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Abstract
In this work, a new mathematical algorithm for sparse and orthogonal constrained
biplots, called CenetBiplots, is proposed. Biplots provide a joint representation of
observations and variables of a multidimensional matrix in the same reference sys-
tem. In this subspace the relationships between them can be interpreted in terms of
geometric elements. CenetBiplots projects a matrix onto a low-dimensional space
generated simultaneously by sparse and orthogonal principal components. Sparsity
is desired to select variables automatically, and orthogonality is necessary to keep
the geometrical properties that ensure the biplots graphical interpretation. To this
purpose, the present study focuses on two different objectives: 1) the extension of
constrained singular value decomposition to incorporate an elastic net sparse con-
straint (CenetSVD), and 2) the implementation of CenetBiplots using CenetSVD. The
usefulness of the proposed methodologies for analysing high-dimensional and low-
dimensionalmatrices is shown.Ourmethod is implemented inR software and available
for download from https://github.com/ananieto/SparseCenetMA.
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1 Introduction

Principal component analysis (PCA) is the most widely used multivariate statistical
technique for projecting a data set onto a lower dimensional space, preserving as much
variability as possible (Jolliffe et al. 2016). The basis vectors of this new subspace
known as principal components (PCs) are obtained as a linear combination of the
original variables. The coefficients of that combination are called loadings. Each PC
is calculated in terms of all variables and the results can be difficult to interpret.
Therefore, several alternatives have been proposed to produce modified PCs with
some zero loadings (named sparse loadings). These alternatives are known as sparse
PCA (Jolliffe et al. 2003; Zou et al. 2006; Shen and Huang 2008; Journée et al. 2010;
Li et al. 2016). This purpose is achieved by adding sparse-promoting constraints in the
optimization problem. Different constraint techniques are proposed in the literature
but some of the most used are Ridge (Hoerl and Kennard 1988) and Lasso (Tibshirani
1996). Ridge shrinks the coefficients towards zero and encourages highly correlated
variables to have similar coefficients. On the other hand, Lasso makes some of them
zero, but tends to choose a single variable from a set of highly correlated variables,
discarding the others. To overcome this, Zou and Hastie (2005) proposed the use
of elastic net (enet), which combines Lasso and Ridge to preserve both favourable
properties. In addition, enet is particularly useful when the number of variables is
higher than the number of observations (Zou and Hastie, 2005).

It is important to emphasise that in some of these Sparse PCA techniques, the
loading matrix orthogonality is lost at the expense of sparsity. Thus, some authors,
such as Trendafilov (2014) and Genicot et al. (2015), provide sparse and orthogonal
components simultaneously.

The coordinates of the observations and the variables in the first components are
used to graphically represent them in the score and loading plots, respectively. To visu-
alize them on the same reference system simultaneously, Gabriel (1971) and Galindo
(1986) proposed the use of biplot methods. These techniques have been applied in
several fields (Xavier et al. 2018; Amor-Esteban et al. 2019; Carrasco et al. 2019;
Bernal et al. 2020). Biplots define a common reference system where the rows and
the columns of a matrix can be jointly displayed. So, the relationships between them
can be interpreted by means of geometric elements in a Euclidean space (distances,
angles, projections, …) (Gabriel 1971; Galindo 1986).

In the case of sparse biplots, there are only two techniques mentioned in the liter-
ature related to sparse loadings: CDBiplot (Nieto-Librero et al. 2017), based on the
CDPCAofVichi andSaporta (2009), andElastic-netHJ-Biplot (Cubilla-Montilla et al.
2021), based on the SPCA of Zou et al. (2006). On the one hand, CDBiplot extracts
disjoint PCs, in which each original variable only contributes to the construction of
one dimension. On the other hand, Elastic-net HJ-Biplot does not provide orthogonal
sparse PCs, even though orthogonality is necessary to keep the geometrical properties
that allow biplots interpretation. Also, in this work biplot coordinates are estimated
once the sparse loading matrix is obtained from the SPCA (Zou et al. 2006). Never-
theless, as some authors have pointed out it is important to obtain the results in the
same optimization process and not in a tandem analysis (Vichi and Saporta 2009;
Nieto-Librero et al. 2017).
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All things considered, our main objective is to propose a new mathematical tech-
nique, called CenetBiplots, that simultaneously incorporates the orthogonality of PCs
and the selection of variables by means of the enet sparse constraint. Since the biplot
solution is obtained from the singular value decomposition (SVD) (Gabriel 1971;
Galindo 1986), our research is focused on the sparse and orthogonal SVD via Lasso
proposed by Guillemot et al. (2019) but imposing the enet constraint to overcome the
disadvantages mentioned above.

Therefore, this work is structured as follows. Section 2 includes the notation para-
graph and Sect. 3 defines the extension of constrained singular value decomposition
as the solution of a convex-optimization problem with enet and orthogonality restric-
tions. Section 3 also shows the algorithm used to solve CenetSVD, extending the
projection onto convex sets (POCS) algorithm in the sense of a divide and conquer
algorithm. Section 4 presents the implementation of the sparse and orthogonal biplot
methods, known as the CenetBiplots. The selection of the sparsity parameters is pro-
posed in Sect. 5. Section 6 shows the usefulness of these methodologies analysing
high-dimensional real genomic data and low-dimensional psychometric data. Finally,
Sect. 7 includes a discussion and the main conclusions of the study.

2 Notation

We present below the notation and terminology used in this manuscript. X I J denotes
a matrix with the information of I observations in the rows and J variables in the
columns. The elements of a matrix X are denoted as xi j . The transpose of a matrix
X is denoted by XT, and its inverse, as X−1. The �2 norm of a matrix X is defined

by ‖X‖2F . The �2 norm of a vector x = {x j }Jj=1 is computed by
√∑

j x j
2, and

the �1 norm is calculated by
∑

j

∣∣x j
∣∣. A vector is normalized when it is divided by

its �2 norm. Constraint balls are defined as the regions B�2
τ (x) = {x/‖x‖22 ≤ τ },

B
�1
τ (x) = {x/‖x‖1 ≤ τ } and B

�1+�2
τ (x) = {x/(1 − )‖x‖1 + α‖x‖22 ≤ τ } for some

α ∈ [0, 1].

3 Singular value decomposition

Given a matrix X I J of rank R ≤ min(I , J ), the SVD of X is defined as the product:

X I J = U I RDRV T
RJ (1)

where U = [u1, . . . , uI ] and V = [v1, . . . , v J ] are orthonormal matrices,UTU = I
and V T V = I .U contains the left-singular vectors of the SVD in columns, V contains
the right-singular vectors and D is a diagonal matrix containing the dr singular values
of X (r = 1, . . . , R), conveniently expressed so that d1 ≥ d2 ≥ · · · ≥ dR ≥ 0. For
optimal Q ≤ R, SVD provides the best low Q-rank approximation X̂Q of X in the
sense of least squares by minimizing the �2 norm of the difference between the initial
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and the reconstructed matrices (Eckart and Young 1936; Shen and Huang 2008). X̂Q ,
is defined as:

X̂Q = U I QDQV T
QJ =

Q∑
q=1

dquqvqT (2)

with uqT uq = vq
T vq = 1 and uTq uq ′ = vTq vq ′ = 0∀q �= q ′(q = 1, . . . , Q).

Frequently, the orthogonal singular vectors of SVD are computed using the power
iteration algorithm together with a deflation approach. Instead, Guillemot et al. (2019)
suggest obtaining the singular vectors by the projection onto the convex sets (POCS)
algorithm (Bauschke and Combettes 2017).

3.1 Extension of constrained singular value decomposition to elastic net
(CenetSVD)

CenetSVD provides a factorization of X I J by means of sparse and orthogonal singular
vectors (called pseudo-singular vectors) and pseudo-singular values. The key point
of CenetSVD is the calculation of sparse and orthogonal vectors simultaneously. The
CenetSVD formulation is based on the constrained optimization problem of CSVD
proposed by Guillemot et al. (2019), replacing lasso by enet restriction:

argmin
d,u,v

1

2

∥∥∥∥∥∥
X −

Q∑
q=1

dquqvTq

∥∥∥∥∥∥

2

F

s.t .

{
uTq uq = vTq vq = 1, uTq uq ′ = vTq vq ′ = 0 ∀q �= q ′

(1 − α)
∥∥uq

∥∥
1 + α

∥∥uq
∥∥2
2 ≤ τ1,q; (1 − α)

∥∥vq
∥∥
1 + α

∥∥vq
∥∥2
2 ≤ τ2,q

(3)

where τ1,q , τ2,q > 0 are the shrinkage parameters that control the sparsity degree
included in the constrained model. The higher τ1 or τ2 is, the fewer sparse coefficients
there are. It is important to remark that only some values for τ1,q and τ2,q lead to
possible solutions (see Sect. 5.2 and Online Resource 2A). The parameter α ∈ [0, 1)
defines the amount of the Lasso or the Ridge constraint included in the enet restriction.

To find the solution of (3), an iterative process is defined (Guillemot et al. 2019).
First, it is necessary to establish an equivalent form of the previous minimization
problem. Equation (3) is equivalent to:

argmax
u,v

uT Xv

s.t .

{
uT u ≤ 1, vT v ≤ 1, uT uq ′ = vT vq ′ = 0 ∀q ′ < q

(1 − α1)‖u‖1 + α1‖u‖22 ≤ τ1,q ; (1 − α2)‖v‖1 + α2‖v‖22 ≤ τ2,q

(4)

With vq ′ and uq ′ previously calculated, 0 ≤ q ′ < q and q ≥ 1. Equation (4) is
solved by block relaxation, an iterative process that resolves two alternating parts:
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(1) Find the vector solution u optimizing the function with v fixed:

argmin
u

1

2
‖u − Xv‖2F

s.t .
{
u ∈ B�1+�2(τ ),u ∈ B�2(1), u ∈ U⊥ ↔ u ∈ B�1+�2(τ ) ∩ B�2(1)

(5)

where U⊥ is the orthogonal complement of the space spanned by the columns of a
matrix U . These constraints involved projections of a vector onto a convex space.
In addition, it should be noted that the intersection of two convex spaces is also
convex. Thus, the problem can be solved by using the POCS and the PL1L2 algorithms
(Gloaguen et al. 2017; Guillemot et al. 2019). The projection of a vector onto the enet
ball (B�1+�2) proposed here follows the line of the algorithms in linear time to the
projection onto the Lasso ball B�1 (Berg et al. 2008; Duchi et al. 2008; Guillemot
et al. 2019) and the enet ball B�1+�2 (Mairal et al. 2010) (see Online Resource 2B).
In our case, the method for projecting a vector onto B�1+�2 ∩ B�2 is an extension of
the fast and exact algorithm for the projection onto the intersection of B�1 and B�2

proposed by Guillemot et al. (2019) (see Online Resource 2C).
(2) Maximize (4) to find the vector v solution with u fixed:

argmin
u

1

2

∥∥∥v − XTu
∥∥∥
2

F

s.t .{v ∈B�1+�2(τ ), v ∈ B�2(1), v ∈ V⊥ ↔ v ∈ B�1+�2(τ ) ∩ B�2(1)
(6)

where V⊥ is the orthogonal complement of the space spanned by the columns of a

matrixV . The projection vt+1 = projB�1+�2 (τ )∩B�2 (1)∩V⊥(
XT ut+1

)
is carried out in

the same manner as for (1).
The global optimization problem of CenetSVD is handled using the POCS algorithm

(Table 1). Lines 6 and 7 are modified from (Guillemot et al. 2019) to address the
problem of projection onto the B�1+�2 ∩ B�2 space.

4 Extension of CenetSVD to the biplot methods

The results of traditional PCA and Biplot methods are often calculated from the SVD
of a matrix. Consequently, sparse and orthogonal constrained PCA (CenetPCA) and
sparse and orthogonal constrained biplots (CenetBiplots) are obtained from the results
of the CenetSVD. Set the CenetSVD of X as the low Q-rank approximation of the orig-
inal matrix X ≈ Uenet DV T

enet , where Uenet and V enet are sparse and orthonormal
matrices.

4.1 Sparse and orthogonal PCA

The main objective of CenetPCA is to project the original matrix onto a subspace
determined by a new set of Q < J sparse and orthogonal PCs. Given X I J , the sparse
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Table 1 Algorithm for the implementation of CenetSVD based on the POCS algorithm

q-CenetPC is defined as a linear combination of the initial variables as:

Y I Q = X I JV enet J Q (7)

being Y I Q the score matrix, which contains the coordinates of the observations in
the new subspace, and V enet the sparse loading matrix. A flowchart of CenetPCA is
shown in Fig. 1a.

4.2 Sparse and orthogonal Biplots

Biplot methods are optimal tools to visualize multivariate data in a low-dimensional
space. The relationship between the observations and the variables can be interpreted
in a scatterplot because of the inner product properties. Gabriel (1971) proposed the
JK and GH biplots, which assign an optimal quality of representation to rows (GH-
Biplot) and columns (JK-Biplot) in the same Euclidean space. In order to provide
the highest-quality representation for both rows and columns in the same reference
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Fig. 1 CenetPCA and CenetBiplots formulation. Sparse and orthogonal PCA model (a) and sparse and
orthogonal JK, GH and HJ biplots defined via CenetSVD (b)

system, Galindo (1986) proposed the HJ-Biplot. To this end, the original matrix is
factorized as X ≈ ABT , so that the inner product aTi b j approximates the element xi j
as closely as possible. AI Q and B J Q are the row and the column markers matrices,
respectively. The pseudo-singular vectors and values obtained from the CenetSVD of
X are used to implement sparse and orthogonal biplots. CenetJK-Biplot sets the row
and column markers as A = Uenet D and B = V enet , CenetGH-Biplot sets A = Uenet

and B = V enet D, and finally CenetHJ-Biplot sets A = Uenet D and B = V enet D,
respectively (Fig. 1b).

To interpret the CenetBiplots graphical representation, it is important to note that
i) observations are represented by dots and variables by vectors in the graph; ii) dis-
tances between points show the dissimilarities between observations; iii) lengths of the
vectors refer to the variability of the variables; iv) relationships between variables are
interpreted from the cosine of the angles between the corresponding vectors (obtuse:
inverse relationship; acute: direct relationship; right angle: linear independence); and
v) projections of the points in the direction of a vector approximate the values of the
variables for those observations.
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5 Selection of the sparsity parameters

5.1 Selection of˛ and (1 − ˛)

The parameter α ∈ [0, 1) defines the amount of Lasso or Ridge constraint included
in the enet restriction. Usually, α is set to 0.5 to aggregate the same Lasso and Ridge
constraint to the model. In practice, the parameter α could be selected manually. But
also, we suggest to select the α that minimizes the cross-validation error (James et al.
2014) through an iterative process. This process starts defining an increasing sequence
of possible values for α and segmenting the matrix into n = 10 folds. For each of
the n-folds, the training matrix is conformed by the observations of the submatrices
formed in the (n − 1)-folds. The remaining observations constitute the test matrix.
Then, the iterative process for each of theα = (α1, ..., αt ) values is initiated. CenetSVD
of the training matrix is carried out, and the matrix V enet is used to calculate the mean
reconstruction error MSEα1,1 of the test matrix:

MSEα1,1 = ‖XT EST − X̂T EST ‖2 = ‖XT EST − XT EST V enetV enet
T ‖2 (8)

Reconstruction errors MSEα1,1, ...,MSEα1,n are obtained for each of the folds;
hence, the final MSEα1 is computed as the mean of the errors MSEα1,1:n .

This step is repeated for the whole sequence of αt values. The optimum α is the
one that provides the minimum MSE = min

{
MSEα1 , . . . ,MSEαt

}
.

5.2 Selection of �

The shrinkage parameter τ inversely controls the degree of sparsity; that is, the larger
its value is, the fewer zero loadings. In this work, we propose to select τ using the
Bayesian information criterion (BIC) as in (Guo and James 2010; Croux et al. 2013):

BIC(τ ) = ‖X − XV enetV T
enet‖2

‖X − XVV T ‖2
+ df(τ )

log(I )

I
(9)

where X I J is the original matrix, V enet is the right-pseudo-singular vector matrix
obtained from CenetSVD, V is the right-singular vector matrix obtained from
unconstrained SVD and df(τ ) is the number of non-zero elements in V enet . The
parameter τ that minimizes BIC(τ ) is selected from a sequence of possible τ ∈
[1, (1 − α)

√
J + α]. As stated by Guillemot et al. (2019) and Witten et al. (2009),

only some values of the constraints lead to solutions (see Online Resource 2).

6 Analysing data with Cenetmethods

In this section, we illustrate the performance of CenetPCA and CenetHJ-Biplot to anal-
yse two matrices in different contexts: 1) the Object-Spatial Imagery Questionnaire
(OSIQ) data (J < I ) and 2) the MILE gene expression data (J >> I ). All data
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analyses were performed using the R software (R Core Team 2020). All figures were
illustrated using the ggplot2 library (Wickham 2016).

6.1 Analysing themental imagery questionnaire data: a psychometric example

The OSIQ dataset is publicly available on GitHub (https://github.com/HerveAbdi/
data4PCCAR).

To show the usefulness of CenetHJ-Biplot in a toy example in which the number of
variables is less than the number of observations, a random selection of 100 simulated
participants who responded to the items of the OSIQ scale (Blajenkova et al. 2006)
was carried out. This scale consists of 30 items rated on a 5-category Likert scale,
which are structured around two latent dimensions: the spatial and object imagery
scales. The correlation matrix between items is shown in Online Resource 1.

Two-dimensional solutions of the traditional HJ-Biplot and CenetHJ-Biplot are
shown in Fig. 2. To obtain a low sparsity degree, CenetHJ-Biplot was employed with
a shrinkage parameter τ2 = (0.5

√
J + 0.5) · (3/4) (low level of sparsity). There is no

sparsity restriction imposed on individuals. In both plots, participants are represented
by dots, and questionnaire items, by arrows. The cosine of the angles between the
vectors reflects the relationships between items. Thus, items of the same theoretical
dimension are strongly and directly correlated (acute angles). As can be seen, if the
CenetHJ-Biplot is applied (Fig. 2b), the relationships of the items in the two constructed
dimensions, even with low constraints, reflect the theoretical psychometric structure
more clearly than in the case of the HJ-Biplot (Fig. 2a). Additionally, the item o15
correlates directly and weakly with the items of its own scale and correlates inversely
and strongly with the items of the other scale in the results of HJ-Biplot (Fig. 1a).
The CenetHJ-Biplot tends to maintain these relationships (Fig. 2b). The same can be
observed with items s06, s11 and o10, which do not correlate with their dimension
items but whose relationships to the items of another subscale are preserved.

Fig. 2 2D plots of components 1–2 of the HJ-Biplot (a) and sparse and orthogonal CenetHJ-Biplot (b).
Labels starting with “o” refer to object imagery scale items, and labels starting with “s” indicate spatial
imagery scale items
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6.2 Analysing leukaemia gene expression data: a genomic example

The use of statistical methods to analyse microarray data involving variable selection
has become increasingly important in tumours classification context (Algamal and
Lee 2015). In the case of gene expression data, it is common that the number of
genes exceeds the number of samples. Frequently only a few genes have relevant
information and therefore the use of sparse constraints for the automatic selection of
genes is necessary.

To show the usefulness of CenetPCA and CenetHJ-Biplot, in this section we analyse
216 leukaemia patients randomly selected from the GSE13204 series available at the
Gene Expression Omnibus (GEO) repository. Among our samples, 32.9% had been
classified as acute lymphoblastic leukaemia (ALL, n = 71), and 34.3%, as chronic
lymphocytic leukaemia (CLL, n = 74); 32.9% of the samples were control patients
(n = 71). RNA gene expression data were extracted from the Affymetrix Microarray
Platform Human Genome U133 Plus 2.0 Array (HGU133Plus2). Data preprocessing
was carried out using RMA normalization. For illustrative purposes, 2,000 genes
showing the greatest variability from the CUR decomposition leverage scores were
selected (more detailed information can be found in (Mahoney and Drineas 2009)).

Traditional PCA was performed on the centred matrix of 216 samples and 2,000
probe sets. The 45.5% of the data variability is explained by the two components
retained. Figure 3a shows the score plot of components 1–2. The scores revealed three
subgroups of samples clearly differentiated corresponding to control (rectangle), ALL
(circle) and CLL (triangle) samples. The first PC discriminates between control and
CLL samples, with the CLL samples located on the positive side of axis 1. The ALL
samples were differentiated from the CLL and the control samples by their 2-axis
coordinates. Figure 3a (middle, bottom) shows that each PC is a linear combination
of a large number of genes, making them hardly interpretable despite their good
discriminatory capacity.

To assess the effects of sparsification, CenetPCA is performed using α = 0.5 (i.e.,
providing equal weight to the Lasso and Ridge constraints) and τ = 5.86. The last
one was selected according to the BIC criterion and the previously separation of the
groups considered. The 25.8% of the data variability is explained by the two sparse
components retained. Figure 3b reflects the score plot of the samples in the first two
sparse PCs. The same classification is achieved, as shown in Fig. 3a (top). The loading
plots of CenetPCA show the genes automatically selected with this technique (Fig. 3b,
middle-bottom). Those genes with higher loadings in the PCs are those with higher
loadings in the sparse CenetPCs. Additionally, the variables with lower loadings in
the PCs have a zero-value loading in the sparse CenetPCs (or close to 0). This fact
simplifies the interpretation of the constrained components obtained. From the 2,000
gene probes considered, 1,752 present zero loadings in both CenetPCs, and from the
remaining 248 non-zero loadings, 43 gene probes present loadings lower than 0.01
along both constrained components.

Finally, to characterise the influence of the selected gene probes in the sepa-
ration of the above-mentioned groups, the gene expression centred matrix of the
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Fig. 3 2D plots of components 1–2 of PCA (a) and components 1–2 of sparse and orthogonal CenetPCA (b).
Each shape refers to one of the three groups of samples (rectangle: control; triangle: CLL; circle: ALL).
Panel a contains the score plot of PCs 1–2 (top plot) and the loadings plots of PC1 (middle plot) and PC2
(bottom). Each PC is computed as a linear combination of the 2,000 gene probes measured. b contains the
score plot (top) and the loadings plot of each of the constrained PCs (middle, bottom). Sparse and orthogonal
PCs distinguish the three groups considered, although in this case many gene probes present zero loadings

216 observations and 205 resultant gene probes of CenetPCA were analysed via
CenetHJ-Biplot. The sparsity constraint τ2 was fixed at a medium level of sparsity
(τ = ((1−α)

√
J +α) · (1/3)) (Guillemot et al. 2019). The 27.6% of the data variabil-

ity is explained by the two sparse components retained. The CenetHJ-Biplot results are
shown in Fig. 4. The first axis shows the separation of CLL samples from control and
ALL samples. Axis 2 is a gradient direction differentiating the ALL samples from the
rest. The genes that do not appear on the plane have null coordinates. In addition, the
CenetHJ-Biplot representation makes possible the recognition of a genetic character-
ization of each of the subgroups. In this sense, control samples are characterized by
a high expression of S100A12 and S100A9. These genes are responsible for discrim-
inating between control and tumour samples. CLL samples are differentiated from
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Fig. 4 2D plots of components 1–2 of sparse and orthogonal CenetHJ-Biplot. Each shape refers to one of
the three groups of study samples (rectangle: control; triangle: CLL; circle: ALL)

control and ALL samples because it presents higher expression levels of FCMR and
lower expression levels of DEFA1, LTF, HDB, HBB, HBA1, HBM and RFLNB genes.

7 Conclusions

In thiswork, the extension of CSVD (Guillemot et al. 2019) to the enet ball is proposed,
integrating sparse and orthogonal vectors simultaneously. This method is based on the
projection of a vector onto the convex intersection of enet and �2 balls. Here, the enet
constraint is shown as a suitable constraint approach, restricting coefficients to zero
while ensuring that correlated variables have similar coefficients, a desirable property
in disciplines such as genomics or psychometry. Our approach using CenetSVD is
useful for analysing large-scale problems with J � I and datasets with I > J .
Additionally, CenetSVD is extended to sparse and orthogonal constrained CenetPCA
and sparse and orthogonal constrained CenetBiplots. These techniques provide the
possibility of recognizing groups with similar patterns and the causative variables
associated with them. In addition, they are variable selection techniques that improve
the interpretation of results due to the sparse components established. Furthermore, this
work provides a sparsity parameter selection procedure based on the cross-validation
and the BIC, as well as the possibility to manually establish distinct levels of sparsity.
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Future lines of research may contemplate the possibility of applying other types
of constraints within the CSVD framework or even the proposal of other algorithms
for projecting a vector onto non-convex sets based on the correspondent mathematical
theory. Additionally, statistical techniques of two-way and three-way data analysis
could be developed through CenetSVD. We conclude that our proposed methods are
promising tools for conductingmultivariate analysis and are applicable to a wide range
of research areas.

Our methods are available as R functions in the GitHub repository in Spar-
seCenetMA (https://github.com/ananieto/SparseCenetMA).

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11634-021-00468-1.
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to do so, subject to the following conditions: THE SOFTWARE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FORANYCLAIM, DAMAGESOROTHERLIABILITY,WHETHER INANACTIONOFCONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE”.
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