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A B S T R A C T

Current approaches for risk management in energy market participation mostly refer to portfolio optimization
for long-term planning, and stochastic approaches to deal with uncertainties related to renewable energy gen-
eration and market prices variation. Risk assessment and management as integrated part of actual market ne-
gotiation strategies is lacking from the current literature. This paper addresses this gap by proposing a novel
model for decision support of players’ strategic participation in electricity market negotiations, which considers
risk management as a core component of the decision-making process. The proposed approach addresses the
adaptation of players’ behaviour according to the participation risk, by combining the two most commonly used
approaches of forecasting in a company’s scope: the internal data analysis, and the external, or sectorial, data
analysis. The internal data analysis considers the evaluation of the company’s evolution in terms of market
power and profitability, while the sectorial analysis addresses the assessment of the competing entities in the
market sector using a K-Means-based clustering approach. By balancing these two components, the proposed
model enables a dynamic adaptation to the market context, using as reference the expected prices from com-
petitor players, and the market price prediction by means of Artificial Neural Networks (ANN). Results under
realistic electricity market simulations using real data from the Iberian electricity market operator show that the
proposed approach is able to outperform most state-of-the-art market participation strategies, reaching a higher
accumulated profit, by adapting players’ actions according to the participation risk.

1. Introduction

The electricity sector restructuring [29] aimed at obtaining public
benefits, increasing the efficiency of the sector by providing consumers
with reliable high quality service at fair costs. This should be achieved
by introducing a competitive deregulated market approach to replace
the centralized, monopolistic and/or state-owned paradigm that tradi-
tionally ruled the sector [31]. Prices that, in many cases, do not reflect
the costs and the lack of experience in a field for which the sector
particularities make prices behaviour significantly different from al-
ready existing markets transacting other commodities and products
marked the reform departing point and its subsequent evolution [4].
Market rules, however, should be thoroughly refined, as generating
companies increasing market share can prepare the environment for the
emergence of (tacit) collusion between these companies; see e.g. [1,14]
which may lead to actions preventing effective competition, as has
happened in the UK energy market [3].

In such a dynamic, complex, and competitive environment as the

power and energy sector, simulation and decision support tools are of
crucial importance. Market players and regulators are very interested in
foreseeing market behaviour: regulators to test rules before they are
implemented and to detect market inefficiencies; market players to
understand market’s behaviour and act in order to maximize their re-
sults from market participation. The need for understanding those
mechanisms and how the involved players’ interaction affects the out-
comes of the markets contributed to the growth of usage of simulation
tools. Multi-agent based software is particularly well fitted to analyse
dynamic systems with a large amount of complex interactions among its
constituents, such as the electricity markets. Several modelling tools
directed to the study of restructured wholesale power markets have
emerged. Some relevant tools in this domain are: the Electricity Market
Complex Adaptive System (EMCAS) [10,30], the Agent-based Model-
ling of Electricity Systems (AMES) [12,11] and the Multi-Agent Simu-
lator for Competitive Electricity Markets (MASCEM) [32,27]. Although
some of these works confirm the applicability and the value of simu-
lation tools to the study of electricity markets, particularly by using
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multi-agent systems, they present a common limitation: the lack of
adaptive machine learning capabilities that allow these tools to effec-
tively provide measurable support to market entities. Current tools are
directed to the study of different electricity market mechanisms and to
the analysis of the relationships between market entities, but they are
not fitted to provide support to market negotiating players in what
concerns the achievement of the best possible outcomes from power
transactions.

Several studies addressing the strategic behaviour of market players
can be found in the literature, e.g. exploring the game theoretic di-
mension of the market [2], assessing risk management in line with the
portfolio theory [6], or by using forecasting approaches to predict
prices and optimize the bidding process [16]. However, current models
are not capable of adapting to different market circumstances and ne-
gotiating contexts, as they are limited to specific market scenarios and
are not integrated in actual market simulation or decision support
systems. Thereby current approaches are not able to provide market
players with the means to change their behaviour in a real market
environment, and therefore pursuit the achievement of the best possible
outcomes. The data generated during simulations and by real electricity
markets operation can be analysed by knowledge discovery and ma-
chine learning techniques to enable the assessment of each current
context and to dynamically and consistently learn over time, in face of
the alternative tools and solutions, what are the best ones to be used in
each context. The contextualization of the decision-making process
should thereby have a prominent role in order to enable players to
adapt their behaviour and risk aversion according to each market
context.

This paper addresses this limitation by providing an original con-
tribution towards the adaptability of market players’ actions according
to the context. An innovative model that dynamically adapts players’
decisions according to the evolution of players’ participation risk is
proposed. A riskier or more conservative exposure to the market is
determined based on the combination between the two most commonly
used approaches of forecasting in a company’s scope. These approaches
are the internal data analysis of the company, and the external, or
sectorial, data analysis [8]. The internal data analysis considers the
assessment of the company’s evolution in terms of market power and
profitability. The sectorial analysis addresses the assessment of the
competing entities in the market sector. This is achieved by grouping
the competing companies according to their similarity using a

clustering approach, namely the K-Means [10,9] algorithm. In this way,
the entities with more market power are identified, and also those with
the higher similarity to the subject entity, i.e. the direct competitors. By
balancing the two components, a risk aversion factor is revised, which
enables adapting the market behaviour of the supported player in real
time, using as reference the market price forecast. The forecasting
process is performed using a dynamic Artificial Neural Network (ANN)
[23].

The proposed methodology is tested and validated in a simulation
scenario based on real electricity markets data from the Iberian market
– MIBEL [15]. This is enabled by the integration of the proposed model
in the Multi-Agent Simulator of Competitive Electricity Markets
(MASCEM) [27]. MASCEM is an agent based simulator that has the
capability of simulating a diversity of market models used in real
electricity markets throughout the world. The integration in MASCEM
is achieved through the including of the proposed model in the Adap-
tive Decision Support for Electricity Market Negotiations (AiD-EM)
decision support system [21]. This decision support system includes
several benchmark market participation strategies, which enables
comparing the performance of the proposed model against several other
state of the art approaches, thus demonstrating that the proposed model
is able to outperform most current market negotiation strategies,
reaching a higher accumulated profit, by dynamically adapting the
player’s actions according to each context and to the suitable level of
risk.

After this introductory section, Section 2 presents the proposed
methodology, including the considered market mechanisms and as-
sumptions. Section 3 includes a case study based on real data from the
Iberian market, and Section 4 wraps-up the paper with the most re-
levant conclusions from this work.

2. Data, methodology and limitations

2.1. Data

The data used in this study is based on real data extracted from the
Iberian market operator – OMIE website [19], using an automatic data
extraction that has been presented in [25]. This data extraction tool
enables downloading the market results and players’ submitted bids
immediately after the market is executed. In this way, it is possible to
automatically generate simulation scenarios that represent the reality of

Nomenclature

P profits from selling energy (€)
t time (hour)
It incomes in time t (€)
Et expenses in time t (€)
FC fixed costs (€)
V volume of power generation (W)
a generation cost factor
b generation cost factor
D decision (to risk or to act towards equilibrium)
FMP forecasted market price (cent.€/kWh)
Q ANN error function - squared error
q target output for a training sample - market price (cent.

€/kWh)
y real value for a training sample - market price (cent.

€/kWh)
j ANN neuron
oj output of neuron j
wkj weight between neurons k and j
f ANN activation function
n set of observations in K-Means

x observation/sample containing the d variables that char-
acterize it

d number of variables that characterize an observation
k number of clusters
C cluster
μi cluster centroid
SRP sector reference price (cent.€/kWh)
Bj bid price of player j (cent.€/kWh)
S supported player
γ bid decrement [0, 1]
β risk factor [0, 1]
RP reference price (cent.€/kWh)
BP final bid price (cent.€/kWh)
MP actual market price resulting from the market execution

(cent.€/kWh)
Y real market price values (cent.€/kWh)
F forecasted market price values (cent.€/kWh)
N number of forecasted periods
d distance between each observation assigned to each

cluster and the centroid of the corresponding cluster
R mean point of all observations
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the MIBEL market, and execute them a few minutes after the market is
closed. Simulation scenarios are generated by the Realistic Scenarios
Generator (RealScen), a system presented in [28]. RealScen enables the
automatic generation of market simulation scenarios, allowing the re-
presentation, through software agents, of the exact reality that has
occurred in the market (reflecting all real players’ exact actions – re-
sulting in a scenario with thousands of agents), or, alternatively, the
generation of reduced simulation scenarios, including a limited number
of software agents that represent the reality in a summarized manner,
considering different preferences that can be specified (e.g. having only
one agent representing all real players of the same generation type; one
agent per specific geographic location, etc).

The effective data used to define the simulation scenarios, and thus
execute the simulations in this study, refers to (all data can be consulted
in [19]):

• all real players characteristics, including generation type, geo-
graphic location, etc;

• all players submitted bids for each market, for each period of each
day. Bids are defined in Section 2.2;

• all players complex conditions associated to their bids;

• all players market results, including the transaction price and traded
volume (accepted/rejected bids);

• the general market results, including the defined market price, total
traded volume, imported/exported volume.

2.2. Market mechanism

Double auction markets are, currently, the most used market model
[29]. They are used by most market operators in Europe for day-ahead
spot markets and intraday markets [15,17,7]. Double auction based
markets comprise bids from both sellers and buyers. Sellers are all en-
tities that participate in the market to sell and buyers are all entities
that participate in the market to purchase, regardless of whether they
are retailers, traders, distribution companies, consumers, prosumers or
generators. Such markets are structured to consider production fluc-
tuations as well as differences in production costs of distinct units. In
this market, each participating entity must present their selling or
buying proposals for each negotiation period (typically 24 hourly per-
iods of a day in day-ahead markets, but also for different numbers of
periods in intraday markets). These proposals or bids are typically
composed by a tuple (power, price), with different meanings, whether
they come from buyers or sellers, respectively: power stands for amount
of power to be bought or sold, and price is the maximum accepted price
or minimum selling price. When the negotiation is finished, an eco-
nomic dispatch for each period is set by the market operator. At the end
of each period the market operator uses a market-clearing tool estab-
lishing the market price – a unique price that is applied to all trans-
actions in the period.

The market mechanism works as a symmetric market, where both
suppliers and consumers submit bids. The market operator orders the
selling and demand offers: selling bids start with the lowest price and
move up, and demand bids start with the highest price and move down.
Then, the proposed bids form the supply and demand step curves, and
the point at which both curves intersect determines the market price,
paid to all accepted supplier and consumers. The bids of every supplier
offering prices lower than the established market price and every
consumer offering prices higher than the market price are accepted.
Fig. 1 shows the symmetric market prices definition.

The profits can be improved by submitting bids that are advanta-
geous for the player in the bidding process; i.e for a seller player, a bid
price below the established market price, but still as high as possible, in
order to assist in increasing the market price (origination of higher
profits, through a higher market price). In the case of a buyer agent, the
bid price should be above the established market price, but as low as
possible, in order to reduce the cost that is paid for the bought energy.

Distinct variations of this market type are used by different market
operators, e.g. MIBEL accommodates the submission of complex offers
[15], Nord Pool supports block orders [17], and EPEX includes the
possibility for flexible orders [7].

2.3. Proposed methodology

The main principle of the proposed approach is to decide when are
the most appropriate moments to opt by a riskier or a safer approach in
market negotiations. This decision is based on the combination between
the internal data analysis of the supported company and the external/
sectorial analysis. Fig. 2 shows a general diagram with the interaction
between the main blocks that compose the proposed methodology.

From Fig. 2 it can be seen that the proposed methodology has as
main output a final bid, which is provided to the supported player so
that it can be submitted to the market. This bid is defined according to a
decision method, detailed in Section 2.3.3. This decision is achieved by
combining the reference market price, resulting from a market price
forecasting using an ANN [24], as presented in Section 2.3.1, and the
sectorial reference price, which results from a clustering process using
K-Means [10,9], which groups all the companies involved in the market
according to their similarity, as presented in Section 2.3.2. ANN is used
because of the very good performance in forecasting electricity market
prices compared to multiple other reference learning and data mining
approaches, as is demonstrated in multiple works [16,18,24]. K-Means
is used due to its demonstrated ability to deal with power system pro-
blems, including some similar problems that address the grouping of
energy characteristics; see e.g. [22] and [13].

The way these two reference prices are used to reach the final bid
price is dependent on the decision to risk or play safe, which results
from the internal analysis, which is described as follows.

2.3.1. Internal analysis
The internal analysis of the company can be viewed as its economic

development, i.e., the increasing or decreasing of the achieved profits.
The profits P in time t are calculated according to the total incomes It
and expenses Et in t. as defined as in (1). Et is calculated as in (2), taking
into consideration the company’s fixed costs FC, such as the personnel
expenses, the infrastructures’ costs, the overheads, continuous main-
tenance, etc. Additionally, it also considers the variable costs, which are
dependent on the volume of energy generation V, and are usually re-
presented through a quadratic function, considering two variable fac-
tors: a and b.

= −P I Et t t (1)

= + +E a V b V FC. .t t t t
2 (2)

The analysis on the profits evolution is performed through a com-
parison between the most recent achieved profits, with the immediately
previous ones. If the evolution is crescent, i.e., the recent profits are
increasing, it is considered that the company is consolidating its

Fig. 1. Symmetric market price establishment [20].
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position on the market, and therefore it is in a position where it can
afford to take risks, in order to try obtaining higher profits.

On the other hand, if the recent profits tendency is decreasing, the
company must play safe, acting towards equilibrium, in a way to assure
the continuous achievement of incomes, even if they are not as high as
they could be if assuming a riskier position in the market. These stra-
tegic models are presented in Section 2.3.3 Decision Method. This de-
cision D is formalized as in (3).

⎧
⎨⎩

= ↑
= ↓

D risk if P
D equilibrium if P

,
, (3)

When the decision is set for risking, and trying to achieve the higher
possible profits, the forecasted market price is used as reference for
setting the bid price for market negotiation, as it is the threshold of
where a bid should be located, in order to obtain profits (when biding a
price higher than the market price the bid will be rejected, assuming a
classical double auction market, as in most day-ahead spot markets,
especially in Europe [29], including in MIBEL [15], which is considered
in the case study presented in Section 3). The market price forecast is
performed using an ANN, as described in detail in [23]. The considered
ANN is characterized as a feedforward neural network, receiving as
inputs the market prices and total amount of negotiated energy in the
market, referring to: the day before the desired forecasted day, one
week before, two weeks before, and three weeks before. The ANN
considers four nodes in the intermediate layer, and one output – the
forecasted market price (FMP). The topology of this ANN is presented in
Fig. 3.

Backpropagation using the gradient descent method [26] has been
used as training algorithm for the ANN. This requires calculating the
derivative of the squared error function with respect to the weights of
the network. The squared error function Q for the single output neuron
is defined as in (4).

= −Q q y1
2

( )2
(4)

where q is the target output for a training sample, i.e. the expected/real
value (market price) of training instances; and y is the actual output of
the output neuron, i.e. the actual forecasted market price in each
iteration of the training process.

For each neuron j, its output oj is defined by feedforward calcula-
tion, as in (5).

∑= ⎛

⎝
⎜

⎞

⎠
⎟

=

o f w xj
k

n

kj k
1 (5)

where n is the number of input units to neuron j, wkj is the weight
between neurons k and j, and xk is the actual training data observation
associated to neuron k. Hence, the input for the activation function f of
a neuron is the weighted sum of outputs ok of the previous neurons. The
used activation function f is the logistic function, a log-sigmoid func-
tion, which can be defined as in (6).

=
+ −f z

e
( ) 1

1 z (6)

The backpropagation algorithm is used as the training method of the
designed artificial neural network. The backpropagation algorithm in-
cludes the following steps [24]:

1. Initialize weights as small random numbers;
2. Introduce training data to the ANN and calculate the output by

Fig. 2. Proposed methodology overview.

Fig. 3. Artificial neural network topology.
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propagating the input forward through the network using (5);
3. Calculate the error using (4)
4. Propagate the sensitivities backward through the network by simply

taking the derivative of the error function (4) with respect to the
network parameters;

5. Calculate wkj updates through optimization using the gradient des-
cent method [26]; i.e. using the calculated derivative of the error
function with respect to the network weights, the ANN optimizes the
weights such that the error decreases;

6. Update the values of wkj according to the values calculated in step 5;
7. Repeat steps 2 to 6 until all examples are classified correctly.

2.3.2. External/Sectorial analysis
When the decision from the internal analysis is acting towards

equilibrium, and consequently playing safe, safeguarding the achieve-
ment of profits, even if they are not optimal, the reference value used
for bidding is based on the external or sectorial analysis. The sectorial
analysis intends to: firstly, understand how the sector (in this case the
electricity sector) is moving inside the global market; secondly, realize
in which sub-sector (most influent companies, less powerful ones, etc.)
the company that is being supported by this method is located; and
thirdly, analyse how each of these sub-sectors is developing, e.g., going
towards the unification of several sub-sectors, or otherwise, distance
themselves.

In order to define the sub-sectors inside the electricity market
sector, a clustering mechanism is used to group the companies that act
in the electricity market, in different groups, according to their char-
acteristics. The companies are grouped according to their similarity in
what concerns their dimension (amount of produced energy), the prices
they are practicing recently (the most recent bid prices), and the
average price they presented for the last month and year. The clustering
is performed using the K-Means algorithm [10,9]. K-Means is one of the
most widely used clustering algorithms, mostly due to its effectiveness
in different domains. K-Means contemplates a set of n observations (x1,
x2,…, xn), in which each is a d-dimensional real vector. Each dimension
represents a different variable that characterizes the observation, e.g.
size and prices. The clustering process partitions the n observations into
k (≤n) clusters C = {C1, C2, …, Ck} so that the Within-Cluster Sum of
Squares (WCSS) is minimized, as in (7).

∑ ∑ −
= ∈

x μmin || ||
i

k

x C
i

1

2

i (7)

where μi is the mean of points in Ci, i.e. the cluster centroid.
The vector that characterizes each observation xp, p ∈ {1, …, n} is

equal to the sum of the individual dimensions of n vectors. Each n
vector comprises the information referring to a different variable. The
clustering process undergoes an iterative process aiming at minimizing
(7):

• Step 1 - each observation xp is assigned to cluster C(t) whose mean
value yields the minimum WCSS in iteration t, as presented in (8);

• Step 2 - the updated means are calculated for all clusters, con-
sidering the newly assigned observations, determining each cluster’s
new centroid μi, as shown in (9).

= − ≤ − ∀ ≤ ≤C x x μ x μ j j k{ : || || || || , 1 }i
t

p p p
( )

i
(t) 2

j
(t) 2

(8)

∑=+

∈

μ
C

x1
| |i

t
x C

ji
(t 1)

( )
j i

t( ) (9)

The iterative process finishes when the convergence process is
completed, i.e. when the observations assignment to distinct clusters
stabilizes. Hence, the K-Means assigns observations to the nearest
cluster by distance by minimizing the WCSS objective, in (7).

A value of k=3 is pre-defined, so that the clustering mechanism
groups the companies into three different clusters. In most cases, one

will be representing the most influential companies, one representing
the most similar companies to the one that is being supported by the
proposed methodology, and one representing the less influent compa-
nies over the market, however, the supported player may also be
identified as belonging to the most influential or less influential groups
of companies.

Fig. 4 shows an illustrative example considering a two-dimensional
clustering using only the price and volume, in order to facilitate the
visualization. Each company, illustrated by a X is allocated to one
cluster, according to the similarity between the different companies. S
represents the supported player, which is also allocated to one of the 3
clusters.

The average bid price of the companies grouped in the same cluster
as the supported one, is determined as the sector reference price (SRP),
as in (10), and it is used as reference for the situations in which the
decision is to act towards equilibrium, as explained in Section 2.3.1.

∑= ∈
∈

SRP
C

B S C1
| |

,
i

t
B C

j i
t(t)

( )
( )

j i
t( ) (10)

where Bj is the bid price of player j, which is part of the same cluster as
the supported player S.

2.3.3. Decision method
Using the results from the Internal and External data analysis, a

decision method is applied to define the final bid. Fig. 5 presents a
flowchart that shows the decision process.

From Fig. 5 one can see that from the Internal Analysis results a
decision on whether to risk or play safe, as shown in Section 2.3.1.
depending on this decision, one of two reference prices will be con-
sidered: either the forecasted market price when risking, or the cluster
reference price when playing safe. The only situation in which this may
not apply is when the supported company is placed in a highly com-
petitive cluster, with high risking prices. In this case, since the objective
is still acting safe, the price assumed as reference is the lower value
between the cluster reference and the market price forecast. Both re-
ference values (sector reference price in case of equilibrium, or market
price in case of risking), are subject to a decrement γ before being de-
fined as the final bid price for the supported player. The calculation of γ
is based on a risk factor β (11), user-defined accordingly to the com-
pany’s intrinsic objectives and goals, with the purpose of guaranteeing
that the final bid price is located below the reference, regardless of
which; thereby safeguarding the success of the bidding process.

∈β [0, 1] (11)

The higher β is, the smaller is γ, meaning a higher proximity to the
used reference values, and therefore increasing the risk to which it is
subject. The initial decrement is calculated as in (12).

= − =γ β t1 , 0t (12)

If the decision in a certain moment is acting towards equilibrium, γ

Fig. 4. Clustering process using K=3.
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stays fixed at this value. On the other hand, if the decision is risking for
a continuous number of periods, γ decreases according to (13), slowly
increasing the risk, until the bid price is equal to the reference value. If
the sequence of risking periods is interrupted (due to a sudden decrease
of profits), γ returns to its initial value.

= −+γ γ β(1 )t t1 (13)

Using this decrement and the reference price (RP) (which equals
SRP or FMP according to the decision process) it is now possible to
define the final bid price BPt, as in (14).

=BP γ RPt t t (14)

The advantage of the defined bid can evaluated by the profits P it
originates to the supported player. The objective is thereby to maximize
the player’s profits, as defined in (15).

= −P I Eargmax t t t (15)

where I and E are the incomes and expenses, as explained in (1). The
incomes are a direct result of the market outcomes, as in (16) which are
dependent on the bids of the participant players as explained in Section
2.2; hence the importance of defining a bid price that is able to max-
imize these incomes.

=I MP Vt t t (16)

where MP is the actual market price resulting from the market execu-
tion, and V is the volume of traded power of the supported player.

An adequate balance between the decision of taking higher risks,
and acting safe, towards equilibrium, is the main goal of this metho-
dology, by constantly adapting the supported player’s exposure to risk,
and consequently the aggressiveness of the negotiation process, de-
pending on the evolution of the market sector and of the internal
evolution of the supported entity. The decision making concerning the
adequate times to risk is thereby the essential aim of this strategy, and it
is where this approach provides its main contribution.

Fig. 5. Decision process flowchart.
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2.4. Limitations and assumptions

The main limitation of the proposed methodology is that it is de-
signed to consider the market mechanisms used by most EU market
operators, as detailed in Section 2.2. Thereby no Locational Marginal
Price (LMP) based models, or US based market models are considered in
this study.

The studies undertaken in this work assume that all players except
for the supported player (the one using the decision support provided
by the proposed methodology), behave as they did in reality, i.e. all
players submit exactly the same bids as they did in the real Iberian
market. In this way it is possible to assess the performance of the
supported player if this player had performed different actions in the
market.

According to the used market model, although all the involved
players have the potential to affect the market price, as the market price
is defined based on all players’ bids; most smaller player do not have an
effective impact on the price, since their bid volume is negligible when
compared to larger players, and even more when compared to the total
volume placed in the market. For this reason, although the supported
player in the considered study may affect the market price in some
cases, in most situations this player acts a price-taker.

Market operators and system operators may use this type of simu-
lation systems, and decision support solutions to experiment alternative
market models and rules, in order to assess their likely impact before
their costly implementation in reality. The studies can be performed to
assess possible alternative changes in market regulation to enable the
participation of small player, e.g. small consumers (and flexibility
trading) and renewable based distributed generation; and also to pre-
vent tacit collusion between generators [1,3,14]. These solutions may
also be used to experiment possible interaction models between
wholesale markets and local energy markets and smart grids; thus en-
abling possible regulatory and policy changes to facilitate the integra-
tion of small sized resources. Market negotiating players also benefit
from these models and systems, as they are the central players in the
proposed methodology. They can use decision support approaches, such
as the one proposed in this paper, to experiment different alternative
market actions, to learn how to take the most advantage out of market
participation and therefore improve their market results. This im-
provement results in a further incentive to the widespread distributed
generation.

3. Case study

3.1. Characterization

This section presents the results of a set of simulations undertaken
using MASCEM, with the objective of assessing the performance of the
proposed methodology. Besides the analysis of the market results of a
subject player using the proposed approach, its performance is com-
pared to that of several state of the art negotiation strategies provided
by AiD-EM.

3.1.1. Evaluation
The main metric for comparing the performance of the methods is

the profits that each is able to originate for an electricity market par-
ticipant player – a seller; since the goal is to maximize the profits of a
market player, as defined in (15). The costs of production are kept
constant throughout all hours of all considered days, in order to facil-
itate the comparison of the achieved profits.

The accuracy of the forecast may be evaluated by several error in-
dices, such as the mean absolute error (MAE), the mean absolute per-
centage error (MAPE), the symmetric mean absolute percentage error
(SMAPE) and the standard deviation (SD). MAE represents the average
of the absolute errors (17).

∑= −
=

MAE
N

Y F1 | |
h

N

h h
1 (17)

where Yh and Fh are the actual and forecasted values for each h period,
while N corresponds to the number of forecasted periods.

In MAPE the average of all the percentage errors is computed,
producing a measure of relative overall fit (10).
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The Mean Index Adequacy (MIA) and Clustering Dispersion
Indicator (CDI) [5] are used to evaluate the quality of the clustering
process. These approaches assess the dispersion of the observations
among the clusters. MIA uses the Euclidean distance method to de-
termine the value that reflects the quality of a cluster partition. CDI is
determined by the association of the distance between elements of the
cluster, and the inverse of the distance between the values that re-
present each cluster.

MIA depends on the average of the mean distances d between each
observation assigned to each cluster and the centroid of the corre-
sponding cluster μi, as defined in (19).
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CDI assesses: (i) the distance among the data points clustered in the
same group, and (ii) the distance from each data point to all other
clusters’ centroids, as in (20), where R is the mean point of all ob-
servations, and n is the number of observations assigned to each cluster.
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The distance between two observations xi and xj is calculated as
defined in (21).

∑= × −
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where H is the size of the vector that contains all elements that re-
present each observation.

The variance assessment provided by MIA and CDI for different
numbers of k enables analysing the gain (in variance reduction) of
adding an extra cluster. When the variance from k to k+ 1 is no longer
significant and starts stabilizing, one has reached the optimal k.

3.1.2. Specifications
In order to provide a suitable comparison, the same market sce-

nario, with the exact same players, under the same circumstances, is
executed repeatedly. The only variation is the behaviour of the test
subject player, Seller 2. In each simulation Seller 2 acts based on the
decision support provided by the proposed approach using different
parameters, and also based on the actions suggestion provided by the
other AiD-EM strategies. Seller 2 uses the proposed approach with
different risk factor values. The first test concerns a risk value of 0.2, a
small value, meaning a low risk. In the second, an intermediate value of
0.5, and in the third a higher value, 0.8. The fourth and final test will
present Seller 2′s results using the proposed approach exclusively di-
rected to equilibrium, by playing safe and submitting a low bid price.
These tests intend to show a comparison of this strategy’s performance
using different risk factors, and also to demonstrate the advantage of
both decisions: risking or playing safe, towards equilibrium. Moreover,
the assessment of the results from the internal and external analysis are
also provided.
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As explained in Section 2.1, the data used in this study is based on
real data extracted from the Iberian market operator – OMIE website
[19], using an automatic data extraction that has been presented in
[25]. The simulations refer to three data sets, namely:

• Data set 1: 62 consecutive days (two months), starting from
Saturday, 1st December 2012, until Thursday, 31st January 2013;

• Data set 2: 1st January to 31st December 2016 (one year);

• Data set 3: 1st January to 31st December 2017 (one year);

The first data set is used to evaluate the different specific compo-
nents of the proposed method (by being smaller it enables an easier
interpretation of the results. Data set 2 and Data set 3 enable evaluating
the performance of the proposed approach for more recent and longer
simulations, thus assessing the generalization of the results. All data
sets include the data referred in Section 2.1, namely regarding market
players’ characteristics and actions and market results.

The simulation scenario was created with the intention of re-
presenting the Iberian reality, reduced to a smaller summarized group,
containing the essential aspects of different parts of the market, in order
to allow a better individual analysis and study of the interactions and
potentiality of each of those actors. The scenario is composed by 7
buyers and 5 sellers, from which 2 are aggregators, aggregating several
small generators. No network constraints are considered in these si-
mulations, as the focus of the experiments is on the economic compo-
nent of the market. The subject player, Seller 2, sells a fixed power
amount of 50MW in all periods of each day, and no generation costs are
considered, in order to facilitate the interpretation of results. As men-
tioned in Section 2.4 it is assumed that all other players behave as the
corresponding player in the Iberian market (same bid price and sale/
purchase amount in each period of each considered simulation day).
Since no significant random variables have influence over the results,
all simulations are executed only once. All results correspond to
MASCEM simulations for each (hourly) period of each considered day.
Further details on the test scenario and on the specifications for this
case study can be consulted in [20].

3.2. Results

3.2.1. Internal analysis
In order to enable the decision process, the two reference prices

must be obtained (forecasted market price and sectorial reference
price). Table 1 shows the results of the market price forecasting process,
using the ANN presented in Section 2.3.1, for the three considered data
sets.

From Table 1 it is visible that the average achieved market price
forecasting errors are quite similar in the three Data sets. The STD is
also quite low, which means that the forecast consistency is good.
Analysing MAPE, the average errors are located below 10%, which is
the threshold considered acceptable in forecasting in this domain [18].

3.2.2. External analysis
The sectorial reference price is achieved as result of the clustering

process that groups the involved companied according to their simi-
larity. Fig. 6 shows the MIA and CDI dispersion indexes for the clus-
tering process using the 3 considered data sets, for different values of k.

The graphs in Fig. 6 show that, by analysing the evolution of MIA as
k increases, the gain in reduction of dispersion is not significant, which
means that having more clusters does not result in a significant gain in
clustering quality. On the other hand, when comparing the CDI values,
it is visible that there is a significant decrease in dispersion from k=2
to k=3, especially when using Data set 1, see Fig. 6 a). This so called
“elbow” is also visible in Fig. 6 c). When using Data set 2, this decrease
is not so obvious, but smaller “elbows” are still identified when k=3
and k=5.

The analysis of results using the 3 data sets, support the choice of

k=3 as the most beneficial number of clusters to be used in the pro-
posed methodology.

3.2.3. Decision process
Fig. 7 presents the incomes obtained for Seller 2 in the simulations

using Data set 1, and a comparison between the market price and Seller
2′s bid price, for the twelfth period of each day, for the test scenario.
Period 12 is chosen arbitrarily, for demonstration purposes.

From Fig. 7 one can see that Seller 2 was able to obtain incomes in
almost all days regarding the first three tests, while in the fourth it
could effectively sell at all times. Additionally, in the first three cases, it
is visible that following a day of bad results – not selling, or selling a
low amount of power – the agent’s bid price decreases, lowering the
risk, and acting towards equilibrium. When the incomes are higher, the
bid price for the following day is much closer to the market price,
meaning a higher risk and the possibility to achieve higher profits.

The selling of power in all days in the fourth test is an evident proof
of the advantage of using the equilibrium approach, as supported by the
incomes in the total of the 24 periods, for the 61 considered days, ob-
tained in each of the four tests, presented in Table 2.

Table 2 shows that the equilibrium approach allowed the player to
achieve higher global incomes, even though the tendency of profits
evolution when increasing the risk not proving to be increasing. Re-
garding the three risking approaches, the third, which presents the
higher risk, is the one that showed to be the most advantageous.
However, although the equilibrium approach presented higher global
incomes for this case study, it does not mean that this is the best de-
cision to take in all situations. In fact, when risking in the right mo-
ments, a strategy can actually get even higher incomes. In Fig. 7 it is
visible that the first three approaches presented some periods in which
they could not sell, and consequently not obtain incomes, but when
considering the selling periods, the incomes obtained by increasing the
risk are higher than the equilibrium approach. This is supported by
Table 3, which presents the comparison of the total incomes obtained in
the third and fourth tests, starting from day 37 - the following day to the
last one in which Seller 2 could not sell using a β=0.8.

It is visible in Table 3 that the approach using β=0.8 obtained
higher incomes than the equilibrium approach when considering the
periods in which both approaches were able to sell. This means that
risking is advantageous for achieving higher incomes, when this is done
in the adequate moments. The simple settling for equilibrium does not
provide the best solution when the goal is achieving the highest pos-
sible incomes, rather a conjugation of both, done in the right times, and
in the adequate amounts.

The way bids are defined in the first three tests, whether risking or
going for equilibrium are dependent on the players’ recent results.
Fig. 8 presents the bid definition in the four tests, in comparison with
the two reference values: market price forecast and cluster reference
price, which are the basis for the equilibrium and the risk actions.

The graphs in Fig. 8 show that Seller 2′s bid is always located below
a reference value, either the forecasted market price, when assuming a
higher risk, or the cluster reference value when going for equilibrium.
In the fourth test, as the player uses the equilibrium approach at all
times, the bid is always closely below the cluster reference value. Re-
garding the first three tests, it depends on the recent results. When
comparing Fig. 8 with Fig. 7 it is visible that the cluster reference value

Table 1
Results of the market price forecasting for the three considered data sets, using
the ANN.

Data set MAE MAPE (%) STD

Data set 1 5.36 9.15 5.1
Data set 2 4.32 7.25 3.6
Data set 3 4.86 7.83 3.1
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is used after the periods in which the player got worst results. Com-
paring the bids among these first three tests, it is visible that the higher
the risk of the approach, the closer the bid value gets to the reference
values. Fig. 9 presents the differences of the bids in each case, from the
used reference value.

In the first case, using β=0.2, the bid value is located much lower
than the reference prices, as shown in Fig. 9, presenting an average
difference of 0.18 cent.€/kWh. In the second case, the differences are
intermediate, with an average of 0.16 cent.€/kWh. Regarding the third
case, where the risk factor is defined as 0.8, the bid comes very close the
reference values, being the difference average of 0.11 cent.€/kWh. Fi-
nally, in what concerns the equilibrium approach, the difference is
constant, being maintained at 0.2 cent.€/kWh in all situations.

These simulations demonstrate the adequacy and advantage of
using the proposed approach, as it shows being able to provide high
incomes to the supported player. This conclusion is supported by the
comparison with several other state of the art market negotiation
strategies, as shown in Section 3.2.4.

3.2.4. Comparison with other relevant approaches
The considered state of the art market negotiation strategies are

integrated in the AiD-EM decision support system, and can be consulted
in detail in [20]. All simulations have been executed in the same si-
mulation scenario, considering the same days and specifications. Re-
sults for Data set 1, Data set 2 and Data set 3 are presented in Fig. 10.

From Fig. 10 it is visible that the total incomes achieved by the
proposed approach in the total of the 61 considered simulation days,
when using Data set 1 are higher than those achieved by most of the
reference strategies, being its values very similar to the maximum va-
lues achieved by the best strategies. In fact, only the Game Theory

strategy has been able to achieve higher accumulated incomes than the
proposed approach (4,916,956 € against 4,878,842 € of the proposed
approach, a difference of less than 1%). The third strategy with the best
results is the STH Metalearner with an income of 4,863,214 €. Data set
2 and Data set 3 correspond to a full year of simulation each, namely
2016 and 2017. Results from using Data set 2 show that the proposed
methodology is the second best from all strategies with a total accu-
mulated income of: 33,529,182 €, being very close to the total accu-
mulated incomes of the best strategy in this simulation, which is the
STH Metalearner, achieving 33,854,096 €. Finally, when analysing the
results from the simulations using Data set 3, one can see that in this
case the proposed approach is the strategy that achieved the highest
incomes from all, with an accumulated income of 35,435,188 € against
34,618,988 € and 33,639,292 € achieved by the STH Metalearner and
Game Theory strategies, respectively.

3.3. Discussion

Results have shown that the proposed methodology is a promising
approach for decision support of players’ negotiations in auction based
electricity markets. The proposed approach has shown a competitive
performance against the best state of the art strategic approaches in the
literature, reaching similar accumulated incomes to the best strategies
in all three Data sets. In fact, the proposed approach has reached the
best accumulated incomes from all considered strategies when using
Data set 3: data from the whole year of 2017. This result is associated
with the best electricity market forecasting results achieved for Data set
3, as shown in Section 3.2.1. A better quality of price forecast means
that, when choosing to risk, and use the forecasted market price as
reference price to define the bid, the methodology has a better chance

Fig. 6. MIA and CDI dispersion values for different K, for: (a) Data set 1, (b) Data set 2, (c) Data set 3.
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of being successful; while when using lower quality forecasts the
chances of defining a bid that does not reflect the actual market price is
bigger, e.g. as happens with Data set 1.

The sectorial reference is achieved as result from the clustering
process of the most similar companies. Different numbers for K have
been experimented, and results show that K= 3 is, in fact the most
appropriate number of clusters, as increasing this number does not lead
to a significant improvement in the clustering accuracy, as shown in
Section 3.2.2.

The decision process using the two reference prices (forecasted
market price and sectorial reference price) as basis has demonstrated
that proposed methodology is able to effectively decide when to risk
and when to play safe. These results show that the combination of risk

with equilibrium depending on the internal and external analysis of a
company, as performed by the proposed approach, is in fact a promising
solution to address market negotiations.

Further alternative models for risk modelling can be promising
approaches to improve the results of the proposed model; e.g.
Conditional Value-at-Risk (CVaR) [33], which is a valid alternative
model for potential application in the addressed problem. However, the
proposed methodology considers a constant adaptation and learning of
the most recent perceived event, thus becoming a more dynamic stra-
tegic for real-time adaptation, while CVaR is more suitable for longer-
term planning. The adaptation of such models may nevertheless im-
prove the decision process on the most suitable times to perform riskier
actions.

4. Conclusion

This paper proposes a methodology for decision support of elec-
tricity market players’ actions in market negotiations. The proposed
approach is based on the combination between the internal analysis of
the company, which refers to the analysis of the company’s market
power evolution (evaluated through the achieved profits tendency);
and the external or sectorial data analysis, which refers to the assess-
ment of the market and sector position of the competing entities.
Through the combination of both these analyses, the exposure of the
supported player to market risk is dynamically adapted, which results
in a constant adaptation to market context.

Results show that the proposed approach is able to achieve a sig-
nificant quality of results, having achieved better results than most of
the considered reference strategies. Results also show that when

Fig. 7. Incomes obtained by Seller 2 in the twelfth period of the considered 61 days, with: (a) β=0.2, (b) β=0.5, (c) β=0.8, (d) equilibrium.

Table 2
Total incomes obtained in the twelfth period.

Risk factor Equilibrium

0.2 0.5 0.8

Total Income(€) 435482.16 429537.36 438655.92 494,574

Table 3
Total incomes obtained in the twelfth period starting from day 37.

Risk factor Equilibrium
0.8

Total Incomes(€) 7871,75 7497,12
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considering a safe approach, towards market equilibrium, the sup-
ported player is always able to sell. On the other hand, although as-
suming a riskier approach leads to some periods in which the market
agreement is not achieved, and thus the player is not able to sell; when
assessing the established agreements (all the periods in which the
supported player has been able to sell), the achieved incomes are higher
when assuming a riskier position.

The consistency of the proposed approach is also assessed through
its application to three different data sets, including data from 2016 and
2017. Results show that the proposed approach is able to reach pro-
mising results, being even able to reach better outcomes than all other
strategies using the 2017 data set, which is associated to a smaller
electricity market prices forecasting error. By comparing the achieved

results with the reference strategies in the literature, it can be con-
cluded that the proposed approach is in line with the related literature
in the field, showing to be a significant contribution in this domain.

Future work considers the improvement of the decision process
regarding the changes in the risk approach, with the aim at achieving a
more balanced position between risking and playing safe, so that the
riskier positions can be assumed in more strategic timings, in order to
try and avoid periods in which the transaction is not possible, while still
maintaining the higher gains accomplished when assuming riskier po-
sitions in selected times. In fact, the study and analysis of correlated
uncertainties, and the derivatives and bilateral contracts to hedge
against financial risks are suggested for further exploration on the
problem. The time frames of the simultaneous markets, e.g. the power

Fig. 8. Seller 2′s bid comparison with the reference values in the twelfth period of the considered 61 days, with: (a) β=0.2, (b) β=0.5, (c) β=0.8, (d) equilibrium.

Fig. 9. Difference between the reference value and Seller 2′s bid in the four considered cases.
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delivery based on the day-ahead, real-time schedules, and futures
contracts, is a research topic that also requires special attention. An
alternative model including a CVaR based model to define the basis
long term strategy, combined with the proposed method for dynamic
adaptation to the most recent events, is also proposed as future work
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