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Abstract. In this work the notion of linear cellular automata on trees
with loops is introduced and the reversibility problem in some particular
cases is tackled. The explicit expressions of the inverse cellular automata
are computed.
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1 Introduction

A cellular automaton can be considered as a finite state machine formed by a
finite number of identical memory units (called cells) which are endowed with
a state at every step of time. The state of each cell is updated according to a
local transition rule whose variables are the states of its neighbor cells. Cellular
automata are simple models of computation capable to simulate complex behav-
iors; consequently, several applications to all fields of Science and Technology
can be found in the scientific literature [6,9].

Of special interest are those cellular automata whose state set is F2 = {0, 1}
(boolean cellular automata). The vector whose coordinates stand for the states
of the ordered set of cells at time t is called configuration of the cellular automata
at t: Ct ∈ F

n
2 , where n is the total number of cells. When the dynamics of the

cellular automaton is governed by means of deterministic transition rules, every
configuration will have an unique successor in time. However, every configuration
may have several distinct predecessors and, consequently, the time evolution
mapping of the cellular automaton is not invertible in general. When there is only
one predecessor, the cellular automaton is called reversible; that is, the global
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transition function F : Fn
2 → F

n
2 , that yields the configuration at the next-step

during the evolution of the cellular automata, is injective [8]. The reversibility is
an interesting and desirable property in some applications of cellular automata
in Cryptography [13] and Computer Science [7].

The reversibility problem for cellular automata consists of both determining
when a certain cellular automaton is reversible, and computing the inverse cel-
lular automaton -if it is possible-. This is not a new problem [5] and it has been
tackled for different classes of cellular automata: elementary cellular automata
[10], linear cellular automata (see, for example, [3]), two-dimensional cellular
automata with hexagonal cellular space [1], memory cellular automata [11], mul-
tidimensional finite cellular automata [2,4], etc.

The main goal of this work is to study the reversibility problem of a par-
ticular and interesting type of cellular automata on graphs: the linear cellular
automata defined on full trees with loops. Specifically, we will show that some
cellular automata of this type are reversible, and the corresponding inverse cel-
lular automata will be explicitly computed.

The rest of the paper is organized as follows: the basic definitions and results
concerning linear cellular automata on trees with loops are introduced in Sect. 2;
in Sect. 3 the reversibility problem for this type of cellular automata is tackled.
Finally, the conclusions and further work are shown in Sect. 4.

2 Linear Cellular Automata on Trees with Loops

2.1 General Considerations

Let G = (V,E) be an undirected multigraph such that V = {v1, v2, . . . , vn}. A
boolean cellular automaton on G (CA for short) is a 4-uplet AG = (C,F2,N ,F)
where:

(1) The set C = {c1, c2, . . . , cn} is the cellular space of the CA such that the
i-th cell ci stands for the node vi of G, where 1 ≤ i ≤ n = |V |. For the sake
of simplicity will be denote the i-th cell by i in place of ci.

(2) The Galois field F2 = {0, 1} is the finite set of states that can be assumed by
each cell/node at each step of time. In this sense, the state of the i-th cell at time
step t is denoted by sti ∈ F2, with 1 ≤ i ≤ n. Moreover,Ct = (st1, s

t
2, . . . , s

t
n) ∈

F
n
2 is called configuration of the CA at step of time t.

(3) N denotes the function which assigns to each node its neighborhood (the
adjacent nodes). Then:

N : C → 2C (1)
i �→ Ni = {i, i1, i2, . . . , imi

} (2)

Note that as i ∈ Ni for every node i, then there is a loop on every node.
Moreover, (i, j) ∈ E iff i ∈ Nj or j ∈ Ni.
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(4) F = {f1, f2, . . . , fn} is the transition functions family that governs the
dynamic of the cellular automaton. The state of the node i at a particu-
lar time step t + 1 is computed by means of the boolean function fi whose
variables are the states of the neighbor nodes at the previous step of time t:

st+1
i = fi

(
sti, s

t
i1 , s

t
i2 , . . . , s

t
imi

)
∈ F2. (3)

Note that these local transition functions define a global transition functionF :

F : Fn
2 → F

n
2 (4)

Ct �→ Ct+1 = F
(
Ct

)

The CA is said to be linear if fi is a linear function for every i, that is:

st+1
i = aiis

t
i ⊕

mi⊕
k=1

aiiks
t
ik
, aii, aiik ∈ F2. (5)

In this case, the global dynamics of the CA can be interpreted in terms of matrix
algebra as follows: Ct+1 = F (Ct) = A · Ct, where A = (aij)1≤i,j≤n is the local
transition matrix.

Note that the dynamics of the linear cellular automata is biunivocally deter-
mined by the multigraph G (where each edge stands for a XOR summation of
the states of the corresponding adjacent nodes). This does not happen in the
case of non-linear cellular automata since the same multigraph yields to several
families of transition functions.

A cellular automaton is reversible when F is bijective, that is, the evolution
backwards is possible [12]; in this case F−1 : Fn

2 → F
n
2 is the global transition

function of the inverse cellular automaton. Note that a reversible CA yields
an invertible global behavior from a set of local transition functions which are
not reversible. The reversibility of a linear CA depends on the nature of its local
transition matrix: the linear cellular automaton is reversible iff its local transition
matrix A is non-singular and, consequently, A−1 is the local transition matrix
of the inverse CA.

2.2 Linear CA on Full Trees with Loops

This work deals with linear cellular automata on full trees with loops. A full
binary tree is a rooted tree in which each internal vertex has exactly two children.
Note that if the full binary tree has k internal vertices then it has n = 2k + 1
vertices, n− 1 edges and n+1

2 leaves. If there is a loop in each vertex, the notion
of full binary tree with loops is derived.

Let Tk be the set of full binary trees with loops with k internal vertices. Set
Tk ∈ Tk the tree with loops such that for every node i the following holds:
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Fig. 1. Family T3 of full binary trees with loops.

– i = 1 is the root.
– If i is even or i = 2k + 1 then i is a leaf.
– If i is odd with i �= 2k + 1, then i is an internal node.

This particular tree is called the characteristic representative of Tk. In Fig. 1
the family of full tree with loops T3 is shown (the full binary tree of the last row
is the characteristic representative T3).

A linear cellular automaton on a full tree with loops T ∈ Tk is AT =
(C,F2,N ,F) where F = {f1, f2, . . . , fn} is a family of boolean linear functions.
In particular, when ATk

is considered, the following hold:

(1) The root node is 1 ∈ C.
(2) The neighborhood function is defined as follows:

N : C → 2C

1 �→ N1 = {1, 2, 3}
i �→ Ni = {pi, i, i+, i−}
l �→ Nl = {pl, l}

where i ∈ C is an internal vertex (i �= 1), l ∈ C is a leaf, pi ∈ C is the parent of
the node i, and i+, i− ∈ C are the right and left children, respectively, of i.

(3) The local transition functions are as follows:

st+1
1 = st1 ⊕ st2 ⊕ st3,

st+1
i = stpi

⊕ sti ⊕ sti− ⊕ sti+ , i �= 1 internal vertex,

st+1
l = stpl

⊕ stl , l leaf.
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Note that the transition matrix of ATk
is A = (aij)1≤i,j≤2k+1 where:

aii = 1,with 1 ≤ i ≤ 2k + 1 (6)

ai,i+1 =
{

1, if i is odd
0, if i is even with 1 ≤ i ≤ 2k (7)

ai,i+2 =
{

1, if i is odd
0, if i is even with 1 ≤ i ≤ 2k − 1 (8)

aij = 0, if i + 2 ≤ j ≤ 2k + 1 (9)
aij = aji, with 1 ≤ i, j ≤ 2k + 1 (10)

3 Solving the Reversibility Problem

Theorem 1. The linear cellular automaton ATk
is reversible for every k, and

its inverse cellular automaton is defined by the symmetric transition matrix B =
(bij)1≤i,j≤2k+1, where:

bii =
{

1, if i = 4l + 1 or i = 4l + 4 with l ≥ 0, l ∈ N

0, if i = 4l + 2 or i = 4l + 3 with l ≥ 0, l ∈ N
(11)

bij =
{

1, if i = 4l + 1 or i = 4l + 2 with l ≥ 0, l ∈ N

0, if i = 4l + 3 or i = 4l + 4 with l ≥ 0, l ∈ N
(12)

j ≥ i + 1.

Proof. To proof the above statement, it is enough to show that the boolean
matrix B = (bij)1≤i,j≤2k+1 defined by (11)–(12) satisfies the following: A · B =
B · A = Id.

Let us suppose that A · B = C where C = (cij)1≤i,j≤2k+1, then we have to
prove that: (1) cii = 1 for 1 ≤ i ≤ 2k + 1, and (2) cij = 0 for every i �= j.

(1) For the sake of clarity, we will distinguish seven cases:
– Computation of c11: as a14 = a15 = . . . = a1,2k+1 = 0, then

c11 =
2k+1∑
h=1

a1hbh1

= a11b11 + a12b21 + a13b31 + a14b41 + . . . + a1,2k+1b2k+1,1

= 1 · 1 + 1 · 1 + 1 · 1 + 0 + . . . + 0 = 3
≡ 1(mod 2). (13)

– Computation of c22: as a23 = a24 = . . . = a2,2k+1 = 0, then

c22 =
2k+1∑
h=1

a2hbh2

= a21b12 + a22b22 + a23b32 + . . . + a2,2k+1b2k+1,2

= 1 · 1 + 1 · 0 + 0 + . . . + 0 = 1. (14)
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– Computation of c33: as a36 = a37 = . . . = a3,2k+1 = 0, then

c33 =
2k+1∑
h=1

a3hbh3

= a31b13 + a32b23 + a33b33 + a34b43 + a35b53

+a36b63 + . . . + a3,2k+1b2k+1,3

= 1 · 1 + 0 · 1 + 1 · 0 + 1 · 0 + 1 · 0 + 0 + . . . + 0 = 1. (15)

– Computation of cii with 3 ≤ i ≤ 2k − 1. In this case we can also consider
four subcases depending on the value of the subindex i.

• If i = 4l + 1 with l ≥ 0, then:

cii = c4l+1,4l+1 =
2k+1∑
h=1

a4l+1,hbh,4l+1 =
4l+3∑

h=4l−1

a4l+1,hbh,4l+1

=
4l+3∑

h=4l−1

bh,4l+1, (16)

since i = 4l+1 is odd and, consequently, a4l+1,h = 1 for every value of
h. Moreover, as b4l−1,4l+1 = b4l,4l+1 = 0 and b4l+1,4l+1 = b4l+2,4l+1 =
b4l+3,4l+1 = 1 then c4l+1,4l+1 = 3 ≡ 1(mod 2).

• If i = 4l + 2 with l ≥ 0, then:

cii = c4l+2,4l+2 =
2k+1∑
h=1

a4l+2,hbh,4l+2 =
4l+4∑
h=4l

a4l+2,hbh,4l+2

= b4l+1,4l+2 + b4l+2,4l+2 = 1 + 0 = 1, (17)

since a4l+2,4l = a4l+2,4l+3 = a4l+2,4l+4 = 0 and a4l+2,4l+1 =
a4l+2,4l+2 = 1.

• If i = 4l + 3 with l ≥ 0 then:

cii = c4l+3,4l+3 =
2k+1∑
h=1

a4l+3,hbh,4l+3 =
4l+5∑

h=4l+1

a4l+3,hbh,4l+3

= a4l+3,4l+1 + a4l+3,4l+2 = 1 + 0 = 1, (18)

since b4l+1,4l+3 = b4l+2,4l+3 = 1 and b4l+3,4l+3 = b4l+4,4l+3 =
b4l+5,4l+3 = 0.

• If i = 4l + 4 with l ≥ 0, then:

cii = c4l+4,4l+4 =
2k+1∑
h=1

a4l+4,hbh,4l+4 =
4l+6∑

h=4l+2

a4l+4,hbh,4l+4

= b4l+3,4l+4 + b4l+4,4l+4 = 0 + 1 = 1, (19)

since a4l+4,4l+2 = a4l+4,4l+5 = a4l+4,4l+6 = 0 and a4l+4,4l+3 =
a4l+4,4l+4 = 1.
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– Computation of c2k−1,2k−1:

c2k−1,2k−1 =
2k+1∑
h=1

a2k−1,hbh,2k−1 (20)

= a2k−1,1b1,2k−1 + . . . + a2k−1,2k−4b2k−4,2k−1

+a2k−1,2k−3b2k−3,2k−1 + a2k−1,2k−2b2k−2,2k−1

+a2k−1,2k−1b2k−1,2k−1 + a2k−1,2kb2k,2k−1

+a2k−1,2k+1b2k+1,2k−1

= b2k−3,2k−1 + b2k−1,2k−1 + b2k,2k−1 + b2k+1,2k−1.

As

b2k−3,2k−1 =
{

1, if 2k − 3 = 4l + 1 ⇐⇒ k is even
0, if 2k − 3 = 4l + 3 ⇐⇒ k is odd (21)

b2k−2,2k−1 =
{

1, if 2k − 2 = 4l + 2 ⇐⇒ k is even
0, if 2k − 2 = 4l + 4 ⇐⇒ k is odd (22)

b2k,2k−1 = b2k−1,2k =
{

1, if k is even
0, if k is odd (23)

b2k+1,2k−1 = b2k−1,2k+1 =
{

1, if k is even
0, if k is odd (24)

then

c2k,2k =
{

1 + 0 = 1, if k is odd
0 + 1 = 1, if k is even (25)

– Computation of c2k,2k: since a2k,1 = . . . = a2k,2k−3 = 0, a2k,2k−2 =
a2k,2k+1 = 0, and a2k,2k−1 = a2k,2k = 1, then

c2k,2k =
2k+1∑
h=1

a2k,hbh,2k

= a2k,1b1,2k + . . . + a2k,2k−3b2k−3,2k

+a2k,2k−2b2k−2,2k + a2k,2k−1b2k−1,2k

+a2k,2kb2k,2k + a2k,2k+1b2k+1,2k

= b2k−1,2k + b2k,2k. (26)

As

b2k−1,2k =
{

1, if 2k − 1 = 4l + 1 ⇐⇒ k is odd
0, if 2k − 1 = 4l + 3 ⇐⇒ k is even (27)

b2k,2k =
{

1, if 2k = 4l + 4 ⇐⇒ k is even
0, if 2k = 4l + 2 ⇐⇒ k is odd (28)

then

c2k,2k =
{

1 + 0 = 1, if k is odd
0 + 1 = 1, if k is even (29)
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– Computation of c2k+1,2k+1: since a2k+1,1 = . . . = a2k+1,2k−2 =
0, a2k+1,2k = 0 and a2k+1,2k−1 = a2k+1,2k+1 = 1, then

c2k+1,2k+1 =
2k+1∑
h=1

a2k+1,hbh,2k+1

= a2k+1,1b1,2k+1 + . . . + a2k+1,2k−2b2k−2,2k+1

+a2k+1,2k−1b2k−1,2k+1 + a2k+1,2kb2k,2k+1

+a2k+1,2k+1b2k+1,2k+1

= b2k−1,2k+1 + b2k+1,2k+1. (30)

As

b2k−1,2k+1 =
{

1, if 2k − 1 = 4l + 1 ⇐⇒ k is odd
0, if 2k − 1 = 4l + 3 ⇐⇒ k is even (31)

b2k+1,2k+1 =
{

1, if 2k + 1 = 4l + 1 ⇐⇒ k is even
0, if 2k + 1 = 4l + 3 ⇐⇒ k is odd (32)

then

c2k+1,2k+1 =
{

1 + 0 = 1, if k is odd
0 + 1 = 1, if k is even (33)

(2) Now, we can distinguish six cases:
– Computation of c1j with j > 1: as a1h = 0 for 4 ≤ h ≤ 2k + 1 and
a11 = a12 = a13 = 1 then

c1j =
2k+1∑
h=1

a1hbhj = b1j + b2j + b3j = 0. (34)

– Computation of c2j with j > 2: as a2h = 0 for h ≥ 3 and a21 = a22 = 1
then

c2j =
2k+1∑
h=1

a2hbhj = b1j + b2j = 1 + 1 = 2 ≡ 0(mod 2). (35)

– Computation of c3j with j > 3: as a3h = 0 for h ≥ 6, a31 = a33 = a34 =
a35 = 1, and a32 = 0 then

c3j =
2k+1∑
h=1

a3hbhj = b1j + b3j + b4j + b5j (36)

= 1 + 1 + 0 + 0 = 2 ≡ 0(mod 2).

– Computation of cij with 4 < i < 2k and j > i: as ai,j = 0 for j < i − 2
and j > i + 2 then

cij = ai,i−2bi−2,j + ai,i−1bi−1,j + bij (37)
+ai,i+1bi+1,j + ai,i+2bi+2,j .



The Reversibility of Cellular Automata on Trees with Loops 249

If i is even then cij = bi−1,j + bij since ai,i−2 = ai,i+1 = ai,i+2 = 0 and
ai,i−1 = 1. Consequently:

cij = bi−2,j + bij + bi+1,j + bi+2,j

=
{

0 + 1 + 1 + 0 = 2 ≡ 0(mod 2), if i = 4l + 1
1 + 0 + 0 + 1 = 2 ≡ 0(mod 2), if i = 4l + 3 (38)

On the other hand, if i is odd then cij = bi−2,j + bij + bi+1,j + bi+2,j since
ai−1,i = 0 and ai,i−2 = ai,i+1 = ai,i+2 = 1. As a consequence

cij = bi−1,j + bij =
{

1 + 1 = 2 ≡ 0(mod 2), if i = 4l + 2
0 + 0 = 0, if i = 4l + 4 (39)

– Computation of c2k−1,j with j > 2k − 1, that is, j = 2k, 2k + 1. For the
sake of simplicity we will distinguish two subcases:

• If j = 2k then

c2k−1,2k =
2k+1∑
h=1

a2k−1,hbh,2k (40)

= b2k−3,2k + b2k−1,2k + b2k,2k + b2k+1,2k

=
{

1 + 0 + 1 + 0 = 2 ≡ 0(mod 2), if k is even
0 + 1 + 0 + 1 = 2 ≡ 0(mod 2), if k is odd

• If j = 2k + 1 then:

c2k−1,2k+1 =
2k+1∑
h=1

a2k−1,hbh,2k+1 (41)

= b2k−3,2k+1 + b2k−1,2k+1 + b2k,2k+1 + b2k+1,2k+1

=
{

1 + 0 + 0 + 1 = 2 ≡ 0(mod 2), if k is even
0 + 1 + 1 + 0 = 2 ≡ 0(mod 2), if k is odd

– Computation of c2k,j with j > 2k, that is, j = 2k + 1: since a2k,h = 0 for
1 ≤ h ≤ 2k − 2, a2k,2k−1 = a2k,2k = 1 and a2k,2k+1 = 1 then

c2k,2k+1 =
2k+1∑
h=1

a2k,hbh,2k+1 = b2k−1,2k+1 + b2k,2k+1. (42)

As

b2k−1,2k+1 =
{

1, if 2k − 1 = 4l + 1 ⇐⇒ k is odd
0, if 2k − 1 = 4l + 3 ⇐⇒ k is even (43)

b2k,2k+1 =
{

1, if 2k = 4l + 2 ⇐⇒ k is odd
0, if 2k = 4l + 4 ⇐⇒ k is even (44)

then

c2k,2k+1 =
{

1 + 1 = 2 ≡ 0(mod 2), if k is odd
0 + 0 = 0, if k is even (45)

Using a similar argument, we can also prove that B · A = Id.
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4 Conclusions and Further Work

In this work the notion of linear cellular automaton on full trees with loops is
introduced and its reversibility problem is studied. Specifically, it is shown that
some linear cellular automata of this type are reversible and the inverse cellular
automaton is explicitly computed.

Future work aimed at solving the complete reversibility problem for all AT

with T ∈ Tk, and studying the applications of AT in different fields such as
f -reversible processes on graphs or digital image processing.
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