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Abstract
The networks of various problems have competing constituents, and there is a concern to compute the strength of

competition among these entities. Competition hypergraphs capture all groups of predators that are competing in a

community through their hyperedges. This paper reintroduces competition hypergraphs in the context of Pythagorean fuzzy

set theory, thereby producing Pythagorean fuzzy competition hypergraphs. The data of real-world ecological systems

posses uncertainty, and the proposed hypergraphs can efficiently deal with such information to model wide range of

competing interactions. We suggest several extensions of Pythagorean fuzzy competition hypergraphs, including Pytha-

gorean fuzzy economic competition hypergraphs, Pythagorean fuzzy row as well as column hypergraphs, Pythagorean

fuzzy k-competition hypergraphs, m-step Pythagorean fuzzy competition hypergraphs and Pythagorean fuzzy neighbor-

hood hypergraphs. The proposed graphical structures are good tools to measure the strength of direct and indirect

competing and non-competing interactions. Their aptness is illustrated through examples, and results support their intrinsic

interest. We propose algorithms that help to compose some of the presented graphical structures. We consider predator-

prey interactions among organisms of the Bering Sea as an application: Pythagorean fuzzy competition hypergraphs

encapsulate the competing relationships among its inhabitants. Specifically, the algorithm which constructs the Pytha-

gorean fuzzy competition hypergraphs can also compute the strength of competing and non-competing relations of this

scenario.
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1 Introduction

Graph theory gradually emerged as an autonomous subject

after the publication of Euler’s work on the problem of the

Seven Bridges of Knigsberg in 1736. This subject has

turned out to be an efficient tool for the interpretation of

combinatorial problems of various areas like algebra,

topology, geometry and operations research. Later on,

combinatorics of graph theory was generalized to hyper-

graph theory where a hypergraph H on a non-empty set

U is a family of subsets of U. Each member of this family

is called hyperedge which connects multiple vertices

(rather than only two vertices as in case of graphs). These

discrete mathematical structures were broadly analyzed by

Berge [8, 9]. Hypergraph theory can be successfully

implemented to find the solutions of location problems,

scheduling problems, as well as integer optimization

problems. Therefore it has noteworthy applications in the

fields of transportation engineering, computer science,

database theory, etc.

Particularly interesting are the competition graphs pre-

sented by Cohen [14]. They are very effective to represent

the competition occurring in the networks of predator-prey

relationships, economic market structures, politics, cell

metabolism and in various forms of ecosystems. Cohen put
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forth this idea while studying an ecological food web as an

acyclic digraph such that two species u1 and u2 compete

for an organism u if u is a common prey of both u1 and u2
(that is, if the digraph contains the arcs ðu1; uÞ and ðu2; uÞ).
Various forms of competition graphs introduced afterwards

include open neighborhood graphs [1, 10], competition

common-enemy graph (or double competition graph) [25],

niche graphs [12], tolerance competition graphs [11], p-

competition graphs [22] and m-step competition graphs

[13]. All these forms are effective to encapsulate the visual

representation of different types of competitions taking

place in various fields.

Competition graphs were generalized to competition

hypergraphs by Sonntag and Teichert [41] who declared

that the latter provide clear description of competition

taking place in ecological interactions, an improvement as

compared to the former. In terms of predator-prey narra-

tive, an edge in competition hypergraph captures all those

species competing for a specific prey, while that of a

competition graph merely demonstrates that the connected

species have certain common prey. Many subclasses of

competition hypergraphs have also been explored. These

include the open neighborhood hypergraph [20], double

competition hypergraphs [35], niche hypergraphs [17] and

competition cluster hypergraphs [38]. Some properties of

competition hypergraphs are discussed in [42, 43].

But crisp models are not always adequate to describe

real interactions. The presence of fuzziness in linguistic

communication cannot be denied. Zadeh [47] was the

pioneer of fuzzy set (FS) theory that handles the uncer-

tainty of actual-world problems. A FS assigns truth-mem-

bership grade from the unit closed interval to each of its

elements, that describe the degrees to which its members

partake in. In order to improve its representation ability,

Atanassov [7] put forward a non-standard FS, the intu-

itionistic fuzzy set (IFS), that incorporates an independent

falsity-membership grade to illustrate the extent to which

the elements do not contribute to that set; a natural

restriction is presumed, namely, that for each element, the

sum of its truth-membership and falsity-membership values

should be at most one. Yager [46] introduced the Pytha-

gorean fuzzy set (PFS) that allows the Pythagorean mem-

bership values thus providing more flexibility in the

assignment of membership and non-membership values as

compared to IFS. It permits all those membership and non-

membership values for which the addition of their squares

never exceeds one. Different authors described applications

of IFSs and PFSs in decision-making [3, 6, 15, 26]. For

further studies, the readers are referred to

[5, 16, 23, 29, 32].

The concept of graph was soon studied in FS theory and

related extensions. The notion of fuzzy graph was intro-

duced by Kaufmann [21], and its operations were deter-

mined by Moderson and Nair [28]. Paravathi and

Karunambigai [33] developed the intuitionistic fuzzy gen-

eralizations of various notions of fuzzy graphs and revealed

that the proposed graphs have applications in network

analysis. Naz et al. [31] presented a more generalized

model of Pythagorean fuzzy graphs (PFGs) together with

properties and several applications to decision-making

problems. Goetschel [18] found that any finite collection of

fuzzy subsets over a finite crisp set gives rise to the notion

of fuzzy hypergraphs, and he applied this technique on

Hebbian structures. Similarly, Paravathi et al. [34] pre-

sented intuitionistic as well as dual intuitionistic fuzzy

hypergraphs. Akram and Dudek [2] also discussed intu-

itionistic fuzzy hypergraphs and implemented these struc-

tures on scheduling and telecommunication problems.

Luqman et al. [24] put forth q-rung orthopair fuzzy

hypergraphs with some applications to decision-making.

The proposed hypergraphs correspond to Pythagorean

fuzzy hypergraphs (PFHs) for q ¼ 2. Akram and Luq-

man [4] deeply discussed the fuzzy hypergraphs and its

distinct variations.

Likewise, the idea of competition graphs was also

extended to represent notions from several theories of

uncertain knowledge. Fuzzy competition graphs were

defined by Samanta and Pal [39], which not only describe

the competing entities of a system, but also compute the

strength of competition. Samanta et al. [37] investigated m-

step fuzzy competition graphs. Similarly, intuitionistic

fuzzy competition graphs [36], q-rung orthopair fuzzy

competition graphs [19] and fuzzy soft competition graphs

[30] are also found in literature. Fuzzy competition

hypergraphs with several applications were presented by

Sarwar et al. [40].

Given these antecedents, the motivation behind this

article is as follows:

1. PFHs can effectively deliver visual representation of

multinary relations, in such way that one can study the

strength of these connections with the help of

Pythagorean membership grades. For that reason,

representing competing interactions in the framework

of PFHs is a constructive exercise.

2. The introduction of Pythagorean fuzzy competition

hypergraphs (PFCH) has potential advantages over

existing models, as it inherits the properties of both

PFS and competition hypergraphs.
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3. The reason why different forms of PFCHs are useful is

that it is always interesting to find competition at

distinct levels and steps. At a practical level, the

relationship of species with their neighbors is also

helpful in the study of different ecological systems.

Bearing in mind these evidences, this research contributes

to the specialized literature with the following

achievements.

1. It defines and illustrates PFCHs, Pythagorean fuzzy

economic competition hypergraphs (PFECHs), Pytha-

gorean fuzzy row hypergraph (PFRwH), Pythagorean

fuzzy column hypergraph (PFClH), m-step Pythagor-

ean fuzzy hypergraphs (PFCmHs) and Pythagorean

fuzzy neighborhood hypergraphs of both open and

closed types.

2. This study also presents various results regarding the

strength of competition at different levels and steps.

3. It provides some algorithms which help in the under-

standing of related concepts.

4. It considers an interesting ecosystem of the Bering Sea

and describes the competition among its organisms

with the help of PFCH. Further, it computes both the

competing and non-competing strengths of predators

corresponding to each prey.

This article has many new features that make it excel over

the existing literature. Primarily, competition is the focal

point of this work and it is discussed in the background of

PFHs. PFHs have been studied extensively for the solution

of problems in discrete mathematics and decision-making.

The suggested PFCHs are better suited for representing real

data as the ecological networks of different biological

communities are also assembled in terms of directed

graphs. Likewise, PFCHs are constructed using PFDs and

not from PF directed hypergraphs. In addition to this,

competition hypergraphs [41] are able to exhibit who eats

whom, but they do not convey any information about how

much the predators of a community compete for an

organism. However, the consumers of an ecosystem do not

crave alike for their preys. This imprecision and uncer-

tainty is fully demonstrated by PFCHs.

This article is organized as follows. In the next section,

we give some preliminary concepts which will be used in

the following parts. Section 3 includes the concepts of

PFRwH, PFClH, PFCH and PFECH. In Sect. 4, we intro-

duce the concept of PFCmH which helps to compute the

strength of preys in indirect competitions of various eco-

logical systems. Then in Sect. 5, the ideas of Pythagorean

fuzzy neighborhood graphs of both open and closed types

are presented. An application representing the predator-

prey relationship is considered in Sect. 6 to present the

pertinence of PFCHs. The Bering Sea is well known due to

the diversity of its bionetwork as it contains numerous

species of mammals and fish. This characteristic of Bering

Sea urged us to study mutual competition among its

organisms with the proposed model of PFCHs. Section 7

provides the comparative analysis, and the last section

summarizes the main findings of the paper.

2 Preliminaries

Throughout the paper, U denotes a universal set. In addi-

tion, unless otherwise stated, all Pythagorean fuzzy

digraphs (PFDs) and PFHs considered may have isolated

vertices but they are void of loops as well as multiple arcs

and hyperedges, respectively.

Definition 1 [46] A PFS a over the universal set U is

defined as an object a ¼ ðta; faÞ : U ! ½0; 1� � ½0; 1� such
that the characteristic functions ta : U ! ½0; 1� and fa :

U ! ½0; 1� represent the truth-membership and falsity-

membership functions, respectively, and for each ui 2 U,

0� t2aðuiÞ þ f2aðuiÞ� 1 holds. Moreover, iaðuiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðt2aðuiÞ þ f2aðuiÞÞ
q

is the PF index or indeterminacy

value of the element ui to the set a.

Next we define some notions that help to lay the foun-

dations of PFSs:

Definition 2 [19] The height hðaÞ of a PFS a is defined as

hðaÞ ¼ ðhtðaÞ; hfðaÞÞ, where htðaÞ ¼ maxui2U taðuiÞ and

hfðaÞ ¼ minui2U faðuiÞÞ.

Definition 3 [19] The cardinality CðaÞ of a PFS a is

defined as CðaÞ ¼ ðjajt; jajfÞ, where jajt ¼
P

ui2U taðuiÞ
and jajf ¼

P

ui2U faðuiÞ.

Definition 4 [19] The support SuppðaÞ of a PFS a is

defined as SuppðaÞ ¼ ðSupptðaÞ [ SuppfðaÞÞ, where

SupptðaÞ ¼ fui 2 U j taðuiÞ[ 0g and SuppfðaÞ ¼ fui 2 U

j faðuiÞ\1g.

We can now introduce Pythagorean fuzzy digraphs (and

related concepts) as follows:

Definition 5 [31] A PFD G
!

on universe U is a pair

G
!¼ ða; n!Þ, where a ¼ ðta; faÞ is a PFS over U with

0� t2aðuiÞ þ f2aðuiÞ� 1 for all ui 2 U and n
!¼ ðt

n
!; f

n
!Þ is
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a PF relation (not symmetric) over a such that

8uiuj 2 U � U,

t
n
!ðuiujÞ� minftaðuiÞ; taðujÞg;

f
n
!ðuiujÞ� maxffaðuiÞ; faðujÞg;

with 0� t2

n
!ðuiujÞ þ f2

n
!ðuiujÞ� 1. Note that a is the PFS

of vertices and n
!

is a PFS of directed edges for the PFD

G
!¼ ða; n!Þ. Also, in PFD, generally uiuj 6¼ ujui.

Definition 6 [19] A PF out-neighborhood NþðuiÞ of a

vertex ui of a PFD G
!¼ ða; n!Þ is defined as NþðuiÞ ¼

fhuj; ðt
n
!ðuiujÞ; f

n
!ðuiujÞÞi j t

n
!ðuiujÞ[ 0 or f

n
!ðuiujÞ

[ 0g.

Definition 7 [19] A PF in-neighborhood N�ðuiÞ of a

vertex ui of a PFD G
!¼ ða; n!Þ is defined as N�ðuiÞ ¼

fhuj; ðt
n
!ðujuiÞ; f

n
!ðujuiÞÞi j t

n
!ðujuiÞ[ 0 or f

n
!

ðujuiÞ[ 0g.

Pythagorean fuzzy graphs are defined in the following

terms:

Definition 8 [31] A PFG G on universe U is a pair

G ¼ ða; nÞ, where a ¼ ðta; faÞ is a PFS over U with

0� t2aðuiÞ þ f2aðuiÞ� 1 for all ui 2 U and n ¼ ðtn; fnÞ is a

PF symmetric relation over a such that 8ðuiujÞ 2 U � U,

tnðuiujÞ� minftaðuiÞ; taðujÞg;
fnðuiujÞ� maxffaðuiÞ; faðujÞg;

with 0� t2nðuiujÞ þ f2nðuiujÞ� 1. Note that a is the PFS of

vertices and n is a PFS of edges for the PFG G ¼ ða; nÞ.

Definition 9 A PF open neighborhood NðuiÞ of a vertex ui
of PFG G ¼ ða; nÞ is defined as NðuiÞ ¼
fhuj; ðtnðuiujÞ; fnðuiujÞÞi j tnðuiujÞ [ 0 or fnðuiujÞ[ 0g.

Definition 10 A PF closed neighborhood N½ui� of a vertex
ui of PFG G ¼ ða; nÞ is defined as

N½ui� ¼ NðuiÞ [ fhui; ðtaðuiÞ; faðuiÞÞig.

Definition 11 [19] The underlying PFG UðG!Þ of a PFD G
!

over U has the same PFS of vertices as that of G
!
, and there

exists a PF edge between ui; uj 2 U if

tnðuiujÞ ¼

t
n
!ðuiujÞ ^ t

n
!ðujuiÞ; if t

n
!ðuiujÞ[ 0; t

n
!ðujuiÞ[ 0;

t
n
!ðuiujÞ; if t

n
!ðuiujÞ[ 0; t

n
!ðujuiÞk0;

t
n
!ðujuiÞ; if t

n
!ðuiujÞk0; t

n
!ðujuiÞ[ 0;

8

>

>

>

>

<

>

>

>

>

:

and

fnðuiujÞ ¼

f
n
!ðuiujÞ _ f

n
!ðujuiÞ; if f

n
!ðuiujÞ[ 0; f

n
!ðujuiÞ[ 0;

f
n
!ðuiujÞ; if f

n
!ðuiujÞ[ 0; f

n
!ðujuiÞk0;

f
n
!ðujuiÞ; if f

n
!ðuiujÞk0; f

n
!ðujuiÞ[ 0:

8

>

>

>

>

<

>

>

>

>

:

Pythagorean fuzzy hypergraphs are next defined:

Definition 12 [24] A PFH H over U is a pair H ¼ ða; bÞ,
where

1. a ¼ fhui; ðtaðuiÞ; faðuiÞÞijui 2 U; 1� i� ng is a finite

PFS of vertices over U, and

2. b is a PFS b ¼ fhEj; ðtbðEjÞ; fbðEjÞÞijEj �
U; 1� j�mg of PF hyperedges Ej of H, such that
S

j SuppðEjÞ ¼ U. Additionally, the truth-membership

and falsity-membership values of the PF hyperedge Ej

with vertices u1; u2; . . .; u3 can be computed by the

relations

tbðEjÞ�minftaðu1Þ; taðu2Þ; . . .; taðusÞg;
fbðEjÞ�maxffaðu1Þ; faðu2Þ; . . .; faðusÞg; s� n

respectively, such that 0� t2bðEjÞ þ f2bðEjÞ� 1.

To facilitate their study, the next concept is especially

useful:

Definition 13 A PF hyperedge Ej ¼ fu1; u2; . . .; usg is

called independent strong in the PFH H ¼ ða; bÞ if the

inequalities

tbðEjÞ�
1

2
ðu1 ^ u2 ^ . . . ^ usÞ;

fbðEjÞ�
1

2
ðu1 _ u2 _ . . . _ usÞ;

hold true, otherwise it is called weak. The strength StrðEjÞ
of a PF hyperedge Ej is defined as

StrðEjÞ ¼ ðStrðEjÞt; StrðEjÞfÞ, where

StrðEjÞt ¼
tbðEjÞ

u1 ^ u2 ^ . . . ^ us
;

StrðEjÞf ¼
fbðEjÞ

u1 _ u2 _ . . . _ us
:
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3 Pythagorean fuzzy competition
hypergraphs

Pythagorean fuzzy row and column hypergraphs are

designed in the next definitions:

Definition 14 Let G
!¼ ða; n!Þ be a PFD over U. The

PFRwH RoHðG!Þ of G
!
, denoted by RoHðG!Þ ¼ ða; nrÞ, is

a PF hypergraph whose PFS of vertices is same as for G
!

and the PF hyperedges can be constructed as follows: for

all 1� j� n;

Ej ¼ fui1 ; ui2 ; . . .; uis j s� 2; t
n
!ðuiujÞ[ 0 or

f
n
!ðuiujÞ[ 0; i 2 fi1; i2; . . .; isgg;

whose Pythagorean membership grades are computed as

tnrðEjÞ ¼ ½minftaðuiÞg�
� ½minft

n
!ðui; ujÞg�;

fnrðEjÞ ¼ ½maxffaðuiÞg�
� ½maxff

n
!ðui; ujÞg�;

where i 2 fi1; i2; . . .; isg.

Definition 15 Let G
!¼ ða; n!Þ be a PFD over U. The

PFClH CoHðG!Þ of G!, denoted by CoHðG!Þ ¼ ða; ncÞ, is a
PF hypergraph whose PFS of vertices is same as for G

!
and

the PF hyperedges can be constructed as follows: for all

1� i� n;

Ei ¼ fuj1 ; uj2 ; . . .; ujs j s� 2; t
n
!ðuiujÞ

[ 0 or f
n
!ðuiujÞ[ 0; j 2 fj1; j2; . . .; jsgg;

whose Pythagorean membership grades are computed as

tncðEiÞ ¼ ½minftaðujÞg�
� ½minft

n
!ðui; ujÞg�;

fncðEiÞ ¼ ½maxffaðujÞg�
� ½maxff

n
!ðui; ujÞg�;

where j 2 fj1; j2; . . .; jsg.

Algorithms 1 and 2, respectively, give the detailed steps

for the construction of PFRwH and PFCwH as defined

above.
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The next example illustrates the application of Algo-

rithms 1 and 2.

Example 1 Consider a PFD G
!¼ ða; n!Þ, where

a¼
��

u1

0:59
;
u2

0:82
;
u3

0:86
;
u4

0:68
;
u5

0:63
;
u6

0:74
;
u7

0:95
;
u8

0:43

�

;

�

u1

0:65
;
u2

0:36
;
u3

0:33
;
u4

0:58
;
u5

0:57
;
u6

0:42
;
u7

0:18
;
u8

0:62

��

and

n
!¼

��

u2u1

0:37
;
u3u2

0:77
;
u4u2

0:66
;
u5u1

0:55
;
u5u2

0:56
;
u5u3

0:62
;
u6u1

0:52
;
u6u2

0:73
;

u6u4

0:70
;
u7u3

0:84
;
u7u4

0:67
;
u7u5

0:61
;
u7u6

0:72
;
u8u3

0:36
;
u8u4

0:41
;
u8u7

0:39

�

;

�

u2u1

0:48
;
u3u2

0:35
;
u4u2

0:58
;
u5u1

0:64
;
u5u2

0:55
;
u5u3

0:54
;
u6u1

0:45
;
u6u2

0:38
;

u6u4

0:56
;
u7u3

0:32
;
u7u4

0:49
;
u7u5

0:50
;
u7u6

0:40
;
u8u3

0:44
;
u8u4

0:57
;
u8u7

0:58

��

:

It is presented graphically in Fig. 1. The adjacency matrix

of G
!

is given in Table 1. Note that the vertices are labeled

in such a way that the corresponding adjacency matrix is

strictly lower triangular. By following Algorithm 1, we can

construct the PFRwH of G
!
. It comprises four hyperedges

E1¼fu2;u5;u6g, E2¼fu3;u4;u5;u6g, E3¼fu5;u7;u8g and

E4¼fu6;u7;u8g, whose truth-membership and falsity-

membership values are computed as

tnrðE1Þ ¼ ½taðu2Þ ^ taðu5Þ ^ taðu6Þ�
� ½t

n
!ðu2u1Þ ^ t

n
!ðu5u1Þ ^ t

n
!ðu6u1Þ�

¼ 0:63� 0:37 ¼ 0:2331;

fnrðE1Þ ¼ ½faðu2Þ _ faðu5Þ _ faðu6Þ�
� ½f

n
!ðu2u1Þ _ f

n
!ðu5u1Þ _ f

n
!ðu6u1Þ�

¼ 0:57� 0:64 ¼ 0:3648:

Similarly, we have tnrðE2Þ ¼ 0:3528, fnrðE2Þ ¼ 0:3364,

tnrðE3Þ ¼ 0:1548, fnrðE3Þ ¼ 0:3348, tnrðE4Þ ¼ 0:1763 and

fnrðE4Þ ¼ 0:3534. The obtained PFRwH is shown in Fig. 2.

Likewise, we can construct the PFClH of G
!

by

following Algorithm 2. The hyperedges of PFClH are

E5 ¼ fu1; u2; u3g, E6 ¼ fu1; u2; u4g, E7 ¼ fu3; u4; u5; u6g
and E8 ¼ fu3; u4; u7g, whose truth-membership and fal-

sity-membership values can be calculated as
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tncðE5Þ ¼ ½taðu1Þ ^ taðu2Þ ^ taðu3Þ�
� ½t

n
!ðu5u1Þ

^ t
n
!ðu5u2Þ ^ t

n
!ðu5u3Þ� ¼ 0:59� 0:55 ¼ 0:3245;

fncðE5Þ ¼ ½faðu1Þ _ faðu2Þ _ faðu3Þ�
� ½f

n
!ðu5u1Þ _ f

n
!ðu5u2Þ

_ f
n
!ðu5u3Þ� ¼ 0:65� 0:64 ¼ 0:4160:

Similarly, we have tncðE6Þ ¼ 0:3068, fncðE6Þ ¼ 0:3640,

tncðE7Þ ¼ 0:3843, fncðE7Þ ¼ 0:290, tncðE8Þ ¼ 0:2448 and

fncðE8Þ ¼ 0:3364. Its graphical representation is given in

Fig. 3. Notice that any arrangement of rows and columns in

A preserves the PFRwH and the PFClH (up to

isomorphism).

Pythagorean fuzzy competition hypergraphs have the

following structure:

Definition 16 A PFCH CHðG
!Þ ¼ ða; nCÞ of a PFD G

!¼
ða; n!Þ has the same PF vertex set as of G

!
and Ej � U is a

PF hyperedge of CHðG
!Þ if and only if jEjj � 2 and there

exists a vertex uj 2 U such that Ej ¼ fui1 ; ui2 ; . . .; uis j

t
n
!ðuiujÞ[ 0 or f

n
!ðuiujÞ[ 0; i 2 fi1; i2; . . .; isgg,

that is, Nþðui1Þ \ Nþðui2Þ \ . . . \ NþðuisÞ is a non-empty

set due to uj. The Pythagorean membership grades of Ej

can be computed as

tnCðEjÞ ¼ ½taðui1Þ ^ taðui2Þ ^ . . . ^ taðuisÞ�
� htðNþðui1Þ \ Nþðui2Þ \ . . . \ NþðuisÞÞ;

fnCðEjÞ ¼ ½faðui1Þ _ faðui2Þ _ . . . _ faðuisÞ�
� hfðNþðui1Þ \ Nþðui2Þ \ . . . \ NþðuisÞÞ:

Remark 1 In the above definition, the factor htðNþðui1Þ \
Nþðui2Þ \ . . . \ NþðuisÞÞ ¼ minift

n
!ðuiujÞ j i 2 fi1; i2; . . .;

isgg and hfðNþðui1Þ \ Nþðui2Þ \ . . . \ NþðuisÞÞ ¼
maxiff

n
!ðuiujÞ j i 2 fi1; i2; . . .; isgg for some fixed j,

because multiple hyperedges are ruled out in PFCHs. This

representation yields the following immediate result, which

explains that the concepts defined in this section are

related.

Lemma 1 For a PFD G
!
, its associated PFCH CHðG

!Þ
and PFRwH RoHðG!Þ coincide.

Let us now introduce Pythagorean fuzzy economic

competition hypergraphs:

Definition 17 A PFECH ECHðG
!Þ ¼ ða; nEÞ of a PFD

G
!¼ ða; n!Þ has the same PF vertex set as of G

!
and Ei �

U is a PF hyperedge of ECHðG
!Þ if and only if jEij � 2 and

there exists a vertex ui 2 U such that Ei ¼

fuj1 ; uj2 ; . . .;ujs j t n!
ðuiujÞ[ 0orf

n
!ðuiujÞ[ 0;

j 2 fj1; j2; . . .; jsgg, that is, N�ðuj1Þ \ N�ðuj2Þ \ . . . \
N�ðujsÞ is a non-empty set due to ui. The Pythagorean

membership grades of Ei can be computed as

tnEðEiÞ ¼ ½taðuj1Þ ^ taðuj2Þ ^ . . . ^ taðujsÞ�
� htðN�ðuj1Þ \ N�ðuj2Þ \ . . . \ N�ðujsÞÞ;

fnEðEiÞ ¼ ½faðuj1Þ _ faðuj2Þ _ . . . _ faðujsÞ�
� hfðN�ðuj1Þ \ N�ðuj2Þ \ . . . \ N�ðujsÞÞ:

A result that parallels Lemma 1 for this concept ensues:

Lemma 2 For a PFD G
!
, its associated PFECH ECHðG

!Þ
and PFClH CoHðG!Þ coincide.

The next theorem characterizes PF hyperedges of

Pythagorean fuzzy competition hypergraphs and Pytha-

gorean fuzzy economic competition hypergraphs that are

independent strong:

Theorem 1 Let G
!¼ ða; n!Þ be a PFD on U.

1. If SuppðNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞÞ is a single-

ton subset of U, then the PF hyperedge Ej ¼
Fig. 1 A PFD G

!
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fu1; u2; . . .; usg of CHðG
!Þ is independent strong if and

only if jNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞjt [ 1
2

and

jNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞjf\ 1
2
.

2. If SuppðN�ðu1Þ \ N�ðu2Þ \ . . . \ N�ðusÞÞ is a single-

ton subset of U, then the PF hyperedge Ei ¼
fu1; u2; . . .; usg of ECHðG

!Þ is independent strong if

and only if jN�ðu1Þ \ N�ðu2Þ \ . . . \ N�ðusÞjt [ 0:5

and jN�ðu1Þ \ N�ðu2Þ \ . . . \ N�ðusÞjf\0:5.

Proof. Let G!¼ ða; n!Þ be a PFD. Suppose that u is the

only element with truth-membership value tðuÞ and falsity-

membership value fðuÞ such that Nþðu1Þ \ Nþðu2Þ \ . . . \
NþðusÞ ¼ fhu; ðtðuÞ; fðuÞÞig. Clearly

SuppðNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞÞ ¼ fug. Note that

jNþðu1Þ \ Nþðu2Þ \ . . . \NþðusÞjt ¼ tðuÞ ¼ htðNþðu1Þ \
Nþðu2Þ \ . . . \ NþðusÞÞ and jNþðu1Þ \ Nþðu2Þ \ . . . \
NþðusÞjf ¼ fðuÞ ¼ hfðNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞÞ.
Let CHðG

!Þ ¼ ða; nCÞ be the PFCH of G
!
. Then tnCðEjÞ ¼

ðu1 ^ u2 ^ . . . ^ usÞ � tðuÞ and fnCðEjÞ ¼ ðu1 _ u2 _ . . . _
usÞ � fðuÞ yields the truth-membership and falsity-mem-

bership values of PF hyperedge Ej. The outcome is
tnC ðEjÞ

u1^u2^...^us ¼ tðuÞ and fnC
ðEjÞ

u1_u2_..._us ¼ fðuÞ.
Suppose that Ej is independent strong, that is,

tnCðEjÞ[ 1
2
ðu1 ^ u2 ^ . . . ^ usÞ and fnCðEjÞ\ 1

2
ðu1 _ u2 _

. . . _ usÞ or
tnC ðEjÞ

u1^u2^...^us [
1
2
and

fnC
ðEjÞ

u1_u2_..._us \
1
2
. Combining

these results gives tðuÞ[ 1
2
and fðuÞ\ 1

2
. Consequently,

jNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞjt [ 1
2

and

jNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞjf\ 1
2
.

For the converse part, let jNþðu1Þ \ Nþðu2Þ \ . . . \
NþðusÞjt [ 1

2
and jNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞjf\ 1

2

which shows that tðuÞ[ 1
2
and fðuÞ\ 1

2
, respectively. These

expressions combine to produce
tnC ðEjÞ

u1^u2^...^us [
1
2

and
fnC

ðEjÞ
u1_u2_..._us \

1
2
. So the PF hyperedge Ej of CHðG

!Þ is

independent strong.

The strategy for the proof of (2) is similar.

Table 1 Adjacency matrix

A u1 u2 u3 u4 u5 u6 u7 u8

u1 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

u2 (0.37, 0.48) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

u3 (0, 0) (0.77, 0.35) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

u4 (0, 0) (0.66, 0.58) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

u5 (0.55, 0.64) (0.56, 0.55) (0.62, 0.54) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

u6 (0.52, 0.45) (0.73, 0.38) (0, 0) (0.70, 0.56) (0, 0) (0, 0) (0, 0) (0, 0)

u7 (0, 0) (0, 0) (0.84, 0.32) (0.67, 0.49) (0.61, 0.50) (0.72, 0.40) (0, 0) (0, 0)

u8 (0, 0) (0, 0) (0.36, 0.44) (0.41, 0.57) (0, 0) (0, 0) (0.39, 0.58) (0, 0)

Fig. 2 A PFRwH RoHðG!Þ

Fig. 3 A PFClH CoHðG!Þ
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Pythagorean fuzzy k-(economic)competition hyper-

graphs capture the following concepts:

Definition 18 Let k be a non-negative real number. The

Pythagorean fuzzy k-competition hypergraph (PFCkH)

Ck
HðG

!Þ ¼ ða; nkCÞ of a PFD G
!¼ ða; n!Þ has the same PF

vertex set as of G
!

and Ej � U is a PF hyperedge of Ck
HðG

!Þ
if and only if jEjj � 2 and jNþðui1Þ \ Nþðui2Þ \ . . . \
NþðuisÞjt [ k and jNþðui1Þ \ Nþðui2Þ \ . . .\
NþðuisÞjf [ k. The Pythagorean membership grades of Ej

can be computed as

tnkCðEjÞ ¼
k1 � k

k1
ðtaðui1Þ ^ taðui2Þ ^ . . . ^ taðuisÞÞ

� htðNþðui1Þ \ Nþðui2Þ \ . . . \ NþðuisÞÞ;

fnkCðEjÞ ¼
k2 � k

k2
ðfaðui1Þ _ faðui2Þ _ . . . _ faðuisÞÞ

� hfðNþðui1Þ \ Nþðui2Þ \ . . . \ NþðuisÞÞ;

where k1 ¼ jNþðui1Þ \ Nþðui2Þ \ . . . \ NþðuisÞjt and

k2 ¼ jNþðui1Þ \ Nþðui2Þ \ . . . \ NþðuisÞjf.

Definition 19 Let k be a non-negative real number. The

Pythagorean fuzzy k-economic competition hypergraph

(PFECkH) EC
k
HðG

!Þ ¼ ða; nkEÞ of a PFD G
!¼ ða; n!Þ has

the same PF vertex set as of G
!

and Ei � U is a PF

hyperedge of ECk
HðG

!Þ if and only if jEij � 2 and

jN�ðuj1Þ \ N�ðuj2Þ \ . . . \ N�ðujsÞjt [ k and

jN�ðuj1Þ \ N�ðuj2Þ \ . . . \ N�ðujsÞjf [ k. The Pythagor-

ean membership grades of Ei can be computed as

tnkEðEiÞ ¼
k1 � k

k1
ðtaðuj1Þ ^ taðuj2Þ ^ . . . ^ taðujsÞÞ

� htðN�ðuj1Þ \ N�ðuj2Þ \ . . . \ N�ðujsÞÞ;

fnkEðEiÞ ¼
k2 � k

k2
ðfaðuj1Þ _ faðuj2Þ _ . . . _ faðujsÞÞ

� hfðN�ðuj1Þ \ N�ðuj2Þ \ . . . \ N�ðujsÞÞ;

where k1 ¼ jN�ðuj1Þ \ N�ðuj2Þ \ . . . \ N�ðujsÞjt and

k2 ¼ jN�ðuj1Þ \ N�ðuj2Þ \ . . . \ N�ðujsÞjf.

A result that parallels Theorem 1 for these concepts

ensues:

Theorem 2 Let G
!¼ ða; n!Þ be a PFD on U.

1. If htðNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞÞ ¼ 1

¼ hfðNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞÞ, jNþðu1Þ \
Nþðu2Þ \ . . . \ NþðusÞjt [ 2k and

jNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞjf\2k, then the PF

hyperedge Ej ¼ fu1; u2; . . .; usg of Ck
HðG

!Þ is indepen-
dent strong.

2. If htðN�ðu1Þ \ N�ðu2Þ \ . . . \ N�ðusÞÞ ¼ 1 ¼
hfðN�ðu1Þ \N�ðu2Þ \ . . . \ N�ðusÞÞ, jN�ðu1Þ \
N�ðu2Þ \ . . . \ N�ðusÞjt [ 2k and jN�ðu1Þ\
N�ðu2Þ \ . . . \ N�ðusÞjf\2k, then the PF hyperedge

Ei ¼ fu1; u2; . . .; usg of ECk
HðG

!Þ is independent

strong.

Proof. Let G
!¼ ða; n!Þ be a PFD and let ECk

HðG
!Þ ¼

ða; nkEÞ be the corresponding PFECk H. Given that

htðN�ðu1Þ \ N�ðu2Þ \ . . . \ N�ðusÞÞ ¼ 1 and

k1 ¼ jN�ðu1Þ \ N�ðu2Þ \ . . . \ N�ðusÞjt [ 2k. Inserting

these expressions to the definition of tnkEðEiÞ, we have

tnkEðEiÞ ¼ k1�k
k1

ðtaðuj1Þ ^ taðuj2Þ ^. . . ^ taðujsÞÞ. Conse-

quently,
tnkE ðEiÞ

taðuj1 Þ^taðuj2 Þ^...^taðujs Þ
¼ k1�k

k1
[ k1�k1

2

k1
¼ 1

2
. Similarly,

fnkE ðEiÞ
faðuj1 Þ_faðuj2 Þ_..._faðujs Þ

¼ k2�k
k2

\ k2�k2
2

k2
¼ 1

2
which shows that

the PF hyperedge Ei is independent strong in ECk
HðG

!Þ.
The proof of statement (1) is similar to above.

Example 2 Consider again the PFD G
!¼ ða; n!Þ whose

graphical representation is given in Fig. 1. The PF out-

neighborhoods as well as in-neighborhoods of vertices of

G
!

are given in Tables 2 and 3, respectively. In order to

construct PFCH of G
!
, consider the vertex u1 to make E1 in

CHðG
!Þ. Note that u1 is the common PF out-neighbor of u2,

u5 and u6, i.e., either t
n
!ðuiu1Þ or f

n
!ðuiu1Þ is nonzero for

i 2 f2; 5; 6g. Therefore, E1 ¼ fu2; u5; u6g whose Pytha-

gorean membership values are computed as

Nþðu2Þ \ Nþðu5Þ \ Nþðu6Þ
¼ fhu1; ð0:37; 0:64Þig; ) hðNþðu2Þ \ Nþðu5Þ
\ Nþðu6ÞÞ ¼ ð0:37; 0:64Þ;

tnCðE1Þ
¼ ½taðu2Þ ^ taðu5Þ ^ taðu6Þ�
� htðNþðu2Þ \ Nþðu5Þ \ Nþðu6ÞÞ
¼ ð0:63Þð0:37Þ ¼ 0:2331;

fnCðE1Þ
¼ ½faðu2Þ _ faðu5Þ _ faðu6Þ�
� hfðNþðu2Þ \ Nþðu5Þ \ Nþðu6ÞÞ
¼ ð0:57Þð0:64Þ ¼ 0:3648:

Similarly, E2 ¼ fu3; u4; u5; u6g, E3 ¼ fu5; u7; u8g and

E4 ¼ fu6; u7; u8g are hyperedges in CHðG
!Þ with truth-

membership and falsity-membership grades as

tnCðE2Þ ¼ 0:3528, fnCðE2Þ ¼ 0:3364, tnCðE3Þ ¼ 0:1548,

fnCðE3Þ ¼ 0:3348, tnCðE4Þ ¼ 0:1736 and fnCðE4Þ ¼ 0:3534.

The obtained PFCH CHðG
!Þ is shown in Fig. 4.
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Likewise, the PFECH for considered PFD G
!

has the

hyperedges E5 ¼ fu1; u2; u3g, E6 ¼ fu1; u2; u4g, E7 ¼
fu3; u4; u5; u6g and E8 ¼ fu3; u4; u7g with truth-member-

ship and falsity-membership grades as tnEðE5Þ ¼ 0:3245,

fnEðE5Þ ¼ 0:5504, tnEðE6Þ ¼ 0:3068, fnEðE6Þ ¼ 0:3640,

tnEðE7Þ ¼ 0:3843, fnEðE7Þ ¼ 0:290, tnEðE8Þ ¼ 0:2448 and

fnEðE8Þ ¼ 0:3364. The acquired PFECH is shown in Fig. 5.

The PFC0:4H C0:4
H ðG!Þ and PFEC0:5H EC0:5

H ðG!Þ of G! are

given in Figs. 6 and 7, respectively.

4 m-Step pythagorean fuzzy competition
hypergraphs

In order to study PFCmH, we revise some basic concepts:

Definition 20 [19] An m-step PFD G
!

m of a PFD G
!
,

denoted by G
!

m ¼ ða; n!mÞ, is a PFD that has same PFS of

vertices as that of G
!

and has a PF arc from ui to uj if there

exists a PF directed path P
!m

ðuiujÞ of length m from ui to uj.

The Pythagorean membership values of PF arc uiuj can be

computed as

t
n
!

m

ðuiujÞ ¼ minft
n
!ðuu0Þ j uu0is an arc of P

!m

ðuiujÞg;

f
n
!

m

ðuiujÞ ¼ maxff
n
!ðuu0Þ j uu0 is an arc of P

!m

ðuiujÞg:

Definition 21 [19] An m-step PF out-neighborhood

Nþ
m ðuiÞ of a vertex ui of a PFD G

!¼ ða; n!Þ is defined as

Nþ
m ðuiÞ ¼ fhuj; ðt

n
!ðujÞ; f

n
!ðujÞÞi j P

!m

ðuiujÞexistsg, where

t
n
!ðujÞ ¼ minft

n
!ðuu0Þ j uu0 is an arc of P

!m

ðuiujÞg and

f
n
!ðujÞ ¼ maxff

n
!ðuu0Þ j uu0 is an arc of P

!m

ðuiujÞg.

Definition 22 [19] An m-step PF in-neighborhood N�
m ðuiÞ

of a vertex ui of a PFD G
!¼ ða; n!Þ is defined as N�

m ðuiÞ ¼

fhuj; ðt
n
!ðujÞ; f

n
!ðujÞÞi j P

!m

ðujuiÞexistsg, where t
n
!ðujÞ ¼

minft
n
!ðuu0Þ j uu0 is an arc of P

!m

ðujuiÞg and f
n
!ðujÞ ¼

maxff
n
!ðuu0Þ j uu0 is an arc of P

!m

ðujuiÞg.

The PFCmHs are helpful to compute the strength of

indirect competing and non-competing relationships at m-

steps. These are defined below:

Definition 23 An PFCmH Cm
HðG

!Þ ¼ ða; nmCÞ of a PFD

G
!¼ ða; n!Þ has the same PF vertex set as of G

!
and Ej �

U is a PF hyperedge of Cm
HðG

!Þ if and only if jEjj � 2 and

there exists a vertex uj 2 U such that Nþ
m ðui1Þ \ Nþ

m ðui2Þ \
. . . \ Nþ

m ðuisÞ is a non-empty set due to uj. The Pythagor-

ean membership grades of Ej can be computed as

tnmCðEjÞ ¼ ½taðui1Þ ^ taðui2Þ ^ . . . ^ taðuisÞ�
� htðNþ

m ðui1Þ \ Nþ
m ðui2Þ \ . . . \ Nþ

m ðuisÞÞ;
fnmCðEjÞ ¼ ½faðui1Þ _ faðui2Þ _ . . . _ faðuisÞ�

� hfðNþ
m ðui1Þ \ Nþ

m ðui2Þ \ . . . \ Nþ
m ðuisÞÞ:

Definition 24 An m-step Pythagorean fuzzy economic

competition hypergraph (PFECmH) EC
m
HðG

!Þ ¼ ða; nmEÞ of
a PFD G

!¼ ða; n!Þ has the same PF vertex set as of G
!

and

Ei � U is a PF hyperedge of ECm
HðG

!Þ if and only if jEij � 2

and there exists a vertex ui 2 U such that N�
m ðuj1Þ \

Table 2 PF out-neighborhoods

of vertices of G
! ui 2 U NþðuiÞ

u1 fg
u2 fhu1; ð0:37; 0:48Þig
u3 fhu2; ð0:77; 0:35Þig
u4 fhu2; ð0:66; 0:58Þig
u5 fhu1; ð0:55; 0:64Þi; hu2; ð0:56; 0:55Þi; hu3; ð0:62; 0:54Þig
u6 fhu1; ð0:52; 0:45Þi; hu2; ð0:73; 0:38Þi; hu4; ð0:70; 0:56Þig
u7 fhu3; ð0:84; 0:32Þi; hu4; ð0:67; 0:49Þi; hu5; ð0:61; 0:50Þi; hu6; ð0:72; 0:40Þig
u8 fhu3; ð0:36; 0:44Þi; hu4; ð0:41; 0:57Þi; hu7; ð0:39; 0:58Þig
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N�
m ðuj2Þ \ . . . \ N�

m ðujsÞ is a non-empty set due to ui. The

Pythagorean membership grades of Ei can be computed as

tnmEðEiÞ ¼ ½taðuj1Þ ^ taðuj2Þ ^ . . . ^ taðujsÞ�
� htðN�

m ðuj1Þ \ N�
m ðuj2Þ \ . . . \ N�

m ðujsÞÞ;
fnmEðEiÞ ¼ ½faðuj1Þ _ faðuj2Þ _ . . . _ faðujsÞ�

� hfðN�
m ðuj1Þ \ N�

m ðuj2Þ \ . . . \ N�
m ðujsÞÞ:

Example 3 Consider a PFD G
!¼ ða; n!Þ, where

Table 3 PF in-neighborhoods of

vertices of G
! ui 2 U N�ðuiÞ

u1 fhu2; ð0:37; 0:48Þi; hu5; ð0:55; 0:64Þi; hu6; ð0:52; 0:45Þig
u2 fhu3; ð0:77; 0:35Þi; hu4; ð0:66; 0:58Þi; hu5; ð0:56; 0:55Þi; hu6; ð0:73; 0:38Þig
u3 fhu5; ð0:62; 0:54Þi; hu7; ð0:84; 0:32Þi; hu8; ð0:36; 0:44Þig
u4 fhu6; ð0:70; 0:56Þi; hu7; ð0:67; 0:49Þi; hu8; ð0:41; 0:57Þig
u5 fhu7; ð0:61; 0:50Þig
u6 fhu7; ð0:72; 0:40Þig
u7 fhu8; ð0:39; 0:58Þig
u8 fg

Fig. 4 A PFCH CHðG
!Þ

Fig. 5 A PFECH ECHðG
!Þ

Fig. 6 A PFC0:4H C0:4
H ðG!Þ
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a ¼
��

u1

0:83
;
u2

0:48
;
u3

0:79
;
u4

0:98
;
u5

0:92
;
u6

0:63
;
u7

0:59

�

;

�

u1

0:46
;
u2

0:69
;
u3

0:46
;
u4

0:11
;
u5

0:21
;
u6

0:55
;
u7

0:71

��

and

n
!¼

��

u2u1

0:46
;
u3u2

0:41
;
u4u1

0:82
;
u4u3

0:76
;
u5u4

0:91
;
u6u2

0:48
;
u6u3

0:61
;

u6u5

0:63
;
u7u1

0:57
;
u7u2

0:36
;
u7u5

0:53
;
u7u6

0:55

�

;

�

u2u1

0:53
;
u3u2

0:65
;
u4u1

0:39
;
u4u3

0:43
;
u5u4

0:19
;
u6u2

0:67
;
u6u3

0:38
;

u6u5

0:48
;
u7u1

0:64
;
u7u2

0:65
;
u7u5

0:42
;
u7u6

0:66

��

:

The graphical representation and adjacency matrix of G
!

are given in Fig. 8 and Table 4, respectively. By following

Definition 20, we have constructed the 2-step PFD G
!

2

displayed in Fig. 9.

The 2-step PF out-neighborhoods as well as in-neigh-

borhoods of vertices of G
!

are given in Tables 5 and 6,

respectively. The PFC2H C2
HðG

!Þ of the considered PFD G
!

has same PFS of vertices and its PF hyperedges are

E1 ¼ fu3; u5; u6; u7g, E2 ¼ fu4; u6; u7g, E3 ¼ fu5; u7g
and E4 ¼ fu6; u7g with truth-membership and falsity-

membership grades as tn2CðE1Þ ¼ 0:2124,

fn2CðE1Þ ¼ 0:4757, tn2CðE2Þ ¼ 0:2419, fn2CðE2Þ ¼ 0:4757,

tn2CðE3Þ ¼ 0:3245, fn2CðE3Þ ¼ 0:4686, tn2CðE4Þ ¼ 0:3127

and fn2CðE4Þ ¼ 0:3408. The obtained PFC2H C2
HðG

!Þ is

shown in Fig. 10.

Likewise, the PFEC2H EC2
HðG

!Þ for considered PFD G
!

has PF hyperedges E5 ¼ fu1; u3g, E6 ¼ fu1; u2; u4g and

E7 ¼ fu1; u2; u3; u4; u5g with truth-membership and fal-

sity-membership grades as tn2EðE5Þ ¼ 0:6004,

fn2EðE5Þ ¼ 0:1978, tn2EðE6Þ ¼ 0:1968, fn2EðE6Þ ¼ 0:4623,

tn2EðE7Þ ¼ 0:1728 and fn2EðE7Þ ¼ 0:4623. The acquired

PFEC2H is shown in Fig. 11.

Theorem 3 If G
!

is a PFD and G
!

m is its m-step PFD, then

1. CHðG
!

mÞ ¼ Cm
HðG

!Þ,
2. ECHðG

!
mÞ ¼ ECm

HðG
!Þ.

Proof Let G
!¼ ða; n!Þ be a PFD, G

!
m ¼ ða; n!mÞ be the

m-step PFD of G
!
, CHðG

!
mÞ ¼ ða; nCÞ be the PFCH of G

!
m

and Cm
HðG

!Þ ¼ ða; nmÞ be the PFCmH of G
!
. It is evident

that the PF vertex sets of these graphs as well as hyper-

graphs are equal. Let Ej ¼ fu1; u2; . . .; usg be a PF

hyperedge in CHðG
!

mÞ. Consequently, there exist PF arcs

u1uj; u2uj; . . .; usuj for some uj in G
!

m. So in G
!

m, we have

Nþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞ ¼ fhuj; ðzt; zfÞig, where

zt ¼ t
n
!

m

ðu1ujÞ ^ t
n
!

m

ðu2ujÞ^ . . . ^ t
n
!

m

ðusujÞ and zf ¼

f
n
!

m

ðu1ujÞ _ f
n
!

m

ðu2ujÞ _ . . . _f
n
!

m

ðusujÞ. Thus, tnCðEjÞ ¼

ðtaðu1Þ ^ taðu2Þ ^ . . . ^ taðusÞÞ �htðNþðu1Þ \ Nþðu2Þ \
. . . \ NþðusÞÞ ¼ ðtaðu1Þ ^ taðu2Þ ^ . . . ^ taðusÞÞ � zt. Sim-

ilarly, fnCðEjÞ ¼ ðfaðu1Þ _ faðu2Þ _ . . . _ faðusÞÞ
�hfðNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞÞ ¼ ðfaðu1Þ _ fa

ðu2Þ _ . . . _ faðusÞÞ � zf. An arc u1uj in G
!

m implies the

existence of a PF directed path P
!m

ðu1ujÞ of length m from

u1 to uj in G
!
. As a result, t

n
!

m

ðu1ujÞ ¼ minft
n
!ðuu0Þ j

uu0isanarcin P
!m

ðu1ujÞg and f
n
!

m

ðu1ujÞ ¼ maxff
n
!ðuu0Þ j

uu0isanarcin P
!m

ðu1ujÞg. Thus the PF hyperedge Ej is con-

tained in Cm
HðG

!Þ also. Finally, tnmðEjÞ ¼ ðtaðu1Þ ^
taðu2Þ ^ . . . ^ taðusÞÞ� htðNþ

m ðu1Þ \ Nþ
m ðu2Þ \ . . . \

Nþ
m ðusÞÞ ¼ ðtaðu1Þ ^ taðu2Þ ^ . . . ^ taðusÞÞ � zt and

fnmðEjÞ ¼ ðfaðu1Þ _ faðu2Þ _ . . . _ faðusÞÞ �hfðNþ
m ðu1Þ \

Nþ
m ðu2Þ \ . . . \ Nþ

m ðusÞÞ ¼ ðfaðu1Þ _ faðu2Þ _ . . . _ fa
ðusÞÞ � zf. This verifies the existence of a PF hyperedge in

Cm
HðG

!Þ corresponding to each PF hyperedge in CHðG
!

mÞ
and vice versa. This proves CHðG

!
mÞ ¼ Cm

HðG
!Þ. h

Fig. 7 A PFEC0:5H EC0:5
H ðG!Þ
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Theorem 4 Let G
!

be a PFD. If m[ jUj, then the corre-

sponding PFCmH Cm
HðG

!Þ and PFECmH ECm
HðG

!Þ are void

of PF hyperedges.

Proof Let G
!¼ ða; n!Þ and Cm

HðG
!Þ ¼ ða; nmÞ. Then

tnmðEjÞ ¼ ðtaðu1Þ ^ taðu2Þ ^ . . . ^ taðusÞÞ �htðNþ
m ðu1Þ \

Nþ
m ðu2Þ \ . . . \ Nþ

m ðusÞÞ and fnmðEjÞ ¼ ðfaðu1Þ _ faðu2Þ _
. . . _ faðusÞÞ� hfðNþ

m ðu1Þ \ Nþ
m ðu2Þ \ . . . \ Nþ

m ðusÞÞ. If

m[ jUj, there does not exist any directed path of length m

in G
!
. So, Nþ

m ðu1Þ \ Nþ
m ðu2Þ \ . . . \ Nþ

m ðusÞ ¼ fg. As a

result, Cm
HðG

!Þ is void of PF hyperedges. This completes the

proof. h

The proof for PFECmH is similar to the argument above.

Definition 25 [19] Let G
!¼ ða; n!Þ be a PFD over U. Let

u be a common PF prey of m-step PF out-neighborhoods of

vertices u1, u2,...,us in G
!

such that t
n
!ðu01u001Þ,

t
n
!ðu02u002Þ,...,t n!

ðu0su00s Þ be the minimum truth-membership

degree and f
n
!ðu01u001Þ, f

n
!ðu02u002Þ,...,f n!

ðu0su00s Þ be the

maximum falsity-membership degree of directed edges in

PF directed paths P
!m

ðu1;uÞ, P
!m

ðu2;uÞ,...,P
!m

ðus;uÞ, respectively.

The m-step PF prey u is said to be independent strong if for

all 1� k� s, t
n
!ðu0ku00kÞ[ 0:5 and f

n
!ðu0ku00kÞ\0:5.

The strength of a PF prey u is denoted by

StrðuÞ ¼ ðStrðuÞt; StrðuÞfÞ, where the mappings StrðuÞt :
U ! ½0; 1� and StrðuÞf : U ! ½0; 1� are defined as

StrðuÞt ¼

Ps
k¼1 t n

!ðu0ku00kÞ

s
; StrðuÞf ¼

Ps
k¼1 f n

!ðu0ku00kÞ

s
:

Below we give a relationship of m-step PF preys and PF

hyperedges of PFCmH.

Fig. 8 A PFD G
!

Table 4 Adjacency matrix of

PFD G
! A u1 u2 u3 u4 u5 u6 u7

u1 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

u2 (0.46, 0.53) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

u3 (0, 0) (0.41, 0.65) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

u4 (0.82, 0.39) (0, 0) (0.76, 0.43) (0, 0) (0, 0) (0, 0) (0, 0)

u5 (0, 0) (0, 0) (0, 0) (0.91, 0.19) (0, 0) (0, 0) (0, 0)

u6 (0, 0) (0.48, 0.67) (0.61, 0.38) (0, 0) (0.63, 0.48) (0, 0) (0, 0)

u7 (0.57, 0.64) (0.36, 0.65) (0, 0) (0, 0) (0.53, 0.42) (0.55, 0.66) (0, 0)

Fig. 9 A 2-step PFD G
!

2
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Theorem 5 If all m-step PF preys of PFD G
!

are strong,

then all PF hyperedges of PFCmH Cm
HðG

!Þ are independent
strong.

Proof Let G
!¼ ða; n!Þ be a PFD and suppose that all m-

step PF preys of G
!

are strong. Further, consider the

PFCmH Cm
HðG

!Þ ¼ ða; n!mCÞ in which the Pythagorean

membership grades of an arbitrary hyperedge Ej ¼
fu1; u2; . . .; usg are computed as tnmCðEjÞ ¼ ½taðu1Þ ^
taðu2Þ ^ . . . ^ taðusÞ� � htðNþ

m ðu1Þ \Nþ
m ðu2Þ \ . . . \

Nþ
m ðusÞÞ and fnmCðEjÞ ¼ ½faðu1Þ _ faðu2Þ _ . . . _ faðusÞ��

Table 5 2-step PF out-

neighborhoods of vertices of G
! ui 2 U Nþ

2 ðuiÞ

u1 fg
u2 fg
u3 fhu1; ð0:41; 0:65Þig
u4 fhu2; ð0:41; 0:62Þig
u5 fhu1; ð0:82; 0:39Þi; hu3; ð0:76; 0:43Þig
u6 fhu1; ð0:46; 0:67Þi; hu2; ð0:41; 0:65Þi; hu4; ð0:63; 0:48Þig
u7 fhu1; ð0:36; 0:65Þi; hu2; ð0:48; 0:67Þi; hu3; ð0:55; 0:66Þi; hu4; ð0:53; 0:42Þi; hu5; ð0:55; 0:66Þig

Table 6 2-step PF in-

neighborhoods of vertices of G
! ui 2 U N�

2 ðuiÞ

u1 fhu3; ð0:41; 0:65Þi; hu5; ð0:82; 0:39Þi; hu6; ð0:46; 0:67Þi; hu7; ð0:36; 0:65Þig
u2 fhu4; ð0:41; 0:65Þi; hu6; ð0:41; 0:65Þi; hu7; ð0:48; 0:67Þig
u3 fhu5; ð0:76; 0:43Þi; hu7; ð0:55; 0:66Þig
u4 fhu6; ð0:63; 0:48Þi; hu7; ð0:53; 0:42Þig
u5 fhu7; ð0:55; 0:66Þig
u6 fg
u7 fg

Fig. 10 A PFC2H C2
HðG

!Þ

Fig. 11 A PFEC2H EC2
HðG

!Þ
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hfðNþ
m ðu1Þ \ Nþ

m ðu2Þ \ . . . \ Nþ
m ðusÞÞ. There arise two

cases. h

Case I: Let Nþ
m ðu1Þ \ Nþ

m ðu2Þ \ . . . \ Nþ
m ðusÞ ¼ fg.

Then there is no hyperedge Ej ¼ fu1; u2; . . .; usg in

Cm
HðG

!Þ.
Case-II: Let Nþ

m ðu1Þ \ Nþ
m ðu2Þ \ . . . \ Nþ

m ðusÞ intersect

at uj. Since all m-step PF preys are strong therefore,

htðNþ
m ðu1Þ \ Nþ

m ðu2Þ \ . . . \ Nþ
m ðusÞÞ[ 0:5 and

hfðNþ
m ðu1Þ \ Nþ

m ðu2Þ \ . . . \ Nþ
m ðusÞÞ\0:5. Thus, the PF

hyperedge Ej ¼ fu1;u2; . . .; usg in Cm
HðG

!Þ have the mem-

bership values tnmCðEjÞ� 1
2
½taðu1Þ ^ taðu2Þ ^ . . . ^ taðusÞ�

and fnmCðEjÞ� 1
2
½faðu1Þ _ faðu2Þ _ . . . _ faðusÞ�. As Ej is

arbitrary, all PF hyperedges of Cm
HðG

!Þ are independent

strong.

Corollary 1 Consider an m-step PFD G
!

m of a PFD G
!
. If

the Pythagorean membership grades of all arcs uiuj of G
!

m

satisfy t
n
!

m

ðuiujÞ[ 0:5 and f
n
!

m

ðuiujÞ\0:5, then all PF

hyperedges of PFCmH Cm
HðG

!Þ are independent strong.

5 Pythagorean fuzzy neighborhood
hypergraphs of open and closed types

The PF hyperedges of Pythagorean fuzzy open neighbor-

hood hypergraph (PFONH) and Pythagorean fuzzy closed

neighborhood hypergraph (PFCNH), respectively, repre-

sent the relationship among neighbors of a species and how

a species interact with its neighbors. Mathematically, these

are defined as follows:

Definition 26 A PFONH NHðGÞ ¼ ða; nðNÞÞ of a PFG

G ¼ ða; nÞ has the same PF vertex set as of G and Ej � U

is a PF hyperedge of NHðGÞ if and only if jEjj � 2 and

Ej ¼ SuppðNðujÞÞ, that is, Nðui1Þ \ Nðui2Þ \ . . . \ NðuisÞ is
a non-empty set due to uj. The Pythagorean membership

grades of Ej can be computed as

tnðNÞ ðEjÞ ¼ ½taðui1Þ ^ taðui2Þ ^ . . . ^ taðuisÞ�
� htðNðui1Þ \ Nðui2Þ \ . . . \ NðuisÞÞ;

fnðNÞ
ðEjÞ ¼ ½faðui1Þ _ faðui2Þ _ . . . _ faðuisÞ�

� hfðNðui1Þ \ Nðui2Þ \ . . . \ NðuisÞÞ:

Proposition 1 The PFONH NHðGÞ of PFG G has n PF

hyperedges if and only if 8i 6¼ j, NðuiÞ 6¼ NðujÞ and

jSuppðNðujÞÞj � 2; 1� i; j� n.

Definition 27 A PFCNH NH½G� ¼ ða; n½N�Þ of a PFG G ¼
ða; nÞ has the same PF vertex set as of G and Ej � U is a PF

hyperedge of NH½G� if and only if jEjj � 2 and

Ej ¼ SuppðN½ui�Þ, that is, N½ui1 � \ N½ui2 � \ . . . \ N½uis � is a
non-empty set due to uj. The Pythagorean membership

grades of Ej can be computed as

tn½N� ðEjÞ ¼ ½taðui1Þ ^ taðui2Þ ^ . . . ^ taðuisÞ�
� htðN½ui1 � \ N½ui2 � \ . . . \ N½uis �Þ;

fn½N�
ðEjÞ ¼ ½faðui1Þ _ faðui2Þ _ . . . _ faðuisÞ�

� hfðN½ui1 � \ N½ui2 � \ . . . \ N½uis �Þ:

Proposition 2 The PFCNH NH½G� of PFG G has n PF

hyperedges if and only if 8i 6¼ j, N½ui� 6¼ N½uj� and

jSuppðN½uj�Þj � 2; 1� i; j� n.

Definition 28 Let k be a non-negative real number. The

Pythagorean fuzzy (k)-neighborhood hypergraph (read as

open Pythagorean fuzzy k-neighborhood hypergraph

PFONkH) N
k
HðGÞ ¼ ða; nðkÞÞ of a PFG G ¼ ða; nÞ has the

same PF vertex set as of G and Ej � U is a PF hyperedge of

Nk
HðGÞ if and only if jEjj � 2 and jNðui1Þ \ Nðui2Þ \ . . . \

NðuisÞjt [ k and jNðui1Þ \ Nðui2Þ \ . . . \ NðuisÞjf [ k. The

Pythagorean membership grades of Ej can be computed as

tnðkÞ ðEjÞ ¼
k1 � k

k1
ðtaðui1Þ ^ taðui2Þ ^ . . . ^ taðuisÞÞ

� htðNðui1Þ \ Nðui2Þ \ . . . \ NðuisÞÞ;

fnðkÞ ðEjÞ ¼
k2 � k

k2
ðfaðui1Þ _ faðui2Þ _ . . . _ faðuisÞÞ

� hfðNðui1Þ \ Nðui2Þ \ . . . \ NðuisÞÞ;

where k1 ¼ jNðui1Þ \ Nðui2Þ \ . . . \ NðuisÞjt and

k2 ¼ jNðui1Þ \ Nðui2Þ \ . . . \ NðuisÞjf.

Definition 29 Let k be a non-negative real number. The

Pythagorean fuzzy [k]-neighborhood hypergraph (read as

closed Pythagorean fuzzy k-neighborhood hypergraph

PFCNkH) Nk
H½G� ¼ ða; n½k�Þ of a PFG G ¼ ða; nÞ has the

same PF vertex set as of G and Ej � U is a PF hyperedge of

Nk
H½G� if and only if jEjj � 2 and jN½ui1 � \ N½ui2 � \ . . . \

N½uis �jt [ k and jN½ui1 � \ N½ui2 � \ . . . \ N½uis �jf [ k. The

Pythagorean membership grades of Ej can be computed as

tn½k� ðEjÞ ¼
k1 � k

k1
ðtaðui1Þ ^ taðui2Þ ^ . . . ^ taðuisÞÞ

� htðN½ui1 � \ N½ui2 � \ . . . \ N½uis �Þ;

fn½k� ðEjÞ ¼
k2 � k

k2
ðfaðui1Þ _ faðui2Þ _ . . . _ faðuisÞÞ

� hfðN½ui1 � \ N½ui2 � \ . . . \ N½uis �Þ;
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where k1 ¼ jN½ui1 � \ N½ui2 � \ . . . \ N½uis �jt and

k2 ¼ jN½ui1 � \ N½ui2 � \ . . . \ N½uis �jf.

The above mentioned concepts are useful when the

concern is to compute the neighboring relations at different

levels. The following example demonstrates them clearly.

Example 4 Consider a PFG G ¼ ða; nÞ, where

a ¼
��

u1

0:69
;
u2

0:58
;
u3

0:94
;
u4

0:89
;
u5

0:63
;
u6

0:78

�

;

�

u1

0:43
;
u2

0:72
;
u3

0:18
;
u4

0:27
;
u5

0:55
;
u6

0:46

��

and

n ¼
��

u1u2

0:52
;
u1u3

0:62
;
u1u6

0:66
;
u2u3

0:58
;
u2u4

0:50
;
u3u5

0:56
;
u4u5

0:62
;
u4u6

0:74
;

u5u6

0:57

�

;

�

u1u2

0:70
;
u1u3

0:41
;
u1u6

0:40
;
u2u3

0:28
;
u2u4

0:68
;
u3u5

0:47
;
u4u5

0:55
;

u4u6

0:38
:
u5u6

0:48

��

;

It is graphically presented in Fig. 12. The PF open neigh-

borhoods of vertices of G are given in Table 7.

The PFONH of the considered PFG consists of hyper-

edges E1 ¼ fu2; u3; u6g, E2 ¼ fu1; u3; u4g,
E3 ¼ fu1; u2; u5g, E4 ¼ fu2; u5; u6g, E5 ¼ fu3; u4; u6g
and E6 ¼ fu1; u4; u5g. The Pythagorean membership val-

ues of these hyperedges are tnðNÞ ðE1Þ ¼ 0:3016,

fnðNÞ
ðE1Þ ¼ 0:5040, tnðNÞ ðE2Þ ¼ 0:3450, fnðNÞ

ðE2Þ ¼ 0:3010,

tnðNÞ ðE3Þ ¼ 0:3132, fnðNÞ
ðE3Þ ¼ 0:3384, tnðNÞ ðE4Þ ¼ 0:290,

fnðNÞ
ðE4Þ ¼ 0:4896, tnðNÞ ðE5Þ ¼ 0:4368, fnðNÞ

ðE5Þ ¼ 0:2530,

tnðNÞ ðE6Þ ¼ 0:3591 and fnðNÞ
ðE6Þ ¼ 0:2064. The graphical

representation of PFONH is shown in Fig. 13.

The PF closed neighborhoods of all vertices of G are

given in Table 8. The PFCNH of the considered PFG

consists of hyperedges E1 ¼ fu1; u2; u3; u6g,
E2 ¼ fu1; u2; u3; u4g, E3 ¼ fu1; u2; u3; u5g,
E4 ¼ fu2; u4; u5; u6g, E5 ¼ fu3; u4; u5; u6g and

E6 ¼ fu1; u4; u5; u6g. The Pythagorean membership grades

of these hyperedges are tn½N� ðE1Þ ¼ 0:3016,

fn½N�
ðE1Þ ¼ 0:5040, tn½N� ðE2Þ ¼ 0:290,

fn½N�
ðE2Þ ¼ 0:5184,tn½N� ðE3Þ ¼ 0:3132, fn½N�

ðE3Þ ¼ 0:3384,

tn½N� ðE4Þ ¼ 0:290, fn½N�
ðE4Þ ¼ 0:4896, tn½N� ðE5Þ ¼ 0:3528,

fn½N�
ðE5Þ ¼ 0:3025, tn½N� ðE6Þ ¼ 0:3591 and

fn½N�
ðE6Þ ¼ 0:2208. The graphical representation of PFCNH

is shown in Fig. 14.

The PFON0:5H N0:5
H ðGÞ and PFCN0:5H N0:5

H ½G� are

shown in Figs. 15 and 16, respectively.

Theorem 6 Let UðG!Þ be the underlying PFG of PFD G
!
.

If G
!

is a symmetric loop less PFD, then

Ck
HðG

!Þ ¼ ECk
HðG

!Þ ¼ Nk
HðUðG

!ÞÞ, where k is a non-neg-

ative real number.

Proof Suppose that G
!¼ ða; n!Þ, UðG!Þ ¼ ða; nÞ,

Ck
HðG

!Þ ¼ ða; nkCÞ, ECk
HðG

!Þ ¼ ða; nkEÞ and Nk
HðUðG

!ÞÞ ¼
ða; nðkÞÞ represent PFD, underlying PFG, PFCkH, PFECkH

of G
!

and PFONkH of UðG!Þ, respectively. It is clear that
the PFS of vertices are same for the above mentioned

PFHs. We only need to show that nkC ¼ nkE ¼ nðkÞ. There
arise two cases:

Case I: When for some u1; u2; . . .; us 2 U,

tnkCðu1; u2; . . .; usÞ ¼ 0 ¼ fnkCðu1; u2; . . .; usÞ then,

jNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞjt � k and

jNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞjf � k. As G
!

is symmet-

ric, jN�ðu1Þ \ N�ðu2Þ \ . . . \ N�ðusÞjt � k and jN�ðu1Þ \
N�ðu2Þ \ . . . \ N�ðusÞjf � k as well as jNðu1Þ \ Nðu2Þ \
. . . \ NðusÞjt � k and jNðu1Þ \ Nðu2Þ \ . . . \ NðusÞjf � k in

G
!

and UðG!Þ, respectively. As a consequence,

tnkEðu1; u2; . . .; usÞ ¼ 0 ¼ fnkEðu1; u2; . . .; usÞ and

tnðkÞ ðu1; u2; . . .; usÞ ¼ 0 ¼ fnðkÞ ðu1; u2; . . .; usÞ.
Case II: When for some u1; u2; . . .; us 2 U,

tnkCðu1; u2; . . .; usÞ 6¼ 0 and fnkCðu1; u2; . . .; usÞ 6¼ 0 then,

jNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞjt [ k and

jNþðu1Þ \ Nþðu2Þ \ . . . \ NþðusÞjf [ k. As G
!

is symmet-

ric, jN�ðu1Þ \ N�ðu2Þ \ . . . \ N�ðusÞjt [ k and

jN�ðu1Þ \ N�ðu2Þ \ . . . \ N�ðusÞjf [ k as well as

jNðu1Þ \ Nðu2Þ \ . . . \ NðusÞjt [ k and jNðu1Þ \ Nðu2Þ \
. . . \ NðusÞjf [ k in G

!
and UðG!Þ, respectively. As a

consequence, tnkCðu1; u2; . . .; usÞ ¼ tnkEðu1; u2; . . .; usÞ ¼
tnkEðu1; u2; . . .; usÞ and fnkCðu1; u2; . . .; usÞ ¼
tnðkÞ ðu1; u2; . . .; usÞ ¼ fnðkÞ ðu1; u2; . . .; usÞ. Hence, the PFS

Fig. 12 A PFG G
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of hyperedges are also same, i.e., nkC ¼ nkE ¼ nðkÞ. This
completes the proof. h

6 Application

Marine ecosystems are characterized by a community of

living organisms and their interactions in this environment.

Here, an organism that preys one species is preyed upon by

some other species. The predator-prey interactions of these

organisms configure their behaviors, strategies, morpholo-

gies and physiologies. Predators in marine ecosystems

adapt to acquire special abilities like breath-holding, div-

ing, dentition, hearing and vision to capture their prey.

Similarly, preys also develop strategies to enhance their

chances of survival. Some species take refuge deep down

in the sea during daytime and swim upward in the night to

feed themselves. Other techniques are cryptic counter-

shading in which organisms blend themselves to confuse

their predators when viewed from top and bottom,

schooling wherein a group of species quickly disperse

creating difficulty for the predator to select one of them as

prey, fleeing, scattering etc. [45] Note that as the number of

species in a community increases, so does the number of

preys that are consumed by a predator. In marine ecosys-

tems, the average length of a food chain in food web is

2� 5 linkages. Additionally, no matter how many species

a predator can eat, it usually consumes only a few species

in an environment. The organisms that have a common

prey in a community compete with one another for that

specie [44].

The Bering Sea has great diversity in its ecosystem. It is

located between Siberia and Alaska, and is linked with the

Arctic Ocean through the Bering Strait. We have consid-

ered its simplified food web [27] and inverted its arrow-

heads to represent the predator-prey relationships (rather

than the flow of energy) in order to examine competition

among predators for their preys. Due to the binary nature of

an ordinary predator-prey interaction model (i.e., either a

connection between two species exists or not), the linkages

are ambiguous without mentioning the proportion of

Table 7 PF open neighborhoods of vertices of G

ui 2 U NðuiÞ

u1 fhu2; ð0:52; 0:70Þi; hu3; ð0:62; 0:41Þi; hu6; ð0:66; 0:40Þig
u2 fhu1; ð0:52; 0:70Þi; hu3; ð0:54; 0:28Þi; hu4; ð0:50; 0:68Þig
u3 fhu1; ð0:62; 0:41Þi; hu2; ð0:54; 0:28Þi; hu5; ð0:56; 0:47Þig
u4 fhu2; ð0:50; 0:68Þi; hu5; ð0:62; 0:55Þi; hu6; ð0:74; 0:38Þig
u5 fhu3; ð0:56; 0:47Þi; hu4; ð0:62; 0:55Þi; hu6; ð0:57; 0:48Þig
u6 fhu1; ð0:66; 0:40Þi; hu4; ð0:74; 0:38Þi; hu5; ð0:57; 0:48Þig

Fig. 13 A PFONH NHðGÞ

Table 8 PF closed

neighborhoods of vertices of G
ui 2 U N½ui�

u1 fhu1; ð0:69; 0:43Þi; hu2; ð0:52; 0:70Þi; hu3; ð0:62; 0:41Þi; hu6; ð0:66; 0:40Þig
u2 fhu1; ð0:52; 0:70Þi; hu2; ð0:58; 0:72Þi; hu3; ð0:54; 0:28Þi; hu4; ð0:50; 0:68Þig
u3 fhu1; ð0:62; 0:41Þi; hu2; ð0:54; 0:28Þi; hu3; ð0:94; 0:18Þi; hu5; ð0:56; 0:47Þig
u4 fhu2; ð0:50; 0:68Þi; hu4; ð0:89; 0:27Þi; hu5; ð0:62; 0:55Þi; hu6; ð0:74; 0:38Þig
u5 fhu3; ð0:56; 0:47Þi; hu4; ð0:62; 0:55Þi; hu5; ð0:63; 0:55Þi; hu6; ð0:57; 0:48Þig
u6 fhu1; ð0:66; 0:40Þi; hu4; ð0:74; 0:38Þi; hu5; ð0:57; 0:48Þi; hu6; ð0:78; 0:46Þig
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consumption of preys. This proportion can be computed by

analyzing the stomach contents, fatty acid signatures, fae-

cal remains, stable isotopes, etc. of the organisms.

The predator-prey interactions of the Bering Sea are

shown by a PFD G
!

in Fig. 17. The vertices and arcs in G
!

represent organisms of the Bering Sea and who eats whom,

i.e., the arc is drawn from predator to prey, respectively.

The truth-membership and falsity-membership of its ver-

tices depict the biomass (total mass of living matter in that

area) of the corresponding species present and absent in the

Bering Sea; and directed edges imply the proportion in

which the biomass of prey is consumed by the predator.

The Pythagorean membership grades of vertices and arcs

of G
!

are given in Tables 9 and 10. The primary produc-

tivity of the considered ecosystem is due to ice algae and

phytoplankton. These organisms live in the upper few

meters of sea and are consumed by herbivores. Those

which are not used settle down in sea, get mixed into

detritus and become a part of saprotrophic chain. Species

like clams, basket stars, worms and sand dollars consume

bacteria that feed upon detritus, and these deposit feeders

are preyed upon by crabs, marine mammals and ground fish

and the cycle goes on.

The PFCH CHðG
!Þ of the considered model is shown in

Fig. 18. The hyperedges of CHðG
!Þ are

E1 ¼ fu3; u4; u13; u14; u15; u16; u20; u22g, E2 ¼ fu3; u4; u12;
u13; u14; u15; u16; u20; u22g, E3 ¼ fu4; u5; u6; u8; u9; u12;
u13; u14; u15; u19g, E4 ¼ fu5; u6;u7; u8; u9; u19g, E6 ¼
fu7; u9; u19g, E8 ¼ fu5; u7; u11; u19g, E9 ¼ fu7; u11; u19g,
E15 ¼ fu10; u17; u18; u19; u21g, E19 ¼ fu11; u18g, E20 ¼
fu17; u19g and E22 ¼ fu10; u17; u18; u21g. The hyperedge

E1 represents all those predators that are competing for ice

algae and their competing and non-competing strength is

given by the Pythagorean membership grades

(0.1053, 0.57) of the PF hyperedge E1. The competing and

non-competing strength of predators corresponding to each

organism is given in Table 11.

Algorithm 3 explains the method to produce PFCH for a

considered PFD representing the predator-prey relation-

ships among organisms of the Bering Sea. Primarily, it

finds the PF out-neighborhoods of all organisms and then

utilize them to construct the PF hyperedges of the PFCH

which demonstrates that which species compete for a

specific organism. Finally, it computes the strength of

competing and non-competing interactions of organisms.

Fig. 14 A PFCNH NH½G�

Fig. 15 A PFON0:5H N0:5
H ðGÞ

Fig. 16 A PFCN0:5H N0:5
H ½G�
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7 Comparative analysis and discussion

PFSs proposed by Yager [46] possess better traits than

IFSs. An IFS permits the expression of truth-membership t

as well as falsity-membership f, and it imposes the con-

straint that 0� tþ f� 1 throughout, whereas the PFS

provides more space to nominate the grades as the limita-

tion relaxes to 0� t2 þ f2 � 1. Thus any PFS-based theory

allows for a wider range of applications than the corre-

sponding IFS-based, or FS-based, theories.

The competition hypergraphs defined and explained by

Sonntag and Teichert [43] consist of hyperedges, each of

which illustrates the competing constituents of a system for

a specific entity. As competition hypergraphs merely

deliver binary data, they only enable us to model cases

where either the components of a system fully compete or

the competing interaction is absent for some entity. This

scarce information about who competes for whom is not

always realistic enough. Due to the existence of fuzziness

in many real-life problems, the fuzzy competition hyper-

graphs suggested by Sarwar et al. [40] resolved the issue as

the proposed fuzzy competition hypergraphs include the

explanation of strength of competition for each set of

competing elements. But information about non-competi-

tion is still missing in fuzzy competition hypergraphs.

The motivation supporting the introduction of PFCH

(instead of intuitionistic fuzzy competition hypergraph) is

to add the knowledge about non-competing interaction

together with the strength of competition among the con-

stituents of a system. Additionally, it also facilitates to

analyze the data when the decision-makers and researchers

assign the Pythagorean membership grades to elements.

This study investigates the most common yet significant

problem of competition among the organisms at the Bering

Sea. The food chain of the Bering Sea presents predator-

prey interactions. Since one organism is preyed upon by

many other organisms, the existence of a prey is a cause of

competition among its predators. This set of predators is

represented by a hyperedge of PFCH, and the truth-mem-

bership and falsity-membership values of this hyperedge

suggest the strength of competing and non-competing

interactions.

8 Concluding remarks

The PFS model, as a non-standard stance towards enhanced

FS theories, is effective to represent uncertain information

by pairs of disjoint sets known as orthopairs. This theory

has been implemented on hypergraphs and its significance

lies in the fact that many researchers have discussed

problems modeled within the framework of PFHs. The

competition hypergraphs proposed earlier are unable to

handle certain types of real-world data. The ability of PFHs

to display the interactions among more than two compo-

nents of a system motivated us to discuss the idea of

Neural Computing and Applications (2022) 34:1099–1121 1117

123



Fig. 17 A PFD G
!

representing the predator-prey interactions in the

Bering Sea: u1, ice algae; u2, phytoplankton; u3, copepods; u4,
mysids and euphausiids; u5, medusae; u6, hyperid amphipods; u7,
seabirds; u8, pelagic fishes; u9, pelagic fishes; u10, walrus; u11, seals;

u12, basket stars; u13, ascidians; u14, shrimps; u15, filter-feeding

bivalves; u16, sand dollars; u17, sea stars; u18, crabs; u19, bottom
feeding fishes; u20, polychaetes; u21, predatory gastropods; u22,
deposit feeding bivalves [27]

Table 9 PFS of vertices of G
!

ui ðtaðuiÞ; faðuiÞÞ ui ðtaðuiÞ; faðuiÞÞ ui ðtaðuiÞ; faðuiÞÞ ui ðtaðuiÞ; faðuiÞÞ

u1 (0.84, 0.31) u7 (0.73, 0.38) u13 (0.55, 0.57) u19 (0.49, 0.52)

u2 (0.94, 0.17) u8 (0.83, 0.28) u14 (0.47, 0.48) u20 (0.71, 0.74)

u3 (0.82, 0.26) u9 (0.77, 0.45) u15 (0.45, 0.65) u21 (0.69, 0.29)

u4 (0.75, 0.43) u10 (0.75, 0.43) u16 (0.39, 0.76) u22 (0.89, 0.17)

u5 (0.53, 0.63) u11 (0.72, 0.36) u17 (0.68, 0.66)

u6 (0.56, 0.50) u12 (0.64, 0.68) u18 (0.59, 0.61)
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competition with PFHs, and to start exploring its practical

applications.

Thus in this paper we have investigated the concepts of

PFRwH, PFClH, PFCH and PFECH. Similarly, the notion

of PFCmH has also been introduced so that one can study

the indirect m-step competing interactions for any positive

integral value of m. We have also discussed the Pytha-

gorean fuzzy neighborhood hypergraphs of open and

closed types. All these concepts have been elaborated with

examples, and theorems have shown the main facts about

them. Most of the results describe different ways of finding

the strength of competing relationships in the proposed

graphical structures. The significance of these structures

lies in the fact that they can find the straightforward and

mediate competing and neighboring relations of an eco-

logical system.

The idea of PFCHs has been elaborated by an applica-

tion in which the predator-prey interactions of organisms of

the Bering Sea is addressed. Since each organism is gen-

erally consumed by more than two organisms (predators),

the PF hyperedges of PFCH can effectively exhibit com-

petition among consumers. We have designed three algo-

rithms in this article, which are, respectively, designed for

the construction of PFRwH, PFClH and PFCH. The latter

one can be used to compute the strength of competing

interactions of the Bering Sea. One can study general

ecological networks to understand competition taking place

among their constituents with the help of these graphical

structures, thus helping the development of biological

communities.

In the future this theory can be extended to study the

following topics among others: (1) Multi attribute group

decision making based on PFHs, (2) Group decision

making based on complex spherical fuzzy soft hyper-

graphs, and (3) Group decision making with neutrosophic

soft hypergraphs.

Table 10 PFS of directed edges

of G
! uiuj ðt

n
!ðuiujÞ; f

n
!ðuiujÞ uiuj ðt

n
!ðuiujÞ; f

n
!ðuiujÞ uiuj ðt

n
!ðuiujÞ; f

n
!ðuiujÞ

u3u1 (0.81, 0.29) u10u15 (0.41, 0.64) u17u22 (0.63, 0.63)

u3u2 (0.82, 0.22) u10u22 (0.75, 0.16) u18u15 (0.41, 0.62)

u4u1 (0.73, 0.40) u11u7 (0.64, 0.37) u18u19 (0.48, 0.51)

u4u2 (0.51, 0.41) u11u8 (0.59, 0.25) u18u22 (0.56, 0.58)

u4u3 (0.42, 0.39) u11u9 (0.76, 0.43) u19u3 (0.18, 0.24)

u5u3 (0.48, 0.61) u11u19 (0.63, 0.47) u19u4 (0.45, 0.49)

u5u4 (0.42, 0.56) u12u2 (0.54, 0.66) u19u6 (0.40, 0.47)

u5u8 (0.52, 0.52) u12u3 (0.47, 0.52) u19u8 (0.34, 0.33)

u6u3 (0.55, 0.47) u13u1 (0.53, 0.44) u19u9 (0.39, 0.48)

u6u4 (0.54, 0.29) u13u2 (0.38, 0.55) u19u14 (0.46, 0.28)

u7u4 (0.72, 0.42) u13u3 (0.44, 0.23) u19u15 (0.43, 0.60)

u7u6 (0.55, 0.49) u14u1 (0.36, 0.29) u19u18 (0.37, 0.59)

u7u8 (0.68, 0.26) u14u2 (0.45, 0.11) u19u20 (0.48, 0.71)

u7u9 (0.75, 0.46) u14u3 (0.42, 0.24) u20u1 (0.68, 0.68)

u8u3 (0.80, 0.22) u15u1 (0.37, 0.65) u20u2 (0.67, 0.38)

u8u4 (0.67, 0.38) u15u2 (0.46, 0.63) u21u15 (0.35, 0.25)

u8u5 (0.49, 0.62) u15u3 (0.23, 0.38) u21u22 (0.64, 0.18)

u9u3 (0.76, 0.44) u16u1 (0.27, 0.75) u22u1 (0.81, 0.30)

u9u4 (0.63, 0.35) u16u2 (0.32, 0.74) u22u2 (0.88, 0.16)

u9u6 (0.54, 0.46) u17u15 (0.42, 0.67)

u10u13 (0.47, 0.57) u17u20 (0.61, 0.70)

Neural Computing and Applications (2022) 34:1099–1121 1119

123



Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature.

Declarations

Conflicts of interest The authors declare that they have no conflict of

interest regarding the publication of this article.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Fig. 18 A PFCH of the considered network

Table 11 PFS of hyperedges of obtained PFCH

Competing species Strength of competition

E1 (0.1053, 0.57)

E2 (0.1248, 0.5624)

E3 (0.081, 0.4148)

E4 (0.2058, 0.3528)

E6 (0.196, 0.2548)

E8 (0.1666, 0.3276)

E9 (0.1911, 0.2496)

E15 (0.1715, 0.4422)

E19 (0.2832, 0.3111)

E20 (0.2352, 4686)

E22 (0.3304, 0.4158)
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