentage) of all classification algorithms.

In particular, HOSVD requires to store the core tensor S ∈ Rni×ne×np and three or-
thonormal matrices U (1) ∈ Rni×ni , U (2) ∈ Rne×ne and U (3) ∈ Rnp×np . HOSVD2 requires
to store in memory the core tensor S ∈ Rni×ne×np , the factor matrix U (3) ∈ Rnp×np

and the first k ≤ ne singular vectors of each Lp. On the other hand, TT 3D needs to
store G1 ∈ Rni×ni , G2 ∈ Rni×ne×np and G3 ∈ Rnp×np , thus leading to lower memory
requirements with respect to the HOSVD based methods when n2

i < n2
enp which is quite

common for large datasets. Furthermore, if a truncated TT is considered, the memory
requirements for TT3D can be lower than for LS.

Figure 2.1 and Figure 2.2 report on the computational costs (in logarithmic scale) of
the tensor-based methods on four of the most time consuming datasets, i.e. for MIT-
CBCL, COIL-20, Faces95 and MNIST. In Figure 2.2 the reported CPU time is the time
required for the classification of a person p, in an expression e whenever appropriate.
The plot shows that the CPU time of TT 3D and HOSVD2 is lower than for all other
tensor-based methods. In Figure 2.1 the training time for all the tensor algorithms is
reported. As we can observe the Tensor-Train algorithms require less CPU time than the
other methods. Hence, this performance measure can help discriminate among meth-
ods whenever the classification success rate and memory requirements are comparable.
Notice that the LS algorithm is not reported because there is no training time for this
algorithm.

35

2. Image classification with tensor models

HOSVD HOSVD2 TT3D TT4D
10−2

10−1

100

101

102
C
P
U

ti
m
e
(s
ec
)

MIT-CBCL COIL-20 Faces95 MNIST

Figure 2.1: CPU training time for MIT-CBCL, COIL-20, Faces95 and MNIST for all the tensor
methods.

HOSVD HOSVD2 TT3D TT4D LS
10−4

10−3

10−2

10−1

100

101

102

103

C
P
U

ti
m
e
(s
ec
)

MIT-CBCL COIL-20 Faces95 MNIST

Figure 2.2: CPU time to classify a test image for MIT-CBCL, COIL-20, Faces95 and MNIST
for all the tensor methods.

2.4.3 A classification test in higher dimensional setting

In the previous experiments we have considered only two features per person, however
in realistic applications a higher number of features may be available. In such situations
the Tensor-Train format enables one to still store only third-order tensors, whereas the
HOSVD requires to allocate memory for a core tensor of the same order as A.

36

2. Image classification with tensor models

0.4 0.6 0.8 1
0

50

100

π

%
cl
as
si
fic

at
io
n

TT3D

0.4 0.6 0.8 1

40

60

80

100

π

%
cl
as
si
fic

at
io
n

HOSVD2

Orl COIL-20 Extended Yale Faces95
Faces96 MIT-CBCL MNIST Fashion MNIST

Figure 2.3: Percentage of success of the truncated TT 3D (left) and HOSVD2 (right), for
different values of the truncation parameter π, tested on different databases.

In this section we analyze the classification performance of the Tensor-Train algorithm
for a fifth-order tensor. To this end, we consider the Weizmann face image database (see
Appendix A). The training set is stored as the tensor A ∈ Rni×nv×nill×ne×np . In a
first classification test the test set is composed by np persons in ne facial expressions,
nill illuminations and 2 view angles. This means that 80% of the database is used for
training and the remaining 20% is used as test set. In this setting 87.05% of the test
images are correctly classified. Notice that TensorFaces with this dataset only achieves
80% success (for further details see [79]). In a second classification test the split between
training and test sets is set to 90%/10% (i.e., just one view angle is used as test set). In
this setting 91.07% of the examples are correctly classified.

2.4.4 Numerical experiments with truncated methods

In this section we report on our experiments with a truncated version of the 3D classifi-
cation algorithms. We compare the truncated TT-SVD described in Section 1.2.3 with
the classification algorithm based on truncated HOSVD2. Figure 2.3 shows the percent-
age of success of the truncated procedure on five databases, when different values of the
truncation threshold π are used (see Section 1.2.3). The displayed curves only report
results for π such that ` ≥ 1. In HOSVD2 the truncation is applied to the columns
of Bp, p = 1, . . . , np according to the truncation parameter π. Furthermore, following
[67], S in (2.2) is replaced with Ŝ = S(1 : 48, 1 : 64, :). Several comments are in order.
We observe that for some databases such as Orl, methods can behave quite differently
for the same value of π. The decrease in the HOSVD2 performance for high values of
π is related to the resulting dimensions of the singular vector matrix Bp: to express
90% of the variance (i.e. π ≥ 0.9) of the MIT-CBCL, COIL-20, MNIST and Fashion

37

2. Image classification with tensor models

MNIST datasets we have to take all columns of Bp, making it square. Thus, for this
algorithm there is an additional constraint on the truncation parameter, to ensure a good
classification performance for several databases.

Figure 2.3 shows that the classification performance is not monotonic with respect
to π. Nonetheless, for TT3D any π ≥ 0.6 leads to a good classification performance.

The higher efficiency in terms of computational costs (CPU time), memory require-
ments together with the good recognition rate, favor the TT3D truncated version com-
pared to the untruncated one. For instance, for π = 0.9 in the Extended Yale Database
only 32% of the singular values are retained, yielding large memory savings.

2.4.5 Performance using statistical classification measures

Using an applied statistics terminology, the Face Recognition problem can be thought
of as a multiclass classification problem, where the classes are the different persons of a
specific database. For a database of np persons in ne different expressions, we consider the
splitting in a training set (np persons in 0.75ne expressions) and a test set (np persons
in 0.25ne expressions). After the classification of all images in the test set has been
completed, for each person p the following quantities can be computed, giving rise to the
so-called “confusion matrix”:

- true positive(tpp): number of subjects correctly classified as person p;

- true negative (tnp): number of correctly recognized subjects that are not person p;

- false positive (fpp): number of subjects incorrectly classified as person p;

- false negative (fnp): number of subjects not recognized as person p.

Using these four quantities, the following classifier parameters can be computed:

Accuracy =
1

np

np∑
p=1

tpp + tnp
tpp + tnp + fpp + fnp

, P recision =
1

np

np∑
p=1

tpp
tpp + fpp

,

Recall =
1

np

np∑
p=1

tpp
tpp + fnp

,

These parameters provide a measure of reliability of the employed algorithm: the closer
the parameter is to 100% the more robust the corresponding classification strategy is.
Depending on the realistic application for which we want to use the classification algo-
rithm, one can be interested in maximizing one of these three quantities. For example, in
situations such as border controls or medical tests, one may be interested in maximizing
the recall, since this means minimizing the number of images of person p that are not
recognized as person p.

38

2. Image classification with tensor models

In Table 2.3 precision, accuracy and recall are displayed, using macro-averaging (for
further details see [71]). The results show an overall different ranking of the meth-
ods when these measures are considered, with respect to the percentages in Table 2.2.
HOSVD appears to be the most reliable strategy for all three parameters for the MNIST
database, whereas for all other datasets tensor-train based algorithms have better perfor-
mance. It is also interesting that, although the three parameters measure truly different
things, the relative ranking of all algorithms does not change much going from, say,
Accuracy to Recall. HOSVD2 was not included in the tests in Table 2.3, because its
classification performance strongly depends on the truncation parameter.

Orl coil Faces95 Faces96 Ext’d MNIST Fashion
measure method -20 Yale MNIST

Accuracy
hosvd 99.71% 99.77% 99.66% 99.97% 99.93% 98.18% 95.26%
tt 3d 99.78% 99.77% 99.71% 99.98% 99.94% 97.83% 95.39%
tt 4d 99.77% 99.77% 99.60% 99.98% 99.94% 97.67% 95.39%

Precision
hosvd 76.62% 98.03% 91.10% 98.60% 99.06% 91.18% 78.30%
tt 3d 96.73% 98.03% 92.53% 99.07% 99.17% 89.89% 78.53%
tt 4d 96.58% 98.03% 90.01% 99.20% 99.20% 89.00% 78.53%

Recall
hosvd 94.29% 97.67% 87.67% 98.29% 99.01% 90.90% 76.31%
tt 3d 95.62% 97.69% 89.60% 98.85% 99.12% 89.10% 76.93%
tt 4d 95.50% 97.69% 85.62% 99.01% 99.16% 88.32% 76.93%

Table 2.3: Accuracy, precision and recall for the HOSVD, TT3D and TT4D classification algo-
rithms.

2.4.6 Closing considerations

The proposed classification algorithm based on the Tensor-Train decomposition seems to
exhibit good performance in terms of success rate, CPU time and memory requirements.
Indeed, the use of the TT form allows one to easily treat truncation, which reduces
both CPU time and memory requirements, without sacrificing the recognition success
rate. Moreover, the TT-based algorithm is preferable to those based on HOSVD since
it does not suffer from the curse of dimensionality; in particular, it naturally extends
to more than three dimensions, thus allowing for the inclusion of additional features as
extra dimensions, as we did for the Weizmann database. Indeed, for face recognition
other features could be considered, such as different age or backdrop image sets. Our
computational experiments on nine different datasets seem to show that using the Tensor-
Train form allows one to achieve good classification success for comparable memory
requirements (in the full case) and smaller CPU time with respect to the now classical
tensor based HOSVD. Furthermore for the training the Tensor-Train algorithms require
just the computation of the TT-cores while HOSVD2 requires the computation of the
HOSVD of the training tensor and np SVD to determine the matrices Bp, p = 1, . . . , np.
This can be computationally expensive when np is large.

39

2. Image classification with tensor models

40

Chapter 3

Proximal gradient methods

In this chapter we review the class of proximal gradient methods for solving composite
optimization problems, that is problems where the objective is the sum of a smooth
function and non-smooth (possibly nonconvex) one. We first present the proximal gradi-
ent method and the block proximal gradient method to address composite optimization
problems in one or p blocks of variables, respectively, focusing on the case when the
non-smooth term is convex. Then we discuss the nonconvex case by introducing the
Proximal Alternating Linearized Minimization (PALM) algorithm.

3.1 The proximal gradient method
In this section we consider the following composite optimization problem

min
x∈Rn

Ψ(x) with Ψ(x) = H(x) + f(x), (3.1)

where H and f satisfy the following assumption.

Assumption 3.1.1 ([5, Assumption 10.1]).

1. f : Rn → (−∞,+∞] is proper, closed (see [5, Definition 2.2]) and convex.

2. H : Rn → (−∞,+∞] is proper and closed, dom(H) is convex, dom(f) ⊆ int(dom(H))
and H is LH-smooth over int(dom(H)).

3. The optimal set of problem (3.1) is non-empty and denoted by X∗. The optimal
function value is denoted by Ψopt.

The numerical solution of the optimization problem (3.1) can be carried out by using
proximal methods, that is iterative algorithms based on the following kth iteration: Given
the current iterate xk and the current stepsize αk > 0, a new iterate xk+1 is given by

xk+1 = proxf1/αk(x
k − αk∇H(xk)),

where proxf1/αk(·) denotes the proximal map defined as follows.

41

3. Proximal gradient methods

Definition 3.1.1 ([9, p. 465]). Given a proper and lower semicontinuous function
f : Rm → (−∞,+∞], x ∈ Rm and a scalar α > 0, the proximal map associated to f is
defined as

proxfα(x) = argmin
w∈Rm

{
f(w) +

α

2
‖w − x‖2

2

}
. (3.2)

Remark 3.1.1 ([9]). The proximal map of an indicator function δΩ over a non-empty
and closed set Ω ⊂ Rm is the multi-valued projection PΩ : Rm ⇒ Ω defined, for all
x ∈ Rm, by

PΩ(x) = argmin
y∈Ω

‖x− y‖2. (3.3)

The symbol ⇒ is used to denote that, for a given x ∈ Rm, PΩ(x) is not uniquely defined
when Ω is nonconvex. For example, if we consider Ω as the set of vectors with at most
0 < τ < m nonzero elements and x = [1, . . . , 1]T , it is easy to observe that PΩ(x)
is not uniquely defined. On the other hand if Ω is a convex set the projection map is
single-valued, that is PΩ(x) is uniquely defined for any x ∈ Rm .

When f = δΩ, with Ω non-empty, closed and convex set, then (3.1) is equivalent to
the following convex constrained smooth optimization problem

min
x∈Ω

H(x),

and, using Remark 3.1.1, the associated proximal iteration is

xk+1 = PΩ(xk − αk∇H(xk)), (3.4)

which is indeed the iteration of the projected gradient descent method.
Indeed, the proximal gradient method performs a gradient step in the smooth part of

the function Ψ(x), i.e. H(x), followed by a proximal mapping that takes into account the
non-smooth part of Ψ(x), i.e. f(x). The whole procedure is summarized in Algorithm
11.

We now give some preliminary results that anticipate the convergence theorem for
the proximal gradient method. We start with the following theorem that will be used to
prove the sufficient decrease lemma.

Theorem 3.1.1 (Second prox theorem, [5, Theorem 6.39]). Let f : Rn → (−∞,+∞] be
a proper closed and convex function. Then for any x, y ∈ Rn, the following conditions
are equivalent.

(i) y = proxfα(x) with α = 1,

(ii) x− y ∈ ∂f(y),

(iii) 〈x− y, z − y〉 ≤ f(z)− f(y) for any z ∈ Rn.

The following lemma reports an important property of LH smooth functions.

42

3. Proximal gradient methods

Algorithm 11 The Proximal Gradient method [5, p. 271]

1: Input: x0 ∈ int(dom(H))
2: for k = 0, . . . , do
3: Choose αk > 0
4: set xk+1 = proxf1/αk

(
xk − αk∇H(xk)

)
5: end for
6: Output: xk+1

Lemma 3.1.1 (Descent lemma, [9, Lemma 1]). Consider an LH-smooth function
H : Rm → R. Then for any x, y ∈ Rm,

H(y) ≤ H(x) + 〈∇H(x), y − x〉+
LH
2
‖x− y‖2

2.

This property ofH plays an important role in the convergence analysis of the proximal
gradient methods due to the following lemma.

Lemma 3.1.2 (Sufficient decrease lemma, [5, Lemma 10.4]). Let H and f be real valued
functions that satisfy Assumption 3.1.1. Consider Ψ = H + f and set

σH,fL (x) = proxfL

(
x− 1

L
∇H(x)

)
. (3.5)

Then for any x ∈ int(dom(H)) and L ∈
(
LH
2
,+∞

)
the following inequality holds:

Ψ(x)−Ψ(σH,fL (x)) ≥
(
L− LH

2

)∥∥∥x− σH,fL (x)
∥∥∥2

2
.

Proof. Let x+ = σH,fL (x), then using Lemma 3.1.1 for H we obtain

H(x+) ≤ H(x) + 〈∇H(x), x+ − x〉+
LH
2
‖x+ − x‖2

2. (3.6)

Then using the second prox theorem (Theorem 3.1.1) we have that

〈∇H(x), x+ − x〉 ≤ −L‖x+ − x‖2
2 + f(x)− f(x+)

for any L ∈
(
LH
2
,+∞

)
. Thus, using this inequality in (3.6)

H(x+) ≤ H(x)− L‖x+ − x‖+ f(x)− f(x+) +
LH
2
‖x− x+‖

and
H(x+) + f(x+)−H(x)− f(x) ≤

(
LH
2
− L

)
‖x+ − x‖2

2.

The result follows from the definition of Ψ(x).

43

3. Proximal gradient methods

Now we give the definition of the proximal gradient which is a generalization of the
classical gradient.

Definition 3.1.2 ([5, Definition 10.5]). Suppose that H and f satisfy the Assumption
3.1.1 items 1 and 2. Then the gradient mapping is the operator GH,f

L : int(dom(H))→ R
defined by

GH,f
L (x) = L(x− σH,fL (x)),

with σH,fL defined in (3.5) for any x ∈ int(dom(H)).

The following theorem describes the relation between the classical gradient and the
proximal gradient.

Theorem 3.1.2 ([5, Theorem 10.7]). Let H and f satisfy Assumption 3.1.1 items 1 and
2 and let L > 0. Then

• GH,f0

L (x) = ∇H(x) for any x ∈ int(dom(H)), where f0(x) = 0;

• for x∗ ∈ int(dom(H)), it holds that GH,f
L (x∗) = 0 if and only if x∗ is a stationary

point of (3.1).

A crucial ingredient of all gradient descent methods is the selection of the stepsize αk
that yield a sufficient decrease in the objective function. At each step k one can choose
a constant stepsize αk = 1

L
where L ∈

(
LH
2
,+∞

)
or a stepsize given by a backtracking

rule. A backtracking rule is an iterative procedure commonly used to estimate the
stepsize starting from an initial guess s. The procedure consists of decreasing s until
a sufficient decrease condition in the objective function is satisfied. For the proximal
gradient method, using the backtracking rule results in setting Lk = ρiks, where ρ > 1
and ik is the smallest non negative integer for which the condition

Ψ(xk)−Ψ(σH,fLk
(xk)) ≥ γ

Lk
‖GH,f

Lk
(xk)‖2,

with γ ∈ (0, 1) is satisfied. Then the stepsize αk is set equal to the reciprocal of Lk. The
backtracking procedure is reported in Algorithm 12. Note that, under the Assumption
3.1.1, the backtracking procedure has a finite termination as highlighted in the following
remark.

Remark 3.1.2 ([5, Remark 10.13]). In the backtracking procedure of Algorithm 12 the
parameter Lk is bounded from above as

Lk ≤ max

{
s,

ρLH
2(1− γ)

}
with ρ > 1, γ ∈ (0, 1) .

The following convergence analysis for the proximal gradient method holds both for
a constant stepsize and for a stepsize given by a backtracking rule. It is based on
the sufficient decrease lemma which shows not only that the sequence {Ψ(xk)}k≥0 is
nonincreasing, but also that the decrease of the function values is bounded by the norm
of the proximal gradient.

44

3. Proximal gradient methods

Algorithm 12 Backtracking procedure
1: Input: Initial stepsize s > 0, 0 < γ < 1, ρ > 1, and an integer imax for the maximum

number of backtracks.
2: Set Lk = s
3: for ik = 1, . . . , imax do
4: Compute xk = proxfLk

(
xk − 1

Lk
∇H(xk)

)
5: if Ψ(xk)−Ψ(σH,fLk

(xk)) ≥ γ
Lk
‖GH,f

Lk
(xk)‖2, return

6: Set Lk = ρLk
7: end for
8: Output: Lk

Lemma 3.1.3 (Sufficient decrease of the proximal gradient method [5, Lemma 10.14]).
Assume that Assumption 3.1.1 holds and let {xk}k≥0 be the sequence generated by the
proximal gradient method to solve (3.1) either with a constant stepsize L ∈

(
LH
2
,+∞

)
or with a stepsize obtained using the backtracking procedure with parameters s > 0,
0 ≤ γ < 1 and ρ > 1. Then for any k ≥ 0

Ψ(xk)−Ψ(xk+1) ≥M‖GH,f
d (xk)‖2, (3.7)

where

M =

L−LH

2

L2 constant stepsize,
γ

max
{
s,

ρLH
2(1−γ)

} backtracking, (3.8)

and

d =

{
L constant stepsize,
s backtracking.

(3.9)

Now we report the main convergence result that ensures the convergence of the prox-
imal gradient method to a stationary point of problem (3.1).

Theorem 3.1.3 ([5, Theorem 10.15]). Assume that Assumption 3.1.1 holds and let
{xk}k≥0 be the sequence generated by the proximal gradient method to solve (3.1) either
with a constant stepsize L ∈

(
LH
2
,+∞

)
or with a stepsize obtained using the backtracking

procedure with parameters s > 0, 0 ≤ γ < 1 and ρ > 1. Then

1. the sequence
{

Ψ(xk)
}
k≥0

is nonincreasing. In addition, Ψ(xk+1) < Ψ(xk) if and
only if xk is not a stationary point of (3.1);

2. lim
k→∞

GH,f
d (xk) = 0 where d is given in (3.9);

3. min
n=0,1,...,k

‖GH,f
d (xn)‖2 ≤

√
Ψ(x0)−Ψopt√
M(k + 1)

, where M is defined in (3.8);

45

3. Proximal gradient methods

4. all limits points of the sequence
{
xk
}
k≥0

are stationary points of problem (3.1).

Several variations of the proximal gradient method have been considered for problem
(3.1). For example, in [58] the authors describe iPiano which is a proximal gradient
descent algorithm enriched with an inertial proximal step based on the linear combination
of the previous iterates. In the more recent literature, the use of inexact variable metric
[11, 12] and Newton-like steps [46] have also been explored.

3.2 The block proximal gradient method
In this section we extend the results described in the previous section to the following
optimization problem

min
x1∈Rn1 ,...,xp∈Rnp

Ψ(x1, . . . , xp) with Ψ(x1, . . . , xp) := H(x1, . . . , xp) + f(x1, . . . , xp),

(3.10)
where the function f : Rn1×· · ·×Rnp → (−∞,+∞] has a block separable structure, i.e.

f(x1, . . . , xp) =

p∑
i=1

fi(xi).

In the following discussion we denote by R∗ the product space Rn1×· · ·×Rnp and by∇iH
for i = 1, . . . , p the gradient with respect to the ith block. We also define ωi : Rni → R∗
to be the linear transformation

ωi(d) =

 0
d
0

 ith-block, d ∈ Rni .

We now report the assumptions on the model (3.10).

Assumption 3.2.1 ([5, Assumption 11.1]).

1. fi : R→ (−∞,+∞] is proper, closed and convex for any i = 1, . . . , p.

2. H : R → (−∞,+∞] is proper and closed, and dom(H) is convex; dom(f) ⊆
int(dom(H)), and H is differentiable over int(dom(H)).

3. H is LH-smooth over int(dom(H)) with LH > 0.

4. There exist L1, . . . , Lp > 0 such that for any i = 1, . . . , p it holds that

‖∇iH(x)−∇iH(x+ ωi(d))‖2 ≤ Li‖d‖2

for all x ∈ int(dom(H)) and d ∈ Rni for which x+ ωi(d) ∈ int(dom(H)).

46

3. Proximal gradient methods

5. The set of optimal solutions of problem (3.10) is non-empty and denoted by X∗.
The optimal function value is denoted by Ψopt.

Definition 3.2.1 ([5, Definition 11.3]). Assume that H and fi for i = 1, . . . , p satisfy
Assumption 3.2.1 and let L > 0. Then the ith partial prox-grad mapping is the operator
σiL : int(dom(H))→ Rni defined by

σiL(x) = proxfiL

(
xi −

1

L
∇iH(x)

)
.

Definition 3.2.2 ([5, Definition 11.4]). Assume that H and fi for i = 1, . . . , p satisfy
Assumption 3.2.1 and let L > 0. Then the ith partial gradient mapping is the operator
Gi
L : int(dom(H))→ Rni defined by

Gi
L(x) = L(xi − σiL(x)).

Using the block structure of the problem, the stationary conditions for (3.10) reduce
to p different conditions on the partial gradients as will be clear from the following
theorem.

Theorem 3.2.1 ([5, Theorem 11.6]). Assume that H and fi for i = 1, . . . , p satisfy
Assumption 3.2.1 items 1 and 2. Then

(i) x∗ ∈ dom(f) is a stationary point of problem (3.10) if and only if

−∇iH(x∗) ∈ ∂fi(x∗i), i = 1, . . . , p.

(ii) For any M1, . . . ,Mp > 0, x∗ ∈ dom(f) is a stationary point of (3.10) if and only if

Gi
Mi

(x∗) = 0, i = 1, . . . , p.

The following result is a generalization of the sufficient decrease lemma (Lemma
3.1.3) for problem (3.10).

Lemma 3.2.1 (block sufficient decrease lemma, [5, Lemma 11.9]). Assume that H and
fi for i = 1, . . . , p satisfy Assumption 3.2.1 items 1 and 2 and that there exists Li > 0
with i ∈ {1, . . . , p} for which

‖∇iH(y)−∇iH(y + ωi(d))‖2 ≤ Li‖d‖2,

for any y ∈ int(dom(H)) and d ∈ Rni for which y + ωi(d) ∈ int(dom(H)). Then

Ψ(x)−Ψ(x+ ωi(σ
i
Li

(x)− xi)) ≥
1

2Li
‖Gi

Li
(x)‖2

2,

for all x ∈ int(dom(H)).

47

3. Proximal gradient methods

Problem (3.10) can be solved numerically using the Cyclic Block Proximal Gradient
(CBPG) method, which is an alternating method that in each variable block performs
a proximal gradient iteration. More precisely, at each iteration the method performs p
proximal gradient iterations one for each variable block. For these p “subiterations” the
following auxiliary index will be used.

xk,0 = xk = (xk1, x
k
2 . . . , x

k
p),

xk,1 = (xk+1
1 , xk2, . . . , x

k
p),

...
xk,p = xk+1 = (xk+1

1 , xk+1
2 , . . . , xk+1

p).

The whole procedure is summarized in Algorithm 13.

Algorithm 13 CBPG [5, p. 338]

1: Input: x0 = (x0
1, . . . , x

0
p) ∈ int(dom(H))

2: for k = 0, 1, . . . , do
3: set xk,0 = xk

4: for i = 1, . . . , p do
5: Use a fixed value for Li or compute Li using a backtracking strategy
6: Set xk,i = xk,i−1 + ωi(σ

i
Li

(xk,i−1)− xk,i−1
i).

7: end for
8: Set xk+1 = xk,p.
9: end for
10: Output: xk + 1

Note that one can choose either fixed values for Li, i = 1, . . . , p or use a backtracking
rule similar to the one described in Algorithm 12.

As for the proximal gradient, the following result is needed to derive the convergence
of the CBPG method.

Lemma 3.2.2 (Sufficient decrease of the CBPG method-version I [5, Lemma 11.11]).
Assume that Assumption 3.2.1 holds and consider the sequence {xk}k≥0 generated by the
CBPG method for solving (3.10). Then

1. For all k ≥ 0

Ψ(xk,j)−Ψ(xk,j+1) ≥ Lj+1

2
‖xk,j − xk,j+1‖2

2, j = 0, . . . , p− 1 (3.11)

2. for all k ≥ 0

Ψ(xk)−Ψ(xk+1) ≥ Lmin

2
‖xk − xk+1‖2

2,

with Lmin = min
i
Li.

48

3. Proximal gradient methods

Now we are ready to state the main convergence result for the CBPG method.

Theorem 3.2.2 ([5, Theorem 11.14]). Assume that Assumption 3.2.1 holds and consider
the sequence {xk}k≥0 generated by the CBPG method for solving (3.10). Denoting as
Lmin = mini Li, Lmax = maxi Li and C = Lmin

2(LH+2Lmax+
√
LminLmax)

2 , then

1. the sequence
{

Ψ(xk)
}
k≥0

is nonincreasing. In addition, the equality holds if and
only if xk = xk + 1;

2. GLmin
(xk)→ 0 as k →∞;

3. minn=0,...,k ‖GLmin
(xn)‖2 ≤

√
p(Ψ(x0)−Ψopt)√

C(k+1)
;

4. all limit points of the sequence {xk}k≥0 are stationary points of (3.10).

Different variants of the CBPG have been explored in the recent literature. In [10]
the CBPG is applied to nonnegative matrix factorization employing a stepsize based
on an adaptive alternation of the Barzilai-Borwein rule (see Section 4.1). In [13] the
convergence results of the CBPG have been extended also for projection operations based
on non Euclidean distances, while an application of this approach to blind deconvolution
is presented in [65].

3.3 The Proximal Alternating Linearized Minimiza-
tion (PALM) algorithm

As discussed in the previous section, the CBPGmethod is a powerful strategy to minimize
a finite sum of functions that satisfy Assumption 3.2.1. However in several problems,
such as the Dictionary Learning problem analyzed in this thesis (see Chapters 5 and
6), the convexity assumption on the functions fi is not satisfied. In such situations, the
Proximal Alternating Linearized Minimization (PALM) algorithm [9] provides a viable
strategy to solve the composite optimization problem with nonconvex non-smooth terms
maintaining convergence guarantees. Indeed PALM gives a general setting for solving
non-smooth nonconvex optimization problems of the form

min
x,y

Ψ(x, y) with Ψ(x, y) := H(x, y) + f1(x) + f2(y), (3.12)

where the functions f1 and f2 are extended valued (i.e., allowing the inclusion of con-
straints) and H is a smooth coupling function, only required to have partial Lipschitz
continuous gradients ∇xH and ∇yH with Lipschitz constants L1(y) and L2(x). In the
following discussion we refer to the constants L′1(y) and L′2(x) as partial smoothness
parameters (see forthcoming Assumption 3.3.1).

49

3. Proximal gradient methods

For each block of coordinate in (3.12), PALM performs one gradient step on the
smooth part, followed by a proximal step on the non-smooth part. The method belongs
to the class of alternating minimization schemes, and generalizes to the nonconvex non-
smooth case well-known and widely used alternating algorithms such as CBPG method
and many others [4, 10, 38, 62]. The PALM algorithm is reported in Algorithm 14.

Algorithm 14 PALM (with constant stepsize) [9, p. 468]
1: Input: (x0, y0) ∈ Rn × Rm, η1, η2 > 1, µ1, µ2 > 0
2: for k = 0, 1, . . . do
3: Update x: Set L′′1(yk) = max{η1L

′
1(yk), µ1} and ᾱk,1 = 1/L′′1(yk) and compute

xk+1 = proxf1

1/ᾱk,1

(
xk − ᾱk,1∇xH(xk, yk)

)
(3.13)

4: Update y: Set L′′2(xk+1) = max{η2L
′
2(xk+1), µ2} and ᾱk,2 = 1/L′′2(xk+1) and com-

pute
yk+1 = proxf2

1/ᾱk,2

(
yk − ᾱk,2∇yH(xk+1, yk)

)
(3.14)

5: end for

As clear from Algorithm 14, PALM makes explicit use of the partial smoothness
parameters L′′1(yk) and L′′2(xk). When these parameters are not available, they can be
approximated by using a backtracking strategy similar to the one described in Algorithm
12 for the proximal gradient method. Indeed, setting Ψ1(x, y) := H(x, y) + f1(x) and
L0,1 = 1, at each iteration k > 1, the procedure starts with Lk,1 = Lk−1,1 and then Lk,1 is
increased by a constant factor, typically doubled, until the following sufficient decrease
condition is met

Ψ1(xk+1, yk) < Ψ1(xk, yk) + 〈∇xH(xk, yk), xk+1 − xk〉+
Lk,1

2
‖xk+1 − xk‖2

2. (3.15)

Then, the stepsize ᾱk,1 is taken as the reciprocal of the found value (analogously for ᾱk,2,
where we set Ψ2(x, y) := H(x, y) + f2(y)). The above sufficient decrease condition is a
generalization of the block sufficient decrease condition (Lemma 3.2.1) when f1 and f2

are nonconvex. We will refer to this algorithm as btPALM .
An important contribution to the success of PALM was the convergence proof strat-

egy obtained in [9]. This allowed the design of new convergent alternating minimization
algorithms, consisting of a sequence converging to critical points of (3.12). In [9] the func-
tion Ψ is assumed to satisfy the so-called Kurdyka-Lojasiewicz property ([9, Definition
3]). However we limit our analysis to the subset of semi-algebraic functions.

We consider problems of the form (3.12), for which we assume that the functions H,
f1 and f2 satisfy the following minimal assumptions set.

50

3. Proximal gradient methods

Assumption 3.3.1 ([9, Assumption 2]).

(A1) f1 : Rn → (−∞,+∞] and f2 : Rm → (−∞,+∞] are proper and lower semicontin-
uous functions such that infRn f1 > −∞ and infRm f2 > −∞.

(A2) H : Rn×m → R is continuously differentiable and infRn×m Ψ > −∞.

(A3) H is LM smooth over bounded subsets of Rn×m, i.e. for each bounded subsets
B1×B2 of Rn×Rm there exists M > 0 such that for all (xi, yi) ∈ B1×B2, i = 1, 2
such that

‖(∇xH(x1, y1)−∇xH(x2, y2),∇yH(x1, y1)−∇yH(x2, y2))‖2 ≤M ‖(x1 − x2, y1 − y2)‖2

(A4) The partial gradients ∇xH(x, y) and ∇yH(x, y) are globally Lipschitz continuous,
i.e. there exist nonnegative L′1(y) and L′2(x) such that

fixed y, ‖∇xH(u, y)−∇xH(v, y)‖2 ≤ L′1(y) ‖u− v‖2 , ∀u, v ∈ Rn,

fixed x, ‖∇yH(x, u)−∇yH(x, v)‖2 ≤ L′2(x) ‖u− v‖2 , ∀u, v ∈ Rm.

(A5) There exist λ+
i > 0, i = 1, 2 such that

sup{L′1(yk); k ∈ N} ≤ λ+
1 , sup{L′2(xk); k ∈ N} ≤ λ+

2 . (3.16)

(A6) There exist λ−i > 0, i = 1, 2 such that

inf{L′1(yk); k ∈ N} ≥ λ−1 , inf{L′2(xk); k ∈ N} ≥ λ−2 . (3.17)

Remark 3.3.1. Assumption 3.3.1 (A6) can be avoided by choosing the partial smooth-
ness parameters L′1 and L′2 safely bounded away from zero, as suggested in [9, Remark 3].
More precisely, given two positive constants µ−1 and µ−2 we set L′′1 = max{L′1, µ−1 } and
L′′2 = max{L′2, µ−2 } (see Algorithm 14).

Remark 3.3.2 ([9, Remark 3]). For H being twice continuously differentiable, if the
sequence generated is bounded, Assumption 3.3.1 (A5) is always satisfied. Furthermore
under these conditions also Assumption 3.3.1 (A3) is satisfied as a consequence of the
Mean Value Theorem.

The following result, that will be crucial in the convergence analysis, extends the
sufficient decrease condition (see Lemma 3.1.3) to the nonconvex setting.

Lemma 3.3.1 (Sufficient decrease, [9, Lemma 2]). Let h : Rm → R be an Lh-smooth
function. Consider a proper and lower semicontinuous function σ : Rm → R such that
infσ > −∞. Let t > Lh fixed. Then, for any u ∈ dom(σ) and any u+ ∈ Rm defined by

u+ ∈ proxσt
(
u− 1

t
∇h(u)

)
we have

h(u+) + σ(u+) ≤ h(u) + σ(u)− 1

2
(t− Lh)‖u+ − u‖2

2.

51

3. Proximal gradient methods

Proof. By the definition of proximal map we have that

u+ ∈ argmin
v∈Rm

ξ(v)

where ξ(v) = 〈v − u,∇h(u)〉 + t
2
‖v − u‖2

2 + σ(v). Since ξ(u+) ≤ ξ(v), ∀ v ∈ Rd, then
ξ(u+) ≤ ξ(u), which implies

〈u+ − u,∇h(u)〉+
t

2
‖u+ − u‖2

2 + σ(u+) ≤ σ(u).

Combining the latter inequality with the descent Lemma [9, Lemma 1], we obtain

h(u+) + σ(u+) ≤ h(u) + 〈u+ − u,∇h(u)〉+
Lh
2
‖u+ − u‖2

2 + σ(u+)

≤ h(u) +
Lh
2
‖u+ − u‖2

2 + σ(u)− t

2
‖u+ − u‖2

2

= h(u) + σ(u)− 1

2
(t− Lh)‖u+ − u‖2

2.

Using the sufficient decrease Lemma the convergence of PALM is proved in [9] by
using a general methodology which consists in three steps.

Proof methodology 3.3.1 ([62, Theorem 3.1]). Consider a proper, lower semicontin-
uous and semi-algebraic function Ψ : Rn × Rm → R such that Ψ > −∞. Let {zk}k≥0 be
a bounded sequence generated by an algorithm A starting from z0. Then zk converges to
a critical point of (3.12) if the following conditions are satisfied.

(C1) There exists a positive scalar ρ̄1 such that

ρ̄1‖zk+1 − zk‖2 ≤ Ψ(zk)−Ψ(zk+1).

(C2) There exists a positive scalar ρ̄2 such that for some wk ∈ ∂Ψ(zk) we have

‖wk‖ ≤ ρ̄2‖zk − zk−1‖,

where ∂Ψ denotes the limiting-subdifferential of Ψ (see [9, Definition 1]).

(C3) Each limit point in the set ω(z0) defined as

ω(z0) = {z̄ ∈ Rn × Rm : ∃ an increasing sequence of integers {kl}l≥0 such that
zkl → z̄ as l→∞}

is a critical point of Ψ.

52

3. Proximal gradient methods

In the sequel we use the notation zk = (xk, yk) for all k ≥ 0. The following results
prove that PALM satisfies conditions (C1)-(C2)-(C3).

Lemma 3.3.2 ([9, Lemma 3]). Assume that Assumption 3.3.1 holds. Let {zk}k≥0 be the
sequence generated by PALM. Then

(i) the sequence {Ψ(zk)}k≥0 is nonincreasing and in particular

ρ1

2
‖zk+1 − zk‖2

2 ≤ Ψ(zk)−Ψ(zk+1), ∀k ≥ 0,

where ρ1 = min
{

(γ1 − 1)γ−1 , (γ2 − 1)γ−2
}
.

(ii)
∞∑
k=1

‖xk+1 − xk‖2
2 + ‖yk+1 − yk‖2

2 =
∞∑
k=1

‖zk+1 − zk‖2
2 <∞, and hence

limk→∞ ‖zk+1 − zk‖ = 0.

Proof.

(i) For Assumption 3.3.1, the functions x → H(x, y) and y → H(x, y) are L-smooth
with moduli L1(y) and L2(x) respectively. Then fixing k ≥ 0 and applying Lemma
3.3.1 with h(·) = H(·, yk), σ = f1 and t = η1L1(yk) > L1(yk) we obtain

H(xk+1, yk) + f1(xk+1) ≤ H(xk, yk) + f1(xk)− 1

2

(
η1L1(yk)− L1(yk)

)
‖xk+1− xk‖2

2.

Then applying Lemma 3.3.1 h(·) = H(xk+1, ·), σ = f2 and t = η2L2(xk+1) >
L2(xk+1) we have

H(xk+1, yk+1)+f2(yk+1) ≤ H(xk+1, yk)+f2(yk)−1

2

(
η2L2(xk+1)− L2(xk+1)

)
‖yk+1−yk‖2

2.

Summing the last two inequalities gives the following

Ψ(zk)−Ψ(zk+1) ≥ 1

2
(η1 − 1)L1(yk)‖xk+1 − xk‖2

2 +
1

2
(η2 − 1)L2(xk+1)‖yk+1 − yk‖2

2

≥ 1

2
(η1 − 1)λ−1 ‖xk+1 − xk‖2

2 +
1

2
(η2 − 1)λ−2 ‖yk+1 − yk‖2

2,

where for the last inequality we used the fact that the Lipschitz constants are
bounded from above. Now choosing ρ1 = min

{
(γ1 − 1)γ−1 , (γ2 − 1)γ−2

}
gives the

result.

(ii) Since
ρ1

2
‖zk+1 − zk‖2

2 ≤ Ψ(zk)−Ψ(zk+1),

53

3. Proximal gradient methods

holds for every k ≥ 0, by summing from k = 0, . . . , N − 1 we obtain

N−1∑
k=0

∥∥xk+1 − xk
∥∥2

2
+
∥∥yk+1 − yk

∥∥2

2
=

N−1∑
k=0

∥∥zk+1 − zk
∥∥2

2
≤ 2

ρ1

(
Ψ(z0)−Ψ(zN)

)
.

Since the sequence
{

Ψ(zk)
}
k≥0

is nonincreasing and is assumed to be bounded
from below, it converges to a real number Ψ̄. Thus, taking the limit for N → ∞
we obtain that

∞∑
k=1

‖zk+1 − zk‖2
2 <∞.

Lemma 3.3.3 ([9, Lemma 4]). Assume that Assumption 3.3.1 hold. Let {zk}k≥0 be the
sequence generated by PALM and assume that the sequence is bounded. For each positive
integer k define

akx := ck−1

(
xk−1 − xk

)
+∇xH(xk, yk)−∇xH(xk−1, yk−1),

and
aky := dk−1

(
yk−1 − yk

)
+∇yH(xk, yk)−∇yH(xk, yk−1),

where ck−1 = η1L1(yk−1) and dk−1 = η2L2(xk) Then
(
akx; a

k
y

)
∈ ∂Ψ(xk, yk) and there

exists M > 0 s.t.∥∥(akx; aky)∥∥2
≤
∥∥akx∥∥2

+
∥∥aky∥∥2

≤ (2M + 3ρ2)‖zk − zk−1‖2, ∀k ≥ 1, (3.18)

with ρ2 = max{γ1λ
+
1 , γ2λ

+
2 }.

Lemma 3.3.4 ([9, Lemma 5]). Assume that Assumption 3.3.1 holds. Let {zk}k≥0 be the
sequence generated by PALM and assume that the sequence is bounded. Then

∅ 6= ω(z0) ⊂ critΨ,

where critΨ denotes the set of critical points of Ψ, i.e. the set of points whose subdiffer-
ential contains 0.

We report the proof of Lemma 3.3.4 since it will be useful in the following chapter
to prove the convergence of the spectral PALM.

Proof. Let z∗ = (x∗, y∗) be a limit point of {zk}k≥0 and let
{
xkq , ykq

}
q≥0

a subsequence
of {zk}k≥0 converging to z∗. Now consider the update rule of PALM. Given k ≥ 0 and
denoting as ck = η1L1(yk), we have that

xk+1 ∈ argmin
x∈Rn

{
〈x− xk,∇xH(xk, yk)〉+

ck
2
‖x− xk‖2

2 + f1(x)
}
.

54

3. Proximal gradient methods

Thus,

〈xk+1 − xk,∇xH(xk, yk)〉+
ck
2
‖xk+1 − xk‖2

2 + f1(xk+1)

≤ 〈x∗ − xk,∇xH(xk, yk)〉+
ck
2
‖x∗ − xk‖2

2 + f1(x∗)

Setting k = kq − 1 in the above inequality and letting q goes to ∞ we get

lim
q→∞

f1(xq) ≤ lim
q→∞

sup
(
〈x∗ − xk,∇xH(xk, yk)〉+

ck
2
‖x∗ − xk‖2

2

)
+ f1(x∗),

since {xk}k≥0 and {ck}k≥0 are bounded, ∇H is continuous and the difference between
successive iterates tends to zero. Now observing that limq→∞ x

kq−1 = x∗, we obtain that
limq→∞ supf1(xkq) ≤ f1(x∗). This, together with the fact that f1 is lower semicontinuous
(i.e. limq→∞ f1(xkq) ≥ f1(x∗)), implies that limq→∞ f1(xkq) = f1(x∗). Using the same
procedure for f2 we obtain that

lim
q→∞

Ψ(xkq , ykq) = Ψ(x∗, y∗).

From Lemmas 3.3.2 and 3.3.3, (akx, a
k
y) ∈ ∂Ψ(xk, yk) and limk→∞(akx, a

k
y) = (0, 0) which

implies that (0, 0) ∈ ∂Ψ(x∗, y∗) (see [9, Remark 1]). This completes the proof.

Remark 3.3.3 ([9, Lemma 5]). Under the assumptions of the previous lemma we also
have that

(i) limk→∞ dist(z
k, ω(z0)) = 0;

(ii) ω(z0) is a non-empty, compact and connected set.

(iii) The objective function Ψ is finite and constant on ω(z0).

The following theorem gives the main convergence result proved for the PALM algo-
rithm.

Theorem 3.3.1 ([9, Theorem 1]). Suppose that Ψ is a semi-algebraic function such that
Assumption 3.3.1 holds. Let {zk} = {(xk, yk)} be a bounded sequence generated by PALM
in Algorithm 14. Then the sequence {zk} has finite length, that is

∑∞
k=1

∥∥zk+1 − zk
∥∥ <

∞, and converges to a critical point z∗ of Ψ.

Remark 3.3.4 ([9, Section 3.6]). Algorithm 14 can be extended to the general setting
involving p > 2 blocks, that is problems of the form

min
xi∈Rni

Ψ(x1, . . . , xp) with Ψ(x1, . . . , xp) = H(x1, . . . , xp) +

p∑
i=1

fi(xi), (3.19)

for which Theorems 3.3.1 holds.

55

3. Proximal gradient methods

Inertial variants of PALM have been later proposed with the aim of accelerating the
convergence of the original algorithm [32, 42, 62]. A first version, named iPALM [62]
combines the last two iterates using the so-called heavy-ball method, and has numeri-
cally been applied to solve sparse NMF, BID and image deconvolution using Dictionary
Learning. A further inertial version based on the use of surrogate functions was devel-
oped in [42] and has been used for solving sparse NMF and matrix completion problems.
All these variants enjoy the convergence properties of the original PALM, and are based
on the Lipschitz constants explicitly available for all the addressed applications. When
these constants are not explicitly known, then a backtracking scheme can be employed
to approximate their action [5, 6], so that convergence results still hold.

56

Chapter 4

The spectral Proximal Alternating
Linearized Minimization (sPALM)
algorithm

In this chapter we briefly describe the main properties of a special class of gradient-
type methods for smooth optimization, i.e. the spectral gradient methods, and discuss
how to exploit them into the PALM algorithmic scheme. As a result we present the new
spectral Proximal Alternating Linearized Minimization (sPALM) algorithm which enjoys
the same convergence properties of PALM but is expected to have a better practical
behavior.

4.1 The spectral steplength
Spectral gradient methods are well-known optimization strategies for the solution of
large scale unconstrained and constrained smooth optimization problems [7, 8]. These
algorithms are rather appealing for their simplicity, low-cost per iteration (gradient-type
algorithms) and good practical performance due to a clever choice of the steplength.
The key to the success of these approaches, also known as Barzilai-Borwein methods
from the pioneering work [3], lies in the explicit use of first-order information of the cost
function on the one hand and, on the other hand, in the implicit use of second-order
information embedded in the steplength through a rough approximation of the cost
function Hessian. This speeds up the convergence and avoids the explicit computation
of the Hessian, typical of second-order methods, that would enhance the computational
complexity. While spectral gradient methods were first proposed for convex quadratic
problems, they have been widely used in a large variety of more general contexts [44, 54,
68].

Let H : Rn → R be a real valued differentiable function and consider the following

57

4. The spectral Proximal Alternating Linearized Minimization (sPALM) algorithm

optimization problem
min
x∈Rn

H(x). (4.1)

Then the Barzilai-Borwein (BB) iteration is defined as

xk+1 = xk − αk∇H(xk),

where αk is the solution of one of the following least-squares problems:

αBB1
k+1 = argmin

α

∥∥∥∥ 1

α
sk − gk

∥∥∥∥
2

and αBB2
k+1 = argmin

α
‖sk − αgk‖2 , (4.2)

with sk = xk+1 − xk and gk = ∇H(xk+1)−∇H(xk). The definitions in (4.2) correspond
to use a Quasi-Newton secant method for the solution of problem (4.1) where the Hessian
matrix at the current iterate is approximated by a multiple of the identity matrix [8].
Indeed, the Quasi-Newton method is based on the following iteration

xk+1 = xk −B−1
k ∇H(xk), (4.3)

and, given B0 ∈ Rn×n as an initial data, Bk ∈ Rn×n, k ≥ 1 satisfies the secant equations
i.e.,

Bksk−1 = gk−1 with sk−1 = xk − xk−1, gk−1 = ∇H(xk)−∇H(xk−1). (4.4)

Letting Bk = α−1
k I where I denotes the identity matrix and imposing condition (4.4),

Barzilai-Borwein derived the two steplengths in (4.2) which have the following explicit
forms:

αBB1
k+1 =

〈sk, sk〉
〈sk, gk〉

and αBB2
k+1 =

〈sk, gk〉
〈gk, gk〉

. (4.5)

Note that αBB1
k is the inverse of the Rayleigh quotient corresponding to the average of

the Hessian matrix
∫ 1

0
∇2H(xk + tsk)dt, that is always bounded above and below by

the minimum and the maximum eigenvalues of the Hessian of H [7, 8]. Thus the BB
methods are also known as spectral methods.

To make the stepsizes αBB1
k and αBB2

k at each step safely bounded away from zero
and bounded above, the BB method uses one of the following stepsizes

αk+1 = max
{
αmin,min

{
αBB1
k+1 , αmax

}}
(4.6)

αk+1 = max
{
αmin,min

{
αBB2
k+1 , αmax

}}
(4.7)

where αBB1
k+1 and αBB2

k+1 are given in (4.5). A variety of different rules based on suitable
adaptive combinations of αBB1

k+1 and αBB2
k+1 have been proposed in the literature. For

example the Adaptive Barzilai-Borwein (ABB) method [85, 31] selects one of the two
stepsizes according to a given parameter τ > 0. More precisely, if αBB2

k+1

αBB2
k+1

< τ , then

58

4. The spectral Proximal Alternating Linearized Minimization (sPALM) algorithm

αk+1 = αBB2
k+1 , otherwise αk+1 = αBB1

k+1 . In general it was observed experimentally that
alternating the two stepsizes along iterations is beneficial for the performance. For
further details on an alternating strategy for spectral stepsize selection we refer to [54]
and references therein.

Differently from other choices of the stepsizes, the BB ones do not guarantee a de-
crease of the objective function at each step. However global convergence is guaranteed
for convex quadratic problems ([63]) and in the non quadratic case when combined with
a (generally non monotone) globalization scheme ([64]).

4.2 The spectral PALM algorithm
Starting from the PALM framework, we propose spectral PALM (sPALM) that, for each
coordinate block, employs a spectral gradient step in the smooth part of the operator,
while maintaining a proximal step for the non-smooth part. More precisely, sPALM uses a
spectral stepsize in each variable bock in combinations with an Armijo-type backtracking
strategy ensuring the overall convergence.

The use of enriched proximal steps for solving composite optimization problems is
not new, see, e.g., [81]. The Cyclic Block Coordinate Gradient Projection algorithm,
proposed in [10] and mentioned in the previous chapter, makes use of spectral stepsizes
when applied to non-negative matrix factorizations. However, these steps are used to
determine an approximate solution of the minimization problem for each variable block,
and they do not use information from the previous iteration of the alternating algorithm.
To the best of our knowledge, the use of spectral stepsizes embedded in an alternating
algorithm for nonconvex non-smooth problems of the form (3.12) has remained so far
unexplored.

We now discuss how to extend the derivation of spectral stepsizes introduced in
the previous section for problem (4.1), to the more general nonconvex and non-smooth
problem (3.12). For the sake of clarity, we rewrite here problem (3.12):

min
x,y

Ψ(x, y) with Ψ(x, y) := H(x, y) + f1(x) + f2(y), (4.8)

where the functions H, f1 and f2 satisfy Assumption 3.3.1. Consider the case of the
partial Hessian ∇xxH (the case of ∇yyH is analogous). For a given iteration k, let

sk = xk+1 − xk and gk = ∇xH(xk+1, yk)−∇xH(xk, yk)

be the difference between two consecutive iterates and corresponding gradient values.
Then ∇xxH(xk+1, yk) is approximated by α−1

k+1I where the positive scalar αk+1 is defined
by one of the following BB values

αBB1
k+1 = argmin

α

∥∥∥∥ 1

α
sk − gk

∥∥∥∥
2

and αBB2
k+1 = argmin

α
‖sk − αgk‖2

59

4. The spectral Proximal Alternating Linearized Minimization (sPALM) algorithm

that is
αBB1
k+1 =

〈sk, sk〉
〈sk, gk〉

and αBB2
k+1 =

〈sk, gk〉
〈gk, gk〉

. (4.9)

We report in Algorithm 15 a simple alternating rule based on [37] that gives the best
results in our numerical experiments (see Section 7.2). Clearly, other rules can be equally
adapted within sPALM. The inclusion of threshold values in Algorithm 15 ensures that
the α’s remain bounded. The overall sPALM scheme is reported in Algorithm 16, where
the following notation is used:

Ψ1(x, y) := H(x, y) + f1(x) and Ψ2(x, y) := H(x, y) + f2(y). (4.10)

Algorithm 15 Computation of the spectral stepsize αk+1,i, i = 1 or i = 2

1: Input: 0 < αmin < αmax,

sk,i =

{
xk+1 − xk if i = 1

yk+1 − yk if i = 2,
and gk,i =

{
∇xH(xk+1, yk)−∇xH(xk, yk) if i = 1

∇yH(xk+1, yk+1)−∇yH(xk+1, yk) if i = 2,

2: if 〈sk,i, gk,i〉 > 0 then
3: if k is odd then
4: αk+1,i = max

{
αmin,min

{
αBB1
k+1,i, αmax

}}
with αBB1

k+1,i =
〈sk,i,sk,i〉
〈sk,i,gk,i〉

5: else
6: αk+1,i = max

{
αmin,min

{
αBB2
k+1,i, αmax

}}
with αBB2

k+1,i =
〈sk,i,gk,i〉
〈gk,i,gk,i〉

7: end if
8: else
9: αk+1,i = 1
10: end if

Remark 4.2.1. Conditions (4.12) and (4.14) in Algorithm 16 are satisfied in a finite
number of backtracking steps. For instance, from the descent lemma, see e.g. [9, Lemma
1], for any x defined by x = proxf1

1/α (xk − α∇xH(xk, yk)) we have that

Ψ1(x, yk) ≤ Ψ1(xk, yk)−
1

2

(
1

α
− L1(yk)

)
‖x− xk‖2

2,

and then condition (4.12) is satisfied when α ≤ 1−δ1
L1(yk)

. Therefore, the the backtrack-

ing terminates with ᾱk ≥ min
{
αk,1,

ρ1(1−δ1)
L1(yk)

}
≥ min

{
αmin,

ρ1(1−δ1)
L1(yk)

}
. Analogously for

(4.14).

In the following we set up the theoretical tools for proving a convergence result
analogous to that of Theorem 3.3.1 by exploiting the Proof methodology 3.3.1 discussed
in the previous chapter.

60

4. The spectral Proximal Alternating Linearized Minimization (sPALM) algorithm

Algorithm 16 sPALM
1: Input: (x0, y0) ∈ Rn × Rm, ρ1, δ1, ρ2, δ2 ∈ (0, 1), 0 < αmin < αmax, α0,1, α0,2 ∈

[αmin, αmax].
2: for k = 0, 1, . . . , do
3: Update x: Set

xk+1 = proxf1

1/ᾱk,1
(xk − ᾱk,1∇xH(xk, yk)) (4.11)

where ᾱk,1 = ρik1 αk,1 and ik is the smallest nonnegative integer for which the
following condition is satisfied,

Ψ1(xk+1, yk) < Ψ1(xk, yk)−
δ1

2ᾱk,1
‖xk+1 − xk‖2

2 (4.12)

4: Compute αk+1,1 ∈ [αmin, αmax] using Algorithm 15 with sk,1 = xk+1 − xk and
gk,1 = ∇xH(xk+1, yk)−∇xH(xk, yk).

5: Update y: Set
yk+1 = proxf2

1/ᾱk,2
(yk − ᾱk,2∇yH(xk+1, yk)) (4.13)

where ᾱk,2 = ρjk2 αk,2 and jk is the smallest nonnegative integer for which the
following condition is satisfied,

Ψ2(xk+1, yk+1) < Ψ2(xk+1, yk)−
δ2

2ᾱk,2
‖yk+1 − yk‖2

2 (4.14)

6: Compute αk+1,2 ∈ [αmin, αmax] using Algorithm 15 with sk,2 = yk+1 − yk and
gk,2 = ∇yH(xk+1, yk+1)−∇yH(xk+1, yk).

7: end for

Lemma 4.2.1. Suppose Assumption 3.3.1 holds. Let {zk} = {(xk, yk)} be a bounded
sequence generated by sPALM from a starting point z0 and let ω(z0) be the set of all limit
points of {zk}. Then the following conditions hold.

C1) There exists a positive scalar γ1 such that γ1‖zk+1 − zk‖2
2 < Ψ(zk)−Ψ(zk+1);

C2) There exists a positive scalar γ2 such that for some wk ∈ ∂Ψ(zk) we have ‖wk‖2 <
γ2‖zk − zk−1‖2, for k = 0, 1, . . . ;

C3) Each limit point in the set ω(z0) is a critical point for Ψ.

Proof. We first observe that the stepsizes ᾱk,1 and ᾱk,2 remain bounded for all k. Indeed,
since αk,1 ∈ [αmin, αmax] we have that ᾱk,1 = ρik1 αk,1 < αmax as ρ1 ∈ (0, 1) and ik ≥ 0.
Moreover, ᾱk,1 is at least ρik1 αmin since condition (4.12) is satisfied in a finite number of
steps (see Remark 4.2.1); similarly for ᾱk,2.

61

4. The spectral Proximal Alternating Linearized Minimization (sPALM) algorithm

Item C1) can be proved as follows. Fix k ≥ 0 and sum the inequalities (4.12) and
(4.14), so as to obtain

Ψ1(xk+1, yk) + Ψ2(xk+1, yk+1) < Ψ1(xk, yk) + Ψ2(xk+1, yk)

− δ1

2ᾱk,1
‖xk+1 − xk‖2

2 −
δ2

2ᾱk,2
‖yk+1 − yk‖2

2.

Recalling the definition of Ψ1 and Ψ2 (4.10) we obtain

Ψ(xk+1, yk+1) < Ψ(xk, yk)−
δ1

2ᾱk,1
‖xk+1 − xk‖2

2 −
δ2

2ᾱk,2
‖yk+1 − yk‖2

2

< Ψ(xk, yk)−
δ1

2αmax

‖xk+1 − xk‖2
2 −

δ2

2αmax

‖yk+1 − yk‖2
2,

from which Lemma 4.2.1 - C1) follows, with γ1 = 1
2αmax

min {δ1, δ2}.
The proofs of items C2) and C3) follow the lines of the proofs of Lemmas 3.3.3 and

3.3.4. Indeed, from the definition of the proximal map and the iterative steps (4.11) and
(4.13), we have that

xk = argmin
x∈Rn

{
〈∇xH(xk−1, yk−1), x− xk−1〉+

1

2ᾱk,1
‖x− xk−1‖2

2 + f1(x)

}
and

yk = argmin
y∈Rm

{
〈∇yH(xk, yk−1), y − yk−1〉+

1

2ᾱk,2
‖y − yk−1‖2

2 + f2(y)

}
.

Using the fact that ᾱk,1 and ᾱk,2 are bounded for all k the results follow.

We can now state a convergence result for sPALM.

Theorem 4.2.1. Suppose that Ψ is semi-algebraic such that Assumption 3.3.1 (A1)-
(A4) hold. Let {zk} = {(xk, yk)} be a bounded sequence generated by sPALM. Then the
sequence {zk} has finite length and converges to a critical point z∗ of Ψ.

Proof. The proof follows by using Lemma 4.2.1 and applying the Proof methodology
3.3.1 described in Section 3.3.

Remark 4.2.2. Algorithms 15-16 can be extended to the general setting involving p > 2
blocks, that is problems of the form

min
xi∈Rni

Ψ(x1, . . . , xp) with Ψ(x1, . . . , xp) := H(x1, . . . , xp) +

p∑
i=1

fi(xi), (4.15)

for which Theorem 4.2.1 holds. When variable blocks are matrices, all PALM-type algo-
rithms can be extended to the matrix optimization setting by using the trace matrix scalar
product and the Frobenius norm in place of the vector scalar product and the vector 2-
norm, respectively.

62

Chapter 5

Matrix and tensor Dictionary Learning
(DL) problem

Sparse representation of data has become an important tool in a variety of contexts such
as image classification and compression, observation denoising and equation solving. In
the context of image classification, Dictionary Learning (DL) is among the leading spar-
sity promoting techniques, and we refer to [26] and [53] for an overview of all applications
of Dictionary Learning in image processing in general. More precisely, in image denoising
the DL model is able to separate the original image from noise, in image classification it
is able to select the most important features of each class of images.

Given a set of data Y Dictionary Learning aims to find a matrix D called dictionary
and a sparse matrix X to represent Y ≈ DX, as shown in Figure 5.1, under specific
constraints on D and X.

Figure 5.1: Dictionary learning problem.

A distinct feature of this approximate factorization is that the dictionary is usually
overcomplete, i.e. the number of columns (called atoms) is greater than the number
of rows. Overcompleteness has important drawbacks in terms of shiftability, i.e. the
property of invariance of the dictionary under specific geometric transformations, as
observed in [70].

As an example in image processing, Figure 5.2 shows a typical matrix D, obtained

63

5. Matrix and tensor Dictionary Learning (DL) problem

Figure 5.2: Dictionary D after 10 iterations for the Fashion MNIST dataset using PALM.

here for the Fashion MNIST data set (see Appendix A). In the figure each column of
D is reported as a 28 × 28 image, displaying the prototype of a corresponding dressing
item in the dataset. The sparse matrix X has the ability to cluster the data by selecting
for each image contained in Y the columns of D that are more significant in terms of
representation.

Originally fixed dictionaries were used and the Dictionary Learning problem reduced
to find a sparse matrix X given a set of data Y and a dictionary D. However despite
the simplicity of fixed dictionaries, they suffered from limited expression. For example, a
dictionary based on Discrete Cosine Transform (DCT) may represent in a sparse manner
some images, but it can fail with others (see [26] and references therein). All these
considerations led to the development of overcomplete dictionaries learnt from data, as in
the seminal work [1] where Ahron, Elad and Bruckstein proposed the K-SVD algorithm.
From a computational view point going from fixed to learnt dictionaries poses several
challenges, especially when further constraints, that will be discussed in the following
sections, are included.

The increased need to analyze multidimensional data brought to various tensor for-
mulations of the DL problem with the aim of preserving data structure and feature
heterogeneity. For example, in image processing, preserving the neighboring relations
could be useful to enhance the classification performance of the algorithm as will be
clear from the following discussion. Unfortunately numerical methods based on these
tensor formulations are usually not supported with global convergence analysis. In this
chapter, we review some of the most important matrix and tensor Dictionary Learning
formulations and related algorithms.

64

5. Matrix and tensor Dictionary Learning (DL) problem

5.1 Matrix Dictionary Learning problem
Dictionary Learning (DL) consists of solving a two variable optimization problem, which
can be formulated in several ways, not necessarily equivalent. The first formulation
introduced by Olshausen and Field [59] enforces the sparse representation of the data Y
using a penalty function Φ(X) as follows

min
D,X
‖Y −DX‖2

F + Φ(X) s.t. D ∈ Ωn,k, (5.1)

where
Ωn,k = {D ∈ Rn×k : ‖di‖2 = 1, i = 1, . . . , k}, (5.2)

and Φ(X) can be chosen e.g. as the `0 or `1-norm. In general the number of column of
Y is much larger than the number of atoms k of the dictionary, nevertheless (5.1) can be
considered even when this condition is not satisfied. Notice that without the constraint
on the norm of the columns of D, the penalization becomes ineffective since the norm
of the dictionary can go to infinity [53]. Depending on the application, other variants of
(5.1) can be considered. For example, in denoising applications one is not interested in
recovering the data Y exactly due to the presence of noise. Thus, the following variant
of (5.1) can be considered.

min
X

Φ(X) s.t. ‖Y −DX‖2
F ≤ ε D ∈ Ωn,k, (5.3)

where ε is a positive constant depending on the noise level of the original data, when
known. In our image classification context we use a predefined maximum number τ
of atoms to represent each image contained in Y . This corresponds to selecting from
the dictionary the most important information for each class. In this setting, the DL
formulation becomes

min
D,X
‖Y −DX‖2

F s.t. D ∈ Ωn,k X ∈ Γ
(τ)
k,p, (5.4)

where
Γ

(τ)
k,p = {X ∈ Rk×p : ‖xi‖0 < τ, i = 1, . . . , p}, (5.5)

is the set of matrices with at most τ non zero elements per column and usually with
p > k.

This minimization problem is NP-hard, see e.g. [26, 53], and nonconvex. Non-
convexity comes from two sources: the sparsity promoting functional `0-norm and the
bi-linearity between the dictionary D and the sparse representation X. In addition, the
`0-norm makes the problem non-smooth. Another important property of (5.4) is that
it admits multiple global minima (D∗P, P−1X∗), where (D∗, X∗) is a solution of (5.4)
and P is a signed permutation matrix. A complete analysis on the properties of the
Dictionary Learning problem can be found in [26] and [53]. A numerical solution is

65

5. Matrix and tensor Dictionary Learning (DL) problem

Algorithm 17 Dictionary Learning [26, Algorithm 3.1]

1: Input: data matrix Y ∈ Rn×p, initial dictionary matrix D ∈ Rn×k

2: for it = 1, . . . , do
3: Sparse coding : (Approximately) solve the problem

min
X
‖Y −DX‖2

F s.t X ∈ Γ
(τ)
k,p

4: Dictionary update: (Approximately) solve the problem

min
D
‖Y −DX‖2

F s.t. D ∈ Ωn,k

5: end for
6: Output: D, X

usually computed using alternating minimization approaches. More precisely, the min-
imization problem in D (dictionary update) is solved while keeping X fixed and then
the minimization problem in X (sparse coding) is solved while D is fixed. The general
scheme of this procedure is reported in Algorithm 17. Note that, as will be explained
later, some DL algorithms, like K-SVD, perform an update of the sparse matrix X also
in the dictionary update step. In the next sections we report some of the most relevant
strategies to solve both the sparse coding and the dictionary update step.

5.1.1 Sparse coding

The sparse coding step consists in solving the minimization problem

min
X
‖Y −DX‖2

F s.t X ∈ Γ
(τ)
k,p,

which is nonconvex and NP-hard. It can be solved in several ways, for example consider-
ing convex relaxations of the problem [26, Chapter 1]. However one of the most popular
strategies consists in using greedy algorithms such as OMP (Orthogonal Matching Pur-
suit). The latter despite the lack of convergence guarantees under general assumptions
has good practical behaviour. For each column of Y , named yi, we compute its sparse
representation x in the overcomplete “basis” D. The idea is to build the support of X
incrementally, as explained in Algorithm 18. We start from an empty support S = ∅.
Then at each iteration the atom j∗ which is most correlated with the residual is added
to the support S = S ∪ j∗. The new coefficient of the sparse representation of y are
recomputed as the solution of the following least-squares problem

min
x
‖y −DSx‖2, (5.6)

66

5. Matrix and tensor Dictionary Learning (DL) problem

Algorithm 18 OMP [26, Algorithm 1.1]

1: Input: data vector yi ∈ Rn, dictionary matrix D ∈ Rn×k, approximation precision
ε, maximum number of non zero elements τ .

2: Initialize the vector x = 0, r(0) = yi, S(0) = support(x) = ∅
3: for it = 0, . . . , τ − 1 do
4: Select Atom:
5: j∗ = argmaxj

|dTj r(it)|
‖dj‖2

6: S(it+1) = S(it) ∪ j∗:
7: Update the solution estimate:
8: x

(it+1)

S(it+1) = D†
S(it+1)yi

9: r(it+1) = yi −DS(it+1)x
(it+1)

S(it+1)

10: if ‖r(it+1)‖2 < ε stop
11: end for
12: Output: vector x ∈ Rk.

where DS ∈ Rn×|S| is the restriction of the dictionary D to the current support S. The
procedure ends either when the maximum number of non zero elements in x is achieved
or when the norm of the residual is below a threshold ε ([26]). In order to reduce the

Algorithm 19 OMP-QR [74]

1: Input: data vector yi ∈ Rn, dictionary matrix D ∈ Rn×k, approximation precision
ε, maximum number of non zero elements τ .

2: Initialize the vector x = 0, r(0) = yi, S(0) = support(x) = ∅
3: for it = 0, . . . , τ − 1 do
4: Select Atom:
5: j∗ = argmaxj

|dTj r(it)|
‖dj‖2

6: S(it+1) = S(it) ∪ j∗:
7: Compute the QR decomposition of DS(it+1) = Q(it+1)R(it+1) starting from the de-

composition of DS(it) : Q(it+1) = [Q(it) q̃]
8: r(it+1) = r(it) − q̃q̃Tyi
9: if ‖r(it+1)‖2 < ε stop
10: end for
11: Compute the solution estimate: x =

(
R(it+1)

)−1 (
Q(it+1)

)T
yi

12: Output: vector x ∈ Rk.

computational complexity of OMP, several strategies can be used as described in [74].
In our experiments we considered a variant of Algorithm 18, described in [74, Section
2.3], where the QR decomposition of DS is used. At each iteration a column of D is
added to the support and the QR decomposition can be updated. Then the residual is
computed without explicitly determining the sparse solution x. We refer to this variant

67

5. Matrix and tensor Dictionary Learning (DL) problem

as OMP-QR. The main difference between OMP and OMP-QR lies in the computation
of x. In the latter x is computed only once when the number of its non-zero elements
is determined, while in OMP x is computed every time an atom of D is added to the
support. The scheme of OMP-QR is summarized in Algorithm 19. Another popular
variant described in [74] is based on the Cholesky decomposition of the matrix DSD

T
S .

In a nutshell, when a new atom is added to the support the Cholesky decomposition of
DSD

T
S is updated and the new solution x is computed by considering the normal equation

associated to (5.6). A complete description of this OMP Cholesky can be found in [26].

5.1.2 Dictionary update

The dictionary update step consists in the (approximate) solution of the problem

min
D
‖Y −DX‖2

F s.t. D ∈ Ωn,k. (5.7)

Additional structures can be imposed on the dictionary to enforce specific properties.
For example, one can consider sparse dictionaries D = D1D2 where D1 is fixed and D2

is sparse. In [51] the matrix D is composed by orthogonal blocks (Union of Orthonor-
mal Basis). In [40] a separable structure on D = D1 ⊗ D2 is imposed and instead of
learning the matrix D one can work directly on smaller blocks D1, D2. Other structured
dictionaries have been explored in the literature, but their analysis is beyond the scope
of this thesis. However, some structured dictionaries related to tensor decompositions
are reviewed in Section 5.2. A complete review can be found in [26, 23].

Method of Optimal Directions (MOD)

The Method of Optimal Directions (MOD), described in [29], is an alternating method
characterized by a dictionary update step based on the exact solution of the least-squares
problem (5.7). More precisely, MOD determines the dictionary as

D = Y X†, (5.8)

where X† denotes the Moore-Penrose inverse of X, i.e. X† = XT
(
XXT

)−1. This
dictionary update step is equivalent to set the partial gradient of the objective function
equal to zero. In particular, since ∇D‖Y −DX‖2

F is given by

∇D

(
‖Y −DX‖2

F

)
= −2XT (Y −DX), (5.9)

setting (5.9) equal to zero gives (5.8). The complexity of this dictionary update is mainly
due to the computation of the pseudoinverse of X. Note that considering the Cholesky
decomposition of XXT can reduce the computational complexity of the algorithm (see
[26]).

68

5. Matrix and tensor Dictionary Learning (DL) problem

K-SVD algorithm

The K-SVD algorithm, discussed in [1], is one of the most cited algorithms to solve
Dictionary Learning problems. As MOD, it relies on an alternating optimization strategy.
Furthermore, the matrix X is also updated during the minimization in D enhancing
performance for practical purposes.

In the dictionary update step, each atom is updated separately using the Singular
Value Decomposition (SVD) in the following manner. First of all, we rewrite the objective
function in (5.4).

‖Y −DX‖2
F =

∥∥∥∥∥Y −
k∑
j=1

djx
T
j

∥∥∥∥∥
2

F

=

∥∥∥∥∥
(
Y −

k∑
j=1,j 6=l

djx
T
j

)
− dlxTl

∥∥∥∥∥
2

F

=
∥∥El − dlxTl ∥∥2

F
,

(5.10)

where the matrix El represents the approximation error when the l column of the dic-
tionary D is removed. To update dl in order to decrease the overall error, we could
try to use the approximation properties of the SVD. More precisely, we could find a
rank-1 approximation of El, computing its SVD and setting dl as the first left singular
vector and xl as the first right singular vector multiplied by the corresponding singular
value. However this violates the sparsity constraint on X, since usually the right singular
vectors are not sparse [1]. To overcome this problem instead of considering (5.10), we
consider the following ∥∥ElPl − dlxTl Pl∥∥2

F
=
∥∥ER

l − dl(xRl)T
∥∥2

F
, (5.11)

where Pl is a matrix that shrinks the vector xl, by discarding the zero elements. Defining
(xRl)T = xTl Pl and ER

l = ElPl, we can use the SVD to solve (5.11). Considering the SVD
of ER

l = UlΣlV
T
l , we set dl equal to the first column of Ul and xRl equal to the first

column of Vl multiplied by the first singular value. Notice that the constraint on the
norm of the atoms of D is satisfied since the singular vectors have unit norm. The overall
procedure is summarized in Algorithm 20.

In [1] the K-SVD is applied to image data to recover missing pixel and for compression
tasks, while in [27] it is applied to image denoising and in [83] to face recognition. The
algorithm shows great practical performance in all these applications. However, from a
theoretical point of view, is not possible to determine whether the computed solution
is a local minimum of our problem. This is due to the absence of strong convergence
guarantees of the iterative algorithm. Convergence is guaranteed only when the sparse
coding retrieves the best sparse approximation of the signals Y . This, together with the
decrease of the objective function in each dictionary update step, guarantees a monotonic
decrease of the objective function and therefore the convergence to a local minimum [1].
However, since this is quite uncommon in practical situations related to image processing,
a stopping criterion based on the maximum number of iterations is commonly used.

69

5. Matrix and tensor Dictionary Learning (DL) problem

Algorithm 20 K-SVD [1]

1: Input: data matrix Y ∈ Rn×p, initial matrix D ∈ Rn×k

2: for it = 1, . . . , do
3: Sparse Coding : Use any pursuit algorithm to compute X(it)

4: Dictionary Update:
5: for l = 1, . . . , k do

6: Compute the error El = Y −
k∑

j=1,j 6=l

djx
T
j

7: Restrict El by choosing the columns corresponding to the non zero elements of
xl, to obtain ER

l

8: Compute the SVD of ER
l = UlΣlV

T
l and set dl equal to the first column of Ul

and xRl equal to the first column of Vl multiplied by the first singular value
9: end for
10: end for
11: Output: D, X

5.2 Tensor methods
In this section we review some important tensor Dictionary Learning formulations and
related algorithms. They can be seen as structured Dictionary Learning problems since
they impose a specific structure on the dictionary [26, Chapter 7]. For example, the
HO-SuKro algorithm imposes that the dictionary can be written as a sum of Kronecker
products of smaller subdictionaries, while K-HOSVD imposes that the corresponding
dictionary matrix can be written as a Kronecker product of two smaller subdictionaries.

5.2.1 K-HOSVD

The K-HOSVD is a tensor version of the K-SVD, where the HOSVD is used in place of
the matrix SVD. In [66] the DL problem is formulated as follows

min
D1,D2,X

‖Y − X ×1 D1 ×2 D2‖F subject to ‖X‖0 ≤ Kmax and Di ∈ Ωni,ki i = 1, 2,

(5.12)
where Y ∈ Rn1×n2×p, D1 ∈ Rn1×k1 , D2 ∈ Rn2×k2 and X ∈ Rk1×k2×p. This is equivalent
to assume that the dictionary D of the related matrix DL problem (5.4) has a separable
structure, i.e. D = D1 ⊗D2. Indeed, by considering the reshape along the second mode
of (5.12) we obtain

min
D1,D2,X

∥∥Y[2] − (D1 ⊗D2)X[2]

∥∥
F

subject to ‖X‖0 ≤ Kmax and Di ∈ Ωni,ki i = 1, 2.

(5.13)
The K-HOSVD algorithm alternates between sparse coding and dictionary update.

Each atom of D1 and D2 is updated separately as in the matrix setting and the tensor

70

5. Matrix and tensor Dictionary Learning (DL) problem

X is updated also during the dictionary update step. Following the K-SVD scheme we
first rewrite (5.12) as

min
d

(1)
j1
,d

(2)
j2
,xj

∥∥∥Ej1,j2 − d(1)
j1
◦ d(2)

j2
◦ xj

∥∥∥2

F
, (5.14)

where

Ej1,j2 = Y −
k1∑
s1=1

k2∑
s2=1

(s1,s2)6=(j1,j2)

d(1)
s1
◦ d(2)

s2
◦ xs, s = (s1 − 1)k2 + s2,

and d
(i)
si denotes the sith column of Di for i = 1, 2, while xs denotes the sth fiber of

tensor X . Then we denote as xRj the vector obtained from xj in (5.14) by omitting its
non zero entries. This can be thought as a projection matrix acting on the rank-1 tensor
d

(1)
j1
◦ d(2)

j2
◦ xj. The corresponding error tensor is denoted as ERj1,j2 . Thus (5.14) becomes

min
d

(1)
j1
,d

(2)
j2
,xRj

∥∥∥ERj1,j2 − d(1)
j1
◦ d(2)

j2
◦ xRj

∥∥∥2

F
.

Considering the HOSVD of ER
j1,j2

= S ×1 U1 ×2 U2 ×3 U3 we set d(1)
j1

= u11, d
(2)
j2

=
u21 and xRj = s111u31, where u11, u21 and u31 denote the first columns of U1, U2, U3

respectively and s111 = S(1, 1, 1). For the sparse coding step the equivalent formulation
(5.13) is considered and Algorithm 18 is applied. The whole procedure is summarized in
Algorithm 21.

It is worth to underline that even though the HOSVD does not have the property of
best approximation of the SVD, the K-HOSVD algorithm has good practical behaviour
as shown in [66].

5.2.2 HO-SuKro

Another interesting and recent tensor formulation of the DL problem is based on the
representation of the dictionary as a sum of Kronecker products of smaller subdictionar-
ies. This formulation was explored both in [21, 22] by Dantas, Cohen and Gibronval and
in [34, 69] by Ghassemi, Shakeri, Bajwa and Sarwate. Furthermore in [34, 69] the au-
thors provide sufficient conditions on several parameters of the DL problem, such as the
number of samples, i.e. the number of columns of Y , that guarantee the local recovery
of the structured dictionary with high probability.

As observed in [21], imposing a Kronecker structure on the dictionary matrix is equiv-
alent to imposing a CP structure on the corresponding dictionary tensor. To determine
the factor dictionaries, several algorithms have been developed either using the CP struc-
ture or using directly the Kronecker structure. The following discussion refers to [22].
Consider the data tensor Y ∈ Rn1×n2×n3×p that can be thought as a collection of p third-
order tensors, such as RGB images. Instead of solving the classical DL problem (5.4) for

71

5. Matrix and tensor Dictionary Learning (DL) problem

Algorithm 21 K-HOSVD [66]

1: Input: data tensor Y ∈ Rn1×n2×p, initial matrices D1 ∈ Rn1×k1 , D2 ∈ Rn2×k2

2: for it = 1, . . . , do
3: Sparse Coding : Use any pursuit algorithm to compute the sparse solution of (5.13)

X[2]

4: Dictionary Update:
5: for j1 = 1, . . . , k1 do
6: for j2 = 1, . . . , k2 do

7: Compute the error Ej1,j2 = Y −
k1∑
s1=1

k2∑
s2=1

(s1,s2)6=(j1,j2)

d(1)
s1
◦ d(2)

s2
◦ xs

8: Restrict Ej1,j2 by choosing the columns corresponding to the non zero elements
of xRj , to obtain ERj1,j2

9: Compute the HOSVD of ERj1,j2 = S ×1 U1 ×2 U2 ×3 U3

10: Set
d

(1)
j1
← u11

d
(2)
j2
← u21

xRj ← s111u31

11: end for
12: end for
13: end for
14: Output:D1 ∈ Rn1×k1 , D2 ∈ Rn2×k2 and X ∈ Rk1×k2×p.

a general dictionary D, the HO-SuKro restricts to dictionaries that can be written as a
High-Order Sum of Kronecker products, i.e.

D =
R∑
q=1

D1,q ⊗D2,q ⊗D3,q, (5.15)

where Dj,q ∈ Rnj×kj for j = 1, 2, 3 with k = k1k2k3. Thus the DL problem becomes

min
Dj,q ,X

∥∥∥∥∥Y[3] −

(
R∑
q=1

D1,q ⊗D2,q ⊗D3,q

)
X[3]

∥∥∥∥∥
2

F

+ g(X) (5.16)

where X ∈ Rk1×k2×k3×p is a sparse fourth-order tensor and g is a sparsity inducing
function. For example g can be set equal to the zero norm of X which is the total
number of nonzero elements of X .

For the dictionary update step in the HO-SuKro algorithm we have to write the
partial cost function for each block ∆j = [Dj,1, . . . Dj,R] for j = 1, 2, 3. Consider the case

72

5. Matrix and tensor Dictionary Learning (DL) problem

Algorithm 22 HO-SuKro [22, Algorithm 1]

1: Input: data matrix Y ∈ Rn1×n2×n3×p, sparsity threshold T , initial matrices
{Dj,q}j=1,2,3

q=1,...,R

2: for it = 1, . . . , do
3: Sparse coding : Use any sparse coding algorithm to solve

min
X

∥∥∥∥∥Y[3] −

(
R∑
q=1

D1,q ⊗D2,q ⊗D3,q

)
X[3]

∥∥∥∥∥
2

F

+ g(X)

4: Dictionary update:
5: while update Dj,q is significant
6: for j = 1, 2, 3 do
7: Compute ∆̂j = argmin

∆j

‖Y(1) −∆jU‖2
F

8: end for
9: end for
10: Output: Blocks {Dj,q}j=1,2,3

q=1,...,R and the sparse tensor X

j = 1

f(D1,q) =

∥∥∥∥∥Y(1) −
R∑
q=1

D1,qX(1) (D2,q ⊗D3,q ⊗ In)T

∥∥∥∥∥
2

F

= ‖Y(1) −∆1U‖2
F , (5.17)

where U = [U1; . . . ;UR] with Uq = X(1) (D2,q ⊗D3,q ⊗ In)T for q = 1, . . . , R. The mini-
mum of (5.17) is given in closed form by the following

∆̂1 = argmin
∆1

‖Y(1) −∆1U‖2
F = Y(1)U

†.

The same procedure is used to determine ∆̂2 and ∆̂3. For the sparse coding step (5.16)
is considered and a sparse coding algorithm is used to determine X[3] depending on the
chosen penalty function g. For example, if g(X) = ‖X‖0, then the OMP algorithm is
used. Note that in this step the computation of the wholeD is avoided and the Kronecker
structure is used to lower the computational cost. The overall procedure is summarized
in Algorithm 22.

5.2.3 GRADTENSOR

In [87] the GRADTENSOR algorithm, based on sparse Tucker decomposition, is
presented. In this setting, the problem has a slightly different formulation for the sparsity

73

5. Matrix and tensor Dictionary Learning (DL) problem

Algorithm 23 TOMP [87, Algorithm 1]
1: Input: Dictionaries Di, input signal X , maximum number of non-zeros coefficients
tmax ≤ s, tolerance ε.

2: while |M1||M2||M3| < tmax and ‖R‖F > ε do
3: for t = 1, . . . do
4: Select Atom:
5: [mt

1,m
t
2,m

t
3] = argmax[m1,m2,m3] |R ×1 D1(:,m1)×2 D2(:,m2)×3 D3(:,m3)|

6: Mn = Mn ∪mt
n for n = 1, 2, 3

7: Update the residual:
8: D∗n = Dn(:,Mn) for n = 1, 2, 3
9: e = argminu ‖(D∗3 ⊗D∗2 ⊗D∗1)u− y‖2

2 and reshape e as a third-order tensor E
10: R = Y − E ×1 D

∗
1 ×2 D

∗
2 ×3 D

∗
3

11: end for
12: end while
13: X (M1,M2,M3) = E
14: Output: tensor X , (M1,M2,M3).

constraint. More precisely, the DL problem is

min
X ,D1,D2,D3

F (X , D1, D2, D3) s.t. xm1,m2,m3 = 0 ∀(m1,m2,m3) /∈ (M1 ×M2 ×M3)

(5.18)

where
F (X , D1, D2, D3) = ‖Y − X ×1 D1 ×2 D2 ×3 D3‖2

F

and Y ∈ Rn1×n2×p, X ∈ Rk1×k2×k3 , D1 ∈ Rn1×k1 , D2 ∈ Rn2×k2 and D3 ∈ Rp×k3 . The
total sparsity (i.e. number of the non zero elements) of X is denoted by s = s1s2s3. The
GRADTENSOR algorithm computes the numerical solution of (5.18) by alternating
between the dictionary update and the sparse coding step. The latter is performed using
a tensor version of the OMP, called TOMP (Tensor-OMP) and described in Algorithm
23.

In the dictionary update step each dictionary Di is computed iteratively by gradient
descent in an alternating manner until the difference between two consecutive iterations
is smaller than a given threshold. To this end we rewrite (5.18) using the unfoldings
along different modes as follows.

FD1 =
∥∥Y(1) −D1X(1)(D3 ⊗D2)T

∥∥2

F
, (5.19)

FD2 =
∥∥Y(2) −D2X(2)(D2 ⊗D1)T

∥∥2

F
, (5.20)

FD3 =
∥∥Y(3) −D3X(3)(D2 ⊗D1)T

∥∥2

F
, (5.21)

74

5. Matrix and tensor Dictionary Learning (DL) problem

Algorithm 24 GRADTENSOR [87, Algorithm 2]
1: Input: data tensor Y , sparse core tensor X , maximum sparsity value s = s1s2s3,

step size γ, tolerance ε, ε1, ε2, ε3.
2: The matrices Dn are initialized by left singular vectors of Y(n) for n = 1, 2, 3
3: for i = 1, . . . do
4: Sparse coding : Use TOMP to solve min

X
F (X , D1, D2, D3) s.t. xm1,m2,m3 =

0 ∀(m1,m2,m3) /∈ (M1 ×M2 ×M3)
5: Dictionary update:
6: for n = 1, 2, 3 do
7: for it = 0, . . . do
8: D

(it+1)
n = D

(it)
n − γOFDn

9: if ‖D(it+1)
n −D(it)

n ‖F ≤ εn stop
10: end for
11: if F (X , D1, D2, D3) ≤ ε stop
12: end for
13: end for
14: Output: X and Dn for n = 1, 2, 3

Thus the updates for the dictionaries are given by

D(it+1)
n = D(it)

n − γOFDn , n = 1, 2, 3,

where it is the current step of the gradient descent algorithm. The whole procedure is
summarized in Algorithm 24. Though in [87], the authors do not provide any convergence
result, the algorithm shows good experimental behaviour.

5.2.4 K-CPD

The K-CPD algorithm, presented in [25], follows the scheme of K-SVD and K-HOSVD
and updates each atom of the dictionary separately using the CPD. Given a tensor
YΩ ∈ Rn1×···×nN×p the K-CPD aims to solve the following optimization problem.

min
DΩ,X

∥∥YΩ −DΩ ×N+1 X
T
∥∥2

F
s.t. ‖xi‖0 ≤ T ∀i = 1, . . . , K, (5.22)

where DΩ ∈ Rk1×···×kN×K is the dictionary and each atom Dk = DΩ(:, . . . , :, k) is an
Nth-order rank-1 tensor Dk = d

(1)
k ◦ · · · ◦ d

(N)
k and xi denotes the i-th column of the

matrix X. The solution of (5.22) is computed using an alternating procedure, as for
most DL algorithms. The dictionary update step is performed as follows. For each atom
k the error is given by

E (R)
k = YΩ −

∑
j 6=k

Dj ×N+1 (x
(R)
j)T ,

75

5. Matrix and tensor Dictionary Learning (DL) problem

Algorithm 25 K-CPD [25, Algorithm 2]

1: Input: data tensor Y , threshold of sparsity τ > 0, initial value for DΩ.
2: for it = 1, . . . , do
3: for k = 1, . . . , K do
4: Compute E (R)

k = YΩ −
∑

j 6=kDj ×N+1 (x
(R)
j)T

5: Compute the rank-1 CP approximation of the error tensor

E (R)
k = λka

(1)
k ◦ · · · ◦ a

(N+1)
k

6: Set d(n)
k = a

(n)
k for n = 1, . . . , N and x(R)

k = λk

(
a

(N+1)
k

)T
7: end for
8: end for
9: Output: X and DΩ.

where xRj is obtained from xj by taking only the non zero elements as in K-SVD or K-
HOSVD. Then a rank-1 approximation of E (R)

k is determined using the CP decomposition

E (R)
k = λka

(1)
k ◦ · · · ◦ a

(N+1)
k . (5.23)

Then, assuming that each Dk has a rank-1 structure Dk = d
(1)
k ◦ · · · ◦ d

(N)
k , each d(n)

k is
set equal to a(n)

k for n = 1, . . . , N . As in K-SVD and K-HOSVD also x(R)
k is updated

as x(R)
k = λk

(
a

(N+1)
k

)T
. The whole procedure is summarized in Algorithm 25. The

experiments performed show that the K-CPD slightly outperforms K-SVD. The sparse
coding step is performed using a variant of OMP, named MOMP (Multilinear OMP),
that takes into account the structure of the dictionary DΩ. For further details see [25,
Algorithm 1].

Another algorithm based on the CPD is described in [43] where the objective function
is formulated as follows.

min
X ,D1,D2

‖Y − X ×1 D1 ×2 D2‖2
F + λ ‖X‖0 ,

where X ∈ Rk1×k1×p, D1, D2 ∈ R
√
n×k1 . The minimization is performed in an alternating

manner and the sparse coding step is performed using an appropriate version of the OMP
(2D OMP) described in [30]. Using the outer product and, neglecting the penalty term
λ ‖X‖0, Y can be formulated as

Y =
(
d1
j ◦ d2

k ◦ xjk
)

+
n∑
a6=j

(
d1
j ◦ d2

a ◦ xja
)

+
n∑
b6=k

(
d1
b ◦ d2

k ◦ xbk
)

+
n∑
a6=j

n∑
b6=k

(
d1
a ◦ d2

b ◦ xab
)

= E (j,k) +
(
d1
j ◦ d2

k ◦ xjk
)

+
n∑
a6=j

(
d1
j ◦ d2

a ◦ xja
)

+
n∑
b6=k

(
d1
b ◦ d2

k ◦ xbk
)
.

76

5. Matrix and tensor Dictionary Learning (DL) problem

Since d1
j and d2

k cannot be determined by directly performing CP decomposition
on E (j,k), a Regularized Alternating Least Square (RALS) is used. The procedure is
described in the APPENDIX of [43]. The performance of the algorithms are comparable
or slightly superior to the K-SVD (see [25, 43]).

77

5. Matrix and tensor Dictionary Learning (DL) problem

78

Chapter 6

Proximal methods for Dictionary
Learning

In this chapter we analyze the application of PALM algorithms presented in Chapters 3
and 4 to the DL problem (5.4) in the matrix setting, as in [2, 86, 52]. Furthermore we
propose a new Tensor-Train formulation of the DL problem and we show how PALM-
type algorithms (including sPALM) can be naturally applied in order to get convergent
schemes. To the best of our knowledge, these are the first tensor-based algorithms in the
DL literature with global convergence guarantees.

6.1 Proximal matrix methods
In this section we discuss the convergence of PALM-type algorithms described in Chapter
3 and 4 in the matrix Dictionary Learning framework. PALM, btPALM (i.e. PALM with
backtracking strategy for the stepsize) and sPALM when applied to the DL problem will
be denoted as PALM-DL , btPALM-DL and sPALM-DL respectively.

In order to use proximal methods, we need to reformulate the matrix DL problem
(5.4) by including the constraints in the objective function as follows.

min
D,X
‖Y −DX‖2

F + δΩn,k(D) + δ
Γ

(τ)
k,p

(X), (6.1)

where δΩn,kand δΓ
(τ)
k,p

are indicator functions over the sets Ωn,k and Γ
(τ)
k,p defined in (5.2)

and (5.5), respectively. Given a non-empty and closed set Ω ⊂ Rm×n, we recall that the
indicator function δΩ : Rm×n → (−∞,+∞] is given by

δΩ(A) =

{
0 if A ∈ Ω

+∞ otherwise.
(6.2)

The formulation (6.1) is equivalent to (5.4), because when D ∈ Ωn,k and X ∈ Γ
(τ)
k,p the

indicator functions are equal to zero. The formulation (6.1) has clearly the form of the

79

6. Proximal methods for Dictionary Learning

general problem (3.12) with H(D,X) = ‖Y − DX‖2
F , f1(D) = δΩn,k(D) and f2(X) =

δ
Γ

(τ)
k,p

(X). The following propositions prove that these functions are semi-algebraic and
satisfy Assumption 3.3.1.

Proposition 6.1.1. The function Ψ(D,X) = ‖Y − DX‖2
F + δΩn,k(D) + δ

Γ
(τ)
k,p

(X) is
semi-algebraic.

Proof. The function H(D,X) = ‖Y − DX‖2
F is a real polynomial function and thus

semi-algebraic. The terms δΩn,k , δΓ
(τ)
k,p

are indicator functions of semi-algebraic sets and
thus are semi-algebraic. To conclude we just observe that a finite sum of semi-algebraic
functions is semi-algebraic as well [9].

Proposition 6.1.2. The partial gradients∇XH(D,X) and∇DH(D,X) where H(D,X) =
‖Y −DX‖2

F are globally Lipschitz continuous with moduli

LX = 2‖DTD‖2 and LD = 2‖XXT‖2, (6.3)

respectively.

Proof. By direct computation the following expressions for the partial gradients of H
hold:

∇DH(D,X) = −2(Y −DX)XT ,

∇XH(D,X) = −2DT (Y −DX).

Thus, for any D̂,D̃ ∈ Rn×k we have∥∥∥∇DH(D̂,X)−∇DH(D̃,X)
∥∥∥

2
=
∥∥∥2
(
D̂ − D̃

)
XXT

∥∥∥
2
≤ 2

∥∥XXT
∥∥

2

∥∥∥D̂ − D̃∥∥∥
2
,

where LD = 2‖XXT‖2 is the Lipschitz constant of ∇DH(D,X). The same procedure
can be repeated to compute LX .

Proposition 6.1.3. The gradient ∇H(D,X) of H(D,X) = ‖Y − DX‖2
F is Lipschitz

continuous on bounded subsets of Rn×k × Rk×p.

Proof. The result follows directly from the smoothness of H(D,X), as stated in Remark
3.3.2.

To conclude the convergence of PALM-type algorithms for the Dictionary Learning
problem we recall that in the convergence analysis the sequence generated by the proximal
algorithms described in Chapter 3 and 4 is assumed to be bounded (Theorems 3.3.1 and
4.2.1). Assuming that the sequence {Dk, Xk} is bounded ensures that LD and LX are
bounded from above. Furthermore as suggested in [9] instead of using LD and LX , we
can consider the following partial smoothness parameters

L′X = max
{
µX , 2‖DTD‖2

}
and L′D = max

{
µD, 2‖XXT‖2

}
.

80

6. Proximal methods for Dictionary Learning

where µX , µD > 0 so that Assumption 3.3.1 is satisfied since L′D and L′X are safely
bounded away from zero.

We recall that the proximal map of an indicator function δΩ over a non-empty and
closed set Ω ⊂ Rm×n is the multi-valued projection PΩ : Rm×n ⇒ Ω such that

PΩ(A) = argmin
B∈Ω

‖A−B‖F . (6.4)

The following proposition gives a closed form expression for the corresponding projection
operators over the sets Ωm,n and Γ

(τ)
m,n.

Proposition 6.1.4. Let A ∈ Rm×n.

i. Let Ωm,n ⊂ Rm×n be defined in (5.2). Then PΩm,n(A) = AS−1, where S ∈ Rn×n is
a diagonal matrix whose diagonal elements are the norm of the columns of A.

ii. Let Γm,n ⊂ Rm×n be defined in (5.5). Then PΓm,n(A) = hardτ (A), where hardτ is
the hard-thresholding function that selects the τ largest elements (in absolute value)
of each column of A and zeroes all the others.

Proof. For B ∈ Ω ⊂ Rm×n having unit norm columns, we have that ‖A − B‖2
F =

trace(ATA) − 2 trace(BTA) + n and thus solving (6.4) is equivalent to finding B =
argmaxΩ trace(ATB).

i) For Ω = Ωm,n and A = [a1, . . . , an], B = [b1, . . . , bn] with ‖bj‖ = 1, j = 1, . . . , n, it
holds that

trace(BTA) =
n∑
j=1

bTj aj =
n∑
j=1

cos(θj)‖aj‖2 ≤
n∑
j=1

‖aj‖2,

where θj ∈
[
0, π

2

]
, and the upper bound is reached for bj = aj/‖aj‖2.

ii) From [9, Section 4], we have that the projection P
Γ

(τ)
m,n

(A) of A onto the set of

sparse matrices Γ
(τ)
m,n is equivalent to select the τ largest elements in absolute value from

each column and set to zero all the others.

By applying Theorem 3.3.1 and Theorem 4.2.1 we can conclude that PALM-type
algorithms, including sPALM, are guaranteed to converge to a critical point of problem
(6.1).

We report in Algorithm 26 the PALM scheme for the DL problem (6.1) which is
similar to the one in [2]. At each iteration, a gradient step is performed using the
smoothness parameters L′D, L′X and then the projection of the variables D, X onto the
proper feasible sets is performed.

In several applications the dimensions of D and X can be quite large and the com-
putation of the Euclidean norm can be quite demanding. Furthermore the Lipschitz
constants sometimes provide small stepsizes and slow down the convergence of PALM.
Thus, instead of considering constant stepsizes, αj,D and αj,X can be estimated using

81

6. Proximal methods for Dictionary Learning

Algorithm 26 PALM-DL

1: Input: (D0, X0) ∈ Rn×k × Rk×p, η1, η2 > 1, µD, µX > 0
2: for j = 0, 1, . . . , do
3: Update D: Set L′D(Xj) = max {µD, LD(Xj)}, ᾱj,D = 1/(ηDL

′
D(Xj)) and compute

Dj+1 = PΩn,k (Dj − ᾱj,1∇DH(Dj, Xj)) (6.5)

4: Update X: Set L′X(Dj+1) = max {µX , LX(Dj+1)}, ᾱj,X = 1/(ηXL
′
X(Dj+1)) and

compute
Xj+1 = P

Γ
(τ)
k,p

(Xk − ᾱj,X∇XH(Dj+1, Xj)) (6.6)

5: end for

a backtracking rule. Indeed, setting L0,D = 1, at each iteration j > 1 starting from
Lj,D = Lj−1,D, Lj,D is increased by a constant factor until the following condition is met

Ψ1(Dj+1, Xj) < Ψ1(Dj, Xj) + 〈∇DH(Dj, Xj), Dj+1 −Dj〉+
Lj,D

2
‖Dj+1 −Dj‖2

F ,

where Ψ1(D,X) = H(D,X)+δΩn,k(D). Then, the stepsize ᾱj,D is taken as the reciprocal
of the sought value. The same holds also for the variable X. We start from L0,X = 1
and at each iteration the value is increased until

Ψ2(Dj+1, Xj+1) < Ψ2(Dj+1, Xj) + 〈∇XH(Dj+1, Xj), Xj+1 −Xj〉+
Lj,X

2
‖Xj+1 −Xj‖2

F ,

where Ψ2(D,X) = H(D,X) + δ
Γ

(τ)
k,p

(X).
The above sufficient decrease conditions are motivated by the descent lemma reported

in Lemma 3.3.1. The btPALM-DL procedure is summarized in Algorithm 27.
Since gradient methods based on Lipschitz moduli can yield slow convergence, we pro-

pose to use sPALM-DL, the PALM based algorithm with spectral steplength presented
in Chapter 4.

As previously discussed, in the sPALM framework, the idea is to approximate at each
step the second order derivatives ∇DDH(D,X) and ∇XXH(D,X) by a multiple of the
identity matrix I, i.e.

∇DDH(D,X) ≈ α−1
D I ∇XXH(D,X) ≈ α−1

X I,

for some αD, αX > 0. Consider the case of the partial Hessian ∇DDH(D,X). For each
iteration j, let Sj,D = Dj+1 −Dj and Zj,D = ∇DH(Dj+1, Xj)−∇DH(Dj, Xj), then

αBB1
j+1,D = argmin

α
‖α−1Sj,D − Zj,D‖F and αBB2

j+1,D = argmin
α
‖Sj,D − αZj,D‖F

82

6. Proximal methods for Dictionary Learning

Algorithm 27 btPALM-DL

1: Input: (D0, X0) ∈ Rn×k × Rk×p, ρ1, ρ2 > 1.
2: Set L0,D = 1, L0,X = 1
3: for j = 0, 1, . . . , do
4: Update D: Compute

Dj+1 = PΩn,k

(
Dj −

1

Lj,D
∇DH(Dj, Xj)

)
(6.7)

where Lj,D = ρ
ij
1 Lj−1,D and ij is the smallest nonnegative integer for which the

condition

Ψ1(Dj+1, Xj) < Ψ1(Dj, Xj) + 〈∇DH(Dj, Xj), Dj+1 −Dj〉+
Lj,D

2
‖Dj+1 −Dj‖2

F

is satisfied.
5: Update X: Compute

Xj+1 = P
Γ

(τ)
k,p

(
Xj −

1

Lj,X
∇XH(Dj+1, Xj)

)
(6.8)

where Lj,X = ρ
ij
2 Lj−1,X and ij is the smallest nonnegative integer for which the

condition

Ψ2(Dj+1, Xj+1) < Ψ2(Dj+1, Xj)+〈∇XH(Dj+1, Xj), Xj+1−Xj〉+
Lj,X

2
‖Xj+1−Xj‖2

F

is satisfied.
6: end for

that is
αBB1
j+1,D =

〈Sj,D, Sj,D〉
〈Sj,D, Zj,D〉

and αBB2
j+1,D =

〈Sj,D, Zj,D〉
〈Zj,D, Zj,D〉

. (6.9)

The same holds for the variable X. Among the several rules that can be used to combine
αBB1
j,D and αBB2

j,D it was observed that one of the best choices in this DL framework is to
alternate the two stepsizes. We report in Algorithm 28 an alternating rule described in
Chapter 4 that seems to give the best numerical performance in this DL setting.

The sPALM algorithm is reported in Algorithm 29. The spectral stepsizes αj,D and
αj,X are then decreased by a constant factors ρ1, ρ2 until the conditions (6.11) and
(6.13) are satisfied, respectively. The following proposition shows that using second
order information in the stepsizes may accelerate convergence since it results in longer
steps than with the reciprocal of the Lipschitz constants.

Proposition 6.1.5. Let Sj = Xj+1 − Xj and Tj = Dj+1 − Dj be computed at the jth

83

6. Proximal methods for Dictionary Learning

Algorithm 28 Computation of the spectral stepsize αj+1,M , M = D or M = X

1: Input: Sj,M , Zj,M , 0 < αmin < αmax.
2: if 〈Sj,M , Zj,M〉 > 0 then
3: if k is odd then
4: αj+1,M = max

{
αmin,min

{
αBB1
j+1,M , αmax

}}
with αBB1

j+1,i =
〈Sj,M ,Sj,M 〉
〈Sj,M ,Zj,M 〉

5: else
6: αj+1,M = max

{
αmin,min

{
αBB2
j+1,M , αmax

}}
with αBB2

j+1,M =
〈Sj,M ,Zj,M 〉
〈Zj,M ,Zj,M 〉

7: end if
8: else
9: αj+1,M = 1
10: end if

iteration of sPALM applied to problem (6.1). Assume that 〈Sj, (DT
j Dj)Sj〉 6= 0 and

〈Tj, Tj(Xj+1X
T
j+1)〉 6= 0. Then the BB stepsizes take the form

αBB1
Xj+1

= 1
2

〈Sj ,Sj〉
〈Sj ,(DTj Dj)Sj〉

and αBB2
Xj+1

=
1

2

〈Sj, (DT
j Dj)Sj〉

〈(DT
j Dj)Sj, (DT

j Dj)Sj〉
,

αBB1
Dj+1

= 1
2

〈Tj ,Tj〉
〈Tj ,Tj(Xj+1XT

j+1)〉 and αBB2
Dj+1

=
1

2

〈Tj, Tj(Xj+1X
T
j+1)〉

〈Tj(Xj+1XT
j+1), Tj(Xj+1XT

j+1)〉
,

and the following bounds hold

1

LXj
< αBB2

Xj+1
< min

{
αBB1
Xj+1

,
1

2σ2
min(Dj)

}
and

1

LDj+1

< αBB2
Dj+1

< min

{
αBB1
Dj+1

,
1

2σ2
min(Xj+1)

}
(6.14)

where σmin(Dj) and σmin(Xj+1) are the smallest nonzero singular values of Dj and Xj+1,
respectively, and LDj and LXj+1

are given in (6.3).

Proof. The stepsizes form derives from their definitions in (6.9) and from observing that
∇XH = −2DT (Y −DX) and ∇DH = −2(Y −DX)XT . Moreover, the partial Hessians
of H have the form ∇XXH = I ⊗ 2(DTD), ∇DDH = 2(XXT) ⊗ I and are positive
semidefinite. Therefore the 2-norm Lipschitz constants are LX = λmax(∇XXH) and
LD = λmax(∇DDH).

Let us consider the stepsizes αBB1
Xj+1

and αBB2
Xj+1

. We observe that they are the recipro-
cal of Rayleigh quotients for 2(DT

j Dj) and 2(DjD
T
j) and Sj and DjSj, respectively, as

84

6. Proximal methods for Dictionary Learning

Algorithm 29 sPALM-DL

1: Input: (D0, X0) ∈ Rn×k × Rk×p, ρ1, δ1, ρ2, δ2 ∈ (0, 1), 0 < αmin < αmax, α0,1, α0,2 ∈
[αmin, αmax].

2: for j = 0, 1, . . . , do
3: Update x: Set

Dj+1 = proxf1

1/ᾱj,D
(Dj − ᾱj,D∇DH(Dj, Xj)) (6.10)

where ᾱj,D = ρ
ij
1 αj,D and ij is the smallest nonnegative integer for which the

condition
Ψ1(Dj+1, Xj) < Ψ1(Dj, Xj)−

δ1

2ᾱj,D
‖Dj+1 −Dj‖2

F (6.11)

is satisfied.
4: Compute αj+1,D ∈ [αmin, αmax] using Algorithm 28 with Sj,D = Dj+1 − Dj and

Zj,D = ∇DH(Dj+1, Xj)−∇DH(Dj, Xj).
5: Update y: Set

Xj+1 = proxf2

1/ᾱj,X
(Xj − ᾱj,X∇XH(Dj+1, Xj)) (6.12)

where ᾱj,X = ρ
lj
2 αj,X and lj is the smallest nonnegative integer for which the

condition

Ψ2(Dj+1, Xj+1) < Ψ2(Dj+1, Xj)−
δ2

2ᾱj,X
‖Xj+1 −Xj‖2

2 (6.13)

is satisfied.
6: Compute αj+1,X ∈ [αmin, αmax] using Algorithm 28 with Sj,X = Xj+1 − Xj and

Zj,X = ∇XH(Dj+1, Xj+1)−∇XH(Dj+1, Xj).
7: end for

αBB2
Xj+1

= 1
2
‖DjSj‖2

F/〈DjSj, (DjD
T
j)(DjSj)〉. Moreover,

αBB2
Xj+1

=
1

2

〈Sj, Sj〉
〈Sj, (DT

j Dj)Sj〉
〈Sj, (DT

j Dj)Sj〉2

〈(DT
j Dj)Sj, (DT

j Dj)Sj〉〈Sj, Sj〉

= αBB1
Xj+1

‖Sj‖2
F‖(DT

j Dj)Sj‖2
F cos2 φj

‖Sj‖2
F‖(DT

j Dj)Sj‖2
F

= αBB1
Xj+1

cos2 φj

where φj is the angle between the vectorization ŝj of Sj and (I ⊗ (DT
j Dj))ŝj. Therefore,

αBB1
Xj+1

> αBB2
Xj+1

>
1

λmax(2(DT
j Dj))

=
1

LXj
.

Finally, let Dj = DT
j Dj > 0. Then αBB2

Xj+1
= 1

2‖D
1
2
j Sj‖2F /‖(D

1
2
j)D

1
2
j Sj‖2F < 1/(2σ2

min(Dj)),

where the last inequality follows from the fact that D
1
2
j Sj belongs to the range of Dj.

85

6. Proximal methods for Dictionary Learning

The inequalities for αBB1
Dj+1

and αBB2
Dj+1

in (6.14) can be derived analogously.

6.2 Tensor proximal methods for a new Tensor-Train
formulation of the DL problem

To preserve the multidimensional structure of the data we propose a more general tensor
form of the DL problem. More precisely, consider for instance a fourth-dimensional array
Y ∈ Rn1×n2×ne×np consisting of n1 × n2 images of np persons in ne expressions. Using
the

(
m
n

)
-mode product and the constraint sets defined in (5.2) and (5.5), the tensor DL

problem can be formulated as

min
D,X
‖Y − D ×1

3 X‖2
F s.t. D[2] ∈ Ωn1n2,k, X[1] ∈ Γ

(τ)
k,nenp

, (6.15)

where D ∈ Rn1×n2×k is a third-order tensor with unit norm frontal slices, and X ∈
Rk×ne×np is a sparse tensor with at most τ nonzero elements per column fiber, and k >
n1n2. Notice that the constraint in (5.2) on the columns of D results here in a constraint
on the slices of the tensor D or on the columns of its matricization D[2]. Analogously,
the sparsity constraint in the tensor formulation reduces to a constraint either on the
maximum number of nonzero elements per column fiber of X or, equivalently, on the
maximum number of nonzero elements per column of the unfolding of X , X[1]. Hence, all
the constraints proper of the matrix setting can be reformulated on the tensors themselves
or on their matricizations. The formulation (6.15) is equivalent to (5.4) since, using
Proposition 1.1.2, ‖Y−D×1

3X‖F = ‖ (Y −D ×1
3 X)[2] ‖F = ‖Y[2]−D[2]X[1]‖F . To reduce

memory requirements, instead of considering the whole tensor D, we can consider its
Tensor-Train Decomposition. We recall that such decomposition requires that for an
Nth-order tensor, the reshapes along the second mode of the first N − 1 TT-cores have
orthonormal columns. For example, for a third-order tensor the columns of G1 and of
(G2)[2] are orthonormal. Therefore, to properly define the Tensor-Train formulation of
the DL problem the additional constraint set of matrices with orthonormal columns is
employed,

Θm,n = {G ∈ Rm×n : GTG = In}. (6.16)

Then, the TT formulation of the DL problem takes the form

min
G1,G2,G3,X

‖Y − (G1 ×1
2 G2 ×1

3 G3)×1
3 X‖2

F s.t. X[1] ∈ Γ
(τ)
k,nenp

G1 ∈ Θn1,r1

(G2)[2] ∈ Θr1n2,r2 G3 ∈ Ωr2,k.(6.17)

By tensor manipulations described in Chapter 1

‖Y − (G1 ×1
2 G2 ×1

3 G3)×1
3 X‖F = ‖Y[2] − (In2 ⊗G1) (G2)[2]G3X[1]‖F .

86

6. Proximal methods for Dictionary Learning

The constraints on G1 and (G2)[2] are due to the particular tensor decomposition used,
while the constraints on G3 and X[1] are inherited from the DL formulation. In particular,
using the TT formulation, the constraint on the columns of D[2] in (6.15) becomes a
constraint on the columns of G3. This can be easily proved using the orthogonality of
G1 and (G2)[2] as follows∥∥D[2](:, j)

∥∥
2

=
∥∥∥(In2 ⊗G1) (G2)[2] G3(:, j)

∥∥∥
2

= ‖G3(:, j)‖2 .

The formulation described above can be extended to multiway tensors. Let Y ∈
Rn1×···×nq×···×ns be the tensor obtained by storing nq+1 × · · · × ns tensors of dimension
n1 × · · · × nq. Then, the TT formulation can be written as

min
G1,...,Gq+1,X

∥∥Y − (G1 ×1
2 G2 ×1

3 · · · ×1
3 Gq+1

)
×1
q+1 X

∥∥2

F
s.t. (6.18)

X[1] ∈ Γ
(τ)
k,nq+1...ns

, G1 ∈ Θn1,r1 Gq+1 ∈ Ωrq ,k,

(Gj)[2] ∈ Θrj−1nj ,rj+1
for j = 2, . . . , q.

This formulation can be used when either the dimensionality of the database or the
dimensionality of the single data is higher than 2. For example, consider a database of
n1 × n2 × n3 RGB images of np subjects in ne expressions, nill illumination and nv view
angles. This can be represented as a 7th-order tensor Y ∈ Rn1×n2×n3×ne×nill×nv×np . In
this context X ∈ Rk×ne×nill×nv×np and D ∈ Rn1×n2×n3×k can be represented using four
TT-cores. Thus, we can use (6.18) with q = 3 and s = 7.

Now we reformulate the Tensor-Train Dictionary Learning problem (6.17) for third-
order tensors by including the constraints in the objective function. The extension to
Nth-order tensors is straightforward. As for the matrix DL problem, (6.19) becomes

min
G1,G2,G3,X

H(G1,G2, G3,X) + δ
Γ
(τ)
k,nenp

(X[1]) + δΘn1,r1
(G1) + δΘr1n2,r2

((G2)[2]) + δΩr2,k(G3), (6.19)

where
H(G1,G2, G3,X) = ‖Y − (G1 ×1

2 G2 ×1
3 G3)×1

3 X‖2
F . (6.20)

Furthermore in this setting we use the following notation

• Ψ1(G1, G2, G3) = ‖Y − (In2 ⊗G1)G2G3X‖2
F + δΘn1,r1

(G1)

• Ψ2(G1, G2, G3) = ‖Y − (In2 ⊗G1)G2G3X‖2
F + δΘr1n2,r1

(G2) with G2 = (G2)[2]

• Ψ3(G1, G2, G3) = ‖Y − (In2 ⊗G1)G2G3X‖2
F + δΩr2,k

(G3)

• Ψ4(G1, G2, G3) = ‖Y − (In2 ⊗G1)G2G3X‖2
F + δ

Γ
(τ)
k,nenp

(X) with X = X[1]

In order to apply PALM framework to (6.19) we provide the Lipschitz constants of
the partial gradient of H in (6.20), where LS is the Lipschitz constant of H corresponding
to the variable S in the ‖ · ‖2 norm.

87

6. Proximal methods for Dictionary Learning

Proposition 6.2.1. Set G2 = (G2)[2], X = X[1], Y = Y[2] and consider

H(G1, G2, G3, X) = ‖Y − (In2 ⊗G1)G2G3X‖2
F .

Then the partial gradients of H are globally Lipschitz. For G1, G2 having orthonormal
columns, the Lipschitz constants satisfy

LX = 2‖G3‖2
2, LG2 = 2‖G3X‖2

2, LG3 = 2‖X‖2
2

and LG1 = 2‖
∑p

i=1

(
AiA

T
i

)
‖2, where Ai ∈ Rr1×n2 is the matricization of the ith column

of A = G2G3X.

Proof. By direct computation the following expressions for the partial gradients of H
hold:

∇XH = 2 ((In2 ⊗G1)G2G3)T (−Y + (In2 ⊗G1)G2G3X)

∇G1H = 2

p∑
i=1

(Yi +G1Ai)A
T
i

∇G2H = 2 (In2 ⊗G1)T (−Y + (In2 ⊗G1)G2G3X) (G3X)T

∇G3H = 2GT
2 (In2 ⊗G1)T (−Y + (In2 ⊗G1)G2G3X)XT

where Ai ∈ Rr1×n2 is the matricization of the ith column of A = G2G3X and Yi is the
matricization of the ith column of Y .

Using these expressions we show that each partial gradient is globally Lipschitz. In
doing so, we derive Lipschitz constants by exploiting the orthonormality of the columns
of G1 and G2. For any X̂ and X̃ we get

‖∇XH(G1, G2, G3, X̂)−∇XH(G1, G2, G3, X̃)‖2

= 2‖GT
3G

T
2 (In2 ⊗G1)T (In2 ⊗G1)G2G3(X̂ − X̃)‖2 (6.21)

= 2‖GT
3G3(X̂ − X̃)‖2 < LX‖X̂ − X̃‖2,

with LX = 2
∥∥GT

3G3

∥∥
2

= 2‖G3‖2
2. In a similar manner we obtain the following inequali-

ties for ∇GiH, i = 1, 2, 3.
In particular, for any Ĝ1 and G̃1 we get

‖∇G1H(Ĝ1, G2, G3, X)−∇G1H(G̃1, G2, G3, X)‖2

= 2‖
p∑
i=1

(Ĝ1 − G̃1)AiA
T
i ‖ < LG1‖(Ĝ1 − G̃1)‖,

with LG1 = 2‖
∑p

i=1 AiA
T
i ‖2. Moreover, for any Ĝ2 and G̃2, we have

‖∇G2H(G1, Ĝ2, G3, X)−∇G1H(G1, G̃2, G3, X)‖2

= 2‖(In2 ⊗G1)T (In2 ⊗G1)(Ĝ2 − G̃2)G3X(G3X)T‖2 (6.22)
= 2‖(Ĝ2 − G̃2)G3X(G3X)T‖2 < LG2‖(Ĝ2 − G̃2)‖2,

88

6. Proximal methods for Dictionary Learning

where LG2 = 2‖G3XX
TGT

3 ‖2 = 2‖G3X‖2
2. Finally, for any Ĝ3 and G̃3 we have

‖∇G3H(G1, G2, Ĝ3, X)−∇G3H(G1, G2, G̃3, X)‖2

= 2
∥∥∥GT

2 (In2 ⊗G1)T (In2 ⊗G1)G2(Ĝ3 − G̃3)XXT
∥∥∥

2

= 2‖(Ĝ3 − G̃3)XXT‖2 ≤ LG3‖Ĝ3 − G̃3‖2,

where LG3 = 2‖XXT‖2 = 2‖X‖2
2.

It is worth to notice that the explicit calculation of I ⊗G1 can be avoided within the
partial gradients computations using the following remark.

Remark 6.2.1. Using the orthogonality of I ⊗ G1 and the properties of the Kronecker
product, the partial gradient ∇XH in Proposition 6.2.1 can be computed as

∇XH = GT
3G

T
2 (−G̃T +G2G3X), (6.23)

where G̃ = (GT
1Y[1])[2].

As already discussed, PALM-type algorithms at each iteration require the compu-
tation of a proximal step in each variable block, we now give the formal expression of
proximal operators for the indicator function on the set Θm,n of m × n matrices with
orthonormal columns defined in (6.16).

Proposition 6.2.2. Let A ∈ Rm×n and Θm,n ⊂ Rm×n be defined in (6.16). Then

PΘm,n(A) = UV T ,

where U and V are respectively the left and right singular matrices of A.

Proof. For B ∈ Ω ⊂ Rm×n having unit norm columns, we have that ‖A − B‖2
F =

trace(ATA) − 2 trace(BTA) + n and thus solving (6.4) is equivalent to finding B =
argmaxΩ trace(ATB). Now let A = UΣV T be the SVD of A, and let n̄ = min{m,n}.
Then

trace(BTA) = trace(BTUΣV T) = trace(V TBTUΣ) =
n̄∑
i=1

ziiσi ≤
n̄∑
i=1

σi,

where zii is the ith diagonal element of Z = V TBTU and σi are the singular values of
A. In particular, note that zii < 1 as eTi V TBTUei < ‖V ei‖‖B‖‖Uei‖ = 1. The upper
bound is reached for Z equal to the identity matrix, which is obtained for B = UV T .

Algorithm 30 describes the general PALM scheme with constant stepsize applied to
the tensor formulation (6.19), that is therefore named PALM-DL-TT. The Lipschitz
moduli LX , LGi i = 1, 2, 3 are as introduced in Proposition 6.2.1. The TT algorithmic
version of sPALM can be easily obtained following Algorithms 16 and 15 and replacing
the stepsizes ᾱ1, ᾱ2, ᾱ3 and ᾱX with the spectral stepsizes based of Algorithm 15 and
imposing the Armijo sufficient decrease condition. The whole procedure is reported in
Algorithm 31.

89

6. Proximal methods for Dictionary Learning

Algorithm 30 PALM-DL-TT
1: Input: Data matrix Y ∈ Rn1×n2×n3×ne×np , initial values for G1 ∈ Rn1×r1 , G2 ∈

Rr1×n2×r2 , G3 ∈ Rr2×k and X ∈ Rk×ne×np , maximum number τ of non-zero elements
of each fiber of X , η1, η2, η3, ηX > 1, µ1, µ2, µ3, µX > 0.

2: Set G2 ← (G2)[2] and X ← (X)[1]

3: Compute G1 = PΘn1,r1
(G1), G2 = PΘr1n2,r2

(G2), G3 = PΩr2,k
(G3), X = P

Γ
(τ)
k,nenp

(X).
4: repeat
5: Update G1: Set L′G1

= max{η1LG1 , µ1} and ᾱ1 = 1/L′G1
and compute G1 =

PΘn1,r1
(G1 − ᾱ1∇G1H);

6: Update G2: Set L′G2
= max{η2LG2 , µ2} and ᾱ2 = 1/L′G2

and compute G2 =
PΘr1n2,r2

(G2 − ᾱ2∇G2H);
7: Update G3: Set L′G3

= max{η3LG3 , µ3} and ᾱ3 = 1/L′G3
and compute G3 =

PΩr2,k
(G3 − ᾱ3∇G3H);

8: Update X: Set L′X = max{ηXLX , µX} and ᾱX = 1/L′X and compute X =
P

Γ
(τ)
k,nenp

(X − ᾱX∇XH);
9: until convergence

Remark 6.2.2. The same considerations of Proposition 6.1.5 carry over to the BB
stepsizes and the Lipschitz constants for the TT-DL problem (6.19).

The next theorem contains our main convergence result. While it is stated for PALM-
DL-TT described in Algorithm 30, it can be generalized to any PALM-type algorithm
applied to the TT DL formulation (6.19).

Theorem 6.2.1. If the sequence generated by PALM-DL-TT in Algorithm 30 is bounded,
then it converges to a critical point of the TT formulation of the DL problem (6.19) and
it has finite length property.

Proof. The result is proved by observing that the function H in (6.19) is twice contin-
uously differentiable, the functions in the objective of problem (6.19) are semi-algebraic
and satisfy Assumption 3.3.1. Indeed, all indicator functions are proper, lower semi-
continuous and semi-algebraic: the sets Ωn,m and Γk,nenp are semi-algebraic (see [2, 52])
and Θn,m is a closed semi-algebraic set for any n and m. Also, Proposition 6.2.1 ensures
that Assumption 3.3.1 A3-A5 hold (see [9, Remark 3]).

90

6. Proximal methods for Dictionary Learning

Algorithm 31 sPALM-DL-TT
1: Input: Data matrix Y ∈ Rn1×n2×n3×ne×np , initial values for G1 ∈ Rn1×r1 , G2 ∈ Rr1×n2×r2 ,
G3 ∈ Rr2×k and X ∈ Rk×ne×np , maximum number τ of non-zero elements of each fiber of X ,
αmin, αmax, δ1, δ2, δ3, δX > 0, ρ1, ρ2, ρ3, ρX > 0.

2: Set G2 ← (G2)[2] and X ← X[1]

3: for j = 0, 1, . . . , do
4: Update G1: Set (G1)j+1 = PΘn1,r1

(
(G1)j − ᾱj,1∇G1H

(
(G1)j , (G2)j , (G3)j , Xj

))
where ᾱj,1 =

ρ
ij
1 αj,1 and ij is the smallest nonnegative integer for which

Ψ1

(
(G1)j+1 , (G2)j , (G3)j , Xj

)
< Ψ1

(
(G1)j , (G2)j , (G3)j , Xj

)
− δ1

2ᾱj,1
‖ (G1)j+1 − (G1)j ‖

2
F .

5: Compute αj+1,1 ∈ [αmin, αmax] using Algorithm 28 with Sj,G1
= (G1)j+1 − (G1)j and Zj,G1

=

∇G1H
(

(G1)j+1 , (G2)j , (G3)j , Xj

)
−∇G1H

(
(G1)j , (G2)j , (G3)j , Xj

)
.

6: Update G2: Set (G2)j+1 = PΘr1n2,r2

(
(G2)j+1 − ᾱj,2∇G2

H
(

(G1)j+1 , (G2)j , (G3)j , Xj

))
where

ᾱj,2 = ρ
ij
2 αj,2 and ij is the smallest nonnegative integer for which

Ψ2

(
(G1)j+1 , (G2)j+1 , (G3)j , Xj

)
< Ψ2

(
(G1)j+1 , (G2)j , (G3)j , Xj

)
− δ2

2ᾱj,2
‖ (G2)j+1−(G2)j ‖

2
F .

7: Compute αj+1,2 ∈ [αmin, αmax] using Algorithm 28 with Sj,G2
= (G2)j+1 − (G2)j and Zj,G2

=

∇G2H
(

(G1)j+1 , (G2)j+1 , (G3)j , Xj

)
−∇G2H

(
(G1)j+1 , (G2)j , (G3)j , Xj

)
.

8: Update G3: Set (G3)j+1 = PΩr2,k

(
(G3)j+1 − ᾱj,3∇G3H

(
(G1)j+1 , (G2)j+1 , (G3)j , Xj

))
where

ᾱj,3 = ρ
ij
3 αj,3 and ij is the smallest nonnegative integer for which

Ψ3

(
(G1)j+1 , (G2)j+1 , (G3)j+1 , Xj

)
< Ψ3

(
(G1)j+1 , (G2)j+1 , (G3)j , Xj

)
− δ3

2ᾱj,3
‖ (G3)j+1−(G3)j ‖

2
F .

9: Compute αj+1,3 ∈ [αmin, αmax] using Algorithm 28 with Sj,G3 = (G3)j+1 − (G3)j and Zj,G3 =

∇G3H
(

(G1)j+1 , (G2)j+1 , (G3)j+1 , Xj

)
−∇G3H

(
(G1)j+1 , (G2)j+1 , (G3)j , Xj

)
.

10: Update X: Set Xj+1 = P
Γ
(τ)
k,nenp

(
Xj+1 − ᾱj,X∇XH

(
(G1)j+1 , (G2)j+1 , (G3)j+1 , Xj

))
where

ᾱj,X = ρ
ij
Xαj,X and ij is the smallest nonnegative integer for which

Ψ4

(
(G1)j+1 , (G2)j+1 , (G3)j+1 , Xj+1

)
< Ψ4

(
(G1)j+1 , (G2)j+1 , (G3)j+1 , Xj

)
− δX

2ᾱj,X
‖Xj+1−Xj‖2F .

11: Compute αj+1,X ∈ [αmin, αmax] using Algorithm 28 with Sj,X = Xj+1 − Xj and Zj,X =

∇XH
(

(G1)j+1 , (G2)j+1 , (G3)j+1 , Xj+1

)
−∇XH

(
(G1)j+1 , (G2)j , (G3)j+1 , Xj

)
.

12: end for

91

6. Proximal methods for Dictionary Learning

92

Chapter 7

Dictionary Learning for image
classification

In this chapter we apply the PALM-based algorithms to the Dictionary Learning problem
in image classification. More precisely, in Section 7.1 we explain how to deal with a
classification problem within the DL framework both in the matrix and in the tensor
setting by presenting two different classification models. Furthermore we provide some
useful considerations to apply PALM-based algorithms in this context. In Section 7.2 we
show some numerical experiments on benchmark datasets to highlight the advantages
in using a spectral step both in the matrix and in the tensor formulation. Finally, we
underline the advantages in using a tensor approach for memory savings in the 3D setting
and for classification performance in the 4D setting.

7.1 The classification problem
Among several image processing tasks the DL formulation has also been applied in
classification contexts showing a great potential in addressing this task (see e.g. [2,
83]). In this chapter we focus on two main kinds of classification algorithms of the DL
literature while we refer the reader to [26, Chapter 8] for an overview of different DL
classification algorithms. In the first, the dictionaryD and the sparse matrixX are learnt
from data by solving (5.4) and a classifier matrix W ∈ Rnp×k is computed a posteriori
as the solution of the following problem:

min
W
‖C −WX‖2

F + β‖W‖2
F , (7.1)

where β is a positive small constant, and the matrix C ∈ Rnp×nenp contains the labels of
the images stored in Y . In particular, if the column i of Y contains the person `, then
the ith column of C is equal to e`, the `th canonical basis vector.

In the second category of classification algorithms the classifier W is learnt from the

93

7. Dictionary Learning for image classification

data together with X and D:

min
D,X,W

‖Y −DX‖2
F + γ‖C −WX‖2

F s.t. D ∈ Ωn,k, X ∈ Γ
(τ)
k,p, (7.2)

where γ is a positive constant. This formulation aims to enforce the model to have a
representative strength together with a discriminative action, thanks to the presence of
W in the minimization procedure. For this reason this classification algorithm has been
named “discriminative DL”; see, e.g., [26, sec.8.5.2] and references therein. To apply
PALM framework to (7.2), we rewrite the problem by including the constraints in the
objective function as

min
D,X,W

‖Y −DX‖2
F + γ‖C −WX‖2

F + δΩn,k(D) + δ
Γ

(τ)
k,p

(X). (7.3)

Then, a convergence result can be proved for the problem (7.3) by generalizing Propo-
sitions 6.1.1 and 6.1.3. More precisely, it can be proved that (7.3) is semi-algebraic by
observing that the term γ‖C −WX‖2

F is a real polynomial function. Then using the
smoothness of HC(D,X,W) := ‖Y −DX‖2

F +γ‖C−WX‖2
F and the fact that its partial

gradient are Lipschitz continuous with moduli

LX = 2‖DTD‖2 + 2γ‖W TW‖2, LD = 2‖XXT‖2, and LW = 2γ‖XXT‖2.

we can conclude the convergence of PALM-based algorithms for (7.3).
Once the classifier has been computed, the classification task proceeds as follows:

Given a new image y ∈ Rn to be classified, its sparse representation x ∈ Rk is computed,
e.g., by OMP-type algorithms, see Chapter 5, Algorithms 18 and 19. Then, y is classified
as person ˆ̀= argmaxi|Wx|i.

Preserving the multidimensional structure of the data can be extremely useful also in
classification contexts. For example a database of black and white images of np persons
in ne expressions can be represented by a fourth-order tensor Y ∈ Rn1×n2×ne×np , where
n1 and n2 are the number of rows and columns of a single image respectively. Thus we
rewrite (7.2) in a tensor setting as

min
D,X ,W

∥∥Y −D ×1
3 X
∥∥2

F
+ γ‖C − X ×1 W‖2

F (7.4)

s.t. D[2] ∈ Ωn1n2,k, X[1] ∈ Γ
(τ)
k,nenp

, W ∈ Rnp×k.

In particular C is such that its mode-1 unfolding is the matrix C defined in (7.2), i.e.
C[1] = C. Using the TT Decomposition the problem is given as

min
G1,G2,G3,X

∥∥Y − (G1 ×1
2 G2 ×1

3 G3)×1
3 X
∥∥2

F
+ γ‖C − X ×1 W‖2

F (7.5)

s.t. X[1] ∈ Γ
(τ)
k,nenp

G1 ∈ Θn1,r1 , (G2)[2] ∈ Θr1n2,r2 G3 ∈ Ωr2,k.

94

7. Dictionary Learning for image classification

As discussed in the previous chapter, (7.5) can be generalized to the multi-order setting.
In order to apply PALM type algorithms to the tensor classification problem, we rewrite
(7.5) as

min
G1,G2,G3,X ,W

HC(G1,G2, G3,X ,W) + δ
Γ

(τ)
k,nenp

(X[1]) (7.6)

+δΘn1,r1
(G1) + δΘr1n2,r2

((G2)[2]) + δΩr2,k
(G3),

where HC(G1,G2, G3,X ,W) = ‖Y−(G1×1
2G2×1

3G3)×1
3X‖2

F +γ‖C−X×1W‖2
F . Theorem

6.2.1 can be extended to this tensor formulation of the classification problem (7.6) by
generalizing Proposition 6.2.1 to the function HC in (7.6) as shown below. All the other
considerations still hold.

Proposition 7.1.1. Consider the function HC defined below (7.6) and let G2 = (G2)[2]

and X = X[1]. Then the partial gradients of HC are globally Lipschitz and, for G1, G2

having orthonormal columns, the Lipschitz constants LW and LX , satisfy:

LW = 2 γ ‖X‖2
2, LX = 2 ‖G3‖2

2 + 2 γ ‖W‖2
2,

while LG1 , LG2 and LG3 are given in Proposition 6.2.1.

In order to compute the sparse representation x ∈ Rk of an image y ∈ Rni in this
Tensor-Train setting, we derived a variant of OMP named OMP-TT and reported in
Algorithm 32. As can be noticed, OMP-TT is a variant of OMP-QR (Algorithm 19)
where the orthogonality of the first two TT-cores is used. This algorithm can be extended
to higher-order tensor observing that all the TT-cores, except the last one, are orthogonal.

Algorithm 32 OMP-TT
1: Input: data vector y ∈ Rn, cores of the TT Decomposition G1, G2, G3

2: Initialize the vector x = 0, S(0) = support(x) = ∅
3: Compute ỹ = (G2)T[2](In1 ⊗GT

1)y

4: Compute α = GT
3 ỹ

5: for t = 1, · · · , τ do
6: Select Atom:
7: j∗ = argmaxjα
8: S(it+1) = S(it) ∪ j∗:
9: Compute the QR decomposition of (G3)S(it+1) = Q(it+1)R(it+1) starting from the

decomposition of (G3)S(it) : Q(it+1) = [Q(it) q̃]
10: r(it+1) = r(it) − q̃q̃T ỹ
11: if ‖r(it+1)‖2 < ε stop
12: end for
13: Compute the solution estimate: x =

(
R(it+1)

)−1 (
Q(it+1)

)T
ỹ

14: Output: vector x ∈ Rk.

95

7. Dictionary Learning for image classification

PALM-DL PALM applied to the matrix DL problem (5.4) Algorithm 26
sPALM-DL sPALM for the matrix DL problem (5.4) Algorithm 29
btPALM-DL btPALM for the matrix DL problem (5.4) Algorithm 27

PALM-DL-TT PALM for the TT-DL problem (6.17) Algorithm 30
sPALM-TT sPALM for the TT-DL problem (6.17) Algorithm 31

PALM-CDL PALM for the matrix classification DL problem (7.2)
sPALM-CDL sPALM for the matrix classification DL problem (7.2)

PALM-CDL-TT PALM for the classification TT-DL problem (7.5)
sPALM-CDL-TT sPALM for the classification TT-DL problem (7.5)

Table 7.1: All methods employed in our experiments.

7.2 Numerical experiments
In this section we focus our experimental analysis to the convergent PALM type algo-
rithms described in the previous chapters. More precisely, we numerically explore the
advantages of using the spectral variant of PALM and the possible benefits of using a
TT based algorithm in the solution of the image classification problem. The considered
algorithms are compared in terms of efficiency and classification performance both in the
matrix and tensor settings. A truncated approach for the TT formulation is also tested.
Section 7.2.5 is devoted to the treatment of 5th-order tensors, leading to a 4D imple-
mentation of our algorithms; numerical experiments on a suitable database are reported,
illustrating the effectiveness of the TT approach.

7.2.1 Implementation details

We consider the PALM-type algorithms described in Table 7.1, implemented in Matlab.
All the numerical experiments were conducted on one node HPE ProLiant DL560 Gen10
with 4 Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz and 100 of the 512 Gb of RAM
using Matlab R2019a. We consider the classification rate as performance measure, that
is, the percentage of correctly classified persons or objects over the total number of test
images.

As starting approximations for the tested algorithms, a random dictionary D ∈
Rn1×n2×k with unit norm frontal slices and a sparse random tensor X ∈ Rk×ne×np with
at most τ non-zero elements per column fiber were used. Then, for the matrix formu-
lation we set Y = Y[2], D = D[2] and X = X[1]. A similar choice is made also for the
Tensor-Train setting where G1, G2 and G3 are initialized as the TT-cores of D. The
initial guess for the classification matrix W , when needed, is computed by solving (7.1)
with β = 0. The parameter k is set such that n < k < ñenp as is common in Dictionary
Learning. More precisely, we set k = 441 for the face databases, k = 1225 for the Fashion
MNIST and k = 1600 for the MNIST. The sparsity parameter τ depends on the number

96

7. Dictionary Learning for image classification

Database k τ β γ
MIT 441 4np 0 1
Extended Yale 441 4np 0 1
MNIST 1600 2np 0 1
Fashion MNIST 1225 4np 0 1

Table 7.2: Parameters of the DL classification problem for different datasets.

of classes, np, of the database and is set to 4np for all the databases except MNIST for
which τ = 2np. Other choices of these parameters have been explored. However, we just
report the results for these values of k and τ which seem to exhibit higher classification
rate. Several values for the β and γ in problems (7.1)-(7.5) have been tested and then
fixed to the values 0 and 1, respectively. A summary of the parameters used for the
problem formulation can be found in Table 7.2.

For the PALM based algorithms, i.e. PALM-DL, PALM-DL-TT and PALM-CDL,
PALM-CDL-TT, the µ’s are set equal to 10−10 and the η’s are set equal to 1 as greater
values gave much worse practical behavior. Regarding implementations based on the
spectral variant we set: αmin = 10−10, αmax = 1010, the initial stepsizes are set equal to
1, ρ’s are set equal to 0.5 and δ’s equal to 10−4. Finally, the approximated Lipschitz
constants Lj,D and Lj,X in btPALM-DL are doubled during the backtracking strategy,
i.e. ρ1 = ρ2 = 2 in Algorithm 27.

Deriving a reliable criterion for terminating the iteration is a crucial step towards the
development of a robust method. Most DL implementations in the literature seem to
merely rely on the number of iterations as stopping criterion. In addition to a safeguard
strategy on a maximum (loose) number of iterations, in our implementation the following
stopping criterion based on the TT iterates variation was used, that is

‖Ḡ1 −G1‖F + ‖Ḡ2 −G2‖F + ‖Ḡ3 −G3‖F + ‖X̄ −X‖F ≤ tol,

where the upper bar denotes the approximate solution from the previous iteration.

7.2.2 Preliminary tests on the matrix DL formulation

In this section we want to explore the potential of the spectral gradient step compared to
that based on the Lipschitz constants in the solution of the matrix DL problem (5.4). To
this end we compare sPALM-DL with PALM-DL and btPALM-DL on the four datasets
described in Table A.1. For this experiment we set the maximum number of iterations
equal to 50 and the tolerance tol in the stopping criterion ‖D̄ − D‖F + ‖X̄ − X‖F ≤
tol equal to tol= 10−3

√
n1n2k + knenp, where once again, the upper bar denotes the

approximate solution from the previous iteration.
The plots in Figure 7.1 show the values of H(D,X) = ‖Y − DX‖F as the itera-

tions proceed, for the considered methods and all datasets. The use of a backtracking

97

7. Dictionary Learning for image classification

rule (btPALM-DL) to estimate the Lipschitz constants yields a much faster decrease in
the residual value than using the constant stepsize (PALM-DL). Moreover, for all the
databases, sPALM-DL converges in far fewer iterations than btPALM-DL. Though each
iteration of sPALM-DL is more expensive, (see the larger slope in Figure 7.2) the CPU
time of the spectral method is significantly lower than for the other methods, illustrating
the advantage of using higher order information in the gradient step.

0 20 40

200

400

600

iteration

‖Y
−
D
X
‖ F

MIT-CBCL

0 20 40
0 · 100

1 · 103

2 · 103

iteration

Extended Yale

0 20 40

1 · 103

2 · 103

3 · 103

iteration

‖Y
−
D
X
‖ F

MNIST

0 20 40

1 · 103

2 · 103

3 · 103

iteration

Fashion MNIST

PALM-DL btPALM-DL sPALM-DL

Figure 7.1: Residual norm history for PALM-DL, btPALM-DL, sPALM-DL.

Table 7.3 reports the number of iterations and the rate of classification success for all
methods: sPALM-DL satisfies the stopping criterion in the smallest number of iterations,
whereas btPALM-DL reaches 50 iterations on all datasets.

Overall, the advantages of using a spectral step in sPALM-DL is a faster decrease of
the objective function than with PALM-DL and btPALM-DL (see Figure 7.1), obtained
in less CPU time, with similar classification rates.

For the sake of completeness we also report in Table 7.4 a comparison between the
K-SVD and the sPALM algorithm in terms of CPU time needed to obtain a comparable
value of the objective function. For this experiment, the sPALM algorithm is run until the

98

7. Dictionary Learning for image classification

0 20 40

0

1

2

3

iteration

C
P

U
ti

m
e

(s
ec

s)

MIT-CBCL

0 20 40

0

10

20

iteration

Extended Yale

0 20 40

0

20

40

60

80

iteration

C
P

U
ti

m
e

(s
ec

s)

MNIST

0 20 40

0

20

40

60

80

iteration

Fashion MNIST

PALM-DL btPALM-DL sPALM-DL

Figure 7.2: CPU time as iterations increase, for PALM-DL, btPALM-DL, sPALM-DL.

objective function is smaller than the value of the objective function obtained with two
iterations of K-SVD. Notice that for all the databases, except MNIST, sPALM-DL gives
almost the same value of the objective function in less CPU time than K-SVD, although
the most time consuming parts of the latter algorithm are precompiled C routines.

7.2.3 Numerical experiments on the tensor DL formulation

Given the training set Y ∈ Rn1×n2×ñe×np , we solve the DL classification problems using
the two strategies described in this chapter.

The first consists in using PALM-DL, sPALM-DL to solve (6.1), and PALM-DL-TT
and sPALM-TT to solve (6.19) and then in determining the classification matrix W by
solving (7.1). Figure 7.3 displays the classification success rate of all algorithms as the
iterations proceed. The use of a spectral step results in higher classification performance
for all examined data. For the MIT-CBCL, sPALM based algorithms achieve the max-
imum classification rate after 20 iterations while PALM-DL and PALM-DL-TT need

99

7. Dictionary Learning for image classification

PALM-DL btPALM-DL sPALM-DL

Database % #it % #it % #it

MIT-CBCL 100% 46 99.38% 50 100% 27
Ext’d Yale shrunk 90.62% 32 93.12% 50 90.94% 21

MNIST 66.89% 26 84.14% 50 84.76% 29
Fashion MNIST 68.56% 32 65.60% 50 67.38% 17

Table 7.3: Successful classification rates and number of iteration of PALM-DL, btPALM-DL,
sPALM-DL on four different databases.

sPALM-DL K-SVD

Database ‖Y −DX‖F CPU time ‖Y −DX‖F CPU time

MIT-CBCL 61.98 2.06 62.77 8.7
Ext’d Yale shrunk 109.39 80.31 109.80 148.32

MNIST 761.14 122.93 763.06 91.34
Fashion MNIST 827.76 132.57 829.51 140.98

Table 7.4: Value of the objective function and CPU time for sPALM-DL and K-SVD.

more iterations to reach the same rate. When processing MNIST the classification per-
formance of PALM-DL and PALM-DL-TT decreases as iterations progress, suggesting
overfitting, whereas a slight improvement occurs with sPALM-DL and sPALM-TT. On
these datasets, the Tensor-Train formulation does not seem to be beneficial for classifica-
tion purposes. Computer memory limitations however may favour the tensor approach,
as we will discuss in the next section.

The second strategy consists in applying the various PALM variants to the penalized
problems (7.3) and (7.6). Also in this setting, the sPALM implementations outperform
the PALM based ones. It is also interesting to observe that considering the formulation
(7.3) does not result in better classification rates compared with (6.1). Once again, the
tensor approach behaves similarly to the matrix formulation.

7.2.4 Truncated approach for memory saving

One of the most challenging aspects in dealing with huge databases is to reduce memory
requirements. For a database Y ∈ Rn1×n2×ne×np , PALM-DL and sPALM-DL store D ∈
Rn1×n2×k and (sparse) X ∈ Rk×ne×np , requiringmP := n1n2k+τnenp memory allocations.
This quantity can be quite large in real image applications. We next investigate the
possibility of truncating the tensor decomposition, possibly without interfering with the
classification performance. In the Tensor-Train based algorithms PALM-DL-TT and
sPALM-TT storage for the arrays G1 ∈ Rn1×r1 , G2 ∈ Rr1×n2×r2 , G3 ∈ Rr2×k and

100

7. Dictionary Learning for image classification

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

iteration

%
cl
as
si
fic

at
io
n

MIT-CBCL

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

iteration

%
cl
as
si
fic

at
io
n

Extended Yale

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

iteration

%
cl
as
si
fic

at
io
n

MNIST

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

iteration

%
cl
as
si
fic

at
io
n

Fashion MNIST

PALM-DL sPALM-DL
PALM-DL-TT sPALM-TT

Figure 7.3: Classification performance of PALM-DL, sPALM-DL, PALM-DL-TT and sPALM-
TT with respect to the number of iterations for four different database, using the formulations
(6.1) and (6.19).

X ∈ Rk×ne×np is required, yielding mTT := n1r1 + r1n2r2 + r2k + τnenp allocations.
As discussed in Section 2.3, in the Tensor-Train decomposition the truncation can be
performed either by using a threshold on the error of the unfoldings or by choosing a
proper value of the TT-ranks. In this context we set r1 = n1, i.e. no truncation is
performed along the first mode, and we explore the behaviour of the algorithms with
respect to r2. The value of r2 determines whether the (truncated) TT approach is more
memory efficient than the full scheme by comparing mTT and mP . In Figure 7.5 we show
the classification rates for all TT based methods on two of the datasets after 50 iterations,
as r2 varies up to the maximum value obtainable for that dataset (r2 ≤ 225 and r ≤ 300
for MIT-CBCL and Extended Yale, resp.). We note that the TT variants are able to
achieve good classification performance also with small values of r2. In particular, for
the MIT-CBCL and sPALM-TT choosing a value of r2 greater than 40 has no benefit on
the classification performance, suggesting the use of r2 = 40, thus reducing the overall
memory costs with respect to PALM (mP = 108, 945 vs mTT = 36, 585). Similarly,
for Extended Yale the value r2 = 150 can be chosen without dramatically spoiling the

101

7. Dictionary Learning for image classification

10 20 30 40 50
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

iteration

%
cl
as
si
fic

at
io
n

MIT-CBCL

10 20 30 40 50
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

iteration

%
cl
as
si
fic

at
io
n

Extended Yale

10 20 30 40 50
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

iteration

%
cl
as
si
fic

at
io
n

MNIST

10 20 30 40 50
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

iteration

%
cl
as
si
fic

at
io
n

Fashion MNIST

PALM-CDL sPALM-CDL PALM-CDL-TT sPALM-CDL-TT

Figure 7.4: Classification performance of PALM-CDL, sPALM-CDL, PALM-CDL-TT and
sPALM-CDL-TT with respect to the number of iterations for the four databases, using the
formulations (7.3) and (7.6).

classification performance. In other words the Tensor-Train Decomposition enables us
to store the information useful for classification purposes in a more compact manner.
Depending on the specific application, several strategies to determine a proper value of
r2 can be explored. For example, one may be interested in the minimum value of r2

that gives a certain accuracy in the classification. In another setting, instead, one may
want to limit the memory requirements selecting the maximum value of r2 that keeps
the memory requirements below that threshold. Finally, if one is interested in preserving
a certain “expressiveness” of the dictionary, other strategies based on the percentage of
singular values of (G2)[2] can be choosen, similarly to the one described in Chapter 2.

7.2.5 A classification example in 4D setting

The Tensor-Train decomposition allows us to readily extend the 3D formulation, ex-
plored in the previous sections, to higher-order tensors. In the following we analyze
the classification performance of PALM-DL-TT and sPALM-TT for a 5th-order tensor
Y ∈ Rn1×n2×n3×ñe×np and we compare them with their matrix versions PALM-DL and

102

7. Dictionary Learning for image classification

0 50 100 150 200
0

0.5

1

TT-rank r2

%
cl
as
si
fic

at
io
n

MIT-CBCL

50 100 150 200 250 300
0

0.5

1

TT-rank r2

%
cl
as
si
fic

at
io
n

Extended Yale

PALM-DL-TT sPALM-TT PALM-CDL-TT sPALM-CDL-TT

Figure 7.5: Classification performance of the Tensor-Train based algorithms for different values
of the TT-rank r2.

sPALM-DL. First of all, we write the TT Dictionary Learning problem as in (6.18) with
q = 3 and s = 5. Furthermore, we notice that

‖Y −
(
G1 ×1

2 G2 ×1
3 G3 ×1

3 G4

)
×1

4 X‖F = ‖Y[3] − (In2n3
⊗G1)

(
In3
⊗ (G2)[2]

)
(G3)[2]G4X[1]‖F (7.7)

where G1,(G2)[2], (G3)[2], are matrices with orthonormal columns, and more precisely,
G1 ∈ Θn1,r1 , (G2)[2] ∈ Θr1n2,r2 , (G3)[2] ∈ Θr2n3,r3 while G4 ∈ Ωr3,k has unit norm columns.
The following proposition provides an expression for the gradient of H and corresponding
Lipschitz constants using the orthogonality of the first three TT-cores.

Proposition 7.2.1. Let G2 = (G2)[2], G3 = (G3)[2], X = X[1], Y = Y[3] and

H(G1, G2, G3, G4, X) = ‖Y − (In2n3 ⊗G1) (In3 ⊗G2)G3G4X‖2
F .

Then the partial gradients of H satisfy Assumption A3. Moreover, the following upper
bounds for the Lipschitz constants hold: LX = 2‖G4‖2

2, LG3 = 2‖G4X‖2
2, LG4 = 2‖X‖2

2,
LG1 = 2‖

∑p
i=1 AiA

T
i ‖2, LG2 = 2‖

∑p
i=1BiB

T
i ‖2, where Ai ∈ Rr1×n2 is the matricization

of the ith column of A = (In3 ⊗G2)G3G4X and Bi ∈ Rr1×n2 is the matricization of the
ith column of B = G3G4X.

Proof. By direct computation we obtain the following expressions for the partial gradi-
ents of H:

∇XH = −2 (In2n3 ⊗G1) (In3 ⊗G2)G3G4)TY + 2(G3G4)TG3G4X

and ∇G1H = 2
∑p

i=1(−Yi + G1Ai)A
T
i , where Yi denotes the matricization of the ith

column of Y , ∇G2H = 2
∑p

i=1(−Yi +G1Bi)B
T
i ,

∇G3H = 2((In2n3 ⊗G1)(In3 ⊗G2))T (−Y + (In2n3 ⊗G1)(In3 ⊗G2))G3G4X) (G4X)T .

103

7. Dictionary Learning for image classification

5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

iteration

%
cl
as
si
fic

at
io
n

COIL-100

PALM sPALM PALM-TT sPALM-TT

Figure 7.6: Classification performance of PALM-DL, sPALM-DL, PALM-DL-TT and sPALM-
TT with respect to the number of iterations for the COIL-100 database.

For ∇G4 , we have ∇G4H = 2CT (−Y +CG4X)XT , where C = (In2n3 ⊗G1)(In3 ⊗G2)G3.
Using these expressions we follow the proof of Proposition 6.2.1 to obtain the required
Lipschitz moduli.

To test this formulation we consider the COIL-100 database [56], containing RGB
images of np = 100 different objects in ne = 72 view angles. For this experiment
the size of each image is reduced to 16 × 16 × 3 to preserve the relation among the
number of pixels n = n1n2n3, the atoms of the dictionary k and the total number of
images nenp (i.e., n < k < nenp). The training set Y is composed by all the objects
in ñe = 54 different view angles, corresponding to 75% of the total number of images.
We set the number of atoms to k = 1400 and the sparsity parameter to τ = 4np.
The reported results correspond to the classification success along the iterations for
a maximum of 50 iterations. From Figure 7.6 we can notice that the spectral step
enhances the classification rate significantly for the TT formulation. In particular at the
50th iteration the classification rate of sPALM-TT is equal to 77.11% while the other
methods do not reach 70%. Furthermore we observe that using a number of iterations
greater than 30 has almost no impact on the classification rate.

104

7. Dictionary Learning for image classification

7.3 Closing considerations
In this Chapter we presented two different classification models within the DL framework.
In the first the classifier matrix is computed at the end of the minimization process while
in the other it is learnt from data together with the dictionary and the sparse matrix.
The numerical experiments on four different databases show that there is no advantage
in using the latter model in terms of classification performance.

The numerical results in Section 7.2.2 highlight that the new sPALM algorithm yields
faster convergence with respect to the other PALM-based algorithms due to the em-
ployment of second order information in the gradient stepsizes. Moreover, since the
convergence of sPALM is guaranteed for a wide class of nonconvex and non-smooth
problems, further constraints both on the dictionary and on the sparse matrix, such
as non-negativity, can be set. Finally, we have experimentally shown that the TT for-
mulation may give advantages in terms of memory requirements and rate of successful
classification, especially when applied to 4D databases.

105

7. Dictionary Learning for image classification

106

Conclusions

In this thesis we addressed the problem of image classification through the Tensor-Train
decomposition with the aim of highlighting the advantages of the Tensor-Train approach
with respect to other tensor decompositions when dealing with image recognition prob-
lems. Using a multidimensional approach is crucial in all image classification algorithms,
since it allows to preserve the inner structure of the processed data such as the neigh-
bouring relations among pixels that would be lost with vectorization processes.

In Chapter 2 we proposed a TT-based classification algorithm in which the database
is decomposed using the Tensor-Train decomposition and the resulting TT-cores are used
to classify a new image. In Chapter 7 we proposed a new Tensor-Train formulation of
the Dictionary Learning problem and a new spectral Proximal Alternating Linearized
Minimization algorithm (sPALM) that can be used for a large class of nonconvex and
non-smooth problems. The numerical experiments reported in Section 7.2 show the
advantage in using a Barzilai-Borwein stepsize in the Dictionary Learning context. In
particular, employing second order information in the proximal gradient step results in
better overall performance, i.e. less CPU time, faster convergence and higher success
rate with respect to Lipschitz based stepsizes. Furthermore the combination with the
Tensor-Train approach increases the classification performance especially in 4D examples
and gives several advantages in terms of memory savings.

Thus, in both the presented models the Tensor-Train decomposition is able to re-
duce memory requirements while preserving the classification performance. It also al-
lows to easily handle extensions to higher order settings as shown in Section 2.4.3 and
Section 7.2.5,avoiding the problem of the curse of dimensionality affecting other tensor
decompositions such as the HOSVD. This can be crucial when several features, such as
illumination, view angle or backdrop image sets, need to be considered.

The properties of the TT decomposition explored in this thesis together with its
low computational cost make it an extremely powerful tool whenever the number of
parameters of a model needs to be reduced due to time or computational constraints.
Thus, the use of the TT decomposition can be extended to many novel research fields
known to be computationally demanding, such as deep learning.

107

Appendix A

Description of the databases

In this work we consider 10 different databases of images of np persons or objects in
ne expressions, where by expression we mean different illuminations, view angles, facial
expression etc. The first 9 databases are composed by greyscale images each of which
can be both considered either as a n1n2 vector or as an n1 × n2 matrix depending on
the algorithm. The last database is composed by RGB images that can be represented
by third-order tensors. These databases can provide a good benchmark for classification
algorithms since they present significant differences in terms of persons or objects and
“expressions”. Furthermore, for the first four databases it holds that ni > ne whereas for
the others, ni < ne. In Chapter 2 this difference is crucial to explore the behaviour of
different tensor methods. In Chapter 7 we only use the databases for which ni < nenp,
since we consider an overcomplete DL problem. The characteristics of all databases are
summarized in Table A.1.

1. Orl ([17]) contains 400 greyscale images in PGM format of 40 persons. Each subject
is photographed in 10 different expressions. In Figure A.1 all the expressions of
subject 1 are shown.

Figure A.1: Subject 1 of the Orl database.

2. COIL-20 ([57]) is composed by greyscale images of 20 objects, each of which is
photographed in 72 different view angles. In Figure A.2 object 1 in 15 different
view angles is shown.

109

Figure A.2: Object 1 of the COIL-20 database.

3. Faces95 ([72]) consists of 1440 RGB images in JPG format of 72 persons in
slightly different positions with respect to the camera for a total of 20 expressions.
RGB images were transformed in gray images within Matlab. The same was done
for the other images with colors. In Figure A.3 the first subject is reported in all
expressions.

Figure A.3: Subject 1 of the Faces95 database photographed in 20 different expressions.

4. Faces96 ([73]) is composed by 2261 images in JPG format of 119 persons at dif-
ferent distance with respect to the camera totalling 19 expressions. As for the
previous database, the images were transformed in gray images. In Figure A.4 the
first subject is reported in all the expressions.

Figure A.4: Subject 1 of the Faces96 database.

5. MIT-CBCL1 ([80]) is composed by 3240 greyscale images of 10 persons in 324
different expressions. Each image is reduced to 15 × 15 pixels in order to have
ni < ne. In Figure A.5, 10 different expressions of person one are shown.

Figure A.5: Subject 1 of the MIT-CBCL database in 10 different expressions.

6. Extended Yale ([33]) consists of more than 16,000 images of 28 subjects in 585
expressions. Each image is reduced to 20× 15 pixels in order to have ni < ne. In
Figure A.6 subject 1 is reported in 15 different expressions.

1Copyright 2003 -2005 Massachusetts Institute of Technology. All Rights Reserved.

Figure A.6: Subject 1 of the Extended Yale database in 15 different expressions.

7. MNIST ([50]) contains 28 × 28 size images of ten handwritten digits (from 0 to
9) split in a training set composed by 60,000 images and a test set composed by
10,000 images. The number of “expressions” for each digit varies. In Table A.1
the minimum and maximum number of expressions is reported. In Figure A.7, 10
different versions of the digit “three” are shown.

Figure A.7: Digit 3 of the MNIST database.

8. Fashion MNIST ([82]) contains 70,000 images of 10 different kinds of Zalando’s
articles; 3,000 images per item for the training set and 1,000 for the test set were
used. As for MNIST, the variable “expression” is not well-defined. Each database
of np persons in ne expressions is split into 75% training and 25% test sets, so that
ñe = 0.75ne is the total number of expressions used for training. In Figure A.8 the
first object is represented in 10 different conditions.

Figure A.8: First object of the Fashion MNIST database.

9. Weizmann 2 ([55]) face image database is composed by 28 subjects taken in 5
different view angles, 3 illumination conditions and 2 facial expressions. Each
image size has been reduced from 352× 512 to 14× 20. In Figure A.9 subject 1 in
different conditions is represented.

2downloaded on June 2018.

Figure A.9: Subject 1 of the Weizmann database.

10. COIL-100 ([56]) is composed by RGB images of 100 objects in 72 different view
angles. Figure A.10 shows an example of an object of the database in different
view angles.

Figure A.10: Object 1 of the COIL-20 database.

Database pixel size (original) pixel size (resized) ne np

Orl 92× 112 92× 112 10 40
COIL-20 128× 128 128× 128 72 20
Faces95 180× 200 180× 200 20 72
Faces96 196× 196 196× 196 19 119

MIT-CBCL 115× 115 15× 15 324 10
Ext’d Yale shrunk 640× 480 20× 15 585 28

MNIST 28× 28 28× 28 892− 6742 10
Fashion MNIST 28× 28 28× 28 7000 10

Weizmann database 352× 512 14× 20 28 30
COIL-100 128× 128× 3 16× 16× 3 72 100

Table A.1: Pixel size, number of expressions and persons of all databases.

Bibliography

[1] M. Aharon, M. Elad, and A. Bruckstein. “K-SVD: An Algorithm for Designing
Overcomplete Dictionaries for Sparse Representation”. In: IEEE Trans. on Signal
Processing 54 (2006), pp. 4311–4322. issn: 1053-587X. doi: 10.1109/tsp.2006.
881199.

[2] C. Bao, H. Ji, Y. Quan, and Z. Shen. “L0 Norm Based Dictionary Learning by
Proximal Methods with Global Convergence”. In: 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June
23-28, 2014. IEEE Computer Society, 2014, pp. 3858–3865. doi: 10.1109/CVPR.
2014.493.

[3] J. Barzilai and J. M. Borwein. “Two-Point Step Size Gradient Methods”. In: IMA
J. Numer. Anal. 8.1 (Jan. 1988), pp. 141–148. issn: 0272-4979. doi: 10.1093/
imanum / 8 . 1 . 141. eprint: https : / / academic . oup . com / imajna / article -
pdf/8/1/141/2402762/8-1-141.pdf. url: https://doi.org/10.1093/imanum/
8.1.141.

[4] H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator
theory in Hilbert spaces. Vol. 408. New York: Springer, 2011.

[5] A. Beck. First-Order Methods in Optimization. Philadelphia, PA, USA: SIAM-
Society for Industrial and Applied Mathematics, 2017. isbn: 1611974984.

[6] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems”. In: SIAM J. Imaging Sci. 2.1 (2009), pp. 183–202. doi:
10.1137/080716542.

[7] E. G. Birgin, J. M. Martínez, and M. Raydan. “Nonmonotone spectral projected
gradient methods on convex sets”. In: SIAM J. Optim. 10.4 (2000), pp. 1196–1211.

[8] E. G. Birgin, J. M. Martínez, and M. Raydan. “Spectral projected gradient meth-
ods: review and perspectives”. In: Journal of Statistical Software 60.3 (2014), pp. 1–
21.

[9] J. Bolte, S. Sabach, and M. Teboulle. “Proximal alternating linearized minimiza-
tion for nonconvex and nonsmooth problems”. In: Math. Program. 146.1-2 (2014),
pp. 459–494. doi: 10.1007/s10107-013-0701-9.

113

https://doi.org/10.1109/tsp.2006.881199
https://doi.org/10.1109/tsp.2006.881199
https://doi.org/10.1109/CVPR.2014.493
https://doi.org/10.1109/CVPR.2014.493
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/8.1.141
https://academic.oup.com/imajna/article-pdf/8/1/141/2402762/8-1-141.pdf
https://academic.oup.com/imajna/article-pdf/8/1/141/2402762/8-1-141.pdf
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1137/080716542
https://doi.org/10.1007/s10107-013-0701-9

[10] S. Bonettini. “Inexact block coordinate descent methods with application to non-
negative matrix factorization”. In: IMA J. Numer. Anal. 31.4 (2011), pp. 1431–
1452. doi: 10.1093/imanum/drq024.

[11] S. Bonettini, I. Loris, F. Porta, and M. Prato. “Variable metric inexact line-search-
based methods for nonsmooth optimization”. In: SIAM J. Optim. 26.2 (2016),
pp. 891–921.

[12] S. Bonettini, I. Loris, F. Porta, M. Prato, and S. Rebegoldi. “On the convergence
of a linesearch based proximal-gradient method for nonconvex optimization”. In:
Inverse Problems 33.5 (2017), p. 055005. issn: 1361-6420. doi: 10.1088/1361-
6420/aa5bfd. url: http://dx.doi.org/10.1088/1361-6420/aa5bfd.

[13] S. Bonettini, M. Prato, and S. Rebegoldi. “A cyclic block coordinate descent
method with generalized gradient projections”. In: Applied Mathematics and Com-
putation 286 (2016), pp. 288–300. issn: 0096-3003. doi: https://doi.org/10.
1016/j.amc.2016.04.031. url: https://www.sciencedirect.com/science/
article/pii/S0096300316302818.

[14] M. Boussé, N. Vervliet, O. Debals, and L. De Lathauwer. “Face recognition as
a Kronecker product equation”. In: 2017 IEEE 7th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). 2017,
pp. 1–5. doi: 10.1109/CAMSAP.2017.8313140.

[15] D. Brandoni, M. Porcelli, and V. Simoncini. A Tensor-Train Dictionary Learning
algorithm based on Spectral Proximal Alternating Linearized Minimization. 2021.
arXiv: 2107.11644 [math.NA].

[16] D. Brandoni and V. Simoncini. “Tensor-Train decomposition for image recogni-
tion”. In: Calcolo 57 (2020).

[17] AT&T Laboratories Cambridge. The ORL Database of Faces. 2002.

[18] A. Cichocki. “Era of Big Data Processing: A New Approach via Tensor Networks
and Tensor Decompositions”. In: CoRR abs/1403.2048 (2014). arXiv: 1403.2048.
url: http://arxiv.org/abs/1403.2048.

[19] A. Cichocki, N. Lee, I. Oseledets, A. Phan, Q. Zhao, and D. P. Mandic. “Tensor
Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-
Rank Tensor Decompositions”. In: 9 (2016), pp. 249–429. issn: 1935-8237. doi:
10.1561/2200000059.

[20] A. Cichocki, D. P. Mandic, A. H. Phan, C. F. Caiafa, G. Zhou, Q. Zhao, and L. De
Lathauwer. “Tensor Decompositions for Signal Processing Applications From Two-
way to Multiway Component Analysis”. In: CoRR abs/1403.4462 (2014). arXiv:
1403.4462. url: http://arxiv.org/abs/1403.4462.

https://doi.org/10.1093/imanum/drq024
https://doi.org/10.1088/1361-6420/aa5bfd
https://doi.org/10.1088/1361-6420/aa5bfd
http://dx.doi.org/10.1088/1361-6420/aa5bfd
https://doi.org/https://doi.org/10.1016/j.amc.2016.04.031
https://doi.org/https://doi.org/10.1016/j.amc.2016.04.031
https://www.sciencedirect.com/science/article/pii/S0096300316302818
https://www.sciencedirect.com/science/article/pii/S0096300316302818
https://doi.org/10.1109/CAMSAP.2017.8313140
https://arxiv.org/abs/2107.11644
https://arxiv.org/abs/1403.2048
http://arxiv.org/abs/1403.2048
https://doi.org/10.1561/2200000059
https://arxiv.org/abs/1403.4462
http://arxiv.org/abs/1403.4462

[21] C. F. Dantas, J. E. Cohen, and R. Gribonval. “Learning Fast Dictionaries for
Sparse Representations Using Low-Rank Tensor Decompositions”. In: Latent Vari-
able Analysis and Signal Separation - 14th International Conference, LVA/ICA
2018, Guildford, UK, July 2-5, 2018, Proceedings. Ed. by Yannick Deville, Sharon
Gannot, Russell Mason, Mark D. Plumbley, and Dominic Ward. Vol. 10891. Lecture
Notes in Computer Science. Springer, 2018, pp. 456–466. doi: 10.1007/978-3-
319-93764-9_42. url: https://doi.org/10.1007/978-3-319-93764-9_42.

[22] C. F. Dantas, J. E. Cohen, and R. Gribonval. “Learning Tensor-structured Dic-
tionaries with Application to Hyperspectral Image Denoising”. In: 27th European
Signal Processing Conference, EUSIPCO 2019, A Coruña, Spain, September 2-6,
2019. IEEE, 2019, pp. 1–5. doi: 10.23919/EUSIPCO.2019.8902593.

[23] Cassio F. Dantas. “Accelerating sparse inverse problems using structured approxi-
mations”. PhD Thesis. Université Rennes 1, 2019. url: https://tel.archives-
ouvertes.fr/tel-02494569.

[24] L. De Lathauwer, B. De Moor, and J. Vandewalle. “A multilinear singular value
decomposition”. In: SIAM journal on Matrix Analysis and Applications 21.4 (2000),
pp. 1253–1278.

[25] G. Duan, H. Wang, Z. Liu, J. Deng, and Y. Chen. “K-CPD: Learning of overcom-
plete dictionaries for tensor sparse coding”. In: Proceedings of the 21st International
Conference on Pattern Recognition, ICPR 2012, Tsukuba, Japan, November 11-
15, 2012. IEEE Computer Society, 2012, pp. 493–496. url: http://ieeexplore.
ieee.org/document/6460179/.

[26] B. Dumitrescu and P. Irofti.Dictionary learning algorithms and applications. Springer,
2018.

[27] M. Elad and M. Aharon. “Image Denoising Via Sparse and Redundant Represen-
tations Over Learned Dictionaries”. In: IEEE Trans. Image Process. 15.12 (2006),
pp. 3736–3745. doi: 10.1109/TIP.2006.881969.

[28] L. Eldén. Matrix Methods in Data Mining and Pattern Recognition (Fundamentals
of Algorithms). USA: Society for Industrial and Applied Mathematics, 2007. isbn:
0898716268.

[29] K. Engan, S.O. Aase, and J. Hakon Husoy. “Method of optimal directions for frame
design”. In: 1999 IEEE International Conference on Acoustics, Speech, and Signal
Processing. Proceedings. ICASSP99 (Cat. No.99CH36258). Vol. 5. 1999, 2443–2446
vol.5. doi: 10.1109/ICASSP.1999.760624.

[30] Y. Fang, J. Wu, and B. Huang. “2D sparse signal recovery via 2D orthogonal
matching pursuit”. In: Sci. China Inf. Sci. 55.4 (2012), pp. 889–897. doi: 10.
1007/s11432-012-4551-5.

https://doi.org/10.1007/978-3-319-93764-9_42
https://doi.org/10.1007/978-3-319-93764-9_42
https://doi.org/10.1007/978-3-319-93764-9_42
https://doi.org/10.23919/EUSIPCO.2019.8902593
https://tel.archives-ouvertes.fr/tel-02494569
https://tel.archives-ouvertes.fr/tel-02494569
http://ieeexplore.ieee.org/document/6460179/
http://ieeexplore.ieee.org/document/6460179/
https://doi.org/10.1109/TIP.2006.881969
https://doi.org/10.1109/ICASSP.1999.760624
https://doi.org/10.1007/s11432-012-4551-5
https://doi.org/10.1007/s11432-012-4551-5

[31] G. Frassoldati, L. Zanni, and G. Zanghirati. “New adaptive stepsize selections
in gradient methods”. In: Journal of Industrial & Management Optimization 4.2
(2008), pp. 299–312.

[32] X. Gao, X. Cai, and D. Han. “A Gauss-Seidel type inertial proximal alternating
linearized minimization for a class of nonconvex optimization problems”. In: J.
Glob. Optim. 76.4 (2020), pp. 863–887. doi: 10.1007/s10898-019-00819-5.

[33] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman. “From Few to Many: Il-
lumination Cone Models for Face Recognition under Variable Lighting and Pose”.
In: IEEE Trans. Pattern Anal. Mach. Intelligence 23.6 (2001), pp. 643–660.

[34] M. Ghassemi, Z. Shakeri, W. U. Bajwa, and A. D. Sarwate. “Sample Complex-
ity Bounds for Low-Separation-Rank Dictionary Learning”. In: 2019 IEEE Inter-
national Symposium on Information Theory (ISIT). 2019, pp. 2294–2298. doi:
10.1109/ISIT.2019.8849698.

[35] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, 2013. isbn: 9781421407944.
url: https://books.google.it/books?id=X5YfsuCWpxMC.

[36] I. Goodfellow, Y. Bengio, and A. Courville.Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[37] L. Grippo and M. Sciandrone. “Nonmonotone derivative-free methods for nonlinear
equations”. In: Comput. Optim. Appl. 37.3 (2007), pp. 297–328.

[38] L. Grippo and M Sciandrone. “On the convergence of the block nonlinear Gauss-
Seidel method under convex constraints”. In: Operations Research Letters 26 (Apr.
2000), pp. 127–136. doi: 10.1016/S0167-6377(99)00074-7.

[39] N. Hao, M. E. Kilmer, K. Braman, and R. C. Hoover. “Facial recognition using
tensor-tensor decompositions”. In: SIAM Journal on Imaging Sciences 6.1 (2013),
pp. 437–463.

[40] S. Hawe, M. Seibert, and M. Kleinsteuber. “Separable Dictionary Learning”. In:
Portland, OR, USA. Portland, OR, USA: IEEE, 2013, pp. 438–445. isbn: 978-1-
5386-5672-3. doi: 10.1109/CVPR.2013.63.

[41] D. Hernandez and T. B. Brown. Measuring the Algorithmic Efficiency of Neural
Networks. 2020. arXiv: 2005.04305 [cs.LG].

[42] L.T.K. Hien, D.N. Phan, and N. Gillis. “An Inertial Block Majorization Mini-
mization Framework for Nonsmooth Nonconvex Optimization”. In: arXiv preprint
arXiv:2010.12133 (2020). arXiv: 2010.12133 [math.OC].

[43] S. Hsieh, C. Lu, and S. Pei. “2D sparse dictionary learning via tensor decompo-
sition”. In: 2014 IEEE Global Conference on Signal and Information Processing,
GlobalSIP 2014, Atlanta, GA, USA, December 3-5, 2014. IEEE, 2014, pp. 492–496.
doi: 10.1109/GlobalSIP.2014.7032166.

https://doi.org/10.1007/s10898-019-00819-5
https://doi.org/10.1109/ISIT.2019.8849698
https://books.google.it/books?id=X5YfsuCWpxMC
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1016/S0167-6377(99)00074-7
https://doi.org/10.1109/CVPR.2013.63
https://arxiv.org/abs/2005.04305
https://arxiv.org/abs/2010.12133
https://doi.org/10.1109/GlobalSIP.2014.7032166

[44] B. Iannazzo and M. Porcelli. “The Riemannian Barzilai–Borwein method with
nonmonotone line search and the matrix geometric mean computation”. In: IMA
J. Numer. Anal. 38.1 (2018), pp. 495–517.

[45] M. Jouni. “Image Analysis Based on Tensor Representations”. Theses. Université
Grenoble Alpes [2020-....], Jan. 2021. url: https://hal.archives-ouvertes.
fr/tel-03223274.

[46] C. Kanzow and T. Lechner. “Globalized inexact proximal Newton-type methods for
nonconvex composite functions”. In: Comput. Optim. Appl. 78.2 (2021), pp. 377–
410.

[47] T. G. Kolda. Multilinear Operators for Higher-order Decompositions. Tech. rep.
SAND2006-2081. Sandia National Laboratories, 2006. doi: 10.2172/923081. url:
http://www.osti.gov/scitech/biblio/923081.

[48] T. G. Kolda and B. W. Bader. “Tensor decompositions and applications”. In: SIAM
review 51.3 (2009), pp. 455–500.

[49] S. Krämer. “A Geometric Description of Feasible Singular Values in the Tensor
Train Format”. In: (Jan. 29, 2017). arXiv: http://arxiv.org/abs/1701.08437v2
[math.NA].

[50] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied
to document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.
doi: 10.1109/5.726791.

[51] S. Lesage, R. Gribonval, F. Bimbot, and L. Benaroya. “Learning unions of or-
thonormal bases with thresholded singular value decomposition”. In: Philadelphia,
PA, USA. Vol. 5. Philadelphia, PA, USA: IEEE, 2005, v/293–v/296 Vol. 5. isbn:
0-7803-8874-7. doi: 10.1109/ICASSP.2005.1416298.

[52] Z. Li, S. Ding, W. Chen, Z. Yang, and S. Xie. “Proximal Alternating Minimization
for Analysis Dictionary Learning and Convergence Analysis”. In: IEEE Trans. on
Emerging Topics in Computational Intelligence 2.6 (2018), pp. 439–449. doi: 10.
1109/TETCI.2018.2806890.

[53] J. Mairal, F.R. Bach, and J. Ponce. “Sparse Modeling for Image and Vision Pro-
cessing”. In: Found. Trends. Comput. Graph. Vis. 8.2-3 (Dec. 2014), pp. 85–283.
issn: 1572-2740. doi: 10.1561/0600000058. url: https://doi.org/10.1561/
0600000058.

[54] E. Meli, B. Morini, M. Porcelli, and C. Sgattoni. “Solving nonlinear systems of
equations via spectral residual methods: stepsize selection and applications”. In:
arXiv preprint arXiv:2005.05851 (2020).

[55] Y. Moses. Weizmann institute database. 1997. url: ftp.eris.weizmann.ac.il/
pub/FaceBase.

https://hal.archives-ouvertes.fr/tel-03223274
https://hal.archives-ouvertes.fr/tel-03223274
https://doi.org/10.2172/923081
http://www.osti.gov/scitech/biblio/923081
https://arxiv.org/abs/http://arxiv.org/abs/1701.08437v2
https://arxiv.org/abs/http://arxiv.org/abs/1701.08437v2
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICASSP.2005.1416298
https://doi.org/10.1109/TETCI.2018.2806890
https://doi.org/10.1109/TETCI.2018.2806890
https://doi.org/10.1561/0600000058
https://doi.org/10.1561/0600000058
https://doi.org/10.1561/0600000058
ftp.eris.weizmann.ac.il/pub/FaceBase
ftp.eris.weizmann.ac.il/pub/FaceBase

[56] S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library (COIL-
100). Tech. rep. CUCS-006-96. Department of Computer Science, Columbia Uni-
versity, 1996.

[57] S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library (COIL-
20). Tech. rep. CUCS-005-96. Department of Computer Science, Columbia Univer-
sity, 1996.

[58] P. Ochs, Y. Chen, T. Brox, and T. Pock. iPiano: Inertial Proximal Algorithm for
Non-Convex Optimization. 2014. arXiv: 1404.4805 [cs.CV].

[59] B. Olshausen and D. Field. “Emergence of simple-cell receptive field properties by
learning a sparse code for natural images”. In: Nature 381 (July 1996), pp. 607–9.
doi: 10.1038/381607a0.

[60] I. V. Oseledets. “Tensor-train decomposition”. In: SIAM Journal on Scientific Com-
puting 33.5 (2011), pp. 2295–2317.

[61] A. H. Phan, A. Cichocki, A. Uschmajew, P. Tichavský, G. Luta, and D. P. Mandic.
“Tensor Networks for Latent Variable Analysis. Part I: Algorithms for Tensor Train
Decomposition”. In: CoRR abs/1609.09230 (2016). arXiv: 1609.09230. url: http:
//arxiv.org/abs/1609.09230.

[62] T. Pock and S. Sabach. “Proximal Alternating Linearized Minimization (iPALM)
for Nonconvex and Nonsmooth Problems”. In: SIAM J. Imaging Sci. 9.4 (2016),
pp. 1756–1787. doi: 10.1137/16M1064064.

[63] M. Raydan. “On the Barzilai and Borwein choice of steplength for the gradient
method”. In: IMA Journal of Numerical Analysis 13.3 (July 1993), pp. 321–326.
issn: 0272-4979. doi: 10.1093/imanum/13.3.321. eprint: https://academic.
oup.com/imajna/article- pdf/13/3/321/2076305/13- 3- 321.pdf. url:
https://doi.org/10.1093/imanum/13.3.321.

[64] M. Raydan. “The Barzilai and Borwein Gradient Method for the Large Scale Un-
constrained Minimization Problem”. In: SIAM J. Optim. 7.1 (1997), pp. 26–33.
doi: 10.1137/S1052623494266365.

[65] S. Rebegoldi, S. Bonettini, and M. Prato. “Application of cyclic block general-
ized gradient projection methods to poisson blind deconvolution”. In: Aug. 2015,
pp. 225–229. doi: 10.1109/EUSIPCO.2015.7362378.

[66] F. Roemer, G. Del Galdo, and M. Haardt. “Tensor-based algorithms for learning
multidimensional separable dictionaries”. In: 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2014, pp. 3963–3967. doi:
10.1109/ICASSP.2014.6854345.

[67] B. Savas and L. Eldén. “Handwritten digit classification using higher order singular
value decomposition”. In: Pattern Recognition 40.3 (2007), pp. 993 –1003. issn:
0031-3203. doi: https://doi.org/10.1016/j.patcog.2006.08.004. url:
http://www.sciencedirect.com/science/article/pii/S0031320306003542.

https://arxiv.org/abs/1404.4805
https://doi.org/10.1038/381607a0
https://arxiv.org/abs/1609.09230
http://arxiv.org/abs/1609.09230
http://arxiv.org/abs/1609.09230
https://doi.org/10.1137/16M1064064
https://doi.org/10.1093/imanum/13.3.321
https://academic.oup.com/imajna/article-pdf/13/3/321/2076305/13-3-321.pdf
https://academic.oup.com/imajna/article-pdf/13/3/321/2076305/13-3-321.pdf
https://doi.org/10.1093/imanum/13.3.321
https://doi.org/10.1137/S1052623494266365
https://doi.org/10.1109/EUSIPCO.2015.7362378
https://doi.org/10.1109/ICASSP.2014.6854345
https://doi.org/https://doi.org/10.1016/j.patcog.2006.08.004
http://www.sciencedirect.com/science/article/pii/S0031320306003542

[68] D. di Serafino, V. Ruggiero, G. Toraldo, and L. Zanni. “On the steplength selection
in gradient methods for unconstrained optimization”. In: Applied Mathematics and
Computation 318 (2018), pp. 176–195.

[69] Z. Shakeri, A. D. Sarwate, andW. U. Bajwa. “Identifiability of Kronecker-Structured
Dictionaries for Tensor Data”. In: IEEE Journal of Selected Topics in Signal Pro-
cessing 12.5 (2018), pp. 1047–1062. doi: 10.1109/JSTSP.2018.2838092.

[70] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger. “Shiftable
multiscale transforms”. In: IEEE Transactions on Information Theory 38 (2 1992),
pp. 587–607. issn: 1557-9654. doi: 10.1109/18.119725.

[71] M. Sokolova and G. Lapalme. “A Systematic Analysis of Performance Measures for
Classification Tasks”. In: Inf. Process. Manage. 45.4 (July 2009), 427–437. issn:
0306-4573. doi: 10.1016/j.ipm.2009.03.002. url: https://doi.org/10.1016/
j.ipm.2009.03.002.

[72] L. Spacek. Facial Images: Faces95. 1995. url: https://cmp.felk.cvut.cz/
~spacelib/faces/faces95.html.

[73] L. Spacek. Facial Images: Faces96. 1996. url: https://cmp.felk.cvut.cz/
~spacelib/faces/faces96.html.

[74] B. L. Sturm and M. G. Christensen. “Comparison of orthogonal matching pursuit
implementations”. In: 2012 Proceedings of the 20th European Signal Processing
Conference (EUSIPCO). 2012, pp. 220–224.

[75] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso. The Computational
Limits of Deep Learning. 2020. arXiv: 2007.05558 [cs.LG].

[76] D. Tock. “Tensor Decomposition and its Applications”. MA thesis. University of
Chester, 2010.

[77] L. R. Tucker. “Some mathematical notes on three-mode factor analysis”. In: Psy-
chometrika 31.3 (1966), pp. 279–311. issn: 1860-0980. doi: 10.1007/BF02289464.
url: https://doi.org/10.1007/BF02289464.

[78] M. A. O. Vasilescu and D. Terzopoulos. “Multilinear analysis of image ensem-
bles: Tensorfaces”. In: European Conference on Computer Vision. Springer. 2002,
pp. 447–460.

[79] M. A. O. Vasilescu and D. Terzopoulos. “Multilinear image analysis for facial
recognition”. In: Object recognition supported by user interaction for service robots.
Vol. 2. IEEE. 2002, pp. 511–514.

[80] B. Weyrauch, B. Heisele, J. Huang, and V. Blanz. “Component-Based Face Recog-
nition with 3D Morphable Models”. In: 2004 Conference on Computer Vision and
Pattern Recognition Workshop. 2004, pp. 85–85. doi: 10.1109/CVPR.2004.315.

https://doi.org/10.1109/JSTSP.2018.2838092
https://doi.org/10.1109/18.119725
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1016/j.ipm.2009.03.002
https://cmp.felk.cvut.cz/~spacelib/faces/faces95.html
https://cmp.felk.cvut.cz/~spacelib/faces/faces95.html
https://cmp.felk.cvut.cz/~spacelib/faces/faces96.html
https://cmp.felk.cvut.cz/~spacelib/faces/faces96.html
https://arxiv.org/abs/2007.05558
https://doi.org/10.1007/BF02289464
https://doi.org/10.1007/BF02289464
https://doi.org/10.1109/CVPR.2004.315

[81] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. “Sparse Reconstruction
by Separable Approximation”. In: IEEE Trans. on signal processing 57.7 (2009),
pp. 2479–2493. doi: 10.1109/tsp.2009.2016892.

[82] H. Xiao, K. Rasul, and R. Vollgraf. “Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms”. In: arXiv preprint arXiv:1708.07747
(Aug. 28, 2017). arXiv: cs.LG/1708.07747 [cs.LG].

[83] Q. Zhang and B. Li. “Discriminative K-SVD for dictionary learning in face recog-
nition”. In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. 2010, pp. 2691–2698. doi: 10.1109/CVPR.2010.5539989.

[84] Z. Zhao, P. Zheng, S. Xu, and X. Wu. Object Detection with Deep Learning: A
Review. 2019. arXiv: 1807.05511 [cs.CV].

[85] B. Zhou, L. Gao, and Y. Dai. “Gradient Methods with Adaptive Step-Sizes”. In:
Computational Optimization and Applications 35 (Sept. 2006), pp. 69–86. doi:
10.1007/s10589-006-6446-0.

[86] H. Zhu and M.K. Ng. “Structured Dictionary Learning for Image Denoising Under
Mixed Gaussian and Impulse Noise”. In: IEEE Trans. Image Process. 29 (2020),
pp. 6680–6693. doi: 10.1109/TIP.2020.2992895.

[87] S. Zubair and W. Wang. “Tensor dictionary learning with sparse TUCKER de-
composition”. In: 2013 18th International Conference on Digital Signal Processing
(DSP). 2013, pp. 1–6. doi: 10.1109/ICDSP.2013.6622725.

https://doi.org/10.1109/tsp.2009.2016892
https://arxiv.org/abs/cs.LG/1708.07747
https://doi.org/10.1109/CVPR.2010.5539989
https://arxiv.org/abs/1807.05511
https://doi.org/10.1007/s10589-006-6446-0
https://doi.org/10.1109/TIP.2020.2992895
https://doi.org/10.1109/ICDSP.2013.6622725

	Introduction
	Notation and preliminary definitions
	Tensor tools
	Tensor computations
	Tensor decompositions
	Canonical Polyadic (CP) decomposition
	The Higher-Order Singular Value Decomposition (HOSVD)
	Tensor-Train (TT) decomposition

	Image classification with tensor models
	Least Squares classification algorithm
	HOSVD classification algorithm
	Tensor-Train classification algorithm
	Higher-order classification algorithm

	Numerical experiments
	Implementation details
	Classification performance
	A classification test in higher dimensional setting
	Numerical experiments with truncated methods
	Performance using statistical classification measures
	Closing considerations

	Proximal gradient methods
	The proximal gradient method
	The block proximal gradient method
	The Proximal Alternating Linearized Minimization (PALM) algorithm

	The spectral Proximal Alternating Linearized Minimization (sPALM) algorithm
	The spectral steplength
	The spectral PALM algorithm

	Matrix and tensor Dictionary Learning (DL) problem
	Matrix Dictionary Learning problem
	Sparse coding
	Dictionary update

	Tensor methods
	K-HOSVD
	HO-SuKro
	GRADTENSOR
	K-CPD

	Proximal methods for Dictionary Learning
	Proximal matrix methods
	Tensor proximal methods for a new Tensor-Train formulation of the DL problem

	Dictionary Learning for image classification
	The classification problem
	Numerical experiments
	Implementation details
	Preliminary tests on the matrix DL formulation
	Numerical experiments on the tensor DL formulation
	Truncated approach for memory saving
	A classification example in 4D setting

	Closing considerations

	Conclusions
	Description of the databases

