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The areas of data science and data engineering have experienced strong advances 
in recent years. This has had a particular impact on areas such as healthcare, 
where, as a result of the pandemic caused by the COVID-19 virus, technological 
development has accelerated. This has led to a need to produce solutions that 
enable the collection, integration and efficient use of information for decision 
making scenarios. This is evidenced by the proliferation of monitoring, data 
collection, analysis, and prediction systems aimed at controlling the pandemic. To 
go beyond current epidemic prediction possibilities, this article proposes a hybrid 
model that combines the dynamics of epidemiological processes with the predictive 
capabilities of artificial neural networks. In addition, the system allows for the 
introduction of additional information through an expert system, thus allowing the 
incorporation of additional hypotheses on the adoption of containment measures.
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1. Introduction
Many countries have already rolled out their vaccination programs and are progressing steadi-

ly, however, many others experience severe vaccine shortages, all the while new, possibly vaccine- 
resistant variants of COVID-19 emerge. It is therefore essential to continue taking measures that will 
help curb the spread of the virus and its variants. One of the impediments to the optimal management 
of the pandemic is the lack of reliable statistics on the morbidity and mortality rate, as well as other 
related factors. At the beginning of the pandemic, many decisions were taken by trial and error, as there 
was a lack of information on the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Had governments understood the risk of a global health crisis when the first cases had been de-
tected in China in January 2020, they would have been able to establish stricter measures since the 
very beginning. Unfortunately, this has not been so, and COVID-19 spread rapidly in February 2020 
throughout Asia and Europe. Since then, cases have been detected across all continents. It is estimated 
that up until now, there have been over 225 million cases worldwide, among which 4.6 million were 
mortal, although these statistics increase daily.

Had intelligent systems for data collection and pandemic monitoring been implemented since the 
start of the pandemic, these figures would have been much lower today and the build-up to critical 
situations, such as the lack of face masks and ventilators, the overflow of hospitals, virus waves, and 
the closing down of all businesses, could have been prevented. Access to contagion estimates would 
have meant that governments could have planned for the production and purchase of medical equip-
ment, avoiding both equipment shortage and overspending. Predictions of COVID-19 rates would 
have enabled hospitals to cater for an increased number of admissions; prepare extra beds in intensive 
care units and set up temporary healthcare support facilities ahead of time, transporting resources from 
localities in which COVID rates were low to those in which they were high. All this means that infor-
mation and technology are the keys to increasing the efficiency of our healthcare systems, preventing 
future waves, and combating the pandemic.

These examples serve to show that it is necessary to develop technologies and systems capable of 
predicting the near-future and far-future evolution of this pandemic and the emergence of future pan-
demics. It is also necessary to be able to assess the impact that different measures, such as lockdown, 
confinement, the closing of businesses, curfew, etc., have on the spread rate. Artificial intelligence (AI) 
can provide us with this ability, specifically, explainable artificial intelligence (XAI), whose reasoning 
processes are visible to humans, making it possible to understand how a system arrived at a specific 
conclusion.

Epidemiological prediction is a branch of epidemiology in which there has been renewed interest 
following the abrupt emergence of COVID-19. An overview of the state of the art from different per-
spectives may include sociophysics (Tanimoto, 2021), biomathematics (Mondaini, 2020), and artificial 
intelligence (Le Gruenwald and Jain, 2021). State-of-the-art literature identifies game theory (Bauch, 
2005) and evolutionary game theory methods (Kabir and Tanimoto, 2019; Kabir and Tanimoto, 2020) 
as noteworthy approaches on prediction. The formal framework introduced in these works makes it 
possible to evaluate the costs of imposing restrictive measures in terms of economic and epidemiolog-
ical impact.

The motivation behind this proposal lies in achieving the ability to monitor and predict the evolu-
tion of coronavirus in Panama. The Panamanian Ministry of Health confirmed a total of 365,104 total 
cases of COVID-19 in Panama, from the start of the pandemic until May 2, 2021. As for 2020, Panama 
experienced the highest number of COVID-19 cases per 100,000 inhabitants in Latin America, which 
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has had a strong impact on its GDP (Gross domestic product), in an economy that relies heavily on 
air transportation, tourism, and construction. According to the statistics, Panama is currently one of 
the worst-hit countries in Central America, in addition to the high spread rate, poverty has increased 
by two percentage points, while public debt shot up by almost 20 percentage points of GDP. Panama 
must now overcome the challenge of reviving its economy and mitigating poverty while combating 
the pandemic.

The developed system is capable of aiding the Panamanian government and doctors to take optimal 
decisions when managing the pandemic. Data analyses and predictions make it possible to distribute 
scarce medical resources to the regions in which they are most needed i.e., the ones in which the level 
of contagion is the greatest. Moreover, the system can help the local authorities select the most effec-
tive restrictive measures and loosen the restrictions in areas where the spread rate is low, this would 
also support the country’s economic recovery.

In epidemiological prediction systems, one of the most important advances in artificial intelligence 
is used, namely, the machine learning (ML) paradigm. ML neural nets can associate symbols with 
vectorized representations of data. This gives them the ability to understand what the data represents. 
ML models are capable of creating new rules and modifying /discarding the old ones. This is unlike 
symbolic reasoning, where the system does not comprehend the meaning behind the symbols. Thus, 
since the beginning of the pandemic, many machine learning models have been employed as support 
tools, especially to foresee future spread levels. For a detailed revision of paradigms in COVID predic-
tion, the reader can refer to (Perc et al., 2020; Yousaf et al., 2020; Bertozzi et al., 2020).

Deep learning, a subset of machine learning, has been used in numerous proposals. For example, 
a deep convolutional neural network has been adapted for the classification of chest X-ray images of 
COVID-19 patients (Ozturk et al., 2020). In (Chimmula and Zhang, 2020) the authors have used deep 
learning-based LSTM (Long short-term memory) networks to predict the transmission of COVID in 
Canada. However, the use of a single AI approach normally implies some limitations, so in order to 
achieve optimal and highly accurate results, it is recommendable to combine two or more AI-based 
methods. An example of this approach are the deep neuro-fuzzy algorithms that are implemented in 
smart systems employing techniques based on fuzzy logic and deep neural networks. The optimal per-
formance of this approach has been demonstrated in practice in (Castillo Ossa et al., 2021), where the 
authors have used a combination of mathematical modeling and recurrent neural networks to predict 
COVID-19 evolution in Colombia.

Panamanian medical authorities are currently using the developed model to curb the pandemic. 
This project has been conducted under the EPIDEMPREDICT for COVID-19, code GCHF5076720. 
It has been sponsored by the Panamanian Secretaría Nacional de Ciencia Tecnología e Innovación 
(SENACYT).

This article is organized as follows: Firstly, in section 2, the proposed system is presented and its use 
case is described. In section 3 the proposed system is evaluated with the available data, giving a quanti-
tative measure of its predictive capability. Lastly, section 3 draws conclusions from the conducted study.

2. Proposal and use case: Panama COVID-19 prediction
The developed system is based on a hybrid model incorporating SIR model population dynamics, 

as well as LSTM recurrent neural networks. It has been designed to forecast the transmission rate of 
the virus in Panama. This hybrid solution, combining an expert system and LSTM in the SIR model, 
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provides explainable results, evidencing the impact of restrictive measures on the fluctuation of the 
coefficient. Moreover, expert rules help predict the effect of the implementation of such measures on 
the spread rate. The system implements explainable artificial intelligence which, in this case, helps 
understand the system’s interpretation of pandemic-related data, making it possible to modify the in-
puts or adjust the factors being monitored and predicted. Figure 1 shows the proposed solution whose 
characteristics are discussed in detail in the sections that follow.

The evolution of the virus, in a given time period, is measured using a historical dataset and the 
curves S (the time-dependent susceptible population), I (the time-dependent infected population), and 
R (the time-dependent removed (recovered, death) population) are extracted for the established time 
period. These variables are used to fit an SIR model using sliding windows. The Runge-Kutta method 
is applied to solve the differential equations and the fit is performed in the sense of the least squares, 
which makes it possible to obtain the SIR model’s unknown parameters: β and γ, and the basic repro-
ductive number R

0
, all those are functions of time. To extrapolate these parameters to higher time val-

ues, an LSTM neural network is used, the results of which are further refined by using an expert system 
that takes into account possible future changes in the constraints imposed by the government. Lastly, 
the forecast of the evolution of the S, I, R

0
 curves is made when the SIR model is solved together with 

the extrapolated coefficients.
The system was implemented in Python 3 using numpy 1.21, pandas 1.1.4, scipy 1.7.1, and ten-

sorflow 2.6.1.

2.1 Input variable extraction
The Deep Intelligence platform (Corchado et al., 2021) has been used as the storage engine and 

central axis for the processing and management of data streams. This platform has been programmed 
to periodically ingest data on the evolution of COVID-19 in Panama (specifically, the data on the 
daily evolution of the population, active COVID cases, cumulative number of deaths, and cumulative 
number of recoveries), taken from the reports published by the Panamanian government on the official 
Ministry of Health website (Presentaciones Covid-19 - Ministerio de Salud, Gobierno de Panamá,). 
Thus, further on in this paper, this model is applied to keep the predictions updated (Figure 2).

2.2 Compartment models
The initial development of the mathematical modeling of infectious diseases is owed to public 

health physicians. Daniel Bernouilli, who came from a renowned family of mathematicians, is the first 
one to have introduced and resolved a mathematical model for smallpox in the 18th century. Ever since 

Historical data

Compartmental model

Fit coefficient series Coefficient
extrapolation

Corrected
extrapolationPrediction

LSTM

Expert system Additional hypothesis

Prediction system

Figure 1. Hybrid system overview
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then, the emerging and reemerging diseases shed light on the importance of the mathematical mod-
eling of infectious diseases and revive a strong interest in the subject among scientists from different 
fields. Today, mathematical models play an important role in the authorities’ decision-making process. 
They provide important insights on the disease dynamic and can serve for testing and evaluating po-
tential control strategies and as predictors of future outbreaks. Most importantly, models continue to 
mature with the ongoing advances in computational tools, access to the disease incidence data, and 
their combination with advanced mathematical and artificial intelligence-based algorithms.

The simplest mathematical models of infectious diseases are based on the idea of compartmental 
modeling. Indeed, the population under study is divided into compartments and the transmission of the 
disease from one compartment to another is described mathematically under meaningful assumptions 
on the nature and the time rate of the transfer. These compartmental models are often labeled in the 
literature as MSEIR, MSEIRS, SEIR, SEIRS, SIR, SEI, SEIS, etc., where each letter corresponds to a 
compartment of the population. For instance, S(t) denotes the number of individuals who are suscep-
tible to the disease at time t (that is not yet infected or immunized at time t) whereas I(t) denotes the 
number of infected individuals who are able to spread the disease through contact with susceptible sub-
jects, and R(t) denotes the number of individuals who have been infected and then excluded, assuming 
that they are not at danger of getting reinfected and spreading the disease. These models are basically 
systems of coupled first-order differential equations describing the evolution of the disease, and the 
threshold of these models is the famous basic reproduction number R

0
 defined as the average number 

of secondary infections produced when one infected individual is introduced into a host population 
where everyone is susceptible. Other mathematical indicators such as contact number and replacement 
number can be defined and play a major role in the understanding and prediction of the disease dy-
namic. These models can be improved and extended very easily from the mathematical point of view.

The basic mathematical expression of compartmental models describing the dynamic of com-
municable diseases goes back to the works of W.O. Kermack and A.G. McKendrick published in 
1927, 1932, and 1933, interested readers are referred to (Kermack and McKendrick, 1927; Kermack 

Figure 2. Example of a prediction plotted on a Deep Intelligence dashboard
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and McKendrick, 1932; Kermack and McKendrick, 1933). For instance, the simplest SIS model is 
based on the hypothesis that the size of the population N is assumed constant, that may be because 
the disease is not mortal or there is a balance between the death and birth rates. Also, the rate of 
new infections is given by mass action incidence (contact rate βN), individuals leave the infected 
compartment and return to the susceptible compartment at a rate αI per unit of time. The SIS model 
is given by

β α

β α

=− +

= −










S

t
S I I

I

t
S I I

SIS :

d

d
d

d
completed with initial data I(t = 0) = I

0
, and therefore S(t = 0) = N – I

0
. Observe that by summing up 

both differential equations we obtain d
dt  (S + I ) = 0, it is therefore assumed that the size of the population  

S +I = N for all time is propagated by the dynamic. In particular, one can replace N by N – 1 and ob-
serve that the system 1 can be recasted in a single differential equation reading

I
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It is rather easy to see from this equation that the infection declines, that is, the number of infections 
approaches zero, when β N / α < 1. In the contrary case, that is, when β N / α > 1, the infection persists. 
This explains why, in the literature, the particular constant solution I = 0 (corresponding to S = N) is 
called the disease-free equilibrium, and the constant solution I = N — α /β (corresponding to S = α /β) 
is called the endemic equilibrium. This also explains why the famous reproduction number is defined 
as R

0
 = βN / α and plays a crucial role in the prediction of the disease dynamic.

A slightly more complex model is the so-called SIR model, which is based on the same assump-
tions as presented above, except that the subject that has recovered from the infection is moved to a 
new «removed» compartment instead of going back to the «susceptible» compartment. The SIR model 
is given by

S

t
I

t

SI

N
I

R

t
I

SIR :

d

d
d

d
d

d

β

β γ

γ

=−

= −

=










completed with initial data I

0
, S

0
, and R(t = 0) = R

0
. In particular, this model assumes a recovery 

rate of γI corresponding to a waiting time e−γ t, that is the fraction that is still in the infected class t units  
after entering this compartment and to γ  −1 as the mean waiting time. Again, by summing up the equa-
tions d

dt N = 0 is obtained, that is, the total size of the population is constant. Therefore, the SIR system 
can be reduced to a system of two coupled differential equations. Indeed, dividing the equations by the 
total population size N, and denoting it by s = S / N, i = I / N and r = R / N, we get

(1)

(2)
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with r (t) = 1 – s(t) – i(t). The basic theory of differential equations shows that a unique solution  
(s(t), i(t)) of this system exists for all positive time on the set {(s, i) | s ≥ 0, i ≥ 0, s + i ≤ 1}; interested read-
ers are referred to (Hethcote, 1976) for a detailed proof. In this model, the contact number is defined as  
σ = β

γ , that is, the contact rate β per unit of time times the average infectious period γ −1. The initial  
(at t = 0) replacement number is σ s

0
 = σ S

0 
/ N. From the mathematical point of view, it can be shown 

that if (s(t), i(t)) is a solution of 3 in the set {(s, i)|s ≥ 0, i ≥ 0, s + i ≤ 1}, then [see (Hethcote, 1976; 
Hethcote, 1989)]:

• If σ s
0
 ≤ 1, then i(t) → 0 as t → +∞.

• If σ s
0
 > 1, then i(t) increases to a maximum value i

max
 given by

i i s
s1 ln

,max 0 0
0

s

s

s
( )

= + − −

 and then decreases to zero as t → +∞.

• the susceptible fraction s(t) is a decreasing function and its limiting value s
∞
 is the unique root 

in (0,1 /σ) of the equation

i s s
s sln

0.0 0
0

s
( )

+ − + =∞
∞

In other words, the mathematical analysis of the SIR shows that it represents an epidemic outbreak 
very well. Indeed, in a typical epidemic outbreak, we see that the curve that represents the infected 
individual increases from an initial number I

0
 (close to 0), reaches a peak, and then decreases towards 

zero as a function of time. Also, the number of susceptible individuals always decreases to a certain 
final value S

∞
 = N s

∞
 (given above) and the epidemic declines when the number of peoples goes strictly 

below N/σ and the replacement number σ S(t) / N goes below 1. The mathematical predictions are in 
correlation with the epidemic dynamic observations. A rather straightforward extension of this model 
allows to consider vital dynamics, that is, birth and death is given by

S
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Observe that the total population is still conserved, as represented by d

dt
 N = 0. Therefore, dividing the 

above differential equations by the total population size (as it is conserved) leads to the following system
S
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For this model, the reproduction number is defined as R
0
 = σ = β /(γ + μ) which is the contact rate  

β times the average death-adjusted infectious period 1/(γ + μ). From the mathematical point of view, the 

(3)

(4)

(5)
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standard theory of differential equations allows to show that if σ ≤ 1 or I
0
 = 0, then the solution paths start-

ing in {(s, i) | s ≥ 0, i ≥ 0, s + i ≤ 1} approach the disease free equilibrium s = 1 and i = 0. However, if σ > 1,  
then all the solution paths i

0
 > 0 approach the endemic equilibrium given by a susceptible fraction of 1/σ 

and an infected fraction of μ(σ − 1)/β. One of the major advantages of compartmental models resides in 
their flexibility in terms of mathematical modeling. Indeed, several compartments can be easily added 
so as to meet the particular properties of a population or a disease. Also, compartmental models can be 
solved on any basic computer, that is, there is no need for advanced numerical algorithms and/or com-
putational power. Eventually, these models can be easily extended to take into account several properties 
of the population under study in the modeling phase, such as birth and non-disease related death rates, 
the age structure of the population, etc., as well other action mechanisms, such as temporary immunity, 
medical therapies, vaccination, and restrictions, such as social distancing, quarantine requirement, travel 
restrictions, etc. For instance, to take into account the loss of immunity, one might add a term θR to the 
susceptible equation and add the opposite term to the removed equation in the SIR model. Also, therapies 
(g) and vaccination (f) can be very easily modeled through integral delay terms of the following form

g f S t I t d, ,
h

0
θ τ τ τ( ))( ) ( ) ( )∫ −

added from the infected equation and subtracted from the susceptible equations in an SIR model. 
In the above expression, θ denotes the disease transmission coefficient and individuals leave the sus-
ceptible compartment at a rate given by the integral g f S t I t d, ,

h

0
θ τ τ τ( ))( ) ( ) ( )∫ − g(τ) f (S(t), I(t – g f S t I t d, ,

h

0
θ τ τ τ( ))( ) ( ) ( )∫ − ))) dτ, and h represents the 

maximum time taken to become infectious. Although compartmental models are very simple and pro-
vide a convenient modeling solution, they suffer from the gap of parameter estimation. They contain an 
important number of parameters whose values play a crucial role in the predictions and the forecasting 
of the disease dynamic and therefore have to be estimated very precisely. Thus, these parameters must 
be recovered from real-life data. The challenge to achieving this lies in connecting models and data; 
overcoming it has become crucial in the last decades. The most widely used method is the so-called 
Ordinary Least Square Estimation. Briefly, the idea is to link a statistical model to the process gener-
ated by the compartmental dynamical system at hand (SIS, SIR, SEIR, etc,) depending on a parameter 
θ (we consider only one parameter here for simplicity), assuming that the model output and associated 
random deviations (measurement error) are captured by the random variables

X z t j n, , 1, , ,j j j0 θ ε( )= + =

where z(t
j
, θ

0
) denotes the output of the mathematical model and the ε

j
, j = 1, . . . , n denote a set 

of random variables modeling the random deviations away from z(t, θ
0
) satisfying an adequate set of 

mathematical assumptions. Eventually, the quantity is minimized [X
j
 − z(t

j 
, θ)]2 over a set of parameter 

vectors θ. Most techniques follow the same line, more precisely the Bayesian sequential data assimila-
tion (or forecasting) approach based on Ensemble Kalman Filter, Markov Chain Monte Carlo, and the 
minimization of a functional cost over a set of admissible parameter vectors, and coupled to the deter-
ministic or stochastic compartmental model dynamical model [see (Engbert et al., 2021; Daza-Torres  
et al., 2021; Wang et al., 2020) and references therein]. A new research field in data assimilation for 
communicable diseases prediction and forecasting has become very attractive to scientists, with particu-
lar focus on COVID-19, namely the development of tools, techniques, and methods of data assimilation 
based on neural networks and artificial intelligence models, which is the aim of the present contribution. 
All the models of communicable diseases, presented and cited above, are based on ordinary differential 
or integro-differential equations since the involved quantities depend only on time. Introducing spatial 
dependence, in addition to time dependence, into the previous mathematical models, allows to model  
the geographical spread of a disease. Also, spatio-temporal dependence allows for the description of 
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the migration of the susceptible population, such that the disease may be avoided, this can be achieved 
by introducing diffusive and chemotactic-like terms. Also, by opposition to the temporal models, the 
system parameters, such as the contact rate, can be a spatially dependent function of the distribution of 
infected people. To fix this idea, let’s consider the previously described SIR model and let β = β (t), that 
is, time-dependent. A simple, symmetric contact-term candidate, including a typical interaction radius, 
x

0
(t), can be written in the following Gaussian form [see (Kuperman and Wio, 1999)]

β
π

( )
()
() ()

Γ = −
′

′ ′#t
t

t t
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2

0
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-

Therefore, normalizing the population size to 1, the space-time dependent SIR model now reads 
as follows
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completed with the physically adequate set of boundary conditions and initial data. In the above 
system, ∇2 denotes the Laplacian, 
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 models the diffusion coefficients whereas η models the chemo-
tactic parameter. This system is composed of coupled nonlinear partial differential equations, and 
therefore its mathematical analysis and numerical simulations are much more demanding than the 
classical ordinary differential systems. Several related mathematical diffusive compartmental-based 
models were developed and analyzed in the literature, interested readers are referred to (Li et al., 
2018; Suo and Li, 2020). Standard optimal control theories can be designed for this family of diffu-
sive systems to fit the model with real-life data, and coefficient recovery processes can be rigorously 
designed, for more details readers are referred to any textbook on optimal control theory for PDEs 
[e.g., (Casas and Mateos, 2017; Tröltzsch, 2010)]. Recently, a novel technique of data assimilation 
has been developed in (Azouani et al., 2014) for a family of parabolic systems of partial differential 
equations in the two-dimensional Navier-Stokes equations and extended to several other systems, in-
cluding the three-dimensional Tamed Navier-Stokes equation (Markowich et al., 2016). The idea is to 
introduce an interpolant operator I

h
(I) and I

h
(S), modeling the real-time observations and measures, 

as a feedback controller into the original system given above, to obtain the following auxiliary system

ν η η γ µ δ

ν η µ δ

ν η γ µ

( ) ( ) ( )

( ) ( )

( )

( ) ( )

( )

∂
∂
=Γ + − ∇ − ∇ ∇ − + + −

∂
∂
=−Γ + ∇ + ∇ ∇ + − + −

∂
∂
=−Γ + ∇ + ∇ ∇ + −











I

I

I

t
S I I I I I I

S

t
S S S I S S S

R

t
S I R I I

,

1 ,

.

h

h

2
1

2
2

2

https://adcaij.usal.es


120

Lilia Muñoz, María Alonso-García, Vladimir Villarreal, 
Guillermo Hernández, Mel Nielsen, Francisco  
Pinto-Santos, Amilkar Saavedra, Mariana Areiza,  
Juan Montenegro, Inés Sittón-Candanedo, et al.

A Hybrid System For Pandemic Evolution Prediction

ADCAIJ: Advances in Distributed Computing  
and Artificial Intelligence Journal  

Regular Issue, Vol. 11 N. 1 (2022), 111-128
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

completed with the same boundary conditions and zero initial data. Briefly speaking, the parameter 
h controls the size (or the amount of needed) observations and measurements and δ

1
 and δ

2
 are nudging 

parameters. What can be shown (for the models cited above) is that, for a class of interpolants operators 
I

h
, for sufficiently small h and sufficiently large δ

1
 and δ

2
, the solution of the latter system converges 

exponentially fast in time towards the original solutions. This means that the solutions of the original 
theoretical model are now nudged towards the observed and measured data. The linear interpolant 
operator can be chosen as the approximation of the identity, the projector onto the low Fourier modes, 
a nodal averaging operator etc. The combination of this novel data assimilation approach and the 
extrapolation method based on a neural network will be investigated in a forthcoming research work.

2.3 Extrapolation of the coefficients
Using the models introduced above, adjustments can be made by moving the windows of the coef-

ficients that parametrize them, thus understanding them as functions of time. These parameters must be 
treated as time series whose extrapolation, using the equations that govern their dynamics, will allow to 
make predictions. In this case, due to the available data, an SIR model (2) has been considered, which 
makes it necessary to extrapolate the beta and gamma coefficients.

The series β (t) is extrapolated using a recurrent neural network called LSTM. (Abadi et al., 2015)
The series γ (t) is extrapolated by taking the median of the series γ (t) for t < t

max
. This parameter 

does not fluctuate much as it is the inverse of the time it would take for a person to recover from the 
disease, therefore, it is a constant.

LSTM is a type of recurrent neural network able to efficiently solve tasks involving long time 
lags.

The fundamental component of this neural network is the memory block, in turn consisting of one 
or more memory cells and three gating units shared by them. Each memory cell is based on a core 
self-connected linear unit, the Constant Error Carousel (CEC), which provides short-term memory 
storage for long-term periods of time. The gates, called input, forget and output gates, are trained to 
control the information flow in the cell by learning the relevant information to store in memory, for 
how long it must be kept, and when to use it.

Let t = 0, 1, 2,... be discrete time steps, where all the units’ activations are updated at each time step 
(forward pass) and then error signals are calculated for all weights (backward pass).

In the following, cj
v denotes the vth memory cell of the j th memory block, wlm is the weight on the 

connection from unit m to unit l, s
c
 is the c cell state, and y is a gate activation; zvcj (t) is the input to 

the cj
v cell and z

in
, zφ and z

out
 are inputs to the input, forget and output gates. Let f be a logistic sigmoid 

function with range [0,1] and g a centered logistic sigmoid function with range [–2, 2].
At each forward pass, inputs and activations are computed as follows:
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Thereby, when the input gate’s activation y
in
 is close to 1, the relevant inputs are stored in the mem-

ory block. Then, the cell state is obtained according to:

(6)
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In that way, when yφj ≈ 1 , the forget gate is opened and determines how long the information should 
be retained and when to remove it by resetting the cell state to zero.

Finally, the cell output yc is computed as:
t t s t .c j coutj j

( ) ( ) ( )= u
uy y

To overcome back-flow error problems, LSTM backward pass is designed as a powerful combi-
nation of a slightly modified, truncated Back Propagation Through Time (BPTT) and a customized 
version of Real-Time Recurrent Learning (RTRL). BPTT is used in output units, while output gates 
employ a slightly modified, truncated version of BPTT. However, a shortened version of RTRL is used 
in weights to cells, input gates, and the new forget gates. Truncation indicates that once mistakes leak 
out of a memory cell or gate, they are cut off, however, they do serve to modify the incoming weights. 
As a result, the CECs are the only section of the system where errors can flow back indefinitely. This 
improves the efficiency of LSTM updates without sacrificing learning power: outside of cells, error 
flow tends to diminish exponentially.

The architecture used consisted of an LSTM with sigmoidal activation for the input, forget, and 
output gates; tanh activation for the hidden state and the output hidden state; using a multi-step strategy 
for prediction up to a 14-day horizon. These networks were trained with the data resulting from the 
sliding window fits of the SIR model. This process allowed to evaluate predictions on the subsets of 
the data that had not been used in the training, thus being able to estimate confidence intervals for the 
predictions, as shown below.

2.4 Expert System for Modelling Restrictive Measures
The β (t) parameter of the SIR model experiences significant changes every time the Panamani-

an government must introduce new contingency measures. To be able to consider these exceptional 
measures in the model’s forecasts of the pandemic evolution, an expert system has been implemented. 
In accordance with the type of restrictive measure being applied by the government (e.g. lockdown, 
mobility restrictions, curfew), the system will modify the parameter β (t) for t > t

max
, which is acquired 

with the LSTM neural network. However, before this can be done, rules must be defined for the mod-
ification of these parameters. To this end, the effect that different contingency measures have had on 
the spread levels in the past, must be analyzed.

Since there have not been many scenarios in which such contingency measures have occurred and 
since their classification is inherently prone to subjectivity, it is impossible to give a rigorous estima-
tion of them on the basis of statistics. A simple quantitative proposal, made on the basis of the increase 
or decrease in transmission rate, is summarized in Table 1.

To measure the percentage of effectiveness of the predictions generated by the model, the predic-
tions made for 11 days, from May 10, 2021, to May 21, 2021, have been evaluated. Table 2 details the 
degree of effectiveness of each type of prediction; the effectiveness of the predictions is in a range of 
0.8 to 1.0, which means that the degree of effectiveness of all the predictions is considered according 
to the measurements obtained in the number of daily active cases.

Considering the fact that it takes several days to see the impact of a restriction on the transmission 
rate, (t time lag) accounts for the virus’ period of incubation, and (k time lag) accounts for the time it 

(7)

(8)
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Table 2. A comparative study of the three types of prediction and real active  
cases reported by the Ministry of Health of Panama

Predictions - Active Cases MINSA

Date Predictions Effectiveness Low 
Predictions

Effectiveness High 
Predictions

Effectiveness Active 
Cases

May 10, 
2021

3566 0.8 3532 0.8 3600 0.8 4278

May 11, 
2021

3698 0.8 3641 0.8 3756 0.9 4372

May 12, 
2021

3836 0.8 3757 0.8 3919 0.9 4601

May 13, 
2021

3982 0.8 3879 0.8 4091 0.9 4809

May 14, 
2021

4136 0.8 4006 0.8 4271 0.8 5081

May 15, 
2021

4297 0.8 4138 0.8 4460 0.8 5299

May 16, 
2021

4468 0.8 4274 0.8 4661 0.9 5367

May 17, 
2021

4647 0.9 4418 0.8 4874 0.9 5368

May 18, 
2021

4837 0.9 4569 0.8 5102 0.9 5536

May 19, 
2021

5037 0.9 4729 0.8 5348 0.9 5662

May 20, 
2021

5249 0.9 4895 0.8 5615 1.0 5821

May 21, 
2021

5473 0.9 5068 0.9 5896 1.0 5876

Table 1. Percentage of change according to the type of measure being applied  
on the basis of the increase or decrease in transmission rate

Government Measures Percentage Change Target Change

Strong restriction −30% 0.7

Slight restriction −10% 0.9

Slight relaxation + 10% 1.1

Strong relaxation +30% 1.3

takes to fully implement the measure; to modulate these changes a sigmoidal function is implemented 
in β. As a result of the decomposition carried out by the model and the ability to introduce these addi-
tional assumptions, the resulting system makes it possible to understand the causes of the prediction, 
adapting to the hypotheses to be made about them.
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2.5 Developing a Modular Architecture
A modular architecture has been developed to facilitate the modification of its functionalities/addi-

tion of new functionalities in the future, as well as to ensure its scalability. To this end, several modules 
have been developed:

• Periodic extraction of data: the automated extraction of COVID-19 statistics takes place once 
a day, these data are obtained from reports published by the Panamanian government on the 
official Ministry of Health website, (Presentaciones Covid-19 - Ministerio de Salud, Gobierno 
de Panamá).

• Deep Intelligence: This is a platform that makes it possible to store the input and output data 
of the model. Moreover, it facilitates the creation of dashboards which make it easy to extract 
conclusions from the data, as they are represented graphically.

• Data analysis: this is the developed hybrid model which periodically extracts Panama’s pan-
demic data from the Deep Intelligence platform to make forecasts of its evolution.

The data that is used by the Epidempredict for Covid-19 platform is extracted from the COVID-19 
information system of the Panamanian government on daily COVID reports. The information con-
tained in this source is synchronized every day.

The monitoring system considers the following data:

• Date: Date of the day to which the data belongs.

• Cases in isolation: The number of people infected with COVID who are in isolation on the last day.

• New cases of infection: The number of new cases of COVID detected in the last day.

• Cumulative cases of infection: Number of cumulative cases of COVID since the beginning of 
the pandemic.

• New deaths: The number of new deaths in the last day.

• Mild cases requiring hospitalization: The number of people hospitalized with mild symptoms 
of COVID in the last day.

• All hospitalized cases: The number of hospitalized persons with symptoms of COVID in the 
last day.

• Severe cases of hospitalization: The number of hospitalized people, experiencing severe symp-
toms of COVID in the last day.

• New tests: The number of COVID tests carried out in the last day.

• Percentage of positive tests: Percentage of positive COVID tests in the last day of testing.

• Cases of recuperation: Number of cumulative cases of recovery from COVID.

• Active cases: The number of active cases of COVID in the last day.

• Cumulative tests: The number of tests performed since the beginning of the pandemic up until now.

• Cumulative cases of recuperation: The cumulative number of cases of recovery from COVID, 
since the beginning of the pandemic up until now.

• Cumulative cases of death: The cumulative number of deaths since the beginning of the pan-
demic up until now.
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• Cumulative mild cases requiring hospitalization: The number of people hospitalized with mild 
symptoms of COVID since the beginning of the pandemic up until now.

• Cumulative cases of all hospitalizations: The number of people currently hospitalized with 
symptoms of COVID since the beginning of the pandemic up until now.

• Cumulative cases of severe hospitalization: The number of people that have been hospitalized 
since the beginning of the pandemic up until now, as a result of severe symptoms of COVID.

• Total vaccinations: The number of people that have been vaccinated against COVID since the 
beginning of the pandemic up until now.

3. Results
To assess the performance of the developed system, it has been used to forecast the COVID trans-

mission rate for a past period for which real data is already available. In this way, it has been possible 
to compare the predictions made by the system with the real transmission statistics. Specifically, the 
predictions have been made for a period of three months, from mid-August to mid-November.

Figure 3 illustrates the forecasts that have been made considering different scenarios. At that point 
in time, the government had not implemented any restrictions, and the forecasts match the real data. 
The forecasts have been made for a 20-day horizon. The prediction error is detailed underneath.

Figure 4 provides an example that will help the reader gain a greater understanding of the error 
distribution; in the case of a one-week prediction horizon, aggregated metrics can be provided using its 
absolute error to prevent sign compensation. Figure 5 illustrates the mean value of the absolute value 
of the relative error, along with the sample standard deviation of its distribution.

On average, the relative error in the number of new COVID cases is at 25 %. In the prediction of the 
number of active cases, the error is normally under 10 % for forecasts in the not distant future (under a 
week), when the limit is crossed, the growth is linear. Part of this uncertainty is caused by the variability of 
human reaction, which can be magnified by the geometric dynamics inherent to epidemiological processes.
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Figure 3. Example of a prediction of the number of active cases
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5. Conclusions
Forecasting the transmission of the virus is highly complex because the scenario is dynamic; nu-

merous factors intervene, such as the measures being implemented by the government at a particular 
point in time, the percentage of people that are vaccinated, the spread of new variations, etc.
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The proposed system consists of an SIR model and a long short-term memory (LSTM) artificial 
recurrent neural network. It is capable of making forecasts 4–8 months ahead in order to enable the 
Panamanian government to manage the pandemic and curb the transmission rate. Thanks to the in-
corporation of the expert system, it is possible to introduce new variables into the model once they 
are known, e.g., new contingency measures. The combination of models in this proposal makes the 
system’s results interpretable. The system not only has the capacity to provide a clear picture of the 
current situation of the pandemic but is also able to forecast its evolution. The mean squared error in 
terms of the number of positive cases has been estimated to be around 18% and 22% for the active and 
new cases respectively in the 2-week predictions.

Future work will include the analysis of more complex compartmental models, as well as lon-
ger-term predictions.
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