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We prove that for any convergent Laurent series f(z) =
∑∞

n=−k anzn with k ≥ 0, 
there is a meromorphic function F (s) on C whose only possible poles are among the 
integers n = 1, 2, . . . , k, having residues Res(F ; n) = a−n/(n− 1)!, and satisfying 
F (−n) = (−1)nn! an for n = 0, 1, 2, . . .. Under certain conditions, F (s) is a Mellin 
transform. In particular, this happens when f(z) is of the form H(e−z)e−z with 
H(z) analytic on the open unit disk. In this case, if H(z) =

∑∞
n=0 hnzn, the analytic 

continuation of H(z) to z = 1 is related to the analytic continuation of the Dirichlet 
series 

∑∞
n=1 hn−1n−s to the complex plane.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Consider the integral transform of a function f(t) on (0, ∞) defined by the complex-valued integral

Mf(s) = 1
Γ(s)

∞∫
0

f(t)ts−1 dt. (1)

Without the Gamma factor in front, this is of course the classical Mellin transform. Here we normalize so 
that the exponential f(t) = e−t transforms to the constant function 1.
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When f(t) = 1/(et − 1) = e−t/(1 − e−t), we have the well-known classical formula

ζ(s) = Mf(s) = 1
Γ(s)

∞∫
0

ts−1

et − 1 dt,

valid for Re(s) > 1, which is an oft-chosen starting point to obtain both the analytic continuation of the 
Riemann zeta function to C \ {1} and the values ζ(−n) = −Bn+1/(n + 1) at the negative integers, where 
{Bn} is the sequence of Bernoulli numbers. Of the various methods (see for example Titchmarsh’s book [9]), 
we are interested in the following procedure, summarized in two main points:

A. By adding and subtracting the partial sums of the series representation at t = 0 of

f(t) = 1/(et − 1) = t−1
∞∑

n=0
Bnt

n/n!

in the integral (1), the Mellin transform, which a priori is only holomorphic on Re s > 1, is shown to 
have an analytic continuation to C \ {1}. This same method also shows that the values of the analytic 
continuation at the negative integers are essentially the coefficients of the Taylor series, in this case, the 
Bernoulli numbers Bn.

B. On the other hand, noting that

f(t) = e−t/(1 − e−t) =
∞∑

n=0
e−(n+1)t

and exchanging this sum with the integral in (1), we find that for Re s > 1, Mf(s) =
∑∞

n=1 n
−s, which 

is the Dirichlet series defining ζ(s).

The use of the Mellin transform to prove both the analytic continuation and the formula for its values 
at the negative integers can be generalized to the Hurwitz zeta function and the associated Bernoulli 
polynomials [3], as well as to the Lerch zeta function and the Apostol-Bernoulli polynomials [2]. In [7], 
by again using (A) and (B) as motivation, we extended these results to a very general class of Appell 
polynomials and entire functions.

These ideas are also related to the technique known as “Ramanujan’s Master Theorem” (see [1]), used 
often by him to derive expressions for infinite sums and integrals. It is summarized by the following “non-
rigorous formula:”

h(−s) = 1
Γ(s)

∞∫
0

( ∞∑
n=0

h(n)
n! (−t)n

)
ts−1 dt,

the intent of which is to provide an explicit expression for the analytic continuation of the Mellin transform 
of a power series, here given in exponential form, emphasizing that one recovers the coefficients as values at 
the negative integers of the Mellin transform. For example, with h(s) = ζ(−s) the formula gives

ζ(s) = 1
Γ(s)

∞∫
0

(
−1
t
− 1

2 + 1
1 − e−t

)
ts−1 dt,

which is correct for −1 < σ = Re(s) < 0. Note that the first two terms are the leading terms in the Laurent 
series of the third, so that this turns out to be an instance of (A).
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The results presented here are both a generalization and a simplification of the methods in [7]. We wish 
to obtain more out of (A) and (B). On one hand, the idea contained in (A) allows us to start from a 
Laurent expansion f(z) =

∑∞
n=−k anz

n and obtain a meromorphic function F (s) with possible poles only 
at s = 1, 2, . . . , k and which interpolates at the negative integers s = −n values related to the coefficients an.

On the other hand, for f(z) = H(e−z)e−z with H(z) =
∑∞

n=0 hnz
n satisfying certain conditions, the 

analytic continuation F (s) is just the Mellin transform of f and we can use the ideas in (B) to show that 
F (s) is given in a half-plane by the Dirichlet series 

∑∞
n=0 hn(n + 1)−s. The analytic continuation of the 

Taylor series 
∑∞

n=0 hnz
n to z = 1 is directly related to the analytic continuation of this Dirichlet series.

The paper is organized as follows: in the second section, Theorem 1 is the interpolation result for Laurent 
series which extends the ideas of (A). In the third, inspired by (B), we study the connection between the 
meromorphic continuation of Dirichlet series and the continuation of power series converging in the unit 
disk to z = 1; this is summarized in Theorem 2. In the next several sections we discuss various examples, 
counterexamples to the converse, and general consequences of Theorem 2. Finally, in the last section, 
Theorem 4 extends these results to power series with a non-isolated singularity at z = 1; such is the case 
for (z − 1)α with α /∈ Z, for example.

Let us establish some conventions to be used throughout. Notationwise, we consider the natural numbers 
to be the set N = {1, 2, 3, . . . }, while N0 = N ∪{0}. When we speak of a meromorphic function with a pole 
of order k ≥ 0, it is understood that for k = 0 we simply mean a holomorphic function. The letters z, s, 
and sometimes t, denote complex variables, with z used mainly for power series and s for Dirichlet series, 
in which case we will denote its real part by σ = Re s. The principal branch of the complex logarithm is 
assumed by default.

The various parametric integrals which appear all define analytic functions in their domain of convergence. 
The justification of this fact is the generalization to integrals of Weierstrass’ M-test for series. This general 
criterion is an application of the Dominated Convergence Theorem and Morera’s Theorem. We will omit the 
details of verifying for each integral that the conditions of the criterion are satisfied, as this is straightforward 
in every case.

2. An interpolation result for power series coefficients

Theorem 1. Let f(z) be a meromorphic function with a pole of order k ≥ 0 at z = 0 and having Laurent 
series around z = 0 given by

f(z) =
∞∑

n=−k

anz
n (0 < |z| < R).

Then for a fixed r ∈ (0, R), the integral

F (s) = 1
Γ(s)

r∫
0

f(t)ts−1 dt

defines an analytic function on the half-plane σ > k.

(a) If k ≥ 1, then F (s) can be extended to a meromorphic function on C whose singularities are a simple 
pole at s = k and possible simple poles at s = 1, 2, . . . , k − 1 with residues

Res(F ;n) = a−n

(n− 1)! (n = 1, . . . , k) (2)

and satisfying
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F (−n) = (−1)nn! an (n ≥ 0). (3)

(b) If k = 0 then F (s) can be extended to an entire function satisfying (3).

Proof. The integral defining F (s) converges for σ > k since the integrand is O(ts−1−k) at t = 0. Fixing 
N ∈ N, we separate it into two parts,

F (s) = 1
Γ(s)

r∫
0

(
f(t) −

N∑
n=−k

ant
n

)
ts−1 dt + 1

Γ(s)

r∫
0

N∑
n=−k

ant
nts−1 dt.

Since the integrand in the first part is O(tN+s) at t = 0, the integral is holomorphic for σ > −N − 1, and 
the 1/Γ(s) term in front implies this part has zeros at the negative integers, so as far as (2) and (3) are 
concerned we may ignore this part.

Turning to the second part, we find a trivial integral yielding the function

1
Γ(s)

N∑
n=−k

an
rn+s

n + s
= 1

Γ(s)

k∑
n=−N

a−n
rs−n

s− n
, (4)

which is meromorphic on C with possible simple poles only at s = 1, 2, . . . , k, since the other possible poles 
at s = 0, −1, . . . , −N are canceled by the zeros of 1/Γ(s). The residues of F (s) at s = n = 1, 2, . . . , k are 
the residues of (4), namely a−n/Γ(n) = a−n/(n − 1)!. In particular, if k ≥ 1 there is an actual simple pole 
at s = k. Likewise, the values F (−n) for n = 0, 1, . . . , N are the values of (4), given by

lim
s→−n

an
rn+s

Γ(s)(s + n) = (−1)nn! an,

because Res(Γ; −n) = (−1)n/n!. Since N was arbitrary, the proof is complete. �
Remark. Of course, for a given f(z) there are infinitely many entire or meromorphic functions satisfying (2)
and (3). The dependence on r notwithstanding, in general the function

F (s) = 1
Γ(s)

⎛
⎝ r∫

0

f(t)ts−1 dt + E(s)

⎞
⎠ , (5)

where E(s) in an arbitrary entire function, also satisfies (2) and (3). In view of this, our interest now turns 
to the question of whether there are functions of the form (5) that are easier to deal with.

Towards this end, if f(t) has additional properties which allow the same integral, extended over (r, ∞), 
to define an entire function, then a “canonical” choice would be

E(s) =
∞∫
r

f(t)ts−1 dt,

which of course leads to

F (s) = 1
Γ(s)

∞∫
0

f(t)ts−1 dt,

the Mellin transform of f(t). However, we need to ask more from f in order to obtain a well-behaved Mellin 
transform.
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In the following section we will see that an interesting special case is when f(t) = e−tH(e−t) for H(z)
an analytic function in the (open) unit disk having an analytic continuation to the point z = 1.

3. Dirichlet series and analytic continuation

Given a sequence {hn}∞n=0 of complex coefficients, consider the formal power series and Dirichlet series 
with those coefficients, namely

H(z) =
∞∑

n=0
hnz

n, D(s) =
∞∑

n=1

hn−1

ns

(note the displacement in the index in the Dirichlet series, due to beginning the sequence hn at n = 0). 
In what follows, we will denote the radius of convergence of H(z) by R and the abscissas of ordinary and 
absolute convergence of D(s) by σc and σa respectively. A priori R ∈ [0, ∞] and σc, σa ∈ [−∞, ∞].

Recall that a Dirichlet series D(s) converges in the open half-plane σ > σc and diverges for σ < σc, and 
that σc ≤ σa ≤ σc + 1. If σc < ∞, then the sum of D(s) is analytic in its half-plane of convergence. We will 
use the same notation for the series and its sum function, as well as its analytic continuation, and do the 
same for power series. In particular if σc = −∞ then D(s) is an entire function.

For a power series H(z) converging inside the unit disk (that is to say, with R ≥ 1), the main result of this 
section (Theorem 2) establishes a relationship between the analytic continuation of H(z) to the boundary 
point z = 1 and the analytic continuation of the corresponding Dirichlet series D(s) beyond its half-plane 
of convergence.

Needless to say, many important problems, especially in Number Theory, involve the existence of an 
analytic continuation of a Dirichlet series. Theorem 2 will allow us to easily deduce a varied number of 
interesting examples, both in the positive (existence) and negative (non-existence) sense.

We begin with two simple observations regarding the relationship between the radius of convergence R
and the abscissa of convergence σc.

Lemma 1. If the Dirichlet series 
∑∞

n=1 hn−1n
−s converges at some s ∈ C, then the power series 

∑∞
n=0 hnz

n

converges inside the unit disk; i.e. σc < ∞ implies R ≥ 1.

Proof. Since D(s) converges for σ > σc, it converges at any real r > σc; hence hn = O(nr) and the result 
follows from the Cauchy-Hadamard formula for the radius of convergence of a power series. �
Lemma 2. If the power series 

∑∞
n=0 hnz

n converges at some point outside the unit disk, then the Dirichlet 
series 

∑∞
n=1 hn−1n

−s converges everywhere and thus defines an entire function; i.e. R > 1 implies σc = −∞.

Proof. If R > 1 then the power series converges at some real z = r > 1; hence hn = O(r−n), which 
implies that for fixed s ∈ C, the general term of the Dirichlet series decreases exponentially and hence 
converges.1 �

In light of this, discarding the extreme cases σc = ±∞, where D(s) either converges or diverges everywhere 
and hence there is nothing more to say about its analytic continuation, we can assume −∞ < σc < ∞ and 
R = 1.

1 One could also use the analog of Hadamard’s formula for σc but this is unnecessary.
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Remark. Note that a finite abscissa of convergence −∞ < σc < ∞ implies unit radius R = 1, but R = 1
does not imply anything about σc. For example, with hn = n±√

n we have R = 1 and σc = ±∞ respectively, 
while with hn = nα−1 with α ∈ R we have R = 1 and σc = α.

We now turn to the main result of this section, beginning with an auxiliary lemma regarding the rela-
tionship between H(z) and f(t) = e−tH(e−t).

Lemma 3. If the power series H(z) =
∑∞

n=0 hnz
n converges inside the unit disk, then the function f(t) =

e−tH(e−t) is holomorphic on the half-plane Re t > 0 and f(t) = O(e−t) as Re t → ∞. In addition, H(z)
has a meromorphic extension at z = 1 with a pole of order k ≥ 0 if and only if f(t) has a meromorphic 
extension at t = 0, with a pole of the same order.

Proof. The first part follows simply by observing that z = e−t maps the right half-plane Re t > 0 to the 
punctured unit disk 0 < |z| < 1, with the half-line (0, ∞) mapping to the radius (0, 1) and z → 0 as 
Re t → ∞. Furthermore, for 0 < δ < π

2 , the infinite half-strip Rδ = {Re t > −δ, | Im t| < δ} is mapped 
biholomorphically to the circular sector Sδ = {0 < |z| < eδ, | arg z| < δ}. Considering small δ shows that the 
existence of a meromorphic continuation of H(z) to z = 1 is equivalent to that of H(e−t) to t = 0, necessarily 
with poles of the same order. Clearly this also holds for f(t) = e−tH(e−t), corresponding to zH(z). �
Theorem 2. If the power series H(z) =

∑∞
n=0 hnz

n converges inside the unit disk and has a meromorphic 
extension to a function with a pole of order k ≥ 0 at z = 1, then the Dirichlet series D(s) =

∑∞
n=1 hn−1n

−s

has a meromorphic extension to C, denoted also by D(s), whose only singularities are possible simple poles 
at s = 1, 2, . . . , k with residues

Res(D;n) = a−n

(n− 1)! (n = 1, . . . , k), (6)

and values at negative integers given by

D(−n) = (−1)nn! an (n ≥ 0), (7)

where {an}n≥−k is the sequence of coefficients of the Laurent series at t = 0 of

e−tH(e−t) =
∞∑

n=−k

ant
n.

In particular, the poles of D(s) are the negatives of the degrees of the terms in the principal part of this 
Laurent series; thus D(s) is entire if H(z) is analytic at z = 1 and s = k is always a pole if k ≥ 1.

Proof. As we saw in Lemma 3, f(t) = e−tH(e−t) is continuous on (0, ∞) with f(t) = O(e−t) as t → ∞, 
and can be continued meromorphically to t = 0 with a pole of order k. Thus, by Theorem 1 and the remark 
following it, the Mellin transform

F (s) = 1
Γ(s)

∞∫
0

f(t)ts−1 dt

is defined on a half-plane and has a meromorphic continuation satisfying (6) and (7). It just remains to 
show that F (s) = D(s) in some region. In fact, using that f(t) =

∑∞
n=0 hne

−t(n+1), for σ > max(σa, 0) we 
have
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F (s) = 1
Γ(s)

∞∫
0

∞∑
n=0

hne
−t(n+1)ts−1 dt

= 1
Γ(s)

∞∑
n=0

hn

∞∫
0

e−t(n+1)ts−1 dt =
∞∑

n=0

hn

(n + 1)s = D(s),

noting that λ−s = 1
Γ(s)

∫∞
0 xs−1e−λx dx for σ = Re s > 0 and Reλ > 0. The exchange of sum and integral 

is justified since 
∑∞

n=1 |hn−1|n−σ < ∞. �
3.1. Rescaling

A simple yet useful situation arises when we change variables in the power series H(z) by a complex 
nonzero constant λ.

Corollary 1. If the power series H(z) =
∑∞

n=0 hnz
n has positive radius of convergence R, then for λ ∈ C∗, 

the Dirichlet series

D(s) =
∞∑

n=0

hnλ
n

(n + 1)s

can be continued to an entire function for |λ| < R or if |λ| = R and H(z) can be analytically continued to 
z = λ.

In general if |λ| = R and H(z) has a meromorphic continuation with a pole of order k ≥ 0 at z = λ, then 
D(s) has a meromorphic continuation to C with simple poles at s = 1, 2, . . . , k.

Proof. Apply Theorem 2 to the rescaled power series H(λz) =
∑∞

n=0 hnλ
nzn, which has radius of con-

vergence equal to R/|λ|, and which can be continued to z = 1 if and only if H(z) can be continued to 
z = λ. �
3.2. Translation by a non-negative integer

Under the correspondence we are considering

H(z) =
∞∑

n=0
hnz

n ←→ D(s) =
∞∑

n=0

hn

(n + 1)s

between power and Dirichlet series, translation of the Dirichlet series D(s) by a non-negative integer m to 
obtain Dm(s) = D(s −m), is obviously reflected in the new correspondence

Hm(z) =
∞∑

n=0
hn(n + 1)mzn ←→ Dm(s) =

∞∑
n=0

hn

(n + 1)s−m
.

It can be easily checked that on power series, this is given by applying the differential operator d
dz z = 1 +z d

dz ; 
in other words, Hm(z) = ( d

dz z)
mH(z).

Assuming that H(z) converges inside the unit disk and can be meromorphically continued to z = 1 with 
a pole of order k ≥ 0, Theorem 2 asserts that D(s) has pole set in {1, 2, . . . , k} with a pole at k if k ≥ 1, 
and hence Dm(s) has pole set in {m + 1, m + 2, . . . , m + k} with a pole at m + k if k ≥ 1. This fact is less 
obvious when viewed from the power series side, since it means that the principal part of the Laurent series 
of e−tHm(e−t) at t = 0 lacks terms of degree −1, −2, . . . , −m.
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3.3. Partial summation

Corollary 2 (Partial summation). If H(z) =
∑∞

n=0 hnz
n converges inside the unit disk and can be analyti-

cally continued to z = 1, then the Dirichlet series

D1(s) =
∞∑

n=1

∑n−1
k=0 hk

ns

can be analytically continued to an entire function if H(1) = 0 and to a meromorphic function with a unique 
and simple pole at s = 1 if H(1) 	= 0.

Proof. Apply Theorem 2 to the power series H(z)
1−z =

∑∞
n=0 (

∑n
k=0 hk) zn. �

4. Examples

4.1. Zeta functions and polylogarithms (I)

The Dirichlet series Dλ(s) =
∑∞

n=1 λ
nn−s corresponds to the power series Hλ(z) =

∑∞
n=0 λ

n+1zn =
λ/(1 − λz). Clearly Hλ(z) = λH(λz) where H(z) = H1(z) = (1 − z)−1.

Corollary 1 implies that for |λ| < 1 and |λ| = 1 with λ 	= 1, Dλ(s) can be continued to an entire function, 
which is in fact the polylogarithm at λ with varying parameter s 
→ Lis(λ), while for λ = 1 it says that 
D1(s) has a meromorphic continuation with a single simple pole at s = 1, which is of course the Riemann 
zeta function ζ(s). The latter fact can also be obtained from Corollary 2 starting from the constant series 
H(z) ≡ 1.

To obtain the values of the analytic continuations at negative integers, we need the coefficients of the 
Laurent series at t = 0 of

e−tH(e−t) = − λe−t

λe−t − 1 .

These can be expressed in terms of the exponential generating function

B(λ;x; t) = text

λet − 1 =
∞∑

n=0

Bn(λ;x)
n! tn

considered by Apostol in [2], which defines the Apostol-Bernoulli polynomials Bn(λ; x). For λ = 1 these are 
the classical Bernoulli polynomials Bn(x) = Bn(1; x). Similarly one defines the Apostol-Bernoulli numbers 
as Bn(λ) = Bn(λ; 0), so that Bn = Bn(1) are the classical Bernoulli numbers. With these definitions in 
mind, one easily obtains from (7) the well-known formulas

ζ(−n) = −Bn+1

n + 1 , Li−n(λ) = −Bn+1(λ)
n + 1 .

The first is valid for n ∈ N0 and the second for n ∈ N and 0 < |λ| ≤ 1, λ 	= 1. For n = 0 one has the 
discrepancy Li0(λ) = −λB1(λ) = −λ/(λ − 1).

4.2. Zeta functions and polylogarithms (II)

By considering linear combinations of translates ζ(s − m) of the Riemann zeta function for m a non-
negative integer, we obtain examples of Dirichlet series with simple poles at a given set of positive integers. 
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The discussion in Section 3.2 shows that the coefficients of these series are polynomials in n and the 
corresponding power series are rational functions with denominators which are powers of (1 − z).

Indeed, since the power series corresponding to ζ(s) is H(z) = (1 − z)−1 =
∑∞

n=0 z
n, the power series 

corresponding to the translate ζ(s −m) is

Hm(z) =
(

d

dz
z

)m

(1 − z)−1 =
∞∑

n=0
(n + 1)mzn =

∞∑
n=1

nmzn−1 = z−1 Li−m(z).

Euler was the first to find the sum of this series in 1749, in essentially the way that is presented here, 
observing that

Hm(z) =
∞∑

n=1
nmzn−1 = Am(z)

(1 − z)m+1 (m ≥ 0),

where Am(z) is a palindromic polynomial of degree m − 1 with integer coefficients. The Am(z) are known 
as Eulerian polynomials.2 Their coefficients are the Eulerian numbers, which have interesting combinatorial 
interpretations.

Recalling the formula Li−m(z) = −Bm+1(z)
m+1 from §4.1, we find immediately that the Apostol-Bernoulli 

“numbers” Bm(λ) are related to the functions described in this section by Bm(λ) = −mλHm−1(λ) =
−mλAm−1(λ)

(1−λ)m for m ≥ 2.

4.3. Rational functions

In the previous examples, the power series H(z) =
∑∞

n=0 hnz
n represents a rational function. A classical 

theorem of Kronecker states that rationality of H(z) is equivalent to the sequence {hn} of coefficients 
satisfying a homogeneous linear recurrence relation with constant coefficients, i.e. there is an integer d ≥ 0
and c1, . . . , cd ∈ C such that cd 	= 0 and

hn = c1hn−1 + c2hn−2 + · · · + cdhn−d

for n sufficiently large. Writing H(z) = Q(z) + R(z)/S(z) where Q, R, S are polynomials with S 	= 0
and degR < degS, and noting that a polynomial is a power series with infinite radius of convergence, 
corresponding to a finite combination of powers n−s, we may henceforth assume that in fact Q = 0 and 
R 	= 0, which means that d ≥ 1 and the recurrence holds for n ≥ d. The general term is thus determined by 
h0, . . . , hd−1 and in fact

hn = p1(n)λn
1 + · · · + pr(n)λn

r ,

where λ1, . . . , λr ∈ C∗ are the distinct roots of the characteristic polynomial

B(z) = zd − c1z
d−1 − · · · − cd

and each pj(t) is a polynomial of degree less than the multiplicity mj of λj in B(z). Then H(z) = A(z)/B∗(z)
where B∗(z) = 1 − c1z − · · · − cdz

d is the reciprocal polynomial of B(z), and A(z) has degree less than d. 
We can assume that the relation is minimal, so that A(z) and B∗(z) have no common factors. The poles 
of H(z) are then the zeros of B∗(z), namely, the reciprocal roots λ−1

j ; thus the radius of convergence of ∑∞
n=0 hnz

n is

2 Not to be confused with the Euler polynomials, which have a different definition.
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R = min
1≤j≤r

|λ−1
j | =

(
max

1≤j≤r
|λj |

)−1
.

The condition R ≥ 1 of Lemma 1, for convergence of the corresponding Dirichlet series D(s) =
∑∞

n=1
hn−1
ns

at some point, corresponds in this case to B(z) having all its roots inside the closed unit disk. By Lemma 2, 
if they are all inside the open unit disk, the corresponding Dirichlet series converges everywhere to an entire 
function. This leaves the case R = 1, where at least one root λj , and hence also its reciprocal λ−1

j , is on the 
unit circle. Equivalently, H(z) has at least one pole of unit modulus.

In addition, when R = 1, if the poles of H(z) on the unit circle avoid 1, i.e., none of the roots λj of 
unit modulus are equal to 1, then Theorem 2 implies that the corresponding Dirichlet series D(s) has an 
analytic continuation to an entire function.

For example, H(z) =
∑∞

n=0(−z)n has R = 1 and sums to (1 + z)−1, whose unique pole is at z = −1. The 
corresponding Dirichlet series is the eponymous eta function η(s) =

∑∞
n=1(−1)n−1n−s, which can indeed 

be continued to an entire function. In fact η(s) = (1 − 21−s)ζ(s), with the zero of the extra factor canceling 
the simple pole of ζ(s) at s = 1.

In general, if we shift the general term of the recurrence by 1 then, in terms of the coefficients of 
pj(n − 1) =

∑mj−1
k=0 cj,kn

k, the Dirichlet series corresponding to H(z) is

D(s) =
∞∑

n=1

hn−1

ns
=

∞∑
n=1

r∑
j=1

pj(n− 1)λn−1
j

ns
=

∞∑
n=1

r∑
j=1

mj−1∑
k=0

cj,kn
kλn−1

j

ns

=
r∑

j=1

mj−1∑
k=0

cj,kλ
−1
j

∞∑
n=1

λn
j

ns−k
=

r∑
j=1

mj−1∑
k=0

cj,kλ
−1
j Lis−k(λj)

=
r∑

j=1

mj−1∑
k=0

cj,kΦ(λj , s− k, 1),

where Φ(λ, s, x) is the Lerch transcendent, obtained via analytic continuation of the series 
∑∞

n=0
λn

(n+x)s . 
The latter sum provides the analytic continuation of D(s).

If none of the distinct roots λj are equal to 1, then D(s) has an analytic continuation to an entire function, 
while if some λj = 1, then the relation Lis(1) = Φ(1, s, 1) = ζ(s) implies that the corresponding terms in 
the above sum are a finite combination of translates of the Riemann zeta function, namely

mj−1∑
k=0

cj,kζ(s− k),

which contribute possible simple poles at s = 1, 2, . . . , mj , in agreement with Theorem 2. Moreover, since 
mj is the order of the pole of H(z) at z = λ−1

j = 1, the analytic continuation of D(s) has an actual simple 
pole at s = mj .

The values D(−n) at negative integers may be expressed via the above formula in terms of the Apostol-
Bernoulli polynomials described in §4.1, via the general relation Φ(λ, 1 −k, x) = −Bk(x; λ)/k for k ∈ N. This 
formula was in fact one of the main reasons for the introduction of these polynomials in the first place [2]. As 
mentioned in §4.1, for λ = 1 the Apostol-Bernoulli polynomials reduce to the classical Bernoulli polynomials.

For recurrences with integer coefficients, the roots of B(t) ∈ Z[t] are conjugate algebraic integers. In this 
case another theorem of Kronecker implies that they all lie inside the closed unit disk if and only if they 
are roots of unity.
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4.4. Rescaling of the Fibonacci generating function

If the power series H(z) =
∑∞

n=0 hnz
n has radius of convergence R < 1, then by Lemma 1 the corre-

sponding Dirichlet series D(s) =
∑∞

n=1 hn−1n
−s is everywhere divergent. However, we can rescale by the 

radius of convergence to go back to the case of R = 1.
In the case when H(z) represents a rational function, this situation occurs when it has a pole outside the 

closed unit disk. For example, the Fibonacci sequence {Fn} is generated by the power series 
∑∞

n=0 Fnz
n =

z/(1 − z− z2), which is rational with poles at z = −φ, φ−1 where φ is the golden ratio. Since φ > 1, we have 
R = φ−1 and the corresponding Dirichlet series is nowhere convergent. However, rescaling by φ as in [7] we 
consider

H(z) =
∞∑

n=0
Fnφ

−nzn = 1√
5

(
1

1 − z
− 1

1 + φ−2z

)
,

which has R = 1 and is rational with a simple pole at z = 1. Solving the recurrence relation yields Binet’s 
formula Fn = 1√

5(φn − (−φ)−n), from which one obtains the following closed form for the corresponding 
Dirichlet series D(s) =

∑∞
n=0 Fnφ

−n(n + 1)−s:

D(s) = 1√
5
(ζ(s) + φ2 Lis(−φ−2)).

In this case (6) and (7) give Res(D; 1) = 1√
5 and

D(−n) = − 1
(n + 1)

√
5
(Bn+1 + φ2Bn+1(−φ−2)).

5. Counterexamples to the converse

Finding a converse to Theorem 2 is not likely to be a simple matter. That is to say, starting from the 
assumption that the Dirichlet series D(s) =

∑∞
n=1 hn−1n

−s has a meromorphic continuation to C conclude, 
with suitable additional hypotheses, that the power series H(z) =

∑∞
n=0 hnz

n has a continuation to z = 1.
Here, we give a list of counterexamples to the converse statement illustrating various phenomena that 

indicate we should not expect too straightforward a result. For instance, it can happen that H(z) has the 
unit circle as natural boundary (i.e. it cannot be continued to any boundary point), but D(s) still has the 
“nice” properties of the Dirichlet series in Theorem 2: a finite number of poles, all of which are simple.

5.1. The logarithmic series

The power series

H(z) =
∞∑

n=0

zn

n + 1 = − log(1 − z)
z

cannot be continued to a meromorphic function at z = 1, although the corresponding Dirichlet series is

D(s) =
∞∑

n=1

1
n · ns

= ζ(s + 1)

which can be continued to C except for a simple pole at s = 0. The principle at work here is that, as we have 
commented above, differentiation of the power series corresponds basically to translation of the Dirichlet 
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series. Although log(1 − z) cannot be continued meromorphically to z = 1, its derivative can. This is taken 
up again later in §6.1.

The next pair of (non)-examples lie somewhat deeper.

5.2. Lacunary sequences

Consider the lacunary sequence hn = 1 if n = 2k − 1 for some k ∈ N0 and hn = 0 otherwise. It 
is well-known that the function in the open unit disk defined by the power series H(z) =

∑∞
n=0 hnz

n =
z−1 ∑∞

k=0 z
2k has the unit circle as its natural boundary, that is to say, it cannot be analytically continued to 

any point on this boundary (see, for instance [8, Chapter XVI]). Neither can it be meromorphically continued 
to any boundary point, since it would then have an analytic continuation to nearby arcs. Nevertheless,

D(s) =
∞∑

n=1

hn−1

ns
=

∞∑
k=0

1
2ks = 1

1 − 2−s
(σ > 0),

can be continued to C except for simple poles at s = −2mπi
log 2 , m ∈ Z.

A similar yet more sophisticated example of this phenomenon is the series H(z) =
∑∞

n=1 z
Fn , where 

Fn is the sequence of Fibonacci numbers. {Fn} is also a lacunary sequence and hence H(z) has the unit 
circle as natural boundary. Nonetheless it is shown in [6] that the Dirichlet series D(s) =

∑∞
n=1 F

−s
n has a 

meromorphic continuation to the complex plane, with simple poles.

5.3. Dirichlet series with quasiperiodic coefficients

For α ∈ R, letting λ = e2πiα in the example of §4.1 we have the power series Hα(z) =∑∞
n=0 e

2πi(n+1)αzn = e2πiα(1 − e2πiαz)−1 and the Dirichlet series Dα(s) =
∑∞

n=1 e
2πinαn−s = Lis(e2πiα). 

The sequence hn = e2πi(n+1)α = g((n +1)α) for g(x) = e2πix can be generalized to hn = g((n +1)α), where 
g(x) is a trigonometric polynomial with unit period,

g(x) =
N∑

k=−N

cke
2πikx.

The corresponding power series and Dirichlet series are

Hg,α(z) =
N∑

k=−N

cke
2πikα

1 − e2πikαz
, Dg,α(s) =

∞∑
n=1

g(nα)
ns

=
N∑

k=−N

ck Lis(e2πikα).

It is straightforward to check that for irrational α, Dg,α(s) has a simple pole at s = 1 or is entire depending 
on whether c0 is nonzero, whereas for a reduced rational α = p/q, it has a simple pole at s = 1 depending 
on whether or not the sum 

∑
|kq|≤N ckq is nonzero (α = 0 corresponds to (p, q) = (0, 1)).

If g(x) is piecewise continuous with unit period and its Fourier series has an infinite number of terms, then 
for irrational α ∈ R the series Dg,α(s) are called Dirichlet series with quasiperiodic coefficients. They are 
studied in [5] along with the corresponding power series Hg,α(z). It is shown that under certain Diophantine 
approximation conditions on α, the power series Hg,α(z) has the unit circle as natural boundary yet the 
Dirichlet series Dg,α(s) can be analytically continued to an entire function. This result shows that the 
converse of Theorem 2 is far from true in general, even under the best of conditions, namely that D(s) have 
no poles.
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6. Power series that cannot be continued to z = 1

We may interpret Theorem 2 in the contrapositive sense, i.e. as providing a method for showing that a 
power series H(z) =

∑∞
n=0 hnz

n converging inside the unit disk, cannot be continued meromorphically to 
z = 1, by checking that the corresponding Dirichlet series D(s) =

∑∞
n=1 hn−1n

−s fails to have one or more 
of the characteristics stated in the theorem, namely:

• The poles of D(s) lie in a set of the form {1, 2, . . . , k} for k ∈ N.
• D(s) has no poles of order greater than 1.
• D(s) has a finite number of poles.

In a number of interesting cases, these criteria can be used to easily conclude that many types of power 
series converging inside the unit disk cannot be continued meromorphically to z = 1. Of course, the criteria 
can overlap.

In the theory of Dirichlet series, an arithmetical function is a complex sequence α : N → C. The 
corresponding Dirichlet series will be denoted by Dα(s) =

∑∞
n=1 α(n)n−s. For convenience, we also define the 

shift operators h�(n) = h(n −1) taking sequences h : N0 → C to h� : N → C and α⊕(n) = α(n +1) taking 
α : N → C to α⊕ : N0 → C. Thus, a sequence h : N0 → C has generating power series H(z) =

∑∞
n=0 h(n)zn

and generating Dirichlet series Dh�(s) =
∑∞

n=1 h(n − 1)n−s.
The set of arithmetical functions is a commutative algebra with respect to pointwise sum and Dirichlet 

convolution (α ∗ β)(n) =
∑

ab=n α(a)β(b), with the delta function at 1 as the multiplicative identity. We 
have the following well-known and easily verifiable facts about the correspondence α 
→ Dα(s):

• Addition corresponds to addition: Dα+β(s) = Dα(s) + Dβ(s).
• Multiplication corresponds to convolution: Dα(s) ·Dβ(s) = Dα∗β(s).
• Translation by τ corresponds to multiplication by nτ : Dα(s − τ) = Dα·nτ (s).
• Differentiation corresponds to multiplication by − log(n): D′

α(s) = D−α·log(s).

In general these are formal operations on Dirichlet series, but they become analytic under suitable growth 
conditions on arithmetical functions which ensure convergence of the series in C, such as the ones we have 
been using throughout.

With this in mind, we list some criteria that prevent the meromorphic continuation of a power series 
converging inside the unit disk to z = 1.

6.1. Poles in the wrong places

Translation by τ ∈ C of a Dirichlet series D(s) =
∑∞

n=1 hn−1n
−s is reflected in the corresponding power 

series by

Hτ (z) =
∞∑

n=0
hn(n + 1)τzn ←→ Dτ (s) = D(s− τ) =

∞∑
n=1

hn−1

ns−τ
.

The radius of convergence stays the same, by the Cauchy-Hadamard formula.

Remark. Recall (§3.2) that for τ = m ∈ N0, translation by 1 corresponds to the action of the differential 
operator d

dz z = 1 + z d
dz on power series. The general case can be interpreted as fractional differentiation: 

Hτ =
(

d z
)τ

H.
dz
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Lemma 4. If H(z) =
∑∞

n=0 hnz
n converges inside the unit disk and can be continued meromorphically to 

z = 1, then for a fixed τ ∈ C \N0, the series Hτ (z) =
∑∞

n=0 hn(n + 1)τzn cannot be so continued.

Proof. By Theorem 2, D(s) =
∑∞

n=1 hn−1n
−s has a meromorphic continuation to C with (simple) poles 

in {1, 2, . . . , k}, but Dτ (s) has poles in {τ + 1, τ + 2, . . . , τ + k}, which is not a consecutive set of natural 
numbers unless τ ∈ N0, as it should be if Hτ (z) could be continued meromorphically to z = 1. �

For example, if 
∑∞

n=0 hnz
n can be continued meromorphically to z = 1 then the series

∞∑
n=0

hn

n + 1z
n,

∞∑
n=0

hn

√
n + 1 zn,

∞∑
n=0

hn(n + 1)πzn

cannot. However, it may still happen that Hτ (z) converges at z = 1 to some η ∈ C, in which case by Abel’s 
Theorem the non-tangential limit � limz→1− Hτ (z) = η exists.

In particular, continuation already fails if τ is a negative integer, e.g. for τ = −1. In this case the power 
series of D(s + 1) is obtained by dividing hn by n + 1 and corresponds to the action of the inverse operator 
( d
dz z)

−1. The example in §5.1 is of this form:

H(z) = (1 − z)−1 =
∞∑

n=0
zn ←→ ζ(s),

H−1(z) = − log(1 − z)
z

=
∞∑

n=0

zn

n + 1 ←→ ζ(s + 1),

and of course ζ(s + 1) has its pole at 0, which is not where it should be for a meromorphic continuation 
arising from Theorem 2.

This example generalizes to the polylogarithms: Lis(z) =
∑∞

n=1 n
−szn cannot be meromorphically con-

tinued to z = 1 unless s = 0, −1, −2, . . . , in which case we get the Apostol-Bernoulli numbers. However, for 
Re s > 1, the non-tangential limit � limz→1− Lis(z) = ζ(s) exists.

6.2. Poles of higher order

Differentiation and taking positive powers increase the order of a pole. For example, the Dirichlet series

ζ ′(s) = −
∞∑

n=1

log n
ns

, ζ(s)2 =
∞∑

n=1

d(n)
ns

,

where d(n) is the divisor function, have analytic continuations with double poles at s = 1. Hence, we can 
conclude that the corresponding power series

∞∑
n=1

log(n)zn,
∞∑

n=1
d(n)zn,

cannot be meromorphically continued to z = 1.
The general result summarizing these various observations is as follows.

Theorem 3. Assume the power series H(z) =
∑∞

n=0 h(n)zn converges inside the unit disk and can be con-
tinued to a meromorphic function with a pole at z = 1. Consider the shift h�(n) = h(n − 1) for n ≥ 1. 
Given τ ∈ C, k ∈ N, and m ∈ N0, the power series
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∞∑
n=1

(−1)m logm(n) · (h� ∗ · · · ∗ h�︸ ︷︷ ︸
k

)(n) · nτzn (8)

cannot be meromorphically continued to z = 1 unless k = 1, m = 0 and τ ∈ N0, corresponding to 
(

d
dz z

)l
H(z)

for a non-negative integer l.

Proof. This follows immediately from Theorem 2 and the properties of the correspondence α 
→ Dα(s)
between arithmetical functions and Dirichlet series mentioned above, applied to the Dirichlet series D(s) =
Dh�(s) =

∑∞
n=1 h(n − 1)n−s corresponding to H(z). The power series Hτ,k,m(z) in (8), up to an irrelevant 

factor of z, corresponds to the Dirichlet series

dm

dsm
(
D(s)k

)
(s− τ).

If τ /∈ N0, its poles are in the wrong places. If k ≥ 2 or m ≥ 1, they are not simple. �
6.3. An infinite number of poles

Any Dirichlet series which has a meromorphic continuation to C with infinitely many poles cannot arise 
from the correspondence in Theorem 2. To give some examples, let μ(n) and Λ(n) be respectively the Möbius 
function and the von Mangoldt function defined as

μ(n) =

⎧⎪⎪⎨
⎪⎪⎩

1, if n = 1 has a squared factor,
(−1)k, if n is the product or k distinct primes,
0, if n has a squared factor,

and

Λ(n) =
{

log(p), if n = pk for some prime p and integer k ≥ 1,
0, otherwise.

Then

∞∑
n=1

μ(n)
ns

= 1
ζ(s) ,

∞∑
n=1

Λ(n)
ns

= −ζ ′(s)
ζ(s)

have infinitely many poles since ζ(s) has infinitely many zeros. Hence the power series 
∑∞

n=1 μ(n)zn and ∑∞
n=1 Λ(n)zn cannot be meromorphically continued to z = 1.
If H(z) =

∑∞
n=0 hnz

n converges inside the unit disk and can be meromorphically continued to z = 1, 
then by (3), the meromorphic continuation D(s) =

∑∞
n=1 hn−1n

−s has zeros at any negative integer −n

where the coefficient of degree n in the Laurent series of e−tH(e−t) at t = 0 is null. This could happen 
infinitely often, for example because of parity, as with the Riemann zeta function. If this is the case, and if 
we use α−1 to denote the inverse of an arithmetical function α with respect to the Dirichlet convolution (it 
is well known that α−1 exists if and only if α(1) 	= 0), the formulas

Dα(s)−1 = Dα−1(s), D′
α(s)/Dα(s) = D−α−1∗log(s)

for the reciprocal and the logarithmic derivative imply that the power series 
∑∞

n=0(h�)−1(n + 1)zn and ∑∞ (h�)−1(n + 1) log(n + 1)zn cannot be meromorphically continued to z = 1.
n=0
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Remark. Much more is known for the classical arithmetical functions such as those in the examples above. 
Theorems of Fatou and Carlson from the early part of the twentieth century state that a power series 
H(z) =

∑∞
n=1 hnz

n with integer coefficients which converges inside the unit disk is either rational or is 
transcendental over Q(z) and has the unit circle as natural boundary. This applies in particular if hn has 
polynomial growth, as is the case for the above functions. The irrationality of H(z) for many of these 
arithmetical functions has now been proven (much more recently, it should be noted), especially if they 
are multiplicative, so that typically we may expect H(z) to have the unit circle as natural boundary. For a 
survey and extension of these results, see [4].

7. Functions in the disk with a non-isolated singularity at 1

As we observed in §5.1, the function H(z) = − log(1 − z)/z has a non-isolated singularity at z = 1 and 
yet the corresponding Dirichlet series has a meromorphic continuation. Here we will see that there is a whole 
class of such functions whose corresponding Dirichlet series D(s) also has a meromorphic continuation to 
C, in general with countably infinitely many poles.

The key requirement is that there be some number α ∈ R such that H(e−t)t−α can be analytically 
continued to t = 0. The prototype is H(z) = (1 − z)α for non-integer α, studied below. All complex powers 
are assumed to refer to the principal branch.

Theorem 4. Suppose H(z) =
∑∞

n=0 hnz
n converges inside the unit disk and α ∈ R is such that H(e−t)t−α

can be analytically continued to a neighborhood of 0. Then there is an entire function F (s) such that the 
Dirichlet series D(s) =

∑∞
n=1 hn−1n

−s has the meromorphic continuation

D(s) = F (s + α)Γ(s + α)
Γ(s) .

In particular, D(s) has at most simple poles at the points of the set {−α,−α− 1,−α− 2, . . .}.

Proof. Consider the integral

F (s) = 1
Γ(s)

∞∫
0

H(e−t)t−αe−tts−1 dt.

The function f(t) = H(e−t)t−αe−t is analytic at t = 0 with f(t) = O(t−αe−t) as t → ∞, so the integral 
converges for σ = Re s > 0. The same reasoning as in the proof of Theorem 2 shows that it has an analytic 
continuation to an entire function and that for σ > α + max(σa, 0), we can exchange the integral with the 
power series expansion, yielding

F (s) = 1
Γ(s)

∞∫
0

∞∑
n=0

hne
−t(n+1)ts−α−1 dt = Γ(s− α)

Γ(s)

∞∑
n=0

hn

(n + 1)s−α
,

or equivalently, for σ > max(σa, 0) we have

D(s) =
∞∑

n=0

hn

(n + 1)s = F (s + α)Γ(s + α)
Γ(s) ,

and the latter expression provides the meromorphic continuation of D(s), whose only possible poles are seen 
to be those contributed by Γ(s + α) and not canceled by zeros of the other two factors. �
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Consider H(z) = (1 − z)α. If α is a non-negative integer then D(s) is a finite sum and hence entire. The 
case when α is a negative integer is taken care of by Theorem 2. For non-integer α, define(

α

n

)
= Γ(α + 1)

Γ(n + 1)Γ(α− n + 1) = (α− n + 1)n
n! (n ≥ 0)

where (a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol. Then we have the following result:

Corollary 3. For α ∈ C \ Z, the Dirichlet series

B∗
α(s) =

∞∑
n=0

(−1)n
(
α

n

)
1

(n + 1)s

can be analytically continued to a meromorphic function on C with countably infinitely many simple poles 
lying in the set {−α,−α− 1,−α− 2, . . .}.

Proof. Apply Theorem 4 to

H(z) = (1 − z)α =
∞∑

n=0
(−1)n

(
α

n

)
zn,

noting that, at least for t > 0, we have

H(e−t)t−α =
(

1 − e−t

t

)α

and the right hand side is holomorphic in a neighborhood of t = 0. A number s in the set {−α,−α − 1,
−α− 2, . . .} is a (simple) pole if F (s + α) 	= 0, i.e. if F (−n) 	= 0 for n = 0, 1, 2, . . .. Now, as in the proof of 
Theorem 2, if

(
1 − e−t

t

)α

e−t =
∞∑

n=0
bnt

n,

then F (−n) = (−1)nn! bn (the coefficients bn are the values bn = B
(−α)
n (−1 − α)/n! where B(ν)

n (x) are the 
Nørlund or “generalized Bernoulli” polynomials of order ν). Since the above function is not a polynomial, 
bn 	= 0 for infinitely many n and hence D(s) has infinitely many poles. �
Remark. Note that by Theorem 2, the series

Bα(s) =
∞∑

n=0

(
α

n

)
1

(n + 1)s

without the alternating signs, has an analytic continuation to an entire function, since the corresponding 
function H(z) = (1 +z)α can be analytically continued to z = 1. Thus we have an example where introducing 
alternating signs causes the Dirichlet series to acquire infinitely many poles. Compare this with Corollary 1.

At positive integers k we have the following expressions in terms of generalized hypergeometric functions

Bα(k) = k+1Fk

(
1, . . . , 1︸ ︷︷ ︸

k

,−α; 2, . . . , 2︸ ︷︷ ︸
k

;−1
)
,

B∗
α(k) = k+1Fk

(
1, . . . , 1︸ ︷︷ ︸

k

,−α; 2, . . . , 2︸ ︷︷ ︸
k

; 1
)
,
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which is not so remarkable, except to note that in the alternating case, apart from the easy to prove 
Bα(1) = (α + 1)−1, we may use the formula

ψ(α + 1) = −γ +
∞∑

n=1

(−1)n−1

n

(
α

n

)

for the digamma function ψ(z) = Γ′(z)/Γ(z), where γ is Euler’s constant, along with various identities, to 
simplify Bα(2) = (α + 1)−1(γ + ψ(α + 2)), and in general Bα(k) can be expressed in terms of polygamma 
functions. For complex s these series are therefore a kind of “continuous iterate” version of these generalized 
hypergeometric functions.
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