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Abstract
In this work we have applied the computational methodology based on Artificial 
Neural Networks (ANN) to the kinetic study of distinct reaction mechanisms to 
determine different types of parameters. Moreover, the problems of ambiguity or 
equivalence are analyzed in the set of parameters to determine in different kinetic 
systems when these parameters are from different natures. The ambiguity in the 
set of parameters show the possibility of existence of two possible set of parameter 
values that fit the experimental data. The deterministic analysis is applied to know 
beforehand if this problem occurs when rate constants of the different stages of the 
mechanism and the molar absorption coefficients of the species participating in the 
reaction are obtained together. Through the deterministic analysis we will analyze 
if a system is identifiable (unique solution or finite number of solutions) or if it is 
non-identifiable if it possesses infinite solutions. The determination of parameters of 
different nature can also present problems due to the different magnitude order, so 
we must analyze in each case the necessity to apply a second method to improve the 
values obtained through ANN. If necessary, an optimization mathematical method 
for improving the values of the parameters obtained with ANN will be used. The 
complete process, ANN and mathematical optimizations constitutes a hybrid algo-
rithm ANN-MATOPT. The procedure will be applied first for the treatment of syn-
thetic data with the purpose of checking the applicability of the method and after, it 
will be used in the case of experimental kinetic data.
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1 Introduction

The application of computational techniques to the study of reaction kinetic sys-
tems has been very important since it has been possible to determine kinetic, 
analytic and/or thermodynamic parameters, allowing also, the discrimination 
between the different mechanisms that could be responsible of the course of the 
reaction.

The computational techniques used are numerous and are based in very diverse 
methodologies such as non-linear regression methods [1–5], curve resolution 
techniques [6, 7] or techniques that use methodologies based in Artificial Neural 
Networks [8–11].

In a previous work we have used the ANN methodology for the determina-
tion of rate constants from kinetic data in the case of a system of consecutive 
irreversible first-order reactions [11]. The ANN method was applied for the study 
of the reaction that takes place between 2-mercaptoethanol with Carbonyl cya-
nide 3-chlorophenylhydrazone, from experimental kinetic data the determination 
of the reaction rate constants was carried out, performing first an experimental 
design of the type Central Star Composite Experimental Design (CSCED) and 
then, the prediction of the rate constant through ANN.

In later works a hybrid algorithm, ANN-AGDC, was developed, consisting 
of the sequential application of two methods: Artificial Neural Network method 
(ANN) and mathematical optimization algorithm AGDC. This hybrid algorithm 
has been used for the treatment of kinetic data for the determination of rate con-
stants and for the discrimination between reaction mechanisms [12]. The applica-
tion of hybrid algorithm is a great advantage since the AN0N, that is applied first, 
is a treatment that does not need initial estimates, so that the obtained results can 
be used as initial estimates for the second method (mathematical optimization) 
that does require the use of previous values for the parameters to determine.

The first version of hybrid algorithm ANN-AGDC was applied to determine 
Activation Thermodynamic Parameters (ATP) from the treatment of non-isother-
mal kinetic data coming from diverse reaction mechanisms [13–15]. In the first 
two works the applicability of hybrid algorithm ANN-AGDC is checked for the 
determinations of ATP from non-isothermal kinetic data, directly, without the 
need to determine the kinetic constants in the previous step. In these works, the 
ANN methodology was first applied and the need to apply the second process, 
the mathematical optimization algorithm AGDC, was checked. Subsequently, this 
methodology was used for the treatment of experimental non-isothermal kinetic 
data from the isomerization reaction of the steroid 5-cholesten-3-ona to 4-cho-
lesten-3-ona catalyzed by sodium ethoxide and from the kinetics for the break-
down of the trinuclear chromium acetate cluster with a series of monoprotic and 
diprotic amino acid ligands [15].

In this work we have used a new hybrid algorithm ANN-MATOPT for the 
determination of rate constants and molar absorption coefficients simultaneously, 
in the case of different reactions mechanisms whose stages are of first order. The 
studied mechanisms are the following:
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• Model I: Simple irreversible reaction in which a reactant gives a product through 
a single step.

• Model II: System formed by two irreversible reactions in which two reactants 
give the same product.

• Model III: Mechanisms in which the same reactant gives two different products 
through two irreversible reactions.

• Model IV: System of consecutive irreversible reactions.

When parameters of different nature are determined jointly and simultaneously, 
there can be problems of ambiguity or equivalence in the set of parameters to deter-
mine, which indicates the possible existence of two set of values of the parameters 
that fit the experimental data [4, 5, 16–18]. Through the deterministic analysis it 
can be known beforehand if a model is identifiable with a unique solution or with a 
finite number of solutions, or non-identifiable with infinite solutions [16]. First, by 
means of deterministic analysis, for each one of the mechanisms, we will assess if 
ambiguity occurs when the rate constants of the different stages of the mechanism 
and the molar absorption coefficients of the participating species in the reaction are 
jointly determined. Subsequently, we will check in the case of situations where there 
is ambiguity if the application of ANN leads us to an unique solution or to any of the 
mathematically acceptable solutions.

The problem of the ambiguity in the parameters does not have a solution from 
a mathematical point of view so we apply the ANN methodology, either individu-
ally or in conjunction with a mathematical optimization algorithm, for situations in 
which this problem is found and we will check if the obtained results lead us to an 
unique solution or to all of those mathematically accepted.

The determination of parameters of different nature can also present problems 
due to their different magnitude order, so we need to analyze in each case the need to 
apply a second method (mathematical optimization) to improve the values obtained 
through ANN.

In the case of models I and II, whichever are the set of parameters to determine, 
exists an unique solution, so the models are identifiable. In model III depending on 
the set of parameters determined, the model can be identifiable with an unique solu-
tion or non-identifiable with infinite solutions.

In the case of model IV formed by two irreversible first order consecutive reac-
tions, when the joint determination of rate constants and the molar absorption coeffi-
cient of the reactant or the final product is carried out, there exists a unique solution, 
so the system is identifiable in both cases. In case that the rate constants and the 
molar absorption coefficient of the intermediate species are jointly determined, an 
ambiguity problem occurs in the solution, finding two possible solutions that cannot 
be distinguished from the mathematical point of view [4, 5]. This aspect is clearly 
displayed in the case of the determination of these parameters through mathematical 
optimization procedures.
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2  The oretical aspects

2.1  Chemical kinetics aspects

Each one of the  nr chemical elementary reaction that can occur in a chemical system in 
which a number of species  nc are present, can be written using the following equation 
[19]:

nc = number of chemical species involved in the mechanism.  nr = number of chemi-
cal elementary reaction of the mechanism. kr = kinetic rate constant for each elemen-
tary reaction r ( r = 1,…,  nr). Bj = chemical species involved in the reaction mecha-
nism ( j = 1,…,  nc). νj,r = stoichiometric coefficient of the specie  Bj in the reaction r 
( νj,r < 0 for the reagents and νj,r > 0 for the products).

The elementary reaction r occurs at a rate  vr:

where  Bc are the species that act as reagents in the elementary reaction r, ν c,r is the 
stoichiometric coefficient of the species  Bc in the reaction r ( ν c,r < 0 for reagents), 
 [Bc] is the concentration of the species  Bc and kr is the kinetic rate constant for each 
elementary reaction r.

The variation of the concentration of species  Bj in each of the r elementary reac-
tions, in a time interval, is equal to:

�1,1B1 + �2,1B2 +⋯

k1
��������→ ⋯ + �(nc−1),1B(nc−1) + �

nc,1
B
nc

�1,2B1 + �2,2B2 +⋯

k2
��������→ ⋯ + �(nc−1),2B(nc−1) + �nc,2

Bnc

�1,nr
B1 + �2,nr

B2 +⋯

kr
��������→ ⋯ + �(nc−1),nrB(nc−1) + �nc,nr

Bnc
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The total variation of the concentration is expressed through the following dif-
ferential equation:

The change in the concentration of each of the  nc species involved in the mecha-
nism is given by  d[Bj]/dt, so we will have a system of differential rate equations 
whose resolution provides the concentration of each specie in the considered time 
interval, 

([
Bj

]
ti

)
.

The reaction mechanisms studied in this work are the following:

1. Model I B1

k

�����→ B2

2. Model II B2

k2
��������→ B1 B3

k3
��������→ B1

3. Model III B1

k2
��������→ B2 B1

k3
��������→ B3

4. Model IV B1

k1
��������→ B2

k2
��������→ B3

Table 1 shows the systems of differential rate equations obtained for each one of 
the mechanisms and the resulting expressions for the concentration of each species 
obtained from the resolution of the system of differential rate equations.

If the development of the chemical reaction is followed spectrophotometrically 
measuring the total absorbance of the reacting mixture and in the event that the opti-
cal path length 1 = 1 cm, according to the Lambert–Beer-Bouguer`s Law at time i 
and at wavelength λ, we obtain:

(3)
d
[
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]

dt
=

nr∑
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nr∑
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νj,rkr

nc∏

l = 1

[
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Table 1  Reaction mechanism, differential rate equations and concentration/time equations for each reac-
tion mechanism
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where  nc is the number of species that absorb at the wavelength λ,  Ai,λ is the total 
absorbance of the reacting mixture at time i and at wavelength λ, εj,λ is the molar 
absorption coefficient of the specie j at wavelength λ and  [Bj]i the molar concentra-
tion of the specie j at time i.

2.2  Hybrid algorithm

A hybrid algorithm is a combination of different techniques that solve the same prob-
lem [20]. The hybrid algorithm used in this work is formed by a combination of two 
algorithms based in different mathematical principles and they are applied sequen-
tially. In the first stage the Artificial Neural Network (ANN) method is applied for 
the determination of the individual rate constants and the molar absorption coef-
ficients. The values of the parameters obtained through the application of ANN are 
used as initial estimates of a mathematical optimization algorithm applied in the 
second stage with the objective of improving the final values of the parameters.

2.2.1  Artificial neural networks (ANN)

The Artificial Neural Network computational method, ANN, is a systematic pro-
cedure of data processing formed by a large number of simple elements (nodes or 
artificial neurons) interconnected with each other [21–23]. Each neuron receives 
multiple input signals and sends a single output signal for which it contains two 
algorithms [23], one of them calculates the weighted sum of the values that are 
received by the input connections  (xi) and the other one generates a response or out-
put  (xj) that is transferred to other neurons. The neurons network learns through the 
adjustment of the weights  (wji) of the connections between neurons until it provides 
predictions with enough precision.

Each neuron determines the net input value, Sj, from the weighted sum of the 

input values 
�
Sj =

∑
i

xi wji

�
 , later it is transformed into the activation value,  aj,  (aj 

(k) =  Fi  (aj (k − 1),  Sj(k))), where  aj (k) is the actual activation value,  aj (k − 1) the 
previous activation value and  Sj(k) the net input value.

The output value is determined by applying the output function (transfer func-
tion), in most cases the activation and the net input are identical, so  xj =  fj  (aj) =  fj 
 (Sj).

In an ANN the neurons are connected and organized in levels or layers 
(architecture);

• Input layer where data is presented to the network.
• Output layer where the network response is provided.
• Hidden layer formed by those neurons whose inputs come from previous layers 

and whose outputs pass to neurons from subsequent layers.

(4)Ai,λ =

nc∑

j=1

εj,λx
[
Bj

]
i
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The simplest network (monolayer network) consists of a group of organized 
neurons in one layer, between which lateral, crossed and recurrent connections are 
established. The multilayer networks consist of clustered sets of neurons in various 
levels or layers where the output of one layer is the input of the next one. The neu-
rons of one layer receive input signals from a previous layer and send output signals 
to a following layer (feedforward) or the output of the neurons from posterior layers 
can be connected to the input of preceding layers, (feedback).

From a data set, training data set, the ANN learns to calculate the cor-
rect output for each input (training), during this process, the weights of the 
ANN connections suffer modifications in response to the input information 
 (wji(k + 1) =  wji(k) + Δwji(k)). The ANN has learnt when the values of the weights 
remain stable  (dwji/dt = 0).

The goal of the training of an ANN is achieving that for a set of inputs the desired 
or consistent set of outputs is produced.

2.2.2  Mathematical optimization

The mathematical optimization methods usually use the criteria of least squares for 
the determination of parameters from experimental data. The procedure consists of 
minimizing the error expressed as the sum of the squares of the differences between 
the values of the experimentally observed magnitude and those calculated using the 
equation of the proposed mechanism or model (sum of the quadratic deviation func-
tion, SQD) [24, 25]. In the case that the observed magnitude is the total absorbance 
of the reacting mixture, the SQD function has the form:

nd = number of pairs of the absorbance/time data. 
(
Ai

)
E
 = experimental absorbance 

data. 
(
Ai

)
C
 = calculated absorbance data. t = values for the independent variable 

(time). X = vector that contains the parameters to be determines  (X1,  X2,…,Xp).It is 
possible to fit the function y =

(
Ai

)
C
(�,�) to the experimental data  (Ai)E, minimiz-

ing the SQD function (mathematical optimization) and adjusting the parameters  X1, 
 X2,…,  Xp to obtain the minimum of SQD [24, 25]. The mathematical optimization 
is an iterative process so in order to initiate the process, it is necessary a first esti-
mate of the values of the parameter, X(0), and with them the first value of the func-
tion SQD,  SQD(0), will be obtained. When the optimization is finished the values of 
the parameters, X*, that provide the smallest value of SQD, SQD*, will be obtained.

Gradient methods (Gauss–Newton, Levenberg-Mardquardt, Davidon-Fletcher-
Powell, etc., …) are often used to carry out the optimization, these methods are 
based on the Taylor series development of the SQD function [24, 25].

X = vector that contains the parameters to be determines. ΔX = vector constituted 
by the variations of the parameter values. g = Jacobian gradient vector of the SQD 

(5)SQD(�) =

nd∑

i=1

((
Ai

)
C
(�,�) −

(
Ai

)
E

)2
i =

(
1, 2… nd

)

(6)SQD(� + Δ�) ≈ SQD(�) + �TΔ� +
1

2
Δ���Δ� +…
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function (gT = transposed vector) whose components are the derivatives of the SQD 
function with respect to one of the parameters  XP. H = Hessian matrix of the SQD 
function (symmetric matrix  npxnp containing the second-order partial derivatives of 
the SQD function).

In Eq. (5) we can despise the terms in which the derivatives higher than the first 
order (first order gradient methods) or the terms in which the derivatives higher than 
the second order intervene (second order gradient methods). From the calculation of 
the derivative of the SQD function with respect to each of the parameters, its cancel-
lation and the resolution of the equations obtained, the point in which the function 
SQD has a minimum value (X*) is reached, Eqs.  (7) and (8) for first and second 
order gradient methods respectively:

The equation that provides the value X* can be used to move iteratively towards 
the SQD minimum starting from an initial estimate X(0) and generating values X(m) 
at each iteration, so that the SQD value is less than from the previous iteration.

The movement vector will be, ΔX(m) = –  g (X(m)) for first order methods and 
ΔX(m) = – H(X(m))−1 g (X(m)) for the second ones, where m = 0, 1, … is the corre-
sponding iteration.

In each iteration the vector ΔX(m) must provide a point X(m+1) that gives rise to 
a lower value of the SQD function, avoiding divergence. The first order method 
always evolves towards the minimum, but it is excessively slow. Second-order meth-
ods, due to the approximations that are imposed and to the not strictly quadratic 
condition of the SQD function, present problems that can lead to the divergence 
of the process. There are modifications of the Gauss–Newton method that improve 
the results: Levenberg-Mardquardt method that modifies the vector X(m+1) by intro-
ducing a parameter λ, Davidon-Fletcher-Powell method that determines an inverse 
matrix approximated by successive approximations or the AGDC that introduces 
control devices to avoid divergence [3–5, 24, 25].

The hybrid algorithm used in this work uses the values of the parameters obtained 
with ANN as initial estimates (X(0)) for the process of mathematical optimization 
(MATOPT).

2.3  Ambiguity or equivalence in the parameters

When the treatment of kinetic data corresponding to a certain reaction mechanism is 
carried out in order to determine a set of parameters, there might be one or more sets 

(7)�∗ ≈ � − �(�)

(8)�∗ ≈ � −�(�)−1�(�)

(9)�(m+1) = �(m)−�
(
�(m)

)

(10)�(m+1) = �(m)−�
(
�(m)

)−1
�
(
�(m)

)
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of parameters (X =  (X1, …,  Xp), X′ = (X′1, …,X′p), etc,..) that fit the experimental 
data: ambiguity or equivalence in the set of parameters [4, 5, 16–18]. This problem 
has been studied through different methods, one of them consists of the application 
of the deterministic analysis [16] that allows to detect it beforehand and determine 
the relationship between the solutions X and X′.

In a chemical reaction whose development is experimentally followed measuring 
the total absorbance, it might happen that the molar absorption coefficients of some 
species involved in the reaction 

(
εBj

)
 are unknown parameters and it is necessary to 

determine them jointly with the rate constants, X =  (k1, …,kr, εB1
, .., εBj

).
In the case of reaction mechanism of first order, we consider the following vec-

tors and the corresponding components: x0(X), initial concentrations; x(t,X), con-
centrations; x’(t,X), rate differential equations and y(t,X), absorbance values (linear 
function that depends of the parameters X and the concentrations). According to the 
deterministic analysis two sets of the parameters values, X and X’ (X ≠ X’) are not 
differentiable among them if:

According to this equation, the following situations can be given:

• If X’ = X, the solution is unique, the model is only identifiable in X.
• If there is a finite number of distinct solutions, X’ ≠ X, the model is identifiable 

in X, but the solution is not unique.
• If there is an infinite number of solutions, the model is non-identifiable.

The approximation that applies the Laplace transform [16] to the differential rate 
equations and to the equations that relates the absorbance and the concentration, is 
one of the most used mathematical methods to analyze these problems. Through this 
method we obtain the transform of the concentration vector, Z(s, X) (s is a complex 
argument) and the Laplace transform of the absorbance, Y(s, �). Each component 
 Yi(s,X) of Y(s,�) is a rational function with the form:

The coefficients  �i
j
 depend on X and  x0

(i) and the vector Φ will be formed by all 
the coefficients  Y1(s,X)…  Ym(s,X).

Considering another set of parameters �� =
(
k�
1
,… , k�

r
, ε�

B1
,… , ε�

Bj

)
 whose 

Laplace transform is Y
(
s,�′

)
 , the Eq.  (10) is satisfied if and only if: 

Y
(
s,��

)
= Y(s,�) . This relationship is true if and only if �

(
��

)
= �(�) , from 

which a system of polynomial equations is obtained, establishing the number of 
solutions of the system of equations we can establish if a reaction model possess 
more than one solution, meaning that it is identifiable.

If  np is the number of parameters to optimize and  ne is the number of polynomial 
equations that can be established, the following situations can occur:

(11)�
(
t,��

)
= �(t,�)

(12)Yi(s, X) =
�
i
n+1

sn−1 +…+ �
i
2n

sn + �
i
1
sn−1 +…+ �

i
n
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• np <  ne then the system is identifiable and the solution is unique.
• np =  ne then the system is identifiable and the solution is not unique.
• np >  ne then the system is not identifiable, it has infinite solutions.

3  Computational aspects

3.1  ANN computational application

In this work, the applications provided by MATLAB® [26] are used for the design 
and training of the ANN and subsequent prediction of the parameters. All the 
applications are available in the Neural Network Toolbox™, since a set of param-
eters have been determined from kinetic data, the application that allows to adjust 
functions, Fitting a Function, has been used. In order to use this application, it is 
necessary to provide to the ANN a data set (training data set) to use them in the 
training of the ANN, this set needs to be formed by a inputs matrix that contains 
data corresponding to different kinetic experiences and a matrix (targets) consist-
ing of the parameters corresponding to the data of the inputs matrix. The data is 
generated synthetically for each specific case and in the training the ANN learns 
to establish relationships between the inputs and targets matrixes.

3.1.1  Generation of data

The synthetic total absorbance/time data for the training of the ANN are gener-
ated computationally through the executable programs (type “.m”) of MATLAB, 
considering the initial concentration conditions, the time interval in which the 
reaction takes place, the rate constant values  (kr) and the molar absorption coeffi-
cients 

(
εBj

)
 obtained from the corresponding experimental desing. The concen-

tration of each one of the chemical species in the time interval considered, is 
determined from the expressions that result from the resolution of the system of 
rate differential equations (Table  1) and the values of the absorbance from the 
Lambert-Beer-Bouguer`s law (Eq. 3). The absorbance data generated will be dis-
tributed in the inputs matrix and the values of the parameters with which they 
have been generated (constants and molar absorption coefficients) in the targets 
matrix. The dimensions of the inputs and targets matrixes, number of rows x 
number of columns, are the following:

• Inputs: number of rows = number of data from each experience, number of 
columns = number of kinetic curves.

• Targets: number of rows = number of parameters, number of columns = num-
ber of kinetic curves.
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3.1.2  Design and training of the ANN

In each case studied it is necessary to find the optimal architecture of the ANN, 
that is, the optimal number of layers and nodes of each one of the hidden layers. 
The procedure to perform is the subsequent:

• Desing of an ANN formed by n layers ((n − 1) Hidden + 1 Output):
• Establish the number of layers (numLayer = n).
• Establish the number of neurons in the hidden layers (numHiddenNeu-

rons1 = Integer number, numHiddenNeurons2 = Integer number,..)
• Create the network (net = newfit(inputs,targets,[numHiddenNeurons1,..]))
• Training of the ANN: net = train(net,inputs,targets)

The training of each one of the ANNs designed, is carried out with the data 
corresponding to the training data set. These data is divided into three groups: 
experiences for the training (TR), experiences to validate the network (VL) 
and those that are used as an independent test (TS). The program automatically 
establishes the percentages for the curves for TR, VL and TS, but can be modi-
fied by the used to improve the results. MATLAB applies by default the Lev-
enberg–Marquardt algorithm to carry out the training, although it is possible to 
choose another algorithm among others provided by MATLAB.

The result of the training can be considered acceptable if a series of requi-
sites are met: the mean square errors (MSE) is significantly small, the VL and TS 
errors have similar characteristics, there is no overfitting and the linear regression 
between the corresponding outputs and targets for TR, VL and TS provide values 
for the correlation coefficient, R, close to 1.

If the training of the ANN has been carried out correctly, it could be consid-
ered suitable to carry out prediction tasks, otherwise we can improve the results: 
reestablish the initial ANN and train again (retrain), increase the number of neu-
rons in the hidden layers, increase the number of hidden layers, modify the per-
centage of experiences for TR, VL and TS or use another optimization algorithm 
that minimizes the difference of the values of the output and targets.

3.1.3  Prediction

The optimal ANN can be used to determine unknown parameters (prediction), 
carrying out the following steps:

1. Provide data to the ANN of the experiences whose parameters are unknown, 
inputs: Nº of rows = Nº data of each experience (it should match with the nº of 
rows of the inputs matrix with which the ANN has been trained) and Nº col-
umns = Nº of experiences whose parameters are unknown.

2. Prediction with the optimal ANN previously trained (net) through the command: 
[Y] = sim(net,inputs) (Y = values of the parameters predicted by the ANN).
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3.2  Mathematical optimization

To carry out the mathematical optimization process the tool Optimization Tool-
box™ from MATLAB® has been used. Among all the possibilities that MAT-
LAB offers, we have used the lsqcurvefit function, that used different gradi-
ent methods to perform the optimization process, Levenberg–Marquardt, 
Gauss–Newton, etc., … that can be chosen by the user.

From the input data, xdata and ydata, the function lsqcurvefit finds the coef-
ficients x that best fit the equation F(x, xdata):

where xdata is the vector that contains the time value considered (ti), ydata is the 
vector that contains the absorbance experimental data and F(x, xdata) is the vector 
that contains the values calculated for the property measured (absorbance).

The sequence of commands is the following:

• Initial estimations of the parameters (values obtained with ANN): × 0 = [Par1, 
Par2,…]

• Options for the optimization according to the manual specifications: 
opt ions  = opt imset( ’MaxFunEvals’,1e8,’TolFun’,1e-18,’TolX’,1e-
12,’MaxIter’,1e4)

• Order to carry out the optimization: [x,resnorm] = lsqcurvefit(function, × 0,xda
ta,ydata,0,1000,options)

x = vector that contains the optimized parameters; resnorm = values of the 
sum of the quadratic deviations; function = name of the subprogram that needs 
to be created to calculate the absorbance data with the values estimated initially 
for the parameters and the ones that are been determined through the optimiza-
tion process.

4  Results and discussion

In this work a hybrid algorithm (ANN-MATOPT) is applied to different reac-
tion mechanisms to jointly determine parameters of different nature, specifically, 
rate constants  (kr) and molar absorption coefficients (εj). This hybrid algorithm 
consists of a first stage where the ANN methodology is used to predict the val-
ues of  kr and εj and a second stage where a mathematical optimization method is 
applied to the results obtained through ANN to improve them. In each reaction 
mechanism the deterministic analysis is applied to learn beforehand the exist-
ence of ambiguity and equivalence in the set of parameters to determine and it is 
checked if the hybrid algorithm ANN-MATOPT leads us to the true solution or 
the different set of parameters that fit the experimental data are obtained.

(13)min x
1

2
F(x, xdata) − ydata22 =

1

2

∑

i

(
F
(
x, xdatai

)
− ydatai

)2
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4.1  Experimental desing

The absorbance data set with which it is performed the ANN training consists 
of a set of total absorbance/time kinetic data (inputs) generated with the group 
(targets) of constants  (kr) and the molar absorption coefficients (εj), organized 
according to the corresponding experimental design (ED) [27]. The ED used can 
be two or three dimensional depending on the number of factors involved, an 
example for each case is shown in Figs. 1 and 2.

Fig. 1  Two-dimensional experimental design (2 factors,  k1 and ε2) for the system  B1 →  B2

Fig. 2  Three-dimensional experimental design (3 factors  k1,  k2 and ε2) for the system  B1 →  B2 →  B3
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4.2  ANN training: optimal architecture

Once the kinetic data of total absorbance/time have been generated (input matrix) 
according to the ED (targets matrix), Fig. 3, we carry out the ANN training in order to 
find the most suitable to determine the parameters,  kr y εj, in each case. The set of data 
are divided in three groups to carry out the tasks of training, validation and testing (TR/
TS/VL) in all the cases studied in this work, the optimal percentage is 80/10/10.

The optimal architecture of the ANN is determined using the trial and error method 
that consists of designing different ANNs with different number of hidden layers and 
different number of neurons in each one of them to carry out the training process for 
each ANN. The training is an iterative process in which in each iteration new values 
for the parameters are obtained (outputs) and it is controlled through the validation pro-
cess, for which the program calculates the value of the mean square error (MSE) as 
follows:

where nc is the number of kinetic curves, np number of parameters, boutput
ij

 and btarget
ij

 
are the components of the outputs and targets matrixes.

(14)MSE =

⎛
⎜
⎜
⎜
⎝

∑np

i=1

∑nc
j=1

�
b
output

ij
− b

target

ij

�2
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⎟
⎠

1∕2

Fig. 3  43 kinetic curves total absorbance/time for the system  B1 →  B2 →  B3 generated from the corre-
sponding experimental design
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The program selects the minimum MSE value of VL reached (Fig. 4) that cor-
responds to the MSE value of the overall training process. The TS process is similar 
to the VL, it compares the elements of the outputs and targets matrixes in each time 
unit for the set of curves selected for the processes of TS and VL. The TS and VL 
curves must always run very close (Fig. 4), this should be a criterion to consider the 
correct training process.

Once the ANN training process has been completed, the minimum MSE value 
and the values of the regression parameters of the overall training process and those 
of the TR, VL and TS groups are obtained. It can be considered that the training 
has been carried out correctly if the MSE value is small and if in the outputs/targets 
linear regressions (Fig. 5) the equations are linear (slope ≈ 1, intercept ≈ 0) and the 
regression coefficient is R≈1.

When the optimal network is selected, the final results of the training are ana-
lyzed and it is verified that overfitting does not occur, verifying that the performance 
of the training and test set is good, that is, that the results obtained in the training 
process are acceptable in both cases (Table 2).

4.3  Prediction of parameters in different reaction mechanisms

In all the reaction mechanisms studied we have considered that the different stages 
are of order 1 and that the initial concentration  ([Bj]0) of the reagents is different 
from 0 and that of the products is null. Besides, � =

(
k1,… , kr, εB1

,… , εBj

)
 ) and 

�� =
(
k�
1
,… , k�

r
, ε�

B1
,… , ε�

Bj

)
 are the sets of parameters that fit the experimental 

data, being Y(s,�) and Y
(
s,�′

)
 the Laplace transforms of the absorbance for X and 

X′.
In all of the cases, we proceed as follow:

Fig. 4  Mean Square error (MSE) value in each iteration (epoch) for the training (TR), validation (VL) 
and testing (TS) processes
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• Establishment and resolution of the system of differential rate equations.
• Calculation of the Laplace transforms of the absorbance for X and X′ ( Y(s,�) 

and Y
(
s,�′

)
).

• Y(s,�) = Y
(
s,��

)
 → We obtain a system of polynomial equations.

• Solving the system of polynomial equations → Knowledge beforehand of 
the identifiability of the system.

• Experimental design in each case studied and generation of the  AT/t data 
for training the Artificial Neural Network (ANN).

• Desing of the ANNs.
• Training of the ANNs and analysis of the results → Optimal ANN
• Prediction of the parameters in experiences in which their value is not 

known
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• Verification of the agreement of the results with that predicted by the deter-
ministic analysis → Identifiable system with a unique solution or with a finite 
number of solutions, non-identifiable system with an infinite number of solu-
tions.

• Verification of the need to apply a mathematical optimization method to 
improve the results → Hybrid algorithm ANN-MATOPT.

4.3.1  Model I �
1

�
������→ �

2

For the case of this simple mechanism, the determination of the following groups of 
parameters are analyzed: � =

(
k, ε2

)
 , � =

(
k, ε1

)
 and � =

(
k, ε1, ε2

)
 . The Laplace 

transform of the total absorbance for this case is expressed as:

For another set X′ parameters, the Laplace transform is Y
(
s,�′

)
 , according to the 

deterministic analysis 
(
Y(s,�) = Y

(
s,��

))
 the following relationships are obtained: 

εB1
= ε�

B1
, εB2

= ε�
B2

 and k1 = k�
1
 . Thus, the system is identifiable and the solution is 

unique in any of the cases. The ANN application for the prediction of the different 
group of parameters support the conclusions from the deterministic analysis, since 
in all of the cases the system is identifiable and the solution in unique.

Consider for example the prediction of 
(
� = k, ε2

)
 , after performing the corre-

sponding ED, the training is carried out obtaining that for this case the optimal ANN 
consists of one hidden layer with 4 neurons. Then, a series of  AT/t curves are gener-
ated with certain values of k and ε2 that later we will assume that they are unknown 
and whose values are determined with the optimal ANN. In all the cases a solution 
is obtained and it is also observed the difference between the values of the param-
eters with which they have been generated and those calculated is minimal, so, it is 
no necessary to subsequently apply a mathematical optimization process.

(15)Y(s,�) =

(
s εB1

+ εB2
k1
)[
B1

]
0

s2 + sk1

Table 2  Real values of kandε2 
for the system  B1 →  B2 
and results obtained for the 
prediction through ANN

Real values ANN calculated values

Exp k/min−1
ε2∕M

−1
cm−1 k/min−1

ε2∕M
−1
cm−1 MSE

1 0.1600 550.0000 0.1600 550.0012 7.4578E-04
2 0.1200 500.0000 0.1206 499.9986 6.5465E-04
3 0.1500 450.0000 0.1475 450.0008 8.3476E-04
4 0.1375 475.0000 0.1416 475.0080 6.2465E-04
5 0.1100 525.0000 0.1406 530.0056 6.4578E-04
6 0.1400 530.0000 0.1406 530.0005 8.3468E-04
7 0.1100 600.0000 0.1180 599.9989 7.4573E-04
8 0.1800 520.0000 0.1789 519.9979 5.6749E-04
9 0.1125 500.0000 0.1150 499.9998 6.5454E-04
10 0.1650 380.0000 0.1653 380.0137 9.2476E.04



 Journal of Mathematical Chemistry

1 3

4.3.2  Model II �
2

�2
���������→ �

1
 �3

�3
���������→ �

1

For this mechanism, we study the determination of the following set of param-
eters: � =

(
k2, k3, εB1

)
 , � =

(
k2, k3, εB2

)
 and � =

(
k2, k3, εB3

)
 . In this case the 

Laplace transform of the total absorbance is:

As in the previous case, considering another set of parameters X′, the follow-
ing relationships are obtained:

Solving these equations, it is concluded that in all cases, the system is identifi-
able with a unique solution.

In order to check that the application of the ANN methodology leads us to these 
results in the case of the prediction of 

(
k2, k3, εB1

)
 , 
(
k2, k3, εB2

)
 or 

(
k2, k3, εB3

)
 , 43 

 AT/t curves are generated from the values of the parameters obtained from the 
corresponding ED. The training of the ANN is performed with these curves, 
obtaining as optimal networks the one formed by 2 hidden layers with 1 neuron in 
the 1st layer and 2 in the 2nd layer (experience 1) or, 3 hidden layers with 4 neu-
rons in each of the layers (experience 2).

Next, an  AT/t curve is generated for the following values:  k1 = 0.1   min−1, 
 k2 = 0.05   min−1, εB1

 = 600   M−1   cm−1, εB2
 = 900   M−1   cm−1, εB3

 = 700   M−1   cm−1. 
Subsequently, the different groups of parameters  kr, εBj

 are assumed unknown and 
the prediction is performed with the optimal ANN. The results obtained corrobo-
rate the conclusions obtained by the deterministic analysis, but in this mecha-
nism, the difference between the values of the parameters with which the data had 
been generated and those calculated by ANN are significantly large. In this case, 
the values determined with ANN are used as initial estimates for the application 
of the mathematical optimization algorithm, which considerably improves the 
results (Table 3). The sequential application of both methods, ANN and mathe-
matical optimization, constitutes the hybrid algorithm (ANN-MATOPT). Table 3 
shows the obtained results using optimal ANNs in the prediction of 
� =

(
k2, k3, εB1

)
 , � =

(
k2, k3, εB2

)
 and � =

(
k2, k3, εB3

)
 and the results obtained 

after subsequent mathematical optimization.

(16)

Y(s,�) =
α
[
B1

]
0
+ β

[
B2

]
0

s3 + s2
(
k2 + k3

)
+ sk2k3

α =
(
εB1

s2 + s
(
εB1

k2 + εB2
k3
)
+ εB1

k2k3
)

β =
(
εB3

s2 + s
(
εB1

k3 + εB3
k2
)
+ εB1

k2k3
)

(17)
εB1

= ε�
B1

εB3
= ε�

B3
εB1

k2 + εB2
k3 = ε�

B1
k�
2
+ ε�

B2
k�
3

k2k3 = k�
2
k�
3

εB1
k2k3 = ε�

B1
k�
2
k�
3

εB1
k3 + εB3

k2 = ε�
B1
k�
3
+ ε�

B3
k�
2

k2 + k3 = k�
2
+ k�

3
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4.3.3  Model III �
1

�2
���������→ �

2
 �1

�3
���������→ �

3

In the case of this mechanism, the determination of the following parameters 
is studied: � =

(
k2, k3, εB1

)
 , � =

(
k2, k3, εB2

)
 and � =

(
k2, k3, εB3

)
 . The Laplace 

transform of the total absorbance in the system is given by:

The following relationships between the parameters corresponding to two solu-
tions X and X′ are obtained from the deterministic analysis:

Solving these equations, the subsequent conclusions are obtained: if the param-
eters to determine are 

(
k2, k3, εB1

)
 a unique solution is obtained and if 

(
k2, k3, εB2

)
 

or 
(
k2, k3, εB3

)
 are determined, the system in non-identifiable since it has infinite 

solutions.
As in the previous mechanisms, in each of the cases to study the corresponding 

ED and the ANN training is carried out and the prediction process is performed 
in each of the cases. The optimal ANN for predicting the three sets of parameters 
are those consisting of 2 hidden layers with 6 neurons in the  1st layer and 7 neu-
rons in the  2nd layer and 3 hidden layers with 4 neurons in each layer.

To carry out the prediction, an  AT/t curve is generated with the follow-
ing parameter values:  k1 = 0.1   min−1,  k2 = 0.05   min−1, εB1

 = 900   M−1   cm−1, 
εB2

 = 600   M−1   cm−1, εB3
 = 700   M−1   cm−1. Subsequently, different groups of 

parameters are assumed unknown and they are determined through the applica-
tion of the hybrid algorithm ANN-MATOPT. Table 4 shows the results obtained 

(18)Y(s,�) =

(
s εB1

+ εB2
k2 + εB3

k3
)[
B1

]
0

s2 + s
(
k2 + k3

)

(19)εB1
= ε�

B1

(
εB2

k2 + εB3
k3
)
=
(
ε�
B2
k�
2
+ ε�

B3
k�
3

)
k2 + k3 = k�

2
+ k�

3

Table 3  Obtained results in the prediction of � =
(
k2, k3, εB1

)
 , � =

(
k2, k3, εB2

)
 and � =

(
k2, k3, εB3

)
 

through ANN for the system B2 →
k2 B1 B3 →

k3 B1 and in the subsequent mathematical optimization

ANN calculated values Optimized values

Exp k2/min−1 k3/min−1 εB1
/M−1  cm−1 k2/min−1 k3/min−1 εB1

/M−1  cm−1 SQD

1 0.1203 0.0627 598.7500 0.1000 0.0500 600.000 4.8071E-31
2 0.0855 0.0436 598.1740 0.1000 0.0500 600.000 6.7540E-31

Exp k2/min−1 k3/min−1 εB2
/M−1  cm−1 k2/min−1 k3/min−1 εB2

/M−1  cm−1 SQD

1 0.0832 0.0738 924.2574 0.1000 0.0500 900.000 5.4532E-31
2 0.1255 0.0537 898.1545 0.1000 0.0500 900.000 6.3530E-31

Exp k2/min−1 k3/min−1 εB3
/M−1  cm−1 k2/min−1 k3/min−1 εB3

/M−1  cm−1 SQD

1 0.0832 0.0738 724.2513 0.1000 0.0500 700.000 5.1232E-31
2 0.1255 0.0537 699.1053 0.1000 0.0500 700.000 5.3170E-31
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for the prediction of 
(
k2, k3, εB1

)
 , 
(
k2, k3, εB2

)
 and 

(
k2, k3, εB3

)
 for experiences per-

formed with ANN of different architecture experiences and the results obtained 
after subsequent mathematical optimization.

The results obtained are in agreement with the deductions from the determin-
istic analysis, in the case of the prediction of de 

(
k2, k3, εB1

)
 in all of the experi-

ences performed a unique solution is obtained and in the prediction of 
(
k2, k3, εB2

)
 or (

k2, k3, εB3

)
 it can be verified that the application of ANN and the subsequent opti-

mization leads us to infinite solutions so the system is non-identifiable.

4.3.4  Model IV �
1

�1
���������→ �

2

�2
���������→ �

3

In the case of first-order consecutive irreversible reaction system, the prediction 
using ANN and subsequent optimization (hybrid algorithm ANN-MATOPT) of 

Table 4  Obtained results in the prediction of � =
(
k2, k3, εB1

)
 , � =

(
k2, k3, εB2

)
 and � =

(
k2, k3, εB3

)
 

through ANN for the system B1 →
k2 B2 B1 →

k3 B3 and in the subsequent mathematical optimization

ANN calculated values Optimized values

Exp k2/min−1 k3/min−1 εB1
/M−1  cm−1 k2/min−1 k3/min−1 εB1

/M−1  cm−1 SQD

1 0.0819 0.0615 891.6208 0.1000 0.0500 900.000 3.0810E-31
2 0.0974 0.0255 840.6093 0.1000 0.0500 900.000 6.2862E-31
3 0.0142 0.0631 939.2560 0.1000 0.0500 900.000 6.4095e-31
4 0.0950 0.1533 798.7227 0.1000 0.0500 900.000 6.5438E-31
5 0.0822 0.0565 888.6386 0.1000 0.0500 900.000 3.9470E-31

Exp k2/min−1 k3/min−1 εB2
  M−1  cm−1 k2/min−1 k3/min−1 εB2

/M−1  cm−1 SQD

1 0.0145 0.1539 522.9659 0.1297 0.0293 770.4384 3.4576E-31
2 0.0738 0.1276 711.2020 -0.2045 0.3545 614.1030 2.5674E-31
3 0.0424 0.1277 488.3954 0.1274 0.0220 821.6612 2.4571E-31
4 0.0457 0.1297 547.9461 0.1320 0.0180 877.0900 4.1028E-31
5 0.1044 0.0278 435.2760 0.0195 0.1305 856.1416 3.5678E-31
6 0.0672 0.0223 452.8717 0.0351 0.1149 742.3933 3.2047E-31
7 0.1357 0.1509 452.8717 0.0125 0.1375 999.3013 4.6839E-31
8 0.0888 0.0749 481.6844 0.0181 0.1319 876.8066 2.7117E-31

Exp k2/min−1 k3/min−1 εB3
/M−1  cm−1 k2/min−1 k3/min−1 εB3

/M−1  cm−1 SQD

1 0.0488 0.0345 663.2466 0.1122 0.0378 435.7853 5.1700E-31
2 0.0802 0.0210 706.8944 0.421 0.1079 607.3011 2.2187E-31
3 0.1302 0.0706 711.0206 1.1823 -1.0323 709.6872 5.3125E-29
4 0.0845 0.0502 724.1305 0.8255 -0.7755 712.8940 3.4836E-31
5 0.0435 0.0622 734.2410 0.5515 -0.4015 724.9080 8.2214E-30
6 0.1783 0.1171 725.7615 0.5375 -0.3875 725.8046 2.6378E-30
7 0.0846 0.0021 649.7490 0.1138 0.0362 424.0239 4.1908E-31
8 0.0345 0.1644 637.5440 0.0345 0.1166 614.2510 6.6560E-31



1 3

Journal of Mathematical Chemistry 

the following set of parameters are studied: � =
(
k2, k3, εB1

)
 , � =

(
k2, k3, εB2

)
 and 

� =
(
k2, k3, εB3

)
.

The Laplace transform for the total absorbance and the corresponding relation-
ships between the different set of parameters in this case are:

Solving these equations for different situations allows us to conclude that if 
the set of parameters to determine are � =

(
k1, k2, εB1

)
 or � =

(
k1, k2, εB3

)
 , the 

system is identifiable and the solution is unique. In the case that the set of param-
eters to determine is � =

(
k1, k2, εB2

)
 a three-equation system is obtained:

Since the number of parameters to determine is three, the system is identifia-
ble, but the solution is not unique. Two solutions are obtained, � =

(
k1, k2, εB2

)
 

and �� =
(
k�
1
, k�

2
, ε�

B3

)
 being the relationship between the two:

In the same way as in the previous cases to study, the corresponding ED is 
performed, the ANN training is carried out and the prediction process is realized 
with the ANN that provide better results.

In the case that the parameters to determine are 
(
k1, k2, εB1

)
 the most appro-

priate ANN for the prediction are: 1 hidden layer with 10 neurons, 1 hidden 
layer with 15 neurons, 2 hidden layers with 15 neurons in each layer and 2 hid-
den layers with 20 neurons in each layer (experiences 1, 2, 3 and 4 respectively). 
If the prediction of 

(
k1, k2, εB3

)
 is performed, the most appropriate ANN for the 

prediction are: 1 hidden layer with 15 neurons, 2 hidden layers with 5 neurons 
in each one, 2 hidden layers with 7 neurons in the first layer, 5 in the second 
one and 2 hidden layers with 20 neurons in each layer (experiences 1, 2, 3 and 4 
respectively).

In both cases, in order to carry out the prediction, an  AT/t curve is generated 
with the following values  k1 = 0.1   min−1,  k2 = 0.05   min−1, εB1

 = 900   M−1   cm−1, 
εB2

Lo=600   M−1   cm−1, εB3
=700   M−1   cm−1. Then,  (k1,  k2, εB1

 ) or  (k1,  k2, εB3
 ) are 

assumed unknown and through the application of the different ANN the predic-
tion of the parameters is performed. Subsequently, the mathematical optimization 
is applied to improve the results obtained through ANN, the results obtained lead 
us to the same conclusions as the deterministic analysis; when determining the 
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parameters  (k1,  k2, εB1
 ) or  (k1,  k2, εB3

 ) the system is identifiable, obtaining a unique 
solution (Table 5).

Lastly, we have studied the joint determination of  (k1,  k2, εB2
 ), according to the 

deterministic analysis when these parameters are jointly determined from total 
absorbance kinetic data, the system is identifiable but the solution is not unique, 
obtaining two solutions related to each other by the Eq.  (17). Following the same 
procedures as in the previous cases, the corresponding ED is carried out and a series 
of  AT/t curves are generated with which the training that provides the optimal net-
works is performed, a network formed by 2 hidden layers with 4 neurons in each 
layer. With the optimal ANN, considering εB1

 and εB3
 as known values, we carry out 

the prediction of  k1,  k2 and εB2
.

Considering the point 1 of Fig. 6 that is found inside the 3D figure of the corre-
sponding ED and which corresponds to the values  k1 = 0.1  min−1,  k2 = 0.05  min−1, 
εB2

 = 600  M−1  cm−1, a curve  AT/t is generated with these values and considering that 
εB1

 = 900  M−1  cm−1 and εB3
 = 700  M−1  cm−1. If  k1,  k2 and εB2

 are unknown, accord-
ing to the deterministic analysis, there exists two sets of parameters that can fit the 
data  AT/t: X =  (k1 = 0.1   min−1,  k2 = 0.05   min−1, εB2

 = 600   M−1   cm−1) and 
X′ = (k′

1
 = 0.05   min−1, k′

2
 = 0.1   min−1, ε�

B2
 = 300   M−1   cm−1). The results obtained in 

the prediction of these parameters through the application of ANN and the subse-
quent mathematical optimization are shown in Table  6. The values provided by 
ANN are far from the real values, so we use the vales as initial estimates for the 
mathematical optimization process. The results obtained through the application of 
the hybrid algorithm ANN-MATOPT show that two solution that are mathemati-
cally possible are obtained. The values obtained for εB2 by ANN is the one that con-
ditions that the mathematical optimization process leads us to one or another solu-
tion, the two solution are mathematically acceptable, performing the statistical 
analysis of residuals there are no appreciable differences between the two.

Points 2 and 3 of Fig. 6 are outside the ED and correspond respectively to the 
parameter values  (k1 = 0.15   min−1,  k2 = 0.01   min−1, εB2

 = 100   M−1   cm−1) and 

Table 5  Obtained results in the prediction of � =
(
k1, k2, εB1

)
 and � =

(
k1, k2, εB3

)
 through ANN for the 

system B1 →
k1 B2 →

k2 B3 and in the subsequent mathematical optimization

ANN calculated values Optimized values

Exp k1/min−1 k2/min−1 εB1
  M−1  cm−1 k1/min−1 k2/min−1 εB1

/M−1  cm−1 SQD

1 0.08251 0.07173 895.3802 0.10000 0.05000 900.0000 4.4373E-31
2 0.09105 0.06087 893.4207 0.10000 0.05000 900.0000 2.5884E-31
3 0.06647 0.07347 899.3159 0.10000 0.05000 900.0000 4.8071E-31
4 0.08513 0.06342 893.8493 0.10000 0.05000 900.0000 4.0675E-31

Exp k1/min−1 k2/min−1 εB3
/M−1  cm−1 k1/min−1 k2/min−1 εB3

/M−1  cm−1 SQD

1 0.07619 0.07556 711.0126 0.10000 0.05000 700.0000 4.5606E-31
2 0.07101 0.07925 799.9181 0.10000 0.05000 700.0000 4.5606E-31
3 0.11184 0.09352 699.0455 0.10000 0.05000 699.9999 5.5467E-31
4 0.09664 0.02637 731.4196 0.10000 0.05000 699.9999 5.4234E-31
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 (k1 = 0.15   min−1,  k2 = 0.01   min−1, εB2
 = 950   M−1   cm−1), in the case of the jointly 

determination of de  k2,  k3 and εB2
 from the  AT/t data, in each case there is another 

possible set of parameters that represent the system k′
1
 = 0.01  min−1, k′

2
 = 0.15  min−1, 

ε�
B2

 = −  11,000   M−1   cm−1) and ( k′
1
 = 0.01   min−1, k′

2
 = 0.15   min−1, 

ε�
B2

 = 1650  M−1  cm−1).
Table 7 collects the most significant results obtained after the application of the 

hybrid algorithm in these cases, which confirms the applicability of the ANN-
MATOPT algorithm for the determination of  k1,  k2 and εB2

 , although the values of 
these parameters are outside of the ED, it is also checked that the two solutions 

Fig. 6  Three-dimensional experimental design, 3D (3 factors  k1,  k2 and ε2) for the system  B1 →  B2 → 
 B3. Points 1, 2 and 3 indicate the experiences in which the values of  k1,  k2 and ε2 are unknown and will 
be determined

Table 6  Obtained results in the prediction of � =
(
k2, k3, εB1

)
 through ANN for the system 

B1 →
k1 B2 →

k2 B3 and in the subsequent mathematical optimization (point 1)

ANN calculated values Optimized values

Exp k1/min−1 k2/min−1 εB2
/M−1  cm−1 k1/min−1 k2/min−1 εB2

/M−1  cm−1 SQD

1 0.0420 0.0718 456.0560 0.0500 0.1000 300.0000 7.5188E-31
2 0.0800 0.1618 323.8090 0.0500 0.1000 300.0000 5.7931E-31
3 0.0348 0.0640 482.6900 0.0500 0.1000 300.0000 6.9025E-31
4 0.0717 0.1347 435.3400 0.0500 0.1000 300.0000 6.1458E-31
5 0.0084 0.0359 498.2990 0.1000 0.5000 600.0000 6.9025E-31
6 0.0431 0.0372 512.9900 0.1000 0.5000 600.0000 4.1908E-31
7 0.1023 0.0299 614.2844 0.1000 0.5000 600.0000 7.1419E-31
8 0.1370 0.1083 508.4349 0.1000 0.5000 600.0000 5.9160E-31



 Journal of Mathematical Chemistry

1 3

obtained are acceptable from a mathematical point of view although not from a 
chemical point of view 

(
ε�
B2

< 0
)
.

Finally, the proposed methodology (ANN-MATOPT) has been used to process 
experimental kinetic data from the reaction between carbonyl cyanide 3-chlorophe-
nylhydrazone  (B1) with 2-mercaptoethanol (C), whose kinetics has been studied in 
different works [28–30].

The mechanism of this reaction consists of two consecutive irreversible reactions, 
in the first step, an intermediate adduct  (B2) is formed, which is then hydrolyzed in 
an intramolecular reaction to give the product 3-chlorophenylhydrazonocyanoaceta-
mide,  (B3) and the subproduct ethylene sulphide (D).

The reaction is carried out in an excess of the reagent C, so a pseudo first order 
can be assumed and it is possible to express it schematically according to the IUPAC 
norms [19]:

Chau et al. [29] have performed a classic kinetic study at temperature of 20.0° C 
and pH = 4.3, following the evolution of the reaction by measuring the total absorb-
ance (AT) at different wavelengths. The values obtained by these authors for the rate 
constants are:  k1 = 0.33600  min−1 and  k2 = 0.02004  min−1. We use the experimental 
data obtained when the reaction is followed at λ = 375 nm to determine by the hybrid 
algorithm ANN-MATOPT the kinetic constants and the molar absorption coeffi-
cients at that λ. The values of the molar absorption coefficients of each of the species 
at λ = 375 nm are: εB1

 = 1.63 ×  104   mol−1   cm−1L, εB2
 = 2.00 ×  104   mol−1   cm−1L and 

εB3
 = 1.48 ×  104  mol−1  cm−1L.
Based on the values found in the bibliography, the interval variation of the 

parameters is established to perform the ED: [0.35–0.02  min−1] for the constants  (kr) 
and [3 ×  104–1 ×  104  Lmol−1   cm−1] for the molar absorption coefficients (εj). Once 
the corresponding ED has been performed, 51 kinetic curves  AT/t were generated 
with which the ANN training has been carried out and the optimal network has been 
obtained with which the prediction of the following parameters has been carried out: 

B1 + C
k1
��������→ B2

k2
��������→ B3 + D

B1

k1
��������→ B2

k2
��������→ B3

Table 7  Obtained results in the prediction of � =
(
k2, k3, εB2

)
 through ANN for the system 

B1 →
k1 B2 →

k2 B3 and in the subsequent mathematical optimization (points 2 and 3)

ANN calculated values Optimized values

Exp k1/min−1 k2/min−1 εB2
/M−1  cm−1 k1/min−1 k2/min−1 εB2

/M−1  cm−1 SQD

1 0.1347 0.1317 791.2403 0.1500 0.0100 950.0000 8.8747E-31
2 0.0165 0.0922 818.1860 0.0100 0.1500 1650.0000 6.0397E-31
1 0.0388 0.0479 273.4312 0.1500 0.0100 100.0000 4.4373E-31
2 0.0234 0.1765 134.5648 0.01 0.1500 − 111,000.0000 5.6608E-31
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(
k1, k2, εB1

)
 , 
(
k1, k2, εB3

)
 and 

(
k1, k2, εB2

)
 . Table 8 shows the results obtained in dif-

ferent experiences after the application of the hybrid algorithm ANN-MATOPT for 
the prediction of the different set of parameters. As it occurs in the treatment of 
synthetic data, when 

(
k1, k2, εB1

)
 or 

(
k1, k2, εB3

)
 are determined the system is identi-

fiable with a unique solution and when the parameters to determine are  k1,  k2 and εB1
 

the system is identifiable, but the solution is not unique, obtaining two solutions that 
are mathematically acceptable. Table 8 shows the two solutions, the real one and the 
other one that is mathematically acceptable (indicated in italics).  

5  Conclusion

In this work the hybrid algorithm ANN-MATOPT has been used to determine in 
different reaction mechanisms, the rate constants  (kr) of the different stages and 
the molar absorption coefficients (εj) of the different species participating in the 
reaction.

In a first stage the ANN methodology is applied, the analysis of the parameters 
given by ANN (regressions outputs/targets, MSE, etc,..) show that in some of the 
cases, the obtained results are unacceptable, telling the need to apply, in the second 
step, a mathematical optimization method to improve the results obtained with ANN 
and that originate the hybrid algorithm ANN-MATOPT.

The advantage of applying the ANN methodology over other parameter deter-
mination methods, is that it is a treatment that does not need to start from initial 

Table 8  Obtained results in the prediction of � =
(
k1, k2, εB1

)
 , � =

(
k1, k2, εB3

)
 and � =

(
k1, k2, εB2

)
 for 

the system B1 →
k1 B2 →

k2 B3 and in the subsequent mathematical optimization (experimental data)

ANN calculated values Optimized values

Exp k1/min−1 k2/min−1 εB1
/M−1  cm−1 k1/min−1 k2/min−1 εB1

/M−1  cm−1 SQD

1 0.3009 0.3207 1.6305E04 0.3360 0.0200 1.63E04 1.3540E-08
2 0.1693 0.2010 1.6360E04 0.3360 0.0200 1.63E04 5.3460E-08
3 0.1854 0.1782 1.6992E04 0.3360 0.0200 1.63E04 1.3780E-08
4 0.3035 0.1529 1.6345E04 0.3360 0.0200 1.63E04 5.6543E-08

Exp k1/min−1 k2/min−1 εB3
/M−1  cm−1 k1/min−1 k2/min−1 εB3

/M−1  cm−1 SQD

1 0.1993 0.4217 1.4847E04 0.3363 0.0200 1.4795E04 2.9376E-08
2 0.2850 0.1988 1.4601E04 0.3363 0.0200 1.4795E04 2.9376E-08
3 0.2569 0.3824 1.4826E04 0.3363 0.0200 1.4795E04 3.5728E-08
4 0.1749 0.4234 1.4699E04 0.3363 0.0200 1.4795E04 5.5654E-08

Exp k1/min−1 k2/min−1 εB2
/M−1  cm−1 k1/min−1 k2/min−1 εB2

/M−1  cm−1 SQD

1 0.2523 0.4836 2.4555E04 0.3362 0.0200 2.0001E04 3.1679E-08
2 0.0424 0.6062 2.6167E04 0.0200 0.3362 7.8406E04 3.1679E-08
3 0.1449 0.0178 2.6858E04 0.3362 0.0200 2.0001E04 3.1679E-08
4 0.0896 0.3938 2.3711E04 0.0200 0.3362 7.8406E04 3.1679E-08
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estimates, so it is not necessary to know the magnitude order of the parameters to 
determine. The mathematical optimization methods need estimated values of the 
parameters and it is also convenient that these estimations are close to the real val-
ues for the optimization to be carried out correctly. In the proposed methodology, 
ANN is applied initially, so that the results obtained can be used as initial estimates 
of the second method (mathematical optimization) that does require the use of pre-
vious values for the parameters to determine. It is observed that if the mechanism 
is simple (model I) the result provided by ANN are acceptable and in no case is 
necessary to apply subsequently the mathematical optimization method. For more 
complex mechanisms (II, III and IV) in all situations, it is necessary the application 
of the mathematical optimization so that the results can be considered acceptable.

When parameters of distinct nature are determined from kinetic data from the 
measurement of a total property, problems of ambiguity on the prediction may arise, 
that is, there is more than one group of parameters that represents the experimental 
data. The application of the Laplace transform has allowed us to detect beforehand 
the existence of ambiguity for the studied mechanism. The application of the ANN 
methodology in the case of situations where there is ambiguity or equivalence in the 
parameters, leads us to the same conclusions as the deterministic analysis and the 
mathematical optimization methods. ANN leads us to any of the acceptable solution 
from the mathematical point of view. In the cases of mechanisms I and II, a group 
of parameters is obtained that fits the kinetic data in all cases, while for mechanism 
III, it depends on the parameters that are determined. If 

(
k2, k3, εB1

)
 are determined, 

a group of parameters is obtained and for 
(
k2, k3, εB2

)
 and 

(
k2, k3, εB3

)
 , an infinite 

number of parameters that fit the kinetic data, non-identifiable system is obtained.
In the mechanism IV, it happens the same as the previous case, in the determi-

nation of 
(
k1, k2, εB1

)
 and 

(
k1, k2, εB3

)
 a unique solution is obtained, while when 

determining 
(
k1, k2, εB2

)
 we find two indiscernible solutions from each other, equally 

valid from a mathematical point of view. It is worth to point out the influence of the 
molar absorption coefficient of the intermediate species obtained with ANN since its 
value has a decisive influence on the hybrid algorithm ANN-MATOPT leading us to 
one or the other solution.

The application of deterministic analysis in the mechanisms studied indicates that 
in the special case  ki =  kj there is no “slow-fast” ambiguity in the determination of 
parameters.

In all cases in which there is ambiguity, that is, in those systems identifiable with 
a finite number of solutions or non-identifiable with infinite solutions, all of them 
are acceptable from a mathematical point of view, but not so from a chemical point 
of view. All the sets of parameters fit the experimental data, but only one of them 
contains the true parameters. In these cases, all the solutions are mathematically 
acceptable, performing a statistical analysis of residuals, there are no appreciable 
differences found between them, in order to discern which is the true solution we 
must resort to other considerations different from the mathematical or statistical, 
such as those of the strictly chemical type. The molar absorption coefficient of a 
certain specie at a wavelength λ(εj), is a parameter that has a characteristic value and 
can be used for the chemical identification of that specie. Similarly, the value of the 
rate constants of the different stages of a reaction mechanism  (ki), have a determined 
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value under certain reaction conditions (temperature, pH,…). For this reason, only a 
certain set of  ki and εj values are chemically true, although there is more than one set 
of parameters that fit the time total absorbance data and leads to a minimum value of 
the sum of the quadratic deviations (SQD).
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