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Abstract
The aim of this work is to study the structure of bounded finite potent endomorphisms
onHilbert spaces. In particular, for these operators, an answer to the Invariant Subspace
Problem is given and the main properties of its adjoint operator are offered. Moreover,
for every bounded finite potent endomorphism we show that Tate’s trace coincides
with the Leray trace and with the trace defined by R. Elliott for Riesz Trace Class
operators.

Keywords Adjoint operator · Bounded operator · Hilbert space · Finite potent
endomorphism · Riesz operator · Leray trace

Mathematics Subject Classification 47A05 · 46C05 · 47L30

1 Introduction

The notion of finite potent endomorphism on an arbitrary vector space was introduced
by Tate [19] as a basic tool for his elegant definition of Abstract Residues.

During the last decade the theory of finite potent endomorphisms have been applied
to studying different topics related to Algebra, Arithmetic and Algebraic Geometry.
Thus, Yekutieli [22] and Braunling [2] and [3] have addressed problems of arithmetic
symbols by using properties of finite potent endomorphism; Debry [5] and Taelman
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[18] have offered results about Drinfeld modules from these linear operators and
Cabezas Sánchez [4] and the author of thiswork have given explicit solutions of infinite
linear systems from reflexive generalized inverses of finite potent endomorphisms.

As far as we know a study of finite potent endomorphisms in the context of the
Functional Analysis is not stated explicitly in the literature.

The aim of this work is to study the main properties of bounded finite potent endo-
morphisms on arbitrary Hilbert spaces. Indeed, for these operators, an answer to the
Invariant Subspace Problem is given and the main properties of its adjoint operator are
offered. Moreover, for every bounded finite potent endomorphism we show that Tate’s
trace coincides with the Leray trace and with the trace defined by R. Elliott for Riesz
Trace Class operators. Also, we relate the determinant of a finite potent endomorphism
offered in [8] with classical determinants defined with techniques of Functional Anal-
ysis for trace class operators. Bounded finite rank operators and bounded nilpotent
linear maps are particular cases of bounded finite potent endomorphism.

The paper is organized as follows. In Sect. 2 we recall the basic definitions of this
work (inner product spaces, Hilbert spaces, bounded operators, orthogonality and the
adjoint of a bounded linear map) and a summary of statements of the articles [1,11,19].

Section 3 deals with the study of the main properties of bounded finite potent endo-
morphisms on Hilbert spaces. Accordingly, the characterization of these operators is
given in Theorem 3.7, the Invariant Subspace Problem is solved for them in Proposi-
tion 3.8 and Theorem 3.20 shows that every bounded finite potent endomorphism on
a Hilbert space is a Riesz trace class operator. Moreover, we study the spectrum of
bounded finite potent endomorphism, we determine when they are compact, we prove
that different definitions of traces on infinite-dimensional Hilbert spaces coincide and
we relate the determinant of a finite potent endomorphism with the determinants
offered by Dunford and Schwartz [6] and by Simon [17] for trace class operators in
separable Hilbert spaces.

Finally, Sect. 4 is devoted to offer the characterization of the adjoint ϕ∗ of a bounded
finite potent ϕ ∈ EndC(H) from the AST-decomposition of H introduced in [1], the
CN-decomposition of ϕ∗ given in [11], the structure of the spectrum of ϕ∗ and the
relation between the trace of ϕ∗ and the determinant of Id + ϕ∗ with the trace of ϕ

and the determinant of Id + ϕ respectively.
We hope that from the general properties of bounded finite potent endomorphisms

introduced in this work, different applications can be found in the near future.

2 Preliminaries

This section is added for the sake of completeness.

2.1 Operators on Hilbert Spaces

Let k be the field of the real numbers or the field of the complex numbers, and let V
be a k-vector space.

An inner product on V is a map g : V × V → k satisfying:
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• g is linear in its first argument:

g(λv1 + μv2, v
′) = λg(v1, v

′) + μg(v2, v
′) for every v1, v2, v

′ ∈ V ;

• g(v′, v) = g(v, v′) for all v, v′ ∈ V , where g(v, v′) is the complex conjugate of
g(v, v′);

• g is positive definite:

g(v, v) ≥ 0 and g(v, v) = 0 ⇐⇒ v = 0 .

Note that g(v, v) ∈ R for each v ∈ V , because g(v, v) = g(v, v).
An inner product space is a pair (V , g).
If (V , g) is an inner product vector space over C, it is clear that g is antilinear in

its second argument, that is:

g(v, λv′
1 + μv′

2) = λ̄g(v, v′
1) + μ̄g(v, v′

2)

for all v, v′
1, v

′
2 ∈ V , and λ̄ and μ̄ being the conjugates of λ and μ respectively.

Nevertheless, if (V , g) is an inner product vector space overR, then g is symmetric
and bilinear.

The norm on an inner product vector space (V , g) is the real-valued function

‖ · ‖g : V −→ R

v 
−→ +√
g(v, v) ,

and the distance is the map

dg : V × V −→ R

(v, v′) 
−→ ‖v′ − v‖g .

Every inner product vector space (V , g) has a natural structure ofmetric topological
space determined by the distance dg . Complete inner product C-vector spaces are
known as “Hilbert spaces”. Usually, the inner product of a Hilbert spaceH is denoted
by 〈·, ·〉H. Henceforth, we shall writeH to refer to a Hilbert space and keep the inner
product 〈·, ·〉H implicit.

Since a Banach space is a complete normed space, one has that each property of
Banach spaces is valid for Hilbert spaces.

2.1.1 Orthogonality

Definition 2.1 If (V , g) is an inner product vector space, we say that two vectors
v, v′ ∈ V are orthogonal when g(v, v′) = 0 = g(v′, v).
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Definition 2.2 Given a subspace L of an inner vector space (V , g), we shall call
“orthogonal of L”, L⊥, to the subset of V that consists of all vectors that are orthogonal
to every h ∈ L , that is

L⊥ = {v ∈ V such that g(v, h) = 0 for every h ∈ L} .

If L ⊆ H is a subspace of an arbitrary Hilbert space, it is known that (S⊥)⊥ = S
where L denotes the closure of L . Accordingly, if L ⊆ H is closed, then (L⊥)⊥ = L
and H = L ⊕ L⊥.

A family {ui }i∈I of orthonormal vectors of a Hilbert spaceH is called “orthonormal
basis” when 〈ui 〉i∈I is dense inH.

In general an orthonormal basis of H is not a Hamel basis of H. Furthermore, it
is known that every Hilbert space H admits orthonormal bases and all orthonormal
bases of H have the same cardinality. A Hilbert space H is named “separable” when
it has a countable orthonormal basis.

In this work, when we define a linear operator f ∈ EndC(H) from an orthonormal
basis {ui }i∈I of a Hilbert space H, we are assuming that f is defined as zero on the
remaining basis of a Hamel basis that contains {ui }i∈I .

2.1.2 Bounded Operators

We shall now recall the main properties of bounded operators of Hilbert spaces.

Definition 2.3 If H1 and H2 are two Hilbert spaces, a linear map f : H1 → H2 is
said “bounded” when there exists C ∈ R

+ such that

‖ f (v)‖g2 ≤ C · ‖v‖g1 ,

for every v ∈ H1.

We shall denote by B(H1,H2) the set of bounded linear maps f : H1 → H2 and
by B(H) the set of bounded endomorphisms of a Hilbert spaceH. Given a linear map
f ∈ B(H1,H2), it is known that f is continuous if and only if f is bounded.
The sum and the composition of linear maps are operations on the set B(H). Also,

the “Bounded Inverse Theorem” states that if f ∈ B(H1,H2) is bijective, then f −1 ∈
B(H2,H1).

Let us now consider two inner product vector spaces: (V , g) and (W , ḡ). If f : V →
W is a linear map, a linear operator f ∗ : W → V is called the adjoint of f when

g( f ∗(w), v) = ḡ(w, f (v)) ,

for all v ∈ V andw ∈ W . If f ∈ Endk(V ), we say that f is self-adjoint when f ∗ = f .
The existence and uniqueness of the adjoint f ∗ of a bounded (or equivalently a con-

tinuous) operator on arbitrary Hilbert spaces is immediately deduced from the Riesz
Representation Theorem and it is easy to check that [Im f ]⊥ = Ker f ∗. Moreover,
the adjoint of a bounded linear map is also bounded.
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For themainproperties of the adjoint operators onHilbert spaces readers are referred
to [16, Chapter 10].

The spectrum of a bounded operator f ∈ B(H) consists of complex numbers λ

such that f − λId is not invertible. We shall denote the spectrum of f by σ( f ) and it
is clear that every eigenvalue of f is an element of σ( f ). It is known that it is possible
that an element of σ( f ) is not an eigenvalue.

Definition 2.4 Given a Hilbert space H, a bounded operator f ∈ B(H) is compact if
for every bounded sequence {hn}n∈N ⊂ H, the sequence { f (hn)}n∈N has a convergent
subsequence. We say that f is quasi-compact if f n is compact for same n ∈ N.

IfH is an infinite-dimensionalHilbert space, and operator f ∈ EndC(H) is compact
if, for every h ∈ H, it can be written in the form

f (h) =
∑

n∈N
γn〈h, vn〉H · un

where {un}n∈N and {vn}n∈N are orthonormal bases of H and {γn}n∈N is a convergent
sequence of positive numbers with limit zero.

We shall denote by C(H) the set of compact operators on a Hilbert space that is
a two-sided ideal of B(H). The absolute value of a compact operator f ∈ C(H) is

| f | = ( f ∗ ◦ f )
1
2 that is well-defined because f ∗ ◦ f is a positive operator.

Definition 2.5 A compact operator f ∈ C(H) is of trace class when

∑

i∈I
〈| f |(ui ), ui 〉H < ∞ ,

where | f | is the absolute value of f and {ui }i∈I is an orthonormal basis ofH.

It is known that the definition of a trace class operator is independent of the orthonor-
mal basis chosen.

The space of trace class operators on an arbitrary Hilbert space H is also an ideal
of B(H) and it will be denoted by T (H). Every bounded finite rank endomorphism
of a Hilbert space is of trace class.

IfH is an arbitrary Hilbert space and {ui }i∈I is an orthonormal basis ofH, the trace
of a trace class operator f ∈ B(H) is defined by the expression

Tr( f ) =
∑

i∈I
〈 f (ui ), ui 〉H .

It is known that Tr( f ) is independent of the choice of the orthonormal basis made,
and shows in Lidskii [10] that

Tr( f ) =
∑

i≥1

λi ( f ) ∈ C , (2.1)

where {λi ( f )} is the listing of all nonzero eigenvalues of f , counted up to algebraic
multiplicity.
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2.1.3 The Leray Trace

Let V be an arbitrary k-space and f ∈ Endk(V ). If we write

N ( f ) =
∞⋃

s=1

Ker f s ,

since N ( f ) is an f -invariant subspace of V , we can consider the endomorphism
f̃ ∈ Endk(V /N ( f )) induced by f .
Now, when E f = V /N ( f ) is a finite-dimensional k-vector space, according to the

statements of [9, Section 1] the “Leray trace” TrLV is defined by

TrLV ( f ) = TrE f ( f̃ ) ,

where TrE f is the usual trace of an endomorphism on E f .
If V ′ ⊂ V is a f -invariant subspace, f ′ = f|V ′ and f ′′ is the induced linear map

on V /V ′, the Leray trace satisfies that

TrLV ( f ) = TrLV ′( f ′) + TrLV /V ′( f ′′) .

2.1.4 Riesz Operators

Let E be a complex Banach space and let T be a bounded operator on E .

Definition 2.6 [7, Definition 3.1] We say that λ ∈ σ(T ) is a “Riesz point” for T if E
is a direct sum

E = N (λ) ⊕ F(λ)

where:

(1) E(λ) and F(λ) are T -invariant linear subspaces of E ;
(2) N (λ) is finite dimensional;
(3) F(λ) is closed;
(4) T − λId is nilpotent on N (λ);
(5) T − λId is a homeomorphism of F(λ).

Definition 2.7 [7, Definition 3.2] A bounded operator T on a complex Banach space
is a “Riesz operator” if every nonzero point of its spectrum is a Riesz point.

According to [20, Theorem 2.1], it is known that if λ is a nonzero Riesz point of
σ(T ) then λ is isolated in σ(T ).

Definition 2.8 We say that a bounded operator T on a complex Banach space is
“quasinilpotent” when σ(T ) = {0}.

The fully decomposition of a Riesz operator introduced by West [21] is
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Definition 2.9 If T is a Riesz operator on a Banach space E , T is said to be “fully
decomposable” if T = TC +TQ , where TC is a compact operator, TQ is quasi-nilpotent
and TC ◦ TQ = TQ ◦ TC = 0.

A decomposition T = TC + TQ is known as “West decomposition of T ”.
Moreover, it follows from [7, Theorem 3.8] that for every Riesz operator T on a

Hilbert space H then T = TC + TQ , where TC is a compact operator, TQ is quasi-
nilpotent, TC is normal, σ(T ) = σ(TC ) and the nonzero eigenvalues of T and TC have
the same algebraic multiplicities.

Definition 2.10 [7, Definition 4.6] Suppose that T is a Riesz operator on a Hilbert
space H and T = TC + TQ is a West decomposition of T . If TC is of trace class then
we say that T is of Riesz trace class and we define

TrRH(T ) = Tr(TC ) ,

where Tr(TC ) is the trace of the trace class operator TC .

Moreover, if T is Riesz trace class operator on a Hilbert spaceH, according to the
statements of [7, Section 4], the trace TrRH(T ) satisfies the following properties:

(1) the listing {λi (T )}i∈I of the nonzero eigenvalues of T , repeated according to
multiplicity, is finite and TrRH(T ) = ∑

λi (T );
(2) if f is a bounded map on H with a bounded inverse, then

TrRH(T ) = TrRH( f ◦ T ◦ f −1) ;

(3) if T ∗ is the adjoint of T , then T ∗ is Riesz trace class and TrRH(T ) = TrRH(T ∗);
(4) if g is a bounded operator onH such that g ◦ T = T ◦ g, then g ◦ T and T ◦ g are

of Riesz trace class en TrRH(g ◦ T ) = TrRH(T ◦ g).

2.2 Finite Potent Endomorphisms

Let k be an arbitrary field, and let V be a k-vector space.
Let us now consider an endomorphism ϕ of V . According to [19, page 149], we

say that ϕ is “finite potent” if ϕnV is finite dimensional for some n.
In 2007 Argerami et al. [1] that an endomorphism ϕ is finite potent if and only if

V admits a ϕ-invariant decomposition V = Uϕ ⊕ Wϕ such that ϕ|Uϕ
is nilpotent, Wϕ

is finite dimensional, and ϕ|Wϕ
: Wϕ

∼−→ Wϕ is an isomorphism.
Indeed, if k[x] is the algebra of polynomials in the variable x with coefficients in

k, we may view V as an k[x]-module via ϕ, and the explicit definition of the above
ϕ-invariant subspaces of V is:

• Uϕ = {v ∈ V such that ϕm(v) = 0 for some m };
• Wϕ =

{
v ∈ V such that p(ϕ)(v) = 0 for

some p(x) ∈ k[x] relatively prime to x

}

.
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Note that if the annihilator polynomial of ϕ is xm · p(x) with (x, p(x)) = 1, then
Uϕ = Ker ϕm and Wϕ = Ker p(ϕ).

Hence, this decomposition is unique. We shall call this decomposition the ϕ-
invariant AST-decomposition of V .

Moreover, we shall call “index of ϕ”, i(ϕ), to the nilpotent order of ϕ|Uϕ
, which

coincides with the smaller n ∈ N such that Im ϕn = Wϕ . One has that i(ϕ) = 0 if and
only if V is a finite-dimensional vector space and ϕ is an automorphism.

Lemma 2.11 If V is k-vector space, ϕ ∈ Endk(V ) is a finite potent endomorphism
with AST-decomposition V = Wϕ ⊕Uϕ and L ⊂ V is ϕ-invariant, then one has that:

• if ϕ|L ∈ Autk(L), then L is finite-dimensional and L ⊆ Wϕ ;
• if ϕ|L is nilpotent, then L ⊆ Uϕ .

Proof The statements are direct consequence of the uniqueness of the AST-decompo-
sition of ϕ. ��

Basic examples of finite potent endomorphisms are all endomorphisms of a finite-
dimensional vector spaces and finite rank or nilpotent endomorphisms of infinite-
dimensional vector spaces.

Definition 2.12 For a finite potent endomorphism ϕ ∈ Endk(V ), a trace TrV (ϕ) ∈ k
may be defined from the following properties:

(1) if V is finite dimensional, then TrV (ϕ) is the ordinary trace;
(2) if W is a subspace of V such that ϕW ⊂ W , then

TrV (ϕ) = TrW (ϕ) + TrV /W (ϕ) ;

(3) if ϕ is nilpotent, then TrV (ϕ) = 0.

Usually, TrV is named “Tate’s trace”.
It is known that in general TrV is not linear; that is, it is possible to find finite potent

endomorphisms θ1, θ2 ∈ Endk(V ) such that

TrV (θ1 + θ2) �= TrV (θ1) + TrV (θ2) .

For details readers are referred to [14,15,19].

2.3 Core-Nilpotent Decomposition of a Finite Potent Endomorphism

Let V be again an arbitrary k-vector space. Given a finite potent endomorphism ϕ ∈
Endk(V ), there exists a unique decomposition ϕ = ϕ1 + ϕ2 , where ϕ1, ϕ2 ∈ Endk(V )

are finite potent endomorphisms satisfying that:

• i(ϕ1) ≤ 1;
• ϕ2 is nilpotent;
• ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1 = 0.
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According to [11, Theorem 3.2], if ϕD is the Drazin inverse of ϕ offered in [13],
one has that ϕ1 = ϕ ◦ ϕD ◦ ϕ is the core part of ϕ. Also, ϕ2 is named the nilpotent
part of ϕ and one has that

ϕ = ϕ1 ⇐⇒ Uϕ = Ker ϕ ⇐⇒ Wϕ = Im ϕ ⇐⇒ (ϕD)D = ϕ ⇐⇒ i(ϕ) ≤ 1 .(2.2)

Moreover, if V = Wϕ ⊕Uϕ is the AST-decomposition of V induced by ϕ, then ϕ1

and ϕ2 are the unique linear maps such that:

ϕ1(v) =
{

ϕ(v) if v ∈ Wϕ

0 if v ∈ Uϕ

and ϕ2(v) =
{

0 if v ∈ Wϕ

ϕ(v) if v ∈ Uϕ

. (2.3)

3 Bounded Finite Potent Endomorphisms

In this section we shall study the main properties of bounded finite potent endomor-
phisms on an arbitrary Hilbert space H.

Let us consider a finite potent endomorphism ϕ ∈ EndC(H) with CN-decomposi-
tion ϕ = ϕ1 + ϕ

2
.

In general, a finite potent endomorphism is not bounded. In fact, there exist finite
rank endomorphisms and nilpotent endomorphisms that are not bounded, as it is
deduced from the following counter-example.

Let H be a separable Hilbert space with orthonormal basis {ui }i∈N and let us
consider the linear map f ∈ Endk(H) defined from the assignations‘

f (ui ) =
{
0 if i = 1
i · u1 if i ≥ 2

.

One has that f is nilpotent of finite rank and it is not bounded.
Henceforth, we shall write B f p(H) to refer to the set of bounded finite potent

endomorphisms of an arbitrary Hilbert space H.

Remark 3.1 Let H be a separable Hilbert space with orthonormal basis {ui }i∈N and
let us consider ϕ, ϕ′ ∈ B f p(H), defined from the assignations:

ϕ(ui ) =
{ 1

i2
ui+1 if i is odd

0 if i is even

and

ϕ′(ui ) =
{
0 if i is odd
1
i2
ui−1 if i is even

.
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Taking into account that

(ϕ + ϕ′)(ui ) =
{

1
i2
ui+1 if i is odd

1
i2
ui−1 if i is even

and

(ϕ′ ◦ ϕ)(ui ) =
{

1
i2(i+1)2

ui if i is odd

0 if i is even
,

it is clear that ϕ+ϕ′, ϕ′ ◦ϕ /∈ B f p(H) and, therefore, B f p(H) is not an ideal of B(H).

Lemma 3.2 Given a Hilbert space H with a decomposition H = M ⊕ N, where M
and N are closed subspaces, and given an endomorphism f ∈ EndC(H) such that
f|M ∈ B(M,H), then the linear operator fM ∈ EndC(H) defined as

fM (v) =
{

f (v) if v ∈ M

0 if v ∈ N

is bounded.

Proof If we denote by PM,N ∈ EndC(H) the oblique projection of H onto M along
N , since fM = f|M ◦PM,N and PM,N ∈ B(H) because M and N are closed, then we
conclude that fM ∈ B(H). ��

If V is an arbitrary Banach space, since the oblique projectionPM,N ∈ B(V )when
V = M⊕N with closed subspacesM and N , one has that Lemma 3.2 hold for Banach
spaces.

Lemma 3.3 If H is a Hilbert space, f ∈ EndC(H) and U ⊆ H is a closed subspace
of finite codimension such that f|U = 0, then f ∈ B(H).

Proof Since U is closed, then H = U ⊕ U⊥. Moreover, since U is of finite codi-
mension, one has that U⊥ is finite-dimensional and there exists C

U⊥ ∈ R
+ such

that

‖ f (v)‖H ≤ C
U⊥ · ‖v‖H

for every v ∈ U⊥.
Hence, given now h ∈ H, such that h = v + u with v ∈ U⊥ and u ∈ U , and

bearing in mind that ‖v‖H ≤ ‖h‖H, one has that

‖ f (h)‖H ≤ ‖ f (v)‖H ≤ C
U⊥ · ‖v‖H ≤ C

U⊥ · ‖h‖H ,

from where we deduce that f is bounded. ��
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Lemma 3.4 If H is a Hilbert space and we consider a finite potent endomorphism
ϕ ∈ EndC(H) with CN-decomposition ϕ = ϕ1 + ϕ2 , then ϕ1 ∈ B f p(H).

Proof LetH = Wϕ ⊕Uϕ be the AST-decomposition induced by ϕ. If i(ϕ) = n, since
Uϕ = Ker ϕn and ϕn is bounded, we deduce thatUϕ is a closed subspace ofH of finite
codimension.

Thus, taking into account the explicit expression of the finite potent endomorphism
ϕ1 offered in (2.3), the statement is immediately deduced from Lemma 3.3. ��

Corollary 3.5 Given a Hilbert spaceH a a finite potent endomorphism ϕ ∈ EndC(H)

with CN-decomposition ϕ = ϕ1 + ϕ2 , then ϕ1 is a bounded finite rank operator onH.

Proof Since ϕ1 is of finite rank because i(ϕ1) ≤ 1, then the assertion is immediately
deduced from Lemma 3.4. ��

Lemma 3.6 If H is a Hilbert space and we consider a finite potent endomorphism
ϕ ∈ EndC(H) with CN-decomposition ϕ = ϕ1 + ϕ2 , then ϕ ∈ B f p(H) if and only if
ϕ2 ∈ B f p(H).

Proof Taking into account that from Lemma 3.4 we know that ϕ1 ∈ B f p, if ϕ2 ∈
B f p(H), since ϕ = ϕ1 + ϕ2 , then ϕ ∈ B f p(H).

Conversely, if ϕ ∈ B f p(H), from Lemma 3.4, we know that ϕ1 ∈ B f p(H). Accord-
ingly, we have that the finite potent endomorphism ϕ2 ∈ B f p(H) because ϕ2 = ϕ−ϕ1

and the claim is proved. ��

Theorem 3.7 (Characterization of bounded finite potent endomorphisms). Given a
Hilbert space H and an endomorphism ϕ ∈ EndC(H), then the following conditions
are equivalent:

(1) ϕ ∈ B f p(H);
(2) H admits a decompositionH = Wϕ ⊕Uϕ where Wϕ andUϕ are closed ϕ-invariant

subspaces of H, Wϕ is finite-dimensional, ϕ|Wϕ
is an homeomorphism of Wϕ and

ϕ|Uϕ
is a bounded nilpotent operator.

(3) ϕ has a decomposition ϕ = ψ + φ, where ψ is a bounded finite rank operator, φ
is a bounded nilpotent operator and ψ ◦ φ = φ ◦ ψ = 0.

Proof (1) �⇒ (2) If ϕ ∈ B f p(H), aϕ(x) = xn p(x) is the annihilator polynomial of
ϕ and we consider the AST-decomposition of H = Wϕ ⊕ Uϕ determined by ϕ, we
have that:

• Wϕ = Ker p(ϕ) is finite-dimensional, ϕ-invariant and closed;
• Uϕ = Ker ϕn is ϕ-invariant and closed;
• ϕ|Wϕ

andϕ|Uϕ
are bounded because the restriction of a bounded operator to a closed

subspace is also bounded;
• from the Bounded Inverse Theorem, since ϕ|Wϕ

∈ AutC(Wϕ ), then ϕ|Wϕ
is an

homeomorphism of Wϕ .

123



4096 F. P. Romo

(2) �⇒ (3) If H admits a decomposition H = Wϕ ⊕Uϕ satisfying the conditions
of the second paragraph of this theorem, if we denote ψ = ϕWϕ

and φ = ϕUϕ
with

ϕWϕ
(v) =

{
ϕ(v) if v ∈ Wϕ

0 if v ∈ Uϕ

and ϕUϕ
(v) =

{
ϕ(v) if v ∈ Uϕ

0 if v ∈ Wϕ

,

from Lemma 3.2 we have that ψ and φ are bounded and, clearly, ψ is of finite rack
and φ is nilpotent.

(3) �⇒ (1) Let us now assume that ϕ has a decomposition ϕ = ψ + φ, where ψ

is a bounded finite rank operator, φ is a bounded nilpotent operator and

ψ ◦ φ = φ ◦ ψ = 0 .

From this decomposition, one immediately has that ϕ ∈ B(H) and, since ϕn = ψn

for n >> 0, we deduce that ϕ ∈ B f p(H). ��
From the uniqueness of the CN-decomposition ϕ = ϕ1 +ϕ2 proved in [11, Theorem

3.2], if ϕ = ψ + φ as in Theorem 3.7, one has that ψ = ϕ1 and φ = ϕ2 .
Recall now that the “Invariant Subspace Problem” is referred to give an answer to

the following question: is there a T -invariant non-trivial closed subspace of E , if T is
a bounded operator on a complex Banach space E?

Proposition 3.8 If H is an infinite-dimensional Hilbert space and ϕ ∈ B f p(H) with
i(ϕ) ≥ 2, then we have an affirmative answer to the Invariant Subspace Problem for
ϕ . Moreover, if ϕ̂ ∈ B f p(H) with i(ϕ̂) = 1, then ϕ̂ gives an affirmative answer to the
Invariant Subspace Problem if and only if ϕ̂ is not nilpotent.

Proof Let H = Wϕ ⊕ Uϕ is the AST-decomposition induced by ϕ ∈ B f p(H) with
i(ϕ) ≥ 1. If ϕ is not nilpotent, one has that Wϕ is a ϕ-invariant non-trivial closed
subspace of H.

Let us now consider a bounded nilpotent endomorphism ϕ̃ with i(ϕ̃) = r ≥ 2. In
this case, we have that Ker ϕ̃r−1 is a ϕ̃-invariant non-trivial closed subspace ofH.

Finally, if ϕ̂ ∈ B f p(H) is a nilpotent endomorphism with i(ϕ̂) = 1, one has that
H = Ker ϕ̂ and it is clear that the unique ϕ̂-invariant subspace is {0}. ��

Our task is now to study compact finite potent endomorphisms on arbitrary Hilbert
spaces.

Firstly, it is known that bounded finite rank endomorphisms of Hilbert spaces are
compact but, in general, a bounded nilpotent endomorphism of a Hilbert space is
not compact. An easy counter-example is the following: if H is a separable Hilbert
space and {ui }i∈N is an orthonormal basis ofH, then the linear operator f ∈ B f p(H)

determined by the conditions

f (ui ) =
{
ui+1 if i is odd
0 if i is even

is nilpotent and it is clear that it is not compact.
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Proposition 3.9 If H is a Hilbert space and we consider ϕ ∈ B f p(H) with CN-
decomposition ϕ = ϕ1 + ϕ2 , then ϕ ∈ C(H) if and only if ϕ2 ∈ C(H).

Proof Since we know from Corollary 3.5 that ϕ1 is a bounded finite rank operator of
H, then ϕ1 ∈ C(H) and we conclude bearing in mind that C(H) is an ideal of B(H).

��
Corollary 3.10 Given a Hilbert spaceH and ϕ is a bounded finite rank operator ofH
with i(ϕ) ≤ 1, then ϕ ∈ C(H).

Proof This statement is a direct consequence of Proposition 3.9 because i(ϕ) ≤ 1 if
and only if ϕ = ϕ1. ��
Lemma 3.11 Every bounded finite potent endomorphism on a Hilbert space is quasi-
compact.

Proof Taking into account Definition 2.4, since ϕn = (ϕ1)
n for every n ≥ i(ϕ), the

claim follows from Corollary 3.10. ��
We shall now study the spectrum of a finite potent bounded endomorphism.

Lemma 3.12 Given a Hilbert spaceH and an endomorphism ϕ ∈ B f p(H) with AST-
decomposition H = Wϕ ⊕ Uϕ induced by ϕ, then a nonzero λ ∈ C is an eigenvalue
of ϕ if and only if λ is an eigenvalue of ϕ|Wϕ

.

Proof It is clear that if λ �= 0 is an eigenvalue of ϕ|Wϕ
then λ is also an eigenvalue of

ϕ.
Conversely, let us assume that λ �= 0 is an eigenvalue of ϕ and let us consider a

nonzero vector v ∈ V such that ϕ(v) = λ · v.
Thus, since 〈v〉 satisfies that ϕ|〈v〉 ∈ AutC(〈v〉), from Lemma 2.11 one deduces that

v ∈ Wϕ and, therefore, λ is an eigenvalue of ϕ|Wϕ
. ��

Lemma 3.13 If H is a Hilbert space and we consider ϕ ∈ B f p(H) with CN-
decomposition ϕ = ϕ1 + ϕ2 , then λ ∈ C is an eigenvalue of ϕ if and only if λ is
an eigenvalue of ϕ1.

Proof Bearing in mind the explicit expression of ϕ1 offered in (2.3), the claim is
immediately deduced from Lemma 3.12. ��
Proposition 3.14 If H is a Hilbert space, ϕ ∈ B f p(ϕ) and H = Wϕ ⊕ Uϕ is the
AST-decomposition determined by ϕ, one has that the spectrum of ϕ is:

• σ(ϕ) = {λ1, . . . , λn} when i(ϕ) = 0;
• σ(ϕ) = {0, λ1, . . . , λn} when i(ϕ) ≥ 1,

where {λ1, . . . , λn} are the eigenvalues of ϕ|Wϕ
.

Proof Recalling that i(ϕ) = 0 if and only ifH is finite-dimensional and ϕ ∈ AutC(H),
it is clear that the spectrum of ϕ coincides with the set of eigenvalues of ϕ because, in
this case, H = Wϕ .
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Let us assume that i(ϕ) ≥ 1. Then, if we consider a nonzero λ ∈ C such that λ is
not an eigenvalue of ϕ|Wϕ

, since Wϕ and Uϕ are invariants under the action of ϕ, one
has that λ · Id − ϕ|Wϕ

∈ AutC(Wϕ ) and λ · Id − ϕ|Uϕ
∈ AutC(Uϕ ), from where we

deduce that λ · Id − ϕ is invertible.
Hence, taking into account that ϕ is not invertible when i(ϕ) ≥ 1 and the same

holds for λi · Id − ϕ for each eigenvalue λi of ϕ|Wϕ
, the statement is proved. ��

A direct consequence of this proposition is:

Corollary 3.15 If H is a Hilbert space and we consider ϕ ∈ B f p(H) with CN-
decomposition ϕ = ϕ1 + ϕ2 , then σ(ϕ) = σ(ϕ1).

Moreover, one has that:

Lemma 3.16 IfH is a Hilbert space and we consider ϕ ∈ B f p(H), then the spectrum
satisfies the following properties:

(1) σ(ϕ) is finite;
(2) λ ∈ σ(ϕ) if and only if λ is an eigenvalue of ϕ;
(3) dimC Ker(ϕ − λId) < ∞ for every 0 �= λ ∈ σ(ϕ).

Proof The assertions follows from Lemma 3.12 and Proposition 3.14. ��
Lemma 3.17 If H is a Hilbert space, ϕ ∈ B f p(H) and 0 �= λ ∈ σ(ϕ), then the alge-
braic multiplicity of λ as an eigenvalue of ϕ1 coincides with the algebraic multiplicity
of λ as an eigenvalue of ϕ|Wϕ

.

Proof For every nonzero λ ∈ C and for each n ∈ N, since Ker (ϕ − λId)n ⊆ Wϕ , one
has that

Ker (ϕ − λId)n = Ker (ϕ|Wϕ
− λId)n ,

from where the claim is proved. ��
If ϕ ∈ B f p(H) and {λi (ϕ)} is the listing of all nonzero eigenvalues of ϕ, counted

up to algebraic multiplicity, then #{λi (ϕ)} = dimC Wϕ .

Proposition 3.18 Every bounded finite potent endomorphism on a Hilbert space is a
Riesz operator.

Proof Let H be a Hilbert space and let us consider ϕ ∈ B f p(H).
We shall check that every nonzero λ ∈ σ(ϕ) satisfies the conditions of a Riesz point

given in Definition 2.6.
If aϕ(x) is the annihilator polynomial of ϕ, from Proposition 3.14 we have that

aϕ(x) = (x − λ)s · pλ(x)

with (x − λ, pλ(x)) = 1, and we can write N (λ) = Ker(ϕ − λId)s and F(λ) =
Ker pλ(ϕ).
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It is clear that N (λ) and F(λ) are ϕ-invariant subspaces of H.
LetH = Wϕ ⊕Uϕ be the AST-decomposition ofH determined by ϕ. Since N (λ) ⊆

Wϕ , then N (λ) is finite dimensional.Moreover, bearing inmind that pλ(ϕ) is a bounded
operator, one has that F(λ) = Ker pλ(ϕ) is a closed subspace ofH.

Finally, since ϕ−λId is clearly nilpotent in N (λ) and is invertible in F(λ), it follows
from the Bounded Inverse Theorem that ϕ −λId is an homeomorphism of F(λ), from
where the proof is concluded. ��
Lemma 3.19 If H is a Hilbert space and ϕ ∈ B f p(H), then the CN-decomposition
ϕ = ϕ1 + ϕ2 is a West decomposition of ϕ (Definition 2.9).

Proof Since ϕ1 is compact and ϕ2 is nilpotent and, therefore, quasi-nilpotent, the
CN-decomposition satisfies the conditions of Definition 2.9 and the claim is proved.

��
Theorem 3.20 Every bounded finite potent endomorphism on a Hilbert space is a
Riesz trace class operator.

Proof Since ϕ1 is of trace class, then the assertion is immediately deduced fromPropo-
sition 3.18 and Lemma 3.19. ��

3.1 Trace and Determinant of a Bounded Finite Potent Endomorphism

We shall now relate for bounded finite potent endomorphisms the Tate’s trace of a
finite potent endomorphism introduced in [19] with the Leray trace defined in [9] and
with the trace of a Riesz trace class operator offered in [7]. Given an arbitrary Hilbert
space H and an endomorphism ϕ ∈ B f p(H), we again denote by TrH(ϕ) the Tate’s
trace, by TrLH(ϕ) the Leray trace and by TrRH(ϕ) the trace of ϕ as a Riesz trace class
operator. Moreover we write Tr(ψ) to refer to the trace of a trace class operator ψ and
TrE ( f ) to refer to the trace of an endomorphism f on a finite-dimensional space E .

Lemma 3.21 Given a Hilbert space H and an endomorphism ϕ ∈ B f p(H) with AST
decomposition and H = Wϕ ⊕Uϕ , then

TrH(ϕ) = TrWϕ
(ϕ|Wϕ

) .

Proof According to [19, page 150], TrH(ϕ) can be computed as

TrH(ϕ) = TrW (ϕ|W ) ,

where W is a finite dimensional linear subspace ofH, such that W is ϕ-invariant and
ϕn(V ) ⊆ W for a large n ∈ N.

Taking into account that Wϕ is ϕ-invariant and Wϕ = ϕr (V ) with r = i(ϕ), the
assertion is proved. ��
Lemma 3.22 If H is a Hilbert space and ϕ ∈ B f p(H) with CN-decomposition ϕ =
ϕ1 + ϕ2 , then the Tate’s trace TrH(ϕ) coincides with the trace of ϕ1 as a trace class
operator.
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Proof Since Tr(ϕ) can be computed from the expression (2.1), the statement is a direct
consequence of Proposition 3.14, Corollary 3.15, Lemmas 3.17 and 3.21 ��
Proposition 3.23 IfH is a Hilbert space and ϕ ∈ B f p(H), then TrH(ϕ) = TrRH(ϕ).

Proof The claim follows immediately from Definition 2.10, Lemma 3.19, Theo-
rem 3.20 and Lemma 3.22. ��

Keeping the previous notation, if ϕ ∈ B f p(H) and {λi (ϕ)}i∈{1,...,s} is the listing of
all nonzero eigenvalues of ϕ, counted up to algebraic multiplicity, one has that

TrH(ϕ) =
s∑

i=1

λi (ϕ) . (3.1)

However, for the computation of TrH(ϕ) is not necessary to calculate the eigenval-
ues ofϕ because fromLemma3.21we can compute TrH(ϕ) from thematrix associated
with ϕ|Wϕ

in a Hamel basis of Wϕ .

Proposition 3.24 Given a Hilbert spaceH and a finite potent bounded endomorphism
ϕ ∈ B f p, one has that TrH(ϕ) = TrLH(ϕ).

Proof With the notation of Sect. 2.1.3, ifH = Wϕ ⊕Uϕ is the AST-decomposition of
ϕ, it is clear that N (ϕ) = Uϕ and, since H/Uϕ is finite-dimensional, then the Leray
trace TrLH(ϕ) makes sense.

If ϕ̃ is the endomorphism of H/Uϕ induced by ϕ, fixing a linear isomorphism

τ : Wϕ

∼−→ H/Uϕ , from the commutative diagram of linear maps

Wϕ ∼
τ ��

ϕ|Wϕ

��

H/Uϕ

ϕ̃

��
Wϕ ∼

τ �� H/Uϕ

,

we deduce that

TrH(ϕ) = TrWϕ
(ϕ|Wϕ

) = TrH/Uϕ
(ϕ̃) = TrLH(ϕ) .

��
We can now summarize the statements of Lemma 3.21, Propositions 3.23 and 3.24

in the following

Theorem 3.25 GivenaHilbert spaceH, for every finite potent bounded endomorphism
ϕ ∈ B f p(H) with AST-decomposition H = Wϕ ⊕Uϕ , one has that

TrH(ϕ) = TrRH(ϕ) = TrLH(ϕ) = TrWϕ
(ϕ|Wϕ

) .
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To finish this section we shall study determinants of bounded finite potent endo-
morphisms.

If V is an arbitrary k-space, let us now recall from [8, Section 3.A] that a determinant
for a finite potent endomorphism ϕ ∈ Endk(V ) can be defined from the following
properties:

• if V is finite dimensional, then detkV (1 + ϕ) is the ordinary determinant;
• if W is a subspace of V such that ϕW ⊂ W , then

detkV (1 + ϕ) = detkW (1 + ϕ) · detkV /W (1 + ϕ) ;

• if ϕ is nilpotent, then detkV (1 + ϕ) = 1.

If V = Wϕ ⊕ Uϕ is the AST-decomposition of V determined by ϕ, similar to
Lemma 3.21, one can check that

detkV (Id + ϕ) = detkWϕ
(Id + ϕ|Wϕ

) , (3.2)

where detkWϕ
(Id+ϕ|Wϕ

) is the determinant of the endomorphism Id+ϕ|Wϕ
on the finite-

dimensional vector spaceWϕ .Moreover, ifϕ = ϕ1+ϕ2 is again theCN-decomposition
of ϕ, it is clear that

detkV (Id + ϕ) = detkV (Id + ϕ1) .

Let us again consider an arbitrary Hilbert space H and a bounded finite potent
endomorphism ϕ ∈ B f p(H). According to [8, Proposition 3.11] one has that

detCH(Id + ϕ) = 1 +
∑

r≥1

Tr∧r H[
r∧

ϕ] . (3.3)

Hence, one has that detCH(Id + ϕ) generalizes the determinant defined by Simon
[17] for trace class operators B on a separable Hilbert space from the formula:

det1(1 + μB) = 1 +
∞∑

n=1

μn Tr(
n∧

(B) ,

where μ ∈ C.
Moreover, it follows from [8, Proposition 3.18] that

detCH(Id + ϕ) =
s∏

i=1

[1 + λi (ϕ)] , (3.4)

where {λi (ϕ)}i∈{1,...,s} is again the listing of all nonzero eigenvalues of ϕ, counted up
to algebraic multiplicity. Readers can see that expression (3.4) shows that detCH(Id +
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ϕ) also generalizes the definition of an infinite determinant for trace class operators
offered by Dunford and Schwartz [6].

Accordingly,the expression (3.2) allows us to offer an easy method for the calcula-
tion of classical infinite determinants in Functional Analysis for bounded finite potent
endomorphisms.

4 Structure of the Adjoint of a Bounded Finite Potent Endomorphism

This final section is devoted to characterizing the structure of the adjoint operator of a
bounded finite potent endomorphism of aHilbert space and to offer itsmain properties.

Proposition 4.1 IfH is a Hilbert space and we consider ϕ ∈ B f p(H), then the adjoint
ϕ∗ is also a bounded finite potent endomorphism.

Proof It is known that the adjoint of a bounded linear map of a Hilbert space is also
bounded. Let H = Wϕ ⊕ Uϕ be the AST-decomposition induced by ϕ. Since Wϕ is
finite-dimensional, then Wϕ is a closed subspace of H and H = Wϕ ⊕ W⊥

ϕ
.

If we now consider v ∈ W⊥
ϕ
, one has that

〈w, ϕ∗(v)〉H = 〈ϕ(w), v〉H = 0

for every w ∈ Wϕ because Wϕ is ϕ-invariant. Accordingly, W⊥
ϕ

is ϕ∗-invariant.
Moreover, assuming that i(ϕ) = n and bearing in mind that ϕn(h) ∈ Wϕ for all

h ∈ H, given v ∈ W⊥
ϕ
, we have that

〈h, (ϕ∗)n(v)〉H = 〈ϕn(h), v〉H = 0 ,

from where we deduce that (ϕ∗)n(v) ∈ H⊥ = {0} and (ϕ∗)|W⊥
ϕ

is nilpotent.

Hence, Im (ϕ∗)n = (ϕ∗)n(Wϕ ) and we conclude that ϕ∗ is finite potent. ��
Corollary 4.2 If ϕ ∈ B f p(H), H = Wϕ ⊕ Uϕ is the AST-decomposition induced by ϕ

and H = W
ϕ∗ ⊕U

ϕ∗ is the AST-decomposition determined by ϕ∗, then

dimC W
ϕ∗ = dimC Wϕ .

Proof Taking into account that, from Lemma 2.11 and Proposition 4.1, one has that
W⊥

ϕ
⊆ U

ϕ∗ , then there exists a surjective linear map of finite-dimensional C-vector
spaces

H/W⊥
ϕ

−→ H/U
ϕ∗ → 0 .

Thus, sinceH/U
ϕ∗ � W

ϕ∗ andH/W⊥
ϕ

� Wϕ as C-vector spaces, one obtains that

dimC W
ϕ∗ ≤ dimC Wϕ .
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Moreover, since ϕ∗ is also bounded finite potent and it is clear that (ϕ∗)∗ = ϕ, then

dimC Wϕ = dimC W
(ϕ∗)∗ ≤ dimC W

ϕ∗ ≤ dimC Wϕ ,

from where the claim is deduced. ��
Proposition 4.3 If ϕ ∈ B f p(H),H = Wϕ ⊕Uϕ is the AST-decomposition induced by
ϕ andH = W

ϕ∗ ⊕U
ϕ∗ is the AST-decomposition determined by ϕ∗, then U

ϕ∗ = W⊥
ϕ
.

Proof If we consider the exact sequence of finite-dimensional C-vector spaces

0 → U
ϕ∗ /W

⊥
ϕ

−→ H/W⊥
ϕ

−→ H/U
ϕ∗ → 0 ,

taking into account that H/U
ϕ∗ � W

ϕ∗ and H/W⊥
ϕ

� Wϕ as C-vector spaces, one

has that U
ϕ∗ /W⊥

ϕ
= {0} and the assertion is checked. ��

Corollary 4.4 If ϕ ∈ B f p(H), then i(ϕ) = i(ϕ∗).
Proof Since Proposition 4.3 shows thatU

ϕ∗ = W⊥
ϕ
, it follows from the argumentation

made in the proof of Proposition 4.1 that i(ϕ∗) ≤ i(ϕ). Thus, bearing in mind that
(ϕ∗)∗ = ϕ, we obtain that i(ϕ) = i(ϕ∗) because

i(ϕ) = i((ϕ∗)∗) ≤ i(ϕ∗) ≤ i(ϕ) .

��
Proposition 4.5 If ϕ ∈ B f p(H),H = Wϕ ⊕Uϕ is the AST-decomposition induced by
ϕ andH = W

ϕ∗ ⊕U
ϕ∗ is the AST-decomposition determined by ϕ∗, then W

ϕ∗ = U⊥
ϕ
.

Proof Since Uϕ = U
(ϕ∗)∗ = (W

ϕ∗ )⊥ and W
ϕ∗ is closed, then

W
ϕ∗ = (W⊥

ϕ∗ )
⊥ = U⊥

ϕ
.

��
A direct consequence of Proposition 4.3 and Proposition 4.5 is

Corollary 4.6 If H is a Hilbert space, ϕ ∈ B f p(H) and H = Wϕ ⊕ Uϕ is the AST-
decomposition induced by ϕ, then

H = W⊥
ϕ

⊕U⊥
ϕ

.

SinceWϕ andUϕ areϕ∗-invariant, thenCorollary 4.6 shows thatϕ∗ can be computed
from (ϕ∗)|W⊥

ϕ

and (ϕ∗)|U⊥
ϕ

. Accordingly, if h, h′ ∈ H such that h = w + u and

h′ = w′ + u′ with w ∈ Wϕ , u ∈ Uϕ , w
′ ∈ U⊥

ϕ
and u′ ∈ W⊥

ϕ
, one has that

〈ϕ(h), h′〉H = 〈ϕ(w),w′〉H + 〈ϕ(u), u′〉H
= 〈w, ϕ∗(w′)〉H + 〈u, ϕ∗(u′)〉H
= 〈h, ϕ∗(h′)〈H .
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Moreover, from the above statements we also immediately prove that the adjoint
of a bounded nilpotent endomorphism ϕ is also a bounded nilpotent endomorphism.
Accordingly, if ϕ ∈ B f p(H) is a nilpotent endomorphism, then Wϕ = {0} and it
follows fromProposition 4.3 thatU

ϕ∗ = H, fromwherewe deduce that ϕ∗ is nilpotent.

Lemma 4.7 IfH is a Hilbert space, ϕ ∈ B f p(H)with CN-decomposition ϕ = ϕ1 +ϕ2

and ϕ∗ = (ϕ∗)1 + (ϕ∗)2 is the CN-decomposition of ϕ∗, then (ϕ∗)1 = (ϕ1)
∗ and

(ϕ∗)2 = (ϕ2)
∗.

Proof It follows from the properties of the adjoint operator that ϕ∗ = (ϕ1)
∗ + (ϕ2)

∗
and from Corollary 4.4 that i((ϕ1)

∗) ≤ 1.
Also, since ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1 = 0, one has that

(ϕ1)
∗ ◦ (ϕ2)

∗ = (ϕ2)
∗ ◦ (ϕ1)

∗ = 0 .

Finally, taking into account that (ϕ1)
∗ and (ϕ2)

∗ are finite potent and (ϕ2)
∗ is nilpo-

tent, the statement is a direct consequence of the uniqueness of the CN-decomposition
of a finite potent endomorphism. ��

We shall now study the spectrum of the adjoint operator ϕ∗.

Proposition 4.8 IfH is a Hilbert space and ϕ ∈ B f p(H), given a nonzero λ ∈ C, one
has that λ ∈ σ(ϕ∗) if and only if λ ∈ σ(ϕ). In particular, σ(ϕ∗) = σ(ϕ). Moreover,
the algebraic multiplicity of a nonzero eigenvalue λ of ϕ∗ coincides with the algebraic
multiplicity of λ as an eigenvalue of ϕ.

Proof From the well-known property

(ϕ∗ − λId)−1 = [(ϕ − λId)−1]∗

for every ϕ ∈ B(H) we deduce that σ(ϕ∗) = σ(ϕ).
To prove that the algebraic multiplicity of a nonzero eigenvalue λ of ϕ∗ coincides

with the algebraic multiplicity of λ as an eigenvalue of ϕ, we shall now check that for
every nonzero λ ∈ σ(ϕ) one has that

dimC Ker(ϕ∗ − λId)n = dimC Ker(ϕ − λId)n

for every n ∈ N.
Since (ϕ∗ − λId)n = [(ϕ − λId)n]∗, then

Ker(ϕ∗ − λId)n = [Im(ϕ − λId)n]⊥ .

Moreover, if H = Wϕ ⊕ Uϕ is again the AST-decomposition induced by ϕ, since
Uϕ ⊆ [Im(ϕ−λId)n for every nonzero λ ∈ C, andWϕ andUϕ are (ϕ−λId)n-invariant
subspaces of H, one has linear isomorphisms

[Im(ϕ − λId)n]⊥ � H/[Im(ϕ − λId)n] � Wϕ /[Im(ϕ|Wϕ
− λId)n]
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and, therefore, we deduce that

dimCKer(ϕ∗ − λId)n = dimC Ker(ϕ|Wϕ
− λId)n = dimCKer(ϕ − λId)n

for every n ∈ N. ��
Furthermore, one has that

Proposition 4.9 Given a Hilbert spaceH and a bounded finite potent endomorphism
ϕ ∈ B f p(H), one has that:

• TrH(ϕ∗) = TrH(ϕ);

• detCH(1 + ϕ∗) = detCH(1 + ϕ).

Proof Bearing in mind the expressions (3.1) and (3.4), the assertions follows from
Proposition 4.8. ��
Example 1 Let {u j } j∈N be an orthonormal basis of a separable Hilbert spaceH. If we
consider ϕ ∈ B f p(H) determined by the conditions

ϕ(u j ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 + i)u1 + u2 + u4 if j = 1
2u1 + (5 − 3i)u3 if j = 2
u1 − 2u2 + 3u3 − 2u4 if j = 3
0 if j = 4
1
j2
u4 if j ≥ 5

,

an easy computation shows that

ϕ∗(u j ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − i)u1 + 2u2 + u3 if j = 1
u1 − 2u3 if j = 2
(5 + 3i)u2 + 3u3 if j = 3
u1 − 2u3 + ∑

h≥5
1
h2
uh if j = 4

0 if j ≥ 5

,

Thus, since Wϕ = 〈u1, u2 + u4, u3〉 and Uϕ = 〈ui 〉i≥4, one has that:

• W
ϕ∗ = U⊥

ϕ
= 〈u1, u2, u3〉;

• U
ϕ∗ = W⊥

ϕ
= 〈u2 − u4〉 ⊕ 〈u j 〉 j≥5.

Also, it is clear that i(ϕ) = i(ϕ∗) = 2.
Moreover, since the explicit expressions of the core part and the nilpotent part of ϕ

are

ϕ1(u j ) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 + i)u1 + u2 + u4 if j = 1
2u1 + (5 − 3i)u3 if j = 2
u1 − 2u2 + 3u3 − 2u4 if j = 3
0 if j ≥ 4
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and

ϕ2(u j ) =
{
0 if j ≤ 4
1
j2
u4 if j ≥ 5 ,

with adjoint operators

(ϕ1)
∗(u j ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − i)u1 + 2u2 + u3 if j = 1
u1 − 2u3 if j = 2
(5 + 3i)u2 + 3u3 if j = 3
u1 − 2u3 if j = 4
0 if j ≥ 5

,

and

(ϕ2)
∗(u j ) =

⎧
⎨

⎩

0 if j ≤ 3∑
h≥5

1
h2
uh if j = 4

0 if j ≥ 5
,

it is easy to check that these data are compatible with the statements of Lemma 4.7.
Finally, taking into account that

ϕ|Wϕ
≡

⎛

⎝
1 + i 2 1
1 0 −2
0 5 − 3i 3

⎞

⎠ and ϕ|W
ϕ∗ ≡

⎛

⎝
1 − i 1 0
2 0 5 + 3i
1 −2 3

⎞

⎠

in the bases {u1, u2 +u4, u3} ofWϕ and {u1, u2, u3} ofWϕ∗ respectively, one has that

TrH(ϕ) = 4 + i ; TrH(ϕ∗) = 4 − i ; detH(Id + ϕ)

= 15 + i and detH(Id + ϕ∗) = 15 − i .

Remark 4.10 Given ϕ ∈ B f p(H), although W⊥
ϕ

and U⊥
ϕ

are ϕ∗-invariant, we wish to

point out that, in general,W⊥
ϕ
andU⊥

ϕ
are not ϕ-invariant. A counter-example for this

fact is the bounded finite potent endomorphism studied in Example 1.

Remark 4.11 (Final Remark). During the past few years the author of this work has
extended several generalized inverses of finite square complexmatrices to finite potent
endomorphisms on infinite-dimensional inner product spaces in [11–13]. From the
results of Sect. 4, we hope, in forthcoming papers, to extend to bounded finite potent
endomorphisms on arbitrary Hilbert spaces different generalized inverses of finite
complex matrices that need the notion of the conjugate transpose matrix for their
definitions.
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