
BANDWIDTH SELECTION FOR LEVEL SET ESTIMATION IN THE

CONTEXT OF REGRESSION AND A SIMULATION STUDY FOR NON

PARAMETRIC LEVEL SET ESTIMATION WHEN THE DENSITY IS

LOG-CONCAVE

GABRIELA GONZALEZ MARTINEZ

A DISSERTATION SUBMITTED TO

THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN MATHEMATICS AND STATISTICS

YORK UNIVERSITY

TORONTO, ONTARIO

January 2022

c©Gabriela González Mart́ınez, 2022

Abstract

Bandwidth selection is critical for kernel estimation because it controls the amount of smooth-

ing for a function’s estimator. Traditional methods for bandwidth selection involve opti-

mizing a global loss function (e.g. least squares cross validation, asymptotic mean inte-

grated squared error). Nevertheless, a global loss function becomes suboptimal for the level

set estimation problem which is local in nature. For a function g, the level set is the set

LSλ = {x : g(x) ≥ λ}.

In the first part of this thesis we study optimal bandwidth selection for the Nadaraya-

Watson kernel estimator in one dimension. We present a local loss function as an alternative

to L2 metric and derive an asymptotic approximation of its corresponding risk. The level set

optimal bandwidth (hopt) is the argument that minimizes the asymptotic approximation. We

show that the rate of hopt coincides with the rate from traditional global bandwidth selectors.

We then derive an algorithm to obtain the practical bandwidth and study its performance

through simulations. Our simulation results show that in general, for small samples and

small levels, the level set optimal bandwidth shows improvement in estimating the level set

when compared to the cross validation bandwidth selection or the local polynomial kernel

estimator. We illustrate this new bandwidth selector on a decompression sickness study on

the effects of duration and pressure on mortality during a dive.

In the second part, motivated by our simulation findings and the relationship of the level

set estimation to the highest density region (HDR) problem, we study via simulations the

properties of a plug-in estimator where the density is estimated with a log-concave mixed

model. We focus in particular on univariate densities and compare this method against a

kernel plug-in estimator. The bandwidth for the kernel plug-in estimator is chosen optimally

for the HDR problem. We observe through simulations that when the number of components

in the model is correctly specified, the log-concave plug-in estimator performs better than

the kernel estimator for lower levels and similarly for the rest of the levels considered. We

conclude with an analysis on the daily maximum temperatures in Melbourne, Australia.

ii

Acknowledgements

This thesis would not have been possible without the support of my supervisor Dr. Hanna

K. Jankowski who introduced me to this topic. I am thankful for her insightful suggestions

and invaluable feedback throughout this project, as well as her guidance during my graduate

studies. I would also like to thank my committee members Dr. Xin Gao and Dr. Xiaogang

Wang for their helpful suggestions.

I was very fortunate to form part of the Statistical Consulting Service group at the

University. I am thankful to all the consultants at the SCS group for being my mentors

and always give me their advice. In particular, I will always be indebted to Dr. Georges

Monette for all his generosity both with his time and his knowledge. I thank him for all the

stimulating conversations and for transmitting me his passion for Statistics.

Finally, I would like to thank my parents for their love and support throughout the years.

I also thank my partner for his encouragement and understanding. This thesis is dedicated

to them.

iii

Contents

Abstract ii

Acknowledgements iii

Table of contents vi

List of figures ix

List of tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 8

2 Background 10

2.1 Density estimation . 10

2.1.1 Parametric density estimation . 10

2.1.2 Log-concave density estimation . 12

2.1.3 Kernel density estimation . 18

2.2 Regression . 21

2.2.1 Parametric regression . 22

2.2.2 Non parametric regression . 29

2.3 Level Sets . 39

iv

2.3.1 Definition . 39

2.3.2 Estimate a level set directly . 40

2.3.3 Plug-in estimators for a level set . 42

2.3.4 Level sets in the context of density estimation 43

3 PART I: Theoretical and applied section for the regression level set 51

3.1 Optimal Bandwidth selection . 51

3.1.1 Introduction . 52

3.1.2 The loss function . 53

3.2 Asymptotic Risk Analysis . 53

3.2.1 Assumptions . 53

3.2.2 Risk computation and asymptotic risk approximation 56

3.3 Practical computation for the asymptotic risk 58

3.4 A practical bandwidth selector . 59

3.4.1 Algorithm description . 59

3.5 Level set bandwidth selection against least-squares cross validation bandwidth

selection and the local polynomial kernel estimator: A simulation study. . . . 62

3.5.1 A Gaussian outcome . 62

3.5.2 A binary outcome . 81

3.6 A decompression sickness study . 85

4 PART II: Alternative estimators for the highest density region, two simu-

lation studies 88

4.1 A simulation study with a local polynomial kernel density estimator 89

4.2 A simulation study on the log-concave highest density region estimator 93

4.3 A study on daily temperatures in Melbourne, Australia 106

5 Conclusions 109

v

A Proofs of main results 111

A.1 Proof of Theorem 1 . 111

A.2 Proof of Corollary 2 . 134

A.3 Proof of Theorem 3 . 135

B Code section 144

B.1 Example code for level set simulations . 144

B.2 Example code for DCS study . 197

B.3 Example code for log-concave highest density region simulations 208

B.4 Example code for Melbourne’s temperature data set 255

Bibliography 273

vi

List of Figures

1.1 Three Nadaraya-Watson kernel estimators for three different bandwidths. . . 4

1.2 Nadaraya-Watson kernel estimates with two different bandwidth selectors:

asymptotic mean integrated squared error and optimal for level set estima-

tion . 7

2.1 80% HDR for a mixture of Gaussian distributions. 44

2.2 Kernel density estimates with two different bandwidth selectors: asymptotic

mean integrated squred error and optimal for the HDR 46

2.3 Error comparison for two kernel estimates of the HDR using two bandwidth

selectors: the LSCV and the optimal bandwidth for the HDR 48

3.1 True level sets for example one . 66

3.2 Example one: error comparison for two kernel estimates of the LS using two

bandwidth selectors: the LSCV and the optimal bandwidth for LS estimation 68

3.3 Example one: error comparison for two kernel estimates of the LS using two

bandwidth selectors: the LP optimal bandwidth and the optimal bandwidth

for LS estimation . 69

3.4 True level sets for example two . 71

3.5 Example two: error comparison for two kernel estimates of the LS using two

bandwidth selectors, the LSCV and the optimal bandwidth for LS estimation 72

vii

3.6 Example two: error comparison for two kernel estimates of the LS using two

bandwidth selectors, the LP optimal bandwidth and the optimal bandwidth

for LS estimation . 73

3.7 True level sets for example three . 75

3.8 Example three: error comparison for two kernel estimates of the LS using two

bandwidth selectors, the LSCV and the optimal bandwidth for LS estimation 78

3.9 Example three: error comparison for two kernel estimates of the LS using two

bandwidth selectors, the LP optimal bandwidth and the optimal bandwidth

for LS estimation . 79

3.10 Kernel estimates for the truncated doppler function in example three using

two bandwidth selectors . 80

3.11 True level sets for the example with Y binary 83

3.12 Example with Y binary: error comparison for two kernel estimates of the LS

using two bandwidth selectors, the optimal bandwidth for the LP and the

optimal bandwidth for LS estimation . 84

3.13 Estimated level sets for the decompression sickness study data set 87

4.1 True HDRs for density f4(x) . 91

4.2 HDR estimation for density f4(x): error comparison for two kernel estimates

of the HDR using two bandwidth selectors, the optimal bandwidth for the LP

and the optimal bandwidth for the HDR estimation 92

4.3 True HDRs for three densities . 97

4.4 Error comparison between the log-concave HDR and the kernel HDR estima-

tors for f4(x) . 98

4.5 Error comparison between the log-concave HDR and the kernel HDR estima-

tors for f6(x) . 99

4.6 Error comparison between the log-concave HDR and the kernel HDR estima-

tors for a mixture of t-distributions . 100

viii

4.7 Boxplots for the errors from the log-concave HDR and the kernel HDR for

density f4(x) . 101

4.8 Boxplots for the errors from the log-concave HDR and the kernel HDR for a

mixture of t-distributions . 102

4.9 Boxplots for the errors from the log-concave HDR and the kernel HDR for

density f4(x) when the number of components for the LCMM is known . . . 103

4.10 Boxplots for the errors from the log-concave HDR and the kernel HDR for

density f6(x) when the number of components for the LCMM is known . . . 104

4.11 Boxplots for the errors from the log-concave HDR and the kernel HDR for a

mixture of t-distributions when the number of components for the LCMM is

known . 105

4.12 Comparison between the kernel and log-concave estimates for the 20%, 50%

and 80% HDRs for the conditional density of tomorrow’s maximum tempera-

tures given today’s . 107

ix

List of Tables

2.1 Canonical link functions . 27

2.2 Efficiency of various kernels. 32

3.1 Three conditional expectation functions considered in the level set simulation

study . 63

3.2 Summary of the results for example one . 67

3.3 Summary of the results for example two . 74

3.4 Summary of the results for example three . 76

3.5 Summary of the results for the example with Y binary 83

4.1 Summary of results for density f4(x) . 108

x

Chapter 1

Introduction

1.1 Motivation

A problem related to regression is that of estimating a subset of the domain of the regression

function g(x). For an arbitrary level λ, consider the level set LSλ as

LSλ =
{
x : g(x) ≥ λ

}
,

where x is the covariate(s) and g is the mean response function.

Level sets have important applications in many disciplines. In medicine, a practitioner

is interested in determining the amount of drug that will produce a positive effect in a

specific proportion of the population. A recent example related to the current SARS-CoV-2

pandemic is the estimation of the infective dose. The infective dose is the number of particles

that allow a practitioner to detect the infection. This is an important step to understand

viral pathology and its correlation with disease severity (see Karimzadeh et al. [2021]). The

process to estimate this dose is a level set problem. In imaging, a correct estimation of a level

set is useful to determine the location of a tumour. Level sets can also have applications in

the change point problem in a regression model. Assume that there is at most one change

point. Here, a sequence of random vectors (X1, Y1), . . . , (Xn, Yn) is observed. The goal is

to determine the point τ where the regression model changes. Under a parametric approach

1

for example, we test if the regression model Y = XTβ + ε changes to Y = XT β̃ + ε for

Yi ≥ τ or some values of X. Generally the null hypothesis, H0: there is no change point,

is rejected if the cumulative sum of a sequence of random variables crosses a boundary as

discussed in Bhattacharya [1994]. This problem is related to a more complex version of a

level set. We can exchange the function g for a random field X(t). The corresponding set

is called the excursion A set of X(t) defined as A = {t ∈ T : X(t) ≥ u} [Adler, 1976]. This

is a more complex type of set than the one we study in this thesis. We refer the interested

reader into the papers of Kratz [2006], Adler [1976] and Adler [2010]. The later includes good

introductory references to excursion sets. For the reader interested in bandwidth selection for

the change point problem we refer them to the papers of Gijbels and Goderniaux [2004] and

Yang and Zhang [2020]. Here the emphasis is not in estimating well the regression function

everywhere, but in detecting the points where there is a change in the regression function.

If the change comes from a discontinuity, that is the regression function is smooth except at

a finite number of points, Gijbels and Goderniaux [2004] propose a bootstrap procedure to

select the bandwidth. If the change is a structural change, that is the regression function

changes at a point in the domain of the covariate, Yang and Zhang [2020] study a data driven

method to choose the optimal bandwidth.

Although the level set problem is of interest in multiple disciplines, it has received less

attention in the field of statistics. In this thesis we study how to optimally estimate such sets

using a kernel plug-in estimator. We could broadly summarize the existing work available

into two categories, a direct level set estimation (Willett and Nowak [2007], Cavalier [1997],

Scott and Davenport [2007]), and an indirect approach (Laloë and Servien [2013],Jankowski

et al. [2014]). Direct methods do not require estimation for the function g. For this type

of estimator a loss or risk function is specified and one can optimize such function over all

possible sets, which is computationally intensive. Typically, to ease the search, assumptions

are made on the general shape of the level set (see Cavalier [1997]). However, these assump-

tions are hard to check in practice as discussed in Scott and Davenport [2007]. The second

category consists of indirect methods. Here, the regression function is estimated and then

2

thresholded. This type of estimators are called plug-in estimators. Common methods to

estimate g range from stronger assumptions such as parametric regression, to more flexible

ones: kernel regression, splines, additive models, etc. These methods do not require extra

assumptions on the set. We thus study a less computationally intensive, easy to understand

for practitioners nonparametric kernel based plug-in estimator.

Arguably, kernels are the most popular tool for nonparametric estimators since they do

not require strong assumptions on g. In addition, there is a vast literature available on this

topic.

Choosing to work with kernels implies selecting a parameter called the bandwidth. This

parameter controls the amount of smoothing for the estimate of g. Figure 1.1 shows how

the choice of the bandwidth affects the shape of a kernel estimator. Bandwidth selection

is a non trivial problem that generally is focussed on optimizing a global loss function (e.g.

least squares cross validation, asymptotic mean integrated squared error). Nevertheless, a

global loss function becomes suboptimal for the level set estimation problem which is local in

nature. Figure 1.2 shows how the level set optimal bandwidth is different from a traditional

bandwidth selector. In order to minimize a global loss function, the estimator for g has to fit

well the sharp peak of the function. This results in a small bandwidth. However, the peak

has less relevance when we estimate the level set L̂S0.156 = [−1.036, 1.036]. In this case the

optimal bandwidth is visibly larger. This implies that current bandwidth selection methods

do not work well for plug-in level set estimation problems.

The first to study bandwidth selection in the context of level sets are Samworth and

Wand [2010]. The authors study bandwidth selection for the highest density region (HDR),

a level set estimation problem where g is a density and the level λ depends on a pre-specified

coverage probability p. The optimal bandwidth for the HDR is the one that minimizes the

asymptotic approximation of a risk proposed by the authors. More recently, Doss and Weng

[2018] extend the ideas in Samworth and Wand [2010] to higher dimensions where bandwidth

selection is considerably harder.

This thesis consists of two parts. In the first, and main part of this thesis, our work

3

Figure 1.1: Three Nadaraya-Watson kernel estimators for three different bandwidths. The
top left plot shows a sample of 100 observations and the true regression function in a dotted
line. All other plots show the Nadaraya-Watson kernel estimator in a solid line and the true
function in a dotted line. For the top right plot a bandwidth (h) that is too small is selected
(h = .01). The lower right plot shows the kernel estimator with a bandwidth that is too large
(h = .25). Finally, the lower left plot is the kernel estimator with an appropriate bandwidth
(h = .09).

4

is similar in spirit as Samworth and Wand [2010]; Doss and Weng [2018], but adapted to

regression. We study optimal bandwidth selection for the Nadaraya-Watson kernel estimator

in one dimension. The ratio form of the Nadaraya-Watson estimator presents additional

difficulties in deriving the theory not encountered in Samworth and Wand [2010]; Doss and

Weng [2018]. We present a local loss function as an alternative to the L2 metric and derive

an asymptotic approximation of its corresponding risk. The level set optimal bandwidth is

then the argument that minimizes this asymptotic approximation. We show that the rate of

the level set optimal bandwidth, hopt = coptn
−1/5, coincides with the rate from traditional

global bandwidth selectors, although the constant copt is different from them. The level set

optimal bandwidth has no closed solution, therefore we derive an algorithm to estimate the

constant copt and obtain the practical bandwidth selector. We then study the performance

of this practical bandwidth selector through simulations.

In our simulations we compare our proposed level set bandwidth selector with the least

squares cross validation bandwidth selector. This is a data driven estimator for the mean

squared error (the most commonly used L2 metric in kernel estimation). The least squares

cross validation bandwidth selector was considered in Samworth and Wand [2010] and Doss

and Weng [2018]. In addition, we consider a plug-in estimator where the regression function

g(x) is estimated using the local polynomial kernel estimator in Fan et al. [1995]. This

is a kernel estimator for which the Nadaraya-Watson estimator is a special case. We then

compare its performance against the plug-in estimator proposed in this thesis. Our simulation

results show that in general, for small samples and small values of λ, the level set optimal

bandwidth shows improvement in estimating LSλ when compared to the cross validation

bandwidth selection. Compared to the local polynomial plug-in estimator, the level set

optimal bandwidth also offers an advantage for small values of λ. However, as discussed in

Samworth and Wand [2010]; Doss and Weng [2018], this improvement is not observed for all

values of λ, across all functions g(x). In addition, we find that although optimal bandwidth

estimation is less intensive than direct methods, it still requires considerable computing time.

We conclude the section with an analysis of the decompression sickness study data set from

5

the University of Wisconsin, Madison.

In the second part of this thesis, motivated by our simulation findings and the relationship

of the level set estimation to the HDR, we study via simulations the properties of a plug-in

estimator where the density is estimated with the log-concave mixed model. This is a mixture

model with marginal densities that are log-concave. In particular, the log-concave maximum

likelihood estimator (mle) (Dümbgen and Rufibach [2009]; Cule et al. [2010]) requires no

estimation of tuning parameters. Moreover, the family of log-concave distributions is robust

in the sense that it contains many commonly used densities and it is a parsimonious model.

We thus consider it was important to compare this method to those developed in Samworth

and Wand [2010]; Doss and Weng [2018].

In our simulation study we focus on univariate densities and compare the optimal band-

width selector in Samworth and Wand [2010] with the nonparametric mle of a log-concave

mixture model. We observe that when the number of components in the model is correctly

specified, the log-concave plug-in estimator performs better than the kernel estimator for

lower levels and similarly for the rest of the levels considered. We thus see that adding

shape-constraints to the density removes the computational burden of bandwidth selection

without sacrificing the accuracy. We finish the section with a real data example. We analyse

the data on daily maximum temperatures in Melbourne, Australia. This data set is available

in the hdrcde R-package and was analysed in Samworth and Wand [2010].

6

Figure 1.2: Five samples of 1000 observations were generated. The true function is shown on
both panels with a dashed curve. The plot on the left shows five Nadaraya-Watson kernel
estimates where the bandwidth was selected by minimizing the asymptotic mean integrated
squared error. The panel on the right shows five Nadaraya-Watson kernel estimates where
the bandwidth selected minimizes the asymptotic risk approximation for the LS0.156 level set.
The true LS0.156 = [−1.036, 1.036] is shown.

7

1.2 Outline

Chapter 2 is dedicated to develop the necessary background for this thesis. Note that our

work on level set estimation addresses only the case where X ∈ R. Therefore the topics

covered in the background section mainly focus on one dimension settings.

This thesis is divided in two main topics. The first is studied in Chapter 3 and the second

in Chapter 4. Chapter 3 discusses how to optimally select the bandwidth for a plug-in kernel

level set estimator. In Section 3.1 we present a local loss function inspired in the work of

Samworth and Wand [2010] as an alternative to the traditional integrated squared error loss

function. In Section 3.2 we develop the asymptotic theory for our bandwidth selector. We

present an asymptotic approximation to the loss function introduced in Section 3.1. The

optimal bandwidth for the level set estimation is thus the argument that minimizes the

asymptotic approximation.

The remainder of Chapter 3 develops practical implementations of our theoretical results

and studies their performance computationally. In Sections 3.3 and 3.4 we develop an algo-

rithm to obtain the optimal bandwidth for level set estimation. This is necessary because

the optimal bandwidth has no closed solution and the risk function depends on unknown

quantities. In Section 3.5 we study the performance of our bandwidth selector. We divide

the section into two since the tools available to compute the practical bandwidth are different

depending on the response. First, we consider the problem with Y Gaussian. We emulate

the simulation study in Samworth and Wand [2010]; Doss and Weng [2018].We compare the

level set bandwidth selector proposed in this thesis against the least squares cross validation

and the local polynomial kernel estimator. The latter is a kernel estimator that has been rec-

ommended by Wand and Jones [1994] based on their simulation evidence. Next, we consider

the problem with Y binary. In this part of the section we compare the oracle bandwidth

from our bandwidth selector against the local polynomial’s oracle bandwidth. That is, we

assume that all the functions needed to compute both bandwidths are known. We follow this

approach because both bandwidths depend on the derivatives of the regression function and

the literature on bandwidth selection for these functionals is, up to our knowledge, scarce

8

for Y not Gaussian. We conclude the chapter with an analysis of the decompression sickness

study data set from the University of Wisconsin, Madison.

Chapter 4 covers the second part of this thesis. In this chapter we revisit the highest

density region problem. We start with a plug-in estimator using a local polynomial kernel

estimator, as we did in the context of regression. We analyse its performance against the

bandwidth selector outlined in Samworth and Wand [2010]. We observe similar results as in

the simulations in Section 3.5. The bandwidth selector in Samworth and Wand [2010] offers

an advantage over the local polynomial kernel estimator. However, this is not uniformly

across all densities considered. We conclude this section with a simulation study of a plug-

in estimator for the highest density region where the density is estimated with the log-

concave mixture model. We notice that when the number of components in the mixture

model is correctly specified, the log-concave plug-in estimator performs better than the kernel

estimator for lower levels and similarly for the rest of the levels considered. The log-concave

plug-in estimator also offers the advantage that it is less computationally intensive than the

bandwidth selector. In Section 4.3 we study a real data example. We analyse the data on

daily maximum temperatures in Melbourne, Australia.

Lastly, we conclude with a discussion section and defer the proofs for our theorems and

corollary to the appendix. We include sample code for our simulations and real-data examples

in the appendix.

9

Chapter 2

Background

2.1 Density estimation

Given a set of n independent and identically distributed (IID) observations X1, X2, . . . , Xn,

a common question in statistics is to find the distribution f(x) of these data points. The

statistical model used to solve this question depends on the prior assumptions that we are

able to make. In this thesis, we review three statistical models, all having different degree

of robustness (flexibility). We cover the parametric model (least robust), shape constrained

density estimation and kernel density estimation (most robust). We start with the parametric

model.

2.1.1 Parametric density estimation

Assume that our observations X1, X2, . . . , Xn are IID and follow a known distribution f(x; θ0)

where the true parameter θ0 is fixed but unknown. The density estimation problem then

reduces to the estimation of the parameter, or a finite set of parameters if θ0 is a vector.

One method to estimate θ0 is the maximum likelihood estimation (MLE) (Fisher and

Russell [1922], Fisher [1925]). The likelihood is the function defined as

L(x; θ) =

n∏
i=1

f(xi; θ)

10

where x1, . . . , xn are the realizations of the n random variables.

The maximum likelihood estimator θ̂mle is the parameter that makes the observed sample

most likely to be observed. That is

θ̂mle = arg max
θ∈Θ

L(x; θ)

where Θ is the parameter space. Under regularity conditions, θ̂mle is consistent [Wald, 1949],

that is,

θ̂mle
P→ θ0.

It is efficient and asymptotically normal [Cramér, 1946]

√
n
(
θ̂mle − θ0

)
d→ N

(
0, I−1

)
where I is the Fisher’s information matrix.

An alternative method, although less efficient than the MLE, to estimate θ0 is the method

of moments. Suppose θ0 is d-dimensional. Consider the first d theoretical moments

Mi(θ) = Eθ[X
i] =

∫
xidFθ(x)

for i = 1, . . . , d and Fθ0 , the probability distribution that depends on the true parameter θ0.

The sample moments are then

M̂i =
1

n

n∑
j=1

Xi
j

for i = 1, . . . , d. The method of moments estimator θ̂MOM is the solution to the set of d

equations

Mi(θ) = M̂i for i=1,...,d.

11

Under regularity conditions, θ̂MOM is consistent and converges to a Gaussian distribution

as n→∞ [see Wasserman [2010]].

Although the MLE has attractive properties, it relies on the assumption that the true

density is indeed f . More robust methods are needed for studies where less is known about

the form of f . As pointed out in White [1982], a misspecification of the density can be

problematic. More robust methods are needed for studies where less is known on the form of

f .

Next, we review the log-concave density estimation method. This is also a maximum like-

lihood method with the difference that less is known about the sample’s underlying density.

2.1.2 Log-concave density estimation

The development of maximum likelihood estimation (MLE) for shape-constrained density

estimation was first discussed by Grenander [1956] for monotonic, non-increasing densities.

Rao [1969] studied the maximum likelihood estimator for unimodal densities with known

mode. The author proved the consistency and asymptotic distribution for the maximum

likelihood estimator. Later, Groeneboom et al. [2001] proved consistency and the asymptotic

distribution at a fixed point for the maximum likelihood estimator of convex (and decreasing)

density functions. However, shape constrained MLE might not be a feasible method for

all shape constrained densities. For example, for a unimodal density with unknown mode,

the mle does not exist [see Birgé [1997]]. As discussed in Walther [2009], the additional

assumption of log-concavity can alleviate this problem since log-concave densities belong to

the family of uni-modal densities (although the reverse is not true). In particular, Balabdaoui

et al. [2009] proposed the mode of the log-concave MLE as an estimator of the mode of the

true density and studied its properties.

A log-concave density f0 has the form

f0(x) = expϕ(x)

where ϕ(x) is a concave function such that −∞ ≤ ϕ(x) < x for all x. That is for any

12

x1, x2 ∈ R and any λ ∈ (0, 1)

ϕ (λx1 + (1− λ)x2) ≥ λϕ (x1) + (1− λ)ϕ (x2) .

Let X1, X2, . . . , Xn be an IID sample from the distribution function F where Xi ∈ R for

i = 1, 2, . . . , n. Let X(1) < X(2) < . . . < X(n) be the corresponding ordered statistics. The

non-parametric log-likelihood function is, based on f0,

ln(f) =

∫
log (f0(x)) dFn(x) =

∫
ϕ(x)dFn(x).

The function Fn is the empirical distribution function defined as

Fn(x) =
1

n

n∑
i=1

1Xi≤x.

The log-concave maximum likelihood estimator is then

f̂mle = arg max
f∈F

∫
log (f0(x)) dFn(x)

where the family F denotes the set of all log-concave densities. This constrained optimization

problem is equivalent to maximizing

l̃n (ϕ) =

∫
ϕ(x)dFn(x)−

∫
expϕ(x)dx

over the set of all concave functions. Theorem 3.1 in Silverman [1982] guarantees that the

log-concave maximum likelihood estimator

f̂mle = exp ϕ̂mle

is indeed a density. The family of log-concave densities is robust in the sense that it includes

most of the commonly used densities in practice such as Gaussian, exponential, gamma with

shape parameter greater than or equal to one, logistic, Gumbel and Laplace to name a few,

13

while keeping a parsimonious model. An added advantage for this type of shape constrained

estimation is that, unlike kernel estimators, we do not need to select tuning parameters which

has been shown to be non-trivial.

For d = 1, Walther [2002] proved existence and uniqueness of the log-concave maximum

likelihood estimator while Pal et al. [2007] proved its consistency. Theorem 2.1 in Dümbgen

and Rufibach [2009] showed that ϕmle is linear on [X(1), X(n)] with knots in the set of unique

observations {x1, . . . , xm} for m ≤ n and ϕ̂mle = −∞ on R ∩ [X(1), X(n)]
c. For higher

dimensions, Cule et al. [2010] proved existence and uniqueness of the log-concave maximum

likelihood estimator and Cule and Samworth [2010] proved strong consistency of f̂mle under

exponentially weighted supremum norms.

Let F̂n be the estimator of the distribution function F0 where

F̂n(x) =

∫ x

−∞
f̂mle(s)ds

Dümbgen and Rufibach [2009] derived two important properties of this estimator

µ
(
F̂n

)
= µ (Fn) Var

(
F̂n

)
≤ Var (Fn)

That is, the mean of the estimated distribution function is the same as that for the em-

pirical distribution function and the variance of F̂n is at most the variance of the empirical

distribution.

Balabdaoui et al. [2009] is one of the first works on convergence rates for the log-concave

maximum likelihood estimator. Consider a point x0 where f0(x0) > 0 for a log-concave

density f0 ∈ F . Balabdaoui et al. [2009] show that (f̂mle(x0)− f0(x0)) converges, pointwise,

to a non-Gaussian distribution at a rate O
(
n−2/5

)
.

Doss and Wellner [2016], and Kim and Samworth [2016] investigated global convergence

rates for the log-concave maximum likelihood estimator using different approaches. Let

14

H2(f1, f2) be the square of the Hellinger distance between densities f1 and f2 where

H2(f1, f2) =
1

2

∫ (√
f1(x)−

√
f2(x)

)2
dx.

Doss and Wellner [2016] developed global convergence rates for f̂mle. The authors proved

that f̂mle has uniform almost sure convergence to f0, it is bounded uniformly and f̂mle is

Hellinger-consistent and has a convergence rate of Op
(
n−2/5

)
. Kim and Samworth [2016]

also presented global convergence rates with a focus on a minimax approach. We recall that

for a minimax estimator, let θ be a parameter in a parameter space Θn. Denote as θ̂n an

estimator. Given a loss function L(θ̂n, θ), the minimax risk Rn is commonly defined as

Rn ≡ R(Θn) = inf
θ̂

sup
θ∈Θn

E
[
L
(
θ̂, θ
)]
.

Theorem 4 in Kim and Samworth [2016] showed that no estimator f̂n computed from a

sample of size n can achieve a supremum risk (under H2
(
f̂n, f0

)
) with a rate faster than

O
(
n−4/5

)
. That is

inf
f̂n

sup
f0∈F

E
[
H2
(
f̂n, f0

)]
≥ O

(
n−4/5

)
.

Moreover, Theorem 5 in Kim and Samworth [2016] demonstrated that f̂mle reaches the min-

imax optimal rate.

Kim et al. [2018] also investigate on the adaptability of the log-concave maximum like-

lihood estimator. Kim et al. [2018] then showed that if log f0 is affine, or close to an affine

function with respect to an appropriate distance metric, they achieved a faster convergence

rate than that in Doss and Wellner [2016] and Kim and Samworth [2016]. In fact, under some

conditions on f0, f̂mle reaches parametric or near parametric convergence rates. Consider a

density f , not necessarily log-concave, with support on an interval I = [s1, s2] such that log f

is affine (that is log f(x) = ax + b for some constants a, b) on I. Let A be the class of such

15

log-affine densities parametrized as

fα,s1,s2(x) =

1

s2−s11{x∈I} for α = 0

α
exp(αs2)−exp(αs1) exp(αx)1{x∈I} for α 6= 0

For instance, the uniform density with compact support belongs to A.

Let dTV(f1, f2) be the total variation metric where

dTV(f1, f2) =

∫
R

∣∣f1(x)− f2(x)
∣∣dx

Kim et al. [2018, Theorem 1] showed that if f0 = fα,s1,s2 such that |α|(s2 − s1) < log n

E
[
dTV

(
f̂mle, f0

)]
≤ c

n1/2

for some constant c independent of n. An example where this is satisfied is if f0 is Uni-

form [s1, s2] for −∞ < s1 < s2 < ∞. If |α|(s2 − s1) is large, the rate above slows down to

O
(

logn
n1/2

)
.

Let d
(n)
KS (f0, fα,s1,s2) be a metric on the distribution function of f0 and fα,s1,s2 (F0 and

Fα,s1,s2 respectively)

d
(n)
KS (f0, fα,s1,s2) = sup

x∈R

∣∣Fnα,s1,s2(x)− Fn0 (x)
∣∣+ sup

x∈R

∣∣(1− Fα,s1,s2(x))n − (1− F0(x))n
∣∣.

Kim et al. [2018] showed that if f0 = fα,s1,s2 where |α|(s2 − s1) is large and fα,s1,s2 is a

member of the class of log-concave densities with support on an interval I where log f is

affine,

inf
fα,s1,s2∈F

(
dTV (f0, fα,s1,s2) + d

(n)
KS (f0, fα,s1,s2)

)
= o

(
n−2/5

log n

)
.

This guarantees that the convergence rate of f̂mle to f0 is the parametric rate up to a loga-

rithmic factor. Kim et al. [2018, Theorem 3] extended these results to the class of log-concave

16

densities that are close to a k affine log-concave density in the sense that,

inf
fk∈Fk

dKL (f0, fk) =

(
k

n
log5/4 n

)

where F k is the class of log-concave densities for which log f is k affine and dKL is the

Kullback-Leibler divergence. Under these conditions, the convergence rate for the log-concave

maximum likelihood estimator is of the order O
(
k
n log5/4 n

)
when k = o

(
n1/5 log−5/4 n

)
.

This is a faster rate than the minimax rate O
(
n−4/5

)
of all log-concave densities.

Besides its adaptability property, the log-concave maximum likelihood estimator is also

robust. As discussed in Dümbgen et al. [2011], the class of log-concave densities F is not

convex. It is then not obvious that a density f ∈ F is close to the true density f0. Dümbgen

et al. [2011] proposed the log-concave projection ψ∗. Let P be the class of unidimensional

probability measures P satisfying E[|X|] < ∞ and P (X = x) < 1 for any point x (the

probability measures with all mass at one point are excluded). The log-concave projection is

thus a map ψ∗ : P → F given by

ψ∗(P) = arg max
f∈F

∫
R

log fdP

Note that when P = Fn, the empirical distribution, this coincides with the log-concave

maximum likelihood estimator. However, if P has a density f0 such that
∫
R f0| log f0| < ∞,

then ψ∗(P) is the closest log-concave density to f0 in the Kullback-Leibler divergence sense.

Cule and Samworth [2010, Theorem 4] proved that f̂mle
a.s.→ ψ∗(P) in case of misspecification.

From a practical perspective, Walther [2002] proposed an iterative convex minorant algo-

rithm to compute f̂mle with good performance when compared to other algorithms available

at the time [seeRufibach [2007]]. Duembgen et al. [2007] later proposed an alternative al-

gorithm called the active set algorithm which seems to be more efficient [Dümbgen and

Rufibach, 2009]. Moreover, Rufibach and Dümbgen [2006] implemented the iterative convex

minorant algorithm and the active set algorithm in the logcondens R-package available via

“CRAN” making the computation of f̂mle easily accessible. Later, Cule et al. [2009] imple-

17

mented the algorithm for the multivariate log-concave maximum likelihood estimator in the

LogConcDEAD R-package.

Chang and Walther [2007] used log-concave densities for unsupervised classification via a

mixture model where the number of m components is known. For the model

f(x) =
k∑

m=1

πmfm(x),

Chang and Walther [2007] assumed that the marginal densities fm belonged to the class of log-

concave densities and
∑k

m=1 πm = 1. The goal was to estimate πm and fm non-parametrically

using the EM-algorithm. Chang and Walther [2007] showed, through a simulation study, that

this non-parametric classification approach outperformed the parametric algorithm based

on the normal mixture model for a large (500 observations) and a small (50 observations)

sample size when there are k = 2 components and these are not Gaussian (marginally).

This is expected because of the robustness of log-concave densities. However, for a correctly

specified model with Gaussian marginal densities, the non-parametric classification approach

was not compromised. Its performance was very similar to the fully parametric approach for

a large and small sample size.

2.1.3 Kernel density estimation

The kernel density estimator is defined as f̂n,h(x) = 1
nh

∑n
i=1K

(
x−Xi
h

)
where K is a function

called kernel. The kernel is symmetric about zero and satisfies
∫
K(s)ds = 1. In most cases,

K is a density itself. This non-parametric estimator depends on the choice of a parameter

called the bandwidth. This parameter, denoted by h, controls the smoothing degree of the

density estimator f̂n,h.

There exist different approaches to select the appropriate bandwidth. We present some of

them to Section 2.2.2.4 where we discuss bandwidth selection with more detail in the context

of regression. However, all the methods that we discuss there can be easily applied to the

context of density estimation. In this section we only review the bandwidth selection based

18

on the mean integrated squared error (MISE) criteria. The MISE will help us to compare

kernel density estimation with parametric estimation.

In general, the bandwidth is chosen to minimize an appropriate risk function. The loss

function that is most commonly used in practice is the L2 distance

∫ (
f̂n,h(x)− f(x)

)2
dx.

The average of this integral is known as the risk for the estimator f̂n,h, and is referred to as

the mean integrated squared error (MISE)

MISE(h) = E

[∫ (
f̂n,h(x)− f(x)

)2
dx

]
.

The MISE as a function of h has a complex structure. An asymptotic approximation of the

MISE (AMISE) eases the dependence on h and it is therefore typically used [see Wasserman

[2006]]. It can be shown, by decomposing the MISE into an integral on the variance and bias

terms and using Taylor expansion, that

MISE(h) =
1

nh

∫
K2(s)ds+

h4

4

∫
s2K(s)ds

∫ (
f ′′(x)

)2
dx+ o

(
1

nh
+ h4

)

and therefore

AMISE(h) =
1

nh

∫
K2(s)ds+

h4

4

∫
s2K(s)ds

∫ (
f ′′(x)

)2
dx.

The later one is minimized at

hAMISE = arg min
h

AMISE(h)

=

(∫
K2(s)ds

(
∫
s2K(s)ds)2

∫
(f ′′(x))2dx

)
n−1/5.

However, the functions that hAMISE depends on are unknown in practice. Wand and Jones

[1994] proposed a quick and simple bandwidth selector. Assume that the true density f

19

follows a Gaussian distribution. We thus obtain a simpler form of hAMISE that is a good

alternative if the data is close to Gaussian (see section 3.2.1 in Wand and Jones [1994]). For

densities that are not Gaussian Wand and Jones [1994] propose an l-stage bandwidth selector.

This is a plug-in estimator for hAMISE. In this bandwidth selection technique, we substitute

the unknown functional in hAMISE for a kernel estimator that depends on its respective

optimal bandwidth. This, at the same time, depend on further unknown functionals that we

can estimate using kernels that will again depend on their respective bandwidths. This is

iteratively repeated until the lth kernel estimator is a simple function that does not depend

on any future bandwidth. The unknown component of hAMISE is the integral of the type

S
(
f (r)

)
=

∫
ΩX

f (r)(x)2dx.

where ΩX denotes the support of X. Wand and Jones [1994] showed that under some

smoothness assumptions

S
(
f (r)

)
= (−1)r

∫
ΩX

f (2r)(x)f(x)dx.

It is then sufficient to study the functions of the type

ψr =

∫
ΩX

f (r)(x)f(x)dx.

This is the expectation of the rth derivative of f . Wand and Jones [1994], and the references

that there appear, proposed thus the estimator

ψ̂r = n−1
n∑
i=1

f̂ (r)
(
Xi; h̃

)
= n−2

n∑
i=1

n∑
j=1

h̃−1K(r)

(
Xi −Xj

h̃

)
.

The kernel K and bandwidth h̃ for this estimator may be different to those used in f̂n,h.

Under conditions in Section 3.5 in Wand and Jones [1994], the bandwidth that minimizes the

20

asymptotic mean squared error for ψ̂r is

h̃AMSE =

(
k!L(r)(0)

−µk(L)ψr+kn

)1/(r+k+1)

.

Here k = 2, 4, . . ., is the order of the kernel and µk(L) =
∫
zkL(z)dz. As discussed earlier,

this bandwidth depends on the function ψr+k that is estimated with a kernel and requires a

further bandwidth. The process continues until we use an estimator that does not depend

on any further bandwidth. One option is to assume f is Gaussian, which yields a simpler

estimator for ψ that does not depend on any bandwidth.

From the rate of hAMISE we can infer that, for a kernel density estimator, the best possible

rate of the MISE is O
(
n−4/5

)
. This in comparison to the MISE of a parametric model which

rate is O
(
n−1

)
. The kernel density estimator is a more flexible model because it does not

need a pre-specified form on f . However, the price that this estimator pays (assuming that

the parametric model is correctly specified) is in its efficiency.

2.2 Regression

In this section we review a class of statistical models that are used to describe a data set. As

discussed in McCullagh and Nelder [1989], regression is a statistical model that help us to

summarize data in terms of the systematic effect and a summary of random variation.

A data set is a collection of variables of interest. It is generally assumed that the indepen-

dent variables, also known as the covariates or regressors, have an effect on the dependent

variable or outcome variable. Typically, the way to describe the relationship between the

covariate and the outcome is through the regression function g(x) = Ψ (E[Y |X]) for a known

function Ψ.

We can generalize the methodology for regression problems in two categories, parametric

and nonparametric regression. For parametric regression, the function g is described by a

finite set of parameters. For nonparametric regression, assumptions on g are less strict and

the problem is a curve estimation problem.

21

2.2.1 Parametric regression

We start this section with a review on parametric regression models. We first discuss linear

regression (i.e., Ψ is the identity function) and later we review a more general class of models,

the generalized linear models.

2.2.1.1 Linear regression

Suppose there is a collection of independent and identically distributed points (Xi, Yi) for

i = 1, . . . , n. Xi ∈ R is called the covariate, also known as the independent variable or

regressor. Yi ∈ R is the response, also known as the dependent variable or outcome variable.

Assume there is an underlying true model that fully describes the relationship between X

and Y

Yi = β0 + β1Xi + εi.

From this model, X and Y have a linear relationship with some added noise εi. We further

assume that all errors εi have a Gaussian distribution with E[εi] = 0 and constant variance

σ2.

Linear regression is a methodology to fit the line that best describes the relationship

between X and Y on average. Let g(x) ≡ E[Y |X = x]. The goal of linear regression is to

estimate the unknown parameters (β0, β1) in

g(xi) = E[Yi|Xi = xi] = β0 + β1xi. (2.1)

McCullagh and Nelder [1989] summarized the historical development of least squares,

first introduced by Gauss. Least squares is a method to estimate the parameters (β0, β1).

The estimators are chosen to minimize the square sum of the vertical distances between the

22

observed and predicted outcomes. The optimal parameters for the model specified in (2.1)are

(β̂0, β̂1) = arg min
(β0,β1)

n∑
i=1

(
Yi − Ŷi

)2

= arg min
(β0,β1)

n∑
i=1

(Yi − β0 − β1xi)
2

The solution to the minimization problem is derived by solving the system of equations given

by the partial derivatives

∂L̃

∂βi
= 0 for i = {0, 1}

where L̃ (β) =
∑n

i=1 (Yi − β0 − β1xi)
2 for a vector of parameters β = (β0, β1). This yields

the following solution to the system of equations

β̂0 =

∑n
i=1 x

2
i

∑n
i=1 Yi −

∑n
i=1 xiyi

∑n
i=1 xi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

β̂1 =
n
∑n

i=1 xiyi −
∑n

i=1 yi
∑n

i=1 xi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

which can be rewritten in the more traditional matrix form

L̃(β) =
(
Y−XTβ

)T (
Y−XTβ

)
β̂ =

(
XTX

)−1
XTY.

Here

Y is the vector of observed responses,

X is the design matrix. For a problem with one covariate, X is a n× 2 matrix. The first

column is a column vector of ones to account for the line intercept in the model. The

second column records the value of the covariate for each observation,

β is the vector of unknown parameters (β0, β1), and

23

β̂ is the vector of estimated parameters β̂ =
(
β̂0, β̂1

)T
.

If σ2 is known, under the assumptions on the error described previously, it is a general

result that the least squares estimator β̂ follows a Gaussian distribution. In particular

β̂ ∼ N
(
β, σ2

β

)
.

Note that
(
β̂0, β̂1

)
are unbiased estimators for (β0, β1). The variance-covariance matrix σ2

β

of our estimators is given by

σ2
β =

(
XTX

)−1
σ2.

If σ2 is unknown, we can estimate it with the errors of the predicted Yi. Let

ri = Yi − β̂0 − β̂1Xi be the residual for the ithobservation. A known estimator for σ2 is

σ̂2 =

∑n
i=1 r

2
i

n− 2
.

The number two in the denominator is to account for the two parameters (β0, β1) that were

estimated through least squares. We can replace σ2 with σ̂2 in the variance-covariance matrix

to obtain estimates for the variances and the covariance. Let s2
bi

be the estimated variance

for β̂i. It is a known result that the following statistic has a t-distribution and it becomes

useful to do statistical inference on the regression parameters.

β̂i − βi
sbi

∼ t(n−2).

In this section, we addressed the problem of estimating the function that describes the

relationship between X and Y . We assumed that this function, the conditional expectation

g(x), is a linear function with unknown parameters. We reviewed how to estimate these

parameters and stated their statistical properties.

For some practical contexts, the assumption of normality in the error’s distribution is

24

restrictive. As an example, if the response Y is a factor variable, linear regression cannot

give accurate predictions. Generalized linear models (GLMs) are an extension to linear

regression and adopt the methodology to a class of distributions known as the exponential

family. Gaussian distribution is one member of this family. In the next section we review

exponential families before discussing GLMs.

2.2.1.2 Exponential Family

A random variable Y that is a member of the exponential family distribution has a density

of the form

f(y; θ, ζ) = exp
{yT θ −B(θ)

A(ζ)
+ C(y, ζ)

}
(2.2)

where A,B and Care known functions and ζ is the dispersion parameter.

There is no unique way to parametrize an exponential family density. If ζ is known,

then the distribution above is called the canonical distribution and θ, the canonical param-

eter. Examples of the most common members of the exponential family are the Gaussian,

exponential, Gamma, Poisson and Bernoulli densities.

From this parametrization we can recover characteristics of the distribution. Let g = E[Y].

We then have, g = B′(θ) and ζ Var(g) = ζB′′(θ). That is, the variance is known to be a

function of the mean. Thus, GLMs allow the variance to be dependent on the mean.

As discussed previously, the assumptions on linear regression (normality and constant

variance) become void for some statistical problems. We had mentioned the example where

the response Y is a factor variable. Other scenario common in practice is when Y is a

counting variable. Generalized linear models propose a framework where these assumptions

get relaxed.

2.2.1.3 Generalized Linear Models

Suppose there is a collection of n independent and identically distributed points (Xi, Yi) for

i = 1, . . . , n. As in linear regression, x ∈ R is the covariate and Yi ∈ R is the response

25

variable. Different from linear regression, the response Y is not constrained to a Gaussian

distribution. GLMs assume the distribution of Yi belongs to the exponential family reviewed

in the previous section. Recall that for linear regression

g(x) = E[Y |X = x] = β0 + β1x.

That is, covariate X has a direct additive effect on the conditional mean of Y .

We motivate the need for an extension of linear regression. Suppose that Y has a Bernoulli

distribution where the response is a binary factor variable taking values {0, 1}. Clearly,

E[Y |X] has a range on the interval [0, 1]. However, the linear function in linear regression

β0 + β1X can take any value on the real line. For this motive, the linear regression model

becomes implausible under this scenario. Let g(x) = E[Y |X = x]. A more appropriate model

would be,

log

(
g(x)

1− g(x)

)
= η(x) = XTβ.

The link function Ψ(g) = log
(

g
1−g

)
maps the interval [0, 1] into the real line. This mapping

is not the only alternative. Other possibilities for Ψ(g) are: log (− log(1− g)) or φ−1 (g),

where φ is the Gaussian distribution function.

For GLMs, the effect of the covariates on the conditional mean is modeled as

Ψ (g) = η = β0 + β1X.

When Ψ(g) coincides with the canonical parameter in an exponential family member, then Ψ

is called the canonical link. For the Bernoulli distribution, Ψ(g) = log
(

g
1−g

)
is the canonical

link. For this work we always assume the canonical link. Table 2.1 shows the corresponding

canonical link to each of the most common distributions in the exponential family [Nelder

and McCullagh, 1989]. Note that for a Gaussian distribution, the link function is the identity

function and the model reduces to that of linear regression.

26

Distribution Canonical link

Gaussian g
Poisson log(g)

Binomial log
(

g
1−g

)
Gamma g−1

Inverse Gaussian g−2

Table 2.1: Canonical link functions of some common univariate distributions in the exponen-
tial family.

The goal in GLMs is to find the vector of parameters that maximize the sample’s log-

likelihood. For a member of the exponential family, the sample’s likelihood is

L(y; θ, ζ) =

n∏
i=1

exp
{yiθi −B(θi)

A(ζ)
+ C(y, ζ)

}
.

where A(·), B(·) and C(·) are known functions. Maximizing the likelihood is equivalent to

maximizing the log-likelihood

l(y; θ, ζ) =

n∑
i=1

{yiθi −B(θi)

A(ζ)
+ C(y, ζ)

}
.

In terms of the parameter vector β, assuming the canonical link, the log-likelihood is expressed

as follows

l(β; y, ζ) =
n∑
i=1

{yiXT
i β −B(XT

i β)

A(ζ)
+ C(y, ζ)

}
.

The estimated parameter vector β̂mle is the solution to the score equation ∂l
∂β = 0. The

solution to this equation has no closed form. It is thus necessary to solve the equation

numerically using the scoring method [Nelder and Wedderburn, 1972]. Note that McCullagh

and Nelder [1989] discussed that when the canonical link is used, the Newton-Raphson method

reduces to the same algorithm as the scoring method. If the canonical link is not used, the

27

scoring method is typically simpler. This is because the expected value of the Hessian matrix

is generally less complex than the actual value of the matrix. In the scoring method, the

parameters estimates are computed iteratively by

β∗ =
(
XTWX

)−1
XTWZ.

Here

β∗ is the vector of revised estimated parameters β∗ = (β∗0 , β
∗
1)T

Z is the adjusted dependent variable. It is a vector of length n with components

zi = η̂i + (yi − gi)∂ηi∂gi
.

X is the design matrix. For a problem with one covariate, X is a n× 2 matrix. The first

column is a column vector of ones to account for the line intercept in the model. The

second column records the value of the covariate for each observation.

W is commonly referred as the matrix of weights. It is an n × n diagonal matrix with

elements w−1
i = ∂ηi

∂gi
Vi where V , the variance of Y , is a function of the mean g. When

choosing the canonical link, 1
B′′(θ)

1
Ψ′(g) = 1 and W is simplified. Under this condition,

each diagonal element is wi = V (gi) for i = 1, . . . , n.

Note that Z and W are initialized with the vectors β(0) and thus η(0) and g(0). The estimate

β̂ =
(
β̂0, β̂1

)
is the last iteration of β∗.

In this section, we addressed the problem of estimating the function that describes the

relationship between X and Y when the response Y belongs to the exponential family. We

assumed that the covariate has a linear effect on the response through a known function Ψ

known as the link function. In the following section, we relax the assumptions even further and

allow a non-linear relationship between the covariate and the response through the canonical

link function. This area in statistics is known as nonparametric regression.

28

2.2.2 Non parametric regression

In the previous section the goal was to estimate a finite number of parameters where we

assumed a particular form for the true η. In this section, we relax this assumption. The goal

is to estimate a general unknown function η. Under this framework, the regression model for

members of the exponential family is

Ψ (g(x)) = η(x)

for an unknown function η(x) and g(x) = E[Y |X = x].

In this section, we address the estimation problem using kernel estimators. We start

the section by introducing the concept of a kernel and its properties. We review two types

of regression estimators: the Nadaraya-Watson kernel regression estimator discussed in Sec-

tion 2.2.2.2 and the local polynomial kernel regression estimator reviewed in Section 2.2.2.3.

2.2.2.1 Kernel functions

A kernel K(z) is a symmetric function that satisfies
∫
K(z)dz = 1 and

∫
zK(z)dz = 0. Al-

though it is not necessary, it is typically assumed that K(z) ≥ 0 for every z in its support and∫
z2K(z)dz <∞. These two assumptions imply that the kernel is also a density. There exist

kernels, called higher order kernels, where
∫
z2K(z)dz = 0. Under smoothness conditions,

higher order kernels can achieve faster convergence rates than kernels that are densities (see

section 2.8 in Wand and Jones [1994]). However, this comes at a price in the interpretation

of the estimator. The kernel estimator of a density f , computed with a higher order kernel,

can take negative values for some x in the support. Therefore, the estimator is not a density.

Other concern discussed in Wand and Jones [1994] is that in order to decrease the sample

error, higher order kernels require larger sample sizes. In this thesis we work with kernels

that are also densities.

Kernels are commonly used to estimate curves under minimal assumptions. Common

statistical problems where kernels are applied are density estimation and regression problems.

29

The latter is of particular interest for this thesis. In the next section we begin by reviewing the

simplest kernel regression estimator, the Nadaraya-Watson kernel regression estimator. We

then review a more sophisticated kernel regression estimator of which the Nadaraya-Watson

is a special case.

2.2.2.2 Nadaraya-Watson kernel regression

Nadaraya [1964] and Watson [1964] developed independently a consistent estimator for the

conditional expectation g(x) = E[Y |X = x]. Let (Xi, Yi) be a collection of n independent and

identically distributed points. The Nadaraya-Watson kernel regression estimator is defined

as

ĝn,h(x) =

1
nh

∑n
i=1K

(
x−Xi
h

)
Yi

1
nh

∑n
i=1K

(
x−Xi
h

) .

Therefore,

η̂(x) = Ψ (ĝn,h(x))

where Ψ is the canonical link.

The kernel K in ĝn,h(x) is a density and thus satisfies all the properties discussed in the

previous section. The parameter h is called the bandwidth and this controls the smoothing

of the estimator.

Figure 1.1 shows three Nadaraya-Watson kernel estimators with a different bandwidth

each. The top right figure shows the estimator with a bandwidth that is too small. The

lower right plot shows the estimator with a bandwidth that is too large. It is thus important

to select the appropriate bandwidth for any kernel estimator. Wand and Jones [1994] and

Marron and Nolan [1988] have discussed not only the bandwidth selection problem, but also

the effect of the choice of the kernel in the estimator. Marron and Nolan [1988] used rescaled

kernels to deconfound the effect from the kernel and from the bandwidth. Wand and Jones

[1994, Section 2.7] compared the efficiency of five popular kernels used in density estimation.

30

Figure 1.1: Three Nadaraya-Watson kernel estimators for three different bandwidths. The
top left plot shows a sample of 100 observations and the true regression function in a dotted
line. All other plots show the Nadaraya-Watson kernel estimator in a solid line and the true
function in a dotted line. For the top right plot a bandwidth (h) that is too small is selected
(h = .01). The lower right plot shows the kernel estimator with a bandwidth that is too large
(h = .25). Finally, the lower left plot is the kernel estimator with an appropriate bandwidth
(h = .09). (repeated from page 4)

Let f be the true density, then the efficiency of the kernel K, compared to an alternative

kernel K∗ is the ratio of the sample size needed in order to achieve the same risk (the AMISE)

using K∗ than using K. We replicate here Table 2.1 in Wand and Jones [1994].

From Table 2.1, an estimator using the Epanechnikov kernel needs 93% of the data to

achieve the same performance compared to an estimator with a uniform kernel. Therefore,

the choice of the kernel function does not affect significantly the kernel estimator. On the

other hand, the bandwidth has a larger effect on the shape of ĝn,h. For a large (small)

bandwidth, the estimator is more (less) smooth. The bandwidth also affects the bias and

31

Kernel Efficiency of the kernel

Epanechnikov 1.000
Biweight 0.994
Triweight 0.987
Normal 0.951
Uniform 0.930

Table 2.2: We compare the efficiency of various kernels K∗. The efficiency of a kernel K, the
Epanechnikov, compared to the kernel K∗ is the ratio of the sample size needed in order to
achieve the same AMISE using K∗ than using K.

variance of the estimator. For a large (small) bandwidth, the bias increases (decreases) while

the variance decreases (increases). The question of interest is then how to optimally select

the bandwidth for a kernel estimator. This topic will be discussed in Section 2.2.2.4.

The next section will review a different type of kernel estimator. We will see that the

Nadaraya-Watson is a special case of this larger group of kernel estimators.

2.2.2.3 Local polynomial kernel regression

Let (Xi, Yi) for i = 1, . . . , n be a collection of independent observations with identical distri-

bution and g(x) = E[Y |X = x]. Also assume that Y given X has a density in the exponential

family. Let Y be the outcome variable and X the covariate. The relationship between Y and

X is modelled by

Ψ (g(x)) = η(x)

for Ψ the canonical link function.

Next, it is common to approximate the unknown function η(x) with a polynomial of

degree p

η(x) = η(Xi) + η′(Xi)(Xi − x) +
η′′(Xi)

2!
(Xi − x)2 + . . .+

η(p)(Xi)

p!
(Xi − x)p

= β0 + β1 (Xi − x) + β2 (Xi − x)2 + . . .+ βp (Xi − x)p. (2.3)

32

One can now maximize the log-likelihood as in Section 2.2.1.3. However, it is desirable to

give more emphasis to those observations that are closer to the point x. Let li(µ, y) be the

log-likelihood for Y conditional on X. A natural solution is to apply kernel weights to the

log-likelihood function

l(y, g) =
n∑
i=1

li (g(x), y)
1

h
K

(
Xi − x
h

)
.

We express the log-likehood as a function of the mean and the random variable Y to be

consistent with the notation in Fan et al. [1995]. The authors in this paper addressed the

problem of local polynomial kernel regression not only for members of the exponential family.

Even if the likelihood function is not known, as long as the variance is a known function of

the mean V (g), the methodology of the authors explained here holds. The only modification

is that the log-likelihood gets replaced by the quasi-likelihood function.

Substituting Ψ (g(x)) = η(x) in the log-likelihood and using the Taylor approximation in

(2.3),

l(y, g) =
n∑
i=1

li
(
Ψ−1 (η(x)) , y

) 1

h
K

(
Xi − x
h

)

=
n∑
i=1

li
(
Ψ−1 (β0 + β1(Xi − x) + . . .+ βp(Xi − x)p) , y

) 1

h
K

(
Xi − x
h

)
. (2.4)

To compute the local polynomial kernel estimate for η(x) one maximizes the log-likelihood

above on β = (β0, β1, . . . , βn). The estimate for η(x) is

η̂LP,h(x) = β̂0

where β̂ =
(
β̂0, β̂1, . . . , β̂n

)
is the maximizer of the weighted log-likelihood.

Heuristically, the local polynomial methodology locally fits a polynomial around x. The

bandwidth h controls how much an observation contributes to the estimate of η at the point

x. A small h implies that less observations will give a weight to the estimator, therefore the

estimate will have more variability. For a larger h, the estimate will have less variability, but

33

will be less accurate (i.e. more biased).

Another important remark is that for the special case when p = 0, there is a closed form

solution to the estimate of the conditional expectation g(x),

ĝLP,h = Ψ−1 (η̂LP,h(x; p = 0))

=

1
nh

∑n
i=1K

(
x−Xi
h

)
Yi

1
nh

∑n
j=1K

(
x−Xj
h

)
which is the Nadaraya-Watson (or local-constant) kernel regression estimate. We discussed

this estimate in Section 2.2.2.2.

Maximizing the weighted log-likelihood not only gives an estimate for the regression func-

tion η(x), but also for its derivatives. Let η(r)(x) be the rth derivative of the regression func-

tion. Ruppert et al. [1995] study a local polynomial kernel estimator for the partial derivative

given by,

η̂(r)(x) = β̂rr!.

There is an obvious advantage in using local polynomial kernel estimators compared to the

Nadaraya-Watson estimator. Local polynomial kernel estimators are in general more flexible

as the degree increases. Although, as discussed in Fan et al. [1995], a higher degree polynomial

increases the variability of β̂. In addition, the Nadaraya-Watson estimator suffers from a

higher bias on the boundary (we discuss this further in Section 2.2.2.4 where we review

measures of performance).

2.2.2.4 Bandwidth selection

In this section, we address the question of bandwidth selection in the context of regression.

Wand and Jones [1994] discuss that “unimodal densities perform about the same as each

other when used as a kernel”. That is when using a kernel estimator, the choice of the kernel

density will not have a significant impact on the estimate as the bandwidth will. It is the

34

bandwidth that can oversmooth or undersmooth important features on the true regression

function and therefore, it should be chosen with care.

Let ĝn,h(x) be the kernel regression estimator for the function g at a point x. The loss

function that is most commonly used in practice is the L2 distance

∫
(ĝn,h(x)− g(x))2 dx

The average of this integral is known as the risk for the estimator ĝn,h and is referred to as

the mean integrated squared error (MISE). The expectation of the loss function is taken with

respect to the data

MISE(h) = E

[∫
(ĝn,h(x)− g(x))2 dx

]
.

It is easy to show that the mean squared error (MSE) can be decomposed into the bias and

variance

MSE(h) = E
[
(ĝn,h(x)− g(x))2

]
= (E [ĝn,h(x)]− g(x))2 + Var (ĝn,h(x)) .

Therefore, the MISE can be decomposed respectively into

MISE(h) =

∫
MSE(x;h)dx

=

∫
(E [ĝn,h(x)]− g(x))2 + Var (ĝn,h(x)) dx

Wasserman [2006] shows, using Taylor expansion and the decomposition of the MSE

into bias and variance, that the asymptotic mean integrated squared error (AMISE) for the

35

Nadaraya-Watson kernel estimator introduced in Section 2.2.2.2 is given by

AMISE(h) =
h4

4

(∫
s2K(s)ds

)2 ∫ (
g′′(x) + 2g′(x)

f ′(x)

f(x)

)2

dx

+ σ2
Y

∫
K2(s)ds

nh

∫
1

f(x)
dx

which is easier to minimize. The optimal bandwidth with respect to the AMISE is thus

hAMISE =

 σ2
Y

∫
K2(s)ds

∫
1

f(x)dx(∫
s2K2(s)ds

)2 ∫ (
g′′(x) + 2g′(x)f

′(x)
f(x)

)2
dx

1/5

n−1/5.

Consider now the local polynomial kernel estimator introduced in Section 2.2.2.3. Further

consider the special case of a polynomial of degree one (p = 1) and a response variable with

density in the exponential family. For a fixed point x, η̂h(x; 1) is the local linear kernel

estimator. Fan et al. [1995] derived the AMISE for this estimator

AMISE (η̂h(x; 1)) = h4

(∫
z2K1(z)dz

)2 ∫ (η(2)(x)

2

)2

f(x)w(x)dx

+
1

nh

∫
σ2

1(x;K)f(x)w(x)dx,

with minimum at

hLP =

(∫
σ2

1(x;K)f(x)w(x)dx(∫
z2K1(z)dz

)2 ∫
η(2)(x)2f(x)w(x)dx

)1/5

n−1/5.

Here,

w(x) is any weight function.

N is a 2× 2 matrix with entries ni,j =
∫
zi+j−2K(z)dz.

M(z) is a 2× 2 matrix, identical to N, but with the 1st column replaced by (1, z)T .

K1(z) is the second order kernel defined as K1(z) = |M(z)|
|N| K(z)

36

σ2
1(x;K), the asymptotic variance of η̂h(x; 1), is given by

σ2
1(x;K) = σ2

Y |X
Ψ′ (g(x))

f(x)

∫
K1(z)2dz.

Note that both bandwidths depend on quantities that in practice are unknown. Recall

that for density estimation, the l-stage bandwidth selector is a plug-in estimator for the

optimal bandwidth with respect to the AMISE criterion. In this bandwidth selection te-

chinique, we substitute the unknown functionals in the optimal bandwidth hopt for kernel

estimators that depend on their respective optimal bandwidths. These, at the same time,

depend on further unknown functionals that we can estimate using kernels that will, once

more, depend on their respective optimal bandwidths. This is iteratively repeated until the

lth kernel functional estimator is a simple, ready to use function that does not depend on

further bandwidths. Then the method is re-worked backwards to yield the plug-in bandwidth

estimator ĥopt. Ruppert et al. [1995] proposed a plug-in estimator for the optimal bandwidth

when the outcome is Gaussian and the regression function g(x) is estimated with a local

polynomial kernel estimator. However, up to our best knowledge, an approach of this type

has not been studied for the more general regression problem where the outcome, conditional

on the covariate, has a density in the exponential family.

The idea to use the weighted mean integrated squared error (WMISE), discussed for local

polynomial kernel estimators, has also been studied in Signorini and Jones [2004] and Hardle

and Marron [1985]. It is worth to note that L2 is not the only metric that can be used as a

loss function. In fact, any Lp distance measure is a valid loss function but is the mathematical

simplicity of L2 (compared to Lp) that makes it widely used.

Other alternatives have been studied to compute a practical bandwidth selector. For the

regression problem where the outcome is Gaussian, various bandwidth selection criteria have

been proposed as asymptotically equivalent to the MISE. Thus, minimizing these is equivalent

to minimize the MISE as the sample size increases. These criteria are: the AIC[Akaike, 1974],

the generalized cross-validation [Craven and Wahba, 1975], the finite predictor error [Akaike,

37

1970], the Shibata selector [Shibata, 1981] and the T selector in Rice [1984]. However, Härdle

and Marron [1985] pointed out that these are asymptotically equivalent to MISE (or WMISE)

only under specific assumptions on the density f (f is constant on an interval (a, b)) and on

the conditional variance and the weight function (for the WMISE criteria) that in practice are

typically not satisfied. These bandwidth selectors do not apply to the more general regression

problem discussed in this thesis therefore we do not consider them.

Next we discuss the cross-validation criterion [Stone, 1974]. The MISE as a function of

h has a complex form as pointed out by Wand and Jones [1994, Chapter 2.5] and Härdle

[1986]. To make it easier to work with, a solution is to use a discrete version of the MISE

that is mathematically simpler. Härdle [1986] showed that the discretized version of MISE

Dn,MISE(h) =
1

n

n∑
j=1

[ĝn,h(x)− g(x)]2 ,

converges uniformly for a sequence of bandwidths hn to the MISE with probability one.

Based on this result, minimizing the cross-validation criterion

CV (h) =
1

n

n∑
j=1

[
ĝ

(−j)
n,h (xj)− g(xj)

]2

yields the optimal bandwidth from MISE. Other names for this criteria are the “leave-one-

out” cross-validation criteria and the least squares cross-validation. We will refer to it as the

least squares cross-validation (LSCV) to match the notation in kernel density estimation.

Note that the leave one out estimator

ĝ
(−j)
n,h (Xj) =

∑
i 6=j

K
(
Xj−Xi

h

)
Yi∑n

i=1K
(
Xj−Xi

h

)
is used instead of ĝn,h(xj) to avoid under-smoothing (over-fitting) the regression function.

However, the LSCV criteria has a drawback. Wand and Jones [1994] point out that this

function can have multiple local minima and care needs to be taken in finding the optimal

bandwidth. This drawback makes it desirable to investigate alternative bandwidth selectors.

38

In a regression problem, if the LSCV bandwidth selector requires great computational

power and a direct substitution in the optimal bandwidth is not possible, then it is reasonable

to use kernel estimators for the unknown quantities and and substitute them in the risk

function directly. We follow this approach for bandwidth selection in the context of level sets

discussed in Section 3.3.

2.3 Level Sets

In this section, we address the problem of estimating the set {x : g(x) ≥ λ} called the λ-level

set. We review and compare two popular approaches for this estimation problem: a direct

estimation of the set and a plug-in estimator. Lastly, we discuss a related problem to the

λ-level set estimation, called the highest density region. For this problem, we replace the

regression function for a density f and the level λ is not fixed or known. Instead, the level

depends on a specified area under the density function, which increases the complexity of the

problem.Samworth and Wand [2010] and Doss and Weng [2018] studied the highest density

problem and proposed a bandwidth selector for the plug-in kernel estimator of the set.

2.3.1 Definition

Consider the function g(x) and a fixed value λ such that infx g(x) < λ < supx g(x). The

λ-level set of g is the set

LSλ = {x : g(x) ≥ λ}.

Two types of level sets are of particular interest in statistics. One is when the function g(x)

is a density. The second is when g(x) = E[Y |X = x]. In particular, when g(x) comes from

a logistic regression model, the level set that results is called the effective dose. In this case,

LSλ is interpreted as the set of covariates such that the conditional probability g(x) reaches

a probability not lower than λ.

39

There exist two main methods for level set estimation. The first are direct methods. These

do not require estimation for the function g in the set LSλ. For this type of estimators a loss

or risk function is specified and one optimize such function over all possible sets. The second

category consists of indirect methods. Here, the level set LSλ is estimated by first obtaining

an estimate of g and then threshold it.

Before proceeding, we define some notation: Sc denotes the complement of the set S;

S1∆S2 = (Sc1 ∩ S2) ∪ (S1 ∩ Sc2) is called the symmetric difference set, and µ is the Lebesgue

measure or the Hausdorff measure.

2.3.2 Estimate a level set directly

Direct estimation of LSλ commonly starts with an objective function to be optimized (min-

imized or maximized) on S, where S is any candidate set. A computational search is then

performed among a family of sets S.

Assume X ∈ Rd and Y ∈ R. Cavalier [1997] proposed an estimator

L̂Sλ = arg max
S

∫
S
g(x)dx− λµ(LSλ ∆S)

where µ is taken to be either Lebesgue measure or Hausdorff measure. Since g is unknown,

Cavalier [1997] assumed that g is such that LSλ is a star-shaped set, in order to perform the

optimization problem required to find L̂Sλ .

Assuming that LSλ is star-shaped, implies that LSλ has a very particular form. For

simplicity of exposition, consider only the case when d = 2. Then, in polar coordinates,

LSλ = {x = (r, θ), 0 ≤ r < qλ(θ), 0 ≤ θ < 2π}

where qλ(t) is a 2π periodic function, and the first k derivatives exist and satisfy the Hölder

condition, see Cavalier [1997]. The main idea in Cavalier’s work is to create a partition

P = (θ0, . . . , θM) on [0, 2π]. On each subinterval θl−1 ≤ θ < θl for l = 1, . . . ,M , the function

qλ,l(θ) is approximated with a polynomial of degree k. The coefficients of the polynomial

40

for each θl−1 ≤ θ < θl are estimated by maximizing a local version of the objective function

described above, which yields a set L̂Sλ,l for each subinterval. The final estimate of LSλ is

the intersection of all closed sets containing the union of sets L̂Sλ,l for l = 1, . . . ,M .

Although the estimate in Cavalier [1997] is minimax, the results are based on assumptions

hard to check in practice. Willett and Nowak [2007] also pointed out that this estimator is

computationally infeasible.

To alleviate on the computational complexity, Willett and Nowak [2007] proposed to use

dyadic trees to speed the search. Dyadic trees “are decision trees that divide the input space

by means of axis-orthogonal dyadic splits” [Scott and Nowak, 2006]. The authors also use a

penalty parameter to avoid an estimator with non- desirable characteristics. The estimator

that they proposed is given by

L̂Sλ = min
S
R̂n(S) + ψn(S)

where R̂n(S) is an empirical risk measure and ψn is a regularization or penalty term. The

search is done over a collection S of all dyadic decision trees with a minimum length.

Next, we review an estimator for the level set where g is a density. Under this setting,

Báıllo et al. [2000] studied the estimator

L̂Sλ =

n⋃
i=1

B (Xi, εn)

where B (Xi, εn) is the closed ball centred at the ith observation Xi with radius εn. The

authors proved the characteristics on the sequence of smoothing parameters εn to guarantee

that L̂Sλ is a consistent estimator. All these estimators are computationally intensive and

some require a set of assumptions to alleviate this problem. In the next section, we introduce

a simpler alternative estimator for LSλ called a plug-in estimator.

41

2.3.3 Plug-in estimators for a level set

A plug-in level set estimator requires an estimate for the function g(x). It is defined as the

following set

L̂Sλ = {x : ĝn ≥ λ}.

We believe a plug-in approach is attractive to practitioners because of its simplicity.

Setting up a plug-in estimator in practice has less difficulty, compared to an estimator of the

type described in the previous section.

Plug-in estimators for a level set have been widely studied. Mason and Polonik [2009]

presented a comprehensive literature review on level set estimation when g is a density.

Under this framework, most of the work is centered on the convergence rate of the estimator

L̂Sλ. Some contributions include Báıllo et al. [2001] and Báıllo [2003] for L̂Sλ where ĝn is

the kernel density estimator. Gayraud and Rousseau [2005] studied the rate of convergence,

when L̂Sλ is the Bayesian posterior estimator. Cuevas et al. [2006] studied consistency and

convergence rates for general plug-in level set estimators. That is, g can be assumed to be

a density, regression curve, etc. However, this type of estimators have received criticism due

to the intermediate step of estimating g. There is a general concern that an estimate of this

type can become suboptimal since the majority of tools available to estimate g (traditional

kernel methods, splines, and linear smoothers) are created to guarantee a good global fit (see

discussion in Willett and Nowak [2007].

In the next section, we review a plug-in estimator in the context of the highest density

region (HDR) problem. The HDR is a special type of level set. The main idea of the plug-

in estimator for this problem is to estimate g with a kernel and to choose the bandwidth

carefully to optimize the estimation of the level set and not of the function g.

42

2.3.4 Level sets in the context of density estimation

For any fixed 0 < p < 1 and a density f , the 100(1 − p)% highest density region (HDR) is

the set

HDRp ≡
{
x : f(x) ≥ λp

}
.

This is a special type of level set where the level λp depends on f as follows

λp = inf
{
λ ∈ (0,∞) :

∫ ∞
−∞

f(x)1{f(x)≥λ}dx ≤ 1− p
}
.

Figure 2.1 shows the 80% HDR for a mixture of Gaussian distributions. Notice that when

estimating HDRp, the level λp is not fixed as in the previous section. For the HDR prob-

lem, λp has to be estimated. Previous research on the HDR estimation problem includes

Silverman [1986], Picard and Bar-Hen [2000] and Báıllo [2003]. Wright [1986] studied the

related problem of highest posterior density estimation and Hyndman [1996] implemented

an algorithm for constructing the HDR. As discussed in the previous section, most of the

work in the literature focuses on the convergence rate of estimators of the HDR. Samworth

and Wand [2010] studied the HDR problem from a different perspective. Consider the HDR

plug-in estimator where f̂h is the Nadaraya-Watson kernel density estimator discussed in

section 2.2.2.2

ĤDRp,h =
{
x : f̂h(x) ≥ λ̂p,h

}
.

The level λ̂p,h is estimated as

λ̂p,h = inf
{
λ ∈ (0,∞) :

∫ ∞
−∞

f̂h(x)1{f̂h(x)≥λ}dx ≤ 1− p
}
.

Samworth and Wand [2010] proposed an alternative automatic bandwidth selector specific

for ĤDRp,h and λ̂p,h. To our best knowledge, in the context of the HDR, this is the first

43

Figure 2.1: We show the 80% HDR for a mixture of Gaussian distributions. This region is
shown as a rectangle at the base of the plot.

published work that studies bandwidth selection.

Samworth and Wand [2010] showed that hopt, the optimal bandwidth for the HDR prob-

lem, is different from traditional bandwidth selectors such as the AMISE. Consider the fol-

lowing set up. We simulated five random samples from the mixed Gaussian density

f(x) =
2

3
ϕ(x; 0, 1) +

1

3
ϕ(x; 0, .10), (2.5)

where ϕ(x;m, s) is a Gaussian density with mean m and standard deviation s. The upper

panel in Figure 2.2 shows five kernel density estimators with bandwidth hAMISE given by,

hAMISE =

[∫
K2(s)ds(∫

s2K(s)ds
)2 ∫

(f ′′(x))2 dx

]
n−1/5.

44

To estimate the sharp peak accurately on the density, the bandwidth has to be small enough

to avoid over-smoothing. This creates wiggles in regions where the true density is smooth.

This behaviour becomes a problem when estimating HDRp for which perfect estimation of

the peak is of lesser interest if, for example, p is sufficiently large or λp is sufficiently small.

Recall that A∆B denotes the symmetric difference between set A and set B. Samworth

and Wand [2010] proposed the loss function

µf

(
HDRp∆ĤDRp,h

)
=

∫
HDRp∆ĤDRp,h

f(x)dx.

Two important characteristics of this loss function are that it penalizes the misclassification

of a point x through the symmetric difference set and it penalizes the likelihood of this point

to be observed through the density function. These characteristics make the loss function

more appropriate for the context of HDR estimation because only values of x related to the

HDR or its estimator contribute to the integral. In contrast to the L2 norm in MISE where

every point on the support of f(x) contributes to the loss function.

Samworth and Wand [2010, Theorem 1] derived an asymptotic approximation of the

risk above. The optimal bandwidth for ĤDRp,h is thus the bandwidth that minimizes this

asymptotic approximation. Assume there exist points xj such that f(xj) = λp for

j = 1, . . . , 2r and a positive integer r. Let ϕ and φ be the Gaussian density, and cumulative

distribution function. The asymptotic risk can be shown to be approximately

E
[
µf

(
HDRp∆ĤDRp,h

)]
' 1

n2/5

2r∑
j=1

[
B1,j

c1/2
ϕ
(
B2,jc

5/2
)

+B3,jc
2
{

2φ
(
B2,jc

5/2
)
− 1
}]

.

The arguments B1,j , B2,j and B3,j are functions that depend on f(xj) and the derivatives

f ′(xj) and f ′′(xj). From Samworth and Wand [2010, Corollary 2], the bandwidth that

minimizes the asymptotic risk approximation is

hopt = coptn
−1/5.

45

Figure 2.2: Five samples of 1000 observations were generated from a mixed Gaussian density.
The true density is shown on both panels with a dashed curve. The panel on top shows
five kernel density estimates where the bandwidth was selected by minimizing the AMISE.
The lower panel shows five kernel density estimates where the bandwidth selected minimizes
the asymptotic risk approximation for the HDR.20 estimation problem. The true HDR.20 is
shown.

46

The constant copt is independent of n. However, it depends on f(xj), f
′(xj) and f ′′(xj).

Notably, hopt is of the same order as the bandwidth that minimizes the AMISE. To compute

hopt Samworth and Wand [2010] use further plug-in estimators for any unknown quantities.

If copt would have a closed form, then it would suffice to replace the unknown functions with

plug-in estimates. However, because of the complexity of the asymptotic risk, this is not

feasible. Therefore, the plug in estimators f̂h0(x̂j), f̂ ′h1(x̂j) and f̂ ′′h2(x̂j) replace f(xj), f
′(xj)

and f ′′(xj) directly in the asymptotic risk approximation to yield a plug-in estimator ÂR(c)

which is then minimized by

ĥopt = ĉoptn
−1/5.

The quantity ĉopt depends on the kernel estimator f̂h(x̂j); as well as the kernel estimators

for the derivatives mentioned before. Results from Samworth and Wand [2010, Theorem 3]

show that the relative difference between the asymptotic risk AR(c) and ÂR(c) is bounded

in probability. The same is true for ĥopt and hopt.

Figure 2.3 compares the performance of the LSCV bandwidth selector against ĥopt for the

HDR problem. Let f be the density in (2.5). We simulated 250 Monte Carlo samples of 1000

observations each. For a fixed 0 < p < 1, the HDR estimate when choosing the bandwidth

according to the LSCV is the set

ĤDRp,hLSCV
=

{
x : f̂hLSCV

(x) ≥ λ̂p,hLSCV

}
.

Similarly, the HDR estimate for the bandwidth selector in Samworth and Wand [2010] is

ĤDRp,hopt =
{
x : f̂

ĥopt
(x) ≥ λ̂p,hopt

}
.

Each point in Figure 2.3 represents the errors from both estimates in one particular sample.

The x coordinate refers to the error µf

(
HDRp∆ĤDR

p,ĥopt

)
, while the y coordinate refers to

µf

(
HDRp∆ĤDRp,hLSCV

)
. From the plot we observe that, for small values of p, hopt offers

47

Figure 2.3: Pairwise comparisons between the errors µf

(
HDRp∆ĤDR

p,ĥopt

)
and

µf

(
HDRp∆ĤDRp,hLSCV

)
for 250 Monte Carlo samples of 1,000 observations each. We as-

sume that the true density is the mixed gaussian density f(x) = 2
3ϕ(x; 0, 1) + 1

3ϕ(x; 0, .10).

an advantage when compared to the bandwidth hLSCV. When p = 0.8, this advantage over

the LSCV bandwidth diminishes. This occurs because when p = 0.8, estimating the peak

of f accurately is important for HDR0.8 and for the mean integrated squared error (the risk

function for the LSCV).

Recently, Doss and Weng [2018] generalized the HDR estimation problem in the multi-

variate setting extending the approach of Samworth and Wand [2010]. Let X ∈ Rd be the

random variable with distribution f . Under the same loss function as in the univariate case,

Doss and Weng [2018] use an asymptotic approximation of the risk function to derive the

optimal bandwidth.

For simplicity, Doss and Weng [2018] use a set of simplifying assumptions to present their

48

theoretical results. The density f is assumed to be unimodal and spherically symmetric. The

matrix of bandwidths is assumed H = h2I, where I is the d × d identity matrix. The goal

is then to minimize the asymptotic approximation of the risk with respect to h. From Doss

and Weng [2018, Corollary 2.2]

hopt = coptn
−1/(4+d)

The constant copt is independent of n but, as in the univariate case, depends on the unknown

density f . To compute hopt in practice, Doss and Weng [2018] frame the methodology of

Samworth and Wand [2010] in the multivariate setting. Doss and Weng [2018] replace f , ∇f

and ∇2f in the asymptotic risk approximation with the plug-in kernel estimates f̂n,H0 , f̂n,H1

and f̂n,H2 respectively. This yields an estimate for the asymptotic risk (AR(H)) that is then

minimized with respect to H using Newton’s method. This is an iterative method to find the

root of a differentiable function q with values in the real numbers. At the ith iteration, the

approximation of the root is

xi = xi−1 −
q(xi−1)

q′(xi−1)
.

For the set of assumptions in Doss and Weng [2018, Corollary 2.2] described previously,

Doss and Weng [2018, Corollary 3.2] show that the relative distance between ĥopt, the mini-

mizer of ÂR(h) and hopt is bounded in probability at a rate Op
(
n2/(d+8)

)
.

A related problem to the HDR is the density level set (DLS) estimation. For this set, the

level λp is exchanged for a fixed arbitrary value λ where infx∈Rd f(x) < λ < supx∈Rd f(x).

Doss and Weng [2018] study a plug-in kernel estimator for the DLS. This estimator is the set

D̂LSλ,h =
{
x : f̂n,h(x) ≥ λ

}
.

49

The loss function for the DLS problem is the same function as for the HDR problem

µf

(
DLSλ∆D̂LSλ,h

)
=

∫
DLSλ∆D̂LSλ,h

f(x)dx.

The optimal bandwidth for D̂LSλ,h is thus the argument that minimizes the asymptotic ap-

proximation of the risk function. Results from Doss and Weng [2018, Corollary 2.1] show that

the optimal bandwidth rate for DLS coincides with that in HDR. The practical bandwidth

selection methodology and results are identical to those for the multivariate HDR.

50

Chapter 3

PART I: Theoretical and applied

section for the regression level set

3.1 Optimal Bandwidth selection

In the last section, we reviewed the highest density region (HDR) problem. We discussed

this is a special type of level set and we reviewed how to select the appropriate bandwidth

when HDRp is estimated with a plug-in kernel estimator.

In this section, we translate the main ideas of the HDR problem to the context of re-

gression. The density f in HDRp is exchanged for the conditional expectation g where

g(x) = E[Y |X = x]. In addition, we predefine a fixed level λ. Thus, for the outcome variable

Y and the covariate X, we are interested in the following level set

LSλ = {x : g(x) ≥ λ}.

In this thesis, we study how to choose the appropriate bandwidth when LSλ is estimated

with a plug-in kernel estimator.

To our knowledge, there is no published work addressing bandwidth selection for a plug-in

kernel estimator for LSλ in the context of regression. Published work on level set estimation

in the context of regression includes Cavalier [1997], Willett and Nowak [2007] and Cuevas

51

et al. [2006]. These contributions mainly study the convergence rates for estimators of LSλ.

Cavalier [1997] and Willett and Nowak [2007] studied optimal rates of convergence for direct

estimators of LSλ. Cuevas et al. [2006] studied consistency and rates of convergence for plug-in

estimators of LSλ. More recently, Laloë and Servien [2013] studied a kernel plug-in estimator

for LSλ. However, their approach is different from the approach in this thesis. Laloë and

Servien [2013] studied the conditions that guarantee the consistency of their estimator and

established its convergence rate. The bandwidth selection problem was not addressed on their

paper. Laloë and Servien [2013, page 5] considered that research on bandwidth selection is

“a remaining and crucial problem” for this type of estimator.

3.1.1 Introduction

Kernel methods have been researched extensively and are a popular tool in practice. As

pointed out in Section 2.2.2.4, a kernel estimator depends heavily on the choice of the band-

width. Typically, a larger bandwidth will decrease the variance of the estimator at the expense

of increasing the bias. The situation is reversed for a smaller bandwidth. In similar spirit to

Samworth and Wand [2010] and Doss and Weng [2018], we focus on the Nadaraya-Watson

kernel regression estimator introduced in Section 2.2.2.2

ĝn,h = =

∑n
i=1K

(
x−Xi
h

)
Yi∑n

j=1K
(
x−Xj
h

) .

Our proposed plug-in estimator for a regression λ-level set is thus

L̂Sλ = {x : ĝn,h(x) ≥ λ}. (3.1)

The main goal for this thesis is then how to optimally select the bandwidth for L̂Sλ. Tra-

ditional bandwidth selection methods, as those discussed in Section 2.2.2.4 become inefficient

for a level set estimation problem that is by nature local (see Willett and Nowak [2007] and

Scott and Davenport [2007]). A loss function such as the mean integrated squared error,

although mathematically tractable, it chooses the bandwidth that minimizes a global error.

52

The same is true if the cross-validation approach is preferred.

Bandwidth selection is a problem that has also been encountered in the context of the

HDR estimation. Samworth and Wand [2010] and Doss and Weng [2018] show in their

simulation study that choosing the bandwidth according to a more appropriate local loss

function improved, in general, the highest density region estimation.

3.1.2 The loss function

We start by defining a loss function, similar to Samworth and Wand [2010], that considers

the local nature of the level set problem. Let q(x) be a non-negative function that depends

on a covariate. We propose the loss function

µq(LSλ4 L̂Sλ) =

∫
LSλ4 L̂Sλ

q(x)dx, (3.2)

where LSλ4 L̂Sλ is the symmetric difference set between the true level set and our plug-in

estimator. This set contains all the points x that are elements of either LSλ or L̂Sλ, but not

both. Therefore, we can express the loss function in the following equivalent way

µq

(
LSλ4 L̂Sλ

)
=

∫
ΩX

q(x)|1{ĝn,h(x)≥λ} − 1{g(x)≥λ}|dx.

The optimal bandwidth for our estimator L̂Sλ is the bandwidth that minimizes an asymp-

totic approximation of the risk E
[
µq

(
LSλ4 L̂Sλ

)]
. We start by stating the assumptions we

make to derive our asymptotic approximation of the risk.

3.2 Asymptotic Risk Analysis

3.2.1 Assumptions

The following are the set of conditions on the conditional expectation, the kernel (K), the

bandwidth (B), the covariate’s density (F) and the function q that we need to derive the

asymptotic approximation of the risk. The conditions in (G) are in the same spirit as those

53

found in Samworth and Wand [2010], Doss and Weng [2018]. Let g = E[Y |X = x] with

g2(x) = E[Y 2|X = x]. In order to prove our results, we make the following assumptions.

(F) The support of the density f, CX is compact. Furthermore, infx∈CX f(x) ≥ bf > 0.

(G) For an arbitrary λ, we assume there exist finitely many points x1 < . . . < xm such

that g(xj) = λ and g′(xj) 6= 0 and that these xj (for j = 1, ...,m) all lie in the interior

of CX . To simplify the exposition in the proof, we assume that there are an even

number of points. That is m = 2r with g′(x2j−1) > 0 and g′(x2j) < 0. We also define

x0 = inf{x ∈ CX} and x2r+1 = sup{x ∈ CX}.

(K) The kernel K is a non-negative, symmetric density and, defining vk,m =
∫
|sm|Kk(s)ds,

satisfies v1,3, v2,2, v3,4, v4,0 are all finite.

(B) We assume that the bandwidth h = hn → 0 as n→∞. In addition, it is such that nh5

is at most O(1), and that n3h11 log−8 n→∞.

(S) We make the following smoothness assumptions on the underlying functions.

local: Let B̃ = ∪mj=1Bη(xj) where Bη(x) denotes a ball of size η around x. There exists

an η > 0 such that the function q is C1(B̃), while f, g2 are C1(B̃) and g is C2(B̃).

global: Both f and g are continuous on CX , and q is an integrable function on CX .

moment: Define the function mk(x) = E[(Y −λ)k|X = x]f(x) and assume that there exists

an Mk(x) such that for k = 2, 4

lim
h→0

sup
s∈(x−CX)/h

mk(x− hs) ≤ Mk(x)

with
∫
CX

M2
2 (x)q(x)dx <∞ and

∫
CX

M4(x)q(x)dx <∞.

We wanted assumption (S) to be general in order to accommodate for common loss

functions in level set estimation problems e.g. the excess mass loss function assumed in Willett

and Nowak [2007]. Assumption (K), on the other hand, lists standard kernel properties. The

54

remaining assumptions, for the most part, are similar to those of Samworth and Wand [2010],

Doss and Weng [2018]. In particular, we note that the smoothness assumptions (S1) on the

functions g2, g, f are all one derivative stronger than those needed in the statement of the

theorem. This was also required in Samworth and Wand [2010], Doss and Weng [2018]. This

assumption, as well as assumption (B) are necessary in order to achieve the correct integrated

error in the final expression.

Using assumption (G), we can specify the regions where the loss function takes positive

values

µq

(
LSλ4 L̂Sλ

)
=

∫
ΩX

q(x)|1{ĝn,h(x)≥λ} − 1{g(x)≥λ}|dx

=
r∑
j=0

∫ x2j+1

x2j

q(x)|1{ĝn,h(x)≥λ} − 1{g(x)≥λ}|dx

+

r∑
j=1

∫ x2j

x2j−1

q(x)|1{ĝn,h(x)≥λ} − 1{g(x)≥λ}|dx

=

r∑
j=0

∫ x2j+1

x2j

q(x)|1{ĝn,h(x)≥λ} − 0|dx+

r∑
j=1

∫ x2j

x2j−1

q(x)|1{ĝn,h(x)≥λ} − 1|dx.

It thus follows that

µq

(
LSλ4 L̂Sλ

)
=

r∑
j=0

∫ x2j+1

x2j

q(x)1{ĝn,h(x)≥λ}dx+
r∑
j=1

∫ x2j

x2j−1

q(x)1{ĝn,h(x)<λ}dx,

The goal is then to select the bandwidth h that minimizes the following risk function

E
[
µq

(
LSλ4 L̂Sλ

)]
=

r∑
j=0

∫ x2j+1

x2j

q(x)P
(

ĝn,h(x) ≥ λ
)
dx

+
r∑
j=1

∫ x2j

x2j−1

q(x)P
(

ĝn,h(x) < λ
)
dx. (3.3)

55

3.2.2 Risk computation and asymptotic risk approximation

The main result of our thesis derives the asymptotic risk expansion of the level set estima-

tor L̂Sλ. Let φ be the probability density of a standard normal and Φ its corresponding

cumulative distribution function.

Theorem 1. Suppose that assumptions (B), (F), (G), (K), and (S) hold. Then

E
[
µq

(
LSλ4 L̂Sλ

)]
=

m∑
j=1

q(xj)B1,j(xj)

{
2
φ(
√
nh5B2,j)√
nh

+ h2B2,j

[
2Φ(
√
nh5B2,j)− 1

]}
+o((nh)−1/2 + h2)

where

A(xj) = −
{

g′f

(σ2
Y fv2,0)1/2

}
(xj), B1,j =

1

|A(xj)|
, B2,j = −σ2

K

{
g′′f/2 + g′f ′

(σ2
Y fv2,0)1/2

}
(xj),

where σ2
K =

∫
s2K(s)ds and σ2

Y (x) = Var(Y |X = x).

See Apendix A.1 for Theorem 1 proof. The proof is handled similarly to Samworth and Wand

[2010], Doss and Weng [2018]. The asymptotic risk expansion results from a careful sequence

of Taylor series type of arguments. The main idea is to first show that the integral in the risk

function is dominated by a neighbourhood of each point xj . Second, in the neighbourhood of

each point xj , the formula is derived by applying the central limit theorem, which allows us

to replace the probabilities with Gaussian distribution functions and the final result follows

from integration by parts. Our result obtained the same rate of convergence as in Samworth

and Wand [2010, Theorem 1]. The leading terms of the sum correspond to the order of the

variance and bias as in Samworth and Wand [2010, Theorem 1] and Doss and Weng [2018,

Theorem 1] for d = 1.

56

Let c = hn1/5, for a sequence of bandwidths of order O
(
n−1/5

)
we can write

lim
n→∞

n2/5 E
[
µq

(
LSλ4 L̂Sλ

)]
=

m∑
j=1

q(xj)B1,j(xj){
2
φ(c5/2B2,j)

c1/2
+ c2B2,j

[
2Φ(c5/2B2,j)− 1

]}
.

It is easy to see that if (nh5) → c1 for a constant 0 < c1 < ∞ , then E
[
µq

(
LSλ4 L̂Sλ

)]
=

O
(
n−2/5

)
. This is a faster rate compared to the rate obtained in Laloë and Servien [2013]

when d = 1. It has to be noted, however, that the approach in Laloë and Servien [2013] is

focused on the rate of convergence of the kernel estimator and not on bandwidth selection.

The assumptions on the bandwidth are also different from those in this paper. In particular,

the authors assumed that nh5 = o
(

1
log(n)

)
and, for their simulation study, the practical

bandwidth is chosen via cross-validation.

In addition, we observe that the equation above is a continuous function for c ∈ (0,∞).

Assuming that there is at least one j such that B2j 6= 0, it can be shown in Corollary 2

that there exists a unique minimizer for the function. A situation where B2j would be zero

for every j is if the true function g(x) is linear and the covariate is uniformly distributed.

When this occurs, the second term in the sum is zero and the numerator in the first term is

constant on c. It thus follow that under this scenario, the minimizer of the risk function does

not exist. It has been discussed (see Gasser and Engel [1990]) that when g is assumed linear,

the Nadaraya-Watson estimator is not the best estimator to use. The Nadaraya-Watson

kernel estimator tends to deviate from a linear trend as seen in Figure 1 in Gasser and Engel

[1990], regardless of the density of the covariate.

Corollary 2. Assume the conditions in Theorem 1 hold. Furthermore, assume that nh5 → c

for 0 < c < ∞. Then, there exists a unique copt ∈ (0,∞) depending on g, f and K; but not

on n, such that hopt = arg minh∈(0,∞)E[µq

(
LSλ4 L̂Sλ

)
] and it satisfies

hopt = coptn
−1/5

57

From Corollary 2 we observe that the level set optimal bandwidth has the same rate as

the bandwidth that minimizes the AMISE. Unfortunately, our optimal bandwidth has no

closed form. Therefore, a practical bandwidth selector such as the l-stage bandwidth selector

is not feasible. Instead, we propose to approximate the asymptotic risk and minimize this

instead. The result from Theorem 1 gives an asymptotic approximation of the risk (AR).

Again, let c = hn1/5, then

AR(c) = n−2/5
m∑
j=1

q(xj)B1,j(xj)

{
2
φ(c5/2B2,j)

c1/2
+ c2B2,j

[
2Φ(c5/2B2,j)− 1

]}
. (3.4)

In the section that follows we introduce our practical bandwidth selector and describe our

algorithm to obtain it.

3.3 Practical computation for the asymptotic risk

From our results in Theorem 1 and Corollary 2 we show that there is a minimizer to the risk

proposed at the beginning of this chapter. Different from other bandwidth selectors with loss

function in L2, the local function here proposed does not yield a close solution to the optimal

bandwidth. Therefore, we cannot use a direct plug-in rule into the formulae for the optimal

bandwidth as is common for the AMISE (see Wand and Jones [1994]). A natural solution is

to replace the unknown functions in the asymptotic risk with kernel estimators and minimize

this instead.

A plug-in estimator for the asymptotic risk

Let c = n1/5h, and substitute all unknown functions in AR(c) with kernel estimates. Then

the plug-in estimate for the asymptotic risk is

ÂRn(c) =
1

n2/5

2r∑
j=1

B̂1jϕ

(
2c5/2σ2

K
B̂2j

B̂1j

)
c1/2

+ c2σ2
KB̂2j

[
2φ

(
2c5/2σ2

K

B̂2j

B̂1j

)
− 1

](3.5)

58

In order to estimate the kth derivative of g, we employ the local polynomial estimator

ĝ(k)
hk

(x; p) that appears in Fan et al. [1995]. It estimates the kth derivative of g locally,

using a polynomial of degree p where p ≥ k. For simplicity, we work with the cases where

p− k is odd. In particular, we restrict the degree of the polynomial to be p = k + 1.

3.4 A practical bandwidth selector

Recall the asymptotic risk AR(c) is minimized at a constant copt which depends on q, f , f ′,

g′, g′′, as well as the points x1, . . . , x2r such that g(xj) = λ for j = 1, . . . , 2r. The optimal

bandwidth for the plug-in level set kernel estimator proposed in Section 3.2.2 depends on this

constant through hopt = coptn
−1/5. In this section we describe how to obtain the estimator

ĉopt = arg min ÂRn(c)

where the function ÂRn(c) is the asymptotic risk with q, f, f ′, g′, g′′ and xj replaced with

kernel estimators.

3.4.1 Algorithm description

Assume an independent and identically distributed sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn).

(i) We replace f and f ′ with kernel estimators f̂hf0 and f̂ ′hf1
described in Chapters 2.2

and 2.12 in Wand and Jones [1994].

(ii) We estimate hf0 and hf1 with the two-stage plug-in bandwidth selector described in

Chapter 3.6 in Wand and Jones [1994]. Recall from Section 2.2.2.4 that the direct plug-

in rule for bandwidth selection starts with the bandwidth that minimizes the asymptotic

mean integrated squared error. This optimal bandwidth depends on unknown function-

als that are replaced with kernel estimators. However, these depend on a bandwidth

that would have to be computed as well. This methodology creates then a number of

levels that is stopped when the last bandwidth is computed by what Fan et al. [1995]

59

call a ”rough and ready” method; a simpler bandwidth that does not depend on further

kernel estimators (e.g. the optimal bandwidth assuming that the function is Gaussian).

Then the method is re-worked backwards.

(iii) We take the least squares cross validation bandwidth (hLSCV) and estimate g with the

Nadaraya-Watson kernel estimator ĝhLSCV
. Thus, the estimators for the points xj are the

points x̂j such that ĝhLSCV (x̂j) = λ. Note that it is possible that maxx ĝhLSCV (x) < λ.

When this happens, we reduce the bandwidth hLSCV in 10% intervals until

maxx ĝhLSCV
(x) > λ.

(iv) We replace g′ and g′′ with the local polynomial kernel estimators ĝ′hg1 and ĝ′′hg2 studied

in Fan et al. [1995] and reviewed in Section 2.2.2.3.

(v) We let hg1 = hg2 to ease the computation complexity in the code. For the first two

derivatives of g we use the bandwidth that minimzes the asymptotic MISE for the local

polynomial kernel estimator reviewed in Section 2.2.2.3. If Y conditional on X has a

Gaussian distribution, the function locpoly in KernSmooth R-package returns this

bandwidth.

(vi) We estimate the variance σ2
Y with the sample variance and substitute (i)-(v) in the

asymptotic risk to yield ÂR(c). The estimator for copt is thus

ĉopt = arg min
c

AR
(
c; x̂j , f̂hf0 , f̂

′
hf1
, ĝ′hg1 , ĝ

′′
hg2

)

and

ĥopt = ĉoptn
−1/5

(vii) The optimal bandwidth ĥopt in step (vi) yields the plug-in λ-level set kernel estimator

L̂Sλ = {x : ĝ
n,ĥopt

≥ λ}

60

Relative rate between the asymptotic risk and its practical estimator

Since the practical bandwidth selector is based on a plug-in estimator of the asymptotic risk,

it is necessary to investigate how close this approximation is to the true value and how the

minimizer of ÂR compared to that of AR. We present these results in Theorem 3.

Theorem 3. Assume the conditions in Theorem 6 hold. In addition, assume

(S.2) f is C2(B̃) and g is C3(B̃).

(Q) The function q is a non-negative function such that |q̂(x)− q(x)| is at most Op
(
n−2/9

)
in a neighbourhood of xj.

Let c = n1/5h and define the asymptotic risk function in terms of c as

AR(c) = n−2/5
m∑
j=1

q(xj)B1,j

{
2
φ(c5/2B2,j

c1/2
+ c2B2,j

[
2Φ(c5/2B2,j)− 1

]}
.

Also define ÂRn(c) as the asymptotic risk function where xj,q,f ,f ′,g′ and g′′ are replaced

with kernel estimators. Then

∣∣AR(c)− ÂRn(c)
∣∣ = Op

(
n−2/9

)
.

and

ĥopt
hopt

= 1 +Op

(
n−2/9

)

The relative difference between the oracle and practical bandwidth presented in Theorem 3

yield the same rate of convergence as that in the HDR problem (see Samworth and Wand

[2010, Theorem 3]).

61

3.5 Level set bandwidth selection against least-squares cross

validation bandwidth selection and the local polynomial

kernel estimator: A simulation study.

In this section we compare the performance of the practical bandwidth selector described in

Section 3.3 with the least-squares cross validation (LSCV) bandwidth selector reviewed in

Section 2.2.2.4 and the local polynomial kernel estimator reviewed in Section 2.2.2.3. We

divide this section into two parts. For the first part we focus on the regression problem

where the outcome (Y) is Gaussian. For the second part we consider the situation where Y

is binary. We choose to divide this section because the tools available for each are different

and thus our approach will differ.

3.5.1 A Gaussian outcome

Consider the regression model

Y = g(x) + ε ε ∼ N
(
0, σ2

Y

)
where g(x) = E[Y |X = x]. For our simulation study, we consider three scenarios described

in Table 3.1 below. In Figures 3.1,3.4 and 3.7 we show the plot for g in each example and

the true level sets considered.

Recall that for a fixed level λ and the conditional expectation g, the corresponding λ-level

set is

LSλ = {x : g(x) ≥ λ}.

Also, recall from Section 2.2.2.2 that the Nadaraya-Watson kernel regression estimator is

62

given by

ĝn,h(x) =

∑n
i=1K

(
x−Xi
h

)
Yi∑n

i=1K
(
x−Xi
h

) .

Let hopt be the bandwidth that results from the practical bandwidth selector that we

proposed in Section 3.3. Thus, our estimator for LSλ is the plug-in estimator

L̂Sλ,opt = {x : ĝn,hopt(x) ≥ λ}

where ĝn,hopt is the Nadaraya-Watson estimator with hopt as its bandwidth. For the alterna-

tive estimators, let ĝn,hLSCV
be the Nadaraya-Watson estimator where hLSCV is the bandwidth

that minimizes the LSCV criteria. In addition, let ĝn,hLP
be the local polynomial kernel es-

Example 1 g(x) = 2
3

1√
2π

exp−
1
2
x2 +10

3
1√
2π

exp−50x2 for x ∈ [−4, 4]

σ2
Y = 0.10

λ =

0.156,

0.261,

1.325

Example 2 g(x) =

{
.7φ(x; 4, .15) + .45φ(x; 6, .5) for 2 ≤ x ≤ 8

−1
2(x− 8.5)2 + c0 for 8 < x ≤ 10

σ2
Y = 0.01

λ =

0.05,

0.10,

1.00,

1.30,

1.40,

1.50

Example 3 g(x) =
√
x(1− x) sin

(
2.1π
x+0.5

)
for x ∈ [0.1, 1]

σ2
Y = 0.10

λ =

0.18,

0.25,

0.30,

0.40

Table 3.1: Three different conditional expectation functions that are considered in the simu-
lation study. The constant c0 = .7φ(8; 4, .15)+ .45φ(8; 6, .5)+ 1

2 .25 in Example 2 is calculated
to guarantee continuity on the function.

63

timator of degree one. It is given by

ĝn,hLP
= eT

(
XT
xWXx

)−1
XT
xWY

where

X is the design matrix

1 (X1 − x)

...
...

1 (Xn − x)

W is an n× n diagonal matrix with entries 1

hK
(
X1−x
h

)
, . . . , 1

hK
(
Xn−x
h

)
.

Y is the vector of n observed responses.

e is the column vector

1

0

.

The bandwidth hLP is the argument that minimizes the asymptotic mean integrated

squared error (with parameters r = 0 and p = 1) described in Section 2.2.2.3. The band-

width selector for hLP is implemented in the function dpill, included in the R-package KernS-

mooth. We use this tool for this part of the study.

The corresponding plug-in kernel estimators for a λ-level set are respectively

L̂Sλ,LSCV = {x : ĝn,hLSCV
(x) ≥ λ},

L̂Sλ,LP = {x : ĝn,hLP
(x) ≥ λ}.

For each function g(x) presented in Table 3.1 we conducted a simulation study with

small and large sample sizes. In each, 250 Monte Carlo samples are generated with 1000

observations and 100,000 observations respectively. The covariate X is generated from a

uniform distribution according to the support of g(x) in Table 3.1.

The estimation error for an estimator L̂Sλ is the loss function studied in Section 3.1.2

µq

(
LSλ4L̂Sλ

)
=

∫
LSλ4L̂Sλ

q(x)dx

64

where A4B = (A ∩Bc) ∪ (Ac ∩B). For the three scenarios studied, we specify q(x) = f(x),

the density of the covariate X. In addition, we use the following notation for each estimator

considered

µopt = µf

(
LSλ4L̂Sλ,opt

)
µLSCV = µf

(
LSλ4L̂Sλ,LSCV

)
µLP = µf

(
LSλ4L̂Sλ,LP

)
.

For each scenario we consider, we visually compare the errors from each estimator and include

Wilcoxon tests. Throughout our simulation study we assume a 5% significance level.

The function on example one serves as a comparison to the related work of Samworth

and Wand [2010]; Doss and Weng [2018]. This is a function that has a sharp peak, but

it is smooth otherwise. Next, we take an example from toxicology. Calabrese and Baldwin

[2002] presented common dose-response curves found in studies with different chemical agents

and experimental models. For example two, we considered g(x) to be a slightly exaggerated

version of the multi-modal curve in Calabrese and Baldwin [2002, Figure 2(j)]. We allowed

the slope of g to change at different rate in each mode on the function. Lastly, for example

three we consider a truncated version of the doppler function. The doppler function is a

common example for nonparametric regression, see [Wasserman, 2006].

Example one

We consider the function

g(x) =
2

3

1√
2π

exp
(
−0.50x2

)
+

10

3

1√
2π

exp
(
−50x2

)
.

This is a function that is smooth except for a sharp peak in the center. We consider

this function to serve as a comparison to the related work of Samworth and Wand [2010]

and Doss and Weng [2018]. Figure 3.1 shows the plot for g, the levels considered and the

corresponding level sets. We consider the levels λ = 0.156, 0.261, 1.325. In Figure 3.2 we

65

Figure 3.1: True g function for example one. We included the true level sets for λ = 0.156
(red), λ = 0.261 (green) and λ = 1.325 (blue).

show the performance of the estimators L̂Sλ,opt and L̂Sλ,LSCV on 250 Monte Carlo samples

of 1, 000 and 100, 000 observations each. Every circle in the plot is a sample by sample

comparison between the estimators where µopt is on the x-axis and µLSCV on the y-axis.

We also include density plots for the logarithm of the ratio µLSCV/µopt. In Figure 3.3 we

show similar comparisons between the performance of our bandwidth selector with the local

polynomial kernel estimator. Note that the local polynomial estimator is different from

the Nadaraya-Watson estimator in L̂Sλ,opt and L̂Sλ,LSCV. We decide to include the local

polynomial estimator as it is also used in practice and offers an advantage in the boundary

bias as discussed in Fan [1992]. In Figure 3.3, every circle in the plot is a sample by sample

comparison between the estimators where µopt is on the x-axis and µLP on the y-axis. As

before, we consider samples of 1, 000 and 100, 000 observations. We observe that for samples

66

with 1, 000 observations, some of the estimated level sets return as empty sets. Our estimator

L̂Sλ,opt returns the smallest proportion of level sets (16.4%). It then follows the estimator

L̂Sλ,LSCV (36.8%) and finally L̂Sλ,LP with 99.6% of the estimated sets being empty.

vs LSCV vs LP

λ proportion µopt < µLSCV adj. p-val proportion µopt < µLP adj. p-val

0.156 0.936 3.440e-40 0.656 5.106e-09
0.261 0.552 1.179e-02 0.620 8.577e-07
1.325 0.840 3.042e-19 1.000 1.211e-35

vs LSCV vs LP

λ proportion µopt < µLSCV adj. p-val proportion µopt < µLP adj. p-val

0.156 0.792 1.763e-07 0.700 0.035
0.261 0.608 0.303 0.296 0.073
1.325 0.888 6.6e-16 0.992 6.6e-16

Table 3.2: Summary of the results for example one. On top we summarize the results for 250
Monte Carlo samples of 1000 observations each. We present the proportion of the samples for
which the error from the LSCV bandwidth selector (local polynomial estimator) is greater
than the error yielded from our bandwidth selector. We also include the p-values for one-
sided Wilcoxon rank tests for the paired errors. We applied the Holm-Bonferroni correction
to account for multiple comparisons. The bottom table presents the same results, but for
250 Monte Carlo samples of 100,000 observations each.

In addition, we present a summary of these results in Table 3.2. In this table we include

the proportion of the samples where our bandwidth selector yielded a smaller error than

the LSCV bandwidth selector or the local polynomial kernel estimator. Note that when the

estimated level set returned is an empty set, LSλ4∅ = LSλ. Then, we calculate the error

as the integral of f on the true level set. We also include the results from Wilcoxon rank

tests for paired errors and we use the Holm-Bonferroni correction to account for multiple

comparisons.

Our bandwidth selector has an advantage compared to the LSCV bandwidth selector

67

and local polynomial estimator for smaller samples across all three levels. Next, we take an

example from toxicology.

Figure 3.2: Sample by sample comparison between hopt and hLSCV for example one. We graph
µopt on the x-axis and µLSCV on the y-axis. We also include density plots for the logarithm
of the ratio µLSCV/µopt. We considered (from left to right) the levels λ = 0.156, 0.261, 1.325.
The first two rows correspond to the results from 250 Monte Carlo samples of 1,000 obser-
vations each. The last two rows show the results from 250 Monte Carlo samples of 100, 000
observations each.

68

Figure 3.3: Sample by sample comparison between L̂Sλ,hopt and L̂Sλ,hLP for example one. We
graph µopt on the x-axis and µLP on the y-axis. We also include density plots for the logarithm
of the ratio µLP/µopt. We considered (from left to right) the levels λ = 0.156, 0.261, 1.325. The
first two rows correspond to the results from 250 Monte Carlo samples of 1,000 observations
each. For λ = 1.325 the estimator L̂Sλ,hLP is always empty except for one sample. The last
two rows show the results from 250 Monte Carlo samples of 100, 000 observations each.

69

Example two

The term hormesis is defined in Mattson [2008] as “a process in which exposure to a low

dose of a chemical agent or environmental factor that is damaging at higher doses induces

an adaptive beneficial effect on the cell or organism”. Calabrese and Baldwin [2002] present

common dose-response curves found in toxicology studies with different chemical agents and

experimental models. These are typically characterized by a U-shaped or J-shaped dose-

response relationship.

We considered g(x) to be a multi-modal curve similar to Calabrese and Baldwin [2002,

Figure 2(j)]. Let

ϕ(x;m, s) =
1

s
√

2π
exp−

1
2(x−ms)

2

.

then, for example two:

g(x) =

.7ϕ(x; 4, .15) + .45ϕ(x; 6, .5) 2 ≤ x ≤ 8

−1
2(x− 8.5)2 + c0 8 < x ≤ 10

where c0 = .7ϕ(8; 4, .15) + .45ϕ(8; 6, .5) + 1
2(0.5)2 is calculated to guarantee continuity on the

function. We allow the slope of g to change at different rate in each mode on the function

to make the level set estimation more difficult. Moreover, these sharp changes are observed

in different graphs that Calabrese and Baldwin [2002] reference. We show in Figure 3.4 the

plot for g, the levels considered and the corresponding sets LSλ.

We consider the levels λ = 0.05, 0.10, 1.00, 1.30, 1.40, 1.50. As for example one, we include

the local polynomial estimator and the LSCV bandwidth selector as alternative approaches

to estimate LSλ. In Table 3.3 we show the proportion of samples where hopt(L̂Sλ,opt) yielded

a smaller error than hLSCV (L̂Sλ,LSCV) or L̂Sλ,LP. We include the adjusted p-values for the

Wilcoxon rank tests for paired errors. We use the Holm-Bonferroni correction to account

for multiple comparisons. The top table refers to the results from 250 Monte Carlo samples

of 1, 000 observations each. The lower table refers to 250 Monte Carlo samples of 100, 000

70

Figure 3.4: True g function for example two. We included the true level sets for λ = 0.05
(red), λ = 0.10 (green), λ = 1.00 (blue), λ = 1.30 (dark pink),λ = 1.40 (black) and λ = 1.50
(purple).

observations each.

Next, we take the levels λ = 0.05, 1.00, 1.50 as these summarize what we observed for all

levels in Table 3.3. We compare the performance of our bandwidth selector and the LSCV

bandwidth selector in Figure 3.5. Every circle in the plot is a sample by sample comparison

between the estimators where µopt is on the x-axis and µLSCV on the y-axis. We also include

density plots for the logarithm of the ratio µLSCV/µopt. The top two rows in Figure 3.5

show the results for 250 Monte Carlo samples of 1, 000 observations each, while the lower two

show 250 Monte Carlo samples of 100, 000 observations each. In Figure 3.6 we compare the

plug-in estimator with our bandwidth selector (L̂Sλ,opt) against L̂Sλ,LP. Figure 3.6 shows the

comparisons for 250 Monte Carlo samples of 1, 000 observations (two top rows) and 100, 000

observations (last two rows).

In general, our bandwidth selector offers an advantage to the LSCV bandwidth selector

71

Figure 3.5: Sample by sample comparison between hopt and hLSCV for example two. We graph
µopt on the x-axis and µLSCV on the y-axis. We also include density plots for the logarithm
of the ratio µLSCV/µopt. We considered (from left to right) the levels λ = 0.05, 1.00, 1.50.
The first two rows correspond to the results from 250 Monte Carlo samples of 1,000 obser-
vations each. The last two rows show the results from 250 Monte Carlo samples of 100, 000
observations each.

and the local polynomial estimator except for λ = 1.00. This behaviour on the plug-in

estimator was also observed in Samworth and Wand [2010]; Doss and Weng [2018]. As

72

Figure 3.6: Sample by sample comparison between L̂Sλ,hopt and L̂Sλ,hLP for example two.
We graph µopt on the x-axis and µLP on the y-axis. We also include density plots for the loga-
rithm of the ratio µLP/µopt. We considered (from left to right) the levels λ = 0.05, 1.00, 1.50.
The first two rows correspond to the results from 250 Monte Carlo samples of 1,000 obser-
vations each. The last two rows show the results from 250 Monte Carlo samples of 100, 000
observations each.

observed here, the authors noted that their plug-in estimator did not offer an advantage

across all levels and densities when compared to the cross-validation bandwidth selector.

73

vs LSCV vs LP

λ proportion µopt < µLSCV adj. p-val proportion µopt < µLP adj. p-val

0.05 0.792 1.324e-23 0.564 8.881e-04
0.10 0.756 5.211e-18 0.556 3.272e-02
1.00 0.304 1 0.240 1
1.30 0.700 1.019e-15 0.856 8.761e-33
1.40 0.844 8.504e-31 0.944 1.380e-40
1.50 0.880 2.829e-37 0.988 7.546e-42

vs LSCV vs LP

λ proportion µopt < µLSCV adj. p-val proportion µopt < µLP adj. p-val

0.05 0.696 7.952e-12 0.576 0.00513
0.10 0.652 2.990e-09 0.548 0.024
1.00 0.388 1 0.352 1
1.30 0.460 1 0.560 0.061
1.40 0.780 2.64e-15 0.836 2.64e-15
1.50 0.852 2.64e-15 0.936 2.64e-15

Table 3.3: Summary of the results for example two. On top we summarize the results for 250
Monte Carlo samples of 1000 observations each. We present the proportion of the samples
for which the error from the LSCV bandwidth selector (or local polynomial estimator) is
greater than the error yielded from our bandwidth selector. We also include the p-values
for one-sided Wilcoxon rank tests for the paired errors. We applied the Holm-Bonferroni
correction to account for multiple comparisons. The table below presents the same results,
but for 250 Monte Carlo samples of 100,000 observations each.

74

Example three

Here we consider the doppler function. This function is a common example for nonparametric

regression, see [Wasserman, 2006]. In particular, we consider a truncated version of the

doppler function. Let

g(x) =
√
x(1− x) sin

(
2.1π

x+ 0.5

)
for x ∈ [0.1, 1].

We show in Figure 3.7 the plot for g, the levels considered and the corresponding sets LSλ.

Figure 3.7: True g function for example three. We included the true level sets for λ = 0.18
(red), λ = 0.25 (green), λ = 0.30 (blue) and λ = 0.40 (deep pink).

In example three, we consider the levels λ = 0.18, 0.28, 0.30, 0.40. As before, we compare

our bandwidth selector against the LSCV bandwidth selector and the local polynomial kernel

estimator. In Figure 3.8 we compare the performance of our bandwidth hopt against hLSCV.

We consider two sets of 250 Monte Carlo samples. The results in the top two rows in the

figure refer to samples of 1, 000 observations each. In the last two rows, the samples have

75

vs LSCV vs LP

λ proportion µopt < µLSCV adj. p-val proportion µopt < µLP adj. p-val

0.18 0.244 1 0.632 1.233e-07
0.25 0.336 1 0.684 2.537e-09
0.30 0.468 1 0.576 0.021
0.40 0.532 0.096 0.436 1

vs LSCV vs LP

λ proportion µopt < µLSCV adj. p-val proportion µopt < µLP adj. p-val

0.18 0.348 1 0.96 1.76e-15
0.25 0.244 1 0.936 1.76e-15
0.30 0.372 1 0.912 1.76e-15
0.40 0.868 1.76e-15 0.368 1

Table 3.4: Summary of the results for example three. On top we summarize the results for
250 Monte Carlo samples of 1000 observations each. We present the proportion of the samples
for which the error from the LSCV bandwidth selector (or local polynomial estimator) is
greater than the error yielded from our bandwidth selector. We also include the p-values
for one-sided Wilcoxon rank tests for the paired errors. We applied the Holm-Bonferroni
correction to account for multiple comparisons. The table below presents the same results,
but for 250 Monte Carlo samples of 100,000 observations each.

100, 000 observations each. Every circle in the plot is a sample by sample comparison between

the estimators where µopt is on the x-axis and µLSCV on the y-axis. We also include density

plots for the logarithm of the ratio µLSCV/µopt. Next we contrast our bandwidth selector with

the local polynomial kernel estimator. We compare the performance of these two estimators

in the same spirit as we did with the LSCV bandwidth selector. Figure 3.9 shows the results.

As before, we consider samples of 1, 000 and 100, 000 observations. We observe that our

estimator L̂Sλ,opt offers an advantage compared to the local polynomial estimator L̂Sλ,LP for

both sample sizes.

We summarize the results from our simulations in Table 3.4. We present the proportion

of samples for which our bandwidth selector had a smaller error than the LSCV bandwidth

76

selection and local polynomial estimator. Our bandwidth selector offers an advantage to the

local polynomial estimator. However, this is not the case when compared to the LSCV. We

observe that only for the highest level λ = 0.40 our bandwidth selector performs better than

the LSCV. Figure 3.10 shows that hopt yields an estimator for g that has less variability

mainly seen in the last mode of the function. We see that since hopt is chosen by minimizing

a local loss function, ĝhopt fits better the true function g on the regions closer to the level

λ = 0.40 as compared to the estimator with the LSCV bandwidth.

77

Figure 3.8: Sample by sample comparison between hopt and hLSCV for example three.
We graph µopt on the x-axis and µLSCV on the y-axis. We also include density plots
for the logarithm of the ratio µLSCV/µopt. We considered (from left to right) the levels
λ = 0.18, 0.25, 0.30, 0.40. The first two rows correspond to the results from 250 Monte Carlo
samples of 1,000 observations each. The last two rows show the results from 250 Monte Carlo
samples of 100, 000 observations each.

78

Figure 3.9: Sample by sample comparison between L̂Sλ,hopt and L̂Sλ,hLP for example
three. We graph µopt on the x-axis and µLP on the y-axis. We also include density
plots for the logarithm of the ratio µLP/µopt. We considered (from left to right) the lev-
els λ = 0.18, 0.25, 0.30, 0.40. The first two rows correspond to the results from 250 Monte
Carlo samples of 1,000 observations each. The last two rows show the results from 250 Monte
Carlo samples of 100, 000 observations each.

79

Figure 3.10: We randomly select ten Monte Carlo samples of 100,000 observations each. The
solid line in each plot represents the truncated doppler function in example three. The plot
at the top left corner shows ten estimators ĝhLSCV

(dotted curves) for the truncated doppler
function. The plot at the top right corner shows ten estimators ĝhopt (dashed curves) with
the bandwidth chosen optimally for the level λ = 0.40. The plots at the bottom show close
up images of the function.

80

Next, we study the case when the distribution of the outcome Y , conditional on the

covariate X, is a member of the exponential family. We consider the special case when Y is

binary.

3.5.2 A binary outcome

Let Y take values {0, 1} and x ∈ R. Assume the conditional density fY |X(y) is a member of

the exponential family reviewed in Section 2.2.1.2. Consider the regression model

Ψ (g(x)) = η(x)

where g(x) = E[Y |X = x] and Ψ is the canonical link function for the Bernoulli distribution

Ψ(s) = log

(
s

1− s

)
.

Recall that the asymptotic risk and therefore our bandwidth hopt depend on the unknown

derivatives g′ and g′′. One can replace them with kernel estimators, as we did for Y Gaussian.

Let h1 and h2 be the bandwidths for the derivatives of g. Recall that for Y Gaussian we let

h1 = h2 = hLP, the optimal bandwidth for the local polynomial kernel estimator of degree

one proposed in Fan et al. [1995] and reviewed in Section 2.2.2.3

hLP =

[∫
σ2

0,1(x;K)f(x)w(x)dx

{
∫
z2K0,1(z)dz}2{

∫
η(2)(x)2f(x)w(x)dx}

]1/5

n−1/5.

However, computing hLP for Y not Gaussian is more complex. Fan et al. [1995] suggests a

“rough-and-ready” bandwidth. The authors suggest to fit η with a polynomial which degree

is at least two. Nevertheless, this bandwidth has no asymptotic properties and therefore we

will use the oracle bandwidths here.

Let c∗opt be the argument that minimizes the asymptotic risk where we assume all functions

are known. Thus, the oracle bandwidth for our bandwidth selector discussed in Section 3.3

is h∗opt = c∗optn
−1/5. We do the same for the local polynomial optimal bandwidth. We assume

81

all functions in hLP are known and obtain the oracle bandwidth h∗LP. The corresponding

plug-in estimators for LSλ are thus

L̂S
∗
λ,opt = {x : ĝn,h∗opt ≥ λ}

L̂S
∗
λ,LP = {x : ĝn,h∗LP

≥ λ}.

These estimators yield the errors

µ∗opt = µf

(
LSλ4L̂S

∗
λ,opt

)
µ∗LP = µf

(
LSλ4L̂S

∗
λ,LP

)
.

For this simulation study we transform g in example one. Let

g̃(x) =
2

3

1√
2π

exp−
1
2
x2 +

10

3

1√
2π

exp−50x2 for x in [-4,4].

We now consider

g(x) = 10g̃(x)− 3 for x in [-4,4].

Figure 3.11 shows the plot for g and the true level sets in this simulation study. As before,

we simulate 250 Monte Carlo samples of 1, 000 observations each. We take into account

the levels λ = 0.1908, 0.4034, 0.80, 0.90. In Figure 3.12 we compare the performance of the

estimators L̂S
∗
λ,opt and L̂S

∗
λ,LP. We refer to the level set estimators and not the bandwidths

since the local polynomial kernel estimator, reviewed in Section 2.2.2.3, is different to the

Nadaraya Watson kernel estimator used for L̂S
∗
λ,opt. Each point represents one sample. The

error µ∗opt is on the x-axis and µ∗LP is on the y-axis. We also include density plots for the

logarithm of the ratio µ∗LP/µ
∗
opt. We summarize the results from our simulation in Table 3.5.

We include the proportion of the samples where our estimator yielded a smaller error than

the local polynomial estimator. To compute the necessary bandwidths for both estimators,

we assume all functions are known. We observe that our estimator gives an advantage over

82

Figure 3.11: True g function for example with Y binary. We included the true level sets
for λ = 0.1908 (long-dashed line), λ = 0.4034 (dot-dashed line), λ = 0.80 (dotted line) and
λ = 0.90 (dashed line).

the local polynomial for three of the four level considered.

λ proportion µ∗opt < µ∗LP adj. p-val

0.1908 0.332 1
0.4034 0.968 4.925e-42
0.80 0.852 8.927e-36
0.90 0.840 2.758e-35

Table 3.5: Summary of the results for the example with Y binary. We summarize the results
for 250 Monte Carlo samples of 1000 observations each. We present the proportion of the
samples for which the error from the local polynomial estimator with bandwidth h∗LP is
greater than the error yielded from our oracle bandwidth selector (h∗opt). We also include
the p-values for one-sided Wilcoxon rank tests for the paired errors. We applied the Holm-
Bonferroni correction to account for multiple comparisons.

83

Figure 3.12: Sample by sample comparison between L̂S
∗
λ,opt and L̂S

∗
λ,LP. We graph µ∗opt on

the x-axis and µ∗LP on the y-axis. We also include density plots for the logarithm of the
ratio µ∗LP/µ

∗
opt. We considered (from left to right) the levels λ = 0.1908, 0.4034, 0.80, 0.90.

We considered 250 Monte Carlo samples of 1,000 observations each for the example with Y
binary.

To conclude, in this simulation study we observe that our bandwidth selector offers some

advantage to the alternative LSCV or local polynomial plug-in estimator. However, as it was

discussed in the highest density region problem (Samworth and Wand [2010]; Doss and Weng

[2018]), our bandwidth selector does not perform better than the alternative estimators for

all regression functions (or density functions for the HDR problem) or across all levels. Recall

xj are the points such that g(xj) = λ. On the cases where our estimator did not improve,

we observe that the estimators for g′(xj) and g′′(xj) were not accurate therefore affecting the

results.

In this thesis we consider the bandwidth selector that we propose as an initial step into

level set estimation with a plug-in estimator. Our approach is centred into optimizing the

smoothing parameter h, but this is not the only approach possible. Studying an estimator

84

different from the kernel estimator is a worth future project. One could estimate g with splines

[Schoenberg, 1946] or wavelets. The later one being functions that are locally adaptive (see

Wasserman [2006]) and therefore could be an interesting estimator to study in the context

of level set estimation. In the next section we present an example of application considering

data on decompression sickness.

3.6 A decompression sickness study

Decompression sickness (DCS) occurs when pressure around the body decreases rapidly. It

can happen in the air or in the water. During the decompression, dissolved gases form bubbles

that travel to any part of the body. Therefore, the DCS can provoke different symptoms and

produce a damage of various degrees from pain, to paralysis, or death. Examples of situations

where DCS can occur are: diving, working in a caisson, flying in an unpressurised aircraft

and extra vehicular activity from space (Cooper and Hanson [2021]).

Researchers from the University of Wisconsin conducted an experiment to study the

effects of the DCS in the human body. They used sheep as the experimental subjects and

simulated dives in a pressure chamber. The data set contains the results for n = 1108 sheep.

For each, the designed pressure (in absolute atmospheres) and duration (in minutes) was

recorded. The outcomes for the central nervous system, respiratory disease, limb bends and

mortality were also included.

This data set has been studied in the context of the ED problem in Li et al. [2008]

and more recently in Jankowski et al. [2014]. We refer the reader to these papers and the

references that there appear for a more thorough discussion on the data collection for this

experiment.

Here we consider pressure and duration as the covariates and mortality as the outcome.

Because our theory is developed for a one dimension problem, we perform a princial com-

ponent analysis (PCA) on pressure and duration. Let Z ∈ R, the PCA score, be the new

covariate and note the outcome is binary with values {0, 1}. A value of 1 in the outcome

represents that the sheep died. Thus, for g(z) = E[Y |Z = z] and a fixed level λ ∈ (0, 1), the

85

LSλ level set is

LSλ = {z : g(z) ≥ λ}.

Our goal then is to select the optimal bandwidth for the plug-in estimator

L̂Sn,λ = {z : ĝn,h(z) ≥ λ}.

Recall that our asymptotic risk function depends on the first two derivatives of g. We code

the algorithm in Fan et al. [1995] to compute kernel estimators for g′ and g′′ with bandwidths

h1 and h2 respectively. To reduce the computational complexity, we set h1 = h2 = hLP . The

bandwidth hLP is the optimal bandwidth of the local polynomial kernel regression estimator

(with degree one) for g. In addition, our asymptotic risk depends on an initial estimator ĝ(0)

and points zj such that ĝ(0)(zj) = λ for j = 1, . . . , 2r for some r > 0. We observed that

for some points zj we had that f̂h0(zj) = 0, which brings numerical errors in our asymptotic

risk. To avoid this situation, we transformed zj by adding a difference δ > 0 such that

f̂h0(zj + δ) 6= 0.

Let hLSλ be the optimal bandwidth for the estimator of the level set LSλ. In addition,

let ĝn,h be the Nadaraya-Watson kernel regression estimator with bandwidth h. We show

in Figure 3.13 the estimators ĝn,hLSλ
and the corresponding level sets L̂Sn,λ for levels λ =

0.20, 0.50, 0.80. The estimator ĝn,h is smoother in the bottom plot of the figure. This happens

because for the level set λ = 0.80, the fluctuations of the function in the interval [−2, 1) have

lesser importance. Therefore, the optimal bandwidth for this level set is visibly larger than

the optimal bandwidth for λ = 0.20 where the fluctuations of the function are more important

to estimate LS0.20 accurately.

86

Decompression sickness study

Figure 3.13: In every plot we show the observed outcomes and PCA scores. From top
to bottom we considered the levels λ = 0.20, 0.50, 0.80. We included the Nadaraya-Watson
estimator ĝn,hLSλ

with the bandwidth that is optimal for every level set. The shaded rectangles

in each plot show the actual estimated level set L̂Sn,λ.

87

Chapter 4

PART II: Alternative estimators for

the highest density region, two

simulation studies

In this section we revisit the simulation study for the highest density region (HDR) in Sam-

worth and Wand [2010]. For a density f and a fixed 0 < p < 1, recall from Section 2.3.4 that

the 100(1− p)% HDR is the set defined as

HDRp =
{
x : f(x) ≥ λp

}
.

This is a special type of a level set. The level λp depends on f as follows

λp = inf
{
λ ∈ (0,∞) :

∫ ∞
−∞

f(x)1{f(x)≥λ}dx ≤ 1− p
}
.

Here we consider two estimators of f . Each will yield a plug-in estimator for the HDR.

In the following section we start with the local polynomial kernel density estimator. We

will compare its approximation error against the bandwidth selector in Samworth and Wand

[2010]. Then we will study the log-concave plug-in estimator for the HDR. We estimate f

with the log-concave mixture model proposed in Boonpatcharanon [2019]. An advantage of

88

this type of estimator is that it does not require an extra smoothing parameter as the kernel

estimator does.

4.1 A simulation study with a local polynomial kernel density

estimator

For a bandwidth h and data points X1, . . . , Xn, recall the kernel density estimator

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
.

A plug-in kernel estimator for the HDR is thus

ĤDRp,h =
{
x : f̂h(x) ≥ λ̂p,h

}
where the level λp is estimated as

λ̂p,h = inf
{
λ ∈ (0,∞) :

∫ ∞
−∞

f̂h(x)1{f̂h(x)≥λ}dx ≤ 1− p
}
.

Samworth and Wand [2010] proposed an algorithm to select the optimal bandwidth for

ĤDRp,h. We summarize the authors’ method in Section 2.3.4. We recall the loss function

studied in Samworth and Wand [2010] for the estimator ĤDRp,h

µf

(
ĤDRp,h4HDRp

)
=

∫
ĤDRp,h4HDRp

f(x)dx.

where A4B = (A∩Bc)∪ (Ac ∩B). The optimal bandwidth hopt is thus the bandwidth that

minimizes the asymptotic expansion of E
[
µf

(
ĤDRp,h4HDRp

)]
where the expectation is

taken with respect to the data. We compare the estimator ĤDRp,hopt with the local poly-

nomial estimator available in the locpoly function within the KernSmooth R-package. Let

ĤDRp,hLP
be the latter and hLP its optimal bandwidth. We compute hLP with the function

dpik also from the KernSmooth R-package. The method for selecting the bandwidth hLP is

89

a direct-plug in estimator where the unknown functionals are replaced with kernel estimators

as described in Chapter 3 in Wand and Jones [1994]. The corresponding loss function for the

local polynomial kernel estimator is thus

µf

(
ĤDRp,hLP

4HDRp

)
=

∫
ĤDRp,hLP

4HDRp

f(x)dx.

We consider the ten densities in Marron and Wand [1992b] and studied in Samworth and

Wand [2010]. For every density we simulated 250 Monte Carlo samples of 1, 000 observations

each. For a fixed density f , let ĤDR
[i]

p,hLP
and ĤDR

[i]

p,hopt be the HDR estimators for the ith

sample with errors

µLP
f,p = µf

(
ĤDR

[i]

p,hLP
4HDRp

)
µoptf,p = µf

(
ĤDR

[i]

p,hopt4HDRp

)
.

We consider the values p = 0.20, 0.50, 0.80 for all ten densities and compare the error µLP
f,p

against µoptf,p. In particular, consider density four in Marron and Wand [1992b]

f4(x) =
2

3
ϕ(x; 0, 1) +

1

3
ϕ(x; 0, .10).

This is a mixture of two normal distributions ϕ(x;µ, σ) with mean µ and standard deviation

σ. Figure 4.1 shows the density and the HDRs considered here.

Next, we simulate 250 Monte Carlo samples of 1, 000 observations each from density f4.

We then compare the performance of the estimators ĤDRp,hLP
and ĤDRp,opt. We show the

results in Figure 4.2. Every circle in the plot is a sample by sample comparison between the

estimators where µLP
f,p is on the x-axis and µoptf,p on the y-axis. In the figure we also include

density plots for the logarithm of the ratio µLP
f,p/µ

opt
f,p. For each p we ran a Wilcoxon test for

the paired errors. We observed that for p = .20 the errors are not statistically different. For

p = 0.50, 0.80, the estimator ĤDRp,opt yields a statistically lower error compared to ĤDRp,hLP
.

These results coincide with those from example one in Section 3.5. The local polynomial

90

Figure 4.1: Plot for density f4(x). We included the true HDRs for p = 0.20, 0.50, 0.80.

kernel estimator does not perform well for larger values of p (or λ in the regression problem).

In the HDR problem we observe larger errors for ĤDRp,hLP
. In the level set estimation

problem we observe that the local polynomial returns an empty set in almost all samples

considered. In both cases we notice that the bandwidth hLP returns an estimator that does

not capture the peak in the density (or regression function) correctly.

We carry out similar simulations to the remaining nine densities and compare both esti-

mators in every case. We consider p = 0.20, 0.50, 0.80 as before. In Table 4.1 we present all

the Wilcoxon tests that we conducted. We applied the Holm-Bonferroni correction to account

for multiple comparisons within each density. The estimator ĤDRp,opt proposed in Samworth

and Wand [2010] offers an advantage in 15 out of the 30 paired comparisons. Samworth and

Wand [2010] reached a similar conclusion when comparing the plug-in estimator using their

bandwidth selector hopt against the plug-in estimator using the least-squares cross validation

optimal bandwidth. In Section 3.5 we apply the ideas in Samworth and Wand [2010] to the

regression setting. Instead of a density, we consider a regression function. We observed that

91

the optimal bandwidth hopt proposed in Section 3.3 offers an advantage for some functions,

but this does not occur uniformly.

In the next section we study an alternative plug-in estimator. Instead of estimating the

density in HDRp with a kernel estimator, we estimate it with the log-concave mixture model.

This is a non parametric estimator that does not require a smoothing parameter as is the

case for the kernel estimator. For this estimator we assume that the true density comes from

a mixed model where the marginal densities are log-concave.

Figure 4.2: Sample by sample comparison between ĤDRp,hopt and ĤDRp,hLP
for f4(x). We

graph µLP
f,p on the x-axis and µoptf,p on the y-axis. In the figure we also include density plots

for the logarithm of the ratio µLP
f,p/µ

opt
f,p. We considered (from left to right) the values of

p = 0.20, 0.50, 0.80. Here we simulate 250 Monte Carlo samples of 1,000 observations each.

92

4.2 A simulation study on the log-concave highest density re-

gion estimator

Consider the model

f(x) =
m∑
j=1

πjfj(x)

where an observation x ∈ R comes from a mixture of m densities fj(x) for j = 1, . . . ,m.

Assume that each of these densities is log-concave. This is called the log-concave mixture

model (LCMM)

f(x) =

m∑
j=1

πj expϕj(x)

The goal is to estimate the number of components m, the mixing proportions π1, . . . , πm

such that
∑m

j=1 πj = 1 and the concave functions ϕ1, . . . , ϕm.

Estimation of the log-concave mixed model

For a fixed number of components, the mixing proportions π1, . . . , πm, as well as the concave

functions are estimated using the EM algorithm. In the expectation step π̂j are obtained as,

ŵ
(t)
ij =

π̂
(t−1)
j fj

(
xi| λ̂

(t−1)
)

∑m
j=1 π̂

(t−1)
j fj

(
xi| λ̂

(t−1)
)

π̂
(t)
j =

∑n
i=1 ŵ

(t)
ij

n

where fj

(
x| λ̂

(t−1)
)

is the log-concave maximum likelihood estimator at the previous iter-

ation. In the maximization step, the set of parameters for the log-concave density, that is

ϕ̂j are updated using the log-concave maximum likelihood estimator which can be computed

using the logcondens R-package. Note that we need initial values for the mixing proportions

π
(0)
j j = 1, . . . ,m to run the EM algorithm.

93

One popular criteria for model selection is the Bayesian information criteria (BIC). It

is derived from the posterior probability of the model given the data set. Let λ be the

parameters of the model, the BIC criterion is written as

BIC = −2l(λ̂MLE) + |λ| ln(n)

where λ̂MLE is the maximum likelihood estimator of λ and |λ| is the number of components.

Under the LCMM, Boonpatcharanon [2019] proposed a new criterion called the log-concave

BIC

LCBIC = −2l(ϕ̂MLE) + |θ| ln(n)−
k∑
j=1

ln(πj) +
k∑
j=1

ln |I(ϕ̂j)|

where |θ| is the number of free parameters in the model and I(ϕ̂j) is the Fisher’s information

matrix of the jth component. The authors thus use this criterion to choose the number of

components m and then estimate the parameters iteratively with the EM algorithm sum-

marized above. We use this technique to estimate the highest density region discussed in

Section 2.3.4.

A Simulation study

Recall that for a density f and a probability p, the highest density region (HDR) is the set

HDRp = {x : f(x) > λp}

where

λp = inf
{
λ ∈ (0,∞) :

∫ ∞
−∞

f(x)1{f(x)≥λ}dx ≤ 1− p
}
.

94

We study the plug-in estimator where f is estimated with the LCMM estimator

f̂LC(x) =
m̂∑
j=1

π̂j f̂j(x).

Here f̂j(x) is the log-concave maximum likelihood estimator for j = 1, . . . , m̂. The log-concave

HDR estimator is thus the set

ĤDRLC,p = {x : f̂LC(x) > λ̂p}

with

λ̂p = inf
{
λ ∈ (0,∞) :

∫ ∞
−∞

f̂LC(x)1{f̂LC(x)≥λ}dx ≤ 1− p
}
.

In the simulation study we consider density four and density six in Marron and Wand

[1992b]

f4(x) =
2

3
N (0, 1) +

1

3
N

(
0,

1

10

)
f6(x) =

1

2
N

(
−1,

2

3

)
+

1

2
N

(
1,

2

3

)
.

Both densities are a mixture of log-concave densities. In addition, we study a misspecifi-

cation case. We consider a mixture of T densities. Let T (x; d) be the t-distribution with d

degrees of freedom. We consider

fT (x) =
2

3
T (x; 5) +

1

3
T (x; 2).

Here we consider the probabilities p = 0.20, 0.50, 0.80 in accordance to the levels considered in

Samworth and Wand [2010]. The true HDRs for densities f4, f6 and fT appear in Figure 4.3.

For every level p, we simulated 250 Monte Carlo samples. For density f4 and fT , the size of

each sample is of 1000 observations. For density f6, 5000. We increase the sample size for f6

95

to improve the estimation of m.

Let ĤDRhopt,p be the kernel estimator in Samworth and Wand [2010], reviewed in Sec-

tion 2.3.4. Recall that this is the plug-in estimator for the set HDRp where f is estimated

with a kernel density estimator and hopt is the optimal bandwidth proposed in Samworth and

Wand [2010]. For the ith sample, let ĤDR
[i]

LC,p be the log-concave HDR estimator. Then we

compute its error

µf

(
ĤDR

[i]

LC,p4HDRp

)
=

∫
ĤDR

[i]

LC,p4HDRp

f(x)dx.

We repeat this step but with ĤDR
[i]

hopt,p instead. Next, we compare both errors for each of

the 250 Monte Carlo samples. We present the results in Figure 4.4, Figure 4.5 and Figure 4.6

where each point represents a sample by sample comparison between the two estimators.

Each figure also includes density plots for the logarithm of the estimators errors’ ratio. We

observe that for some samples, the number of components in the LCMM was incorrectly

estimated. Therefore, we mark these points in red and included an additional curve in each

density plot. This additional curve (dashed line) contains only the samples for which the

number of components are correctly estimated. The greatest difference between the curve

that contains all samples and the curve that contains only those with the correct estimation

of m is observed for fT in Figure 4.6 as expected. For f4 only in 6 out of 250 samples m

was incorrectly estimated. We complement the plots just described with boxplots. We divide

again the results from the log-concave HDR estimator depending if m was correctly estimated

(LCHDR (c)) or not (LCHDR (i)).

From the plots we observe that when m is correctly estimated, the performance of the

log-concave HDR estimator has significant improvement. We thus repeat the simulations

described previously. For all densities considered we exchange m̂ for the true value m = 2.

We also consider samples with 300 observations and 1000 observations. We present the results

for density f4 in Figure 4.9, for density f6 in Figure 4.10 and for the misspecified model fT

in Figure 4.11.

96

Figure 4.3: HDR for three densities. At the top of the figure: f4(x) and f6(x). At the
bottom, the mixture of t-distributions fT . We show the HDRs when p = .20 (dashed line),
p = .50 (dotted line) and p = .80 (dash-dotted line).

97

Figure 4.4: Comparison between the log-concave HDR and the kernel HDR estimators for
f4(x). We classify the errors for the log-concave HDR estimators based on the estimator of
the number of components in the LCMM (m̂). The label LCHDR (c) and the points in black
refer to the log-concave HDR with m correctly estimated, while LCHDR (i) and red points
refer to the log-concave HDR with m incorrectly estimated. We show the results for 250
Monte Carlo samples of 1000 observations each and three probabilities p = 0.20, 0.50, 0.80.
For each probability we include at the bottom a density plot for the logarithm of the ratio
of the kernel HDR estimate and the LCHDR estimate.

98

Figure 4.5: Comparison between the log-concave HDR and the kernel HDR estimators for
f6(x). We classify the errors for the log-concave HDR estimators based on the estimator of the
number of components in the LCMM (m̂). The label LCHDR (c) and the points in black refer
to the log-concave HDR with m correctly estimated, while LCHDR (i) and red points refer
to the log-concave HDR with m incorrectly estimated. We show the results for 250 Monte
Carlo samples of 5000 observations each and three probabilities p = 0.20, 0.50, 0.80.For each
probability we include at the bottom a density plot for the logarithm of the ratio of the kernel
HDR estimate and the LCHDR estimate.

99

Figure 4.6: Comparison between the log-concave HDR and the kernel HDR estimators for
the misspecification case fT . We classify the errors for the log-concave HDR estimators based
on the estimator of the number of components in the LCMM (m̂). The label LCHDR (c) and
the points in black refer to the log-concave HDR with m correctly estimated, while LCHDR
(i) and red points refer to the log-concave HDR with m incorrectly estimated. We show
the results for 250 Monte Carlo samples of 1000 observations each and three probabilities
p = 0.20, 0.50, 0.80.For each probability we include at the bottom a density plot for the
logarithm of the ratio of the kernel HDR estimate and the LCHDR estimate.

100

Figure 4.7: Boxplots for the errors that result from the estimators ĤDRLC,p and ĤDRhopt,p.
The plot at the top shows the results for 250 Monte Carlo samples of 1000 observations each
from density f4. The plot at the bottom shows the results for 250 Monte Carlo samples
of 5000 observations each from density f6. For both cases we consider the probabilities
p = 0.20, 0.50, 0.80. We divide the results for the log-concave HDR estimator into two groups:
LCHDR(c) represents the errors when m in the corresponding LCMM is correctly estimated,
the label LCHDR(i) represents the errors when it is not.

101

Figure 4.8: Boxplots for the errors that result from the estimators ĤDRLC,p and ĤDRhopt,p.
The plot shows the results for 250 Monte Carlo samples of 1000 observations each from the
misspecified model fT . We consider the probabilities p = 0.20, 0.50, 0.80. We divide the
results for the log-concave HDR estimator into two groups: LCHDR(c) represents the errors
when m in the corresponding LCMM is correctly estimated, the label LCHDR(i) represents
the errors when it is not.

102

Figure 4.9: Boxplot comparisons between the log-concave HDR estimator (LCHDR) and the
kernel HDR estimator for f4. We assume the number of components m is known. The top
plot summarizes the estimation errors for 250 Monte Carlo samples with 300 observations.
The plot below summarizes the estimation errors for 250 Monte Carlo samples with 1000
observations. We considered the probabilities p = 0.20, 0.50, 0.80 (from left to right).

103

Figure 4.10: Boxplot comparisons between the log-concave HDR estimator (LCHDR) and the
kernel HDR estimator for f6. We assume the number of components m is known. The top
plot summarizes the estimation errors for 250 Monte Carlo samples with 300 observations.
The plot below summarizes the estimation errors for 250 Monte Carlo samples with 1000
observations. We considered the probabilities p = 0.20, 0.50, 0.80 (from left to right).

104

Figure 4.11: Boxplot comparisons between the log-concave HDR estimator (LCHDR) and the
kernel HDR estimator for the misspecified model fT . We assume the number of components
m is known. The top plot summarizes the estimation errors for 250 Monte Carlo samples
with 300 observations. The plot below summarizes the estimation errors for 250 Monte Carlo
samples with 1000 observations. We considered the probabilities p = 0.20, 0.50, 0.80 (from
left to right).

105

We notice from the results in Figure 4.9 and Figure 4.10 that when the model was correctly

specified, the log-concave HDR estimator offers some advantage to the kernel HDR estimator

for small values of p. For larger values of p the log-concave HDR estimator performs similar

to the kernel estimator. For the misspecified model (the mixture of t-distributions), when

m is known, the log-concave HDR estimator’s performance decreased for samples of 300

observations. However, for larger samples (1000 observations), the performance of the log-

concave HDR is similar to the kernel HDR. Our results suggest that there is a need to

investigate on other estimators for m (the number of components in the LCMM). However,

we think this problem is less complex compared to the bandwidth selection problem for kernel

estimators. For this reason, we consider ĤDRLC,p as a valid alternative estimator to the HDR

plug-in kernel estimator.

4.3 A study on daily temperatures in Melbourne, Australia

We study the data set maxtemp available in the hdrcde R-package. The data set consists of

the daily maximum temperatures observed in Melbourne Australia between 1981 and 1990.

Conditional on today’s maximum temperature, we consider tomorrow’s temperature for

analysis. We group the data based on today’s temperature. We divide the range of to-

day’s maximum temperature into seven intervals. For the first six we create intervals of 5

degrees each, starting at 5 degrees Celsius. That is [5, 10), [10, 15), . . . , [30, 35). For the sev-

enth interval we consider today’s temperatures within [35, 45) degrees to guarantee sufficient

observations.

Figure 4.12 compares the log concave estimates for the 20%, 50% and 80% HDRs against

the kernel HDR estimates using the optimal bandwidth proposed in Samworth and Wand

[2010] and reviewed in Section 2.3.4. The kernel HDR shows that tomorrow’s temperature,

conditional on today’s has a bimodal density when today’s temperature is within [30, 35) or

[35, 45) degrees Celsius. The log-concave HDR does not show this bimodality. However, the

corresponding support for each HDR is visibly longer than the kernel HDR estimate. This

suggests that the density estimator from the LCMM is smoother than the kernel density

106

estimator with the bandwidth proposed in Samworth and Wand [2010].

Figure 4.12: Comparison between the kernel and log-concave estimates for the 20%, 50% and
80% HDRs for the conditional density of tomorrow’s maximum temperatures given today’s.
The plot at the top corresponds to the kernel HDRs. The plot at the bottom shows the
log-concave HDRs. We reflect the latter about the x-axis.

107

Wilcoxon test

Ho: µ
LP
f,p = µoptf,p

density p proportion µLP
f,p < µoptf,p alternative hypothesis adj. p-val

1 0.20 0.268 µoptf,p < µLP
f,p 1.191e-12

1 0.50 0.412 µoptf,p < µLP
f,p 1.410e-04

1 0.80 0.712 µLP
f,p < µoptf,p 9.708e-12

2 0.20 0.188 µoptf,p < µLP
f,p 6.6e-16

2 0.50 0.340 µoptf,p < µLP
f,p 1.117e-09

2 0.80 0.420 µoptf,p < µLP
f,p 4.093e-04

3 0.20 0.556 µLP
f,p < µoptf,p 3.991e-04

3 0.50 0.400 µoptf,p < µLP
f,p 1.27e-05

3 0.80 0.696 µLP
f,p < µoptf,p 6.6e-16

4 0.20 0.468 µoptf,p < µLP
f,p 0.663

4 0.50 0.272 µoptf,p < µLP
f,p 6.6e-16

4 0.80 0.236 µoptf,p < µLP
f,p 6.6e-16

5 0.20 0.288 µoptf,p < µLP
f,p 7.884e-12

5 0.50 0.428 µoptf,p < µLP
f,p 5.453e-04

5 0.80 0.852 µLP
f,p < µoptf,p 6.6e-16

6 0.20 0.716 µLP
f,p < µoptf,p 8.862e-12

6 0.50 0.692 µLP
f,p < µoptf,p 1.053e-14

6 0.80 0.512 µLP
f,p < µoptf,p 0.081

7 0.20 0.260 µoptf,p < µLP
f,p 6.6e-16

7 0.50 0.336 µoptf,p < µLP
f,p 9.892e-07

7 0.80 0.644 µLP
f,p < µoptf,p 1.802e-04

8 0.20 0.396 µoptf,p < µLP
f,p 5.447e-05

8 0.50 0.844 µLP
f,p < µoptf,p 6.6e-16

8 0.80 0.304 µoptf,p < µLP
f,p 1.139e-10

9 0.20 0.956 µLP
f,p < µoptf,p 6.6e-16

9 0.50 0.748 µLP
f,p < µoptf,p 6.6e-16

9 0.80 0.552 µLP
f,p < µoptf,p 1.965e-04

10 0.20 1.000 µLP
f,p < µoptf,p 6.6e-16

10 0.50 0.772 µLP
f,p < µoptf,p 6.6e-16

10 0.80 0.308 µoptf,p < µLP
f,p 1.882e-09

Table 4.1: Summary of the results for density f4(x). We summarize the results for 250 Monte
Carlo samples of 1000 observations each. We present the proportion of the samples for which
the error from the local polynomial estimator is less than µoptf,p. We also include the p-values
for one-sided Wilcoxon rank tests for the paired errors. We applied the Holm-Bonferroni
correction to account for multiple comparisons within each density.

108

Chapter 5

Conclusions

In the first part of this thesis we study the optimal bandwidth selector for the plug-in kernel

estimator of a level set adapted to regression. In particular, we focus on the Nadaraya-

Watson kernel regression estimator in one dimension. We present a local loss function as

an alternative to the L2 metric in the same spirit as Samworth and Wand [2010] and Doss

and Weng [2018]. We then derive an asymptotic approximation of its corresponding risk and

show that the rate of the level set optimal bandwidth hopt = coptn
−1/5 coincides with the

rate from traditional global bandwidth selectors. However, the constant copt is far different

from them. Because the optimal bandwidth has no closed solution, we derive an algorithm to

estimate the constant copt. Thus, the estimator ĉopt yields our practical bandwidth selector.

We then study the performance of this practical bandwidth selector through simulations.

Our simulations show that in general, for small samples and small values of λ, the level set

optimal bandwidth shows improvement in estimating the set LSλ when compared to the cross

validation bandwidth selection or the local polynomial kernel estimator.

As in Samworth and Wand [2010]; Doss and Weng [2018], there are occasions where

improvement is not seen with our method.

In the second part of this thesis, motivated by our simulation findings and the relationship

of the level set estimation to the HDR, we study via simulations the properties of a plug-

in estimator where the density is estimated with the log-concave mixed model. This is a

109

mixture model with marginal densities that are log-concave. In particular, the log-concave

maximum likelihood estimator (Dümbgen and Rufibach [2009]; Cule et al. [2010]) requires no

estimation of tuning parameters which makes it attractive in practice. Our simulations show

that when the number of components in the log-concave mixed model is correctly specified,

the log-concave plug-in estimator performs better than the kernel estimator for lower levels

and similarly for the rest of the levels considered. Therefore, adding shape-constrains to the

density removes the computational burden of bandwidth selection without decreasing the

accuracy.

There are interesting alternative approaches for extending the work here presented. First,

for level set estimation in the context of regression, one could consider an alternative estimator

for g such as wavelets. Wavelets are locally adaptive functions that adjust well to sudden

changes in smoothness in g. Although it is true that this type of estimator needs a large

signal to noise ratio, for the sample sizes considered in Samworth and Wand [2010], this

assumption is reasonable. For a multivariate model, a semiparametric estimator is a feasible

path for extending the ideas in this thesis. Moreover, a semiparametric estimator is easier

to interpret because of its parametric component. Next, in the context of the HDR problem

adding shape constrains decreases the computational complexity and avoids the problem of

bandwidth selection. However, from our simulations we observe there is an opportunity to

develop a new methodology to estimate the number of components in a log-concave mixture

model more accurately. As we discussed before, when the number of components is estimated

correctly, the log-concave plug-in estimator offers an advantage over the kernel estimator. In

addition, we believe that selecting the number of components in the log-concave mixture

model is a less complex problem than that of bandwidth selection.

110

Appendix A

Proofs of main results

A.1 Proof of Theorem 1

Assumptions

Let g = E[Y |X = x] with g2(x) = E[Y 2|X = x]. In order to prove our results, we make the

following assumptions.

(F) The support of the density f, CX is compact. Furthermore, infx∈CX f(x) ≥ bf > 0.

(G) For an arbitrary λ, we assume there exist finitely many points x1 < . . . < xm such

that g(xj) = λ and g′(xj) 6= 0 and that these xj for j = 1, ...,m all lie in the interior

of CX . To simplify the exposition in the proof, we assume that there are an even

number of points. That is m = 2r with g′(x2j−1) > 0 and g′(x2j) < 0. We also define

x0 = inf{x ∈ CX} and x2r+1 = sup{x ∈ CX}.

(K) The kernel K is a non-negative, symmetric density and, defining vk,m =
∫
|sm|Kk(s)ds,

satisfies v1,3, v2,2, v3,4, v4,0 are all finite.

(B) We assume that the bandwidth h = hn → 0 as n→∞. In addition, it is such that nh5

is at most O(1), and that n3h11 log−8 n→∞.

(S) We make the following smoothness assumptions on the underlying functions.

111

local: Let B̃ = ∪mj=1Bη(xj) where Bη(x) denotes a ball of size η around x. There exists

an η > 0 such that the function q is C1(B̃), while f, g2 are C1(B̃) and g is C2(B̃).

global: Both f and g are continuous on CX , and q is an integrable function on CX .

moment: Define the function mk(x) = E[(Y −λ)k|X = x]f(x) and assume that there exists

an Mk(x) such that for k = 2, 4

lim
h→0

sup
s∈(x−CX)/h

mk(x− hs) ≤ Mk(x)

with
∫
CX

M2
2 (x)q(x)dx <∞ and

∫
CX

M4(x)q(x)dx <∞.

The proof of our main result is handled similarly to Samworth and Wand [2010], Doss

and Weng [2018]. The main idea is to first show that the integral in the risk function is

dominated by a neighbourhood of each point xj . Second, in the neighbourhood of each point

xj , the formula is derived by applying the central limit theorem, which allows us to replace the

probabilities with Gaussian distribution functions and the final result follows from integration

by parts. For the most part, our assumptions are similar to those of Samworth and Wand

[2010], Doss and Weng [2018]. In particular, we note that the smoothness assumptions (S1)

on the functions g2, g, f are all one derivative stronger than those needed in the statement of

the theorem. This was also required in Samworth and Wand [2010], Doss and Weng [2018],

and here it is necessary in order to achieve the correct integrated error in the final expression.

The main difference in our approach is that in Samworth and Wand [2010], Doss and Weng

[2018] the first step of the proof (as described above) relies on a concentration inequality for

kernel density estimators. The counterpart of this for the Nadaraya-Watson estimator appears

in Vogel and Schettler [2013]. Alas, the theorem in Vogel and Schettler [2013] requires that

the response variable is bounded. In order to remove this assumption, we used a slightly

different approach and instead transform the inequality ĝn,h(x) ≥ λ which involves a ratio to

the inequality (nh)−1
∑n

i=1(Yi − λ)K((x−Xi)/h) ≥ 0 which does not. The key consequence

of this is the assumption (F) where we need to assume that the density f is bounded below,

which necessitates that the covariate X be bounded. We feel, however, that in practice the

112

assumption of bounded X is a more desirable assumption than that of a bounded response.

In addition to (F), we also now require some additional assumptions on the kernel K, as well

as the smoothness assumptions (S) on the fourth and second moments of Y . The bandwidth

requirements (B) also change slightly. Note that the (S) moment assumption is not difficult to

satisfy since CX is compact. We choose to leave the current formulation in order to emphasize

where the need for (F) arises.

Theorem 1. Suppose that assumptions (B), (F), (G), (K), and (S) hold. Then

E
[
µq

(
LSλ4 L̂Sλ

)]
=

m∑
j=1

q(xj)B1,j(xj)

{
2
φ(
√
nh5B2,j)√
nh

+ h2B2,j

[
2Φ(
√
nh5B2,j)− 1

]}
+o((nh)−1/2 + h2)

where

B1,j =

{
(σ2
Y fv0)1/2

g′f

}
(xj), B2,j = −σ2

K

{
g′′f/2 + g′f ′

(σ2
Y fv2,0)1/2

}
(xj),

where σ2
K =

∫
s2K(s)ds and σ2

Y (x) = Var(Y |X = x).

Proof of Theorem 1. Recall that, ĝn,h(x) denotes the Nadaraya-Watson kernel estimator

ĝn,h(x) =

∑n
i=1K

(
x−Xi
h

)
Yi∑n

j=1K
(
x−Xj
h

) .

The key difficulty in working with this estimator, is that it is defined as a ratio. We therefore

switch out of this formulation. Let Rn,i(x) = h−1K((x−Xi)/h)Yi and Sn,i(x) = h−1K((x−

Xi)/h) with Rn = Rn(x) = n−1
∑n

i=1Rn,i(x) and Sn = Sn(x) = n−1
∑n

i=1 Sn,i(x). Note that

with this notation we have ĝn,h(x) = Rn(x)/Sn(x). We also let Dn,i(x) = (Yi − λ)Sn,i(x)

with Dn(x) = n−1
∑n

i=1Dn,i(x).

113

First, we compute

µq

(
LSλ4 L̂Sλ

)
=

∫
CX

q(x)|1{ĝn,h(x)≥λ} − 1{g(x)≥λ}|dx

=
r∑
j=0

∫ x2j+1

x2j

q(x)|1{ĝn,h(x)≥λ} − 1{g(x)≥λ}|dx

+
r∑
j=1

∫ x2j

x2j−1

q(x)|1{ĝn,h(x)≥λ} − 1{g(x)≥λ}|dx

=
r∑
j=0

∫ x2j+1

x2j

q(x)|1{ĝn,h(x)≥λ} − 0|dx+
r∑
j=1

∫ x2j

x2j−1

q(x)|1{ĝn,h(x)≥λ} − 1|dx.

It thus follows that

µq

(
LSλ4 L̂Sλ

)
=

r∑
j=0

∫ x2j+1

x2j

q(x)1{ĝn,h(x)≥λ}dx+
r∑
j=1

∫ x2j

x2j−1

q(x)1{ĝn,h(x)<λ}dx,

so that the risk function for our estimator is hence

E
[
µq

(
LSλ4 L̂Sλ

)]
=

r∑
j=0

∫ x2j+1

x2j

q(x)P
(
ĝn,h(x) ≥ λ

)
dx

+

r∑
j=1

∫ x2j

x2j−1

q(x)P
(
ĝn,h(x) < λ

)
dx ≡ T1 + T2

where the expectation is taken with respect to the data (X,Y) in the kernel estimator. We

separate the details for each of the two terms defined above, and begin with T1.

For any δ > 0, we write

T1 = T11(δ) + T12(δ) + T13(δ)

114

where

T11(δ) =

r∑
j=1

∫ x2j+δ

x2j

q(x)P
(
ĝn,h(x) ≥ λ

)
dx

T12(δ) =

∫ x1−δ

x0

q(x)P
(
ĝn,h(x) ≥ λ

)
dx+

r−1∑
j=1

∫ x2j+1−δ

x2j+δ
q(x)P

(
ĝn,h(x) ≥ λ

)
dx

+

∫ x2r+1

x2r+δ
q(x)P

(
ĝn,h(x) ≥ λ

)
dx

T13(δ) =
r−1∑
j=0

∫ x2j+1

x2j+1−δ
q(x)P

(
ĝn,h(x) ≥ λ

)
dx.

Similarly, we define

T2 = T21(δ) + T22(δ) + T23(δ)

where

T21(δ) =

r∑
j=1

∫ x2j

x2j−δ
q(x)P

(
ĝn,h(x) < λ

)
dx

T22(δ) =

r∑
j=1

∫ x2j−δ

x2j−1+δ
q(x)P

(
ĝn,h(x) < λ

)
dx

T23(δ) =
r−1∑
j=0

∫ x2j+1+δ

x2j+1

q(x)P
(
ĝn,h(x) < λ

)
dx.

The proof now proceeds via the following steps.

1. Show T12(δ) = o(1/
√
nh) for an appropriate choice of δ and sufficiently large n.

2. Replace δ in step one with δn and write T1 = T11(δn) + T12(δn) + T13(δn) instead.

Extending step one, we show that

T12(δn) ≤ C

(nh)2δ4
n

,

for some constant C, where δn = h/ log n so that δn = o(h). We assume that (nh)3δ8
n =

n3h11 log−8 n→∞ which implies that T12(δn) = o((nh)−1/2).

115

3. Similarly, write T2 = T21(δn) + T22(δn) + T23(δn) and repeat steps one and two above

to show that T22(δn) = o(1/
√
nh).

4. Show that

T11(δn) + T21(δn)

=
1

(nh)1/2

r∑
j=1

{
q(x2j)

∫ (nh)1/2δn

−(nh)1/2δn

|P (Dn(xt2j) < 0)− 1{t<0}|dt

}
+O(δ2

n)

≡ T̃1(δn) +O(δ2
n),

T13(δn) + T23(δn)

=
1

(nh)1/2

r∑
j=1

{
q(x2j−1)

∫ (nh)1/2δn

−(nh)1/2δn

|P (Dn(xt2j−1) < 0)− 1{t≥0}|dt

}
+O(δ2

n)

≡ T̃3(δn) +O(δ2
n)

where xtj = xj + (nh)−1/2t. Since we assume that δn = o(h), we have that the error

O(δ2
n) = o(h2).

5. We next reduce the region of integration in T̃1 from [−(nh)1/2δn, (nh)1/2δn]. Let tn →∞

more slowly than (nh)1/2δn and write Bn,j = [t∗j − tn, t∗j + tn]. The value of t∗j will be

defined within the detailed proof. In this step, we define

T̃11(tn) =
1

(nh)1/2

r∑
j=1

{
q(x2j)

∫
Bn,j

|P (ĝn,h(xt2j) < λ)− 1{t<0}|dt

}

and show that T̃1(δn)− T̃11(tn) = o((nh)−1/2). Repeating the argument shows that

T̃31(tn) =
1

(nh)1/2

r∑
j=1

{
q(x2j−1)

∫
Bn,j

|P (ĝn,h(xt2j−1) < λ)− 1{t≥0}|dt

}

with T̃3(δn)− T̃31(tn) = o((nh)−1/2).

116

6. Define the terms

A(xj) = −
{

g′f

(σ2
Y fv2,0)1/2

}
(xj), B(xj) = −

√
nh5

{
g′′f/2 + g′f ′

(σ2
Y fv2,0)1/2

}
(xj)σ

2
K ,

where v2,0 =
∫
K2(s)ds and σ2

K =
∫
s2K2(s)ds. In this penultimate step we show that

T̃11(tn) + T̃31(tn)

=
1

(nh)1/2

r∑
j=1

{
q(x2j)

∫ ∞
−∞
|Φ (A(x2j)t+B(x2j))− 1{t≥0}|dt

}

+
1

(nh)1/2

r∑
j=1

{
q(x2j−1)

∫ ∞
−∞
|Φ (A(x2j−1)t+B(x2j−1))− 1{t<0}|dt

}

+o((nh)−1/2) +O

(
tnh

3 +
t2nh

2

√
nh

+
t3n
nh

)
,

where Φ denotes the standard normal cumulative distribution function. The main tool

here is the Barry-Esseen theorem, although the extra smoothness assumptions on the

functions g, f, g2 are also used in this step to obtain the required bounds. We therefore

need tn = o((nh)1/6) and tn = o(h−1). We choose tn = (nh)1/6 log−1 n. Since we

assumed that (nh)3 ≥ n3h11 log−8 n→∞ we also have that htn = (nh7)1/6 log−1 n→ 0

as long as nh5 ≤ O(1) as required. Then

T̃11(tn) + T̃31(tn) =
1

(nh)1/2

r∑
j=1

{
q(x2j)

∫ ∞
−∞
|Φ (A(x2j)t+B(x2j))− 1{t≥0}|dt

}

+
1

(nh)1/2

r∑
j=1

{
q(x2j−1)

∫ ∞
−∞
|Φ (A(x2j−1)t+B(x2j−1))− 1{t<0}|dt

}
+o((nh)−1/2).

7. We are now in a position to derive the final expression. Applying Lemma B.3 of Doss

117

and Weng [2018], we have

T̃ ≡ 1

(nh)1/2

r∑
j=1

{
q(x2j)

∫ ∞
−∞
|Φ (A(x2j)t+B(x2j))− 1{t≥0}|dt

}

+
1

(nh)1/2

r∑
j=1

{
q(x2j−1)

∫ ∞
−∞
|Φ (A(x2j−1)t+B(x2j−1))− 1{t<0}|dt

}

=
1

(nh)1/2

r∑
j=1

{
q(x2j)

∫ ∞
−∞
|Φ (−A(x2j)t−B(x2j))− 1{t<0}|dt

}

+
1

(nh)1/2

r∑
j=1

{
q(x2j−1)

∫ ∞
−∞
|Φ (A(x2j−1)t+B(x2j−1))− 1{t<0}|dt

}

=
1

(nh)1/2

2r∑
j=1

q(xj)
2φ(B(xj)) + 2B(xj)Φ(B(xj))−B(xj)

|A(xj)|

=
2r∑
j=1

q(xj)B1,j

{
2
φ(
√
nh5B2,j)√
nh

+ h2B2,j

[
2Φ(
√
nh5B2,j)− 1

]}
,

letting B1,j = 1/|A(xj)| and B2,j = B(xj)/
√
nh5. Collecting the error terms through

steps two to six, we have thus established that

E
[
µq

(
LSλ4 L̂Sλ

)]
= T̃ + o

(
1√
nh

+ h2

)
.

To complete the proof it therefore remains to fill in the details of steps 1-6.

STEP 1. By the local smoothness assumptions in (S) g is C2 in the neighbourhood of

each xj with g(xj) = λ and hence, by the inverse function theorem, g(x) is invertible in a

neighbourhood of each xj for j = 1, . . . , 2r. Therefore, for all sufficiently small ε > 0, we

have that

g−1(λ−ε) = xj−ε
1

g′(xj)
+Oj(ε

2).

Define δε,j = ε/|g′(xj)|+Oj(ε
2). It follows that we can write

{x : g(x) ≤ λ− ε} =

r⋃
j=0

[x2j + δε,2j , x2j+1 − δε,2j+1]. (A.1)

118

It follows that for any δ ≥ maxj∈{0,...,2r} δε,j > 0, we have

r⋃
j=0

[x2j + δ, x2j+1 − δ] ⊂ {x : g(x) ≤ λ− ε} .

Next, consider an x such that g(x) ≤ λ− ε, and note that this implies that (g(x)− λ)f(x) ≤

−εf(x) ≤ −ε̃ < 0, where ε̃ = bfε and bf > 0 is such that infx∈CX f(x) ≥ bf from assumption

(F). Let µ(x) = (g(x)− λ)f(x). Then

P
(
ĝn,h(x) ≥ λ

)
= P

(
Rn(x)− λSn(x) ≥ 0

)
= P

(
Rn(x)− λSn(x) + ε̃ ≥ ε̃

)
= P

(
Dn(x) + ε̃ ≥ ε̃

)
≤ P

(
Dn(x)− µ(x) ≥ ε̃

)
≤ P

(
|Dn(x)− E[Dn(x)]| ≥ ε̃/2

)
+ P

(
sup
x∈CX

|E[Dn(x)]− µ(x)| ≥ ε̃/2
)

noting that the probability on the right hand side is either zero or one. We then show that

this second term above is always zero, as long as n is chosen sufficiently large.

E[Dn(x)]− µ(x)

=

∫
(g(t)− λ)

1

h
K

(
x− t
h

)
f(t)dt− µ(x)

=

∫
(g(x− sh)− λ)f(x− sh)K(s)ds− µ(x)

=

∫ [
{g(x− sh)− g(x)}f(x) + g(x){f(x− sh)− f(x)}

]
K(s)ds→ 0

as n → ∞ since g, f are continuous on CX and hence bounded and uniformly continuous

and we apply the dominated convergence theorem. We have thus shown that for all n large

enough

P
(
ĝn,h(x) ≥ λ

)
≤ P

(
|Dn(x)− E[Dn(x)]| ≥ ε̃/2

)
.

119

We now return to the term T12. For convenience, we write

T12(δ) =

r∑
j=0

∫ x2j+1−δ

x2j+δ
q(x)P

(
ĝn,h(x) ≥ λ

)
dx

using the simplifying convention that x0 + δ = x0 and x2r+1 − δ = x2r+1. Consider now

δ ≥ maxj∈{0,...,2r} δε,j as defined above. Then, for any j = 0, . . . , r and x ∈ [x2j +δ, x2j+1−δ],

g(x) ≤ λ− ε. We thus have that for sufficiently large n

T12(δ) ≤
r∑
j=0

∫ x2j+1−δ

x2j+δ
q(x)P (|Dn(x)− E[Dn(x)]| ≥ ε̃/2) dx

≤
r∑
j=0

∫ x2j+1−δ

x2j+δ
q(x)

E
[
(Dn(x)− E[Dn(x)])4

]
ε̃4

dx

≤ 1

(nh)2ε̃4

∫
CX

(
M4(x) +M2

2 (x)
)
q(x)dx

by Markov’s inequality and Lemma 4, for sufficiently large n.

STEP 2. We next show that the result of step one continues to hold for any appropriate

sequence δn → 0. For such a δn, let εn in (A.1) be such that εn = minj(|g′(xj)|)δn/2 > 0. For

all sufficiently large n and for any j = 0, . . . , r we then have that x ∈ [x2j + δn, x2j+1 − δn],

g(x) ≤ λ− εn. To see this, note that if g′(xj) > 0, then

g−1(λ− εn) = xj −
εn

g′(xj)
+ C∗j ε

2
n

= xj −
minj(|g′(xj)|)δn

2g′(xj)
+ C∗j δ

2
n

≥ xj − δn(1/2 + C∗j δn) ≥ xj − δn.

120

Similarly, if g′(xj) < 0, then

g−1(λ− εn) = xj −
εn

g′(xj)
+ C∗j ε

2
n

= xj +
minj(|g′(xj)|)δn

2|g′(xj)|
+ C∗j δ

2
n

≤ xj + δn(1/2 + C∗j δn) ≤ xj + δn.

In the above, the constants are uniformly bounded, though may change from line to line.

We may thus repeat the argument in step one to show that

T12(δn) ≤ C

(nh)2δ4
n

∫
CX

(
M4(x) +M2

2 (x)
)
q(x)dx,

for some finite constant C. It follows that T12(δn) = o(1/
√
nh) as long as (nh)3δ8

n →∞.

STEP 3. We now repeat steps one and two to obtain a bound for term T22(δn). Again, by

assumption (S) for all sufficiently small ε > 0, we have that

g−1(λ+ ε) = xj+ε
1

g′(xj)
+Oj(ε

2).

Define δε,j = ε/|g′(xj)|+Oj(ε
2). It follows that we can write

{x : g(x) ≥ λ+ ε} =
r⋃
j=1

[x2j−1 + δε,2j , x2j − δε,2j+1].

As in step two, let εn be such that εn = minj(|g′(xj)|)δn/2 > 0. For all sufficiently large n

and for any j = 0, . . . , r we then have that x ∈ [x2j−1 + δn, x2j − δn] implies g(x) ≥ λ + εn.

To see this, note that if g′(xj) > 0, then

g−1(λ+ εn) = xj +
εn

g′(xj)
+ C∗j ε

2
n

= xj +
minj(|g′(xj)|)δn

2g′(xj)
+ C∗j δ

2
n

≤ xj + δn(1/2 + Cjδn) ≤ xj + δn.

121

Similarly, if g′(xj) < 0, then

g−1(λ+ εn) = xj +
εn

g′(xj)
+ C∗j ε

2
n

= xj −
minj(|g′(xj)|)δn

2|g′(xj)|
+ C∗j δ

2
n

≥ xj − δn(1/2 + C∗j δn) ≥ xj − δn.

In the above, the constants C∗j are uniformly bounded, though may change from line to line.

Therefore, arguing as before, for sufficiently large n, we obtain the same bound as in step

two.

STEP 4.

T11(δn) + T21(δn) =
r∑
j=1

∫ x2j+δn

x2j

q(x)P
(
ĝn,h(x) ≥ λ

)
dx+

r∑
j=1

∫ x2j

x2j−δn
q(x)P

(
ĝn,h(x) < λ

)
dx

=
r∑
j=1

∫ x2j+δn

x2j

q(x)
{

1− P
(
ĝn,h(x) < λ

)}
dx+

r∑
j=1

∫ x2j

x2j−δn
q(x)P

(
ĝn,h(x) < λ

)
dx

=
r∑
j=1

∫ x2j+δn

x2j−δn
q(x)

∣∣P (ĝn,h(x) < λ
)
− 1(x ≥ x2j)

∣∣ dx
=

r∑
j=1

q(x2j)

∫ x2j+δn

x2j−δn

∣∣P (Dn(x) < 0
)
− 1(x ≥ x2j)

∣∣ dx+O(δ2
n),

since

r∑
j=1

∫ x2j+δn

x2j−δn
{q(x)− q(x2j)}

∣∣P (Dn(x) < 0
)
− 1(x ≥ x2j)

∣∣ dx = O(δ2
n),

using assumption (S). Next, let t = (nh)1/2(x− x2j) to obtain

r∑
j=1

q(x2j)

∫ x2j+δn

x2j−δn

∣∣P (Dn(x) < 0
)
− 1(x ≥ x2j)

∣∣ dx
=

1

(nh)1/2

r∑
j=1

q(x2j)

∫ (nh)1/2δn

−(nh)1/2δn

∣∣P (Dn(xt2j) < 0
)
− 1(t ≥ 0)

∣∣ dt ≡ T̃1(δn),

122

where xtj = xj + (nh)−1/2t. A similar approach shows that

T13(δn) + T23(δn)

=
r∑
j=1

∫ x2j−1

x2j−1−δn
q(x)P

(
ĝn,h(x) ≥ λ

)
dx+

r∑
j=1

∫ x2j−1+δn

x2j−1

q(x)P
(
ĝn,h(x) < λ

)
dx

=

r∑
j=1

q(x2j−1)

∫ x2j−1+δn

x2j−1−δn

∣∣P (Dn(x) < 0
)
− 1(x < x2j−1)

∣∣ dx+O(δ2
n),

=
1

(nh)1/2

r∑
j=1

{
q(x2j−1)

∫ (nh)1/2δn

−(nh)1/2δn

|P (Dn(xt2j−1) < 0)− 1{t<0}|dt

}
+O(δ2

n).

STEP 5. Each of the r integrals comprising T̃1(δn) has region of integration given by An =

[−(nh)1/2δn, (nh)1/2δn]. Our next step is to reduce this to Bj,n = [t∗j − tn, t∗j + tn] for an

appropriate choice of t∗j , tn →∞. To this end, define

T̃11(tn) =
1

(nh)1/2

r∑
j=1

q(x2j)

∫
Bj,n

∣∣P (Dn(xt2j) < 0
)
− 1{t≥0}

∣∣ dt.
In Step 5, we show that T̃1(δn) = T̃11(tn) + o(1/

√
nh). Let µD(x) = E[Dn(x)]. From

Lemma 5 we know that

µD(xtj) = a(xj)(nh)−1/2t+ b(xj)
[
(nh)−1t2 + h2σ2

K

]
+O((nh)−3/2t3 + h3).

Since {g′′f/2 + g′f ′} (xj) is bounded, f ≥ 0 and g is locally monotone near each xj , it follows

that for sufficiently large n the function µD(xtj) is monotone as a function of t. Let t∗j denote

the unique value such that µD(xtj) = 0 for t ∈ An and tn → ∞ more slowly than
√
nhδn.

Recall also that Lemma 5 tells us that t∗j = O(
√
nh5 +

√
nhδ2

n). Let η = (nh)−1/2t− sh and

note that we can write µD(xtj) =
∫

(g(xj+η)−λ)f(xj+η)K(s)ds. Let m(x) = (g(x)−λ)f(x),

and let η∗ = (nh)−1/2t∗j − sh. Then we have

µD(xtj)− µD(x
t∗j
j) =

∫ [
m(xj + η)−m(xj + η∗)

]
K(s)ds

=

∫
m′(x∗j)(η − η∗)K(s)ds = (nh)−1/2(t− t∗j)

∫
m′(x∗j)K(s)ds,

123

where x∗j is a value between xj + η and xj + η∗. Now, m′(x) = {g′f + (g − λ)f ′}(x) with

m′(xj) = {g′f}(xj) and is C1 by our assumptions on g and f . Hence |m′(x∗j) −m′(xj)| =

O(|η∗ − η|) = O((nh)−1/2|t∗j − t|). It follows that for sufficiently large n we have

|µD(xtj)| ≥ cµ(nh)−1/2|t− t∗j |,

for some strictly positive constant cµ.

Define Ij,n = An \Bj,n. Note that

|P (Dn(xt2j) < 0)− 1{t≥0}| =

P (Dn(xt2j) ≥ 0), if t ≥ 0

P (Dn(xt2j) < 0), if t < 0

For j = 1, . . . , r and as long as n is large enough we have that µD(xt2j) > 0 for t < t∗2j and

t ∈ Ij,n and µD(xt2j) < 0 for t ≥ t∗2j and t ∈ I2j,n. It follows that when t ≥ 0 and t ∈ I2j,n,

P (Dn(xt2j) ≥ 0) = P
(
Dn(xt2j)− µD(xt2j) ≥ −µD(xt2j)

)
≤ P

(
|Dn(xt2j)− µD(xt2j)| ≥ |µD(xt2j)|

)
≤

Var(Dn(xt2j))

µD(xt2j)
2

≤
Var(Dn(xt2j))

c2
µ(nh)−1(t− t∗2j)2

=
O(1)

(t− t∗2j)2
,

since by Lemma 5 we know that Var(Dn(xt2j)) = σ2
D(xt2j) = (nh)−1/2O(1) on I2j,n. Similarly,

when t < 0 and t ∈ I2j,n,

P (Dn(xt2j) < 0) ≤ P
(
|Dn(xt2j)− µD(xt2j)| ≥ |µD(xt2j)|

)
≤

Var(Dn(xt2j))

c2
µ(nh)−1(t− t∗2j)2

=
O(1)

(t− t∗2j)2
.

124

It follows that

(nh)1/2
{
T̃1(δn)− T̃11(tn)

}
=

r∑
j=1

q(x2j)

∫
Ij,n

∣∣P (Dn(xt2j) < 0
)
− 1{t≥0}

∣∣ dt
≤

r∑
j=1

q(x2j)

∫
I2j,n

O(1)

(t− t∗2j)2
dt→ 0,

by the dominated convergence theorem since |t − t∗2j | ≥ tn → ∞ on I2j,n and (t − t∗2j)−2 is

integrable. It follows that T̃1(δn) = T̃11(tn) + o(1/
√
nh).

A similar approach establishes that T̃3(δn) = T̃31(tn) + o(1/
√
nh), where

T̃31(tn) =
1

(nh)1/2

r∑
j=1

q(x2j−1)

∫
B2j−1,n

∣∣P (Dn(xt2j−1) < 0
)
− 1{t<0}

∣∣ dt.

STEP 6. Recall that xtj = xj + (nh)−1/2t, and let Φ denote the cumulative distribution

function of the standard normal distribution. Define

T̃111(tn) =
1

(nh)1/2

r∑
j=1

q(x2j)

∫
Bn,j

|Φ (A(x2j)t+B(x2j))− 1(t ≥ 0)| dt

=
1

(nh)1/2

r∑
j=1

q(x2j)

∫ ∞
−∞
|Φ (A(x2j)t+B(x2j))− 1(t ≥ 0)| dt+ o(1/

√
nh),

since tn →∞. Now,

(nh)1/2|T̃11(tn)− T̃111(tn)|

≤
r∑
j=1

q(x2j)

∫
Bj,n

∣∣∣∣P ({Dn − µD
σD

}
(xt2j) < −

{
µD
σD

}
(xt2j)

)
− Φ

(
−
{
µD
σD

}
(xt2j)

)∣∣∣∣ dt
+

r∑
j=1

q(x2j)

∫
Bj,n

∣∣∣∣Φ(−{µDσD
}

(xt2j)

)
− Φ (A(x2j)t+B(x2j))

∣∣∣∣ dt
≤

r∑
j=1

q(x2j)

∫
Bj,n

{
ρ1(xt2j)

σ3
1(xt2j)

√
n

+ φ(0)

∣∣∣∣−{µDσD
}

(xt2j)−A(x2j)t−B(x2j)

∣∣∣∣
}
dt

by the Berry-Esseen theorem for the first term and using the fact that the standard normal

125

density is bounded above by φ(0). In the notation above we have

ρ1(x) = E[|Dn,1(x)− µD(x)|3], σ2
1(x) = Var(Dn,1(x)),

with hDn,1(x) = (Y1 − λ)K((x −X1)/h) = {Rn,1 − λSn,1}(x). Applying Lemma 5 we have

that {ρ1/σ
3
1}(xtj) = h−1/2O(1) and hence

r∑
j=1

q(x2j)

∫
Bj,n

ρ1(xt2j)

σ3
1(xt2j)

√
n
dt ≤

r∑
j=1

q(x2j)|Bj,n|O(1)
1√
nh

≤ C
tn√
nh
→ 0.

For the second term, we again apply Lemma 5,

∫
Bj,n

∣∣∣∣−{µDσD
}

(xt2j)−A(x2j−1)t−B(x2j−1)

∣∣∣∣ dt =

∫
Bj,n

O(th2 + (nh)−1/2t2 +
√
nh7)dt

= tn

(√
nh7

)
+

t3n√
nh

+ t2nh
2.

Therefore,

|T̃11(tn)− T̃111(tn)| = o((nh)−1/2) +O

(
tnh

3 +
t2nh

2

√
nh

+
t3n
nh

)
,

since |tn| ≤
√
nhδn and δn = o(1).

Lemma 4. Let Dn,i(x) = h−1(Yi − λ)K((x − Xi)/h) and Dn,i(x) = Dn,i(x) − E[Dn,i(x)].

Define the function mk(x) = E[(Y − λ)k|X = x]f(x) and assume that there exists an M(x)

such that for k = 2, 4

lim
h→0

sup
s∈(x−CX)/h

mk(x− hs) ≤ Mk(x)

126

with
∫
CX

M2
2 (x)dx < ∞ and

∫
CX

M4(x)dx < ∞. Lastly, assume that vk,0 are finite for

k = 2, 4. Then

E

[{
1

n

n∑
i=1

Dn,i(x)

}4]
≤ 1

(nh)2

(
M4(x) +M2

2 (x)
)
,

for large enough n as long as h = o(1) with nh→∞.

Proof. We begin with a calculation.

E

[{
1

n

n∑
i=1

Dn,i(x)

}4]
=

1

n4

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E

[
Dn,i1(x)Dn,i2(x)Dn,i3(x)Dn,i4(x)

]
.

Now, since the terms are independent for different subscripts and since each Dn,i1(x) is mean

zero, it follows that

E

[{
1

n

n∑
i=1

Dn,i(x)

}4]
=

1

n4

{
nE[D

4
n,1(x)] + n(n− 1)E[D

2
n,1(x)]2

}

We now calculate each of the terms.

E[D
2
n,1(x)] ≤ E[D2

n,1(x)]

=

∫
E[(Y − λ)2|X = y]f(y)

1

h2
K2

(
x− y
h

)
dy

= h−1

∫
E[(Y − λ)2|X = x− sh]f(x− sh)K2 (s) ds

= h−1

∫
m2(x− sh)K2(s)ds ≤ h−1M2(x)v2,0.

Next, we compute

E[D
4
n,1(x)] ≤ 11E[D4

n,1(x)]

=

∫
E[(Y − λ)4|X = y]f(y)

1

h4
K4

(
x− y
h

)
dy

= h−3

∫
E[(Y − λ)4|X = x− sh]f(x− sh)K4 (s) ds

= h−3

∫
m4(x− sh)K4(s)ds ≤ h−3M4(x)v4,0.

127

Both the last inequalities hold only for sufficiently large n. Then

E

[{
1

n

n∑
i=1

Dn,i(x)

}4]
=

1

n4

{
nE[D

4
n,1(x)] + n(n− 1)E[D

2
n,1(x)]2

}
≤ 1

(nh)3
M4(x) +

1

(nh)2
M2

2 (x) ≤ 1

(nh)2

(
M4(x) +M2

2 (x)
)

as long as nh ≥ 1.

Lemma 5. Define σ2
Y (x) = Var(Y |X = x) with g2(x) = E[Y 2|X = x]. Also, let v2,0 =∫

K2(s)ds, σ2
K =

∫
s2K(s)ds and assume that

∫
|s3|K(s)ds,

∫
s2K2(s)ds and

∫
s4K3(s)ds

are finite. Suppose that there exists an η > 0 such that f, g2 are both C2(Bη(xj)) and g

is C3(Bη(xj)), where Bη(x) denotes a ball of size η around x. Define a(xj) = {g′f}(xj),

b(xj) = {g′′f/2 + g′f ′} (xj), and c(xj) = v2,0{σ2
Y f}(xj). Then

µD(xtj) = a(xj)(nh)−1/2t+ b(xj)
[
(nh)−1t2 + h2σ2

K

]
+O((nh)−3/2t3 + h3).

Assume also that |t| ≤
√
nhδn with δn = o(h) and h = o(1) and t∗j is such that µD(xtj) = 0.

Then

t∗j = O(
√
nh5 +

√
nhδ2

n).

Note also that for all t such that |t| ≤
√
nhδn and δn = o(1)

σ2
D(xtj) = (nh)−1

[
{σ2

Y f}(xj)v2,0 +O((nh)−1/2t+ h2 + n−1t2)
]

ρ1(xtj)

σ3
1(xtj)

= h−1/2O(1),

and

∣∣∣∣∣−µD(xtj)

σD(xtj)
− t
{

g′f

(σ2
Y fv2,0)1/2

}
(xj)−

{
g′′f/2 + g′f ′

(σ2
Y fv2,0)1/2

}
(xj)

∣∣∣∣∣ = O(th2 + (nh)−1/2t2 +
√
nh7).

Throughout, all the little-oh and big-oh terms are uniform on Bη(xj).

128

Proof. Let η = (nh)−1/2t−sh and recall that xtj = xj+(nh)−1/2t and define σ2
K =

∫
s2K(s)ds.

Then

µD(xtj)

=

∫
1

h
(g(y)− λ)K

(
xtj − y
h

)
f(y)dy

=

∫
(g(xj + η)− λ)f(xj + η)K(s)ds

=

∫ {
g′(xj)η +

1

2
g′′(x∗j)η

2

}{
f(xj) + f ′(x∗j)η

}
K(s)ds

= {g′f}(xj)(nh)−1/2t+
{
g′′f/2 + g′f ′

}
(xj)

[
(nh)−1t2 + h2σ2

K

]
+ E1 + E2 + E3,

where the three error terms are derived below.

2|E1| = f(xj)

∣∣∣∣∫ [g′′(x∗j)− g′′(xj)] η2K(s)ds

∣∣∣∣
≤ f(xj)

∫ ∣∣g′′′(x∗j)η3
∣∣K(s)ds

= O(1)[(nh)−3/2t3 + h3],

by our assumptions on f and g. Note that the convergence is uniform. Similarly,

2|E2| = g′(xj)

∣∣∣∣∫ [f ′(x∗j)− f ′(xj)] η2K(s)ds

∣∣∣∣
≤ g′(xj)

∫
|f ′′(x∗j)η3|K(s)ds

= O(1)[(nh)−3/2t3 + h3].

Note that the first line of the calculations to bound both E1 and E2 above we can achieve

rates of o(1)[(nh)−1t2 +h2] assuming only C1 for f and C2 for g and applying the dominated

convergence theorem. However, it turns out that we require tighter bounds, and hence we

move up to C2 and C3 respectively. The exact problem arises since a bound of h2(1+o(1)) =

h2 +o(h2) is not sufficiently tight on the o(h2) in step six of the main proof. Adding the extra

derivative yields instead h3(1 + o(1)), and the move from o(h2) to the more precise O(h3) is

129

sufficient for our purposes. The comment persists for our calculations of the variance since

ultimately the bound required is on µD/σD. Lastly,

2|E3| =

∣∣∣∣∫ g′′(x∗j)f
′(x∗j)η

3K(s)ds

∣∣∣∣
≤ 3C[(nh)−3/2t3 + h3].

Let a(xj) = {g′f}(xj) and b(xj) = {g′′f/2 + g′f ′} (xj). It follows that

µD(xtj) = a(xj)(nh)−1/2t+ b(xj)
[
(nh)−1t2 + h2σ2

K

]
+O((nh)−3/2t3 + h3).

Again, the error terms are all uniform.

We now calculate t∗j . The value of t which solves µD(xtj) = 0 solves

t = −
√
nh

a(xj)

{
b(xj)

[
(nh)−1t2 + h2σ2

K

]
(1 + o(1)) +O((nh)−3/2t3 + h3)

}
.

Since |t| ≤
√
nhδn and δn = o(h) with h = o(1) this simplifies to

t = −
√
nh

a(xj)

{
b(xj)

[
(nh)−1t2 + h2σ2

K

]
(1 + o(1)) +O((nh)−3/2t3 + h3)

}
= − b(xj)

a(xj)
σ2
KO(
√
nh5) +

√
nhδ2

nO(1) = O(
√
nh5).

That is t∗j ≤ O(1), since we assume that
√
nh5 and

√
nhδ2

n are both at most O(1).

130

From the above calculations, we find that for |t| ≤
√
nhδn we have

µ2
D(xtj) =

{
a(xj)(nh)−1/2t+ b(xj)

[
(nh)−1t2 + h2σ2

K

]
+O((nh)−3/2t3 + h3)

}2

= a2(xj)(nh)−1t2 + b2(xj)
[
(nh)−1t2 + h2σ2

K

]2
+O((nh)−3/2t3 + h3)2

+2a(xj)b(xj)(nh)−1/2t
[
(nh)−1t2 + h2σ2

K

]
+2
{
a(xj)(nh)−1/2t+ b(xj)

[
(nh)−1t2 + h2σ2

K

]}
O((nh)−3/2t3 + h3)

= a2(xj)(nh)−1t2 + b2(xj)
[
(t/
√
nh)4 + 2h2σ2

K(t/
√
nh)2 + h4σ4

K

]
+O((t/

√
nh)6 + (t/

√
nh)3h3 + h6) +O((t/

√
nh)3 + h2(t/

√
nh))

+O((t/
√
nh)4 + (t/

√
nh)h3 + (t/

√
nh)5 + h5 + h3(t/

√
nh)2 + h2(t/

√
nh)3)

= a2(xj)(nh)−1t2 +O(δ3
n + δnh

2)

= h−1

[
a2(xj)t

2/n+O(hδ3
n + h3δn)

]
= h−1

[
a2(xj)t

2/n+O(h3δn)

]
,

since δn = o(h). Let σ2
D(x) = Var(Dn(x)) and note that g2(xj)− λ2 = σ2

Y (xj). Then

nσ2
D(xtj) + µ2

D(xtj) = E[D2
n,i(x

t
j)]

=

∫
1

h2
(g2(y)− 2λg(y) + λ2)K2

(
xtj − y
h

)
f(y)dy

= h−1

∫
(g2(xj + η)− 2λg(xj + η) + λ2)f(xj + η)K2(s)ds

= h−1

∫ [
σ2
Y (xj) + {g′2 − 2λg′}(x∗j)η

] [
f(xj) + f ′(x∗j)η

]
K2(s)ds

= h−1

[
{σ2

Y f}(xj)v2,0

+

∫ [
{g′2 − 2λg′}(x∗j)f(xj) + {σ2

Y }(xj)f ′(x∗j)
]
ηK2(s)ds

+

∫
{f ′(g′2 − 2λg′)}(x∗j)η2K2(s)ds

]

We now introduce the additional derivative conditions on f, g, g2 to tighten up the error

131

calculations. Continuing from above, we have

nσ2
D(xtj) + µ2

D(xtj)

≤ h−1

[
{σ2

Y f}(xj)v2,0

+

∫ [
{g′2 − 2λg′}(xj)f(xj) + {σ2

Y }(xj)f ′(xj)
]
ηK2(s)ds

+

∫ [
|{g′2 − 2λg′}′(x∗j)f(xj)|+ |{σ2

Y }(xj)f ′′(x∗j)|
]
η2K2(s)ds

+

∫
{f ′(g′2 − 2λg′)}(x∗j)η2K2(s)ds

]
= h−1

[
{σ2

Y f}(xj)v2,0 +O(1){(nh)−1/2t}+O(1)
{

(nh)−1t2 + h2v2,2

}]
,

where v2,2 =
∫
s2K2(s)ds < ∞ and using the fact that K2(s) is also symmetric (since K(s)

is) to remove the O(h) term. Therefore,

nσ2
D(xtj) + µ2

D(xtj) = h−1
[
{σ2

Y f}(xj)v2,0 +O((nh)−1/2t+ h2)
]

where the error is uniform. It follows that

σ2
D(xtj) = (nh)−1

{[
{σ2

Y f}(xj)v2,0 +O((nh)−1/2t+ h2)
]
−
[
a2(xj)t

2/n+O(δnh
3)
]}

= (nh)−1
[
{σ2

Y f}(xj)v2,0 +O((nh)−1/2t+ h2 + n−1t2)
]

Returning to µD, we have that for |t| ≤
√
nhδn with δn = o(h),

µD(xtj) = (nh)−1/2

[
a(xj)t+ b(xj)

[
(nh)−1/2t2 +

√
nh5σ2

K

]
+O((nh)−1t3 +

√
nh7)

]
= (nh)−1/2

[
a(xj)t+ b(xj)

√
nh5σ2

K +O((nh)−1/2t2 +
√
nh7)

]
.

132

This implies that

−
µD(xtj)

σD(xtj)
= −

(nh)−1/2

[
a(xj)t+ b(xj)

√
nh5σ2

K +O((nh)−1/2t2 +
√
nh7)

]
(nh)−1/2

[
{σ2

Y fv2,0}1/2(xj) +O((nh)−1/2t+ h2 + n−1t2)

]
= − a(xj)

{σ2
Y fv2,0}1/2(xj)

t−
b(xj)σ

2
K

{σ2
Y fv2,0}1/2(xj)

√
nh5 +O(th2 + (nh)−1/2t2 +

√
nh7)

Lastly, we compute ρ1(xtj)/σ
3
1(xtj), and note that σ3

1(xtj) = (nσ2
D(xtj))

3/2. To complete this

last calculation we need to evaluate the numerator,

ρ1(xtj) = E[|Rn,j − λSn,j − µD(xtj)|3] ≤ 4(E[|Rn,j − λSn,j |3] + |µD(xtj)|3).

First,

E[|Rn,j − λSn,j |3]

=

∫
1

h3
E[|Y − λ|3

∣∣X = y]K3

(
xtj − y
h

)
f(y)dy

≤ 4

∫
1

h3
{E[|Y |3

∣∣X = y] + |λ|3}K3

(
xtj − y
h

)
f(y)dy

= 4

∫
1

h3
{g3(y) + |λ|3}K3

(
xtj − y
h

)
f(y)dy

= 4h−2

∫
{g3(xj + η) + |λ|3}f(xj + η)K3(s)ds

= 4h−2

∫
{g3(xj) + g′3(x∗j)η + |λ|3}

{
f(xj) + f ′(x∗j)η

}
K3(s)ds.

Now, since (nh)−1/2t ≤ δn ≤ 1 and h = o(1) ≤ 1 it follows that |η| ≤ 1 + |s|. It follows that

from this and the assumption that g3(y) = E[|Y |3|X = y] is locally C1 that

E[|Rn,j − λSn,j |3] ≤ O(1)h−2

∫
{1 + s2}K3(s)ds = O(h−2).

133

Furthermore,

|µD(xtj)|3 =
∣∣∣a(xj)(nh)−1/2t+ b(xj)

[
(nh)−1t2 + h2σ2

K

]
+O((nh)−3/2t3 + h3)

∣∣∣3
= O(δ3

n + h6) = o(h3).

From before we have that σ2
1(xtj) = nσ2

D(xtj) = O(h−1), and hence

ρ1(xtj)

σ3
1(xtj)

= h−1/2O(1),

as required, completing the proof.

A.2 Proof of Corollary 2

Corollary 2. Assume the conditions in Theorem 1 hold. Furthermore, assume that nh5 → c

for 0 < c < ∞. Then, there exists a unique copt ∈ (0,∞) depending on g, f and K; but not

on n, such that hopt = arg minh∈(0,∞)E[µq

(
LSλ4 L̂Sλ

)
] and it satisfies

hopt = coptn
−1/5

Proof. Recall that for c = (nh5)1/5

lim
n→∞

n2/5E[µq

(
LSλ4 L̂Sλ

)
] =

m∑
j=1

q(xj)B1,j

{
2
φ(c5/2B2,j)

c1/2
+ c2B2,j

[
2Φ(c5/2B2,j)− 1

]}
.

For simplicity in exposition let s = c1/2 or equivalently s = (nh5)1/10. Then, denote

uj(s) ≡
{

2
φ(s5B2,j)

s
+ s4B2,j

[
2Φ(s5B2,j)− 1

]}
,

and

lim
n→∞

n2/5E[µq

(
LSλ4 L̂Sλ

)
] =

m∑
j=1

q(xj)B1,juj(s) ≡ u(s). (A.2)

134

We now show that there exists an smin where u′(s = smin) = 0,

u′j(s) = −2s−2φ(s5B2,j) + 4s3B2,j

[
2Φ(s5B2,j)− 1

]
with u′j(0+) = −∞ and u′j(∞) =∞. Next,

u′′j (s) = 4s−3φ(s5B2,j) + 50s7B2
2,jφ(s5B2,j) + 12s2B2,j

[
2Φ(s5B2,j)− 1

]
.

Note that B1j > 0 ∀j and sign(B2j) = sign (2Φ(B2js)− 1) thus u′′j (s) > 0 for every s.

This implies that u′′(s) =
∑m

j=1 q(xj)B1,ju
′′
j (s) > 0 for every s and therefore u′(s) =∑m

j=1 q(xj)B1,ju
′
j(s) is monotone with u′(0) = −∞ and u′(∞) =∞. Then it exists a unique

smin such that u′(smin) = 0.

A.3 Proof of Theorem 3

We start by introducing an auxiliary result.

Theorem 6 (page 144 Fan et al. [1995]). Assume the regression model Ψ (g(x)) = η(x)

where g(x) = E[Y |X = x]. Let η(r) be the rth derivative that is estimated with a pth degree

polynomial. Fix p− r > 0 to be odd and assume that h = hn → 0 and nh3 →∞ as n→∞.

If x is a fixed point in the interior of the support of f , under the following conditions,

1.- The function Ψ is the canonical link.

2.- The functions f ′, η(p+2), Var(Y |X = x), Var(2)(Y |X = x) and Ψ(3) are continuous.

3.- For each x ∈ supp(f), the functions {Ψ′ (g(x)) Var(Y |X = x)}(−1), Var(Y |X = x) and

Ψ′ (g (x)) are non zero.

4.- The kernel K is a symmetric probability density with support [−1, 1].

5.- Assumption (F) holds.

135

the following holds

√
nh2r+1σr,p(x;K)−1 × [η̂r(x; p, h)

−η(r)(x)−
{∫

zp+1Kr,p(z)dz

}{
η(p+1)(x)

(p+ 1)!

}
hp−r+1{1 +O(h)}

]
D−→ N(0, 1)

where

σ2
r,p(x;K) = Var(Y |X = x)Ψ′ (g(x))2 f(x)−1

∫
Kr,p(z)

2dz

Kr,p(z) = r!
|Mr,p(z)|
|Np|

K(z)

where Np is a (p + 1) × (p + 1) matrix with (i, j) entry Ni,j =
∫
zi+j−2K(z)dz. The matrix

Mr,p is the same as Np but the (r + 1)st column is replaced by (1, z, . . . , zp)T .

Lemma 7. Let the conditions in Theorem 6 hold. Fix p = r + 1 and let bn be a sequence

such that bn → 0 as n → ∞. Furthermore, assume that nh2r+5
r → c for some constant c.

Then for any fixed x ∈ sup(f)

|η̂r(x; p, hr)− η(r)(x)| = Op

(
n−2/2r+5

)
.

Proof. Assume the conditions hold. Then, by Markov

P ([η̂r(x; p, hr)− η(r)(x)
]
2 > M2b2n

)
≤

E
[(
η̂r(x; p, hr)− η(r)(x)

)2]
M2b2n

.

Moreover, we can decompose the expectation above as

E

[(
η̂r(x; p, hr)− η(r)(x)

)2
]

= Var (η̂r(x; p, hr)) +
(

E[η̂r(x; p, hr)]− η(r)
)2
.

From Theorem 6, Var (η̂r(x; p, hr)) = Op

(
1

nh2r+1
r

)
and

(
E[η̂r(x; p, hr)]− η(r)

)2
= Op(h

4
r).

136

Because nh2r+5
r → c,

P ([η̂r(x; p, hr)− η(r)(x)
]
2 > M2b2n

)
≤

O
(
n−4/2r+5

)
M2b2n

.

We thus deduce that

|η̂r(x; p, hr)− η(r)(x)| = Op

(
n−2/2r+5

)

completing the proof.

Theorem 3. Assume the conditions in Theorem 6 hold. In addition, assume

(S.2) f is C2(B̃) and g is C3(B̃).

(Q) The function q is a non-negative function such that |q̂(x)− q(x)| is at most Op
(
n−2/9

)
in a neighbourhood of xj.

Let c = n1/5h and define the asymptotic risk function in terms of c as

AR(c) = n−2/5
m∑
j=1

q(xj)B1,j

{
2
φ(c5/2B2,j

c1/2
+ c2B2,j

[
2Φ(c5/2B2,j)− 1

]}
.

Also define ÂRn(c) as the asymptotic risk function where xj,q,f ,f ′,g′ and g′′ are replaced

with kernel estimators. Then

∣∣AR(c)− ÂRn(c)
∣∣ = Op

(
n−2/9

)
.

and

ĥopt
hopt

= 1 +Op

(
n−2/9

)

Proof. With a slight abuse of notation, let

AR(c) ≡ AR
(
c;xj , q, f, f

′, g′, g′′
)
.

137

We are thus interested in the difference

∣∣∣∣AR(c;xj , q, f, f
′, g′, g′′)−AR(c; x̂j , q̂, f̂ , f̂ ′, ĝ′, ĝ′′)

∣∣∣∣ ≤∣∣∣∣AR(c; x̂j , q, f, f
′, g′, g′′)−AR(c; x̂j , q̂, f̂ , f̂ ′, ĝ′, ĝ′′)

∣∣∣∣
+

∣∣∣∣AR(c;xj , q, f, f
′, g′, g′′)−AR(c; x̂j , q, f, f

′, g′, g′′)

∣∣∣∣
≡ D1 +D2.

For ease in notation, we omitted the bandwidths for the estimators.

We begin with D1. We first study the differences of the functions f , f ′, g′ and g′′, and

their kernel estimators. From the regression model g(x) = Ψ−1 (η(x)). Thus,

g′(x) =
∂

∂η
Ψ−1 (η(x)) η′(x)

g′′(x) =
∂2

∂η2
Ψ−1 (η(x))

(
η′(x)

)2
+

∂

∂η
Ψ−1 (η(x)) η′′(x).

We next use Lemma 7 to compute plug-in estimators for g′ and g′′. We start with the first

derivative

ĝ′(x) =
∂

∂η
Ψ−1 (η̂h0(x)) η̂′h1(x)

=
∂

∂η
Ψ−1

(
η(x) +Op

(
n−2/5

))(
η′(x) +Op

(
n−2/7

))

Since the derivative of Ψ−1 exists, it then follows that

ĝ′(x) =

[
∂

∂η
Ψ−1 (η(x)) +Op

(
n−2/5

)] [
η′(x) +Op

(
n−2/7

)]
=

∂

∂η
Ψ−1 (η(x)) η′(x) +Op

(
n−2/7

)
.

138

Now, for the second derivative

ĝ′′(x) =
∂2

∂η2
Ψ−1 (η̂h0(x))

(
η̂′h1(x)

)2
+

∂

∂η
Ψ−1 (η̂h0(x)) η̂′′h2(x)

=
∂2

∂η2
Ψ−1

(
η(x) +Op

(
n−2/5

))(
η′(x) +Op

(
n−2/7

))2

+
∂

∂η
Ψ−1

(
η(x) +Op

(
n−2/5

))(
η′′(x) +Op

(
n−2/9

))
=

∂2

∂η2
Ψ−1 (η(x))

(
η′(x)

)2
+

∂

∂η
Ψ−1 (η(x)) η′′(x) +Op

(
n−2/9

)
.

Thus, uniformly

|ĝ′ − g′(x)| = Op

(
n−2/7

)
|ĝ′′ − g′′(x)| = Op

(
n−2/9

)
.

(A.3)

Using the same type of arguments, from Wand and Jones [1994][Chapter 2], it can be shown

that

|f̂h00 − f(x)| = Op

(
n−2/5

)
|f̂ ′h11 − f

′(x)| = Op

(
n−2/7

)
.

(A.4)

We then show the plug-in estimates for A(xj) and B(xj). For the first,

Â(x̂j) = −

{
ĝ′f̂

(σ̂2
Y f̂v2,0)1/2

}
(x̂j)

= −

{
[g′(x̂j) +Op(n

−2/7)][f(x̂j) +Op(n
−2/5)](

[σ2
Y +Op(n−1/2)][f(x̂j) +Op(n−2/5)]v2,0

)1/2
}

= −
{g′f}(x̂j)

(
1 +Op(n

−2/7)
)

(σ2
Y f(x̂j)v2,0)1/2

(
1 +Op(n−2/5)

)1/2
= A (x̂j) {1 +Op

(
n−2/7

)
}

139

and

B̂(x̂j) = −
√
nh5

{
ĝ′′f̂/2 + ĝ′f̂ ′

(σ̂2
Y f̂v2,0)1/2

}
(x̂j)σ

2
K

= −
√
nh5σ2

K

{g′′f/2}(x̂j) +Op
(
n−2/9

)
+ {g′f ′}(x̂j) +Op

(
n−2/7

)
(σ2
Y f(x̂j)v2,0)1/2

(
1 +Op(n−2/5)

)1/2
= −

√
nh5σ2

K

{
g′′f/2 + g′f ′

(σ2
Y fv2,0)1/2

}
(x̂j){1 +Op

(
n−2/9

)
}{1 +Op

(
n−2/5

)
}

= B (x̂j) {1 +Op

(
n−2/9

)
}.

Hence,

AR(c; x̂j , q̂, f̂ , f̂ ′, ĝ′, ĝ′′) =

n−2/5
m∑
j=1

q(x̂j)B̂1(x̂j)

{
2
φ(c5/2B̂2(x̂j)

c1/2
+ c2B̂2(x̂j)

[
2Φ(c5/2B̂2(x̂j))− 1

]}

where

B̂1(x̂j) =
1

|Â(x̂j)|
= B1(x̂j){1 +Op(n

−2/7)}

B̂2(x̂j) =
B̂(x̂j)√
nh5

= B2(x̂j){1 +Op(n
−2/7)}.

The density and distribution functions are continuous, thus

φ
(
c5/2B̂2(x̂j)

)
= φ

(
c5/2B2(x̂j)

)
+Op(n

−2/9)

Φ
(
c5/2B̂2(x̂j)

)
= Φ

(
c5/2B2(x̂j)

)
+Op(n

−2/9).

We now plug-in the estimators into the asymptotic risk (as long as |q̂(x̂j)−q(x̂j)| = Op(n
−2/9)

140

or faster)

AR(c; x̂j , q̂, f̂ , f̂ ′, ĝ′, ĝ′′) =

n−2/5
2r∑
j=1

[
q(x̂j) +Op(n

−2/9)
]

[B1(x̂j) +Op(n
−2/7)]

{
2φ(c5/2B2(x̂j)) +Op(n

−2/9)

c1/2

+c2
[
B2(x̂j) +Op(n

−2/9)
] [

2Φ
(
c5/2B2(x̂j)

)
+Op(n

−2/9)− 1
]}

= n−2/5
m∑
j=1

q(x̂j)B1(x̂j)

{
2
φ(c5/2B2(x̂j)

c1/2
+ c2B2(x̂j)

[
2Φ(c5/2B2(x̂j))− 1

]}
+Op(n

−2/9)

We therefore conclude that D1 = Op
(
n−2/9

)
.

We now look into D2. Recall from Fan et al. [1995] that

g(x̂j) = ĝ(x̂j) +Op(n
−2/5). (A.5)

From condition (S), we do a Taylor expansion on the left hand side. This yields

g(xj) + g′(ξ) (x̂j − xj) = ĝ(x̂j) +Op

(
n−2/5

)
.

Next we show that g′(ξ) 6= 0 for some ξ ∈ [x̂j , xj]. We start by showing that for a small ε0

and a point x̂j such that ĝ (x̂j) = λ, it is true that x̂j ∈ [xj − ε0, xj + ε0]. We prove it by

contradiction. Without loss of generality, assume g(xj − ε0)− λ > 0 and g(xj + ε0)− λ < 0.

Since ĝ has no roots in the interval, assume ĝ(x)− λ > 0 ∀x ∈ [xj − ε0, xj + ε0]. Therefore

sup
x∈[xj−ε0,xj+ε0]

∣∣∣ (ĝ(x)− λ)− (g(x)− λ)
∣∣∣ ≥ |g(xj + ε0)− λ|.

In particular,

lim
n→∞

sup
x∈[xj−ε0,xj+ε0]

∣∣∣ĝ(x)− g(x)
∣∣∣ ≥ |g(xj + ε0)− λ|

which contradicts the initial assumption. We thus proved that x̂j ∈ [xj − ε0, xj + ε0] and

141

therefore ξ ∈ [xj − ε0, xj + ε0] too. Note that g′(x) 6= 0 for x ∈ [xj − ε0, xj + ε0] since g is

monotone locally on xj . It then follows that g′(ξ) 6= 0. Going back to A.5, we obtain that

|x̂j − xj | = Op(n
−2/5). From condition (S.2)

g′ (x̂j) = g′(xj) + (x̂j − xj) g′′(xj)

g′′ (x̂j) = g′′(xj) + (x̂j − xj) g(3)(xj)

f (x̂j) = f(xj) + (x̂j − xj) f ′(xj)

f ′ (x̂j) = f ′(xj) + (x̂j − xj) f ′′(xj).

Thus,

∣∣g′(x̂j)− g′(xj)∣∣ = Op

(
n−2/5

) ∣∣f(x̂j)− f(xj)
∣∣ = Op

(
n−2/5

)
∣∣g′′(x̂j)− g′′(xj)∣∣ = Op

(
n−2/5

) ∣∣f ′(x̂j)− f ′(xj)∣∣ = Op

(
n−2/5

)
.

From these results

A(x̂j) = −
g′(xj)f(xj){1 +Op

(
n−2/5

)
}(

fσ2
Y v2,0

)1/2 {1 +Op
(
n−2/5

)
}1/2

= A(xj){1 +Op

(
n−2/5

)
}

B(x̂j) = −
√
nh5
{g′′f/2 + g′f ′}(xj)

(
1 +Op

(
n−2/5

))(
fσ2

Y v2,0

)1/2 {1 +Op
(
n−2/5

)
}1/2

= B(xj){1 +Op

(
n−2/5

)
}

and

B1(x̂j) = B1(xj){1 +Op

(
n−2/5

)
}

B2(x̂j) = B2(xj){1 +Op

(
n−2/5

)
}.

142

After some algebra

AR(c; x̂j , q, f, f
′, g′, g′′) =

n−2/5
m∑
j=1

q(x̂j)B1(x̂j)

{
2
φ(c5/2B2(x̂j)

c1/2
+ c2B2(x̂j)

[
2Φ(c5/2B2(x̂j))− 1

]}

= n−2/5
m∑
j=1

q(xj)B1(xj)

{
2
φ(c5/2B2(xj)

c1/2
+ c2B2(xj)

[
2Φ(c5/2B2(xj))− 1

]}
+Op

(
n−2/5

)
.

This yields D2 = Op
(
n−2/5

)
, therefore

∣∣ÂRn(c)−AR(c)
∣∣ = Op

(
n−2/9

)
uniformly. Moreover

∣∣ÂRn(ĉopt)−AR(ĉopt)
∣∣ =

∣∣ÂRn(ĉopt)− (AR(ĉopt)−AR(copt))
∣∣

=
∣∣ÂRn(ĉopt)−AR(c∗) (ĉopt − copt)

∣∣ for some c∗ ∈ (ĉopt, copt)

=
∣∣AR(c∗) (ĉopt − copt)

∣∣ = Op

(
n−2/9

)
.

Note AR′′(c) > 0 and bounded away from zero. Therefore

ĉopt
copt

= 1 +Op

(
n−2/9

)

completing the proof.

143

Appendix B

Code section

B.1 Example code for level set simulations

Common functions

LIBRARIES

library(KernSmooth)

library(np)

GENERATE RANDOM OBSERVATIONS FROM f(X)

X.sample <-function(n,min ,max){

xx <-runif(n,min ,max)

return(xx)

}

NADARAYA -WATSON KERNEL ESTIMATOR USING BINNING

NWkernel_regression_gaussian_binned <- function(x,h,grid ,cl,dlY){

144

subfunction <-function(x1D,h){

argument <-(x1D-grid)/h

denom <-sum(dnorm(x=argument)*cl)

numerator <-dnorm(x=argument)*dlY

kk <-sum(numerator/denom)

return(kk)

}

ghat_vector <-unlist(lapply(x,function(xx)subfunction(x1D=xx ,h=h)))

return(ghat_vector)

}

FUNCTION THAT COMPUTES THE GRID AND WEIGHTS FOR BINNING

########

linear_binning_fast <- function(xsample ,Y.sample ,nbins){

delta <- (max(xsample)-min(xsample))/(nbins -1)

rescale_xsample <- xsample/delta

vector_floors <- floor(rescale_xsample)

vector_ceilings <- ceiling(rescale_xsample)

grid_weights_cl <- rep(0,nbins+1)

grid_weights_dl <- rep(0,nbins+1)

grid_weights_dl_2 <- rep(0,nbins+1)

l1 <- min(floor(min(rescale_xsample)),ceiling(min(rescale_

xsample)))

l2 <- max(floor(max(rescale_xsample)),ceiling(max(rescale_

xsample)))

lseq <- seq(from=l1,to=l2,by=1)

lconstant <- -l1+1

145

for (i in 1:n){

temp_weight_floor <- 1-abs(rescale_xsample[i

]-vector_floors[i])

temp_weight_ceiling <- 1-abs(rescale_xsample[i

]-vector_ceilings[i])

grid_weights_cl[vector_floors[i]+ lconstant] <- grid_weights_cl[

vector_floors[i]+ lconstant]+temp_weight_floor

grid_weights_cl[vector_ceilings[i]+ lconstant] <- grid_weights_cl[

vector_ceilings[i]+ lconstant]+temp_weight_ceiling

grid_weights_dl[vector_floors[i]+ lconstant] <- grid_weights_dl[

vector_floors[i]+ lconstant]+(temp_weight_floor*Y.sample[i])

grid_weights_dl[vector_ceilings[i]+ lconstant] <- grid_weights_dl[

vector_ceilings[i]+ lconstant]+(temp_weight_ceiling*Y.sample[i

])

grid_weights_dl_2[vector_floors[i]+ lconstant] <- grid_weights_

dl_2[vector_floors[i]+ lconstant]+(temp_weight_floor*Y.sample[i

]^2)

grid_weights_dl_2[vector_ceilings[i]+ lconstant] <- grid_weights_

dl_2[vector_ceilings[i]+ lconstant]+(temp_weight_ceiling*Y.

sample[i]^2)

}

return(list(grid_points=lseq*delta ,cl=grid_weights_cl ,dl=grid_

weights_dl ,dl_2=grid_weights_dl_2))

}

146

#FUNCTIONS NECESSARY TO ESTIMATE f WITH A KERNEL ESTIMATOR USING

BINNING

psi_NS_8<-function(sigma.hat){

psi8<-105/(32*sqrt(pi)*sigma.hat^9)

return(psi8)

}

d6K<-function(x){

derivative <-(1/sqrt(2*pi))*exp(-.5*(x^2))*(x^6-15*x^4+45*x^2-15)

return(derivative)

}

d4K<-function(x){

derivative <-(1/sqrt(2*pi))*exp(-.5*(x^2))*(x^4-6*x^2+3)

return(derivative)

}

sigma.hat <-function(sample){

sigma.sample <-sd(sample)

IQR.sample <-quantile(sample ,.75)-quantile(sample ,.25)

s<-min(sigma.sample ,IQR.sample)

return(s)

}

psi6_binning <- function(h_6,grid ,counts ,n){

n_grid <-length(grid)

sum <-0

for(i in 1:n_grid){

for(j in 1:n_grid){

argument <-(grid[j]-grid[i])/h_6

Lr<-d6K(argument)*counts[j]* counts[i]

sum <-sum+Lr

}

}

147

result <-n^(-2)*h_6^(-7)*sum

return(result)

}

psi4_binning <- function(h_4,grid ,counts ,n){

n_grid <-length(grid)

sum <-0

for(i in 1:n_grid){

for(j in 1:n_grid){

argument <-(grid[j]-grid[i])/h_4

Lr<-d4K(argument)*counts[j]* counts[i]

sum <-sum+Lr

}

}

result <-n^(-2)*h_4^(-5)*sum

return(result)

}

Kernel_density_binning <- function(x, n, h, grid ,counts){

K <- function(x){

k_x <- (abs(x)<1)*(3/4)*(1-x^2)

return(k_x)

}

subfunction <-function(x1D,h){

argument <-(x1D-grid)/h

kk <- K(x=argument)*counts

kk <-sum(kk)*(1/n)*(1/h)

return(kk)

}

fhat_vector <- unlist(lapply(x,function(xx) subfunction(x1D=xx ,h=h

)))

148

return(fhat_vector)

}

##FUNCTIONS TO ESTIMATE THE DERIVATIVE OF f WITH KERNELS AND BINNING

##

df_function <- function(x,sigma ,mu){

temporal <- -(1/(sqrt(2*pi)*sigma^2))*((x-mu)/sigma)*exp(-.5*((x

-mu)/sigma)^2)

return(temporal)

}

d1K <- function (x){

derivative <- (abs(x)<1)*(-3/2)*x

return(derivative)

}

dfhat_binning <- function(x,grid ,counts ,n,h){

subfunction <-function(x1D,h){

argument <-(x1D-grid)/h

kk <-lapply(argument , d1K)

kk <-unlist(kk)*counts

kk <-sum(kk)*(1/n)*(1/h^2)

return(kk)

}

dfhat_vector <- unlist(lapply(x,function(xx) subfunction(x1D=xx,h=

h)))

return(dfhat_vector)

}

psi_NS_10 <- function(sigma.hat){

149

res <- -945/(64*sqrt(pi)*sigma.hat^11)

return(res)

}

d8K <- function(x){

res <- (1/sqrt(2*pi))*exp(-(1/2)*x^2)*(x^8-28*x^6+210*x^4-420*x

^2+105)

return(res)

}

psi8_binning <- function(h_8,grid ,counts ,n){

n_grid <-length(grid)

sum <-0

for(i in 1:n_grid){

for(j in 1:n_grid){

argument <-(grid[j]-grid[i])/h_8

Lr<-d8K(argument)*counts[j]* counts[i]

sum <-sum+Lr

}

}

result <-n^(-2)*h_8^(-9)*sum

return(result)

}

######### CROSS VALIDATION BINNED FUNCTION ###########

#This function is from B.A. Turlach and M.P. Wands paper:

#Fast Computation of Auxiliary Quantities in Local Polynomial

Regression

150

my_CV <- function(grid ,counts ,dY ,dY_2,x.sample ,Y.sample ,h){

function_h_1D <- function(hh){

d <- lapply ((1:length(grid)),function(ll) sum(dnorm(x=(grid -

grid[ll])/hh ,mean=0,sd=1)*counts))

d <- unlist(d)

S <- matrix(,nrow=length(grid),ncol=length(grid))

for(l in 1:length(grid)){

S[l,] <- t(d[l]^(-1)*dnorm(x=(grid -grid[l])/hh,mean=0,sd=1)

)

}

ghat_grid <- S%*%dY

cv_l <- function(l){

temp <-(dY_2[l]-2*ghat_grid[l]*dY[l]+ghat_grid[l]^2*counts[l])/(

1-S[l,l])^2

return(temp)

}

cv_score <- sum(unlist(lapply ((1:length(grid)),cv_l)))

return(cv_score)

}

cv_score_vector <- unlist(lapply(h,function_h_1D))

return(cv_score_vector)

}

FUNCTIONS TO ESTIMATE THE LEVEL SETS

151

myBFfzero <-function (f, a, b, num = 1000, eps = 1e-05)

{

h = abs(b - a)/num

i = 0

j = 0

a1 = b1 = 0

while (i <= num) {

a1 = a + i * h

b1 = a1 + h

if (f(a1) == 0) {

root <-a1

f.root <-f(a1)

}

else if (f(b1) == 0) {

root <-b1

f.root <-f(b1)

}

else if (f(a1) * f(b1) < 0) {

repeat {

if (abs(b1 - a1) < eps)

break

x <- (a1 + b1)/2

if (f(a1) * f(x) < 0)

b1 <- x

else a1 <- x

}

#print(j + 1)

j = j + 1

root <-(a1 + b1)/2

f.root <-f((a1 + b1)/2)

}

152

i = i + 1

}

if (j == 0)

print("finding root is fail")

else return(list(root=root ,f.root=f.root))

}

root_bisection <-function(x0,x1,tol ,p,h_estimate ,grid ,cl ,dlY){

kernel_estim <-function(xx){

ghat_temp <-NWkernel_regression_gaussian_binned(x=xx ,h=h_estimate ,

grid=grid ,cl=cl ,dlY=dlY)-p

return(ghat_temp)

}

root <-myBFfzero(kernel_estim ,x0,x1,eps=tol)$root

return(root)

}

root_bisectionLP <-function(x0,x1,tol ,p,ghatx ,ghatLP){

fhat_interpolation <- splinefun(x=ghatx , y=ghatLP ,method="fmm")

fhat_shifted <- function(xx){

fhat_temp <-fhat_interpolation(xx)-p

return(fhat_temp)

}

root <-myBFfzero(fhat_shifted ,x0,x1,eps=tol)$root

return(root)

}

grid_search <-function(h,p,xsample ,delta ,grid ,cl ,dlY){

candidates <-seq(from=min(xsample),to=max(xsample),by=delta)

i<-1

roots_vector <-NULL

153

while(i<length(candidates)){

x1<-candidates[i]

x2<-candidates[i+1]

f.x1<-NWkernel_regression_gaussian_binned(x=x1,h=h,grid=grid ,cl=

cl ,dlY=dlY)-p

f.x2<-NWkernel_regression_gaussian_binned(x=x2,h=h,grid=grid ,cl=

cl ,dlY=dlY)-p

if(f.x1*f.x2>0){

m<-(x1+x2)/2

f.m<-NWkernel_regression_gaussian_binned(x=m,h=h,grid=grid ,cl=

cl ,dlY=dlY)-p

if(f.x1*f.m>0){

i<-i+1

#print(i)

}else{

r1<-root_bisection(x0=x1,x1=m,tol=.00005,p=p,h_estimate=h,

grid ,cl ,dlY)

r2<-root_bisection(x0=m,x1=x2,tol=.00005,p=p,h_estimate=h,

grid ,cl ,dlY)

roots_vector <-c(roots_vector ,r1,r2)

i<-i+1

#print(i)

}

}else{

r1<-root_bisection(x0=x1,x1=x2,tol=.00005,p=p,h_estimate=h,grid

,cl ,dlY)

roots_vector <-c(roots_vector ,r1)

i<-i+1

#print(i)

}

}

154

return(roots_vector)

}

grid_searchLP <- function(ghatx ,ghatLP ,p,xsample ,delta){

candidates <- seq(from=min(xsample),to=max(xsample),by=

delta)

fhat_interpolation <- splinefun(x=ghatx ,y=ghatLP ,method="fmm")

i<-1

roots_vector <-NULL

while(i<length(candidates)){

x1<-candidates[i]

x2<-candidates[i+1]

f.x1<-fhat_interpolation(x1)-p

f.x2<-fhat_interpolation(x2)-p

if(f.x1*f.x2>0){

m<-(x1+x2)/2

f.m<-fhat_interpolation(m)-p

if(f.x1*f.m>0){

i<-i+1

#print(i)

}else{

r1<-root_bisectionLP(x0=x1,x1=m,tol=.00005,p=p,ghatx=ghatx ,

ghatLP=ghatLP)

r2<-root_bisectionLP(x0=m,x1=x2,tol=.00005,p=p,ghatx=ghatx ,

ghatLP=ghatLP)

roots_vector <-c(roots_vector ,r1,r2)

i<-i+1

#print(i)

}

}else{

155

r1<-root_bisectionLP(x0=x1,x1=x2,tol=.00005,p=p,ghatx=ghatx ,

ghatLP=ghatLP)

roots_vector <-c(roots_vector ,r1)

i<-i+1

#print(i)

}

}

return(roots_vector)

}

myHDR <-function(roots_vector ,d,p,h_estimate ,grid ,cl ,dlY){

r<-length(roots_vector)

HDR <-list()

roots_vector <-sort(roots_vector)

R<-list()

i<-1

left_boundary <-NWkernel_regression_gaussian_binned(x=roots_vector[1

]-d,h=h_estimate ,grid=grid ,cl=cl,dlY=dlY)-p

right_boundary <-NWkernel_regression_gaussian_binned(x=roots_vector[

r]+d,h=h_estimate ,grid=grid ,cl=cl,dlY=dlY)-p

if(left_boundary >0){

R[[i]]<-c(min(x.sample),roots_vector[1])

i<-i+1

}

if(right_boundary >0){

R[[i]]<-c(roots_vector[r],max(x.sample))

i<-i+1

}

l<-1

while(l<length(roots_vector)){

r1<-roots_vector[l]

r2<-roots_vector[l+1]

156

rm <-(r1+r2)/2

f.rm <-NWkernel_regression_gaussian_binned(x=rm,h=h_estimate ,grid=

grid ,cl=cl ,dlY=dlY)-p

if(f.rm >0){

R[[i]]<-c(r1,r2)

i<-i+1

}

l<-l+1

}

return(R)

}

myHDRLP <-function(roots_vector ,d,p,ghatx ,ghatLP ,x.sample){

fhat_interpolation <- splinefun(x=ghatx ,y=ghatLP ,method="fmm")

r<-length(roots_vector)

HDR <-list()

roots_vector <-sort(roots_vector)

R<-list()

i<-1

left_boundary <-fhat_interpolation(roots_vector[1]-d)-p

right_boundary <-fhat_interpolation(roots_vector[r]+d)-p

if(left_boundary >0){

R[[i]]<-c(min(x.sample),roots_vector[1])

i<-i+1

}

if(right_boundary >0){

R[[i]]<-c(roots_vector[r],max(x.sample))

i<-i+1

}

l<-1

while(l<length(roots_vector)){

r1<-roots_vector[l]

157

r2<-roots_vector[l+1]

rm <-(r1+r2)/2

f.rm <-fhat_interpolation(rm)-p

if(f.rm >0){

R[[i]]<-c(r1,r2)

i<-i+1

}

l<-l+1

}

return(R)

}

true_roots <-function(p,min ,max ,delta){

g_shifted <-function(xx){

gtemp <-g(x=xx)-p

return(gtemp)

}

candidates <-seq(from=min ,to=max ,by=delta)

i<-1

roots_vector <-NULL

while(i<length(candidates)){

x1<-candidates[i]

x2<-candidates[i+1]

f.x1<-g(x=x1)-p

f.x2<-g(x=x2)-p

if(f.x1*f.x2>0){

m<-(x1+x2)/2

f.m<-g(x=m)-p

if(f.x1*f.m>0){

i<-i+1

158

#print(i)

}else{

r1<-myBFfzero(g_shifted ,a=x1,b=m,eps=.00005)$root

r2<-myBFfzero(g_shifted ,a=m,b=x2,eps=.00005)$root

roots_vector <-c(roots_vector ,r1,r2)

i<-i+1

#print(i)

}

}else{

r1<-myBFfzero(g_shifted ,a=x1,b=x2,eps=.00005)$root

roots_vector <-c(roots_vector ,r1)

i<-i+1

print(i)

}

}

return(roots_vector)

}

FUNCTIONS RELATED TO THE ERROR COMPUTATION (\mu_q)

auxiliary_error_function <-function(HDR_hat ,true_HDR ,min=min ,max=max){

n_hdr <-length(HDR_hat)

counter <-n_hdr

loss_temp <-0

integral_regions_type1<-list()

i_temp <-NULL

for(i in 1:n_hdr){

if(HDR_hat[[i]][2]<=true_HDR[[1]][1]){

integral_regions_type1<-c(integral_regions_type1,HDR_hat[i])

loss_temp <-loss_temp+F(x=HDR_hat[[i]][2],min=min ,max=max)-F(x=

HDR_hat[[i]][1],min=min ,max=max)

159

i_temp <-c(i_temp ,i)

counter <-counter -1

}

}

if(!is.null(i_temp)){HDR_hat <-HDR_hat[-c(i_temp)]}

n_hdr <-length(HDR_hat)

i_temp <-NULL

if(counter >0){

for(i in 1:n_hdr){

if(HDR_hat[[i]][1]>=true_HDR[[1]][2]){

integral_regions_type1<-c(integral_regions_type1,HDR_hat[i])

loss_temp <-loss_temp+F(x=HDR_hat[[i]][2],min=min ,max=max)-F(x

=HDR_hat[[i]][1],min=min ,max=max)

i_temp <-c(i_temp ,i)

counter <-counter -1

}

}

if(!is.null(i_temp)){HDR_hat <-HDR_hat[-c(i_temp)]}

}

i_temp <-NULL

if(counter >0){

n_hdr <-length(HDR_hat)

if(HDR_hat[[1]][1]<true_HDR[[1]][1]){

integral_regions_type1<-c(integral_regions_type1,list(c(HDR_hat

[[1]][1],true_HDR[[1]][1])))

loss_temp <-loss_temp+F(x=true_HDR[[1]][1],min=min ,max=max)-F(x=

HDR_hat[[1]][1],min=min ,max=max)

HDR_hat[[1]][1]<-true_HDR[[1]][1]

}

if(HDR_hat[[n_hdr]][2]>true_HDR[[1]][2]){

integral_regions_type1<-c(integral_regions_type1,list(c(true_

HDR[[1]][2],HDR_hat[[n_hdr]][2])))

160

loss_temp <-loss_temp+F(x=HDR_hat[[n_hdr]][2],min=min ,max=max)-F

(x=true_HDR[[1]][2],min=min ,max=max)

HDR_hat[[n_hdr]][2]<-true_HDR[[1]][2]

}

loss_temp <-loss_temp+F(x=true_HDR[[1]][2],min=min ,max=max)-F(x=

true_HDR[[1]][1],min=min ,max=max)

for(i in 1:n_hdr){

loss_temp <-loss_temp -F(x=HDR_hat[[i]][2],min=min ,max=max)+F(x=

HDR_hat[[i]][1],min=min ,max=max)

}

}

return(loss_temp)

}

error_function <-function(HDR ,HDR_estimate ,min ,max){

R<-length(HDR)

Rhat <-length(HDR_estimate)

counter <-Rhat

error <-0

r<-1

temp.hat <-NULL

while(r<=R){

indicator1<-c(1:Rhat)[unlist(lapply(HDR_estimate ,function(x)x[1]<

HDR[[r]][2] & x[2]<HDR[[r]][2]))]

indicator2<-c(1:Rhat)[unlist(lapply(HDR_estimate ,function(x)x[1]<

HDR[[r]][2] & x[2]>=HDR[[r]][2]))]

if(length(indicator1)==0 & length(indicator2)==0){

error <-error+F(HDR[[r]][2],min=min ,max=max)-F(HDR[[r]][1],min=

min ,max=max)

r<-r+1

}else{

if(length(indicator1)>0){

161

temp.hat <-HDR_estimate [(indicator1)]

HDR_estimate <-HDR_estimate[-indicator1]

Rhat <-length(HDR_estimate)

counter <-counter -length(indicator1)

}

indicator2<-c(1:Rhat)[unlist(lapply(HDR_estimate ,function(x)x[1

]<HDR[[r]][2] & x[2]>=HDR[[r]][2]))]

if(length(indicator2)>0){

last_interval <-HDR_estimate[indicator2]

last_interval [[1]][2]<-HDR[[r]][2]

temp.hat <-c(temp.hat ,last_interval)

HDR_estimate [[indicator2]][1]<-HDR[[r]][2]

#counter <-counter -length(indicator2)

}

temp.error <-auxiliary_error_function(HDR_hat = temp.hat ,true_

HDR = HDR[r],min=min ,max=max)

error <-error+temp.error

r<-r+1

temp.hat <-NULL

}

}

if(counter >0){

sum_error <-sum(unlist(lapply(HDR_estimate [(Rhat -counter+1):Rhat],

function(x)F(x[2],min=min ,max=max)-F(x[1],min=min ,max=max))))

error <-error+sum_error

}

return(error)

}

####### ASYMPTOTIC RISK ########

AR.hat <-function(c,xj ,p,nd ,varY ,f_h0_bin ,df_h0_bin ,grid ,counts ,h1_

binning_g,h2_binning_g){

162

#we assume that q(x)=f(x)

#We assume that the kernel K is the standard normal distribution.

sigmaK <- 1

v_20 <- 1/(2*sqrt(pi))

fhat <-Kernel_density_binning(x=xj , n=nd , h=h0_bin ,

grid=grid ,counts=counts)

dfhat <-dfhat_binning(x=xj,grid=grid ,counts=counts ,n

=nd,h=df_h0_bin)

dghat <-locpoly(x=x.sample ,y=Y.sample ,drv=1,degree=2

,bandwidth=h1_binning_g)

d2ghat <-locpoly(x=x.sample ,y=Y.sample ,drv=2,degree=3

,bandwidth=h2_binning_g)

dghat_interpolation <- splinefun(x=dghat$x,y=dghat$y,method="fmm

")

d2ghat_interpolation <- splinefun(x=d2ghat$x,y=d2ghat$y,method="

fmm")

dghat_xj <- dghat_interpolation(xj)

d2ghat_xj <- d2ghat_interpolation(xj)

A_xj <- -(dghat_xj*fhat)/((varY*fhat*v_20)^(1/2))

B2j.hat <- -sigmaK *(.5*fhat*d2ghat_xj+dghat_xj*dfhat)/((varY

*fhat*v_20)^(1/2))

B1j.hat <- 1/abs(A_xj)

nT_vector <- fhat*B1j.hat *((2*dnorm(x=c^(5/2)*B2j.hat)/c^(1/2)

)+c^(2)*B2j.hat*(2*pnorm(q=c^(5/2)*B2j.hat)-1))

T_tilde <- nd^(-2/5)*sum(nT_vector)

return(T_tilde)

163

}

Code related to the simulations from example one

######### TRUE FUNCTIONS ###########

g<-function(x){

gg <-(2/3)*dnorm(x,mean=0,sd=1)+(1/3)*dnorm(x,mean=0,sd=1/10)

return(gg)

}

dg_function <- function(x){

sigma2 <- .10

result <- (-1/sqrt(2*pi))*x*(2/3*exp(-.5*x^2)+(1/3)*(1/sigma2^3)*

exp(-1/(2*sigma2^2)*x^2))

return(result)

}

d2g_function <- function(x){

sigma2 <- .10

result <- (-1/sqrt(2*pi))*(2/3*exp(-.5*x^2)*(1-x^2)+(1/(3*sigma2^3)

)*exp(-1/(2*sigma2^2)*x^2)*(1-1/(sigma2^2)*x^2))

return(result)

}

F<-function(x,min ,max){

temp <-(x-min)/(max -min)

return(temp)

}

####### SIMULATIONS #######

164

set.seed(635017)

n <- 1000

M <- 250

p <- c(g(1.036055),g(.3193359),g(.06738281))

varY <- .1

minimo <- -4

maximo <- 4

true_hdr <- function(pp){

roots <-true_roots(p=pp,min=minimo ,max=maximo ,delta=8/1000)

hroots <-length(roots)/2

true_HDR <-list()

for(i in 1:hroots){

true_HDR <-c(true_HDR ,list(c(roots[2*i-1],roots[2*i])))

}

return(true_HDR)

}

true_HDR <- lapply(p,true_hdr)

g(unlist(true_HDR))

error_ED1_CV <- matrix(,nrow=M,ncol=length(p))

error_LP1 <- matrix(,nrow=M,ncol=length(p))

error_LSCV1 <- matrix(,nrow=M,ncol=length(p))

h_LSCV_vec1 <- rep(0,M)

h_LP_vec1 <- rep(0,M)

h_ED_vec1_CV <- matrix(,nrow=M,ncol=length(p))

h_initial_vec1 <- matrix(,nrow=M,ncol=length(p))

initial_roots <- list()

165

Y.matrix <- matrix(,nrow=M,ncol=n)

X.matrix <- matrix(,nrow=M,ncol=n)

for(m in 1:M){

x <- X.sample(n=n,min=minimo ,max=maximo)

g.x <- g(x)

y <- g.x+rnorm(n,mean=0,sd=sqrt(varY))

X.matrix[m,] <- x

Y.matrix[m,] <- y

}

m<-1

while(m<=M){

n <- 1000

x.sample <- X.matrix[m,]

Y.sample <- Y.matrix[m,]

grid_points <- x.sample

grid_cl <- rep(1,n)

grid_dlY <- Y.sample

ndiv <- 1000

d <- (max(x.sample)-min(x.sample))/ndiv

#bandwidth for fhat

s.hat <- sigma.hat(x.sample)

h6_book_bin <- (6*15/(sqrt(2*pi)*psi_NS_8(s.hat)*n))^(1/9)

h4_book_bin <- (-6/(sqrt(2*pi)*psi6_binning(h_6=h6_book_bin ,grid=

grid_points ,counts = grid_cl ,n=n)*n))^(1/7)

h0_bin <- (1/(2*sqrt(pi)*psi4_binning(h_4=h4_book_bin ,grid=

166

grid_points ,counts = grid_cl ,n=n)*n))^(1/5)

#bandwidth for dfhat

h8_book_binning <- (-210/(psi_NS_10(s.hat)*sqrt(2*pi)*n))

^(1/11)

h6_book_deriv_binning <- (30/(sqrt(2*pi)*n*psi8_binning(h_8=h8_

book_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/9)

h1_binning <- (-3/(4*sqrt(pi)*n*psi6_binning(h_6=h6_

book_deriv_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/7)

h_LP <- dpill(x=x.sample ,y=Y.sample)

h_LP_vec1[m] <- h_LP

ghat_LP <- locpoly(x=x.sample ,y=Y.sample ,bandwidth = h_LP)

h_CV <- npregbw(formula=Y.sample~x.sample ,bwmethod="cv.ls

")$bw

h_LSCV_vec1[m] <- h_CV

Y_bar <- sum(Y.sample)/n

varY_hat <- sum((Y.sample -Y_bar)^2)/(n-1)

for(l in 1:length(p)){

####################

#ROOTS CV

roots_vec_cv<-grid_search(h=h_CV,p=p[l],xsample=x.sample ,delta=d,

grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_cv)){

HDR_CV <-myHDR(roots_vector = roots_vec_cv ,d=d,p=p[l],h_estimate

= h_CV,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

HDR_CV <-HDR_CV[order(sapply(HDR_CV ,’[[’,1))]

error_LSCV1[m,l]<-error_function(HDR_estimate = HDR_CV,HDR=true

_HDR[[l]],min=minimo ,max=maximo)

167

}else{error_LSCV1[m,l]<-999}

#INITIAL ROOTS LSCV

seqplot <- seq(from=min(x.sample),to=max(x.sample),length.

out=2000)

h_initial <- h_CV

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h=h

_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

while(max(ghat.initial ,na.rm=TRUE)<p[l]){

h_initial <- h_initial *(.95)

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h

=h_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

}

roots_vec_initialCV <-grid_search(h=h_initial ,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

copt_hat_CV <-optimize(f=AR.hat ,lower=0,upper=100,xj=roots_vec_

initialCV ,p=p[l],nd=n,varY=varY_hat ,f_h0_bin=h0_bin ,df_h0_bin=

h1_binning ,grid=grid_points ,counts=grid_cl,h1_binning_g=h_LP,h

2_binning_g=h_LP)$minimum

h_ED_withLP_CV <-copt_hat_CV*(n^(-1/5))

h_ED_vec1_CV[m,l]<-h_ED_withLP_CV

roots_vec_ED_CV<-grid_search(h=h_ED_withLP_CV,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_ED_CV)){

HDR_ED_CV <-myHDR(roots_vector = roots_vec_ED_CV ,d=d,p=p[l],h_

estimate = h_ED_withLP_CV,grid=grid_points ,cl=grid_cl,dlY=

grid_dlY)

HDR_ED_CV <-HDR_ED_CV[order(sapply(HDR_ED_CV ,’[[’,1))]

168

error_ED1_CV[m,l]<-error_function(HDR_estimate =HDR_ED_CV,HDR=

true_HDR[[l]],min=minimo ,max=maximo)

} else {

error_ED1_CV[m,l]<-999

}

#ROOTS LP

roots_vec_LP<-grid_searchLP(ghatx=ghat_LP$x,ghatLP=ghat_LP$y,p=p[

l],xsample=x.sample ,delta=d)

if(!is.null(roots_vec_LP)){

HDR_LP <-myHDRLP(roots_vector=roots_vec_LP ,d=d,p=p[l],ghatx=ghat

_LP$x, ghatLP=ghat_LP$y,x.sample=x.sample)

HDR_LP <-HDR_LP[order(sapply(HDR_LP ,’[[’,1))]

error_LP1[m,l]<-error_function(HDR_estimate =HDR_LP,HDR=true_

HDR[[l]],min=minimo ,max=maximo)

} else {

error_LP1[m,l]<-999

}

}

print(m)

m<-m+1

}

set.seed(635017)

n <- 100000

M <- 250

p <- c(g(1.036055),g(.3193359),g(.06738281))

varY <- .1

169

minimo <- -4

maximo <- 4

true_hdr <- function(pp){

roots <-true_roots(p=pp,min=minimo ,max=maximo ,delta=8/1000)

hroots <-length(roots)/2

true_HDR <-list()

for(i in 1:hroots){

true_HDR <-c(true_HDR ,list(c(roots[2*i-1],roots[2*i])))

}

return(true_HDR)

}

true_HDR <- lapply(p,true_hdr)

g(unlist(true_HDR))

error_ED1_CV <- matrix(,nrow=M,ncol=length(p))

error_LP1 <- matrix(,nrow=M,ncol=length(p))

error_LSCV1 <- matrix(,nrow=M,ncol=length(p))

h_LSCV_vec1 <- rep(0,M)

h_LP_vec1 <- rep(0,M)

h_ED_vec1_CV <- matrix(,nrow=M,ncol=length(p))

h_initial_vec1 <- matrix(,nrow=M,ncol=length(p))

initial_roots <- list()

Y.matrix <- matrix(,nrow=M,ncol=n)

X.matrix <- matrix(,nrow=M,ncol=n)

for(m in 1:M){

x <- X.sample(n=n,min=minimo ,max=maximo)

g.x <- g(x)

170

y <- g.x+rnorm(n,mean=0,sd=sqrt(varY))

X.matrix[m,] <- x

Y.matrix[m,] <- y

}

m<-1

while(m<=M){

n <- 100000

x.sample <- X.matrix[m,]

Y.sample <- Y.matrix[m,]

plot(x.sample ,Y.sample ,type="p",main=" n=100,000")

nbins <- 1000

binning_object <- linear_binning_fast(xsample=x.sample ,Y.sample=Y

.sample ,nbins=nbins)

grid_points <- binning_object$grid_points

grid_cl <- binning_object$cl

grid_dlY <- binning_object$dl

grid_dlY2 <- binning_object$dl_2

ndiv <- 1000

d <- (max(x.sample)-min(x.sample))/ndiv

#bandwidth for fhat

s.hat <- sigma.hat(x.sample)

h6_book_bin <- (6*15/(sqrt(2*pi)*psi_NS_8(s.hat)*n))^(1/9)

h4_book_bin <- (-6/(sqrt(2*pi)*psi6_binning(h_6=h6_book_bin ,grid=

171

grid_points ,counts = grid_cl ,n=n)*n))^(1/7)

h0_bin <- (1/(2*sqrt(pi)*psi4_binning(h_4=h4_book_bin ,grid=

grid_points ,counts = grid_cl ,n=n)*n))^(1/5)

#bandwidth for dfhat

h8_book_binning <- (-210/(psi_NS_10(s.hat)*sqrt(2*pi)*n))

^(1/11)

h6_book_deriv_binning <- (30/(sqrt(2*pi)*n*psi8_binning(h_8=h8_

book_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/9)

h1_binning <- (-3/(4*sqrt(pi)*n*psi6_binning(h_6=h6_

book_deriv_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/7)

h_LP <- dpill(x=x.sample ,y=Y.sample)

h_LP_vec1[m] <- h_LP

ghat_LP <- locpoly(x=x.sample ,y=Y.sample ,bandwidth = h_LP)

h_CV <- optimize(my_CV,grid=grid_points ,counts=grid_cl,dY

=grid_dlY ,dY_2=grid_dlY2,x.sample=x.sample ,Y.sample=Y.sample ,

lower=.00001,upper=1)$minimum

h_LSCV_vec1[m] <- h_CV

Y_bar <- sum(Y.sample)/n

varY_hat <- sum((Y.sample -Y_bar)^2)/(n-1)

for(l in 1:length(p)){

####################

#ROOTS CV

roots_vec_cv<-grid_search(h=h_CV,p=p[l],xsample=x.sample ,delta=d,

grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

172

if(!is.null(roots_vec_cv)){

HDR_CV <-myHDR(roots_vector = roots_vec_cv ,d=d,p=p[l],h_estimate

= h_CV,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

HDR_CV <-HDR_CV[order(sapply(HDR_CV ,’[[’,1))]

error_LSCV1[m,l]<-error_function(HDR_estimate = HDR_CV,HDR=true

_HDR[[l]],min=minimo ,max=maximo)

}else{error_LSCV1[m,l]<-999}

#INITIAL ROOTS LSCV

seqplot <- seq(from=min(x.sample),to=max(x.sample),length.

out=2000)

h_initial <- h_CV

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h=h

_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

while(max(ghat.initial ,na.rm=TRUE)<p[l]){

h_initial <- h_initial *(.95)

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h

=h_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

}

roots_vec_initialCV <-grid_search(h=h_initial ,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

copt_hat_CV <-optimize(f=AR.hat ,lower=0,upper=100,xj=roots_vec_

initialCV ,p=p[l],nd=n,varY=varY_hat ,f_h0_bin=h0_bin ,df_h0_bin=

h1_binning ,grid=grid_points ,counts=grid_cl,h1_binning_g=h_LP,h

2_binning_g=h_LP)$minimum

h_ED_withLP_CV <-copt_hat_CV*(n^(-1/5))

h_ED_vec1_CV[m,l]<-h_ED_withLP_CV

roots_vec_ED_CV<-grid_search(h=h_ED_withLP_CV,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

173

if(!is.null(roots_vec_ED_CV)){

HDR_ED_CV <-myHDR(roots_vector = roots_vec_ED_CV ,d=d,p=p[l],h_

estimate = h_ED_withLP_CV,grid=grid_points ,cl=grid_cl,dlY=

grid_dlY)

HDR_ED_CV <-HDR_ED_CV[order(sapply(HDR_ED_CV ,’[[’,1))]

error_ED1_CV[m,l]<-error_function(HDR_estimate =HDR_ED_CV,HDR=

true_HDR[[l]],min=minimo ,max=maximo)

} else {

error_ED1_CV[m,l]<-999

}

#ROOTS LP

roots_vec_LP<-grid_searchLP(ghatx=ghat_LP$x,ghatLP=ghat_LP$y,p=p[

l],xsample=x.sample ,delta=d)

if(!is.null(roots_vec_LP)){

HDR_LP <-myHDRLP(roots_vector=roots_vec_LP ,d=d,p=p[l],ghatx=ghat

_LP$x, ghatLP=ghat_LP$y,x.sample=x.sample)

HDR_LP <-HDR_LP[order(sapply(HDR_LP ,’[[’,1))]

error_LP1[m,l]<-error_function(HDR_estimate =HDR_LP,HDR=true_

HDR[[l]],min=minimo ,max=maximo)

} else {

error_LP1[m,l]<-999

}

}

print(m)

m<-m+1

}

174

Code related to the simulations from example two

################ TRUE FUNCTIONS

############################

#

###

c0 <-.7*dnorm(8,mean=4,sd=.15)+.45*dnorm(8,mean=6,sd=.5)+.5*(8

-8.5)^2

g <- function(x){

gtemp <- (.7*dnorm(x,mean=4,sd=.15)+.45*dnorm(x,mean=6,sd=.5))*(x<8

)+(-.5*(x-8.5)^2+c0)*(x>=8)

return(gtemp)

}

dg_function <- function(x){

df <- function(x,mu ,s){

argument <- (x-mu)/s

result_df <- (1/sqrt(2*pi*s^2))*exp(-.5*argument^2)*(-argument

*(1/s))

return(result_df)

}

result_dg <- (0.7*df(x,mu=4,s=.15)+0.45*df(x,mu=6,s=0.5))*(x<8)

+((-.5*2)*(x-8.5))*(x>=8)

return(result_dg)

}

d2g_function <- function(x){

df2 <- function(x,mu ,s){

argument <- (x-mu)/s

result_df2 <-(1/sqrt(2*pi*s^2))*exp(-.5*argument^2)*((argument *(1

175

/s))^2 -(1/s^2))

return(result_df2)

}

result_d2g <- (0.7*df2(x,mu=4,s=.15)+0.45*df2(x,mu=6,s=0.5))*(x<8

)-1*(x>=8)

return(result_d2g)

}

F<-function(x,min ,max){

temp <-(x-min)/(max -min)

return(temp)

}

######## THE SIMULATIONS PART ########

set.seed(635017)

n <- 1000

M <- 250

p <- c(.05 ,.10,1,1.3,1.4,1.5)

varY <- .1

minimo <- 2

maximo <- 10

true_hdr <- function(pp){

roots <-true_roots(p=pp,min=minimo ,max=maximo ,delta =.9/1000)

hroots <-length(roots)/2

true_HDR <-list()

for(i in 1:hroots){

true_HDR <-c(true_HDR ,list(c(roots[2*i-1],roots[2*i])))

}

return(true_HDR)

}

176

true_HDR <- lapply(p,true_hdr)

g(unlist(true_HDR))

error_ED1_CV <- matrix(,nrow=M,ncol=length(p))

error_LP1 <- matrix(,nrow=M,ncol=length(p))

error_LSCV1 <- matrix(,nrow=M,ncol=length(p))

h_LSCV_vec1 <- rep(0,M)

h_LP_vec1 <- rep(0,M)

h_ED_vec1_CV <- matrix(,nrow=M,ncol=length(p))

h_initial_vec1 <- matrix(,nrow=M,ncol=length(p))

initial_roots <- list()

Y.matrix <- matrix(,nrow=M,ncol=n)

X.matrix <- matrix(,nrow=M,ncol=n)

for(m in 1:M){

x <- X.sample(n=n,min=minimo ,max=maximo)

g.x <- g(x)

y <- g.x+rnorm(n,mean=0,sd=sqrt(varY))

X.matrix[m,] <- x

Y.matrix[m,] <- y

}

m<-1

while(m<=M){

n <- 1000

x.sample <- X.matrix[m,]

Y.sample <- Y.matrix[m,]

177

grid_points <- x.sample

grid_cl <- rep(1,n)

grid_dlY <- Y.sample

ndiv <- 1000

d <- (max(x.sample)-min(x.sample))/ndiv

#bandwidth for fhat

s.hat <- sigma.hat(x.sample)

h6_book_bin <- (6*15/(sqrt(2*pi)*psi_NS_8(s.hat)*n))^(1/9)

h4_book_bin <- (-6/(sqrt(2*pi)*psi6_binning(h_6=h6_book_bin ,grid=

grid_points ,counts = grid_cl ,n=n)*n))^(1/7)

h0_bin <- (1/(2*sqrt(pi)*psi4_binning(h_4=h4_book_bin ,grid=

grid_points ,counts = grid_cl ,n=n)*n))^(1/5)

#bandwidth for dfhat

h8_book_binning <- (-210/(psi_NS_10(s.hat)*sqrt(2*pi)*n))

^(1/11)

h6_book_deriv_binning <- (30/(sqrt(2*pi)*n*psi8_binning(h_8=h8_

book_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/9)

h1_binning <- (-3/(4*sqrt(pi)*n*psi6_binning(h_6=h6_

book_deriv_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/7)

h_LP <- dpill(x=x.sample ,y=Y.sample)

h_LP_vec1[m] <- h_LP

ghat_LP <- locpoly(x=x.sample ,y=Y.sample ,bandwidth = h_LP)

h_CV <- npregbw(formula=Y.sample~x.sample ,bwmethod="cv.ls

")$bw

h_LSCV_vec1[m] <- h_CV

178

Y_bar <- sum(Y.sample)/n

varY_hat <- sum((Y.sample -Y_bar)^2)/(n-1)

for(l in 1:length(p)){

####################

#ROOTS CV

roots_vec_cv<-grid_search(h=h_CV,p=p[l],xsample=x.sample ,delta=d,

grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_cv)){

HDR_CV <-myHDR(roots_vector = roots_vec_cv ,d=d,p=p[l],h_estimate

= h_CV,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

HDR_CV <-HDR_CV[order(sapply(HDR_CV ,’[[’,1))]

error_LSCV1[m,l]<-error_function(HDR_estimate = HDR_CV,HDR=true

_HDR[[l]],min=minimo ,max=maximo)

}else{error_LSCV1[m,l]<-999}

#INITIAL ROOTS LSCV

seqplot <- seq(from=min(x.sample),to=max(x.sample),length.

out=2000)

h_initial <- h_CV

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h=h

_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

while(max(ghat.initial ,na.rm=TRUE)<p[l]){

h_initial <- h_initial *(.95)

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h

=h_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

}

roots_vec_initialCV <-grid_search(h=h_initial ,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

179

copt_hat_CV <-optimize(f=AR.hat ,lower=0,upper=100,xj=roots_vec_

initialCV ,p=p[l],nd=n,varY=varY_hat ,f_h0_bin=h0_bin ,df_h0_bin=

h1_binning ,grid=grid_points ,counts=grid_cl,h1_binning_g=h_LP,h

2_binning_g=h_LP)$minimum

h_ED_withLP_CV <-copt_hat_CV*(n^(-1/5))

h_ED_vec1_CV[m,l]<-h_ED_withLP_CV

roots_vec_ED_CV<-grid_search(h=h_ED_withLP_CV,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_ED_CV)){

HDR_ED_CV <-myHDR(roots_vector = roots_vec_ED_CV ,d=d,p=p[l],h_

estimate = h_ED_withLP_CV,grid=grid_points ,cl=grid_cl,dlY=

grid_dlY)

HDR_ED_CV <-HDR_ED_CV[order(sapply(HDR_ED_CV ,’[[’,1))]

error_ED1_CV[m,l]<-error_function(HDR_estimate =HDR_ED_CV,HDR=

true_HDR[[l]],min=minimo ,max=maximo)

} else {

error_ED1_CV[m,l]<-999

}

#ROOTS LP

roots_vec_LP<-grid_searchLP(ghatx=ghat_LP$x,ghatLP=ghat_LP$y,p=p[

l],xsample=x.sample ,delta=d)

if(!is.null(roots_vec_LP)){

HDR_LP <-myHDRLP(roots_vector=roots_vec_LP ,d=d,p=p[l],ghatx=ghat

_LP$x, ghatLP=ghat_LP$y,x.sample=x.sample)

HDR_LP <-HDR_LP[order(sapply(HDR_LP ,’[[’,1))]

error_LP1[m,l]<-error_function(HDR_estimate =HDR_LP,HDR=true_

HDR[[l]],min=minimo ,max=maximo)

} else {

180

error_LP1[m,l]<-999

}

}

print(m)

m<-m+1

}

set.seed(635017)

n <- 100000

M <- 250

p <- c(.05 ,.10,1,1.3,1.4,1.5)

varY <- .1

minimo <- 2

maximo <- 10

true_hdr <- function(pp){

roots <-true_roots(p=pp,min=minimo ,max=maximo ,delta =.9/1000)

hroots <-length(roots)/2

true_HDR <-list()

for(i in 1:hroots){

true_HDR <-c(true_HDR ,list(c(roots[2*i-1],roots[2*i])))

}

return(true_HDR)

}

true_HDR <- lapply(p,true_hdr)

g(unlist(true_HDR))

error_ED1_CV <- matrix(,nrow=M,ncol=length(p))

error_LP1 <- matrix(,nrow=M,ncol=length(p))

181

error_LSCV1 <- matrix(,nrow=M,ncol=length(p))

h_LSCV_vec1 <- rep(0,M)

h_LP_vec1 <- rep(0,M)

h_ED_vec1_CV <- matrix(,nrow=M,ncol=length(p))

h_initial_vec1 <- matrix(,nrow=M,ncol=length(p))

initial_roots <- list()

Y.matrix <- matrix(,nrow=M,ncol=n)

X.matrix <- matrix(,nrow=M,ncol=n)

for(m in 1:M){

x <- X.sample(n=n,min=minimo ,max=maximo)

g.x <- g(x)

y <- g.x+rnorm(n,mean=0,sd=sqrt(varY))

X.matrix[m,] <- x

Y.matrix[m,] <- y

}

m<-1

while(m<=M){

n <- 100000

x.sample <- X.matrix[m,]

Y.sample <- Y.matrix[m,]

nbins <- 1000

binning_object <- linear_binning_fast(xsample=x.sample ,Y.sample=Y

.sample ,nbins=nbins)

182

grid_points <- binning_object$grid_points

grid_cl <- binning_object$cl

grid_dlY <- binning_object$dl

grid_dlY2 <- binning_object$dl_2

ndiv <- 1000

d <- (max(x.sample)-min(x.sample))/ndiv

#bandwidth for fhat

s.hat <- sigma.hat(x.sample)

h6_book_bin <- (6*15/(sqrt(2*pi)*psi_NS_8(s.hat)*n))^(1/9)

h4_book_bin <- (-6/(sqrt(2*pi)*psi6_binning(h_6=h6_book_bin ,grid=

grid_points ,counts = grid_cl ,n=n)*n))^(1/7)

h0_bin <- (1/(2*sqrt(pi)*psi4_binning(h_4=h4_book_bin ,grid=

grid_points ,counts = grid_cl ,n=n)*n))^(1/5)

#bandwidth for dfhat

h8_book_binning <- (-210/(psi_NS_10(s.hat)*sqrt(2*pi)*n))

^(1/11)

h6_book_deriv_binning <- (30/(sqrt(2*pi)*n*psi8_binning(h_8=h8_

book_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/9)

h1_binning <- (-3/(4*sqrt(pi)*n*psi6_binning(h_6=h6_

book_deriv_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/7)

h_LP <- dpill(x=x.sample ,y=Y.sample)

h_LP_vec1[m] <- h_LP

ghat_LP <- locpoly(x=x.sample ,y=Y.sample ,bandwidth = h_LP)

h_CV <- optimize(my_CV,grid=grid_points ,counts=grid_cl,dY

=grid_dlY ,dY_2=grid_dlY2,x.sample=x.sample ,Y.sample=Y.sample ,

183

lower=.00001,upper=1)$minimum

h_LSCV_vec1[m] <- h_CV

Y_bar <- sum(Y.sample)/n

varY_hat <- sum((Y.sample -Y_bar)^2)/(n-1)

for(l in 1:length(p)){

####################

#ROOTS CV

roots_vec_cv<-grid_search(h=h_CV,p=p[l],xsample=x.sample ,delta=d,

grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_cv)){

HDR_CV <-myHDR(roots_vector = roots_vec_cv ,d=d,p=p[l],h_estimate

= h_CV,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

HDR_CV <-HDR_CV[order(sapply(HDR_CV ,’[[’,1))]

error_LSCV1[m,l]<-error_function(HDR_estimate = HDR_CV,HDR=true

_HDR[[l]],min=minimo ,max=maximo)

}else{error_LSCV1[m,l]<-999}

#INITIAL ROOTS LSCV

seqplot <- seq(from=min(x.sample),to=max(x.sample),length.

out=2000)

h_initial <- h_CV

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h=h

_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

while(max(ghat.initial ,na.rm=TRUE)<p[l]){

h_initial <- h_initial *(.95)

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h

=h_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

}

184

roots_vec_initialCV <-grid_search(h=h_initial ,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

copt_hat_CV <-optimize(f=AR.hat ,lower=0,upper=100,xj=roots_vec_

initialCV ,p=p[l],nd=n,varY=varY_hat ,f_h0_bin=h0_bin ,df_h0_bin=

h1_binning ,grid=grid_points ,counts=grid_cl,h1_binning_g=h_LP,h

2_binning_g=h_LP)$minimum

h_ED_withLP_CV <-copt_hat_CV*(n^(-1/5))

h_ED_vec1_CV[m,l]<-h_ED_withLP_CV

roots_vec_ED_CV<-grid_search(h=h_ED_withLP_CV,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_ED_CV)){

HDR_ED_CV <-myHDR(roots_vector = roots_vec_ED_CV ,d=d,p=p[l],h_

estimate = h_ED_withLP_CV,grid=grid_points ,cl=grid_cl,dlY=

grid_dlY)

HDR_ED_CV <-HDR_ED_CV[order(sapply(HDR_ED_CV ,’[[’,1))]

error_ED1_CV[m,l]<-error_function(HDR_estimate =HDR_ED_CV,HDR=

true_HDR[[l]],min=minimo ,max=maximo)

} else {

error_ED1_CV[m,l]<-999

}

#ROOTS LP

roots_vec_LP<-grid_searchLP(ghatx=ghat_LP$x,ghatLP=ghat_LP$y,p=p[

l],xsample=x.sample ,delta=d)

if(!is.null(roots_vec_LP)){

HDR_LP <-myHDRLP(roots_vector=roots_vec_LP ,d=d,p=p[l],ghatx=ghat

_LP$x, ghatLP=ghat_LP$y,x.sample=x.sample)

HDR_LP <-HDR_LP[order(sapply(HDR_LP ,’[[’,1))]

error_LP1[m,l]<-error_function(HDR_estimate =HDR_LP,HDR=true_

185

HDR[[l]],min=minimo ,max=maximo)

} else {

error_LP1[m,l]<-999

}

}

print(m)

m<-m+1

}

Code related to the simulations from example three

######## TRUE FUNCTIONS ########

g<-function(x){

d<-sqrt(x*(1-x))*sin(2.1*pi/(x+.05))

return(d)

}

dg_function <- function(x){

argument <- 2*pi/(x+0.50)

temp_result <- .5*(x*(1-x))^(-1/2)*(1-2*x)*sin(argument)-2*pi*cos(

argument)*((x*(1-x))^(1/2))/((x+.50)^2)

return(temp_result)

}

d2g_function <- function(x){

argument <- 2*pi/(x+0.50)

dfinterior_1 <- (-2*pi)/(x+.5)^2

dfinterior_2 <- .5*(1-2*x)/(sqrt(x*(1-x))*((x+.5)^2))-2*sqrt(x*(1

-x))/(x+.5)^3

186

result1 <- (-1/4)*(1-2*x)^2*sin(argument)*(x*(1-x))^(-3/2)

result2 <- (1/2)*(x*(1-x))^(-1/2)*(-2*sin(argument)+(1-2*x)*

cos(argument)*dfinterior_1)

result3 <- 2*pi*sin(argument)*dfinterior_1*(sqrt(x*(1-x))/(x

+.5)^2)-2*pi*cos(argument)*dfinterior_2

temp_result <- result1+result2+result3

return(temp_result)

}

F<-function(x,min ,max){

temp <-(x-min)/(max -min)

return(temp)

}

####### THE SIMULATIONS PART #######

set.seed(635017)

n <- 1000

M <- 250

p <- c(.18 ,.25 ,.30 ,.40)

minimo <-.1

varY <-.1

maximo <-1

true_hdr <- function(pp){

roots <-true_roots(p=pp,min=minimo ,max=maximo ,delta =.9/1000)

hroots <-length(roots)/2

true_HDR <-list()

for(i in 1:hroots){

true_HDR <-c(true_HDR ,list(c(roots[2*i-1],roots[2*i])))

}

return(true_HDR)

}

187

true_HDR <- lapply(p,true_hdr)

g(unlist(true_HDR))

error_ED1_CV <- matrix(,nrow=M,ncol=length(p))

error_LP1 <- matrix(,nrow=M,ncol=length(p))

error_LSCV1 <- matrix(,nrow=M,ncol=length(p))

h_LSCV_vec1 <- rep(0,M)

h_LP_vec1 <- rep(0,M)

h_ED_vec1_CV <- matrix(,nrow=M,ncol=length(p))

h_initial_vec1 <- matrix(,nrow=M,ncol=length(p))

initial_roots <- list()

Y.matrix <- matrix(,nrow=M,ncol=n)

X.matrix <- matrix(,nrow=M,ncol=n)

for(m in 1:M){

x <- X.sample(n=n,min=minimo ,max=maximo)

g.x <- g(x)

y <- g.x+rnorm(n,mean=0,sd=sqrt(varY))

X.matrix[m,] <- x

Y.matrix[m,] <- y

}

m<-1

while(m<=M){

n <- 1000

x.sample <- X.matrix[m,]

188

Y.sample <- Y.matrix[m,]

grid_points <- x.sample

grid_cl <- rep(1,n)

grid_dlY <- Y.sample

ndiv <- 1000

d <- (max(x.sample)-min(x.sample))/ndiv

#bandwidth for fhat

s.hat <- sigma.hat(x.sample)

h6_book_bin <- (6*15/(sqrt(2*pi)*psi_NS_8(s.hat)*n))^(1/9)

h4_book_bin <- (-6/(sqrt(2*pi)*psi6_binning(h_6=h6_book_bin ,grid=

grid_points ,counts = grid_cl ,n=n)*n))^(1/7)

h0_bin <- (1/(2*sqrt(pi)*psi4_binning(h_4=h4_book_bin ,grid=

grid_points ,counts = grid_cl ,n=n)*n))^(1/5)

#bandwidth for dfhat

h8_book_binning <- (-210/(psi_NS_10(s.hat)*sqrt(2*pi)*n))

^(1/11)

h6_book_deriv_binning <- (30/(sqrt(2*pi)*n*psi8_binning(h_8=h8_

book_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/9)

h1_binning <- (-3/(4*sqrt(pi)*n*psi6_binning(h_6=h6_

book_deriv_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/7)

h_LP <- dpill(x=x.sample ,y=Y.sample)

h_LP_vec1[m] <- h_LP

ghat_LP <- locpoly(x=x.sample ,y=Y.sample ,bandwidth = h_LP)

h_CV <- npregbw(formula=Y.sample~x.sample ,bwmethod="cv.ls

")$bw

189

h_LSCV_vec1[m] <- h_CV

Y_bar <- sum(Y.sample)/n

varY_hat <- sum((Y.sample -Y_bar)^2)/(n-1)

for(l in 1:length(p)){

####################

#ROOTS CV

roots_vec_cv<-grid_search(h=h_CV,p=p[l],xsample=x.sample ,delta=d,

grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_cv)){

HDR_CV <-myHDR(roots_vector = roots_vec_cv ,d=d,p=p[l],h_estimate

= h_CV,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

HDR_CV <-HDR_CV[order(sapply(HDR_CV ,’[[’,1))]

error_LSCV1[m,l]<-error_function(HDR_estimate = HDR_CV,HDR=true

_HDR[[l]],min=minimo ,max=maximo)

}else{error_LSCV1[m,l]<-999}

#INITIAL ROOTS LSCV

seqplot <- seq(from=min(x.sample),to=max(x.sample),length.

out=2000)

h_initial <- h_CV

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h=h

_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

while(max(ghat.initial ,na.rm=TRUE)<p[l]){

h_initial <- h_initial *(.95)

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h

=h_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

}

roots_vec_initialCV <-grid_search(h=h_initial ,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

190

copt_hat_CV <-optimize(f=AR.hat ,lower=0,upper=100,xj=roots_vec_

initialCV ,p=p[l],nd=n,varY=varY_hat ,f_h0_bin=h0_bin ,df_h0_bin=

h1_binning ,grid=grid_points ,counts=grid_cl,h1_binning_g=h_LP,h

2_binning_g=h_LP)$minimum

h_ED_withLP_CV <-copt_hat_CV*(n^(-1/5))

h_ED_vec1_CV[m,l]<-h_ED_withLP_CV

roots_vec_ED_CV<-grid_search(h=h_ED_withLP_CV,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_ED_CV)){

HDR_ED_CV <-myHDR(roots_vector = roots_vec_ED_CV ,d=d,p=p[l],h_

estimate = h_ED_withLP_CV,grid=grid_points ,cl=grid_cl,dlY=

grid_dlY)

HDR_ED_CV <-HDR_ED_CV[order(sapply(HDR_ED_CV ,’[[’,1))]

error_ED1_CV[m,l]<-error_function(HDR_estimate =HDR_ED_CV,HDR=

true_HDR[[l]],min=minimo ,max=maximo)

} else {

error_ED1_CV[m,l]<-999

}

#ROOTS LP

roots_vec_LP<-grid_searchLP(ghatx=ghat_LP$x,ghatLP=ghat_LP$y,p=p[

l],xsample=x.sample ,delta=d)

if(!is.null(roots_vec_LP)){

HDR_LP <-myHDRLP(roots_vector=roots_vec_LP ,d=d,p=p[l],ghatx=ghat

_LP$x, ghatLP=ghat_LP$y,x.sample=x.sample)

HDR_LP <-HDR_LP[order(sapply(HDR_LP ,’[[’,1))]

error_LP1[m,l]<-error_function(HDR_estimate =HDR_LP,HDR=true_

HDR[[l]],min=minimo ,max=maximo)

} else {

191

error_LP1[m,l]<-999

}

}

print(m)

m<-m+1

}

set.seed(635017)

n <- 100000

M <- 250

p <- c(.18 ,.25 ,.30 ,.40)

minimo <-.1

varY <-.1

maximo <-1

true_hdr <- function(pp){

roots <-true_roots(p=pp,min=minimo ,max=maximo ,delta =.9/1000)

hroots <-length(roots)/2

true_HDR <-list()

for(i in 1:hroots){

true_HDR <-c(true_HDR ,list(c(roots[2*i-1],roots[2*i])))

}

return(true_HDR)

}

true_HDR <- lapply(p,true_hdr)

g(unlist(true_HDR))

error_ED1_CV <- matrix(,nrow=M,ncol=length(p))

192

error_LP1 <- matrix(,nrow=M,ncol=length(p))

error_LSCV1 <- matrix(,nrow=M,ncol=length(p))

h_LSCV_vec1 <- rep(0,M)

h_LP_vec1 <- rep(0,M)

h_ED_vec1_CV <- matrix(,nrow=M,ncol=length(p))

h_initial_vec1 <- matrix(,nrow=M,ncol=length(p))

initial_roots <- list()

Y.matrix <- matrix(,nrow=M,ncol=n)

X.matrix <- matrix(,nrow=M,ncol=n)

for(m in 1:M){

x <- X.sample(n=n,min=minimo ,max=maximo)

g.x <- g(x)

y <- g.x+rnorm(n,mean=0,sd=sqrt(varY))

X.matrix[m,] <- x

Y.matrix[m,] <- y

}

m<-1

while(m<=M){

n <- 100000

x.sample <- X.matrix[m,]

Y.sample <- Y.matrix[m,]

nbins <- 3000

binning_object <- linear_binning_fast(xsample=x.sample ,Y.sample=Y

.sample ,nbins=nbins)

193

grid_points <- binning_object$grid_points

grid_cl <- binning_object$cl

grid_dlY <- binning_object$dl

grid_dlY2 <- binning_object$dl_2

ndiv <- 1000

d <- (max(x.sample)-min(x.sample))/ndiv

#bandwidth for fhat

s.hat <- sigma.hat(x.sample)

h6_book_bin <- (6*15/(sqrt(2*pi)*psi_NS_8(s.hat)*n))^(1/9)

h4_book_bin <- (-6/(sqrt(2*pi)*psi6_binning(h_6=h6_book_bin ,grid=

grid_points ,counts = grid_cl ,n=n)*n))^(1/7)

h0_bin <- (1/(2*sqrt(pi)*psi4_binning(h_4=h4_book_bin ,grid=

grid_points ,counts = grid_cl ,n=n)*n))^(1/5)

#bandwidth for dfhat

h8_book_binning <- (-210/(psi_NS_10(s.hat)*sqrt(2*pi)*n))

^(1/11)

h6_book_deriv_binning <- (30/(sqrt(2*pi)*n*psi8_binning(h_8=h8_

book_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/9)

h1_binning <- (-3/(4*sqrt(pi)*n*psi6_binning(h_6=h6_

book_deriv_binning ,grid=grid_points ,counts=grid_cl ,n=n)))^(1/7)

h_LP <- dpill(x=x.sample ,y=Y.sample)

h_LP_vec1[m] <- h_LP

ghat_LP <- locpoly(x=x.sample ,y=Y.sample ,bandwidth = h_LP)

h_CV <- optimize(my_CV,grid=grid_points ,counts=grid_cl,dY

=grid_dlY ,dY_2=grid_dlY2,x.sample=x.sample ,Y.sample=Y.sample ,

194

lower=.00001,upper=1)$minimum

h_LSCV_vec1[m] <- h_CV

Y_bar <- sum(Y.sample)/n

varY_hat <- sum((Y.sample -Y_bar)^2)/(n-1)

for(l in 1:length(p)){

####################

#ROOTS CV

roots_vec_cv<-grid_search(h=h_CV,p=p[l],xsample=x.sample ,delta=d,

grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_cv)){

HDR_CV <-myHDR(roots_vector = roots_vec_cv ,d=d,p=p[l],h_estimate

= h_CV,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

HDR_CV <-HDR_CV[order(sapply(HDR_CV ,’[[’,1))]

error_LSCV1[m,l]<-error_function(HDR_estimate = HDR_CV,HDR=true

_HDR[[l]],min=minimo ,max=maximo)

}else{error_LSCV1[m,l]<-999}

#INITIAL ROOTS LSCV

seqplot <- seq(from=min(x.sample),to=max(x.sample),length.

out=2000)

h_initial <- h_CV

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h=h

_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

while(max(ghat.initial ,na.rm=TRUE)<p[l]){

h_initial <- h_initial *(.95)

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h

=h_initial ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

}

roots_vec_initialCV <-grid_search(h=h_initial ,p=p[l],xsample=x.

195

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

copt_hat_CV <-optimize(f=AR.hat ,lower=0,upper=100,xj=roots_vec_

initialCV ,p=p[l],nd=n,varY=varY_hat ,f_h0_bin=h0_bin ,df_h0_bin=

h1_binning ,grid=grid_points ,counts=grid_cl,h1_binning_g=h_LP,h

2_binning_g=h_LP)$minimum

h_ED_withLP_CV <-copt_hat_CV*(n^(-1/5))

h_ED_vec1_CV[m,l]<-h_ED_withLP_CV

roots_vec_ED_CV<-grid_search(h=h_ED_withLP_CV,p=p[l],xsample=x.

sample ,delta=d,grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_ED_CV)){

HDR_ED_CV <-myHDR(roots_vector = roots_vec_ED_CV ,d=d,p=p[l],h_

estimate = h_ED_withLP_CV,grid=grid_points ,cl=grid_cl,dlY=

grid_dlY)

HDR_ED_CV <-HDR_ED_CV[order(sapply(HDR_ED_CV ,’[[’,1))]

error_ED1_CV[m,l]<-error_function(HDR_estimate =HDR_ED_CV,HDR=

true_HDR[[l]],min=minimo ,max=maximo)

} else {

error_ED1_CV[m,l]<-999

}

#ROOTS LP

roots_vec_LP<-grid_searchLP(ghatx=ghat_LP$x,ghatLP=ghat_LP$y,p=p[

l],xsample=x.sample ,delta=d)

if(!is.null(roots_vec_LP)){

HDR_LP <-myHDRLP(roots_vector=roots_vec_LP ,d=d,p=p[l],ghatx=ghat

_LP$x, ghatLP=ghat_LP$y,x.sample=x.sample)

HDR_LP <-HDR_LP[order(sapply(HDR_LP ,’[[’,1))]

error_LP1[m,l]<-error_function(HDR_estimate =HDR_LP,HDR=true_

HDR[[l]],min=minimo ,max=maximo)

196

} else {

error_LP1[m,l]<-999

}

}

print(m)

m<-m+1

}

B.2 Example code for DCS study

library(hdrcde)

library(np)

library(rootSolve)

data <- read.csv("data.csv", header=TRUE)

sheep <- data[, 1:8]

sheep <- sheep[, c(1,2,4)]

sheep[1:10,]

Xmatrix <- sheep[,c(1,2)]

colnames(Xmatrix) <- c("pressure","time")

head(Xmatrix)

Yvector <- sheep[,3]

PCA_sheep <- prcomp(Xmatrix ,scale=TRUE)

str(PCA_sheep)

PCA_sheep$center #mean of variables

PCA_sheep$scale #s.d. of variables

197

PCA_sheep$rotation <- -PCA_sheep$rotation

PCA_sheep$x <- -PCA_sheep$x #pca scores

PCA_sheep$sdev #s.d. of each principal component

PCA_data <- cbind(PCA_sheep$x[,1],Yvector)

colnames(PCA_data) <- c("PCA","Y")

head(PCA_data)

PCA_data <- as.data.frame(PCA_data)

######## FUNCTION TO OBTAIN h_LP ########

hLP_function <- function(x.sample ,Y.sample ,h0_bin ,grid_points ,

grid_cl,grid_dlY){

glm_polynomial <- glm(Y.sample ~ x.sample + I(x.sample^2)

+ I(x.sample^3),family=binomial)

coefficients_polyn <- coef(glm_polynomial)

first_integrand <- function(x){

matrix_powers <- sapply(x,function(i)c(i^0,i^1,i^2,i^3))

inv_variances <- apply(matrix_powers ,MARGIN=2,

FUN=function(x_polynomial)(1+exp(-coefficients_polyn %*%x_polynomial

))^2/

exp(-coefficients_polyn %*%x_polynomial))

fhat <- Kernel_density_binning(x=x,n=length(x.sample),

h=h0_bin ,grid=grid_points ,counts=grid_cl)

argument <- inv_variances*fhat

return(argument)

}

integral_numerator <- integrate(first_integrand ,lower=min(x.

198

sample),

upper=max(x.sample),subdivisions = 200)$value

integral_numerator <- integral_numerator *(1/(2*sqrt(pi)))

second_integrand <- function(x){

d2_eta <- 2*coefficients_polyn[3]+6*coefficients_polyn

[4]*x

fhat <- Kernel_density_binning(x=x,n=length(x.sample

),

h=h0_bin ,grid=grid_points ,counts=grid_cl)

fhat2 <- fhat^2

d2_eta2 <- d2_eta^2

argument2 <- d2_eta2*fhat2

return(argument2)

}

integral_denominator <- integrate(second_integrand ,lower=min(x.

sample),

upper=max(x.sample),subdivisions=200)$value

c_AMISE_LP <- (integral_numerator/integral_denominator)^(1/5)

h_AMISE_LP <- c_AMISE_LP*(length(x.sample)^(-1/5))

return(h_AMISE_LP)

}

####### FUNCTIONS TO OBTAIN g’_hat g’’_hat #######

g_derivatives_function <- function(x,h0_LP,x.sample ,Y.sample

){

function_one <- function(beta ,x){

b0 <- beta[1]

b1 <- beta[2]

199

p_function <- 1/(1+exp(-b0-b1*(x.sample -x)))

argument <- (Y.sample*log(p_function)+(1-Y.sample)*log(1-p_

function))

*(1/h0_LP)*unlist(lapply ((x.sample -x)/h0_LP ,dnorm))

argument <- sum(argument)

return(argument)

}

eta_hat <-optim(c(0.5,0.5),function_one ,x=x,control=list(fnscale=-1)

)$par[1]

function_two <- function(beta){

b0 <- beta[1]

b1 <- beta[2]

b2 <- beta[3]

p_function <- 1/(1+exp(-b0-b1*(x.sample -x)-b2*(x.sample -x)^2))

argument <- (Y.sample*log(p_function)+(1-Y.sample)*log(1-p_

function))

*(1/h0_LP)*unlist(lapply ((x.sample -x)/h0_LP ,dnorm))

argument <- sum(argument)

return(argument)

}

deriv_eta_hat <-optim(c(0.5,0.5,0.5),function_two ,

control=list(fnscale=-1))$par[2]

function_three <- function(beta){

b0 <- beta[1]

b1 <- beta[2]

b2 <- beta[3]

b3 <- beta[4]

p_function <- 1/(1+exp(-b0-b1*(x.sample -x)-b2*(x.sample -x)^2

-b3*(x.sample -x)^3))

argument <- (Y.sample*log(p_function)+(1-Y.sample)

200

log(1-p_function))(1/h0_LP)*unlist(lapply ((x.sample -x)/h0_LP,

dnorm))

argument <- sum(argument)

return(argument)

}

deriv2_eta_hat <- optim(c(0,0,0,0),function_three ,

control=list(fnscale=-1))$par[3]*2

deriv_g_hat <- (exp(-eta_hat)/((1+exp(-eta_hat))^2))*deriv_eta_hat

deriv2_g_hat <- (exp(-eta_hat)/((1+exp(-eta_hat))^2))

((1-2/(1+exp(-eta_hat)))(deriv_eta_hat^2)+deriv2_eta_hat)

return(derivatives=list(d1_g=deriv_g_hat ,d2_g=deriv2_g_hat))

}

ASYMPTOTIC RISK

AR.hat <-function(c,xj ,p,nd ,varY ,h0_bin ,dfh0_binning ,h0_LP ,

x.sample ,Y.sample ,grid_points ,grid_cl){

#we assume that q(x)=f(x)

#We assume that the kernel K is the standard normal distribution.

sigmaK <- 1

v_20 <- 1/(2*sqrt(pi))

fhat <- Kernel_density_binning(x=xj ,n=nd ,h=h0_bin ,

grid=grid_points ,counts=grid_cl)

dfhat <- dfhat_binning(x=xj,grid=grid_points ,

counts=grid_cl ,n=nd ,h=dfh0_binning)

derivatives_g <- unlist(lapply(xj,function(xx)

g_derivatives_function(x=xx,h0_LP=h0_LP,x.sample=x.sample ,Y.sample=Y

201

.sample)))

index <- length(derivatives_g)/2

dghat_xj <- derivatives_g[2*c(1:index)-1]

d2ghat_xj <- derivatives_g[2*c(1:index)]

A_xj <- -(dghat_xj*fhat)/((varY*fhat*v_20)^(1/2))

B2j.hat <- -sigmaK *(.5*fhat*d2ghat_xj+dghat_xj*dfhat)/((varY*fhat*v_2

0)^(1/2))

B1j.hat <- 1/abs(A_xj)

nT_vector <- fhat*B1j.hat *((2*dnorm(x=c^(5/2)*B2j.hat)/c^(1/2))

+c^(2)*B2j.hat*(2*pnorm(q=c^(5/2)*B2j.hat)-1))

T_tilde <- nd^(-2/5)*sum(nT_vector)

return(T_tilde)

}

######## ANALYSIS OF DATA ########

LS_list <- list()

p <- c(0.20,0.50,0.80)

hopt_vector <- rep(0,length(p))

n <- nrow(PCA_data)

x.sample <- PCA_data$PCA

Y.sample <- PCA_data$Y

plot(x.sample ,Y.sample ,type="p",main="DCS in sheep",xlab="PCA score",

ylab="mortality")

grid_points <- x.sample

grid_cl <- rep(1,n)

grid_dlY <- Y.sample

ndiv <- 1000

202

d <- (max(x.sample)-min(x.sample))/ndiv

s.hat <- sigma.hat(x.sample)

h6_book_bin <- (6*15/(sqrt(2*pi)*psi_NS_8(s.hat)*n))^(1/9)

h4_book_bin <- (-6/(sqrt(2*pi)*psi6_binning(h_6=h6_book_bin ,

grid=grid_points ,counts = grid_cl ,n=n)*n))^(1/7)

h0_bin <- (1/(2*sqrt(pi)*psi4_binning(h_4=h4_book_bin ,

grid=grid_points ,counts = grid_cl ,n=n)*n))^(1/5)

#bandwidth for dfhat

h8_book_binning <- (-210/(psi_NS_10(s.hat)*sqrt(2*pi)*n))

^(1/11)

h6_book_deriv_binning <- (30/(sqrt(2*pi)*n*psi8_binning(h_8=h8_book_

binning ,

grid=grid_points ,counts=grid_cl ,n=n)))^(1/9)

h1_binning <- (-3/(4*sqrt(pi)*n*psi6_binning(h_6=h6_book_deriv_

binning ,

grid=grid_points ,counts=grid_cl ,n=n)))^(1/7)

data <- as.data.frame(cbind(x.sample ,Y.sample))

h_CV <- npregbw(formula=data$Y.sample~data$x.sample ,bwmethod="cv

.aic")$bw

h_LP <- hLP_function(x.sample=x.sample ,Y.sample=Y.sample

,h0_bin=h0_bin ,grid_points = grid_points ,grid_cl = grid_cl ,

grid_dlY = grid_dlY)

######### first level ##############

l<-1

#INITIAL ROOTS LSCV

203

seqplot <- seq(from=min(x.sample),to=max(x.sample),length.

out=2000)

h_initial1 <- h_CV

ghat.initial <- NWkernel_regression_gaussian_binned(x=seqplot ,h=h_

initial1,

grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

roots_vec_initialMISE <-grid_search(h=h_initial1,p=p[l],xsample=x.

sample ,

delta=d,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

roots_vec_initialMISE[20]<-roots_vec_initialMISE[20]+0.014

var_xj <- p[l]*(1-p[l])

copt_hat_CV <- optimize(f=AR.hat ,lower=0,upper=100,$minimum ,

xj=roots_vec_initialMISE ,p=p[l],nd=n,varY=var_xj ,h0_bin=h0_bin ,

dfh0_binning=h1_binning ,h0_LP=h_LP ,x.sample=x.sample ,Y.sample=Y.

sample ,

grid_points=grid_points ,grid_cl=grid_cl)

h_opt <- copt_hat_CV*(n^(-1/5))

hopt_vector[l] <- h_opt

roots_vec_LS <- grid_search(h=h_opt ,p=p[l],xsample=x.sample ,

delta=d,

grid=grid_points ,cl=grid_cl ,dlY=grid_dlY)

if(!is.null(roots_vec_LS)){

LS_opt <- myHDR(roots_vector = roots_vec_LS ,d=d,p=p[l],

h_estimate = h_opt ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

LS_opt <- LS_opt[order(sapply(LS_opt ,’[[’,1))]

}

LS_list[[l]] <- LS_opt

########## second level #########

204

l<-2

roots_vec_initialMISE <-grid_search(h=h_initial1,p=0.50001,xsample=x

.sample ,

delta=d,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

roots_vec_initialMISE[15]<-roots_vec_initialMISE[15]+0.0135

var_xj <- 0.50001*(1-0.50001)

copt_hat_CV <- optimize(f=AR.hat ,lower=0,upper=100,

xj=roots_vec_initialMISE ,p=0.50001,nd=n,varY=var_xj ,h0_bin=h0_bin

,

dfh0_binning=h1_binning ,h0_LP=h_LP ,x.sample=x.sample ,

Y.sample=Y.sample ,grid_points=grid_points ,grid_cl=grid_cl)$

minimum

h_opt <- copt_hat_CV*(n^(-1/5))

hopt_vector[l] <- h_opt

roots_vec_LS <- grid_search(h=h_opt ,p=0.50001,xsample=x.sample

,

delta=d,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

if(!is.null(roots_vec_LS)){

LS_opt <- myHDR(roots_vector = roots_vec_LS ,d=d,p=p[l],h_

estimate = h_opt ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

LS_opt <- LS_opt[order(sapply(LS_opt ,’[[’,1))]

}

LS_list[[l]] <- c(roots_vec_LS ,max(x.sample))

########## third level #########

l<-3

p<-c(0.20,0.50,0.80)

roots_vec_initialMISE <-grid_search(h=h_initial1,p=p[l],xsample=x.

205

sample ,

delta=d,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

roots_vec_initialMISE[7]<-roots_vec_initialMISE[7]+0.013

var_xj <- p[l]*(1-p[l])

copt_hat_CV <- optimize(f=AR.hat ,lower=0,upper=100,

xj=roots_vec_initialMISE ,p=p[l],nd=n,varY=var_xj ,h0_bin=h0_bin ,

dfh0_binning=h1_binning ,h0_LP=h_LP ,x.sample=x.sample ,

Y.sample=Y.sample ,grid_points=grid_points ,grid_cl=grid_cl)$

minimum

h_opt <- copt_hat_CV*(n^(-1/5))

hopt_vector[l] <- h_opt

roots_vec_LS <- grid_search(h=h_opt ,p=p[l],xsample=x.sample ,

delta=d,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

if(!is.null(roots_vec_LS)){

LS_opt <- myHDR(roots_vector = roots_vec_LS ,d=d,p=p[l],

h_estimate = h_opt ,grid=grid_points ,cl=grid_cl,dlY=grid_dlY)

LS_opt <- LS_opt[order(sapply(LS_opt ,’[[’,1))]

}

LS_list[[l]] <- LS_opt

######### PLOTS #########

f_support <- seq(from=-2,to=2,length.out=300)

plot(x.sample ,Y.sample ,type="p",main="",xlab="PCA score",ylab="

mortality")

lines(f_support ,NWkernel_regression_gaussian_binned(x=f_support ,

h=hopt_vector[1],grid=grid_points ,cl=grid_cl,dlY=grid_dlY))

rect(xleft=LS_list[[1]][[1]][1],ybottom = 0.025, xright=LS_list[[1

206

]][[1]][2],

ytop=0.05, density = 20, angle = 45, col = NA , border = NULL , lty = 1

,lwd=1.5)

rect(xleft=LS_list[[1]][[2]][1],ybottom = 0.025, xright=LS_list[[1

]][[2]][2],

ytop=0.05, density = 20, angle = 45, col = NA , border = NULL , lty = 1

,lwd=1.5)

rect(xleft=LS_list[[1]][[3]][1],ybottom = 0.025, xright=LS_list[[1

]][[3]][2],

ytop=0.05, density = 20, angle = 45, col = NA , border = NULL , lty = 1

,lwd=1.5)

plot(x.sample ,Y.sample ,type="p",main="",xlab="PCA score",ylab="

mortality")

lines(f_support ,NWkernel_regression_gaussian_binned(x=f_support ,

h=hopt_vector[2],grid=grid_points ,cl=grid_cl,dlY=grid_dlY))

rect(xleft=LS_list[[2]][1],ybottom = 0.025, xright=LS_list[[2]][2],

ytop=0.05, density = 20, angle = 45, col = NA , border = NULL , lty = 1

,lwd=1.5)

plot(x.sample ,Y.sample ,type="p",main="",xlab="PCA score",ylab="

mortality")

lines(f_support ,NWkernel_regression_gaussian_binned(x=f_support ,

h=hopt_vector[3],grid=grid_points ,cl=grid_cl,dlY=grid_dlY))

rect(xleft=LS_list[[3]][[1]][1],ybottom = 0.025, xright=LS_list[[3

]][[1]][2],

ytop=0.05, density = 20, angle = 45, col = NA , border = NULL , lty = 1

,lwd=1.5)

207

B.3 Example code for log-concave highest density region sim-

ulations

Common functions

The function mixlcd computes the EM algorithm for the log-concave mixture model. The

code for this function and the code to select the appropriate number of components in the

log-concave mixture model appear in Boonpatcharanon [2019].

library(logcondens)

library(mclust)

library(hdrcde)

rm(list=ls())

#--

modified function logConDens

mod_logConDens <- function (x, xgrid = NULL , smoothed = FALSE , print =

FALSE ,w=w)

{

res1 <- activeSetLogCon(x, xgrid = xgrid , print = print ,w=w)

if (identical(smoothed , FALSE)) {

res <- c(res1)

}

if (identical(smoothed , TRUE)) {

if (identical(xs , NULL)) {

r <- diff(range(x))

xs <- seq(min(x) - 0.1 * r, max(x) + 0.1 * r, length = 500)

}

smo <- evaluateLogConDens(xs , res1, which = 4:5, gam = gam ,

print = print)

f.smoothed <- smo[, "smooth.density"]

F.smoothed <- smo[, "smooth.CDF"]

208

mode <- xs[f.smoothed == max(f.smoothed)]

res2 <- list(f.smoothed = f.smoothed , F.smoothed = F.smoothed ,

gam = gam , xs = xs , mode = mode)

res <- c(res1, res2)

}

res$smoothed <- smoothed

class(res) <- "dlc"

return(res)

}

####### function mixlcd ######

mixlcd <- function(x, k, plot=FALSE , print=TRUE){

prec <- 1e-08

prec1 <- 1e-08

starting values

mc_start <- hc(modelName="V", x)

class <- c(hclass(mc_start , k))

props <- table(class)

if(min(props)<2){

mc_start <- hc(modelName="E", x)

class <- c(hclass(mc_start , k))

}

props <- as.vector(table(class)/length(class))

q <- matrix(0, nrow=n, ncol=k)

for(i in 1:k){

q[,i] <- dnorm(x, mean=mean(x[class ==i]), sd=sd(x[

class==i]))

209

}

fit <- as.vector(props %*% t(q))

likold <- -100000000

Start repeating loop

cchange <- c()

for (j in 1:500) {

w <- t(t(q)*props)

fit <- as.vector(props %*% t(q))

w <- w/fit

q <- matrix(0, nrow=n, ncol=k)

knots <- rep(0,k)

cphi <- c()

cxx <- c()

countx <- c()

hphi <- rep(0,k)

hphi_abs <- rep(0,k)

hphi_kn <- rep(0,k)

hphi_lo_noabs <- rep(0,k)

hphi_lo <- rep(0,k)

dlc_kobjects <- vector("list", length = k)

for(i in 1:k){

whichx <- w[,i]/sum(w[,i])>prec1/n

210

countx <- c(countx ,length(x[whichx]))

mle <- mod_logConDens(x=x[whichx], xgrid = NULL ,

smoothed = FALSE , print = FALSE ,w=w[whichx ,i])

dlc_kobjects [[i]]<-mle

q[whichx ,i] <- exp(mle$phi)

knots[i] <- length(mle$knots)

kn <-mle$knots

phi <-mle$phi[which(mle$IsKnot ==1)]

cphi <- c(cphi ,phi)

xx <- x[which(mle$IsKnot ==1)]

cxx <- c(cxx ,xx)

dx <- diff(xx)

################### use Jfunction in r

m <- length(phi)

j201 <- J20(phi[1],phi[2])

if (m > 2){

j20d1 <- J20((phi[2:(m-1)]) ,(phi[3:m]))

j20d2 <- J20((phi[2:(m-1)]) ,(phi[1:(m-2)]))

}

j20m <- J20(phi[m],phi[(m-1)])

j11 <- J11((phi[1:(m-1)]) ,(phi[2:m]))

##

211

build diagonal

a1 <- dx[1]*j201

if(m > 2){

a2 <- dx[2:(m-1)]*j20d1

a3 <- dx[1:(m-2)]*j20d2

}

a4 <- dx[m-1]*j20m

if (m > 2){

diago <- c(a1,a2+a3,a4)

}

if (m <= 2){

diago <- c(a1,a4)

}

##################################

dx <-c(0,dx)

j11 <- c(0,j11)

b1 <- dx*j11

knmat <- matrix(rep(0,m*m),m,m)

for (ar in 1:m){

for (ac in 1:m){

if (ac == ar){

knmat[ar,ac] <- diago[ac]

}

if (ac == ar+1){

knmat[ar,ac] <- b1[ac]

}

212

if(ac != ar && ac!= ar+1) {knmat[ar ,ac] <- 0}

}

}

ss <-lower.tri(knmat)

knmat[ss] <- t(knmat)[ss]

as.matrix(knmat)

dkn <- diago

ddkn <- prod(diago)

########## Hessian for "Locations" #######

######## Diagonal of the Matrix ######

####### use Jfunction in r

j01.lo <- J10(phi[2:m],phi[1:(m-1)])

j11.lo <- J11(phi[1:(m-1)],phi[2:m])

j10.lo <- J10(phi[1:(m-1)],phi[2:m])

dxx <- dx[-1]

q20 <- rep(0,m)

q20[2:m] <- (dxx^3)*(j01.lo - j11.lo)

q20[1] <- 1

q11 <- (dxx^3)*j11.lo

q11 <- c(0,q11)

knmat.lo <- matrix(rep(0,m*m),m,m)

for (rr in 1:m){

for (cc in 1:m){

if(cc == rr){

213

knmat.lo[rr,cc] <- q20[cc]

}

if (cc == rr+1){

knmat.lo[rr,cc] <- q11[cc]

}

if(cc != rr && cc!= rr+1) {knmat.lo[rr ,cc] <- 0}

}

}

ss.lo <-lower.tri(knmat.lo)

knmat.lo[ss.lo] <- t(knmat.lo)[ss.lo]

as.matrix(knmat.lo)

dlo <- q20

ddlo <- prod(q20)

######## Hessian for "Lower Partials" ######

####### Diagonal of the Matrix #######

################### use Jfunction in r

j10.par1 <- -J10(phi[1],phi[2])

if (m > 2){

j10.par <- J10(phi[2:(m-1)],phi[1:(m-2)])-J10(phi[2:(m-1)],

phi[3:m])

}

j10.parm <- J10(phi[m],phi[m-1])

j11.upar <- J10(phi[1:(m-1)],phi[2:m])

j11.lpar <- -J10(phi[2:m],phi[1:(m-1)])

if(m > 2){

diago.lo <- c(j10.par1,j10.par ,j10.parm)

}

if(m <=2){

214

diago.lo <- c(j10.par1,j10.parm)

}

knmat.lpar <- matrix(rep(0,m*m),m,m)

for (rrr in 1:m){

for (ccc in 1:m){

if (ccc == rrr){

knmat.lpar[rrr ,ccc] <- diago.lo[ccc]

}

if (ccc == rrr+1){

knmat.lpar[rrr ,ccc] <- j11.upar[rrr]

}

if (ccc == rrr -1){

knmat.lpar[rrr ,ccc] <- j11.lpar[ccc]

}

}

}

as.matrix(knmat.lpar)

dlpar <- diago.lo

ddlpar <- prod(diago.lo)

######### Hessian for "Upper Partials" ########

knmat.upar <- t(knmat.lpar)

as.matrix(knmat.upar)

############ Full Hessian Matrix #############

mat1 <- cbind(knmat ,knmat.upar)

mat2 <- cbind(knmat.lpar ,knmat.lo)

hessian <- rbind(mat1,mat2)

hessian_kn <- knmat

215

hphi[i] <- det(hessian)

hphi_abs[i] <- abs(det(hessian))

hphi_kn[i] <- abs(det(hessian_kn))

hphi_lo_noabs[i] <- det(knmat.lo)

hphi_lo[i] <- abs(det(knmat.lo))

} ## end loop k

props <- apply(w, 2, sum)/sum(w)

fit <- as.vector(props %*% t(q))

temp <- t(log(t(t(q)*props)))*props

liknew <- sum(temp[temp >-Inf])

change <- abs((liknew -likold)/likold)

cchange <- c(cchange ,change)

if(print==TRUE){

print(iter)

print(k)

print(j)

print(change)

}

if (change < prec) break

likold <- liknew

} ## end loop j

######### build FI matrix ########

216

End repeating loop

ll <- sum(log(fit))

######### Hessian for "Knots" ########

######## Diagonal of Hessian Matrix #####

return(list(dlc_objects=dlc_kobjects ,cchange=cchange , props=props ,

ll=ll , knots=knots ,cphi=cphi , countx=countx , fit=fit , phi=phi ,

hphi_abs=hphi_abs , hphi_kn=hphi_kn , hphi_lo = hphi_lo , hphi_lo_

noabs=hphi_lo_noabs ,hphi=hphi , j=j, cxx=cxx))

}

########## SIMULATE FROM THE ESTIMATED LCMM ##########

rLCMM <- function(n, LCMM){

n_rand <- n

k <- length(LCMM$props)

simulate_grouping <- sample(c(1:k),size=n_rand ,replace=TRUE ,prob=

LCMM$props)

u_vector <- runif(n_rand ,min=0,max=1)

xrand_obs <- NULL

for(i in 1:k){

which_group_i <- which(simulate_grouping ==i)

xrand_group_i <- quantilesLogConDens(u_vector[which_group_i],LCMM

$dlc_objects [[i]])[,"quantile"]

217

xrand_obs <- c(xrand_obs ,xrand_group_i)

}

return(xrand_obs)

}

######### EVALUATE LCMM AT REAL VALUES ##########

evalLCMM <- function(x_tilda ,LCMM){

k <- length(LCMM$props)

fhat <- rep(0,length(x_tilda))

for (i in 1:k){

f_temp <- LCMM$props[i]* evaluateLogConDens(x_tilda , LCMM$dlc_

objects [[i]])[,"density"]

fhat <- fhat+f_temp

}

return(fhat)

}

ESTIMATE f_alpha ACCORDING TO HYNDMAN QUARTILE ALGORITHM

falpha_hat <- function(alpha ,fhat_xtilda){

m <- length(fhat_xtilda)

alpha_hat <- floor(alpha*m)

fhat_xtilda_sort <- sort(fhat_xtilda)

falpha <- fhat_xtilda_sort[alpha_hat]

return(falpha)

}

FUNCTIONS TO COMPUTE THE HDR_hat GIVEN f_alpha USING

GRIDSEARCH #######

218

#We compute the true HDR by doing bisection method a grid search on f

myBFfzero <-function (f, a, b, num = 1000, eps = 1e-05)

{

h = abs(b - a)/num

i = 0

j = 0

a1 = b1 = 0

while (i <= num) {

a1 = a + i * h

b1 = a1 + h

if (f(a1) == 0) {

root <-a1

f.root <-f(a1)

}

else if (f(b1) == 0) {

root <-b1

f.root <-f(b1)

}

else if (f(a1) * f(b1) < 0) {

repeat {

if (abs(b1 - a1) < eps)

break

x <- (a1 + b1)/2

if (f(a1) * f(x) < 0)

b1 <- x

else a1 <- x

}

#print(j + 1)

j = j + 1

root <-(a1 + b1)/2

f.root <-f((a1 + b1)/2)

219

}

i = i + 1

}

if (j == 0)

print("finding root is fail")

else return(list(root=root ,f.root=f.root))

}

GET ALL THE SLOPES AND INTERCEPTS RELEVANT TO EACH COMPONENT OF

THE LCMM #####

components_function <- function(dlc_object){

phi_knots_j <- dlc_object$phi[dlc_object$IsKnot ==1]

knots_j <- dlc_object$knots

slopes_j <- diff(phi_knots_j)/diff(knots_j)

intercepts_j<- rep(0,length(knots_j)-1)

for(i in 1:(length(knots_j)-1)){

intercepts_j[i] <- (knots_j[i+1]*phi_knots_j[i]-knots_j[i]*phi_

knots_j[i+1])/(knots_j[i+1]-knots_j[i])

}

slopes_j[length(knots_j)] <- 0

intercepts_j[length(knots_j)] <- 0

components_table <- cbind(slopes_j,intercepts_j,knots_j)

return(components_table)

}

220

GET THE FIRST DERIVATIVE OF fhat

#Note that a direction needs to be specified. This direction is only

relevant to knot points since f’(b) can be calculated in [a,b) or

[b,c)

derivative_LCMM <- function(x,direction="left",LCMM){

components_table <- lapply(LCMM$dlc_objects ,components_function)

derivative_j <- c()

j <- 1

k <- length(LCMM$props)

while(j<=k){

if (x<components_table[[j]][1,"knots_j"] || x>components_table[[j

]][nrow(components_table[[j]]),"knots_j"]){

derivative_j[j]<-0

j<-j+1

}else{

num_interval <- sum(x>= components_table[[j]][,"knots_j"])

if(x %in% components_table[[j]][,"knots_j"]){

if(direction =="left"){

num_interval <- num_interval -1

}else{

num_interval <- num_interval

}

}

if(num_interval ==0){

derivative_j[j] <- 0

}else{

derivative_j[j]<-LCMM$props[j]* components_table [[j]][num_

interval ,"slopes_j"]* evaluateLogConDens(x,LCMM$dlc_objects

[[j]])[,3]

}

221

j<-j+1

}

}

dfhat <- sum(derivative_j)

return(dfhat)

}

####### FUNCTION THAT RETURNS HOW MANY COMPONENTS ARE ACTIVE IN [a,b

) #######

components_at_interval <- function(a,b,LCMM){

components_table <- lapply(LCMM$dlc_objects ,components_function)

components <- 0

j <- 1

k <- length(LCMM$props)

x <-(a+b)/2

while(j<=k){

if (x<components_table[[j]][1,"knots_j"] || x>components_table[[j

]][nrow(components_table[[j]]),"knots_j"]){

components <-components+0

j<-j+1

}else{

components <-components+1

j<-j+1

}

}

return(components)

}

NEWTON RAPHSON ALGORITHM TO FIND ROOTS

222

#Summary: Newton Raphson is an iterative algorithm that requires a

starting point x0

#Then x1=x0-f(x0)/f’(x0)

#We will extend fhat for interval[a,b), find the roots , and make sure

the roots are within [a,b) interval.

#If the root is outside of [a,b), eliminate that root.

NewtonRaphson_LCMM <- function(x0,p,LCMM){

components_table <- lapply(LCMM$dlc_objects ,components_function)

location_components <- c()

j<-1

k<-length(LCMM$props)

while(j<=k){

num_intervalj <- sum(x0>=components_table[[j]][,"knots_j"])

if(num_intervalj ==0){

location_j<-NA

}else{

if(num_intervalj == length(components_table[[j]][,"knots_j"]) &&

x!=max(components_table [[j]][,"knots_j"])){

location_j<-NA

}else{

location_j<-num_intervalj

}

}

location_components <- c(location_components ,location_j)

j<-j+1

}

active_j <- c(1:k)[!is.na(location_components)]

223

slope_loc <- location_components [!is.na(location_

components)]

active_proportions <- LCMM$props[!is.na(location_components)]

f_extended <- function(x){

fj <- c()

for(i in 1:length(active_j)){

aj <- components_table[[active_j[i]]][slope_loc[i],"slopes_j"]

bj <- components_table[[active_j[i]]][slope_loc[i],"intercepts_

j"]

component <- active_proportions[i]*exp(aj*x+bj)

fj[i] <- component

}

f <- sum(fj)-p

return(f)

}

df_extended <- function(x){

dfj <- c()

for(i in 1:length(active_j)){

aj <- components_table[[active_j[i]]][slope_loc[i

],"slopes_j"]

bj <- components_table[[active_j[i]]][slope_loc[i

],"intercepts_j"]

derivative_temp <- aj*active_proportions[i]*exp(aj*x+bj)

dfj[i] <- derivative_temp

}

df <- sum(dfj)

return(df)

}

eps <- 1

224

while(eps >.0000000001){

x1 <- x0-f_extended(x0)/df_extended(x0)

eps <- abs(x1-x0)

x0 <- x1

}

return(x0)

}

NEWTON ALGORITHM TO FIND MINIMUM

#Summary: Newton Method is an iterative algorithm that requires a

starting point x0

#Then x1=x0-f’(x0)/f’’(x0)

#This function only works on intervals [a,b) where fhat(a)*fhat(b)<0.

Otherwise , fhat at [a,b) is a monotone function and this won ’t

work at all.

#We will extend fhat for interval[a,b). Call this function f_extended

. Then we will find the minimum of f_extended.

#The minimum is within [a,b)

Newton_LCMM <- function(x0,LCMM){

components_table <- lapply(LCMM$dlc_objects ,components_function)

location_components <- c()

k<-length(LCMM$props)

j<-1

while(j<=k){

num_intervalj <- sum(x0>=components_table[[j]][,"knots_j"])

if(num_intervalj ==0){

location_j<-NA

}else{

225

#if(num_intervalj == length(components_table [[j]][," knots_j"]) &&

x0!=max(components_table [[j]][," knots_j"])){

if(num_intervalj == length(components_table[[j]][,"knots_j"])){

location_j<-NA

}else{

location_j<-num_intervalj

}

}

location_components <- c(location_components ,location_j)

j<-j+1

}

active_j <- c(1:k)[!is.na(location_components)]

slope_loc <- location_components [!is.na(location_

components)]

active_proportions <- LCMM$props[!is.na(location_components)]

df_extended <- function(x){

dfj <- c()

for(i in 1:length(active_j)){

aj <- components_table[[active_j[i]]][slope_loc[i

],"slopes_j"]

bj <- components_table[[active_j[i]]][slope_loc[i

],"intercepts_j"]

derivative_temp <- aj*active_proportions[i]*exp(aj*x+bj)

dfj[i] <- derivative_temp

}

df <- sum(dfj)

return(df)

}

226

d2f_extended <- function(x){

d2fj <- c()

for(i in 1:length(active_j)){

aj <- components_table[[active_j[i]]][slope_loc[i],"slopes_j"]

bj <- components_table[[active_j[i]]][slope_loc[i],"intercepts_

j"]

derivative_temporal <- aj^2*active_proportions[i]*exp(aj*x+bj)

d2fj[i] <- derivative_temporal

}

d2f <- sum(d2fj)

return(d2f)

}

eps <- 1

while(eps >.000000001){

x1 <- x0-df_extended(x0)/d2f_extended(x0)

eps <- abs(x1-x0)

x0 <- x1

}

return(x0)

}

######## FIND EXACT ROOT WHEN ONLY ONE COMPONENT IS PRESENT IN [a,b)

#########

exact_root <- function(knot_a,p,LCMM){

components_table <- lapply(LCMM$dlc_objects ,components_function)

k <- length(LCMM$props)

j <- 1

227

while(j<=k){

location <- sum(knot_a>= components_table [[j]][,"knots_j"])

if(location == length(components_table[[j]][,"knots_j"])|| location

==0){

j<- j+1

}else{

aj <- components_table[[j]][location ,"slopes_j"]

bj <- components_table[[j]][location ,"intercepts_j"]

root <- (1/aj)*(log(p/LCMM$props[j])-bj)

j <- j+1

}

}

return(root)

}

FUNCTION TO FIND A ROOT IN INTERVAL [a,b) & FUNCTION TO FIND

ALL ROOTS in fhat ######

findroot_interval <- function(a,b,p,LCMM){

if(evalLCMM(a,LCMM)<p && evalLCMM(b,LCMM)<p){

root <- NA

}else{

if(!(evalLCMM(a,LCMM)>p && evalLCMM(b,LCMM)>p)){

if(components_at_interval(a=a,b=b,LCMM=LCMM)==1){

root <- exact_root(knot_a=a,p=p,LCMM=LCMM)

}else{

X0 <- mean(c(a,b))

root <- NewtonRaphson_LCMM(x0=X0,p=p,LCMM=LCMM)

228

while(root <a||root >b){

ss <-(b-a)/10

delta <- sample(x=c(ss,-ss),size=1,prob = c(.5 ,.5))

X0 <- X0+delta

root <- NewtonRaphson_LCMM(x0=X0,p=p,LCMM=LCMM)

}

}

}else{

if(derivative_LCMM(x=a,direction = "right",LCMM=LCMM)*

derivative_LCMM(x=b,LCMM=LCMM) >=0){

root <- NA

}else{

x.minimum <- Newton_LCMM(x0=mean(c(a,b)),LCMM)

minimum <- evalLCMM(x_tilda=x.minimum ,LCMM=LCMM)

if(minimum >p){

root <- NA

}else{

x01 <- mean(c(a,x.minimum))

x02 <- mean(c(x.minimum ,b))

root1 <- NewtonRaphson_LCMM(x0=x01,p=p,LCMM=LCMM)

root2 <- NewtonRaphson_LCMM(x0=x02,p=p,LCMM=LCMM)

while(root1<a||root1>b){

ss <-(x.minimum -a)/10

delta <- sample(x=c(ss,-ss),size=1,prob = c(.5 ,.5))

x01 <- x01+delta

root1 <- NewtonRaphson_LCMM(x0=x01,p=p,LCMM=LCMM)

}

while(root2<a||root2>b){

ss <-(b-x.minimum)/10

delta <- sample(x=c(ss,-ss),size=1,prob = c(.5 ,.5))

x02 <- x02+delta

229

root1 <- NewtonRaphson_LCMM(x0=x02,p=p,LCMM=LCMM)

}

root <- c(root1,root2)

}

}

}

}

return(root)

}

function_roots <- function(superknots ,p,LCMM){

roots_atinterval <- unlist(lapply(1:(length(superknots)-1),function

(i)findroot_interval(a=superknots[i],b=superknots[i+1],p=p,LCMM=

LCMM)))

roots_vector <- roots_atinterval [!is.na(roots_atinterval)]

return(roots_vector)

}

####### TRANSFORM VECTOR OF ROOTS TO THE ACTUAL HDR ########

myHDR <-function(roots_vector ,d,p,LCMM ,x.sample=x){

r<-length(roots_vector)

HDR <-list()

roots_vector <-sort(roots_vector)

R<-list()

i<-1

left_boundary <-evalLCMM(x_tilda=roots_vector[1]-d,LCMM = LCMM)-p

right_boundary <-evalLCMM(x_tilda=roots_vector[r]+d,LCMM = LCMM)-p

if(left_boundary >0){

R[[i]]<-c(min(x.sample),roots_vector[1])

230

i<-i+1

}

if(right_boundary >0){

R[[i]]<-c(roots_vector[r],max(x.sample))

i<-i+1

}

l<-1

while(l<length(roots_vector)){

r1<-roots_vector[l]

r2<-roots_vector[l+1]

rm <-(r1+r2)/2

f.rm <-evalLCMM(x_tilda=rm,LCMM = LCMM)-p

if(f.rm >0){

R[[i]]<-c(r1,r2)

i<-i+1

}

l<-l+1

}

return(R)

}

######### FUNCTIONS TO COMPUTE \mu(HDR_hat\Delta HDR)########

error_function <-function(HDR_hat ,true_HDR){

n_hdr <-length(HDR_hat)

counter <-n_hdr

loss_temp <-0

integral_regions_type1<-list()

i_temp <-NULL

for(i in 1:n_hdr){

231

if(HDR_hat[[i]][2]<=true_HDR[[1]][1]){

integral_regions_type1<-c(integral_regions_type1,HDR_hat[i])

loss_temp <-loss_temp+F(HDR_hat[[i]][2])-F(HDR_hat[[i]][1])

i_temp <-c(i_temp ,i)

counter <-counter -1

}

}

if(!is.null(i_temp)){HDR_hat <-HDR_hat[-c(i_temp)]}

n_hdr <-length(HDR_hat)

i_temp <-NULL

if(counter >0){

for(i in 1:n_hdr){

if(HDR_hat[[i]][1]>=true_HDR[[1]][2]){

integral_regions_type1<-c(integral_regions_type1,HDR_hat[i])

loss_temp <-loss_temp+F(HDR_hat[[i]][2])-F(HDR_hat[[i]][1])

i_temp <-c(i_temp ,i)

counter <-counter -1

}

}

if(!is.null(i_temp)){HDR_hat <-HDR_hat[-c(i_temp)]}

}

i_temp <-NULL

if(counter >0){

n_hdr <-length(HDR_hat)

if(HDR_hat[[1]][1]<true_HDR[[1]][1]){

integral_regions_type1<-c(integral_regions_type1,list(c(HDR_hat

[[1]][1],true_HDR[[1]][1])))

loss_temp <-loss_temp+F(true_HDR[[1]][1])-F(HDR_hat[[1]][1])

HDR_hat[[1]][1]<-true_HDR[[1]][1]

}

if(HDR_hat[[n_hdr]][2]>true_HDR[[1]][2]){

232

integral_regions_type1<-c(integral_regions_type1,list(c(true_

HDR[[1]][2],HDR_hat[[n_hdr]][2])))

loss_temp <-loss_temp+F(HDR_hat[[n_hdr]][2])-F(true_HDR[[1]][2])

HDR_hat[[n_hdr]][2]<-true_HDR[[1]][2]

}

loss_temp <-loss_temp+F(true_HDR[[1]][2])-F(true_HDR[[1]][1])

for(i in 1:n_hdr){

loss_temp <-loss_temp -(F(HDR_hat[[i]][2])-F(HDR_hat[[i]][1]))

}

}

return(loss_temp)

}

multipleIntervals_error <-function(HDR ,HDR_estimate){

R<-length(HDR)

Rhat <-length(HDR_estimate)

counter <-Rhat

error <-0

r<-1

temp.hat <-NULL

while(r<=R){

indicator1<-c(1:Rhat)[unlist(lapply(HDR_estimate ,function(x)x[1]<

HDR[[r]][2] & x[2]<HDR[[r]][2]))]

indicator2<-c(1:Rhat)[unlist(lapply(HDR_estimate ,function(x)x[1]<

HDR[[r]][2] & x[2]>=HDR[[r]][2]))]

if(length(indicator1)==0 & length(indicator2)==0){

error <-error+F(HDR[[r]][2])-F(HDR[[r]][1])

r<-r+1

}else{

if(length(indicator1)>0){

temp.hat <-HDR_estimate [(indicator1)]

HDR_estimate <-HDR_estimate[-indicator1]

Rhat <-length(HDR_estimate)

233

counter <-counter -length(indicator1)

}

indicator2<-c(1:Rhat)[unlist(lapply(HDR_estimate ,function(x)x[1

]<HDR[[r]][2] & x[2]>=HDR[[r]][2]))]

if(length(indicator2)>0){

last_interval <-HDR_estimate[indicator2]

last_interval [[1]][2]<-HDR[[r]][2]

temp.hat <-c(temp.hat ,last_interval)

HDR_estimate [[indicator2]][1]<-HDR[[r]][2]

#counter <-counter -length(indicator2)

}

temp.error <-error_function(HDR_hat = temp.hat ,true_HDR = HDR[r

])

error <-error+temp.error

r<-r+1

temp.hat <-NULL

}

}

if(counter >0){

sum_error <-sum(unlist(lapply(HDR_estimate [(Rhat -counter+1):Rhat],

function(x)F(x[2])-F(x[1]))))

error <-error+sum_error

}

return(error)

}

Code related to the simulations from density four in Marron and Wand

[1992b]

TRUE FUNCTIONS

fx <-function(x){

ff <-(2/3)*dnorm(x,mean=0,sd=1)+(1/3)*dnorm(x,mean=0,sd=1/10)

234

return(ff)

}

F<-function(xx){

pp <- c(2/3,1/3)

s <- c(0,0)

r <- c(1,1/100)

cdf <- pp[1]* pnorm(xx ,mean=s[1],sd=sqrt(r[1]))+pp[2]* pnorm(xx ,mean=

s[2],sd=sqrt(r[2]))

return(cdf)

}

######### FUNCTIONS TO OBTAIN TRUE HDR #########

true_falpha <- function(alpha ,n){

pp <- c(2/3,1/3)

s <- c(0,0)

r <- c(1,1/100)

y1 <- rnorm(n, mean=s[1], sd=sqrt(r[1]))

y2 <- rnorm(n, mean=s[2], sd=sqrt(r[2]))

u <- sample(1:2, n, replace=TRUE , prob=pp)

xx <- y1*(u==1)+y2*(u==2)

f_xx <- fx(xx)

f_xx <- sort(f_xx)

location <- floor(n*alpha)

f_alpha <- f_xx[location]

return(f_alpha)

235

}

true_hdr <-function(p){

f_shift <-function(x){

ff <-(2/3)*dnorm(x,mean=0,sd=1)+(1/3)*dnorm(x,mean=0,sd=1/10)-p

return(ff)

}

r1<-myBFfzero(f_shift ,-4,0,eps=.0000000001)$root

r2<-myBFfzero(f_shift ,0,4,eps=.0000000001)$root

hdr_true <-c(r1,r2)

return(hdr_true)

}

######## SIMULATIONS ######

set.seed(89630)

alpha <- c(.20,.50 ,.80)

falpha <- true_falpha(alpha ,10000000)

true_HDR <- lapply(falpha ,true_hdr)

M <- 250

error_logconcave <- matrix(, nrow = M, ncol = length(alpha))

error_kernel <- matrix(, nrow = M, ncol = length(alpha))

k_vector <- c()

m<- 1

while(m<=M){

ccres <-c()

cresult <-c()

mincha <- c()

236

maxcha <- c()

iter <-1

n <- c(1000)

p <- c(2/3,1/3)

s <- c(0,0)

r <- c(1,1/100)

kk <- 4

generate samples

y1 <- rnorm(n, mean=s[1], sd=sqrt(r[1]))

y2 <- rnorm(n, mean=s[2], sd=sqrt(r[2]))

u <- sample(1:2, n, replace=TRUE , prob=p)

x <- y1*(u==1)+y2*(u==2)

x <- sort(x)

bic3 <- c()

nbic35 <- c()

loop for number of components

cres <-c()

cfit <- c()

cumk <- 0

for (k in 1:kk){

dfcumk <- k-cumk[length(cumk)]

237

if(dfcumk !=1) next

mix <- tryCatch(mixlcd(x, k=k, plot=FALSE , print=FALSE),error=

function(e) NULL)

if(is.null(mix$cphi) ==TRUE) next

cumk <- c(cumk ,k)

ll <- mix$ll

mkn <- sum(mix$knots)

fish <- sum(log(mix$hphi_abs))

prop <- log(mix$props) #log(pi_j)

kp <- mix$knots

bic3[k] <- -2*ll + (2*mkn+k-1)*log(n)

nbic35[k] <- -2*ll + (2*mkn+k-1)*log(n) - sum(prop) + (fish)

res <-c(n,iter ,k,mix$j,ll ,mkn ,sum(prop),fish ,bic3[k],nbic35[k])

cres <-rbind(cres ,res)

if(k == 2){

238

mincha[iter] <- min(mix$cchange)

maxcha[iter] <- max(mix$cchange)

}

} ## loop k

if(dfcumk ==1){

##

minbic3<-which.min(bic3)

minnbic35<-which.min(nbic35)

####### Other techniques compare to BIC ######

1. GMM using BIC criterion

test <- Mclust(x, modelNames="V", G=1:kk)

mcl <-test$G

Gbic <- test$BIC[1:kk ,]

loglik <- test$loglik

cres <- cbind(cres ,Gbic ,loglik)

ccres <-rbind(ccres ,cres)

result <-c(n,iter ,mcl ,minbic3,minnbic35)

cresult <-rbind(cresult ,result)

iter <-iter+1

}

RESULTS

239

colnames(ccres)<-c("n","iter","k","j","ll","#knots","log(prop)","

fisher","bic3","nbic35","Gbic","ll_GMM")

colnames(cresult)<-c("n","iter","GMM","bic3","nbic35")

k_hat <- cresult[1,"nbic35"]

k_vector[m] <- k_hat

LCMM <-mixlcd(x=x, k=k_hat , plot=FALSE , print=FALSE)

superknots <- c()

for(i in 1:k_hat){

knotsj <- LCMM$dlc_objects [[i]]$ knots

superknots <- c(superknots ,knotsj)

}

superknots <-sort(superknots)

############## CODE FOR VECTOR alpha ##########

for(l in 1:length(alpha)){

############# compute the estimate for f_alpha

xtilda <- rLCMM(30000,LCMM)

fhat_xtilda <- evalLCMM(x_tilda=xtilda ,LCMM)

f_alpha_hat <- falpha_hat(alpha[l],fhat_xtilda)

#Kernel HDR

HDR_object <- hdr(x,prob=(1-alpha[l])*100)

no.intervals <-length(HDR_object$hdr)/2

HDR_kernel <-list()

for(i in 1:no.intervals){

240

HDR_kernel <- c(HDR_kernel ,list(c(HDR_object$hdr[2*i-1],HDR_

object$hdr[2*i])))

}

#find the roots for fhat

#transform a vector of roots into proper HDR regions

vector_withroots <-function_roots(superknots ,p=f_alpha_hat ,LCMM=

LCMM)

HDR_logconcave <-myHDR(roots_vector=vector_withroots ,d=.0001,p=f

_alpha_hat ,LCMM=LCMM)

error_logconcave[m,l] <- multipleIntervals_error(HDR=true_HDR[l

],HDR_estimate=HDR_logconcave)

error_kernel[m,l] <- multipleIntervals_error(HDR=true_HDR[l

],HDR_estimate=HDR_kernel)

}

print(m)

m <- m+1

}

Code related to the simulations from density six in Marron and Wand

[1992b]

TRUE FUNCTIONS

fx <-function(x){

ff <-(1/2)*dnorm(x,mean=-1,sd=2/3)+(1/2)*dnorm(x,mean=1,sd=2/3)

return(ff)

}

241

F<-function(xx){

pp <- c(1/2,1/2)

s <- c(-1,1)

r <- c(4/9,4/9)

cdf <- pp[1]* pnorm(xx ,mean=s[1],sd=sqrt(r[1]))+pp[2]* pnorm(xx ,mean=

s[2],sd=sqrt(r[2]))

return(cdf)

}

####### FUNCTIONS TO OBTAIN TRUE HDR #######

true_falpha <- function(alpha ,n){

pp <- c(1/2,1/2)

s <- c(-1,1)

r <- c(4/9,4/9)

y1 <- rnorm(n, mean=s[1], sd=sqrt(r[1]))

y2 <- rnorm(n, mean=s[2], sd=sqrt(r[2]))

u <- sample(1:2, n, replace=TRUE , prob=pp)

xx <- y1*(u==1)+y2*(u==2)

f_xx <- fx(xx)

f_xx <- sort(f_xx)

location <- floor(n*alpha)

f_alpha <- f_xx[location]

return(f_alpha)

}

true_hdr <-function(p){

242

f_shift <-function(x){

ff <-(1/2)*dnorm(x,mean=-1,sd=2/3)+(1/2)*dnorm(x,mean=1,sd=2/3)-p

return(ff)

}

r1<-myBFfzero(f_shift ,-2,-1,eps=.0000000001)$root

r2<-myBFfzero(f_shift ,-1,0,eps=.0000000001)$root

r3<-myBFfzero(f_shift ,0,1,eps=.0000000001)$root

r4<-myBFfzero(f_shift ,1,2,eps=.0000000001)$root

hdr_true <-c(list(c(r1,r2)),list(c(r3,r4)))

return(hdr_true)

}

####### SIMULATIONS ########

set.seed(69785)

alpha <- c(.20,.50,.80)

falpha <- true_falpha(alpha ,10000000)

true_HDR <- lapply(falpha ,true_hdr)

M <- 250

error_logconcave <- matrix(, nrow = M, ncol = length(alpha))

error_kernel <- matrix(, nrow = M, ncol = length(alpha))

k_vector <- c()

m<- 1

while(m<=M){

ccres <-c()

cresult <-c()

mincha <- c()

maxcha <- c()

243

iter <-1

n <- c(5000)

p <- c(1/2,1/2)

s <- c(-1,1)

r <- c(4/9,4/9)

#number of components

kk <- 4

Initialize parameters

y1 <- rnorm(n, mean=s[1], sd=sqrt(r[1]))

y2 <- rnorm(n, mean=s[2], sd=sqrt(r[2]))

u <- sample(1:2, n, replace=TRUE , prob=p)

x <- y1*(u==1)+y2*(u==2)

x <- sort(x)

bic3 <- c()

nbic35 <- c()

loop for number of components

cres <-c()

cfit <- c()

cumk <- 0

for (k in 1:kk){

dfcumk <- k-cumk[length(cumk)]

244

if(dfcumk !=1) next

mix <- tryCatch(mixlcd(x, k=k, plot=FALSE , print=FALSE),error=

function(e) NULL)

if(is.null(mix$cphi) ==TRUE) next

cumk <- c(cumk ,k)

ll <- mix$ll

mkn <- sum(mix$knots)

fish <- sum(log(mix$hphi_abs))

prop <- log(mix$props) #log(pi_j)

kp <- mix$knots

bic3[k] <- -2*ll + (2*mkn+k-1)*log(n)

nbic35[k] <- -2*ll + (2*mkn+k-1)*log(n) - sum(prop) + (fish)

res <-c(n,iter ,k,mix$j,ll ,mkn ,sum(prop),fish ,bic3[k],nbic35[k])

cres <-rbind(cres ,res)

245

if(k == 2){

mincha[iter] <- min(mix$cchange)

maxcha[iter] <- max(mix$cchange)

}

} ## loop k

if(dfcumk ==1){

minbic3<-which.min(bic3)

minnbic35<-which.min(nbic35)

Other techniques compare to BIC

1. GMM using BIC criterion

test <- Mclust(x, modelNames="V", G=1:kk)

mcl <-test$G

Gbic <- test$BIC[1:kk ,]

loglik <- test$loglik

cres <- cbind(cres ,Gbic ,loglik)

ccres <-rbind(ccres ,cres)

result <-c(n,iter ,mcl ,minbic3,minnbic35)

cresult <-rbind(cresult ,result)

iter <-iter+1

}

246

colnames(ccres)<-c("n","iter","k","j","ll","#knots","log(prop)","

fisher","bic3","nbic35","Gbic","ll_GMM")

colnames(cresult)<-c("n","iter","GMM","bic3","nbic35")

k_hat <- cresult[1,"nbic35"]

k_vector[m] <- k_hat

LCMM <-mixlcd(x=x, k=k_hat , plot=FALSE , print=FALSE)

superknots <- c()

for(i in 1:k_hat){

knotsj <- LCMM$dlc_objects [[i]]$ knots

superknots <- c(superknots ,knotsj)

}

superknots <-sort(superknots)

######## CODE FOR VECTOR alpha ########

for(l in 1:length(alpha)){

############# compute the estimate for f_alpha

xtilda <- rLCMM(30000,LCMM)

fhat_xtilda <- evalLCMM(x_tilda=xtilda ,LCMM)

f_alpha_hat <- falpha_hat(alpha[l],fhat_xtilda)

#Kernel HDR

HDR_object <- hdr(x,prob=(1-alpha[l])*100)

no.intervals <-length(HDR_object$hdr)/2

HDR_kernel <-list()

for(i in 1:no.intervals){

247

HDR_kernel <- c(HDR_kernel ,list(c(HDR_object$hdr[2*i-1],HDR_

object$hdr[2*i])))

}

vector_withroots <-function_roots(superknots ,p=f_alpha_hat ,LCMM=

LCMM)

HDR_logconcave <-myHDR(roots_vector=vector_withroots ,d=.0001,p=f

_alpha_hat ,LCMM=LCMM)

error_logconcave[m,l] <- multipleIntervals_error(HDR=true_HDR[[

l]],HDR_estimate=HDR_logconcave)

error_kernel[m,l] <- multipleIntervals_error(HDR=true_HDR[[

l]],HDR_estimate=HDR_kernel)

}

print(m)

m <- m+1

}

Code related to the simulations from a mixture of T distributions

TRUE FUNCTIONS

fx <-function(x){

ff <-(2/3)*dt(x,df=5)+(1/3)*dt(x,df=2)

return(ff)

}

F<-function(xx){

pp <- c(2/3,1/3)

cdf <- pp[1]*pt(xx ,df=5)+pp[2]*pt(xx ,df=2)

248

return(cdf)

}

FUNCTIONS TO OBTAIN TRUE HDR

true_falpha <- function(alpha ,n){

pp <- c(2/3,1/3)

y1 <- rt(n=n,df=5)

y2 <- rt(n=n,df=2)

u <- sample(1:2, n, replace=TRUE , prob=pp)

xx <- y1*(u==1)+y2*(u==2)

f_xx <- fx(xx)

f_xx <- sort(f_xx)

location <- floor(n*alpha)

f_alpha <- f_xx[location]

return(f_alpha)

}

true_hdr <-function(p){

f_shift <-function(x){

ff <-(2/3)*dt(x,df=5)+(1/3)*dt(x,df=2)-p

return(ff)

}

r1<-myBFfzero(f_shift ,-4,0,eps=.0000000001)$root

r2<-myBFfzero(f_shift ,0,4,eps=.0000000001)$root

249

hdr_true <-c(r1,r2)

return(hdr_true)

}

SIMULATIONS

set.seed(89630)

alpha <- c(.20,.50,.80)

falpha <- true_falpha(alpha ,10000000)

true_HDR <- lapply(falpha ,true_hdr)

M <- 250

error_logconcave <- matrix(, nrow = M, ncol = length(alpha))

error_kernel <- matrix(, nrow = M, ncol = length(alpha))

k_vector <- c()

m<- 1

while(m<=M){

ccres <-c()

cresult <-c()

mincha <- c()

maxcha <- c()

iter <-1

n <- c(1000)

p <- c(2/3,1/3)

#number of components

kk <- 4

250

y1 <- rt(n=n,df=5)

y2 <- rt(n=n,df=2)

u <- sample(1:2, n, replace=TRUE , prob=p)

x <- y1*(u==1)+y2*(u==2)

x <- sort(x)

bic3 <- c()

nbic35 <- c()

loop for #of components

cres <-c()

cfit <- c()

cumk <- 0

for (k in 1:kk){

dfcumk <- k-cumk[length(cumk)]

if(dfcumk !=1) next

mix <- tryCatch(mixlcd(x, k=k, plot=FALSE , print=FALSE),error=

function(e) NULL)

if(is.null(mix$cphi) ==TRUE) next

cumk <- c(cumk ,k)

ll <- mix$ll

251

mkn <- sum(mix$knots)

fish <- sum(log(mix$hphi_abs))

prop <- log(mix$props) #log(pi_j)

kp <- mix$knots

bic3[k] <- -2*ll + (2*mkn+k-1)*log(n)

nbic35[k] <- -2*ll + (2*mkn+k-1)*log(n) - sum(prop) + (fish)

res <-c(n,iter ,k,mix$j,ll ,mkn ,sum(prop),fish ,bic3[k],nbic35[k])

cres <-rbind(cres ,res)

if(k == 2){

mincha[iter] <- min(mix$cchange)

maxcha[iter] <- max(mix$cchange)

}

} ## loop k

if(dfcumk ==1){

minbic3<-which.min(bic3)

252

minnbic35<-which.min(nbic35)

########## Other techniques compare to BIC #########

1. GMM using BIC criterion

test <- Mclust(x, modelNames="V", G=1:kk)

mcl <-test$G

Gbic <- test$BIC[1:kk ,]

loglik <- test$loglik

cres <- cbind(cres ,Gbic ,loglik)

ccres <-rbind(ccres ,cres)

result <-c(n,iter ,mcl ,minbic3,minnbic35)

cresult <-rbind(cresult ,result)

iter <-iter+1

}

colnames(ccres)<-c("n","iter","k","j","ll","#knots","log(prop)","

fisher","bic3","nbic35","Gbic","ll_GMM")

colnames(cresult)<-c("n","iter","GMM","bic3","nbic35")

k_hat <- cresult[1,"nbic35"]

k_vector[m] <- k_hat

LCMM <-mixlcd(x=x, k=k_hat , plot=FALSE , print=FALSE)

superknots <- c()

253

for(i in 1:k_hat){

knotsj <- LCMM$dlc_objects [[i]]$ knots

superknots <- c(superknots ,knotsj)

}

superknots <-sort(superknots)

######### CODE FOR VECTOR alpha ########

for(l in 1:length(alpha)){

############# compute the estimate for f_alpha

xtilda <- rLCMM(30000,LCMM)

fhat_xtilda <- evalLCMM(x_tilda=xtilda ,LCMM)

f_alpha_hat <- falpha_hat(alpha[l],fhat_xtilda)

#kernel HDR

HDR_object <- hdr(x,prob=(1-alpha[l])*100)

no.intervals <-length(HDR_object$hdr)/2

HDR_kernel <-list()

for(i in 1:no.intervals){

HDR_kernel <- c(HDR_kernel ,list(c(HDR_object$hdr[2*i-1],HDR_

object$hdr[2*i])))

}

vector_withroots <-function_roots(superknots ,p=f_alpha_hat ,LCMM=

LCMM)

HDR_logconcave <-myHDR(roots_vector=vector_withroots ,d=.0001,p=f

_alpha_hat ,LCMM=LCMM)

error_logconcave[m,l] <- multipleIntervals_error(HDR=true_HDR[l

254

],HDR_estimate=HDR_logconcave)

error_kernel[m,l] <- multipleIntervals_error(HDR=true_HDR[l

],HDR_estimate=HDR_kernel)

}

print(m)

m <- m+1

}

B.4 Example code for Melbourne’s temperature data set

We present the code necessary for the analysis of the first two densities. The code for the

remaining five follows.

library(logcondens)

library(mclust) ## for GMM

library(hdrcde)

library(lubridate)

rm(list=ls())

#--

set.seed(12345)

######## TEMPERATURES DATA #######

######## from hdrcde package #######

data <- maxtemp

head(data)

length(data)

plot(data)

str(data)

255

today_temp <- data[1:3649]

tomorrow_temp <- data[2:3650]

data <- as.data.frame(cbind(today_temp ,tomorrow_temp))

colnames(data) <- c("today","tomorrow")

head(data)

summary(data$today)

data$group <- 0

data$group[data$today >=5 & data$today <10] <- 1

data$group[data$today >=10 & data$today <15] <- 2

data$group[data$today >=15 & data$today <20] <- 3

data$group[data$today >=20 & data$today <25] <- 4

data$group[data$today >=25 & data$today <30] <- 5

data$group[data$today >=30 & data$today <35] <- 6

data$group[data$today >=35 & data$today <40] <- 7

data$group[data$today >=40 & data$today <45] <- 8

data$group[data$today >=5&data$today <10]

EM algorithm for the LCMM

LC_MLE <- function(x, k, plot=FALSE , print=TRUE){

prec <- 1e-08

prec1 <- 1e-08

n <- length(x)

init <- Mclust(x, G=k)

class <- init$z

cu <- outer(unique(x), x, ‘==‘) %*% class

x <- unique(x)

256

n <- length(x)

for(i in 1:ncol(cu)){

cu[,i] <- cu[,i]/sum(cu[,i])

}

props <- init$parameters$pro

mle_list <- list()

for(i in 1:k){

mle_list[[i]] <- mod_logConDens(x=x, xgrid = NULL , smoothed =

FALSE , print = FALSE ,w=cu[,i])

}

likold <- 0

for(i in 1:k){

likold <- likold+props[i]*mle_list[[i]]$L

}

cchange <- c()

#ITERATION PART FOR THE EM ALGORITHM

for (j in 1:500) {

q <- matrix(0, nrow=n, ncol=k)

knots <- rep(0,k)

cphi <- c()

cxx <- c()

countx <- c()

hphi <- rep(0,k)

257

hphi_abs <- rep(0,k)

hphi_kn <- rep(0,k)

hphi_lo_noabs <- rep(0,k)

hphi_lo <- rep(0,k)

print(j)

E-STEP

denominator <- 0

for(i in 1:k){

denominator <- denominator+ props[i]*exp(mle_list[[i]]$ phi)

}

for(i in 1:k){

cu[,i] <- props[i]*exp(mle_list[[i]]$ phi)/denominator

}

props <- apply(cu,2,sum)/n

M-STEP

mle_list <- list()

dlc_kobjects <- vector("list", length = k)

liknew <-0

for(i in 1:k){

mle <- mod_logConDens(x=x, xgrid = NULL , smoothed = FALSE ,

print = FALSE ,w=cu[,i])

mle_list[[i]]<-mle

dlc_kobjects [[i]]<-mle

q[,i] <- exp(mle$phi)

knots[i] <- length(mle$knots)

258

kn <-mle$knots

phi <-mle$phi[which(mle$IsKnot ==1)]

cphi <- c(cphi ,phi)

xx <- x[which(mle$IsKnot ==1)]

cxx <- c(cxx ,xx)

dx <- diff(xx)

################### use Jfunction in r

m <- length(phi)

j201 <- J20(phi[1],phi[2])

if (m > 2){

j20d1 <- J20((phi[2:(m-1)]) ,(phi[3:m]))

j20d2 <- J20((phi[2:(m-1)]) ,(phi[1:(m-2)]))

}

j20m <- J20(phi[m],phi[(m-1)])

j11 <- J11((phi[1:(m-1)]) ,(phi[2:m]))

#############################

build diagonal

a1 <- dx[1]*j201

if(m > 2){

a2 <- dx[2:(m-1)]*j20d1

a3 <- dx[1:(m-2)]*j20d2

}

a4 <- dx[m-1]*j20m

259

if (m > 2){

diago <- c(a1,a2+a3,a4)

}

if (m <= 2){

diago <- c(a1,a4)

}

###########################

dx <-c(0,dx)

j11 <- c(0,j11)

b1 <- dx*j11

knmat <- matrix(rep(0,m*m),m,m)

for (ar in 1:m){

for (ac in 1:m){

if (ac == ar){

knmat[ar,ac] <- diago[ac]

}

if (ac == ar+1){

knmat[ar,ac] <- b1[ac]

}

if(ac != ar && ac!= ar+1) {knmat[ar ,ac] <- 0}

}

}

ss <-lower.tri(knmat)

knmat[ss] <- t(knmat)[ss]

as.matrix(knmat)

dkn <- diago

ddkn <- prod(diago)

260

######## Hessian for "Locations" ######

Diagonal of the Matrix

use Jfunction in r

j01.lo <- J10(phi[2:m],phi[1:(m-1)])

j11.lo <- J11(phi[1:(m-1)],phi[2:m])

j10.lo <- J10(phi[1:(m-1)],phi[2:m])

dxx <- dx[-1]

q20 <- rep(0,m)

q20[2:m] <- (dxx^3)*(j01.lo - j11.lo)

q20[1] <- 1

q11 <- (dxx^3)*j11.lo

q11 <- c(0,q11)

knmat.lo <- matrix(rep(0,m*m),m,m)

for (rr in 1:m){

for (cc in 1:m){

if(cc == rr){

knmat.lo[rr,cc] <- q20[cc]

}

if (cc == rr+1){

knmat.lo[rr,cc] <- q11[cc]

}

if(cc != rr && cc!= rr+1) {knmat.lo[rr ,cc] <- 0}

}

}

ss.lo <-lower.tri(knmat.lo)

knmat.lo[ss.lo] <- t(knmat.lo)[ss.lo]

261

as.matrix(knmat.lo)

dlo <- q20

ddlo <- prod(q20)

Hessian for "Lower Partials"

Diagonal of the Matrix

####### use Jfunction in r

j10.par1 <- -J10(phi[1],phi[2])

if (m > 2){

j10.par <- J10(phi[2:(m-1)],phi[1:(m-2)])-J10(phi[2:(m-1)],

phi[3:m])

}

j10.parm <- J10(phi[m],phi[m-1])

j11.upar <- J10(phi[1:(m-1)],phi[2:m])

j11.lpar <- -J10(phi[2:m],phi[1:(m-1)])

if(m > 2){

diago.lo <- c(j10.par1,j10.par ,j10.parm)

}

if(m <=2){

diago.lo <- c(j10.par1,j10.parm)

}

knmat.lpar <- matrix(rep(0,m*m),m,m)

for (rrr in 1:m){

for (ccc in 1:m){

if (ccc == rrr){

knmat.lpar[rrr ,ccc] <- diago.lo[ccc]

}

if (ccc == rrr+1){

knmat.lpar[rrr ,ccc] <- j11.upar[rrr]

262

}

if (ccc == rrr -1){

knmat.lpar[rrr ,ccc] <- j11.lpar[ccc]

}

}

}

as.matrix(knmat.lpar)

dlpar <- diago.lo

ddlpar <- prod(diago.lo)

####### Hessian for "Upper Partials" ######

knmat.upar <- t(knmat.lpar)

as.matrix(knmat.upar)

############ Full Hessian Matrix #############

mat1 <- cbind(knmat ,knmat.upar)

mat2 <- cbind(knmat.lpar ,knmat.lo)

hessian <- rbind(mat1,mat2)

hessian_kn <- knmat

hphi[i] <- det(hessian)

hphi_abs[i] <- abs(det(hessian))

hphi_kn[i] <- abs(det(hessian_kn))

hphi_lo_noabs[i] <- det(knmat.lo)

hphi_lo[i] <- abs(det(knmat.lo))

liknew <- liknew+props[i]*mle_list[[i]]$L

}#end loop k

change <- abs((liknew -likold)/likold)

cchange <- c(cchange ,change)

263

if (change < prec) break

likold <- liknew

if(print==TRUE){

print(k)

print(j)

print(change)

}

}

build FI matrix

End repeating loop

ll <- 0

for(i in 1:k){

ll <- ll+ props[i]*exp(mle_list[[i]]$ phi)

}

ll <- sum(log(ll))

####### Hessian for "Knots" ######

####### Diagonal of Hessian Matrix ######

return(list(dlc_objects=dlc_kobjects ,cchange=cchange , props=props ,

ll=ll , knots=knots ,cphi=cphi , countx=countx , phi=phi , hphi_abs=

hphi_abs , hphi_kn=hphi_kn , hphi_lo = hphi_lo , hphi_lo_noabs=hphi

_lo_noabs ,hphi=hphi , j=j, cxx=cxx))

}

264

Function for log -concave HDR

LCHDR_function <- function(LCMM ,alpha){

k_hat <- length(LCMM$props)

superknots <- c()

for(i in 1:k_hat){

knotsj <- LCMM$dlc_objects [[i]]$ knots

superknots <- c(superknots ,knotsj)

}

superknots <-sort(unique(superknots))

CODE FOR VECTOR alpha

HDR_kernel_list <- list()

HDR_logconcave_list <- list()

for(l in 1:length(alpha)){

compute the estimate for f_alpha

xtilda <- rLCMM(30000,LCMM)

fhat_xtilda <- evalLCMM(x_tilda=xtilda ,LCMM)

f_alpha_hat <- falpha_hat(alpha[l],fhat_xtilda)

Kernel HDR

HDR_object <- hdr(x,prob=(1-alpha[l])*100)

no.intervals <-length(HDR_object$hdr)/2

HDR_kernel <-list()

for(i in 1:no.intervals){

265

HDR_kernel <- c(HDR_kernel ,list(c(HDR_object$hdr[2*i-1],HDR_

object$hdr[2*i])))

}

HDR_kernel_list[[l]] <- HDR_kernel

vector_withroots <-function_roots(superknots ,p=f_alpha_hat ,LCMM=

LCMM)

HDR_logconcave <-myHDR(roots_vector=vector_withroots ,d=.0001,p=f

_alpha_hat ,LCMM=LCMM)

HDR_logconcave_list[[l]] <- HDR_logconcave

}

return(list(HDR_kernel_list=HDR_kernel_list ,HDR_logconcave_list=HDR

_logconcave_list))

}

alpha <- c(0.2,0.5,0.8)

FIRST DENSITY

x1 <- data[data$group ==1,2]

n <- length(x1)

ccres <-c()

cresult <-c()

mincha <- c()

maxcha <- c()

iter <-1

266

kk <- 4

x <- sort(x1)

bic3 <- c()

nbic35 <- c()

Select the number of components

cres <-c()

cfit <- c()

cumk <- 0

for (k in 1:kk){

dfcumk <- k-cumk[length(cumk)]

if(dfcumk !=1) next

mix <- tryCatch(LC_MLE(x, k=k, plot=FALSE , print=TRUE),error=

function(e) NULL)

if(is.null(mix$cphi) ==TRUE) next

cumk <- c(cumk ,k)

------------ criterion -----------

ll <- mix$ll

mkn <- sum(mix$knots)

fish <- sum(log(mix$hphi_abs))

267

prop <- log(mix$props)

kp <- mix$knots

bic3[k] <- -2*ll + (2*mkn+k-1)*log(n)

new for present

nbic35[k] <- -2*ll + (2*mkn+k-1)*log(n) - sum(prop) + (fish)

---------- criterion -----------

res <-c(n,iter ,k,mix$j,ll ,mkn ,sum(prop),fish ,bic3[k],nbic35[k])

cres <-rbind(cres ,res)

if(k == 2){

mincha[iter] <- min(mix$cchange)

maxcha[iter] <- max(mix$cchange)

}

} ## loop k

minbic3<-which.min(bic3)

minnbic35<-which.min(nbic35)

######### Other techniques compare to BIC #######

268

1. GMM using BIC criterion

kk <-max(cumk)

test <- Mclust(x, modelNames="V", G=1:kk)

mcl <-test$G

Gbic <- test$BIC[1:kk ,]

loglik <- test$loglik

cres <- cbind(cres ,Gbic ,loglik)

ccres <-rbind(ccres ,cres)

result <-c(n,iter ,mcl ,minbic3,minnbic35)

cresult <-rbind(cresult ,result)

colnames(ccres)<-c("n","iter","k","j","ll","#knots","log(prop)","

fisher","bic3","nbic35","Gbic","ll_GMM")

colnames(cresult)<-c("n","iter","GMM","bic3","nbic35")

ccres

cresult

k_hat1 <- cresult[1,"nbic35"]

LCMM1 <- LC_MLE(k=k_hat1,x=x1)

density_one_HDR <- LCHDR_function(LCMM1,alpha)

density_one_HDR$HDR_kernel_list

density_one_HDR$HDR_logconcave_list

SECOND DENSITY

x2 <- data[data$group ==2,2]

n <- length(x2)

269

ccres <-c()

cresult <-c()

mincha <- c()

maxcha <- c()

kk <- 4

x <- sort(x2)

bic3 <- c()

nbic35 <- c()

Select the number of components

cres <-c()

cfit <- c()

cumk <- 0

for (k in 1:kk){

dfcumk <- k-cumk[length(cumk)]

if(dfcumk !=1) next

mix <- tryCatch(LC_MLE(x, k=k, plot=FALSE , print=TRUE),error=

function(e) NULL)

if(is.null(mix$cphi) ==TRUE) next

cumk <- c(cumk ,k)

270

##---------- criterion ------------

ll <- mix$ll

mkn <- sum(mix$knots)

fish <- sum(log(mix$hphi_abs))

prop <- log(mix$props)

kp <- mix$knots

bic3[k] <- -2*ll + (2*mkn+k-1)*log(n)

new for present

nbic35[k] <- -2*ll + (2*mkn+k-1)*log(n) - sum(prop) + (fish)

##--------- criterion ----------

res <-c(n,iter ,k,mix$j,ll ,mkn ,sum(prop),fish ,bic3[k],nbic35[k])

cres <-rbind(cres ,res)

if(k == 2){

mincha[iter] <- min(mix$cchange)

maxcha[iter] <- max(mix$cchange)

}

} ## loop k

271

if(dfcumk ==1){

minbic3<-which.min(bic3)

minnbic35<-which.min(nbic35)

######### Other techniques compare to BIC ########

1. GMM using BIC criterion

kk <-max(cumk)

test <- Mclust(x, modelNames="V", G=1:kk)

mcl <-test$G

Gbic <- test$BIC[1:kk ,]

loglik <- test$loglik

cres <- cbind(cres ,Gbic ,loglik)

ccres <-rbind(ccres ,cres)

result <-c(n,iter ,mcl ,minbic3,minnbic35)

cresult <-rbind(cresult ,result)

}

colnames(ccres)<-c("n","iter","k","j","ll","#knots","log(prop)","

fisher","bic3","nbic35","Gbic","ll_GMM")

colnames(cresult)<-c("n","iter","GMM","bic3","nbic35")

ccres

cresult

k_hat2 <- cresult[1,"nbic35"]

LCMM2 <- LC_MLE(k=k_hat2,x=x2)

density_two_HDR <- LCHDR_function(LCMM2,alpha)

density_two_HDR$HDR_kernel_list

272

density_two_HDR$HDR_logconcave_list

273

Bibliography

H. A. Adler, R.J. Level Crossings for Random Fields. The Annals of Probability, 4(1):1 – 12,

1976. doi: 10.1214/aop/1176996176. URL https://doi.org/10.1214/aop/1176996176.

S. G. T. J. Adler, R.J. Excursion sets of three classes of stable random fields.

Advances in Applied Probability, 42(2):293–318, 2010. ISSN 00018678. URL

http://www.jstor.org/stable/25683820.

H. Akaike. Statistical predictor identification. Annals of the Institute of Statistical Mathe-

matics, 22:203–217, 1970.

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Auto-

matic Control, 19(6):716–723, 1974.

A. Báıllo. Total error in a plug-in estimator of level sets. Universidad Carlos III, Depar-

tamento de Estad́ıstica y Econometŕıa, Statistics and Econometrics Working Papers, 01

2003.

A. Báıllo, A. Cuevas, and A. Justel. Set estimation and nonparametric detection. Canadian

Journal of Statistics, 28(4):765–782, 2000. doi: https://doi.org/10.2307/3315915.

A. Báıllo, J. Cuesta-Albertos, and A. Cuevas. Convergence rates in nonparametric estimation

of level sets. Statistics and Probability Letters, 53:27–35, 02 2001. doi: 10.1016/S0167-

7152(01)00006-2.

F. Balabdaoui, K. Rufibach, and J. A. Wellner. Limit distribution theory for maximum

274

likelihood estimation of a log-concave density. The Annals of Statistics, 37(3):1299–1331,

06 2009. doi: 10.1214/08-AOS609.

P. Bhattacharya. Some aspects of change-point analysis. Lecture Notes-Monograph Series,

23:28–56, 1994. ISSN 07492170. URL http://www.jstor.org/stable/4355761.

L. Birgé. Estimation of unimodal densities without smoothness assumptions.

Ann. Statist., 25(3):970–981, 06 1997. doi: 10.1214/aos/1069362733. URL

https://doi.org/10.1214/aos/1069362733.

S. Boonpatcharanon. Semiparametric multivariate density estimation using copulas and

shape-constraints. PhD thesis, York University, May 2019.

E. J. Calabrese and L. A. Baldwin. Defining hormesis. Human & Experimental Toxicology,

21(2):91–97, 2002. doi: 10.1191/0960327102ht217oa. PMID: 12102503.

R. J. Carroll, J. Fan, I. Gijbels, and M. P. Wand. Generalized partially linear single-

index models. J. Amer. Statist. Assoc., 92(438):477–489, 1997. ISSN 0162-1459. doi:

10.2307/2965697.

L. Cavalier. Nonparametric estimation of regression level sets. Statistics, 29(2):131–160, 1997.

doi: 10.1080/02331889708802579.

G. T. Chang and G. Walther. Clustering with mixtures of log-concave distributions. Comput.

Stat. Data Anal., 51:6242–6251, 2007.

Y. Chen and R. Samworth. Generalised additive and index models with shape constraints.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78, 04 2014.

doi: 10.1111/rssb.12137.

J. Cooper and K. Hanson. Decompression sickness, 2021. URL

https://www.ncbi.nlm.nih.gov/books/NBK537264/.

H. Cramér. Mathematical Methods of Statistics. Princeton Univ. Press, 1946. ISBN

9780691005478.

275

P. G. Craven and G. Wahba. Smoothing noisy data with spline functions. Numerische

Mathematik, 31:377–403, 1975.

A. Cuevas, W. González-Manteiga, and A. Casal. Plug-in estimation of general level sets.

Australian and New Zealand Journal of Statistics, 48:7 – 19, 03 2006. doi: 10.1111/j.1467-

842X.2006.00421.x.

M. Cule and R. Samworth. Theoretical properties of the log-concave maximum likelihood

estimator of a multidimensional density. Electronic Journal of Statistics, 4:254–270, 2010.

doi: 10.1214/09-EJS505.

M. Cule, R. Gramacy, and R. Samworth. Logconcdead: An r package for maximum likelihood

estimation of a multivariate log-concave density. Journal of Statistical Software, Articles,

29(2):1–20, 2009. ISSN 1548-7660. doi: 10.18637/jss.v029.i02.

M. Cule, R. Samworth, and M. Stewart. Maximum likelihood estimation of a multidimen-

sional log-concave density. Journal of the Royal Statistical Society. Series B (Statistical

Methodology), 72(5):545–607, 2010. ISSN 13697412, 14679868.

L. Dümbgen and K. Rufibach. Maximum likelihood estimation of a log-concave density and

its distribution function: Basic properties and uniform consistency. Bernoulli, 15(1):40–68,

02 2009. doi: 10.3150/08-BEJ141.

L. Dümbgen, R. Samworth, and D. Schuhmacher. Approximation by log-concave distribu-

tions, with applications to regression. The Annals of Statistics, 39(2):702–730, 04 2011.

doi: 10.1214/10-AOS853.

C. R. Doss and J. A. Wellner. Global rates of convergence of the mles of log-concave and

s-concave densities. The Annals of Statistics, 44(3):954–981, 06 2016. doi: 10.1214/15-

AOS1394.

C. R. Doss and G. Weng. Bandwidth selection for kernel density estimators of multivariate

level sets and highest density regions. Electronic Journal of Statistics, 12(2):4313–4376,

2018. doi: 10.1214/18-EJS1501.

276

L. Duembgen, A. Huesler, and K. Rufibach. Active set and em algorithms for log-concave den-

sities based on complete and censored data. Technical report, Technical Report 61,IMSV,

Univ. Bern. arXiv:0707.4643., 2007.

J. Fan. Design-adaptive nonparametric regression. Journal of the American Statistical As-

sociation, 87(420):998–1004, 1992. ISSN 01621459.

J. Fan, N. E. Heckman, and M. P. Wand. Local polynomial kernel regression for gener-

alized linear models and quasi-likelihood functions. Journal of the American Statistical

Association, 90(429):141–150, 1995. ISSN 01621459.

R. A. Fisher. Theory of statistical estimation. Mathematical Proceedings of the Cambridge

Philosophical Society, 22(5):700–725, 1925. doi: 10.1017/S0305004100009580.

R. A. Fisher and E. J. Russell. On the mathematical foundations of theoretical statis-

tics. Philosophical Transactions of the Royal Society of London. Series A, Contain-

ing Papers of a Mathematical or Physical Character, 222(594-604):309–368, 1922. doi:

10.1098/rsta.1922.0009.

T. Gasser and J. Engel. The choice of weights in kernel regression estimation. Biometrika,

77(2):377–381, 06 1990. ISSN 0006-3444. doi: 10.1093/biomet/77.2.377.

G. Gayraud and J. Rousseau. Rates of convergence for a bayesian level set estimation. Scan-

dinavian Journal of Statistics, 32:639–660, 12 2005. doi: 10.1111/j.1467-9469.2005.00448.x.

I. Gijbels and A. Goderniaux. Bandwidth selection for changepoint estimation in nonpara-

metric regression. Technometrics, 46(1):76–86, 2004. doi: 10.1198/004017004000000130.

U. Grenander. On the theory of mortality measurement. Scandinavian Actuarial Journal,

1956(2):125–153, 1956. doi: 10.1080/03461238.1956.10414944.

P. Groeneboom, G. Jongbloed, and J. A. Wellner. Estimation of a convex function: Char-

acterizations and asymptotic theory. The Annals of Statistics, 29(6):1653–1698, 12 2001.

doi: 10.1214/aos/1015345958.

277

P. Hall and K. Kang. Bandwidth choice for nonparametric classification. Annals of Statistics,

33:284–306, 2005.

B. E. Hansen. Uniform convergence rates for kernel estimation with dependent data. Econo-

metric Theory, 24(3):726–748, 2008. ISSN 0266-4666. doi: 10.1017/S0266466608080304.

W. Hardle and J. S. Marron. Optimal bandwidth selection in nonparametric regression

function estimation. The Annals of Statistics, 13(4):1465–1481, 1985. ISSN 00905364.

E. Herrmann. Local bandwidth choice in kernel regression estimation. Journal of Computa-

tional and Graphical Statistics, 6(1):35–54, 1997. ISSN 10618600.

W. Härdle. Approximations to the mean integrated squared error with applications to optimal

bandwidth selection for nonparametric regression function estimators. Journal of Multivari-

ate Analysis, 18(1):150 – 168, 1986. ISSN 0047-259X. doi: https://doi.org/10.1016/0047-

259X(86)90066-7.

W. Härdle and J. S. Marron. Asymptotic nonequivalence of some bandwidth selectors in

nonparametric regression. Biometrika, 72(2):481–484, 1985. ISSN 00063444.

X. Huo and J.-C. Lu. A network flow approach in finding maximum likelihood estimate of

high concentration regions. Computational Statistics and Data Analysis, 46:33–56, 05 2004.

doi: 10.1016/S0167-9473(03)00134-8.

R. J. Hyndman. Computing and graphing highest density regions. The American Statistician,

50(2):120–126, 1996. ISSN 00031305.

H. Jankowski, X. Ji, and L. Stanberry. A random set approach to confidence regions with

applications to the effective dose with combinations of agents. Stat. Med., 33(24):4266–

4278, 2014. ISSN 0277-6715. doi: 10.1002/sim.6226.

S. Karimzadeh, R. Bhopal, and H. Nguyen Tien. Review of infective dose, routes of transmis-

sion and outcome of covid-19 caused by the sars-cov-2: comparison with other respiratory

viruses. Epidemiology and Infection, 149:e96, 2021. doi: 10.1017/S0950268821000790.

278

A. K. H. Kim and R. J. Samworth. Global rates of convergence in log-concave density

estimation. The Annals of Statistics, 44(6):2756–2779, 12 2016. doi: 10.1214/16-AOS1480.

A. K. H. Kim, A. Guntuboyina, and R. J. Samworth. Adaptation in log-concave density

estimation. The Annals of Statistics, 46(5):2279–2306, 10 2018. doi: 10.1214/17-AOS1619.

M. Kratz. Level crossings and other level functionals of stationary Gaussian processes. Prob-

ability Surveys, 3(none):230 – 288, 2006. doi: 10.1214/154957806000000087.

T. Laloë and R. Servien. Nonparametric estimation of regression level sets using kernel

plug-in estimator. Journal of the Korean Statistical Society, 42(3):301 – 311, 2013. ISSN

1226-3192. doi: https://doi.org/10.1016/j.jkss.2012.10.001.

J. Li, C. Zhang, E. V. Nordheim, and C. E. Lehner. On the multivariate predictive dis-

tribution of multi-dimensional effective dose: a bayesian approach. Journal of Statistical

Computation and Simulation, 78(5):429–442, 2008. doi: 10.1080/00949650601141712.

J. Li, C. Zhang, K. A. Doksum, and E. V. Nordheim. Simultaneous confidence intervals for

semiparametric logistic regression and confidence regions for the multi-dimensional effective

dose. Statist. Sinica, 20(2):637–659, 2010. ISSN 1017-0405.

V. Lushchak. Dissection of the hormetic curve: Analysis of components and mechanisms.

Dose-response : a publication of International Hormesis Society, 12:466–79, 07 2014. doi:

10.2203/dose-response.13-051.Lushchak.

J. Marron and D. Nolan. Canonical kernels for density estimation. Statistics & Probabil-

ity Letters, 7(3):195 – 199, 1988. ISSN 0167-7152. doi: https://doi.org/10.1016/0167-

7152(88)90050-8.

J. S. Marron and M. P. Wand. Exact mean integrated squared error. The Annals of Statistics,

20(2):712–736, 06 1992a. doi: 10.1214/aos/1176348653.

J. S. Marron and M. P. Wand. Exact Mean Integrated Squared Error. The Annals of

Statistics, 20(2):712 – 736, 1992b. doi: 10.1214/aos/1176348653.

279

M. Mason and W. Polonik. Asymptotic normality of plug-in level set estimates. Annals of

Applied Probability, pages 1108–1142, 2009.

M. P. Mattson. Hormesis defined. Ageing Research Reviews, 7(1):1 – 7, 2008. ISSN 1568-1637.

doi: https://doi.org/10.1016/j.arr.2007.08.007. Hormesis.

P. McCullagh and J. Nelder. Generalized Linear Models, Second Edition. Chapman & Hal-

l/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 1989. ISBN

9780412317606.

E. A. Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9(1):

141–142, 1964. doi: 10.1137/1109020.

J. Navarro. A very simple proof of the multivariate Chebyshev’s inequality.

Comm. Statist. Theory Methods, 45(12):3458–3463, 2016. ISSN 0361-0926. doi:

10.1080/03610926.2013.873135.

J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal

of the Royal Statistical Society: Series A (General), 135(3):370–384, 1972. doi:

https://doi.org/10.2307/2344614.

J. K. Pal, M. Woodroofe, and M. Meyer. Estimating a polya frequency function. Lecture

Notes-Monograph Series, 54:239–249, 2007. ISSN 07492170.

N. Picard and A. Bar-Hen. Estimation of the envelope of a point set with loose

boundaries. Applied Mathematics Letters, 13(7):13–18, 2000. ISSN 0893-9659. doi:

https://doi.org/10.1016/S0893-9659(00)00070-7.

N. Pya and S. Wood. Shape constrained additive models. Statistics and Computing, 2014,

02 2014. doi: 10.1007/s11222-013-9448-7.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2013. URL http://www.R-project.org/.

280

B. L. S. P. Rao. Estimation of a unimodal density. Sankhyā: The Indian Journal of Statistics,

Series A (1961-2002), 31(1):23–36, 1969. ISSN 0581572X.

C. R. Rao. A study of large sample test criteria through properties of efficient estimates:

Part i: Tests for goodness of fit and contigency tables. Sankhyā: The Indian Journal of

Statistics, Series A (1961-2002), 23(1):25–40, 1961. ISSN 0581572X.

J. Rice. Bandwidth choice for nonparametric regression. The Annals of Statistics, 12(4):

1215–1230, 1984. ISSN 00905364.

K. Rufibach. Computing maximum likelihood estimators of a log-concave density func-

tion. Journal of Statistical Computation and Simulation, 77(7):561–574, 2007. doi:

10.1080/10629360600569097.

K. Rufibach and L. Dümbgen. logcondens: Estimate a log-concave probability density from

i.i.d. observations, 2006. URL https://CRAN.R-project.org/package=logcondens. R

package version 1.3.0.

D. Ruppert, S. J. Sheather, and M. P. Wand. An effective bandwidth selector for local least

squares regression. Journal of the American Statistical Association, 90(432):1257–1270,

1995. ISSN 01621459.

R. J. Samworth and M. P. Wand. Asymptotics and optimal bandwidth selection for highest

density region estimation. Ann. Statist., 38(3):1767–1792, 2010. ISSN 0090-5364. doi:

10.1214/09-AOS766.

I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by

analytic functions: Part a.- on the problem of smoothing or graduation. a first class of

analytic approximation formulae. Quarterly of Applied Mathematics, 4(1):45–99, 1946.

ISSN 0033569X, 15524485. URL http://www.jstor.org/stable/43633538.

C. Scott and M. Davenport. Regression level set estimation via cost-sensitive classification.

IEEE Transactions on Signal Processing, 55(6):2752–2757, 2007. ISSN 1941-0476. doi:

10.1109/TSP.2007.893758.

281

C. Scott and R. Nowak. Minimax-optimal classification with dyadic decision

trees. IEEE Transactions on Information Theory, 52(4):1335–1353, 2006. doi:

10.1109/TIT.2006.871056.

R. Shibata. An optimal selection of regression variables. Biometrika, 68(1):45–54, 1981. ISSN

00063444.

D. F. Signorini and M. C. Jones. Kernel estimators for univariate binary regres-

sion. Journal of the American Statistical Association, 99(465):119–126, 2004. doi:

10.1198/016214504000000115.

B. W. Silverman. On the estimation of a probability density function by the maximum

penalized likelihood method. The Annals of Statistics, 10(3):795–810, 09 1982. doi:

10.1214/aos/1176345872.

B. W. Silverman. Density estimation for statistics and data analysis. Chapman and Hall

London ; New York, 1986. ISBN 0412246201.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the

royal statistical society. Series B (Methodological), pages 111–147, 1974.

S. Vogel and A. Schettler. A uniform concentration-of-measure inequality for multivariate

kernel density estimators. 2013.

A. Wald. Note on the consistency of the maximum likelihood estimate. Ann.

Math. Statist., 20(4):595–601, 12 1949. doi: 10.1214/aoms/1177729952. URL

https://doi.org/10.1214/aoms/1177729952.

G. Walther. Detecting the presence of mixing with multiscale maximum likeli-

hood. Journal of the American Statistical Association, 97(458):508–513, 2002. doi:

10.1198/016214502760047032.

G. Walther. Inference and modeling with log-concave distributions. Statist. Sci., 24(3):

319–327, 08 2009. doi: 10.1214/09-STS303. URL https://doi.org/10.1214/09-STS303.

282

M. P. Wand and M. C. Jones. Comparison of smoothing parameterizations in bivariate kernel

density estimation. Journal of the American Statistical Association, 88(422):520–528, 1993.

ISSN 01621459.

M. P. Wand and M. C. Jones. Kernel Smoothing. Number 60 in Chapman & Hall/CRC

Monographs on Statistics & Applied Probability. Chapman & Hall, Boca Raton, FL, U.S.,

December 1994. URL http://oro.open.ac.uk/28198/.

L. Wasserman. All of Nonparametric Statistics (Springer Texts in Statistics). Springer-Verlag,

Berlin, Heidelberg, 2006. ISBN 0387251456.

L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer Pub-

lishing Company, Incorporated, 2010. ISBN 1441923225.

G. S. Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, 26(4):

359–372, 1964.

H. White. Maximum likelihood estimation of misspecified models. Econometrica, 50(1):1–25,

1982. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1912526.

R. M. Willett and R. D. Nowak. Minimax optimal level-set estimation. IEEE Transactions on

Image Processing, 16(12):2965–2979, 2007. ISSN 1941-0042. doi: 10.1109/TIP.2007.910175.

S. N. Wood. Stable and efficient multiple smoothing parameter estimation for generalized

additive models. Journal of the American Statistical Association, 99(467):673–686, 2004.

ISSN 01621459.

D. E. Wright. A note on the construction of highest posterior density intervals. Journal of

the Royal Statistical Society Series C, 35(1):49–53, 1986.

L. Y. Yang, Q. and Y. Zhang. Change point detection for nonparametric regression under

strongly mixing process. Statistical Papers, 61(1):1465–1506, 2020. doi: 10.1007/s00362-

020-01196-y.

283

K. Ziegler. On approximations to the bias of the Nadaraya-Watson regression es-

timator. J. Nonparametr. Statist., 13(4):583–589, 2001. ISSN 1048-5252. doi:

10.1080/10485250108832866.

284

