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“To Margulis, the great Oxidation Event had lessons for today. The first was that people who thought that 

living creatures couldn’t affect the climate had no idea of the power of life. The second was that the onset 
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Abstract 

The global carbon cycle is a highly balanced exchange system of carbon between the geo-, hydro- and 

atmosphere. Since the industrial revolution, the combustion of fossil fuels is one of the main reasons 

for the shift of carbon levels towards higher concentrations in the hydro- and atmosphere. The 

amount of carbon dioxide (CO2) in the air is comparibly low but it is a highly potent greenhouse gas 

due to its structural properties. Its capability of absorbing infrared light, which would otherwise escape 

into space, leads to an increase in atmospheric temperatures. Because CO2 molecules are very stable, 

the conversion into multi-carbon-molecules is energy demanding and mainly done by organisms which 

use light as an energy source. Therefore, the main workhorses of capturing CO2 from the atmosphere 

are plants and algae, which incorporate the carbon for the production of biomass. In these complex 

organisms the Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) is responsible for the 

carboxylation reaction. RuBisCO is considered a slow catalyst with a high error rate in accepting oxygen 

(O2) instead of CO2.  

In 2016, Schwander et al. published a new-to-nature pathway for the fixation of CO2. The so-called 

crotonyl-coenzyme A (CoA) /ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle was designed to 

circumvent RubisCO. In contrast to the Calvin cycle, the CETCH cycle is based on a highly efficient 

crotonyl-CoA carboxylase/reductase (Ccr), which does not display any side reaction with oxygen such 

as RuBisCO. Due to the overall pathway design, including Ccr as the key catalyst, the CETCH cycle has 

a higher net efficiency than natural aerobic CO2-fixation pathways and thus harbors the potential to 

play an important role in the reduction of atmospheric CO2 levels. 

To gain insights into this complex in vitro assay consisting of more than 25 components, we established 

a high-throughput workflow that enabled us to test hundreds of reaction conditions simultaneously. 

Prerequisite was the implementation of an acoustic liquid handling robot with a minimal pipetting 

volume of 25 nl. This enabled a fast reaction assembly and a drastic reduction in assay volume while 

maintaining a high pipetting accuracy. The acquired data was used to subsequently train an XGBoost-

based machine learning algorithm aiming to optimize the CETCH cycle reaction parameters. After five 

rounds of optimization, the final model predicts reaction parameters for assay conditions with a ten-

fold improvement on the manually optimized pathway version published in 2016. In addition, the 

algorithm identified the important components of the pathway and revealed one enzyme as a 

potential bottleneck of the current assay. Follow up experiments showed that the loss of 

intermediates by side reactions or hydrolysis is the limiting factor of the assay. 
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Furthermore, we sought to extend the product portfolio of the CETCH cycle beyond its primary 

product glyoxylate. To this end, we first coupled the CETCH cycle to the β-hydroxyaspartate cycle. This 

enabled the production of oxaloacetate from two molecules glyoxylate. Adding only three additional 

enzymes from the serine cycle leads to the formation of acetyl-CoA, which we used to produce 

different terpenes via the mevalonate pathway. Despite the wide range of products, their synthesis 

has remained limited to the use of molecules produced downstream of the CETCH cycles primary 

product glyoxylate. Intermediates of the cycle were inaccessible, as their removal would lead to 

stalling of the pathway and a pre-mature arrest of CO2–fixation. To enable the utilization of CETCH 

cycle intermediates, we implemented anaplerotic routes that use the fixed CO2 to replenish drained 

cycle intermediates. We successfully reconstituted three anaplerotic pathways that enabled the 

production of the polyketide 6-deoxyerythronolide B (6-dEB). The biosynthesis of 6-dEB (C21) requires 

one molecule of propionyl-CoA and six molecules methylmalonyl-CoA, both intermediates of the 

CETCH cycle. The biosynthesis of complex molecules from CO2 in context of different highly convoluted 

pathways with up to 50 reactions highlights the robustness and versatility of the CETCH cycle. 
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Zusammenfassung 

Der globale Kohlenstoffkreislauf ist ein hochgradig ausgewogenes System welches den 

Kohlenstoffaustausch zwischen Geo-, Hydro- und Atmosphäre umfasst. Seit der industriellen 

Revolution ist die Verbrennung fossiler Brennstoffe der Hauptgrund für den Anstieg des 

Kohlenstoffgehalts in der Atmosphäre, sowie im Wasser. Zwar ist die Konzentration an 

Kohlenstoffdioxid (CO2) in der Luft nach wie vor sehr gering, da es jedoch aufgrund seiner strukturellen 

Eigenschaften ein hochwirksames Treibhausgas ist, hätte eine Verdopplung der Menge katastrophale 

Auswirkungen auf das Klima. Seine Fähigkeit Infrarotlicht zu absorbieren, welches sonst ins Weltall 

entweichen würde, führt zu einem Anstieg der atmosphärischen Temperaturen. Da CO2-Moleküle sehr 

stabil sind, ist die Umwandlung in langkettige Kohlenstoff-Moleküle sehr energieaufwändig und 

erfolgt hauptsächlich durch Organismen die Licht als Energiequelle nutzen. Die Hauptakteure bei der 

Aufnahme von CO2 aus der Atmosphäre sind daher Pflanzen und Algen, die den Kohlenstoff zur 

Erzeugung von Biomasse aufnehmen. In diesen komplexen Organismen ist die Ribulose-1,5-

Bisphosphat Carboxylase/Oxygenase (RuBisCO) für die Carboxylierung verantwortlich. RuBisCO gilt als 

langsamer Katalysator mit einer hohen Fehlerquote bei der Aufnahme von Sauerstoff (O2) anstelle von 

CO2.  

2016 wurde eine Studie von Schwander et al. veröffentlicht, in welcher ein neuartiger 

Stoffwechselweg zur Fixierung von CO2 vorgestellt wurde. Der sogenannte Crotonyl-Coenzym A 

(CoA)/Ethylmalonyl-CoA/Hydroxybutyryl-CoA (CETCH)-Zyklus wurde entwickelt, um RubisCO zu 

umgehen. Im Gegensatz zum Calvin-Zyklus basiert der CETCH-Zyklus auf einer hocheffizienten 

Crotonyl-CoA Carboxylase/Reduktase (Ccr), bei der keine Nebenreaktionen mit Sauerstoff auftreten. 

Aufgrund der Nutzung von Ccr und dem restlichen Aufbau des Stoffwechselweges hat der CETCH-

Zyklus eine höhere Nettowirksamkeit als natürliche aerobe CO2-Fixierungswege und hat somit das 

Potential, eine wichtige Rolle bei der Reduzierung des atmosphärischen CO2-Gehalts zu spielen. 

Um Einblicke in dieses komplexe in vitro Reaktionsnetzwerk aus mehr als 25 Komponenten zu 

gewinnen, haben wir eine Hochdurchsatzverfahren etabliert um Hunderte von Reaktionsbedingungen 

gleichzeitig zu testen. Voraussetzung war die Implementierung eines akustischen Pipettier-Roboters 

mit einem minimalen Pipettiervolumen von 25 nl. Dies ermöglichte einen schnelleren Durchsatz und 

eine drastische Verringerung des Reaktionsvolumens ohne Verluste bei der Pipettiergenauigkeit. Die 

gewonnenen Daten wurden verwendet um einen XGBoost-basierten Machine Learning Algorithmus 

zu trainieren, um die Reaktionsparameter des CETCH-Zyklus zu optimieren. Durch fünf Runden 

Optimierung konnten die Reaktionsparameter so verändert werden, dass der CETCH-Zyklus im 

Vergleich zur publizierten Version von 2016 um den Faktor zehn verbessert werden konnte. Darüber 
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hinaus konnten durch den Algorithmus die wichtigsten Komponenten des Stoffwechselwegs 

identifiziert werden und ein Enzym als potentieller Engpass ausgemacht werden. Des weiteren konnte 

durch anschließende Experimente gezeigt werden, dass der Verlust von Metaboliten durch 

Nebenreaktionen oder Hydrolyse der begrenzende Faktor ist. 

Neben der Optimierung des CETCH-Zyklus erweiterten wir dessen Produktportfolio um CO2 direkt in 

höherwertige Chemikalien umzuwandeln. Zu diesem Zweck koppelten wir zunächst den CETCH-Zyklus 

mit dem β-Hydroxyaspartat-Zyklus. Dies ermöglichte die Herstellung von Oxaloacetat aus zwei 

Molekülen Glyoxylat. Durch drei weitere Enzyme aus dem Serin-Zyklus konnten wir Acetyl-CoA 

synthetisieren, welches wir zur Herstellung verschiedener Terpene verwendeten. Zwar konnten wir 

die Produktion von verschiedenen Stoffen demonstrieren, die Synthese beschränkte sich jedoch auf 

Produkte welche aus dem Primärprodukt Glyoxylat gewonnen werden. Die Nutzung von CETCH 

Metaboliten war nicht möglich, da dies zu einem vorzeitigen Stillstand der CO2-Fixierung führen 

würde. Um die Konzentrationen von CETCH-Metaboliten zu erhöhen, implementierten wir von der 

Natur inspirierte, anaplerotische Sequenzen, welche das fixierte CO2 in den Zyklus zurückführen. Dazu 

rekonstituierten wir erfolgreich vier anaplerotische Routen, von welcher drei die Produktion des 

Polyketids 6-Desoxyerythronolid B (6-dEB) ermöglichten. Die Biosynthese von 6-dEB (C21) erfordert 

ein Molekül Propionyl-CoA und sechs Moleküle Methylmalonyl-CoA, beides Zwischenprodukte des 

CETCH-Zyklus. Durch die Biosynthese komplexer Moleküle aus CO2 in hochgradig komplexen 

Stoffwechselwegen mit über 50 Reaktionen konnten wir die Robustheit und Vielseitigkeit des CETCH-

Zyklus demonstrieren. 
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1. Introduction 

1.1. A short introduction to carbon dioxide 

Life on earth as we know it today is based on organic carbon. The combination of several 

characteristics and conditions led to the outstanding role of this element as the backbone of most 

biological relevant molecules. First, carbon is one of the most abundant elements. Since the 

emergence of our planet it was present in different compounds, which varied ever since and can be 

found in every layer of earth’s crust1. Secondly, carbon is a very versatile element, which can form up 

to four stable bonds with a broad variety of other elements and itself. The ability of carbon-carbon 

bond formation under physiological conditions allows the construction of long chains as backbones 

for molecules. Furthermore, the capability to form four bonds allows branching of carbon chains or 

attaching other elements. If life could be based on other elements such as silicon is still discussed2, 

but the success story of carbon based life is undisputed. There are millions of different carbon based 

molecules. Regarding the last century carbon based compounds like plastic, charcoal or other fossil 

fuels changed the world dramatically. First seen as panaceas and the driving forces of industrialization 

and wealth, the view on them has changed as the downsides occurred. Burning charcoal led to drastic 

air pollution in industrial countries, the combustion of fossil fuels released stored carbon mainly as 

carbon dioxide and plastic waste can be found almost everywhere on the planet. As the first sentence 

of this paragraph is true for carbon itself, it is also true for carbon dioxide: The fate of life on earth 

became dependent on carbon dioxide. The interplay between life and the levels of carbon dioxide 

reaches billions of years back in earth’s history and accelerated with the evolution of photosynthesis. 

To understand why such a simple molecule has tremendous effects on the climate, we have to take a 

closer look at its physical properties. The climate on earth is the outcome of many interconnected 

factors and allows us humans and all other species to live. The atmosphere around the earth is 

responsible for the mild conditions to which we are adapted. In brief, the sun emits light, which is 

absorbed by the earth. Afterwards the heated surface emits energy as light in the infrared spectrum. 

Predominantly absorbed by water molecules, this energy is further transferred to oxygen and nitrogen 

molecules, thereby heating up the atmosphere. Due to the physical properties (more precisely the 

absorption spectrum) of water vapor, some of the light is not absorbed, but can escape from the 

atmosphere through gaps in the absorption spectrum, therefore preventing the atmosphere from 

heating up to intolerable temperatures. In 1938 Guy Stewart Callendar published his work where he 

showed that carbon dioxide has a similar absorption spectrum to atmospheric water. Nevertheless, 

two larger gaps in the spectrum of water vapor around 4 and 10 µm are complemented by the 

absorption spectrum of carbon dioxide. Therefore the more carbon dioxide is in the air, the more 

energy remains trapped and heats up the atmosphere3. Beside carbon dioxide, there are other 
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greenhouse gases (mainly methane and nitrous oxide) trapping infrared light by closing gaps in the 

absorbance spectrum of water vapor. Nevertheless, there are two reasons why carbon dioxide is 

considered the main driving force in increasing global temperatures. First, the amounts released into 

the atmosphere exceed the amounts of other greenhouse gases drastically4. Ever since the industrial 

revolution, the generated surplus of carbon dioxide release exceeds the assimilation capacity of the 

global carbon cycle. Although the oceans buffer a huge fraction of the additional released carbon 

dioxide as the main carbon sinks, they could not prevent the increase in atmospheric levels5. Secondly, 

carbon dioxide is a very stable compound, which barely reacts with other molecules, can stay in the 

atmosphere for thousands of years, while sequestration is very energy demanding. Nevertheless, 

there are several enzymes, which manage to incorporate carbon dioxide under physiological 

conditions, the most abundant of which is the Ribulose-1,5-bisphosphat-carboxylase/-oxygenase 

(RuBisCO), the key enzyme of the Calvin-Benson-Bassham Cycle (CBB). 

 

1.2. RuBisCO: Earth´s most abundant enzyme  

The release of carbon dioxide by combustion of fossil fuels and limiting the uptake of CO2 by 

deforestation are two main reasons for the drastic increase in atmospheric CO2 concentrations. 

Deforestation results in fewer plants, which are together with other phototropic organisms the main 

players in carbon fixation. Fewer plants therefore result in less RuBisCO, the enzyme that is used by 

plants to assimilate biomass by incorporating carbon dioxide. As one of the key players in 

photosynthesis, RuBisCO caught the attention of many researchers and was the subject of more than 

5000 scientific publications6. For more than 45 years RuBisCO has been called the most abundant 

protein on earth, which was the result of some back-of-the-envelope calculations due to its abundance 

of up to 50% of a leafs protein content7,8. A recently published and more sophisticated calculation 

comes to the same conclusion, but additionally states that the abundance of RuBisCO is even an order 

of magnitude higher9. Although RuBisCOs abundance indicates an extremely successful path, it has 

been shown to be surprisingly inefficient. Under in vitro conditions, the average catalytic rate of 

RuBisCO is around three molecules per second, which is slow compared to other enzymes and even 

carboxylases (Figure 1.). Under physiological conditions this already slow rate is even further 

decreased to ~0.03 s-1 in land plants and ~0.6 s-1 in marine photosynthetic organisms9. As mentioned 

before, plants equip their leafs with RuBisCO to levels reaching up to 50% of the leafs total protein 

content to partially compensate the low activity. However, even at these levels the carboxylation 

reaction is still the bottleneck under high light conditions. Beside the low activity, the side reactivity 

with oxygen is another major flaw of the RuBisCO enzyme. In roughly every fifth reaction oxygen is 

incorporated instead of carbon dioxide10. In this case, the enzyme forms only one molecule of 3-
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phosphoglycerate (3-PGA) and one molecule of 2-phosphoglycolate (2-PG) instead of two molecules 

of 3-PGA. 2-PG needs to be detoxified in a wasteful, yet essential, process called photorespiration.  

To understand why RuBisCO became the enzyme it is today, we have to go back in history and realize 

that the earth has changed dramatically since the appearance of the first RuBisCO ancestors. While 

RuBisCOs provenance and why evolution chose it as the primary carbon dioxide fixing enzyme remains 

unclear, it is undoubted that its rise and properties are in close relation with the carbon dioxide and 

oxygen levels during the last three billion years10. At the beginning of this period, emerging 

phototrophic organisms adapted to use the abundance of water to satisfy their demand for hydrogen. 

As a result, they produced oxygen as a side product during water splitting. As far as we know today, 

there were no or almost no free oxygen molecules and life was generally adapted to anoxic conditions, 

which included a higher atmospheric carbon dioxide concentration than nowadays. To emphasize the 

impact of the production of elemental oxygen on most of the organisms, scientists named it the 

“Oxygen Catastrophe”, the “Oxygen Crisis” or even the “Oxygen Holocaust”11. A more neutral and 

appropriate term would be “The Great Oxidation Event”. Since most organisms were not metabolically 

equipped to accommodate the presence of the strong oxidizing power of free oxygen, the new trick 

these phototropic organisms learned led to an extinction of a vast majority of organisms. However, 

the adapted organisms could proliferate wherever they found light, water and carbon dioxide. Despite 

the Great Oxidation Event leading to vast amounts of oxygen, the “Second Great Oxidation Event” 

finally led to oxygen levels as they are present today12. 

 

1.3. Escaping the fate of RuBisCO 

To increase the rate of natural carbon dioxide fixation and circumvent RuBisCO as the bottleneck of 

photosynthesis, scientists envisioned three main routes: Engineering RuBisCO towards a faster and 

more accurate carboxylase, engineering photorespiratory bypasses to compensate for RuBisCOs 

mistakes or replacing the CBB cycle with new-to-nature pathways for carbon fixation. Although the 

first option seems to be the most obvious one, so far no substantial parallel improvement of turnover 

rate and specificity could be achieved. As reviewed by Erb and Zarzycki, most evidence points towards 

a reciprocally linked specificity and activity that seems to be already close to the optimum10,13. 

However, an improved RuBisCO would still be the most elegant and simple way to be implemented in 

a broad range of crops and other photosynthetic organisms and could, once established, instantly play 

a crucial role in the reduction of atmospheric CO2 levels. For the latter options, entire pathways need 

to be implemented, which is therefore even in model organisms more complex to achieve. 

Nonetheless, several new-to-nature solutions for photorespiratory bypasses and CO2-fixation cycles 
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were published and partially realized14-18 One of the cited examples, the crotonyl-coenzyme A 

(CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle, is based on reductive carboxylation by 

the crotonyl-CoA carboxylase/reductase (Ccr). This enzyme belongs to the group of the well-studied 

enoyl-CoA carboxylases/reductases (Ecrs) and is substantially faster than RuBisCOs (Figure 1.). In 

comparison to RuBisCOs, Ccrs have no side-reactivity with O2 and prevent reduction of crotonyl-CoA 

by shielding the active side from water molecules19,20.  

 

 

Figure 1. Catalytic efficiencies of carboxylases. Shown are catalytic efficiencies of different carboxylases (yellow dots) 
grouped in their respective classes. Figure adapted from Schwander et al., 201616. 

 

1.4. The CETCH cycle, a man-made CO2-fixation pathway 

Published in 2016, the CETCH cycle was the first synthetic CO2-fixation cycle realized in vitro16. 

Considering the design principles suggested by Bar-Even et al., the pathway was designed to have 

superior kinetics, is thermodynamically favored and is more efficient than natural CO2-fixation 

cycles14. Additionally, only enzymes that work under aerobic conditions were used and not only 

existing, but also theoretically possible reactions were taken into account while designing the 

pathways. Several rounds of optimizations were performed (including enzyme engineering) to create 

the version CETCH 5.4. In this version the whole assays consists of 29 components, 17 of which are 

enzymes (12 core and 5 auxiliary enzymes) from nine different organisms covering all domains of life 

and including three engineered enzymes16. A major part of the cycle (from crotonyl-CoA to succinyl-
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CoA) consists of reactions from the ethylmalonyl-CoA pathway21. The reaction sequence from succinyl-

CoA to crotonyl-CoA resembles a part of the hydroxypropionate/hydroxybutyrate cycle.  

 

 

Figure 2. The Crotonyl-CoA-EThylmalonyl-CoA-4-Hydroxybutyryl-CoA Cycle. The CETCH core cycle as the version 5.416. 
Shown are the 12 core enzymes (round boxes, full names see chapter 3.4.). The accessory enzymes catalase (hydrogen 
peroxide removal), Carbonic anhydrase (to provide carbon dioxide from bicarbonate), Formate dehydrogenase (for NADPH 
regeneration) and Creatine phosphokinase (for ATP regeneration) are not displayed.  

 

Starting from propionyl-CoA, the first reaction of the CETCH cycle is catalyzed by an engineered a 

Flavin Adenosine Dinucleotide (FAD)-dependent short-chain acyl-CoA oxidase from Arabidopsis 

thaliana (Pco). The oxidation of propionyl-CoA to acrylyl-CoA enabled the use of Ccr as it accepts both 

crotonyl-CoA and acrylyl-CoA22. This made the use of the propionyl-CoA carboxylase (Pcc) from the 

initial draft of the cycle obsolete. The advantages were the consumption of one less ATP and rendering 

the pathway biotin independent. Because the original enzyme (Acx4) accepts 4-hydroxybutyryl-CoA 

(one of the intermediates) as a substrate, it was engineered towards a higher specificity for propionyl-

CoA16. After the carboxylation of acrylyl-CoA by Ccr, the product (2S)-methylmalonyl-CoA is first 
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isomerized by the Ethylmalonyl-CoA/methylmalonyl-CoA epimerase (Epi) to the (2R)-methylmalonyl-

CoA conformation. This is necessary since the Methylmalonyl-CoA mutase (Mcm) only accepts the 

(2R)-conformation to rearrange it to succinyl-CoA. Under release of CoA, succinyl-CoA is reduced to 

succinic semialdehyde, which is further reduced to 4-hydroxybutyrate. 4-hydroxybutyrate is activated 

to 4-hydroxybutyryl-CoA. This reaction is catalyzed by the 4-hydroxybutyryl-CoA synthetase from 

Nitrosopumulus maritimus. In CETCH version 5.4 this is the only ATP-dependent reaction. In contrast 

to other 4-hydroxybutyryl-CoA synthetases, this is an ADP-forming enzyme23. Another enzyme from 

N. maritimus catalyzes the next reaction, the dehydration from 4-hydroxybutyryl-CoA to crotonyl-CoA. 

The 4-hydroxybutyryl-CoA dehydratase has an iron-sulfur cluster and a homolog of N. maritimus was 

chosen because it was much more oxygen tolerant than other isoenzymes catalyzing this reaction23. 

In the next step, crotonyl-CoA is carboxylated by Ccr to ethylmalonyl-CoA. Similar to the 

transformation of methylmalonyl-CoA to succinyl-CoA, the product of Ccr, (2S)-ethylmalonyl-CoA, is 

converted to (2R)-ethylmalonyl-CoA by the bi-functional Epimerase and is further converted to 

methylsuccinyl-CoA by the Ethylmalonyl-CoA mutase (Ecm). In contrast to the Epimerase, each mutase 

(Mcm and Ecm) is highly specific for its respective substrate. It was speculated that the radical 

mechanism of these Coenzyme B12-dependent reactions requires a tightly adapted active site to 

prevent the deactivation of the enzyme by the radical22. In nature, the oxidation of methylsuccinyl-

CoA to mesaconyl-CoA is carried out by a FAD-dependent Methylsuccinyl-CoA dehydrogenase (Mcd), 

which shuttles the electrons via an Electron Transfer Flavoprotein (ETF) to the respiratory chain in the 

membrane24. To overcome the necessity of this system and build a pathway, which is feasibly in vitro, 

the design of the CETCH cycle included a Methylsuccinyl-CoA oxidase (Mco) to transfer the electrons 

directly onto molecular oxygen (O2). As no Mco was known, the Mcd from Rhodobacter sphaeroides 

was engineered towards becoming a direct oxidase24. The product, mesaconyl-CoA, is then converted 

by the Mesaconyl-CoA hydratase (Mch) to β-methylmalyl-CoA, which is split by the corresponding 

lyase (Mcl1) into the starting substrate propionyl-CoA and glyoxylate. The former is thus, recycled and 

can be used for another round of the cycle, whereas glyoxylate represents the primary CO2 fixation 

product of CETCH. Beside the enzymes of the core sequence, accessory enzymes were added: Carbonic 

anhydrase for faster equilibration of bicarbonate and carbon dioxide, Formate dehydrogenase for 

NADPH recycling, Polyphosphate kinase for ATP regeneration and Catalase for H2O2 detoxification16. 

In 2020 and 2021 even more complex versions of the CETCH cycle were published: First with another 

artificial CO2-fixation module, the tatronyl-CoA (TaCo) pathway, for the production of the C3-

compound glycerate18. Secondly, in combination with extracted thylakoid membranes from spinach 

to harvest the energy from light and use it to power the ATP- and NADPH-dependent reactions of the 

cycle25. These proof-of-principle studies show how natural and synthetic parts can be mixed and 
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matched to create novel reaction networks and inspired us to extend the product portfolio of the 

CETCH cycle towards more complex molecules. 

 

1.5. Terpenes and polyketides, natures multipurpose tools 

Two large groups of secondary metabolites with a very broad spectrum of functions are terpenes and 

polyketides. Compared to primary metabolites, secondary metabolites are often more complex and 

not needed for self-preservation. However, they play crucial roles for organisms in terms of self-

defense, communication or as building blocks for hormones and occur among all domains of life26-28. 

The vast diversity of those compounds is derived from their modular synthesis. Terpenes are 

synthesized by the iterative usage of the isoprenoid precursors isopentenyl pyrophosphate (IPP) and 

dimethylallyl pyrophosphate (DMAPP). Those building blocks are either derived from the mevalonate 

pathway, which converts three acetyl-CoA molecules into one IPP or DMAPP, or via the 2-C-methyl-D-

erythritol  

4-phosphate (MEP) pathway, using pyruvate and glyceraldehyde 3-phosphate29-31. Starting from IPP 

and DMAPP, terpenes can consist of a single isoprene unit such as hemiterpene but are usually 

iteratively added to form monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), et cetera. 

While a multiple of five is the common form, deviations are possible. Additionally, natural and 

synthetic modifications diversify the range of terpenes with bioactive properties32,33. In the second 

chapter of this thesis, “A modular in vitro platform for the production of terpenes and polyketides 

from CO2”, we could show how these compounds are directly produced from CO2.  

While terpenes are synthesized from isoprenoid precursors, polyketide synthases (PKSs) use CoA-

thioesters as their building blocks. These PKSs are large reaction complexes with either multiple 

domains or multiple proteins working together. One of the best-studied examples is the 6-

Deoxyerythronolide B Synthase (DEBS), which belongs to the class I PKSs (of three). The sheer numbers 

highlight the complexity of this biological machinery: DEBS consists of three proteins of which each 

has different modules and a total of 28 active sites34. Using one molecule of propionyl-CoA as a starter 

unit and six molecules of methylmalonyl-CoA as extender units the final product 6-deoxyerythronolide 

B (6-dEB) consists of 21 carbons. During this process, the six methylmalonyl-CoAs are attached 

successively via decarboxylative claisen condensation, resulting in the release of the CoA moieties, six 

CO2 molecules and the consumption of six reducing equivalents NADPH. Although in this reaction 

sequence propionyl-CoA and methylmalonyl-CoA are used, other common starter and extender units 

are for example acetyl- and malonyl-CoA35. While complexity hampers the complete understanding of 

those convoluted molecular machines, it also harbors great potential for engineering and the 
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subsequent creation of new-to-nature molecules by integration of non-natural starter and extender 

units. The existence of several CoA-thioesters as intermediates of the CETCH cycle sparked the 

question whether those could be harnessed for the production of polyketides. 

 

1.6. Anaplerosis, in-flight refueling for cells 

The drainage of intermediates from pathways for several purposes is a common scheme in metabolic 

networks. The interconnection of different pathways into a greater system is necessary to guarantee 

the flexibility and additivity of cells. Primary metabolism and especially some key nodes like the 

tricarboxylic acid (TCA) cycle however, need special protection to assure the integrity. More than 50 

years ago, the term anaplerosis was introduced to describe one or more reactions that supply missing 

intermediates to pathways which stall upon a lack of them36. One of the most prominent examples is 

the carboxylation of pyruvate or phosphoenolpyruvate to oxaloacetate to prevent stalling the TCA 

cycle prior to the condensation yielding citrate. The accumulation of acetyl-CoA is an indicator for the 

absence of oxaloacetate and activates the pyruvate- and phosphoenolpyruvate carboxylase. Beside 

single reactions like the carboxylation of (phosphoenol)pyruvate or the dehydrogenation of glutamate 

to oxoglutarate, there are several anaplerotic reaction sequences, such as the ethylmalonyl-CoA, the 

glyoxylate or the methylaspartate pathway21,37,38. Despite the relevance of anaplerosis for the 

flexibility and additivity, so far no synthetic approach of this scheme was applied for in vitro networks. 

In chapter three, “Enhancing the synthetic capabilities of a complex in vitro metabolic network 

through anaplerotic reaction modules”, the principle of anaplerosis was employed to grant access to 

CETCH intermediates and use them for the production of the C21-polyketide 6-dEB. 

 

1.7. Optimization of biological systems with machine learning: The machines are 

taking over! 

The increasing complexity of man-made reaction networks often goes beyond the scope of traceability 

and is in contradiction to the initial concept of a simple and easily controlled environment. Machine 

learning algorithms are therefore used to optimize, predict and understand complex interactions of 

biological systems like cell-free expression systems, in vivo gene expression, drug discovery or protein 

engineering 39-42. The history of machine learning traces back to the early days of modern computers 

in the 1950s. Interestingly, some of today’s terms like “machine learning”, “artificial neuron”, “neural 

network” or “perceptrons” were already defined and partially applied back then43-45. In 1959, Arthur 



15 
 

L. Samuel published his work at IBM where he programmed a computer to train its ability to play the 

game checkers. He summarized his work in the abstract as follows:  

“Two machine-learning procedures have been investigated in some detail using the game of checkers. 

Enough work has been done to verify the fact that a computer can be programmed so that it will learn 

to play a better game of checkers than can be played by the person who wrote the program. 

Furthermore, it can learn to do this in a remarkable short period of time (8 or 10 hours of machine-

playing time) when given only the rules of the game, a sense of direction, and a redundant and 

incomplete list of parameters which are thought to have something to do with the game, but whose 

correct signs and relative weights are unknown and unspecified. The principles of machine learning 

verified by these experiments are, of course, applicable to many other situations.” 45 

Subsequently, the work on machine learning continued and several key components paved the way 

for its success; the democratization of computers and the emergence of the internet were the main 

reasons for the development of more and more algorithms. Nowadays artificial intelligence and deep 

learning are employed to solve some of the biggest questions of the 21st century, such as the protein 

structure prediction targeted by AlphaFold46. Despite of numerous publications on diverse topics and 

problems, the usage in laboratories with no background in bioinformatics is very limited. This might 

be due to either the complexity of such applications or their high pricing if commercialized. Since the 

prices for DNA synthesis and other techniques are dropping and more and more affordable screening 

methods become available, the need for easy to use optimization tools will grow as an increasing 

number of research groups can afford the generation of large data sets.  

A promising machine learning tool for various applications is the eXtreme Gradient Boosting (XGBoost) 

package, which was used in several scripts that won recent coding challenges and showed superior 

performance in comparison to other algorithms (Figure 3.)47,48. XGBoost is a gradient boosting 

algorithm, which was developed for the optimized (extreme) use of resources (hardware). Gradient 

boosting is mainly done with decision trees as weak learners, which are subsequently ensembled to 

minimize the loss function and can be used for regression and classification problems. It features 

several characteristics, which make it a favorable application as a general optimization tool for 

biological systems. It works well with smaller datasets due to its sparsity awareness but can handle 

large datasets with considerably low hardware specifications due to the optimized use of them. 

Furthermore, it can be used with automated hyperparameter tuning, which finds the best parameters 

to fit the data. The optimal use of resources together with its scalability makes it currently one of the 

most popular machine learning algorithms. In chapter one, “A versatile active learning workflow for 
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optimization of genetic and metabolic networks”, we show how the XGBoost algorithm was integrated 

in a user-friendly layout and used to optimize the parameters of the CETCH cycle. 

 

 

Figure 3. Performance of XGBoost gradient boosting in comparison with other popular algorithms. When benchmarked 
with SKLearn’s “Make_Classification” dataset, XGBoost showed a superior performance in classification, while being 
significantly faster than similar performing algorithms. Figure from Vishal Morde48 
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2.1. Abstract 

The study, engineering and application of biological networks require practical and efficient approaches. 

Current optimization efforts of these networks are often limited by wet lab labor and cost, as well as the 

lack of convenient, easily adoptable computational tools. Aimed at democratization and standardization, 

we describe METIS, a modular and versatile active machine learning workflow with a simple online 

interface for the optimization of biological target functions with minimal experimental datasets. We 

demonstrate our workflow for various applications, from simple to complex gene circuits and metabolic 

networks, including several cell-free transcription and translation systems, a LacI-based multi-level 

controller and a 27-variable synthetic CO2-fixation cycle (CETCH cycle). Using METIS, we could improve 

above systems between one and two orders of magnitude compared to their original setup with minimal 

experimental efforts. For the CETCH cycle, we explored the combinatorial space of ~1025 conditions with 

only 1,000 experiments to yield the most efficient CO2-fixation cascade described to date. Beyond 

optimization, our workflow also quantifies the relative importance of individual factors to the 

performance of a system. This allows to identify so far unknown interactions and bottlenecks in complex 

systems, which paves the way for their hypothesis-driven improvement, which we demonstrate for the 

LacI multi-level controller that we were able to improve by more than 30-fold after having identified 

resource competition as limiting factor. Overall, our workflow opens the way for convenient optimization 

and prototyping of genetic and metabolic networks with customizable adjustments according to user 

experience, experimental setup, and laboratory facilities. 

 

2.2. Introduction 

The understanding and engineering of biological systems require practical and efficient experimental 

approaches1-5. Machine learning algorithms hold a big promise for the study, design, and optimization of 

different biological systems6-9, including genomics studies10-12, protein, enzyme and metabolic 

engineering4,13,14, prediction and optimization of CRISPR sequences and proteins15-18, as well as complex 

genetic circuits design and optimization19-21. Yet, applying machine learning is limited by the need for 

informatics expertise and large user-labeled datasets, which are typically time-, labor- and cost-intense.  

Active learning, sometimes called optimal experimental design22,23, is a type of machine learning that 

interactively suggests a next set of experiments after being trained on previous results24. This makes active 

learning valuable for wet-lab scientists, especially when dealing with a limited number of user-labeled 
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data25. Active learning approaches reduce experimental time, labor and cost and have been used in 

cellular imaging26, systems biology27, biochemistry28-30, and synthetic biology31. Despite these examples, a 

challenge in applying active learning methods for experimental biologists is the lack of customizable 

programs and workflows.  

Here, we describe METIS (Machine learning guided Experimental Trials for Improvement of Systems, 

named after the ancient goddess of wisdom and crafts Μῆτις, lit. “wise counsel”), a modular and versatile 

active machine learning workflow for optimization of a biological objective function (an output/target that 

depends on multiple factors) with minimal datasets. We created METIS for experimentalists with no 

experience in programming, who can use the entire process of personalized active learning, experimental 

setup, data analysis and visualization without any advanced computational skills. METIS runs on Google 

Colab, a free online platform to write and execute Python codes developed for education, data science, 

and machine learning purposes32. The open platform does not need any installation and registration and 

can be simply used via a personal copy of the respective notebook.  

To establish the workflow, we first assessed the performance of different machine learning algorithms on 

a minimal training dataset and experimentally validated the best performing algorithm (XGBoost) by 

optimization of an in vitro cell-free transcription-translation (TXTL) system of Escherichia coli that is 

commonly used in cell-free synthetic biology for a variety of applications33, including biosensor 

development34, metabolic pathway prototyping35, and gene circuit design36. We then developed the 

modular architecture of METIS for user-defined applications through the customization of different 

parameters and factors.  

We showcase the versatility of METIS on various biological systems, starting with an in vitro gene circuit. 

Gene circuits have recently received attention (e.g., as biosensors), but are still limited in their applicability 

due to their poor in vitro performance35,37. Applying our workflow, we could improve the activity of a 

recently reported LacI-based multi-level controller38 by two orders of magnitude, notably by identifying 

and overcoming a fundamental bottleneck (i.e., resource competition) in the design of the system. We 

further demonstrate ten-fold improved protein production from an optimized transcription & translation 

unit, demonstrating that our workflow can be used for biological sequences based on categorical factors 

(i.e., combinatorial variants of a T7 promoter, ribosome binding site (RBS), N- and C-terminal amino acids). 

Finally, we use METIS to improve a complex metabolic network, the  so-called crotonyl-CoA/ethylmalonyl-

CoA/hydroxybutyryl-CoA (CETCH)39 cycle, a new-to-nature synthetic CO2-fixation cycle, comprising 17 

different enzymes plus 10 different cofactors and components, which was shown to be 
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(thermodynamically) more efficient compared to natural photosynthesis. Yet, the network's full kinetic 

potential had not been exploited so far, as efficient strategies to explore its combinatorial space had been 

lacking so far. Using METIS allowed us to improve productivity of the CETCH cycle by ten-fold with (only) 

1,000 experiments, resulting in the most efficient CO2-fixing in vitro system described to date. Overall, 

these results demonstrate the ability of our workflow for the optimization of various complex biological 

networks with minimal experimental efforts, providing multiple opportunities for the study and 

engineering of different biological systems in the future.  

 

2.3. Results 

Assessing the performance of different algorithms for our workflow  

We first tested which machine learning algorithm would perform best with a limited number of 

experimental data typical for a standard research lab setup. To that end, we took advantage of an existing 

dataset from a recent optimization of an E. coli extract-based in vitro TXTL system31. In their study, 

Borkowski et al. optimized cell-free protein production in E. coli lysate by varying 12 different factors 

including salts, energy mix, amino acids, and tRNAs, and measuring production yield of Gfp (produced by 

a plasmid expressing Gfp) as output. Altogether, the dataset encompassed around 1000 data points. We 

fitted the dataset to obtain a standard as a gold regressor and divided it further into test and training sets, 

with 20% and 80% of data, respectively. While the latter set was used to train the model, the test set was 

used to validate the regressor (Methods).  

We used the gold regressor to assess the performance of four different machine learning algorithms over 

10 rounds of active learning (Fig. 1a). The tested algorithms included deep neural networks (DNN), 

multilayer perceptrons (MLP), linear regressors, and XGBoost gradient boosting, which all show different 

capabilities for a given problem set and its data sample size. Over 10 rounds of active learning with 100 

data points in each round, XGBoost and linear regressors showed better performance (Fig. 1b) compared 

to DNN and MLP, which generally need larger datasets to outperform other models40.  

For our workflow, we selected XGBoost, which is an improved random forest-type algorithm, working 

through gradient boosted decision trees41 by aggregating and compiling sets of models. This makes 

XGBoost a fast and powerful algorithm that performs efficiently even with small datasets as shown 

recently for different biological applications18,42,43. To determine the minimum dataset required for 
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optimization, we compared active learning rounds with 5, 10, 25, and 100 data points. Notably, a sample 

size as low as 10 data points still allowed sufficient yield optimization (i.e., in the scale of the original 

study31) within 10 learning cycles (Fig. 1b).  

Testing the workflow with minimal experimental work 

Having validated the workflow with an existing data set, we next sought to test it in a real-world 

experimental setup, simulating a situation in which the number of combinations that can be tested is 

limited by available equipment, readout and experimental cost.  We chose (again) to optimize relative Gfp 

production (yield) in an E. coli lysate TXTL system (Fig. 1c) that consists of 13 variable factors 

(components).  

To optimize composition of the TXTL system, we defined a concentration range for each of the 13 factors 

(Code availability), and performed an active learning process over 10 rounds with  20 experiments per 

round (Fig. 1d, see Supplementary Note 1 for details) quantifying  Gfp yield (i.e., Gfp fluorescence 

reported from each composition normalized by the Gfp fluorescence of the standard composition33), as 

objective function. Over 10 rounds of active learning, the relative yield increased up to 20 and the median 

increased from zero to over 10 in the 9th round (Fig. 1e). Note that low-yield data points (even those 

observed in the late learning cycles) are equally informative as high-yield ones, because they allow to 

explore the landscape around and beyond local maxima, as defined by the exploration to exploitation 

ratio of our workflow that we fully discuss in Supplementary Note 2. Using a standard curve for purified 

Gfp, we calculated that for the highest yields (reaching 15 in Fig. 1e) the production of Gfp was 30-fold 

higher than in previous optimizations31 and the myTXTLⓇ commercial kit (Supplementary Fig. 1). 

Beyond the simple optimization of a given system, our workflow can also quantify the contribution of 

different factors during optimization. Fig. 1f represents feature importance, i.e., the effect of each 

individual factor on the objective function. The importance is given as a relative fraction (or percentage) 

in the prediction of the values of the objective function by the model, with the sum of all factors set to 

100%. Our analysis showed that tRNA mix and Mg-glutamate were the most important components in 

optimizing Gfp yield, while cAMP and NAD were the least important contributors. Fig. 1g shows the 

distribution of Gfp yield at different concentrations of individual factors. Decreasing concentrations of 

tRNA and NTP mixes correlated with high yield, while PEG 8000, Mg-glutamate, 3-PGA, folinic acid, and 

spermidine showed similar effects at increasing concentrations. Together, these data did not only result 

in an optimized TXTL system but also allowed to identify the most crucial components during system 
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optimization, providing the basis for a deeper understanding of the system itself. All combinations and 

yields are provided as results files for each experimental round (Data availability), and the Google Colab 

notebook with all analyses and visualization modules are also accessible (Code availability). 

 

Fig. 1: Assessing the performance of different algorithms and testing the active learning workflow with minimal data points. 
a) An existing dataset of cell-free gene expression compositions composed of 1000 data points was used to build a gold standard 
regressor and assess the performance of different machine learning algorithms in 10 rounds of active learning. Different 



26 
 

algorithms suggest combinations and predict their associated yields and the gold standard regressor assigns the yields to evaluate 
the prediction. b) Top panel: performance of 4 algorithms, multilayer perceptrons (MLP), deep neural networks (DNN), linear 
regressors, and XGBoost gradient boosting in 10 rounds of active learning (100 data points per round). Bottom panel: 
performance of the XGBoost gradient boosting algorithm as the selected algorithm with different sample sizes, 5, 10, 25, and 100 
per round. c) An in vitro or cell-free transcription-translation (TXTL) system (based on E. coli lysate) to test the workflow with 20 
data points per round. 20 nM plasmid expressing sfGfp (super-folder Gfp) with promoter J23101 and RBS B0032 were added to 
the cell-free reaction mix along with 13 components of reaction buffer and energy mix. d) Overview of the active learning cycle. 
13 components are varied starting with random compositions and over 10 rounds of results are imported to the model, which 
learns and suggests new compositions for improvement of the objective function. e) The plot presenting the average of triplicates 
of the objective function (yield) for compositions in 10 rounds (days) of active learning. f) Feature importance percentages show 
the effect of each factor on the model’s decision to calculate yields for the suggested compositions. g) Distribution of different 
concentrations of each factor within the measured yields. See also Supplementary Fig. 2, 3 for variation of concentration of each 
factor from round 1 to 10, and mutual interactions between factors, respectively. 

 

Development of a user-friendly, versatile modular architecture for our workflow  

After demonstrating that our workflow is capable of working efficiently with minimal datasets, we sought 

to build a modular architecture that can be easily applied for the optimization of different biological 

objective functions. We implemented our workflow in Google Colab Python notebooks that can be 

accessed by the user –without installation or registration– simply through a personal copy of the notebook 

from a web browser. Defining the objective function and the variable factors (Fig. 2a), the user can simply 

open the link of Google Colab notebook and directly use the workflow as shown in Fig. 2a, b, 

Supplementary Fig. 4-6. 

In Supplementary Note 2, we provide a detailed description of all features of METIS. The modular 

workflow enables the use of factors with numerical values (examples in Fig. 1, 3, 5), categories (examples 

in Fig. 4, Supplementary Fig. 19), or both (example in Fig. 3, 5). Active learning can be initialized by random 

combinations generated by the workflow in the first round (example in Fig. 1, 3, 4). Alternatively, pre-

existing datasets can be imported and used for optimization or simulations (examples in Supplementary 

Fig. 18, 19). Although our workflow is designed as an active learning approach over iterative experimental 

rounds, it can be also used in a classical machine learning setup, when only using one round of 

experiments. Multiple data analysis and visualization modules are available that can be used in each round 

of active learning as shown in example applications (Fig. 2b, Supplementary Note 2). The workflow is able 

to generate a pipetting table output (exemplified for the experiments in Fig, 1, 3), which alongside our 

table-to-speech virtual assistant tool, improves the speed and accuracy of manual pipetting 

(Supplementary Note 1, 2). For more complex experiments where multiple components in different 

volumes are required, the workflow can be interfaced with lab automation (e.g., an EchoⓇ acoustic liquid 

handling robot, see optimization of the CETCH cycle in Fig. 5). 
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Fig. 2: A representation of METIS (active machine learning for biological systems) modular workflow. a) The first step is choosing 
an objective function (an output/target that depends on multiple factors), then continuing with the Google Colab Python 
notebook, performing experiments, and visualizing and analyzing results. b) Users should define active learning parameters 
depending on the application, equipment, and the size of the combinatorial space. Factors’ ranges/categories are conditions that 
are varied to explore the behavior of the objective function. In each round of active learning, while the users perform experiments 
and label the suggested combinations with measured objective function values (parameters and factors’ conditions can be 
readjusted at any round), the data can be analyzed and visualized using the workflow’s modules. See Supplementary Note 2 for 
a detailed explanation and guide for each step and also Supplementary Fig. 4-6. 
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Application of the modular workflow for optimization of a LacI gene circuit 

Next, we aimed to apply METIS for optimization of LacI-based gene circuits that were described recently43. 

Greco et al. developed a strategy for stringent gene expression by engineering transcriptional and/or 

translational small RNA inhibitors upstream of a Gfp reporter gene under the control of the pTAC 

promoter (Fig. 3a). Starting from a standard pTAC architecture, a so-called single-level controller (SLC), 

Greco et al. constructed three different multi-level controllers (MLC): pTHS (toehold switch; translational 

control), pSTAR (small transcription activating RNA; transcriptional control), and pDC (double controller; 

transcriptional and translational control)38. Notably, the authors could improve the rate of in vitro protein 

production by 35-fold with different MLC designs. Yet in these efforts, the fold-change in total protein 

production remained low (Supplementary Fig. 7), which was likely the result of leaky repressor-regulated 

promoters in the OFF state, as noted earlier34,37. A high fold-change in protein production, however, would 

be strongly desired for application of gene circuits, e.g., as diagnostic sensors, where a high signal-to-noise 

ratio is important. 

Here, we aimed at using our workflow to increase both the dynamic range and fold-change of in vitro 

protein production for the SLC and MLC circuits (Fig. 3b). To improve fold-change and suppress leaky 

protein production, we supplied an additional plasmid expressing lacI under the control of a T7 promoter 

(transcribed by purified T7 RNA polymerase). The active learning cycle received input from several factors 

in the E. coli cell-free system; amino acids and tRNAs, which are important when extra DNA is added, DTT 

as reducing reagent, spermidine for DNA-protein binding, and PEG 8000 as crowding agent. We performed 

10 rounds of active learning with the objective function of fold-change (FC) ✕ dynamic range (DR) of Gfp 

(Fig. 3a), to score those compositions that result not only in a high fold-change but also total Gfp 

produced. While the objective function (fold-change (FC) ✕ dynamic range (DR), bottom plot in Fig. 3c) 

improved during the active learning cycle, we did not observe a substantial improvement in fold-change 

of Gfp production alone (upper plot in Fig. 3c). Feature importance analysis identified the concentration 

of the PT7-LacI plasmid as strong contributor (Fig. 3d, Fig. 3e, Supplementary Fig. 8), indicating deleterious 

LacI-protein/DNA interactions or resource limitation of the TXTL system through production of the lacI 

protein44.  

Performing a titration experiment with PT7-LacI, we could show that addition of the LacI plasmid has 

indeed a strong negative effect on Gfp production (Fig. 3f, g, see also Supplementary Note 3 for details 

of the active learning cycle and titration experiments). To further investigate this effect, we titrated the 

https://paperpile.com/c/5THmVC/tsQG
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LacI plasmid with either T7 or a constitutive promoter against a fixed concentration of the Gfp expression 

plasmid under control of either T7 or a constitutive promoter. While increasing concentrations of the 

plasmid with constitutive LacI expression did only slightly affect Gfp expression from the T7 promoter, 

increasing concentrations of LacI plasmid under T7 control strongly affected Gfp production, especially 

when Gfp was expressed from the constitutive promoter (Fig. 3h). These results indicated a resource 

competition between the two plasmids, according to which the T7 promoter wins competition at the 

transcriptional and consequently the translational level. Quantifying the levels of Gfp and LacI mRNA by 

qPCR confirmed a direct correlation between mRNA and Gfp production levels, further supporting the 

resource competition hypothesis (Fig. 3i).  

To overcome resource competition, we tested purified LacI protein instead of the LacI plasmid in the TXTL 

system, which resulted in improved Gfp productivity (Supplementary Fig. 9). Thus, we sought to optimize 

Gfp fold-change with using purified LacI protein instead of a LacI expression plasmid. Using a module of 

METIS called “K most informative combinations” (with the number K to be defined by the user), we 

extracted the 20 most informative combinations of the active learning cycle, and repeated these 20 setup 

by replacing PT7-LacI plasmid with purified LacI protein (Fig. 3j), resulting in a strong improvement in the 

objective function, and in particular Gfp fold-change. Continuing with only one additional round of active 

learning using this dataset, we were able to improve the fold-change to up to 123 (Fig. 3k), which is 15-

fold improvement compared to that of 10 rounds of active learning with the PT7-LacI plasmid and 34-fold 

improvement compared to the initial setup.  

Overall, these experiments demonstrated how our workflow can be used to improve the signal-to-noise-

ratio of an existing in vitro gene circuit by two orders of magnitude. Notably, the feature importance 

module of METIS, which identified apparent bottlenecks (i.e., resource competition by the LacI plasmid) 

and the K most informative combinations module of the workflow were crucial for success. A Google Colab 

notebook and all combinations and results are provided through Code and Data availability. 
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Fig. 3: Application of METIS for optimization of a LacI gene circuit. a) Single and multi-level controller LacI gene circuits from 
Greco et al.43 Characterization of these circuits through dynamic range (DR) and/or fold-change (FC) of the output (Gfp 
fluorescence) between 0 and 10 mM input (concentration of IPTG). b) Imported in the active learning notebook, the varied 
components of the reactions included 4 lacI circuits as alternatives, some factors of buffer and energy mix of E. coli cell-free 
system along with the lysate, as well as T7 RNA polymerase and a second plasmid expressing lacI under a T7 promoter. c) The 

average of triplicates as the result of 10 rounds of active learning as plots for the objective function (FC ✕ DR) and fold change 
(FC) values. d) Plots showing the distribution of measured yield values within the ranges of each factor. e) Feature importance 
percentages showing the effect of each factor on decision-making by the model to predict objective function values. f) Titration 
of PT7-LacI plasmid and T7 RNA polymerase with the optimal composition (from 10 rounds of active learning that achieved with 
pTHS LacI circuit, the toehold switch as the second level controller of gene expression through translation). The heatmaps show 

https://paperpile.com/c/5THmVC/tsQG
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FC ✕ DR (left) and FC (right) values (average of triplicates) of the titration. g) The same titration experiment as in (f) but instead 
of the pTHS circuit, Gfp was expressed under a constitutive promoter (independent from the PT7-LacI plasmid and T7 RNA 
polymerase on the protein production). h) Titration (0, 1, 3, 10, 30, and 100 nM) of LacI plasmids with either constitutive or T7 
promoter in combination with 10 nM of a Gfp plasmid (with T7 or constitutive promoter). i) The RT-qPCR results of the relative 
level of LacI and Gfp mRNAs for a similar experiment in (h) (0, 10, 100 nM LacI plasmids, and 10 nM Gfp plasmids) after 10 hours. 
Relative log2 resource share between LacI and Gfp mRNA in each sample is reported in order to account for RNA purification 
efficiency variability j) The 20 most informative combinations were downloaded after the 10-round active learning and the PT7-
LacI plasmid with purified LacI were replaced. After performing the experiments and measuring the objective function, we 
imported them as Day 0 and continued with experiments of the next round’s predictions (Day 1). k) Plots of the objective function 

FC ✕ DR (left) and FC (right) values (average of triplicates) of 20 most informative combinations with purified LacI followed by 
Day 1 experiments suggested by the workflow. See Data availability for combinations and objective function values. 

 

Application of the workflow for optimization of a transcription & translation unit  

To demonstrate that our workflow can also be used with categorical factors such as biological sequences, 

we tested METIS for the optimization of a transcription & translation unit. This unit is composed of six 

variants of a T7 promoter45, six ribosome binding sites (RBS)46, as well as 15 variations of N-terminal amino 

acids 3 to 547, and 20 variations of the last two C-terminal amino acids48, which is in line with two recent 

studies that reported the importance of N- and C-terminal amino acids on mRNA translation48,49.  

To establish a convenient  cell-free screening system, we sought to use linear DNA (i.e., a PCR product)49 

as template in combination with GamS, a small, 136 amino acid-long nuclease inhibitor from phage λ50 

that binds and protects linear DNA from degradation. First, we validated that addition of linear DNA with 

GamS resulted in gene expression levels comparable to that of plasmid DNA (Fig. 4a), which allowed the 

fast and efficient assembly of DNA templates through PCR primers without extensive cloning, 

transformation, and plasmid preparation steps (Fig. 4b).  

We then optimized the transcription & translation unit that theoretically consists of 6 (PT7) ✕ 6 (RBS) ✕ 

15 (N-terminal) ✕ 20 (C-terminal) = 10,800 potential conditions (i.e., combinations) through screening of 

only 200 combinations in 4 rounds of active learning (Fig. 4b). As the objective function, we defined the 

yield of the Gfp fluorescence readout of each transcription & translation unit normalized by a construct 

comprising wild-type T7 promoter, B0032 RBS and sfGfp. Yields were quantified after 6 hours of 

incubation of the different transcription & translation units at 30 °C in the E. coli cell-free system 

supplemented with purified GamS and T7 polymerase. Over 4 rounds of active learning, yield of the 

transcription & translation unit improved up to 12-fold on Day 3. Using a high exploration rate on Day 3 

resulted in a wide distribution of yields, but no further improvement, indicating that an optimum had 

been reached (Fig. 4c). The distribution of alternative factors within the yield of 200 combinations and a 

representation of the feature importance are shown in Supplementary Fig. 10. Altogether, our 
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experiments demonstrated again, how METIS can be used to improve a described genetic unit by more 

than an order of magnitude with minimal experimental efforts. 

After having rapidly explored the combinatorial space of the sequence controlling the transcription & 

translation unit in a cell-free setup, we additionally investigated the effect of the 20 most informative 

combinations in vivo (Fig. 4d). Surprisingly, however, the cell-free and in vivo yields for the 20 

combinations showed a relatively low correlation of 0.41 (Day 0, Fig. 4e, Supplementary Fig. 11). This 

indicated that although cell-free systems offer rapid prototyping solutions, the optimal candidates are not 

necessarily directly transferable in vivo. To investigate whether we can further improve the performance 

of the transcription & translation unit in vivo, we used the data from Day 0 and continued with one more 

round of experiments guided by our workflow (Day 1, Fig. 4f). This resulted in an improvement by 130% 

for the highest yield in vivo. 

 

 

Fig. 4: Application of METIS for optimization of a transcription & translation unit. a) The cell-free expression of sfGfp (super-
folder Gfp) using plasmid, linear DNA (PCR) and linear DNA plus GamS protein, a nuclease inhibitor that protects linear DNA from 
degradation. The bars and the error bars are the average and standard deviation of triplicates, respectively. b) Design of a 
transcription & translation unit controlled by variants of a T7 promoter, ribosome binding site (RBS), N-terminal amino acids 3, 4, 
and 5, and the last two C-terminal amino acids. The combinatorial transcription & translation units are expressed from linear DNA 
in the TXTL system consisting of the E. coli lysate, buffer and energy mix, as well as purified GamS and T7 RNA polymerase. c) The 
plot representing the average of triplicates as the result of 4 rounds of active learning, with 50 transcription & translation units 
tested per round. The yield is the Gfp fluorescence readout after 6 hours at 30 °C normalized by the same value from the reference 
constructs commonly used in the lab (Methods). d) A list of 20 most informative combinations of 4-day active learning performed 
in the cell-free system (c) was downloaded and the combinations were cloned in a vector and transformed into E. coli DH10β 
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harboring a plasmid expressing auto-regulated T7 RNA polymerase (Methods). e) Cell-free versus in vivo yields (average and 
standard deviation of triplicates) for the 20 most informative combinations. f) In vivo yield results (average of triplicates) of Day 
0 (20 most informative combinations) and Day 1 (suggested by the workflow). See Data availability for combinations and yield 
values. 

 

Application of the workflow for optimization of an in vitro CO2-fixation pathway (CETCH cycle) 

Finally, we aimed at assessing the performance of METIS for the optimization of complex metabolic 

networks. The collection of thousands of different enzymes and recent progress in enzyme engineering 

has opened the way for the design and construction of synthetic metabolic networks with new-to-nature 

properties35,51,52. One recent example is the CETCH cycle (Fig. 5a), a synthetic in vitro metabolic network 

consisting of 17 different enzymes that was built around a highly efficient CO2-fixing enzyme, Crotonyl-

CoA carboxylase/reductase (Ccr), converting CO2 into the C2-compound glyoxylate39 and/or glycolate53. 

Notably, the CETCH cycle is more efficient than natural occurring CO2-fixing pathways like the Calvin-

Benson-Bassham (CBB) cycle39. However, since the enzymes used for its construction derive from different 

organisms and thus metabolic backgrounds, several rounds of rational optimization were needed to 

harmonize the enzyme reactions and cofactors used in the cycle; and even though the kinetic parameters 

of the individual enzymes are known, their interactions in such a complex setup are non-linear, hardly 

predictable and basically impossible to disentangle with pure rational approaches. Hence, we sought to 

use our active learning workflow to improve the CETCH cycle’s productivity further. 

The setup of the CETCH cycle consists of 26 components encompassing 13 core enzymes, as well as four 

accessory enzymes, and nine other components such as magnesium chloride, CoA, NADPH, ATP and the 

starting substrate propionyl-CoA (see all components in Fig. 5 and their concentration range in the Code 

availability). To minimize handling errors and automate the experimental setup of individual CETCH 

assays, we used an ECHO® 525 acoustic liquid handler with a minimal pipetting volume of 25 nL. 

Miniaturizing the assay to 10 µl of total volume allowed us to work with 384-well plates and assay 125 

different conditions in triplicates per active learning round (Fig. 5b). To determine the CETCH cycle’s 

productivity (i.e. formation of glycolate from CO2), we developed an LC-MS (liquid chromatography-mass 

spectrometry) method using 13C2-glycolic acid as an internal standard (See Methods).  

For the first five rounds of optimization, we used product yield (glycolate) as objective function (for a 

description of the used parameters see Supplementary Note 4). After four iterative rounds, we reached 

a final concentration of 2.87 ± 0.09 mM glycolate in the best performing condition starting from 100 µM 

propionyl-CoA (Fig 5c). This yield translates into 57.4 fixed CO2-equivalents per acceptor (propionyl-CoA) 
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and is >10 times more productive compared to the originally reported, rationally optimized version 5.4 of 

the CETCH cycle38.  

As we had not restricted the component resources during optimization, most of the superior conditions 

used more enzymes (compared to CETCH 5.4) to increase glycolate production (Supplementary Fig. 12). 

Next, we aimed at increasing specific productivity of the CETCH cycle. To that end, we took the data from 

the initial five rounds of unrestricted optimization and divided the glycolate yield values by the total 

concentration of enzymes used for each combination. This data was fed back to METIS and three 

additional rounds of active learning were performed with the new objective function, called “efficiency” 

(Fig. 5d). Optimization of efficiency identified one condition in round seven that is about six times more 

efficient than CETCH 5.4 and 14% more efficient than the best condition from the unrestricted 

optimization achieved in round four (Fig. 5e, see also Supplementary Fig. 12, 13).  

To learn more about the possible bottlenecks of the CETCH cycle, we used the feature importance module 

of the METIS workflow along with plots visualizing the yield distribution over the range of each factor 

(Supplementary Fig. 14, 15). One of the most important contributors for both optimization efforts is the 

enzyme Methylsuccinyl-CoA dehydrogenase (Mco) (Fig. 5f, g). The enzyme’s low activity of 0.1 U/mg and 

its unstable substrate methylsuccinyl-CoA, which is prone to spontaneous hydrolysis, likely require large 

amounts of Mco to preserve flux through the cycle54. During efficiency optimization, the two most 

important components were 4-hydroxybutyryl-CoA synthetase (Hbs) and coenzyme B12 (Fig. 5g). Analysis 

of the top 10% best performing conditions (Supplementary Fig. 12, 13) revealed that the concentrations 

of Hbs and B12 were significantly lower compared to the control (CETCH 5.4). To verify that high concen-

trations of Hbs have a negative impact on the cycle, we tested our control assay with ten times less and 

with five times more of the enzyme. Indeed, increasing Hbs concentration in the original assay decreased 

yield by 40%, while decreasing Hbs by one order of magnitude did not lower glycolate yield 

(Supplementary Fig. 16). Regarding the negative impact of higher concentrations of B12, we reasoned that 

cobalt released from damaged cofactor could inhibit enzymes. Similar to high concentrations of Hbs, 

addition of cobalt to the original assay led to a decrease in glycolate yield (Supplementary Fig. 16). 

To understand the dynamic behavior of the different CETCH cycle variants, we manually repeated the top 

three conditions (highest glycolate yields), a control (see Supplementary Note 4) and three 

underperforming conditions, taking time point samples for eight hours. The yield from this manual 

approach reflected the yield from the previous automated, miniaturized experiments, validating the 

https://paperpile.com/c/5THmVC/p4AM
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results of our optimization efforts (Supplementary Table 3). Interestingly, the final glycolate yield after 

eight hours (Fig. 5h) and the initial glycolate formation rates of these conditions over the first 15 minutes 

(Fig. 5i) were highly correlated (Fig. 5j), indicating that total flux and not improved enzyme/cofactor 

stability (or life-time) was responsible for the observed increased productivity of the system. This trend 

was further confirmed by a detailed analysis of 9 CoA-ester intermediates at different time points (Fig. 5k, 

l). Quantification of the CoA-ester intermediates did not show accumulation of single metabolites in the 

underperforming conditions or the control, indicative of specific bottlenecks (Fig. 5l, Supplementary Fig. 

16). Instead, the underperforming conditions showed overall a faster depletion of intermediates, in line 

with the hypothesis that high flux through the cycle is important to prevent the loss of intermediates 

towards side reactions or hydrolysis. 

In summary, our optimization efforts of the CETCH cycle resulted in variants that showed more than ten-

fold productivity and almost six-fold improved efficiency, representing the most efficient in vitro CO2-

fixing system described to date. 
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Fig. 5: Application of METIS for optimization of an in vitro CO2-fixation pathway (CETCH cycle). a) Reaction sequence of the 
CETCH cycle (pco: propionyl-CoA oxidase, ccr: crotonyl-CoA carboxylase/reductase, epi: ethylmalonyl-CoA/methylmalonyl-CoA 
epimerase, mcm: methylmalonyl-CoA mutase, scr: succinyl-CoA reductase, ssr: succinic semialdehyde reductase, hbs: 4-
hydroxybutyryl-CoA synthetase, hbd: 4-hydroxybutyryl-CoA dehydratase, ecm: ethylmalonyl-CoA mutase, mco: methylsuccinyl-
CoA oxidase, mch: mesaconyl-CoA hydratase, mcl: β-methylmalyl-CoA lyase, gor: glyoxylate reductase, kat: catalase, fdh: formate 
dehydrogenase, ck: creatine phosphokinase). For source of enzymes and kinetic parameters see Schwander et al.38. b) Workflow 
for the iterative optimization of the CETCH cycle (for details on the Google Colab tool see Fig. 2 and Supplementary Note 2). 125 
conditions were tested in each round. The generated worklist was fed to an ECHO® liquid handler which pipetted the assays. The 
reactions were started with 100 µM propionyl-CoA and stopped after 3h. The glycolate content was measured by LC-MS and used 
to train the model to predict more efficient combinations. c) Optimization of the CETCH cycle with glycolate yield as the objective 
function. Each dot represents the mean of one CETCH assay as a triplicate. d) Summary of the optimization and the switch of the 
objective function. e) Transformed data of (c) (glycolate yield divided by the total amount of enzymes = efficiency) for rounds 1-
5, shaded region, and the data of three additional rounds of optimization with efficiency as the objective function (rounds 6-8). 
f, g) Calculated feature importance of the varied factors after five rounds of yield optimization (c) and three additional rounds of 
efficiency optimization (e). h) Glycolate production over 8 h of the three best performing conditions (highest glycolate yields) 
(blue, orange and red), a control (black) and three randomly picked conditions which performed worse (green, lavender, 
burgundy). These assays were manually pipetted. These conditions are shown in (c) and/or (e). The plotted values are the means 
of three replicates and the error bars represent the standard deviations. i) Magnified sector of the first 15 min from (h) with their 
cognate trendlines to calculate the slope. j) Plotted values of the initial production rate versus the final glycolate yield. k) Plotted 
values of the total amount of measured CoA esters within the eight hours versus the final glycolate yield. l) Quantified CoA esters 
of the seven assays over 8 h. The color code in the top-right corner of each plot resembles (h, j, i, and k) and the timepoints are 
shown in the plot of the control (black dot). The amount of propionyl-CoA within the zero samples is the added amount (100 µM) 
to start the reaction and was not measured by LC-MS. Each compound is plotted with error bars in (Supplementary Fig. 17). 

 

2.4. Discussion 

In this work, we describe METIS, a versatile, modular active learning workflow for the optimization of 

various biological objective functions, such as genetic and metabolic networks. This study democratizes 

machine learning applications for experimentalists without any programming skills or sophisticated lab 

equipment. We provide Google Colab notebooks (see Code availability) that can be adapted to different 

optimization applications and even used for data-driven predictions (for use of the latter see 

Supplementary Table 1, Supplementary Note 5, Supplementary Figures 18). 

For tailoring the workflow, the number of rounds and experiments per round need to be defined, which 

should take into account the number of different factors and their conditions, complexity of the objective 

function, as well as experimental throughput. For applications with a larger combinatorial space, more 

combinations need to be tested (Fig. 5). However, if the number of experiments is limited by cost, effort, 

or lab equipment, performing active learning in more rounds can be used to compensate for a lower 

number of total combinations tested. To explore a system beyond a local optimum, it is advised to adapt 

the exploration to exploitation ratio for each round individually (fully discussed in Supplementary Note 

2). Users should apply their knowledge on the system and implicitly check whether the value of a given 

factor is fixed too early, probably indicating a low exploration to exploitation ratio. On the other hand, a 

high exploration to exploitation ratio might push the model towards random combinations, asking for a 

https://paperpile.com/c/5THmVC/p4AM
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proper balance to enable explorative as well as exploitation sampling. In our empirical experience, the 

exploration to exploitation ratio should gradually decrease towards the late rounds of active learning to 

enable more explorative combinations in early rounds and more exploitation in late rounds for efficient 

optimization (Supplementary Note 2).  

Workflows can be started either from scratch (random combination as initialization) or using existing 

datasets (then performing active learning). Although our workflow is designed as an active learning 

approach (over multiple rounds of experiments), it can also be used as a classical machine learning with 

only one round of experiments. Factors of a given objective function can be numerical and/or categorical. 

Active learning parameters can be further customized using a detailed explanation in Supplementary 

Note 2.  

METIS provides a variety of choices for visualization and analysis of results. Most importantly, our 

workflow can quantify importance of individual features and provide a number of most informative 

combinations, which has both proven particularly useful during LacI gene circuit optimization (Fig. 3). 

Using these features of the workflow allowed us to not only to improve the fold-change of the circuit, but 

also spot and, using additional experiments, verify a major bottleneck in the further optimization of the 

system (i.e., the LacI expression plasmid). After replacing the LacI expression plasmid with purified LacI 

protein, we were able to improve the circuit by more than two orders of magnitude compared to the 

original system. Notably, we did not have to re-perform active learning when switching to purified LacI 

instead of the LacI plasmid. The 20 most informative combinations generated through our workflow 

offered a short and quick path toward optimization.  

Applying METIS onto different biological systems, we demonstrate that our workflow is able to optimize 

several complex genetic and metabolic networks of medium to large combinatorial space with minimal 

experimental efforts. As example, we improved the CETCH cycle a system of 27 variable factors including 

enzymes, cofactors, and buffer composition, spanning a theoretical combinatorial space of ~1025 different 

conditions. Performing only 1,000 (triplicate) assays over 8 rounds of active learning yielded a system with 

ten-fold improved productivity and six-fold increased efficiency, representing the most efficient in vitro 

CO2-fixation system described to date.  

The development and application of complex genetic and metabolic networks in synthetic biology is 

strongly increasing which requires new tools for their data-driven analysis. Efficient explorative 

approaches are needed not only for the optimization of existing biological networks, but also for the 
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design and realization of new-to-nature genetic and metabolic networks for which sampling the entire 

combinatorial space becomes practically impossible. Apart from network optimization with minimal 

experimental datasets, METIS can simultaneously help to discover so far unknown interactions and 

bottlenecks in these networks, which paves the way for their hypothesis-driven improvement. In the LacI 

circuit optimization, we showed how a bottleneck (i.e., ressource competition) can be identified, targeted, 

and finally overcome, which allowed us to improve the system by 34-fold. Similarly, during optimization 

of the CETCH cycle, we identified Mco, Hbs and B12 as limiting factors.  

Numerous applications of the METIS workflow can be envisioned in the future, including the optimization 

of growth media and/or biochemical assays, genetic circuits, from simple transcription & translation units 

to more complex designs, or the guided engineering of proteins, enzymes, and metabolic pathways in vivo 

and in vitro. With its convenience and easy access, METIS opens the door for the study, prototyping, 

(combinatorial) engineering, and optimization of these systems in an efficient, standardized, and 

systematic manner. 

 

2.5. Methods 

Gold regressor and analyzing different machine learning algorithms 

To find out which machine learning algorithm and sample size are suitable for our workflow, we conducted 

the following simulation:  

- 1017 data points (compositions and yields) were collected from a recent study31. 

- An XGBRegressor model (gold regressor) was trained on 80% of the dataset and 20% of the 

dataset was used for validation and to avoid overfitting via early stopping. 

- 100 combinations produced randomly within the range of each factor for Day_1.  

- Instead of doing experiments in the laboratory to determine the yield of each combination, yield 

values were assigned by the gold regressor. 

Note that, in this phase the test model predicts the yields and ranks them to suggest for the 

experiments of the next day, and the gold regressor (trained on pre-data) is used to assign yield 

values by prediction instead of performing the experiments in the laboratory. 

- For each machine learning model (MLP, DNN, linear regressors, XGBoost) an ensemble of 20 

models with different hyperparameters was produced.  
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Note that the linear regressors is a deterministic approach so we just duplicated a model 20 times 

for which all predictions are the same.  

- Each ensemble was trained on Day_1 data. 

- 100000 random combinations were generated, and their corresponding yield was predicted by 

the ensemble of models and ranked by UCB score (see method section for the core algorithm of 

active learning), top 100 combinations were suggested for the next day. Yields were assigned by 

the gold regressor. 

- The last two steps were repeated for other days, and on each day the model was trained on all 

the previous days’ data. 

Note that, in Fig. 1b for different sample sizes with XGBoost, 5, 10, 25, or 100 combinations were 

suggested for the next day.  

General description of METIS notebook 

All scripts used in this study were written in Python 3. Our modular tool, METIS, runs on Google Colab 

working through web browsers with a link without users needing to install Python or any packages. 

Packages used in the development of METIS:  

- Data processing: pandas (1.1.4) and numpy (1.18.5) 

- Data visualization: matplotlib (3.2.2) and seaborn (0.11.0) 

- Machine learning and deep learning: scikit-learn (0.22.2.post1), xgboost (0.90), and Keras (2.3.1) 

using TensorFlow backend. 

The core algorithm of active learning 

After measuring the value of the objective function (yield) for random combinations of Day_1, we 

continued with the following algorithm: 

- RandomSearchCV is used to find the optimal 20 hyperparameters for the XGBoost model. 

- The ensemble of 20 models is trained with the hyperparameters on data from all previous days 

(Day_1 to present day). 

- 100000 combinations out of possible combinations are randomly selected. 

- The mean and standard deviation of ensemble predictions are calculated. 

- The combinations are sorted based on Upper Confidence Bound (UCB) score31: exploitation * 

(average of predictions) + exploration * (standard deviation of predictions).  
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Note that, for both Gfp production and lacI circuits study, exploitation was equal to 1 and 

exploration changed for each day (day 2, 3 = 1.41, day 4, 5, 6, 7 = 1, day 8, 9, 10 = 0.5) 

- To perform experiments of the next day, the combinations with the highest UCB values are 

suggested.  

The high standard deviation represents the uncertainty and improves the prediction power of models, 

whereas a high average value weighs favorable combinations leading to higher yields. Hence a coupled 

score taking into account these two factors ranks the most promising combinations31.  

Note that the active learning for optimization of objective functions is sometimes called Bayesian 

optimization55. 

Finding K most informative combinations 

The K most informative combinations are calculated using the following algorithm: 

- RandomSearchCV is used to find the optimal 20 hyperparameters for the XGBoost model. 

- 2000 subsets of length K are selected from the tested combinations. The total number of possible 

subsets is:  

(
𝑁

𝐾
) =

𝑁!

𝐾! × (𝑁 − 𝐾)!
 

 

- Then a new XGBoost with the optimal hyperparameter is trained on each subset. The model 

performance is then validated on unseen combinations using the Spearman correlation 

coefficient.  

- All subsets are sorted based on their Spearman correlation coefficient, the top 5 are then chosen. 

Each of these 5 could be used.  

Note that increasing the number of subsets leads to a longer training time.  

Finding feature importance 

Feature importance values have been calculated with the following algorithm: 

- RandomSearchCV is used to find the optimal hyperparameter for the XGBoost model. 
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- The model is trained using the selected hyperparameter. Using the built-in 

“feature_importances_” property of the XGBoost package, the ratio of feature importance is 

calculated throughout the training process for each day cumulatively. 

Finding nonlinear (mutual) interactions 

In complex systems, factors usually interact with each other and epistatically affect the output. These 

interactions can be among many factors, however, the most relevant is the mutual or double interaction 

between factors56. This analysis can be a hint to discover biological phenomena’s behavior. The mutual 

interactions were calculated through the following algorithm57: 

- A linear regression model is fitted on the dataset and its performance is evaluated based on the 

R squared of predicted and actual values. This performance is considered as the baseline. 

- Iteratively, a new feature is added to the temporary dataset that equals Fi ✕ Fj for i and j in the 

list of factors. 

- The linear regression is fitted on the temporary dataset (which now has one more feature, Fi ✕ 

Fj) its performance is measured similarly to the baseline. 

- The difference between each performance and the baseline, j, is calculated and visualized. 

METIS prediction 

In contrast to METIS optimization that tries to find the most promising combinations through maximizing 

the objective function, METIS prediction aims to maximize the model performance on the prediction of 

the objective function for unseen combinations. We modified the core active learning algorithm: 

- Instead of UCB (exploitation ✕ mean + exploration ✕ std), combinations are sorted based on only 

their std value and set exploitation to zero. This enables picking the most uncertain combination 

for the next round. 

- At the end of each round, it returns a trained model instead of promising combinations, and the 

R squared of prediction is improved over rounds. 

Performance analysis using cross-validation 

To evaluate the model performance of the enzyme engineering notebook, we used k-fold cross-validation. 

In each round, all the tested combinations are divided into k subsets (k=5 for Supplementary Fig. 18, 19), 

then in five steps we trained the model on 4 and evaluated its performance (R2 Pearson) on the other 
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subset. This process was repeated for all 5 subsets. In the end, the average performance on all subsets 

was reported as the model’s performance. We used sklearn built-in function for cross-validation. 

Table-to-speech virtual assistant 

This tool helps molecular biologists to boost their manual liquid handling through reading volume and 

destination well in ascending order, therefore minimizes the need for changing the pipetting volume. We 

used the Google Text2Speech python package to transform the text into a voice file. There are two ways 

to interact with this notebook to continue with the next pipetting volume. The first is to do it manually 

with your keyboard (what we did), the second is using the voice assistant. For transforming voice to text 

(specific commands like ‘next’, ‘repeat’, etc.). We used the SpeechRecognition (3.8.1) python package. 

The code is available on https://github.com/amirpandi/Liquid-Handling-Assistant. 

Plasmid and DNA preparation 

The constitutive Gfp under the control of J23101 promoter and B0032 RBS was built in a recent study 

(pBEAST-J23101-B0032-sfGfp)58. Using golden gate cloning (BsaI-HFⓇv2 NEB #R3733L, T4 DNA ligase NEB 

#M0202T), in this plasmid, the super folder Gfp gene was replaced by LacI for constitutive-LacI, then the 

promoter was replaced by a T7 promoter (gaatttaatacgactcactatagggaga) to construct PT7-LacI plasmid. 

Since we used T7 promoters, a T7 terminator from Temme et al.59 

(tactcgaacccctagcccgctcttatcgggcggctaggggttttttgt) was cloned downstream. The version of LacI gene is 

similar to those in LacI circuits built by Greco et al.38 Plasmids for the cell-free gene expression were 

purified using the Machery-Nagel NucleoBond Xtra Maxi kit. For protein purification using His tag, sfGfp 

and LacI genes were cloned with an N-terminal His tag under IPTG-inducible T7 promoter. 

For cell-free experiments for optimization of the transcription & translation unit (Fig. 4b), PCRs were 

performed using Q5Ⓡ High-Fidelity 2X Master Mix (NEB #M0492L), sfGfp as the template, and primers 

with overhangs harboring PT7, RBS, and N-terminal sequence (forward primer) and C-terminal (reverse 

primer) at the final volume of 50 µL. After verification of PCRs using agarose gel, Monarch PCR & DNA 

Cleanup Kit (NEB #T1030L) was used to purify the fragments and they were all adjusted to the 

concentration of 100 nM to use for active learning experiments.  

For in vivo experiments of the transcription & translation unit (Fig. 4d) PCRs were done similar to the cell-

free experiment. Restriction sites for BsaI enzyme were designed on either side of PCR fragments enabling 

for goldengate assembly into a pSEVA224 vector (a low copy plasmid with kanamycin marker) from the 
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SEVA collection60,61. Since we used T7 promoters, a T7 terminator from Temme et al.59 

(tactcgaacccctagcccgctcttatcgggcggctaggggttttttgt) was cloned downstream.  

Protein purification 

For all enzymes involved in the CETCH cycle, expression and purification were performed as previously 

described62. Other proteins, T7 RNA polymerase (addgene #124138), GamS (addgene #45833), sfGfp, and 

LacI were His-tag purified using ProtinoⓇ gravity columns (Machery-Nagel #745250) and ProtinoⓇ Ni-NTA 

Agarose (Machery-Nagel #745400). 1 L cultures in LB media supplement with appropriate antibiotic were 

subcultured (1:100) from overnight precultures. Cultures were grown at 37 °C for two hours, then induced 

by 0.1 mM IPTG, incubated for 3 more hours at 37 °C to produce proteins. Cells were harvested at 8000g 

for 10 min, pellets were resuspended with 5 mL NPI-10 buffer, and sonicated. Samples were centrifuged 

at 18000g for 1 hour at 4 °C. The equilibration, wash, and elution steps were done according to the 

manufacturer's protocol. Next, imidazole desalting was performed using PD-10 desalting columns (GE 

Healthcare #17085101) according to the manufacturer's protocol. The purification was verified using the 

SDS page and the protein concentrations were determined using the Bradford assay. Glycerol was added 

to the protein samples to a final percentage of 10%, then they were aliquoted and after flash-freezing in 

liquid nitrogen, stored at -80 °C.  

Lysate Preparation 

E. coli lysate was prepared using an autolysis strategy63. Freeze-thawing E. coli BL21-Gold (DE3) cells with 

a pAS-LyseR plasmid produce a high-quality extract. Overnight precultures in LB-ampicillin media at 37 °C 

were subcultured in 5x 2 L 2xYTPG medium supplemented with ampicillin and grown at 37 °C to the 

OD=1.5. Cells were harvested (2000g, 15 min, room temperature) in 10 centrifuge bottles and 90 mL of 

cold S30A buffer (50 mM Tris-HCl at pH 7.7, 60 mM K-glutamate, 14 mM Mg-glutamate, to the final pH of 

7.7) was added to each. After vigorous vortexing, each was divided into two preweighed 50 mL falcons 

and centrifuged (2000g, 15 min, room temperature). The supernatants were removed carefully and after 

weighing falcons with pellets, the net weights were calculated. Two volumes of cold S30A with 2 mM DTT, 

were used to resuspend each pellet (2.8 mL for 1.4 g pellet), which were then vortex-mixed, and stored 

at -80 °C. The next day, frozen cells were thawed in a water bath at room temperature, vigorously vortex-

mixed, and incubated at 37 °C shaking for 45 min. The vortexing and 45 min incubation steps were 

repeated. Finally, the samples were centrifuged (30000g, 60 min, 4 °C) to obtain the cell extract. The 

supernatants were gently pipetted out in 1.5 tubes, recentrifuged (20000g in a tabletop centrifuge, 5 min, 
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4 °C) to remove all the remaining cell debris aliquoted, and after freezing in liquid nitrogen stored at -80. 

For the composition of the cell-free reaction buffer and energy mix, all chemicals were used as by Sun et 

al.33 except for amino acids (L-amino acids set, Sigma #LAA21-1KT). 

Cell-free reactions 

To perform the active learning experiments in Fig. 1, 3, Table2Seech_Volume.csv file of each round was 

downloaded from the notebook and uploaded to the table-to-speech virtual assistant notebook. Before 

starting the pipetting, we arranged all pipette tips with numbers written on one side of tip boxes (two 

boxes side by side) from 1 to 20 (for 20 data points). PCR tubes in which the compositions were going to 

be mixed also were numbered on racks from 1 to 20. The numbering increases the accuracy of the manual 

pipetting. Next, the table-to-speech assistant was run on a laptop on the bench and the space key was set 

in the Google Colab settings to run the code. After pipetting each factor into the corresponding 

destination, while the right hand was replacing the tip, the left hand pressed the space key to hear the 

next pipetting step in a headphone as well as to see the action appearing on the screen. The table-to-

speech assistant goes line by line for each factor and ranks the pipetting values from minimum to 

maximum, hence, minimizes changes in the pipette volume. For fixed elements such as HEPES and lysate, 

a master mix was made and after finishing pipetting all combinations, the master mix was added to each. 

All the steps were performed on ice. At the end, samples were gently mixed (not to generate bubbles) 

using a multichannel pipette and 10 µL of each was transferred into a 384-well plate (Greiner Bio-One 

#784076). Note that the volume of mixtures should be at least 20% in excess in PCR tubes not to face 

difficulties in the final pipetting step into the 384-well plate. The Gfp fluorescence was monitored 

(excitation:  485, emission: 528 nM, gain: 80) every 10 min in a plate reader (Tecan Infinite 200 PRO).  

The yield (objective function) in Fig. 1e, as provided in the Data availability, is the Gfp fluorescence (after 

6 hours incubation at 30 °C) of each composition normalized by a composition in which the concentration 

of all variable factors is at mid-range. However, the plotted yields are those values divided by 0.33, the 

average ratio of Gfp fluorescence between the active learning reference and a commonly used 

composition33. The objective function of the LacI circuit active learning in Fig. 3c is fold-change (FC) ✕ 

dynamic range (DR) of the output (Gfp fluorescence) between 0 and 10 mM input (concentration of IPTG). 

For cell-free reactions in Fig. 4c, the final volume of 5 µL was prepared directly in a 384-well plate, 10 nM 

final concentration of each linear DNA was transferred and the mix of other components of the cell-free 

lysate plus T7 polymerase (40 µg.mL−1) and GamS (2 µM) was added while gently mixing. The yield 

(objective function) in Fig. 4c is the Gfp fluorescence readout (after 6 hours of incubation at 30 °C) of each 

https://paperpile.com/c/5THmVC/Wa2x
https://paperpile.com/c/5THmVC/Wa2x


46 
 

transcription & translation unit normalized by the Gfp fluorescence of a commonly used sequence in our 

lab, wild-type T7 promoter, B0032 RBS, and sfGfp sequence. For all cell-free reactions, the Gfp 

fluorescence readout of the extract with no DNA was subtracted before yield calculations. All 

compositions and concentrations used in cell-free reactions in Fig. 1, 3, 4 are accessible next to the 

corresponding active learning notebook at https://github.com/amirpandi/METIS. 

RT-qPCR experiment 

Total RNA was extracted from cell-free expression reactions with a kit (NEB #T2010), following the 

manufacturer's instructions. Initial qPCR analysis indicated that a substantial amount of plasmid DNA 

remained in control reactions, which did not include reverse transcriptase to synthesize cDNA. Therefore, 

samples were subsequently treated to an additional DNase treatment by TURBO DNA-free™ Kit 

(Invitrogen™ #AM1907) according to the manufacturer's instructions. The resulting RNA produced a 

substantial qPCR signal (iTaq Universal SYBR Green Supermix Bio-Rad #1725120) when converted to cDNA 

by ProtoScript® II Reverse Transcriptase (NEB #M0368) using the standard protocol and random hexamer 

primers (ThermoFisher #SO142), but not in control reactions lacking reverse transcriptase. In order to 

account for potential sample-to-sample variability in extraction efficiency, all data presented herein is 

represented as a relative difference in cycle threshold (Ct) between Gfp and LacI cDNA within each sample. 

Standard curves with known concentrations of plasmid DNA were analyzed in parallel for Gfp and LacI 

primer sets, indicating comparable qPCR efficiencies and template specificity. No further normalization 

was required. 

Western blot 

Cell-free expression reactions and LacI-6xHis purified protein dilutions were mixed with 4 µL of non-

reducing sample loading buffer (Thermo Scientific #39001) and incubated at 90 °C for 5 minutes. The 

samples were then loaded into pre-cast SDS-PAGE gels (Bio-Rad #4561095)  and separated by 

electrophoresis. The gel was then immediately placed into a Bio-Rad TransBlot® Turbo apparatus for 

protein transfer onto a nitrocellulose membrane (Bio-Rad #1704158). Since all samples were produced 

from the same batch of cell-free expression reaction mix or were of known concentration, total protein 

concentration was not assessed. Western blot analysis was performed using a monoclonal antibody 

against LacI (Sigma-Aldrich #05-503-I) and an anti-mouse HRP-conjugated secondary antibody (Invitrogen 

#31430). After dispensing the detection reagent as indicated by the manufacturer (Neogen #324175), the 

blot was immediately imaged on a Bio-Rad ChemiDoc. A single clear band corresponding to the molecular 
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weight of LacI was detected in lanes containing purified LacI or expression from a LacI-containing plasmid 

(See inset, Supplementary Fig. 9). Band intensity was quantified using ImageJ and reported in parallel to 

the chemiluminescence image (Supplementary Fig. 9).  

In vivo experiment of transcription & translation units 

After cloning transcription & translation units into the pSEVA224 vector (plasmid and DNA preparation 

section), they were transformed into E. coli DH10β harboring an autoregulated T7 RNA polymerase circuit 

(addgene #71428)64. 3 colonies of each were cultured in LB with 30 µg.mL−1 ampicillin + 30 µg.mL−1 

kanamycin in a 96 deep well plate. After 10 hours of cultivation at 37 °C, 10 µL of each was added to 190 

µL LB with 30 µg.mL−1 ampicillin + 30 µg.mL−1 kanamycin in a 96-well plate (Thermo Scientific #137101). 

The Gfp fluorescence was monitored (excitation:  485, emission: 528 nM, gain: 80) every 30 min in a plate 

reader (Tecan Infinite 200 PRO) shaking at 37 °C. The in vivo yield in Fig. 4e, f is the Gfp fluorescence 

readout (after 6 hours) of each transcription & translation unit normalized by the Gfp fluorescence of a 

commonly used sequence in our lab, wild-type T7 promoter, B0032 RBS, and sfGfp sequence. The Gfp 

fluorescence readout of cells with no sfGfp gene was subtracted before yield calculations. 

Workflow for CETCH assays in 384-well plates 

The worklist generated by the METIS script was dissected into 5 worklists: dH2O, Buffers and Cofactors, 

Enzymes, Carbonic Anhydrase, and Substrate. In cases where pipetting errors occurred, we used our 

Exceptions_to_Worklist script for correction of failed transfers (provided in Code availability). This script 

generates a new worklist out of the exception file generated by the ECHO® and provides a list with how 

much volume needs to be added into which well. Dissecting the worklists guarantees for example that all 

buffers are transferred before enzymes are added. Note that we used fresh enzyme stocks in each round 

to prevent loss of activity due to repetitive freeze-thaw cycles. As source plates we used ECHO® qualified 

384-Well PP 2.0 Plus Microplates from Labcyte and used AQ_GP as the liquid class (AQueous solution; 

Glycerol/Protein). This liquid class was tested previously with the stocks of our assay components.  

We also added a control condition with composition derived from the published assay of CETCH 5.4 

(composition see Assays for determination of new enzyme stocks after round two). Controls can be added 

in the code as specials. The yield of this condition increased by a factor of 3 after round two (data not 

shown), where new enzyme batches of four enzymes were used. To identify the enzyme that was the 

reason for that, we tested the control assay with each of the four old enzymes separately (Supplementary 

Fig. 16b). Despite being important in the control (~280 µM in round one and two), catalase did not seem 



48 
 

important in each condition, since we reached yields of <1500 µM already in round two with the old stock 

(Fig. 5c). 

After starting the assays with 100 µM propionyl-CoA we used an Axygen® Breathable Sealing Film (BF-

400-S) to cover the 384-well PCR Plate (AB-1384) to allow the transfer of oxygen. The reaction (10 µL 

volume) was carried out at 30 °C and mild shaking at 160 rpm in an Infors HT Ecotron shaker. The reactions 

were stopped after 3 h with 1.25 µL of 500 mM polyphosphate and 1.25 µL of 50% formic acid. While the 

formic acid quenches the reaction, the polyphosphate was used for enhanced precipitation of the 

proteins. The plate was spun for 1 h at 2272g and 4 °C to pellet the proteins. 

For analysis by LC-MS, we used a multichannel pipette to transfer 1 µL of the supernatant into 9 µL of 

precooled dH2O in a new 384-Well Thermo-Fast® plate. Afterward, we added 10 µL of 10 µM 13C2 labeled 

glycolic acid as an internal standard. The plate was sealed with a Corning™ Microplate Aluminum Sealing 

Tape (6570). The assay plate with the quenched reactions was sealed with a Corning™ Microplate 

Aluminum Sealing Tape too and stored at -80 °C.  

Timepoint assays of 7 selected conditions 

The assays were done in triplicates containing 150 µL volume each and were carried out in a 1.5 mL 

reaction tube (at 30 °C, 500 rpm). The reactions were started with 100 µM propionyl-CoA. 12 µL samples 

were taken and quenched in 1.5 µL 50% formic acid and 1.5 µL 500 mM sodium polyphosphate (emplura®) 

at 5, 10, 15, 30, 60, 120, 180, 240, 300 and 480 min. The samples were spun for 20 min at 4 °C and 20.000g, 

before the supernatant was transferred into Thermo Scientific™ Abgene 96 Well Polypropylene Storage 

Microplates (AB-1058) and sealed with Corning™ Microplate Aluminum Sealing Tape. While 2 µL were 

used to prepare a 1:10 dilution in water for the measurement via LC-MS, the remaining samples were 

stored at -80°C. The concentrations for the assays are shown in the table below (Buffers and cofactors in 

mM, enzymes in µM). See Supplementary Table 3 for the details of these conditions. 

LC-MS analysis of CoA esters 

All CoA esters were measured on a triple quadrupole mass spectrometer (Agilent Technologies 6495 Triple 

Quad LC/MS) equipped with a UHPLC (Agilent Technologies 1290 Infinity II) using a 150 x 2.1 mm C18 

column (Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection volume was 2 µL of the diluted samples 

(1:10 in water). The flow was set to 0.400 mL/min and the separation was performed using 50 mM 

ammonium formate pH 8.1 (buffer A) and acetonitrile (buffer B). We quantified the CoAs using external 
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standard curves prepared in water with formic acid at pH 3. The standard curves were measured before 

and after the samples. Except for methylsuccinyl-CoA, all compounds were stable. For methysuccinyl-CoA 

we calculated the concentration as an average of the two standard curves at the time point the sample 

was measured. The parameters for the multiple reaction monitoring (MRMs) and the gradient are shown 

in the tables below. The data analysis was done with Agilent MassHunter Quantitative Analysis (for QQQ). 

See Supplementary Table 4 (Gradient for the separation of CoA esters) and Supplementary Table 5 (MRM 

transitions). 

LC-MS analysis of glycolate 

Glycolate was measured on a triple quadrupole mass spectrometer (Agilent Technologies 6495 Triple 

Quad LC/MS) equipped with a UHPLC (Agilent Technologies 1290 Infinity II) using a 150 x 2.1 mm C18 

column (Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection volume was 0.5 µL. The diluted samples 

(1:10 in water), as well as the external standard curve, were diluted 1:2 with 10 µM 13C2-labeled glycolic 

acid as internal standard. The flow was set to 0.100 mL/min and the separation was performed using dH2O 

with 0.1% formic acid (buffer A) and methanol with 0.1% formic acid (buffer B). The parameters for the 

multiple reaction monitoring (MRMs) and the gradient are displayed below. Data analysis was done using 

the Agilent Mass Hunter Workstation Software. See Supplementary Table 6 (Gradient for the separation 

of CoA esters) and Supplementary Table 7 (MRM transitions). 

Data availability  

All active learning data along with corresponding notebooks are provided at 

https://github.com/amirpandi/METIS. 

Code availability 

All notebooks run on Google Colab notebooks and are accessible on 

https://github.com/amirpandi/METIS. All scripts used in this study were written in Python 3. Packages 

used in the development of the workflow are pandas (1.1.4) and numpy (1.18.5), matplotlib (3.2.2) and 

seaborn (0.11.0), scikit-learn (0.22.2.post1), xgboost (0.90), and Keras (2.3.1) using TensorFlow backend.  
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2.7. Supplementary Information 

2.7.1. Supplementary Notes 

Supplementary Note 1: Active learning process for optimization of cell-free Gfp production 

We started the active learning cycle by generating 20 random compositions for the first round, pipetting 

them, measuring the Gfp fluorescence in a plate reader, then we collected the results after 6 hours of 

incubation at 30 °C. The mean and standard deviation of each composition was imported to the model, 

and after training, it suggested a new set of 20 compositions. The yield was calculated from the measured 

Gfp fluorescence of every composition normalized by a composition in which all variable factors are at 

their mid-range. This normalization was used for active learning (Data availability). In the end, as plotted 

in Fig. 1e, all values were normalized by composition from a common protocol in the field of cell-free 

synthetic biology to be comparable with other studies (Methods). The cycle (Fig. 1d) was repeated for 10 

rounds. In each round, the model became more predictive in generating new compositions and ranking 

the best 20 suggestions for the next round. Since pipetting 13 elements in 20 samples is error-prone and 

needs a substantial amount of time and effort, we developed a table-to-speech virtual assistant that is 

run on Google Colab and can be easily used on a computer or smartphone. This tool takes as input the 

suggested table of volumes to pipette, goes through it line by line (factors), ranks them from minimum to 

maximum volume, and reads and graphically shows them on the screen. With organized pipette tip sets 

and destination tubes (Methods), this considerably improved the speed, accuracy, and comfort of 

pipetting of such complex compositions.  

 

Supplementary Note 2: User guide and description of features of the modular workflow 

Fig. 2b shows the workflow of using METIS from the adjustment of the parameters to data visualization 

and analysis. The user input consists of two sections for i) active learning parameters and ii) factors with 

a range and/or category. In the active learning parameters section, the user should define the number of 

combinations willing to perform in each round depending on the number of factors and their conditions, 

also considering the equipment for i) pipetting compositions (or cloning genetic constructs in case of 

biological sequences) and ii) measuring the objective function. The number of rounds of active learning 

also should be defined as any arbitrary number. It is important to note that the number of total 

experiments is recommended to be divided into more rounds as this improves the power of active 

learning1. Other parameters are the total volume of each composition, the portion of the volume that 
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could be varied excluding and listing the constant factors. This is important to specify the total volume 

and the volume of fixed components subtracted from it because the model needs to convert 

concentrations to volumes and vice versa. The minimum droplet size defines the minimum volume unit 

of liquid handling robots or the minimum unit that one can pipette, usually 0.2 or 0.5 µL. This means all 

the volumes proposed by the model will be a factor of 0.2/0.5 µL or, for example, 2.5/25 nL with EchoⓇ 

acoustic robot.  

 

The exploration/exploitation ratio referred to as “exploration” in the parameters section is one of the 

most important elements to thoughtfully define, especially when the user applies the workflow for a 

different application than those presented in this work. For applications with numerical factors (i.e., our 

examples in Fig. 1, 3), the exploration rate should be >1 for the early rounds of active learning, and toward 

the end of the cycle, it should tend to values <1. Importantly, these values depend on the number, 

importance, and type (numerical or categorical) of factors, therefore, for tailoring the workflow, it should 

be taken into account. A high exploration indicates that the model will take more risks in suggesting 

combinations (exploration) rather than being efficient (exploitation). High exploration ratios are needed 

in the early rounds to explore the space and escape from local optimal combinations. However, in the 

later rounds, more efficient suggestions are required, which corresponds to focusing on achieving higher 

yields using what the model has learned. The ratio should be very carefully assigned, and the users should 

rely on their knowledge of the system or check a few of the suggestions, especially for the use with 

categorical factors like for our examples in Fig. 4, Supplementary Fig. 19. Note that, even if an exploration 

ratio is assigned for Day 1 (in the absence of Day 0), the first step is fully randomized, and the ratio has no 

effect on it. The exploration ratio for the examples reported in this work is as follows. 10 rounds of Gfp 

production in the cell-free system (Fig. 1e): Not defined, 1.41, 1, 1, 1, 1, 0.5, 0.5, 0.5, for 10 rounds of LacI 

gene circuit optimization (Fig. 3c): Not defined, 1.41, 1.0, 1.0, 1.41, 1.41, 1.41, 1.41, 1.0, 0.5, for 2 rounds 

of 20 most informative combinations of LacI gene circuits with purified LacI (Fig. 3i): Not defined for Day 

0, 0.5 for Day 1, for 4 rounds for the transcription and translation unit (Fig. 4c): Not defined, 1.41, 4.0, 1.0, 

for 2 rounds of 20 most informative combinations of transcription translation unit in vivo (Fig. 4f): Not 

defined for Day 0, 2 for Day 1, and for the single round of enzyme engineering suggestions for the 

hypothetical next day (Supplementary Fig. 20): 2.0. It must be noted that, since in METIS optimization 

combinations are sorted based on only their std value and exploitation is set to zero (this enables picking 

the most uncertain combination for the next round (Methods)), the exploration ratio is not defined.  
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In the factors section (Fig. 2b), the user should list all the elements participating in the objective function, 

that can be categorical and/or numerical features. Numerical features are defined by values, such as the 

concentration of factors in an in vitro system or in a growth medium, or strength of regulatory sequences 

such as promoters, RBSs (ribosome binding site), or CRISPR RNAs. Categorical features are not defined by 

values but characters/names such as regulatory sequences without numerical scores, or when for a gene 

there are multiple candidates from different organisms. Combined features are those with categories 

(alternative sequences/genes/constructs) and their level through concentration or strength (LacI gene 

circuits in Fig. 3). The user can range numerical values either by giving the range boundaries (minimum 

and maximum) or by specifying all the values. After running this section, for factors with range boundaries, 

it might be the case that the number of conditions is high, or their distribution lacks the desired coverage 

within the range. In this situation, we suggest picking 5 to 10 values from the proposed conditions from 

the output code of this section and manually specifying those factors’ concentrations. The stocks’ 

concentration is an important parameter since it must support the volume of the minimum final 

concentration in the defined range dependent on the minimum volume unit. One highlighted feature of 

our workflow that empowers its performance is letting the range of factors have more variable values 

than only 4 conditions in Borkowski et al2. The more randomized space allows the model to sample more 

informatively within the ranges, and this flexibility improves the performance. After the user has defined 

the active learning parameters and factors, the model shows all ranges taking into account the final 

volume of the mixture to give a percentage of possible compositions. A percentage of 100 means it is 

possible to compose a condition in which all factors are at their highest volume (concentration) and lower 

percentages indicate compositions are limited. When needed, the stocks’ concentration can be changed, 

and if on the other hand it limits the lowest volume, two stocks with different concentrations can be 

provided. This is one of the features of the workflow that can solve issues when it comes to practice.  

 

If a pre-existing dataset is used to train the model prior to starting active learning, they can be imported 

(compositions and yields) to initiate the workflow on Day 0 instead of Day 1 (used examples for 20 most 

informative combinations in Fig. 3i, 4f and the enzyme engineering application in Supplementary Note 7, 

Supplementary Fig. 19, 20). The dataset should be provided in the format of the results.csv files (Data 

availability).  
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When the parameters and factors are all set up, the model can generate the first round of experiments 

from the file Volumes_1.csv (round 1). The model generates Volumes.csv and Concentration.csv files in 

each round. The user should perform the suggested experiments, measure the objective function, and 

insert the results (mean and standard deviations) into new columns in the Concentrations_1.csv file 

generated by the model for that round and rename it to Results_1.scv. To continue with the next day 

(round), the user should upload the Results_1.csv file into the Google Colab notebook, run all sections, 

and the model executes the next day’s compositions. In this step, the model trains itself on the results 

and suggests new compositions predicted to give higher values for the objective function (or more 

predictive combinations in METIS prediction to build a more predictive model and not necessarily 

optimizing the objective function). This cycle is repeated for n that is defined in the parameters section. 

The file used for pipetting is Volume.csv generated in each round. If the laboratory accesses EchoⓇ 

acoustic liquid handler, our workflow can generate an input file corresponding to the suggested 

compositions. In this case, the source and destination plate wells should be specified by the user after 

downloading the EchoⓇ file. Otherwise, compositions can be pipetted by other liquid handlers or manually 

using the Volume.csv file. In examples in Fig. 1, 3, for 20 compositions in each round, it took us around 

three hours to pipette all compositions using our table-to-speech virtual assistant. The table-to-speech 

assistant increases the speed, accuracy, and ease of pipetting that should be used through a separate 

Google Colab notebook that we also provided in this work. The notebook takes the 

Table2Speech_Volume.csv file as input, ranks, and reads them throughout all compositions for each 

factor. By adjusting the parameters in Google Colab the assistant will go to the next well with any click 

specified by the user (Supplementary Note 1, Code availability). If the objective function is as in our 

examples in Fig. 4, Supplementary Fig. 20, the combinations should be constructed or cloned, the 

Volume.csv lists the categories of factors that should be constructed and not real volumes to pipette.  

 

During active learning, parameters or ranges can be altered at any round. This feature enables the user to 

make readjustments for the next rounds depending on the model’s performance, the evolution of the 

objective function over rounds, and how factors behave within their ranges. Additionally, in the section 

named “specials”, customized compositions can be manually added to any round and these will be 

subtracted from the number of suggestions in that round. If a user is willing to readjust or import special 

compositions, we recommend doing this in the later rounds of active learning and let the model perform 

its task in early rounds. For the LacI circuit optimization cycle, we show examples where customized 



59 
 

compositions have been manually added. Controls (i.e., negative control or reference combination) could 

be part of specials, in particular when an EchoⓇ file is used. 

 

The workflow generates cumulative outputs in each round (see Methods for how they are 

mathematically/statistically generated). The first set of outputs are compositions as Concentrations.csv 

and Volumes.csv. The second set is the list of K most informative combinations. This list can be used after 

active learning, to facilitate optimization of similar systems with the same type of factors and objective 

function such that one does not need to redo the whole active learning. By doing experiments for K (user-

defined) combinations and measuring their objective function, results are imported as Day 0 to optionally 

continue with one or more rounds of active learning (see LacI circuit section). The last set of outputs are 

several types of analysis/visualization and the respective raw data, a box plot for the evolution of objective 

function over rounds, two groups of individual plots for each factor one showing the daily variation of 

factors within their ranges, and the other group is about all measured yields within ranges. The other 

analysis/visualization outputs are a plot and list of feature importance values, contribution of each factor 

in the prediction of yield by the model. These provide information on factors playing more important roles 

and which have less or no effect on the objective function. The last module is a heatmap of mutual 

interactions between every two factors providing useful results to optimize and study the system as well 

as to spotlight unknown interactions.   

 

Supplementary Note 3: Complementary note on the experiment and discussion for optimization of LacI 

gene circuits 

The median of objective function increased especially from Day 6, and the fold-change raised from less 

than 4 to over 8 on Day 10 (Fig. 3c). The median on Day 9 dropped because we included 5 of 20 as special 

compositions with high concentrations of PT7-LacI plasmid and purified T7 RNA polymerase that led to 

very low objective function values. We did so since the model was trending to suggest very low 

concentrations of these two factors (Supplementary Fig. 8) which we first assumed would improve the 

fold change and objective function. Although this manipulation in the active learning process reduced the 

objective function values on Day 9, we gained a more profound insight into the system’s behavior. 

Additionally, this helped the model to improve the objective function values at the highest on Day 10. We 

hypothesize that the low protein production is because of resource competition or inhibitory protein-
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protein interactions especially at high concentrations of the plasmid that higher amounts of amino acids 

and tRNAs could not compensate for it. This was noticed by the model such that during the 10-day period 

it was tending to suggest lower concentrations of PT7-LacI plasmid and T7 RNA polymerase (Fig. 3d, 

Supplementary Fig. 8). Fig. 3d, e represent yield data points within each factor’s range and the features’ 

importance, respectively. The model calculated that PT7-LacI plasmid is by far the most important feature 

because of its hugely negative effect on protein production (Fig. 3e). 

 

To test the hypothesis of resource competition or inhibitory protein-protein interaction, we designed 

titration experiments in which with the optimal composition from active learning (which was with the 

pTHS circuit) we varied the concentration of PT7-LacI plasmid and T7 RNA polymerase (Fig. 3f). Increasing 

the concentration of PT7-LacI plasmid or T7 RNA polymerase diminishes the fold-change ✕ dynamic range 

(FC ✕ DR) and fold change (FC). The maximum of these values was achieved at low concentrations of PT7-

LacI plasmid and the highest amount of T7 RNA polymerase. To further support this hypothesis, instead 

of pTHS circuit, we added a Gfp expressing plasmid with a constitutive promoter that has no interaction 

with the PT7-LacI plasmid and T7 RNA polymerase but shares the same resources for transcription and 

translation. Increasing the concentration of either PT7-LacI or T7 RNA polymerase depleted resources for 

expression of the constitutive Gfp (Fig. 3g). Since the addition of the second plasmid prevented reaching 

a sufficient production-repression balance, we sought to test the system with His-tag purified LacI. We 

extracted the 20 most informative combinations from the above active learning cycle. We removed T7 

RNA polymerase from the factors and replaced the PT7-LacI plasmid with His-tag purified LacI and gave 

random values to it (Fig. 3h). These 20 combinations were performed, the results were collected and 

imported as Day 0 to the workflow. We already could see a huge improvement in the objective function 

and fold-change on Day 0 (Fig. 3i) due to using purified LacI. As high yield values were associated with the 

lower concentrations of purified LacI, we widened the range of purified LacI toward lower concentrations 

for the next round (Day 1). The Day 1 experiment resulted in 4 data points with a fold change of around 

100 (right plot in Fig. 3i).  

 

Supplementary Note 4: Setup for the METIS based optimization of the CETCH cycle 

For the optimization of the CETCH cycle, we did 125 conditions in triplicates per round. In each condition, 

all components were variable except for the substrate propionyl-CoA, which was fixed to 100 µM. For the 
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buffer (Hepes), we not only wanted to optimize the concentration, but also test different pH. Therefore, 

we gave the possibility to choose between 6 different pHs (7.0, 7.2, 7.4, 7.6, 7.8 and 8.0). For the five 

rounds of unrestricted optimization, we used exploration values of 1.41, 1.41, 1.0, 1.0 and 0.5. After 

transforming the data for the efficiency optimization ([Glycolate]/[Enztot]= Gycolate yield in µM and total 

concentration of enzymes in µM), we did three additional rounds of efficiency optimization where we 

used exploration values of 1.0, 0.5 and 0.5. 

After the first two rounds, we purified new batches of mco, hbd, cat and ssr. In the third round, using the 

new enzyme stocks, we noticed that our positive control (see material and methods) had a roughly three 

times higher product yield compared to the first two rounds. Therefore, we tested our control manually 

with the new enzymes and 4 control setups where only the old enzyme stock of either mco, hbd, cat or 

ssr was used. We could identify the old catalase stock as the reason for the lower yields in the first two 

rounds (Supplementary Fig. 16b). We stored the new catalase stock in liquid nitrogen upon use. 

Additionally, we removed unnecessary values after the first three rounds to reduce the combinatorial 

space (see Supplementary Table 2). All other values are in the GitHub repository. 

Assays for determination of new enzyme stocks after round two (Supplementary Fig. 16b) 

The assays were done in triplicates containing 30 µL volume each and were carried out in a 1.5 mL reaction 

tube (at 30 °C, 500 rpm). The reactions were started with 100 µM propionyl-CoA. 8 µL samples were taken 

and quenched in 1 µL 50% formic acid and 1 µL 500 mM sodium polyphosphate (emplura®) at 1, 2, and 3 

h. The samples were spun for 20 min at 4 °C and 20.000g, before the supernatant was transferred into 

new tubes. As described earlier, the samples were diluted and mixed with the internal standard for LC-

MS measurement. 

The assays contained: 

100 mM HEPES pH 7.6, 5 mM MgCl2, 50 mM sodium bicarbonate, 20 mM sodium formate, 20 mM creatine 

phosphate, 0.5 mM CoA, 0.1 mM CoB12, 2 mM ATP, 5 mM NADPH, 3.06 µM pco, 0.62 µM ccr, 0.74 µM 

epi, 0.30 µM mcm, 2.62 µM scr, 0.53 µM ssr, 5.34 µM hbs, 0.73 µM hbd, 0.58 µM ecm, 21.90 µM mco, 

0.28 µM mch, 2.79 µM mcl, 1.64 µM cat, 14.56 fdh, 0.02 µM ca, 1.10 µM gor, 0.39 µM ck. 

The experiments labeled mco, hbd, cat and ssr were done with the old stocks of the enzymes used in the 

first two rounds. The controls contained enzymes from the four new enzymes batches. 
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Assays for different concentrations of hbs and cobalt (Supplementary Fig. 16a) 

The assays were done in triplicates containing 30 µL volume each and were carried out in a 1.5 mL reaction 

tube (at 30 °C, 500 rpm). The reactions were started with 100 µM propionyl-CoA. 8 µL samples were taken 

and quenched in 1 µL 50% formic acid and 1 µL 500 mM sodium polyphosphate (emplura®) at 1, 2 and 3 

h. The samples were spun for 20 min at 4 °C and 20.000g, before the supernatant was transferred into 

new tubes. As described earlier, the samples were diluted and mixed with the internal standard for LC-

MS measurement.  

The hbs assays contained: 

100 mM HEPES pH 7.6, 5 mM MgCl2, 50 mM sodium bicarbonate, 20 mM creatine phosphate, 0.5 mM 

CoA, 0.1 mM CoB12, 2 mM ATP, 10 mM NADPH, 10 mM NADH, 3.06 µM pco, 0.62 µM ccr, 0.74 µM epi, 

0.30 µM mcm, 2.62 µM scr, 0.53 µM ssr, 0.53 µM hbs (10%), 5.34 µM hbs (control), 26.7 µM hbs (500%), 

0.73 µM hbd, 0.58 µM ecm, 21.90 µM mco, 0.28 µM mch, 2.79 µM mcl, 1.64 µM cat, 0.02 µM ca, 1.10 µM 

gor, 0.39 µM ck. 

The cobalt assays contained: 

100 mM HEPES pH 7.6, 5 mM MgCl2, 50 mM sodium bicarbonate, 20 mM sodium formate, 20 mM creatine 

phosphate, 0.5 mM CoA, 1.0 mM cobalt (1 mM), 0.0 mM cobalt (0 mM), 2 mM ATP, 5 mM NADPH, 3.06 

µM pco, 0.62 µM ccr, 0.74 µM epi, 0.30 µM mcm, 2.62 µM scr, 0.53 µM ssr, 5.34 µM hbs, 0.73 µM hbd, 

0.58 µM ecm, 21.90 µM mco, 0.28 µM mch, 2.79 µM mcl, 1.64 µM cat, 14.56 fdh, 0.02 µM ca, 1.10 µM 

gor, 0.39 µM ck. 

 

Supplementary Note 5: Optimization versus prediction purpose 

So far, we demonstrated the use of our active learning workflow for the experimentally guided 

optimization of cell-free protein expression, LacI gene circuit, transcription and translation unit, and the 

CETCH cycle. Machine learning algorithms learn patterns in data and predict unseen cases which can be 

either applied for optimization (as demonstrated with our workflow above) or prediction purposes. Note 

that while both approaches employ a dedicated prediction step, their overall aim is different 

(Supplementary Table 1). To further modularize our workflow, we created an additional METIS package 

for prediction (not optimization) of an objective function of given combinations. Supplementary Table 1 

summarizes the features of two Google Colab packages, METIS optimization and METIS prediction, which 
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differ in goal and application, query strategy, and outputs. The query strategy or the approach of METIS 

optimization is maximizing the objective function as well as the standard deviation of the ensemble 

regressor (i.e., the result of multiple regressors that individually operate on the data) whereas METIS 

prediction only maximizes the standard deviation of the ensemble regressor. These two also differ in the 

output types; METIS optimization suggests combinations with high ranked objective function whereas 

METIS prediction generates a trained model that computes the objective function for input combinations.  

Each round’s suggestions in METIS prediction aim to build a more predictive model by maximizing the 

correlation between predicted and measured objective functions (and not necessarily maximizing the 

objective function as in METIS optimization), hence improve the R2 of prediction over rounds of learning. 

Beyond these differences, the two notebooks share the same features/modules as described in Fig. 2 and 

Supplementary Note 2. To test the prediction notebook, we ran a simulation on a dataset of 1094 data 

points3 from the PURE (purified recombinant elements) cell-free protein expression system in which 

recombinant proteins and the buffer composition were varied (Supplementary Note 6, Supplementary 

Fig. xx). To demonstrate the performance of the model, we split the dataset into train and validation sets 

and used the validation set to measure (using R2) the accuracy of the prediction on the test set. Because 

of the random nature of splitting, the simulation was repeated 5 times. (Supplementary Fig. 18). Overall, 

the workflow was able to improve the prediction of the objective function over rounds of active learning.  

Supplementary Note 6: Application of METIS prediction for simulation on a PURE cell-free system dataset 

To show METIS’s potential in predicting an objective function, we performed an active learning simulation 

on an available PURE (purified recombinant elements) cell-free system dataset3 (Supplementary Fig. 18a, 

b). We also assessed the predictability of the dataset and our model’s general performance, we calculated 

5-fold cross-validation on the whole dataset (1098 data points). The result of 5-fold cross-validation and 

the prediction of a single sample test set is shown in Supplementary Fig. 18c, d, respectively.  

 

We simulated an active learning cycle as presented in Supplementary Fig. 18a: 

- 20% of the dataset was separated as the test set to be used for validation, which was not taken 

into account when the model is trained on the training set (the other 80%). 

- In the first round, 80 data points from the training dataset were selected randomly and the model 

was trained on them. 
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- In the next round, using what the model has learned, the rest of the training set (80 subtracted) 

was sorted based on the uncertainty value of combinations (Methods) and the top 80 

combinations were picked. 

- The yield of the picked combinations was assigned from the dataset and the model was trained 

on them. 

- This process was repeated 10 times, hence, at the end the model was trained on 800 data points. 

- In each step performance of the model was evaluated on the test set. 

 

This process includes multiple random steps which is why we repeated the whole process five times as 

shown in Supplementary Fig 18a. 

 

Supplementary Note 7: Application of the workflow for combinatorial enzyme engineering 

Machine learning is a powerful tool to address complicated biological questions such as 

prediction/engineering of the structure/activity of proteins/enzymes4,5. Challenges in engineering a 

protein using machine learning tools are the dependency on large datasets and difficulties to make 

genotype-phenotype links for hundreds or thousands of variants4. Except for phenotypes easy to measure 

such as those related to regulatory sequences (transcription factors), there is a lack of modular 

characterization methods for engineering proteins. Enzymes are of difficult proteins to engineer because 

each enzyme requires a different characterization method which mainly allows for low to medium 

throughput experiments. Moreover, traditional enzyme engineering approaches which mostly rely on 

altering one amino acid at a time, are likely to be trapped into the local optima of the enzyme activity6. 

Since our tool is able to work with minimal datasets and the gradient boosting algorithm can capture 

mutual interactions, it can also be used for engineering enzymes. From a recent study in our lab, we took 

a dataset of mutants of oxalyl-CoA decarboxylase from Methylorubrum extorquens7 to run simulations 

and give an example of how to use the workflow for such applications. Supplementary Fig. 19a shows the 

active site of the enzyme and surrounding amino acid residues.  

 

We imported the dataset comprising 847 combinations of mutations in the active site of the enzyme (Data 

availability). As provided in the modular workflow, we first extracted and plotted the feature importance 

values (Supplementary Fig. 19b). E135G and Y497F were calculated as conditions with the highest effect 
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on the yield. Although such conclusions could be made by experimental biochemists analyzing the 

mutants, our tool can quantify the effect of various amino acids at each position on the activity of the 

enzyme. The tailored workflow that we created for protein/enzyme engineering is provided with extra 

modules for the analysis and visualization of a mutant dataset. One of these provides 5-fold cross-

validation on the whole dataset (Supplementary Fig. 19c). K-fold cross-validation assesses the predictivity 

of machine learning models on an independent dataset (Methods). An average of 0.65 (Pearson R2) for 5-

fold cross-validation was achieved on this dataset. The other module plots the performance of the model 

on a single test set, 20% of the whole data, after being trained on the other 80%. Supplementary Fig. 19d 

shows predicted values of the test set versus their measured values for the mutants dataset which 

supports an existing correlation between predicted and actual values. Our enzyme engineering notebook 

also enables continuing with active learning cycles from an imported dataset (Supplementary Fig. 20). 

One can also start from scratch to engineer an enzyme by following a procedure similar to the examples 

shown in this study. 

 

Preparation of the dataset for enzyme mutants  

Data for the iterative saturation mutagenesis of MeOXC was acquired as described previously7. Briefly, a 

three-enzyme cascade was employed to turn over formaldehyde and formyl-CoA to glyoxylate. The last 

step in the cascade formed hydrogen peroxide, which was used to convert Ampliflu Red to resorufin, 

allowing fluorometric detection. Mutants were evaluated by two parameters. First, the maximal rate of 

signal production was determined (parameter A), and second, the final amount of signal produced after 

2 hours of runtime was measured (parameter B). The assigned objective function to each mutant is the 

product of parameters A and B. All values were normalized to the wildtype. If possible, the specific 

mutations were matched to the dataset. Where no sequencing data was available, the average signal was 

determined and assigned to the missing mutants. 
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2.7.2. Supplementary Tables 

Supplementary Table 1. Summary of METIS optimization and prediction Google Colab packages. In this study, we provided two 
modular Google Colab notebooks that can be adjusted for different applications as shown in the study. These two notebooks 
differ in applications, query strategy, inputs and outputs.  

Notebook Application Query Strategy Input/start Output 

METIS 
optimization 

-Optimization of an 
objective function, i.e., 
a composition, 
pathway, genetic 
construct/circuit 

-Maximize the objective 
function as well as the 
standard deviation of 
ensemble regressor 

-Existing data 

OR  

-Start with randomly 
generated compositions 

-Compositions of 
categorical and/or 
quantitative factors 
that lead to higher 
yields 

METIS 
prediction 

-Prediction of an 
objective function, i.e., 
a composition, 
pathway, genetic 
construct/circuit 

-Maximize only the 
standard deviation of 
ensemble regressor 

-Existing data 

OR  

-Start with randomly 
generated compositions 

-A trained model that 
predicts the objective 
function of given 
compositions 

 

 

Supplementary Table 2: The removed conditions after the first 3 rounds of yield active learning. 

Compounds Removed values 

HEPES 25 

MgCl2 22.5, 25 

Creatine P 80, 100 

Bicarbonate 100 

Formate 100 

B12 0.6, 0.8, 1.0 

pco 0.1914, 0.3827, 0.669725, 1.243775 

hbs 1.06785, 2.1357, 3.737475, 6.941025 

mco 1.36885, 2.7377, 4.10655, 5.4754, 6.84425, 9.58195, 13.6885, 19.1639 
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fdh 1.456, 2.912, 5.824, 10.192 

gor 0.55235, 1.1047, 1.65705, 2.2094  

 

 

Supplementary Table 3: Timepoint assays of 7 selected conditions with their active learning yield (AL yield) and efficiency (AL 
efficiency) values. Blue, day 4, condition 29, pH 7.8; orange, day 7, condition 15, pH 7.8; red, day 7, condition 76, pH 7.2; black, 
control, pH 7.6. green, day 8, condition 17, pH 7.2; lavender, day 5, condition 17, pH 7.4; burgundy, day 5, condition 55, pH 7.8. 

 
HEPES MgCl2 CP Bicarb. Form. CoA B12 ATP NADPH pco ccr epi mcm scr ssr hbs hbd ecm mco mch mcl kat fdh ca gor ck 

Manual 
Yield (3h) 

AL  

yield 

AL 

Efficiency 

blue 75 12.5 5 10.0 40 0.5 0.1 10 3.75 2.3 2.2 1.5 1.5 7.0 4.4 0.5 1.5 2.9 46.5 0.3 14.7 1.6 13.1 0.0 4.4 2.7 2262.5  2869.6 26.8 

orange 75 12.5 60 2.5 20 0.4 0.0 3 3.75 3.1 1.9 0.7 2.9 3.5 1.7 0.5 0.7 1.4 26.0 0.3 3.6 3.3 30.6 0.1 5.0 0.8 2126.8  2617.7 30.5 

red 150 7.5 20 20.0 40 0.4 0.0 9 2.50 2.3 2.2 3.7 0.3 1.7 4.4 1.6 0.4 2.6 113.6 2.3 8.4 4.9 23.3 0.1 3.9 2.7 1872.5  2586.8 14.5 

black 100 5.0 20 50.0 20 0.5 0.1 2 5.00 3.1 0.6 0.7 0.3 2.6 0.6 5.3 0.7 0.6 21.9 0.3 2.8 1.6 14.6 0.0 1.1 0.4 959.6   

green 175 10.0 10 5.0 80 0.4 0.1 9 2.50 2.3 0.6 3.0 0.3 5.2 1.1 1.6 0.4 2.3 26.0 1.4 14.7 1.6 40.8 0.1 2.8 2.0 920.2  919.9 8.7 

lavender 50 2.5 5 2.5 5 0.4 0.1 7 7.50 4.0 2.8 0.7 1.2 9.6 2.2 1.6 1.1 2.6 46.5 0.6 1.2 8.2 7.3 0.1 4.7 3.1 682.7  627.9 6.4 

burgundy 50 17.5 10 5.0 20 4.0 0.1 5 5.00 3.1 1.5 3.7 0.9 13.1 4.4 12.3 1.8 2.9 34.2 2.0 1.6 4.9 23.3 0.0 3.6 0.8 296.6  354 3.1 

 

 

Supplementary Table 4: Gradient for the separation of CoA esters.  

Time [min] A [%] B [%] 

0.0 100 0 

0.5 100 0 

6.0 96 4 

10.0 77 23 

11.0 20 80 
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12.0 20 80 

12.1 100 0 

15.0 100 0 

 

 

Supplementary Table 5: Multiple reaction monitoring (MRM) transitions for measurement of CoA esters.  

Compound Precursor Ion Product Ion Dwell Fragmentor Collision 
Energy 

Cell 
Accelerator 

Volt. 

Polarity 

Ethylmalonyl-CoA 
(Quantifier) 

882.1 331.2 25 380 41 5 Positive 

Ethylmalonyl-CoA 
(Qualifier) 

882.1 428 25 380 29 5 Positive 

Methylsuccinyl-CoA 
(Quantifier) 

882 375.1 25 380 33 5 Positive 

Methylsuccinyl-CoA 
(Qualifier) 

882 428 25 380 29 5 Positive 

Mesaconyl-CoA 
(Quantifier) 

880.1 375.1 25 380 25 5 Positive 

Mesaconyl-CoA 
(Qualifier) 

880.1 428 25 380 35 5 Positive 

Succinyl-CoA 
(Quantifier) 

868.1 361.1 25 380 35 5 Positive 

Succinyl-CoA 
(Qualifier) 

868.1 428.1 25 380 35 5 Positive 

Methylmalonyl-CoA 
(Quantifier) 

868.1 317.1 25 380 41 5 Positive 

Methylmalonyl-CoA 
(Qualifier) 

868.1 428 25 380 31 5 Positive 

4-hydroxybutyryl-
CoA (Quantifier) 

854.1 347.1 25 380 37 5 Positive 
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4-hydroxybutyryl-
CoA (Qualifier) 

854.1 428 25 380 30 5 Positive 

Crotonyl-CoA 
(Quantifier) 

836.1 329 25 380 33 5 Positive 

Crotonyl-CoA 
(Qualifier) 

836.1 428 25 380 26 5 Positive 

Propionyl-CoA 
(Quantifier) 

824.1 317.1 25 380 31 5 Positive 

Propionyl-CoA 
(Qualifier) 

824.1 428 25 380 28 5 Positive 

Β-methylmalyl-CoA 
(Quantifier) 

898.1 391.1 25 380 39 5 Positive 

Β-methylmalyl-CoA 
(Qualifier) 

898.1 428.1 25 380 33 5 Positive 

  

 

Supplementary Table 6: Gradient for the separation of glycolate.  

Time [min] A [%] B [%] 

0 100 0 

4 100 0 

6 0 100 

7 0 100 

7.1 100 0 

12 100 0 
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Supplementary Table 7: Multiple reaction monitoring (MRM) transitions for measurement of glycolate. 

Compound Precursor Ion Product Ion Dwell Fragmentor Collision 
Energy 

Cell 
Accelerator 

Volt. 

Polarity 

12C-Glycolate 
(Quantifier) 

75 47 150 380 9 5 Negative 

12C-Glycolate 
(Qualifier) 

75 75 150 380 0 5 Negative 

13C-Glycolate 
(Quantifier) 

77 48 150 380 9 5 Negative 

13C-Glycolate 
(Qualifier) 

77 77 150 380 0 5 Negative 
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2.7.3. Supplementary Figures 

 

 

 

Supplementary Fig. 1: Standard curve for fluorescence readout of purified sfGfp (26806 Da) at the condition of the reference 
cell-free reaction. The experiment was performed in the same plate reader (Tecan Infinite 200 PRO, excitation/emission 
wavelengths of 485/528 nM and gain = 80). The average of measured Gfp fluorescence for the reference composition8 is 3849.13 
which corresponds to a concentration of 25.97 ug/ml (0.97 µM). This is the amount of sfGfp for the reference that we used to 
normalize all the data points in Fig. 1e. Quick math shows that the points with a yield of ~15 in Fig. 1e have a GPF production of 

~0.97 ✕ 15 = 14.5 µM. Compared to a previous optimization and a commercial kit (See the supplementary information of 
Borkowski et al. Figure 8b2) we achieved more than 30-fold higher sfGfp production. It should be noted that we used autolysate 
preparation protocol whereas in the other work, a sonication protocol was used. Moreover, it is important to note that the 
concentration of plasmid DNA used in this study is 20 nM compared to the 10 nM in the compared work, however, they used a 
stronger RBS, B0034. The strength of RBS (B0032) in our plasmid is 30% of B00349.  

 

https://paperpile.com/c/tF4jL6/leTjy
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Supplementary Fig. 2: Concentration variations of each of the E. coli cell-free system factors from rounds 1 to 10 of active 
learning. These plots show how the concentration of each factor varied from day 1 to 10 through suggestions of the model aiming 
to increase the yield. The features’ importance (Fig. 1f), and yield dependencies (Fig. 1g) could be analyzed altogether with these 
plots. 
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Supplementary Fig. 3: Mutual interactions between every two factors for active learning of the E. coli cell-free system. This 
plot shows the calculated mutual interactions (Methods) between every two factors, a useful analysis of the active learning 
dataset helping to study the system. This module is also integrated into the modular workflow.  
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Supplementary Fig. 4: A screenshot of the Google Colab notebook for interacting with the workflow. At the left side of the 
page, the folder icon (shown by the arrow) is where files should be uploaded (Results) or downloaded (those that the user 
generated during the usage such as Volume, Concentration, Features’ importance, K most informative, as well as figures as .png 
or .svg). When the run time is over, the user should reupload the files. The main body of the tool is where different cells (modules) 
of the code are accessible that should be run in order by clicking on the run icon (shown by the arrow). Except for the first round 
for which there is no results or input file, the files should be uploaded before starting to run the cells. For more details see Code 
availability to open (after making a personal copy) any of provided notebooks in your browser.  
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Supplementary Fig. 5: A screenshot of the sections of active learning parameters and factors. These two sections appear at the 
top of the notebook. These cells come after the sections for python classes/modules that should run beforehand. See 
Supplementary Note 2 for detailed explanations. 

 

 

 

 

 

Supplementary Fig. 6: A screenshot of different modules of the workflow. The modules that a user aims to use can be run all at 
once or the user can open individual code sections/tabs and make changes for example in the plot size, color, etc.  
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Supplementary Fig. 7: The behavior of LacI gene circuits in the cell-free protein expression system. These results presented in 
Greco et al.10 as the “rate” in the protein production; however, here, we plotted the “amount” of protein produced after 6 h of 
incubation at 30 °C. (a) IPTG dose-response curve for SLC and MLC constructs. (b) The fold-change (FC) value of the plots in (a) 
between 0 and 10 mM of IPTG. 

 

 

 

 

 

 

Supplementary Fig. 8: Variation of the concentration of factors in 10 rounds of active learning for LacI gene circuits 
optimization. These plots show suggestions of different concentrations of each factor by the model aiming to improve the 
objective function. 
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Supplementary Fig. 9: Gfp fluorescence level is affected by expression competition with LacI, not by interference by the LacI 
protein itself. a) Western chemiluminescence detection of LacI protein level produced in cell-free reactions starting with different 
concentrations of the LacI plasmid. The inset shows an overlay of the chemiluminescent signal and a bright image of the 
membrane, where the ladder is visible. b) Quantification of the mean intensity of LacI bands in (a) using imageJ software. These 
data show that all cell-free reactions produce less than 2 μM of the LacI protein. c) Gfp fluorescence from cell-free reactions with 
different concentrations of purified LacI-6xHis protein included indicates that the LacI protein itself does not affect Gfp expression 
level at 2 μM and below. 
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Supplementary Fig. 10: Analysis of the active learning data for the transcription and translation unit. (a) Distribution of 
alternative factors within the yield of 200 combinations. (b) The feature importance percentage of each condition for the model 
to assign predicted yield values. The bars and error bars are the average and standard deviation of the importances in 4 days 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig. 11: Cell-free versus in vivo yields of the 20 most informative combinations for the transcription & 
translation unit. The bar plot representation of results (average and standard deviation of triplicates) shown in Fig. 4e.  
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Supplementary Fig. 12: Scaled factors heatmap of top 10% yields in CETCH yield (glycolate, round 1-5) active learning. The 
concentration range for factors was scaled to the same range. 
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Supplementary Fig. 13: Scaled factors heatmap of top 10% yields in CETCH efficiency (glycolate concentration divided by the 
total enzyme concentration, round 1-8) active learning. The concentration range for factors was scaled to the same range. 

 

 

 

 

 



81 
 

 

 

 

 

Supplementary Fig. 14: Distribution of measured yield (glycolate, round 1-5) values within the ranges of each factor. 
Distribution of all factors within the yield of 5 rounds. 
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Supplementary Fig 15: Distribution of measured efficiency (glycolate concentration divided by the total enzyme concentration, 
round 1-8) values within the ranges of each factor.  Distribution of all factors within the efficiency of 8 rounds. 
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Supplementary Fig. 16: Assays for testing newly purified enzyme batches after round 2 (b) and for testing different 
concentrations of hbs and cobalt (a). (a) The assays were done as described in material and methods (Assays for different 
concentrations of hbs and cobalt). The shown glycolate concentrations are from the sample taken after 180 min. The control 
contained 0.1 mM Coenzyme B12, whereas the assays with 0 mM and 1 mM cobalt did not contain any  Coenzyme B12.  (b) Test 
of old batches of mco, hbd, cat and ssr. After recognizing an increase in the product yield of our control after round two, we 
tested the old stocks of the enzymes which were purified freshly for round three in combination with the new enzymes. We could 
identify the old batch of catalase as the reason for the lower yield. The values of the grey bars are the means of three replicates 
(dots) and the error bars represent the standard deviations. 
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Supplementary Fig. 17: Quantified CoA-esters from selected assay conditions. The values for time point 0 are not measured, the 
reactions were started with 100 µM propionyl-CoA. The values of the black bars are the means of three replicates (dots) and the 
error bars represent the standard deviations. For details see LC-MS analysis of CoA esters. 
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Supplementary Fig. 18: Application of METIS for the prediction of a PURE cell-free system dataset. (a) We took this dataset 
from a recent study in which they varied recombinant proteins and buffer compositions, adapted it as a Results.csv file. The 
dataset was divided into two subsets 80% for training and 20% for testing. (b) During 10 rounds of active learning, the model was 
assessed by the initial test set and the R2 of the prediction improved over rounds. See Supplementary Note 6 for a detailed 
explanation of the process. (c) 5-fold cross-validation to evaluate the average performance of the model on the whole dataset. 
(d) a single round of validation of a model on the test set.  
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Supplementary Fig. 19: Simulations on a dataset of 847 mutants of oxalyl-CoA decarboxylase enzyme to showcase the 
application of METIS workflow for combinatorial enzyme engineering. (a) The active site of oxalyl-CoA decarboxylase with 
surrounding residues annotated and the covalently bound cofactor thiamine diphosphate (ThDP). (b) Calculated features’ 
importance by the model on the imported dataset that define how big the effect of each condition is if the model suggests new 
amino acid combinations. (c) 5-fold cross-validation, a common approach to assess the prediction power of machine learning 
models. (d) Predicted values on a single unseen test set (20% of the whole dataset) versus their measured values. (see also 
Supplementary Note 7) 
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Supplementary Fig. 20: Distribution of amino acids in each position of the oxalyl-CoA decarboxylase active site predicted by 
the model out of 50 suggestions. This shows an example in case a user aims to synthesize or clone new enzyme sequences and 
test a round of combinatorial mutants. 
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3.1. Abstract 

A long-term goal in realizing a sustainable biocatalysis and organic synthesis is the direct use of the 

greenhouse gas CO2 as feedstock for the production of bulk and fine chemicals, such as pharmaceuticals, 

fragrances and food-additives. Here we developed a modular in vitro platform for the continuous 

conversion of CO2 into complex multi-carbon compounds, such as monoterpenes (C10), sesquiterpenes 

(C15) and polyketides. Combining natural and synthetic metabolic pathway modules, we established a 

route from CO2 into the key intermediates acetyl- and malonyl-CoA, which can be subsequently diversified 

through the action of different terpene and polyketide synthases. Our proof-of-principle study 

demonstrates the simultaneous operation of different metabolic modules comprising of up to 29 enzymes 

in one pot, which opens the way for developing and optimizing synthesis routes for the generation of 

complex CO2-based chemicals in the future. 

3.2. Introduction 

Cell-free synthetic biology involves the in vitro assembly of multiple purified and semi-purified enzymes 

into metabolic cascades to generate natural and new-to-nature high value chemicals. The in vitro recons-

titution of metabolic pathways allows the convenient manipulation and optimization of reaction 

conditions, enzyme concentrations, cofactor supply, energy flux and yield, which are difficult to control in 

living microorganisms1. Glucose is frequently used as an inexpensive feedstock for these complex systems. 

Over the recent years, the use of other carbon sources, such as sucrose, cellulose, glycerol, xylose and 

starch was demonstrated2. However, the direct conversion of atmospheric CO2 or other C1 precursors 

into value-added compounds has proven a major challenge for in vitro systems.  

To address this challenge, the synthetic crotonyl-coenzyme (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA 

cycle (CETCH) was developed. This in vitro pathway combines 18 enzymes from nine different organisms 

to generate the C2-compound glyoxylate from CO2 at a rate of 5 nmoles per minute per mg protein3. Very 

recently, CETCH was successfully coupled to photosynthetic membranes for the light-driven conversion 

of CO2 into glycolate4. However, a successful coupling of CETCH to downstream anabolic pathway modules 

that would allow to extend its product spectrum beyond glyoxylate or glycolate is still lacking. One 

interesting set of target molecules are natural products, in particular terpenes and polyketides, which are 

used as flavours, pharmaceuticals, biofuels and commodity chemicals. These complex compounds are 

synthesized in vivo from the simple C2-building blocks like acetyl-CoA by individual enzymes (terpene 

synthases) or multi-enzyme complexes (polyketide synthases, PKSs) respectively5-7.  
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Here we developed a multi-modular in vitro platform to access different terpenes and polyketides directly 

from CO2. To that end, we first coupled the synthetic CETCH with a natural glyoxylate assimilation module 

to convert CO2 into acetyl-CoA. We further demonstrate how acetyl-CoA can be diversified into an array 

of terpenes and polyketides through downstream processing by different terpene and PKS biosynthetic 

modules. Overall, this proof-of-principle study might pave the way towards realizing modular, multi-

enzyme reaction cascades for the sustainable synthesis of complex chemicals from simple C1 building 

blocks, such as CO2 in the future. 

3.3. Results 

To capture CO2 into glyoxylate, we first established CETCH and determined its productivity in our 

experimental setup. To that end, we run CETCH version 5.4 (Supplementary text) and quantified glycolate 

production by adding glyoxylate reductase to the CETCH core cycle. Starting from 100 µM propionyl-CoA, 

CETCH produced ~730 µM glycolate within 3 hours under the chosen conditions (Figure 1A).  

 

 

Scheme 1. Coupling of CETCH-BHAC modules for acetyl-CoA formation 
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Next, we aimed at establishing a coupling module for the further conversion of glyoxylate into acetyl-CoA, 

which would allow to couple CETCH with downstream terpene/polyketide-producing pathways. We 

sought to employ the β-hydroxyaspartate cycle (BHAC), a pathway used by marine proteobacteria for 

glyoxlate assimilation8,9. The BHAC converts two molecules of glyoxylate into oxaloacetate via four 

enzymes, requiring only one molecule of NADH and one amino group that is constantly recycled during 

the process, making the BHAC the most efficient reaction sequence for the conversion of C2 molecules 

into C4 compounds described to date. Oxaloacetate can then be further converted into acetyl-CoA via 

malate dehydrogenase, malate thiokinase and malyl-CoA lyase (Scheme 1). We reconstituted the BHAC in 

vitro using N-terminal His-tagged proteins, produced in Escherichia coli (Table S5). To optimize BHAC 

productivity, we tested different concentrations of transaminase BhcA and co-substrate glycine, using 

malate dehydrogenase as readout (see Supplementary text). However, starting from 500 µM glyoxylate, 

malate yields were comparable between the different conditions tested (~70%; Figure S1A), indicating 

that the BHAC was operating robustly in vitro (Figure 1B). Next, we coupled the BHAC with CETCH. When 

we added the enzymes of the BHAC after 60 min to the CETCH assay, CETCH plus BHAC yielded ~200 µM 

acetyl-CoA, corresponding to a conversion of glyoxylate into acetyl-CoA at 30% yield (Figure S1B). 

Notably, we achieved similar acetyl-CoA yields, when we coupled the CETCH with BHAC directly from 

the beginning (Figure 1C and S1B), indicating that the 18 enzymes of the CETCH and BHAC can be operated 

simultaneously in one pot. CO2 fixation was also confirmed by isotopic labeling as before. Using 13C-labeled 

bicarbonate and 13C-formate (released as 13CO2 during cofactor recycling), fully labeled malate was 

observed after two hours, proving that CETCH turned multiple times (Figure 1D). Considering that already 

single 13C-labeled malate is stoichiometrically exclusively derived from fixed CO2 (Figure S2), these 

experiments demonstrated that CO2 can be continuously converted into acetyl-CoA by directly coupling 

CETCH and BHAC. 

In the last step in the CETCH-BHAC cascade, the cleavage of malyl-CoA into glyoxylate and acetyl-CoA 

by malyl-CoA lyase, is reversible with a ΔG0’ of -3 ± 5.8 kJ mol-1. To test, whether this reaction runs into an 

equilibrium, we determined malyl-CoA concentrations after 90 min. Much to our surprise, the 

concentration of malyl-CoA was below 1 µM (Figure S3A), indicating that this compound is specifically 

degraded over time in the reaction mixture. Indeed, when we incubated both acetyl-CoA and malyl-CoA 

in the assay matrix in the absence and presence of all CETCH and BHAC enzymes (with exception of malyl-

CoA lyase Mcl), acetyl-CoA appeared stable, while malyl-CoA was consumed by one or more of the 

enzymes (Figure S3B and S3C). Thus, when coupling CETCH and BHAC, the last reaction in the cascade 
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reaches an equilibrium between acetyl-CoA plus glyoxylate and malyl-CoA. Malyl-CoA will be degraded 

over time, thereby limiting total yield, unless the flux is further pulled into downstream reactions that 

consume acetyl-CoA (see below). 

 

Figure 1. Coupling of CETCH with the 
BHAC for acetyl-CoA production. A) 
Glycolate production by CETCH 
from 100 µM propionyl-CoA. 
Glyoxylate reductase was used to 
convert the primary product 
glyoxylate to glycolate. B) Malate 
production by BHAC from 500 µM 
glyoxylate. Malate dehydrogenase 
was used to convert oxaloacetate to 
malate. C) Coupling of CETCH with 
the BHAC to produce acetyl-CoA 
(see Scheme 1), from 100 µM 
propionyl-CoA. D) Fractional 
labeling of malate from CETCH-
BHAC coupling and Mdh using 13C-
labeled bicarbonate and 100 µM 
propionyl-CoA. The 13C is 
incorporated as CO2 by the Ccr as 
shown in Scheme 1. +0, +1, +2, +3, 
+4 indicates the number of carbons 
of the malate (C4) derived from 
13CO2 incorporation. The reactions 
were performed in triplicates and 
the mean ± S.D. are plotted. 

 

 

For the further conversion of acetyl-CoA into terpenes, we aimed at coupling the 18 enzymes of the 

CETCH-BHAC cascade with different terpene biosynthetic modules, comprising of the nine enzymes of the 

mevalonate biosynthetic pathway and various terpene synthases (Figure 2A, Table S5). We established 

five different terpene biosynthetic modules, by prototyping the production of monoterpenes (C10) 

limonene (1), sabinene (2) and α-pinene (3), as well as sesquiterpenes (C15) α-bisabolene 4) and β-

farnesene (5) from acetyl-CoA in the CETCH-BHAC assay matrix (Table S5). To constantly supply cofactors, 

we employed the regeneration systems used in CETCH. To regenerate the NAD(P)H pool, we used an 

engineered formate dehydrogenase (Fdh) that accepts both, NADPH and NADH10; to maintain the ATP 

pool, we used a polyphosphate transferase system11. The extraction of terpenes was optimized by testing 

different solvents (Figure S4A & S4B). Production of 1-5 from optimized by testing different terpene 
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synthase concentrations (Figure S5) acetyl-CoA was validated with authentic standards and further 

optimized by testing different terpene synthase concentrations (Figure S5).  

 

Figure 2. Coupling of CETCH-BHAC cycles for terpene biosynthesis. A) General scheme of the mevalonate pathway. The cofactors 
(NADPH and ATP) are fluxed from the CETCH/BHAC cycles and are constantly recycled. IPP: Isopentenyl pyrophosphate; DMAPP: 
Dimethylallyl pyrophosphate; TS: terpene synthase. B) Formation of acetyl-CoA from CETCH over 24 h. The reaction is started 
with 100 µM propionyl-CoA and analysed as described in the methods. C) Time course of terpenes production from 100 µM 
propionyl-CoA. Colored labels correspond to the amount of CO2 fixed over time. The analytes are measured by GCMS as descried 
in the methods. The reactions were performed in triplicates and the mean ± S.D. are plotted. D) Structures of the mono- and 
sesquiterpenes produced. 

 

When we pre-produced acetyl-CoA with the CETCH-BHAC cascade for 4 h, before adding the different 

terpene biosynthetic modules, monoterpenes 1-3 and sesquiterpenes 4-5 were produced at 

concentrations of ~10 µM and ~5 µM, respectively (Figure S6B). However, when operating the CETCH-

BHAC cascade with the different terpene biosynthetic modules simultaneously in one pot, product yields 

were increased three- to four-fold (Figure S6C). The CETCH-BHAC cascade alone produced about 70 µM 

acetyl-CoA within 4 h (Figure 2B). We obtained monoterpenes 1-3 between concentrations of 30 to 

40 µM, and sesquiterpenes 4 and 5 at 20 µM (Figure 2C, 2D and Table 1), supporting the hypothesis that 

the direct downstream conversion of acetyl-CoA is crucial to improve product yield. LC-MS analysis of the 

reaction mixtures confirmed presence of different mevalonate pathway intermediates, (Figure S7B), but 

only trace amounts of residual acetyl-CoA (Figure S7C), indicating that acetyl-CoA is efficiently fed into 
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the different downstream terpene biosynthetic modules. As a positive control, the production of 1-5 was 

also validated from 0.5 mM acetyl-CoA (Figure S7D). 

Table 1. Net productivity of terpenes from 100 µM 
propionyl-CoA in 24 h. Yield was determined by GCMS using 
authentic standards (Figure S8). Data represent n=3 ± S.D. 
The assay contained 4.6 mg/ml of total enzymes. 

 

 

 

 

To test whether the CETCH-BHAC cascade would also fuel polyketide biosynthesis, we attempted to 

couple it with the iterative PKS C-1027 (PKSSgcE)12. PKSSgcE has been reported to form 1,3,5,7,9,11,13-

pentadecaheptaene (PDH, 7), an all-trans polyene, which upon chemical hydrogenation leads to penta-

decane (PD), a prime component of diesel fuel. PKSSgcE uses one acetyl-CoA, eight malonyl-CoA and seven 

NADPH to generate a nine-membered enediyne precursor (Figure 3A). The PKS undergoes eight iterative 

cycles, during which the dehydratase (DH) domain remains inactive in the last two cycles and the keto-

reductase (KR) domain in the ultimate cycle. 

Products are released from PKSSgcE either via spontaneous lactonisation yielding 6, or through hydro-

lysis by the type II-standalone thioesterase 12,13 TESgcE, yielding 7. A recent study reported that production 

of 7 depends on the ratio of PKSSgcE:TESgcE
14. We protoyped the in vitro production of 6 and 7 by mixing 

various concentrations of PKSSgcE and TESgcE with acetyl-CoA, malonyl-CoA and NADPH at 30 ˚C. Production 

of 6 was directly confirmed from the reaction mixture with high resolution LCMS (m/z [M + H]+ = 

285.1485). Production of 7 was confirmed in ethyl acetate extracts of the reaction mixture by UV-Vis 

spectroscopy (absorption maxima at 336, 355, 373, 395 nm) and high resolution LCMS (m/z [M + H]+ = 

199.1476) (Figure S10A). The amount of 7 increased with increasing TESgcE concentrations with a maximum 

production at 2.5 µM PKSSgcE and 40 µM TESgcE (Figure S10B). Neither 6 nor 7 were detected, when we 

tested PKSSgcE mutant C171A, in which the KS was inactivated (Figure S10C), demonstrating successful 

reconstitution of PKSSgcE in vitro. 

Note that CETCH features methylmalonyl-CoA and ethylmalonyl-CoA as intermediates, which serve 

as extender units in the biosynthesis of several polyketides and might pose a problem when directly 

coupling CETCH with PKS. To study whether PKSSgcE would accept methyl- and ethylmalonyl-CoA besides 

malonyl-CoA we tested these compounds separately and in combination with purified PKSSgcE and 

Compounds 
Yield 

(µM) 
CO2 fixed (µM) 

Productivity   (mg l-

1 h-1) 

1 39 ± 4 390 0.22 

2 28 ± 3 283 0.16 

3 27 ± 2 279 0.16 

4 19 ± 2 283 0.19 

5 22 ± 3 327 0.22 
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analysed the reaction mixture for the production methyl- (8) and ethyl- (9) substituted heptaenes with 

high resolution LCMS. Indeed, 8 and 9 were produced in a TE-dependent fashion when the corresponding 

precursors were available (Figure S10D, I, II, III). However, suggesting that operating CETCH and PKSSgcE 

simultaneously does not pose a challenge, as long as a sufficient pool of malonyl-CoA is present. 

 

Figure 3. Coupling of CETCH-BHAC cycles for pentadecaheptaene biosynthesis. A) Proposed catalysis by PKSSgcE and TESgcE in 
the biosynthesis of enediyne antibiotic C-1027. KS: ketosynthase; AT: acyltransferase; KR: ketoreductase; DH: dehydratase; ACP: 
acyl carrier protein; PPT: phosphopantethenyl transferase. B) Formation of 7 via CETCH-BHAC from 100µM propionyl-CoA at 
different time points. The production of 7 stalls at 3 h and remains the same until 24 h. All the assays were performed in triplicates 
and the mean ± S.D. are plotted. 

 

Having this information at hand, we finally directly coupled the CETCH-BHAC cascade with 2.5 µM 

PKSSgcE and 40 µM TESgcE, and added 2 µM propionyl-CoA carboxylase variant D407I (Pcc*) that shows 10% 

activity with acetyl-CoA to provide the extender unit malonyl-CoA from acetyl-CoA. In the coupled system, 

6 was produced in relatively high amounts independent of TESgcE, while TESgcE-dependent production of 7 

reached a maximum around 3 h, demonstrating the successful biosynthesis of complex polyketides with 

our coupled system (Figure 3B). 

3.4. Discussion 

In conclusion, we show that more complex molecules such as terpenes and polyketides can be built 

exclusively from CO2 combining the synthetic CO2-fixing CETCH with different biosynthetic modules. 

Although cofactor regeneration in our modular platform was based on formate, we note that this C1 

compound can be regenerated electrochemically and/or enzymatically from CO2 and thus provide a 

carbon neutral energy (and carbon) source15,16. Moreover, CETCH was recently coupled with chloroplast 

extracts4. Energizing our modular platform with photosynthetic membranes could make our multi-enzyme 

system completely independent of chemical energy in the future.  
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The net productivity of terpenes from CO2 reached with our modular platform is currently                    

~0.2 mg l-1 h-1. This is lower compared to glucose-based cell-free protein synthesis (CFPS) and other in 

vitro production systems, which range between 2-100 mg l-1 h-1 17-19. In vivo, 5 has been produced up to 

2 g l-1 h-1 in S. cerevisiae by combining an artificial acetyl-coA biosynthetic pathway with the NADH-

preferring Hmgr20. The maximum titres reported for 2 and 3 are 15 mg l-1 h-1, 100 mg l-1 h-1, and 1.2 mg l-1 

h-1 in E.coli under fed-batch or shake flask fermentations21-23, whereas the production of 4 reached 13 mg 

l-1 h-1 in both E.coli and S. cerevisiae24. However, it should be noted that these production rates are based 

on the direct supply of multi-carbon compounds and were achieved only after rigorous optimization of 

the different pathways both in vivo and in vitro.  

It is conceivable that the productivity of our in vitro system can also be enhanced further by 

optimising enzyme concentrations, activity and stability (e.g., through immobilisation or the use of 

thermostable enzyme variants). For example, the mevalonate module itself has already been 

demonstrated to be self-sustaining over a long period of time (~7 days). Using modelling approaches or 

computer-aided design-build-test cycles focusing on identifying optimal enzyme stochiometries, inter-

mediate concentrations and critical reaction parameters could further increase production rates of our in 

vitro system. Moreover, the product portfolio of our platform can be further expanded. Using natural, 

engineered and chimeric terpene synthases or PKSs will allow to access compounds that are not known 

from to traditional synthetic chemistry or biology so far. As a case example we demonstrated that PKSSgcE 

can be used to produce the natural polyene PDH (7), but that the enzyme is in principle also able to 

synthesize so far unknown multi-branched polyenes (8, 9), if our modular platform was expanded to 

provide methyl-, and or ethylmalonyl-CoA precursors (instead of malonyl-CoA) from CO2. Finally, 

protoyping and optimizing complex reaction networks in vitro might provide important information for 

the successful implementation of these pathways in vivo to create novel production strains for the 

synthesis of complex multi-carbon compounds from CO2 in the future25,26. 
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3.6. Supplementary Information 

3.6.1. General Materials and Equipment 

Limonene, α-pinene and β-farnesene were obtained from Sigma Aldrich (Munich, Germany). Sabinene 

was obtained from Santa Cruz Biotechnology Inc. (Dallas, USA) and α-bisabolene was obtained from Alfa 

Aesar (Haverhill, USA). Chemicals and materials for cloning and protein expression were purchased from 

New England Biolabs GmbH (Frankfurt am Main, Germany) and Macharey-Nagel GmbH (Düren, Germany). 

Synthesis of optimized genes was done by Baseclear AG (Leiden, Netherlands). High resolution MS 

measurements were performed using an IDX Orbitrap High Performance Benchtop HRMS with an 

electrospray ion source and an Integrion HPLC system (Thermo Scientific). Mass spectroscopic data are 

reported as mass per charge ratio (m/z). Site-directed mutagenesis was performed using Quikchange II XL 

kit (Agilent). Identity of all recombinant proteins was confirmed using SDS-PAGE.  

 

3.6.2. Experimental Procedures 

Chemical synthesis of CoA esters 

The synthesis of CoA esters and their analysis by LCMS was performed based on a previously published 

study by Peter et al.1,  

 

Analysis of CoA esters 

Malyl-CoA and acetyl-CoA were measured on a triple quadrupole mass spectrometer (Agilent 

Technologies 6495 Triple Quad LS/MS) equipped with an UHPLC (Agilent Technologies 1290 Infinity II) 

using a 50 x 2.1 mm C18 column (Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection volume was 2 µl 

of the diluted samples (1:10 in water). The flow was set to 0.250 ml/min and the separation was 

performed using 50 mM ammonium formate pH 8.1 (buffer A) and acetonitrile (B). We quantified the 

CoAs using external standard curves prepared in 1:10 diluted (water) sample matrix. The parameters for 

the multiple reaction monitoring (MRMs) are displayed in table S1 and the gradient in table S2. Data 

analysis was done using the Agilent Mass Hunter Workstation Software. 
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Table S1 MRM transitions for malyl- and acetyl-CoA 

 

 

Table S2 Gradient used for the separation of CoAs 

 

 

 

 

 

 

 

Plasmids, cloning and mutagenesis 

The plasmids generated by Schwander et al.2, and Borzyskowski et al.3, were used to produce the enzymes 

to reconstitute CETCH and BHAC. The plasmid for the malate dehydrogenase is derived from Kitagawa et 

al.4, The plasmid for the production of MtkAB is a gift from Thomas Schwander. The optimized genes 

corresponding to the terpene and PKS pathways were either obtained from a previous study5 or 

synthesized as from Baseclear (Leiden, Netherlands). The list of all the plasmids with the details of vector 

and purification tags is listed in table S5. Primers and protocol for the point mutation of the PKSSgcE KS 

domain were designed based on the Quikchange II XL mutagenesis kit manual (Agilent). The plasmid that 

expresses PKSSgcE under the control of T7 promoter was used as template to make the mutation. The 

primers used for generating the point mutation are PKSSgcE_KSCys_fw: 

CTACACGGTTGATGGCGCGGCTTCCTCTAGCTTGCTGAG and PKSSgcE_KSCys_rv: 

CTCAGCAAGCTAGAGGAAGCCGCGCCATCAACCGTGTAG. After PCR amplification and inactivation of any 

Compound Precursor Ion Product Ion Dwell Fragmentor Collision Energy Cell Accelerator Volt. Polarity 

Malyl-CoA 

(Quantifier) 
884.1 377.1 30 380 37 5 Positive 

Malyl-CoA 

(Qualifier) 
884.1 428 30 380 29 5 Positive 

Acetyl-CoA 

(Quantifier) 
810.1 302.2 30 380 35 5 Positive 

Acetyl-CoA 

(Qualifier) 
810.1 428 30 380 35 5 Positive 

Time [min] A [%] B [%] 

0 100 0 

2 100 0 

5 94 6 

8 77 23 

10 20 80 

11 20 80 

12 100 0 

12.5 100 0 
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template DNA by DpnI, 1/10th the sample volume of 3 M sodium acetate (pH 5.2) was added to precipitate 

the amplified product. The precipitate was washed with 2.5 volumes of 100% ice-cold ethanol. After a 

brief centrifugation, the DNA pellet was further washed with 70% ethanol. The enriched plasmid was then 

directly used for transformation of E. coli XL-10 gold ultra-competent cells by electroporation. After 

confirming the mutant by DNA sequencing (Microsynth), the plasmid was introduced into E. coli BL21 

(DE3) (New England Biolabs).  

 

Protein production and purification 

The plasmids to reconstitute the terpene and PKS pathway were expressed in E. coli BL21 (DE3). E. coli 

transformants were cultivated in LB medium at 37 °C. After A600nm reached ~ 0.4 - 0.5, the cells were 

induced with 0.1 mM IPTG at 18 °C for 16 - 20 h. The cell pellet was dissolved (10 ml buffer/g pellet) in 

150 mM Tris buffer pH 7.5 containing 0.2 M NaCl. After disrupting the cells by sonication, the cells were 

centrifuged at 20,000 g at 4 °C for 30 min. The lysed supernatant was then loaded onto a Ni-NTA column 

(Macherey Nagel) connected to a FPLC machine. Proteins were eluted using the same buffer with 0.25 or 

0.5 M imidazole. For Idi, PKSSgcE and TESgcE, the buffers also contained 1 mM DTT to avoid protein 

precipitation. The fraction containing the target protein from Ni-NTA column was diluted twice with 

100 mM Tris (pH 7.5) and purified further by an ion-exchange column (5 mL HiTrap Q HP, GE Healthcare). 

Proteins were eluted over 20 column volumes of 100 mM Tris (pH 7.5) and 1 M NaCl, and the target 

proteins were concentrated using Amicon columns (MWCO 10, 30 and 100 kDa – Millipore). All the 

purified proteins were stored in 50 mM Tris buffer pH 7.5 containing 20 mM NaCl and 10% glycerol at -

80 °C until further analysis. Except Hmgr, Idi and PKSSgcE, the proteins were stable and active up to a period 

of 6 months under this storage condition.  

Proteins to reconstitute the CO2 to acetyl-CoA conversion (CETCH, BHAC and additional enzymes) were 

produced in E.coli BL21 (DE3) or Rosetta (DE3) pLysS (methylsuccinyl-CoA and propionyl-CoA oxidases 

(Mco, Pco)). For expression of 4-hydroxybutyryl-CoA synthase (Hbs) we co-expressed the 60 kDa 

chaperoin (groESL) for the correct folding of the protein. After transformation in the expression strains, 

the cultures were grown overnight on LB-agar plates containing the selection antibiotics. 2 l of salt 

buffered TB medium was directly inoculated with colonies from the selection plates and grown on 37 °C 

and 90 rpm till A600nm 0.5-1.0. In general, the cultures were cooled down to 21 °C and induced with 0.25 

mM IPTG. For 4-hydroxybutyryl-CoA hydratase (Hbd) 100 µM of Fe(II)SO4, 100 µM Fe(III)citrate and 20 
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mM fumarate were added along with IPTG. The Hbd-expressing culture was grown until A600nm 4.0 and 

cooled down in a closed sterile Schott bottle to express the protein under microaerobic conditions. Except 

Pco, the expression of the proteins was done overnight. Pco was expressed at 25 °C for 4 h. The cells were 

harvested by centrifugation (15 min, 4 °C, 6000 g). Afterwards the cells were resuspended (2 ml buffer/g 

pellet) lysis buffer (500 mM NaCl, 50 mM HEPES, 10% glycerol, pH 7.8 at RT). 5 mM MgCl2, 10 µg/ml DNAse 

and one tablet of SigmaFAST Protease Inhibitor Cocktail (Sigma-Aldrich) were added. The cells were lysed 

by micro fluidizer (twice at 16.000 psi). Afterwards the cell debris was spun down at 50,000 g for 1 h at 4 

°C. The supernatant was filtered through a 0.45 µm membrane. Except for the glyoxylate reductase, the 

lysate was mixed with 3 ml Protino Ni-NTA agarose beads (Macherey-Nagel) and incubated on ice for 30-

45 min (70 rpm). Afterwards the beads were collected in a gravity column and washed with three column 

volumes (cv) of lysis buffer. For the removal of unspecific bound proteins, the beads were washed with 

three cv of lysis buffer containing an additional 50 mM of imidazole and three cv with 75 mM imidazole. 

The elution was done with two cv of lysis buffer containing 500 mM imidazole. Since the glyoxylate 

reductase has a streptavidin (Strep) tag, the lysate was loaded on a Cytiva StrepTrap™ HP prepacked 

column attached to an Äkta start FPLC adjusted to a flow rate of 1 ml/min. The desalting/storage buffer 

was used for lysis and purification. The elution was done using the desalting/storage buffer with 5 mM d-

Desthiobiotin. The collected recombinant proteins were concentrated using Amicon Ultra 15 mL 

Centrifugal Filters (Merck) accordingly to the protocol provided by the supplier. For desalting the protein 

solution was loaded on a HiLoad 16/600 Superdex 200 pg column (GE Healthcare). The desalting/storage 

buffer contained 200 mM NaCl, 50 mM HEPES and 10% glycerol and was adjusted to pH 7.8 at room 

temperature (22 ˚C). For Hbs and Hbd a concentration of 500 mM NaCl was used. The collected fractions 

were pooled and concentrated again. FAD was added to Pco and Mco depending on the concentration of 

protein. Enzymes requiring metal ions and cofactors were stored in 5 mM MgCl2 and 2 mM Coenzyme B12 

respectively. For the final storage, glycerol was added to a final concentration of 20 %. The proteins were 

flash frozen in liquid nitrogen and stored at -80 °C until further analysis. 

 

In vitro reconstitution of BHAC 

We tested four different setups for the reconstruction of the whole BHAC (Figure S1A). The general assay 

mix contained 100 mM HEPES-KOH pH 7.5, 5 mM MgCl2, 20 mM sodium formate, 5 mM NADH, 5 mM 

NADPH, 0.1 mM pyridoxalphosphate, 14.4 µM (0.67 mg/ml) formate dehydrogenase, 0.33 µM (0.0115 

mg/ml) malate dehydrogenase, 2.26 µM (0.099 mg/ml) BhcB, 1.37 µM (0.049 mg/ml) BhcC, 14.84 µM 
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(0.508 mg/ml) BhcD and 0.5 mM glyoxylate as substrate. The four setups contained additionally: 1) 0.5 

mM glycine and 0.79 µM (0.043 mg/ml) BhcA, 2) 5.0 mM glycine and 0.79 µM (0.043 mg/ml) BhcA, 3) 0.5 

mM glycine and 19.83 µM (0.890 mg/ml) BhcA and 4) 5.0 mM glycine and 19.83 µM (0.890 mg/ml) BhcA. 

The reactions were carried out at 30 °C in duplicates and in 50 µl reaction volume. 12 µl samples were 

withdrawn at 30, 60 and 90 min and quenched with 1.5 µl of 50 % formic acid and 1.5 µl of 500 mM 

polyphosphate for protein precipitation. The quenched samples were kept on ice until the end of the 

experiment and spun down at 20,000 g for 20 min at 4 °C. The supernatant was transferred into fresh 

tubes and stored at -20 °C until measurement. 

 

In vitro reconstitution of the terpene biosynthesis modules 

The reactions for the in vitro production of 1-5 were performed in a sealed glass vial. Briefly, in a 100 µL 

reaction, 1 mM NADPH, 20 mM formate, 3 mM ATP, 3 mM PEP, 2 mM NADH, 1 mM DTT, 5 mM MgCl2, 10 

mM KCl were added in 50 mM Tris buffer pH 8.0. The list of enzymes and their amounts are listed in table 

S5. The reaction was initiated by adding 0.5 mM or 1 mM acetyl-CoA. To trap the volatile monoterpenes 

(1-3), the assay mix was overlayed with 30 µl of isopropylmyristate. The samples were incubated at 30 °C 

with shaking at 400 rpm up to 24 h. At specified intervals, the organic layer is withdrawn and diluted with 

hexane. The volume of isopropylmyristate withdrawn was simultaneously added to the reaction mix 

during the course of the assay. For the samples assaying the production of 4 and 5, at these intervals, the 

workup of the samples was done by extracting twice the volume with ethyl acetate. The mix was then 

spun at 20,000 g for 15 min at 4 °C. The aqueous phase was mixed with equal volume of methanol and 

centrifuged to precipitate the proteins. Both the organic and aqueous phase were saved at -80 °C until 

further analysis. All the reactions were set up in triplicates. 

 

In vitro reconstitution of the PDH production 

The in vitro assay for the reconstitution of PKS pathway to produce pentadecaheptaene (PDH) was 

performed as described previously6,7 with minor modifications. In 100 mM phosphate buffer pH 8.0, 0.2 

mM or 1.2 mM acetyl-CoA, 1.2 mM malonyl CoA, 1.2 mM NADPH, 1 mM DTT, 8 mM MgCl2, 40 mM KHCO3, 

1 mM ATP, 0 to 10 µM PKSSgcE, 0 to 50 µM TEsgcE and 2 µM Pcc* were added to a total of 200 µl. The list of 

enzymes and their amounts are listed in table S5. The assay was performed at 30 °C with shaking at 400 

rpm up to 24 h. At specified intervals, the sample was withdrawn and the polyketides are extracted twice 
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the volume with ethyl acetate. After evaporating the organic layer with an upstream flow of nitrogen, the 

residue was dissolved in 100 µl ethyl acetate. For UV-Vis analysis, the extract was measured at 395 nm to 

detect the formation of pentadecaheptaene 7. After adding equal volume of methanol to the aqueous 

layer to precipitate proteins, the mix was spun down at 20,000 g at 4 °C for 10 min. The samples were 

stored at -80 °C until further analysis. All the reactions were set up in triplicates.  

 

Coupling of CETCH and BHAC 

For the coupling of the CETCH with the BHAC we used the same enzyme concentrations of the CETCH core 

cycle as in For the BHAC enzymes and the Mdh we used the amounts as described in In vitro reconstitution 

of BHAC I) above, except for the BhcD where the amount was increased by a factor of five. MtkAB was 

added at a concentration of 13.54 µM (1 mg/ml) and the glyoxylate reductase at a concentration of 0.62 

µM (0.020 mg/ml). Other components were added in the following concentrations: 5 mM MgCl2, 20 mM 

polyphosphate, 50 mM sodium bicarbonate, 20 mM sodium formate, 1 mM coenzyme A, 0.1 mM 

coenzyme B12, 5 mM ATP, 5 mM NADPH, 5 mM NADH, 1 mM glycine, 0.1 mM pyridoxalphosphate and 

100 µM propionyl-CoA as substrate. For the positive control (Figure S1B (a)), the enzymes of the CETCH 

core cycle were used together with the glyoxylate reductase to produce glycolate. To produce acetyl-CoA 

the enzymes of the CETCH core cycle were combined with BHAC enzymes, and Mdh plus MtkAB (Figure 

S1B (c)). The assays were done in triplicates at 50 µl each. 13.5 µl samples were taken at 60, 120 and 180 

min and quenched in 1.5 µl 50% formic acid to stop the reaction. For the split assay, the CETCH core 

enzymes were used to produce glyoxylate for 60 min. The assay was done in a single assay, split into two 

batches after 60 min where either the glyoxylate reductase (Figure S1B (b)) or the BHAC enzymes, Mdh 

and MtkAB were added (Figure S1B (d)) and then further divided in triplicates to 50 µl. Samples were 

taken as described before at 120 and 180 min. The quenched samples were kept on ice until the end of 

the experiment and spun down at 20,000 g for 20 min at 4 °C. The supernatant was transferred into fresh 

tubes and stored at -20 °C until measurement. 

 

Coupling of CETCH, BHAC and terpene biosynthetic modules  

The coupling assay was performed in 2 steps by preparing the CETCH-BHAC and the terpene assay mix 

separately and then mixing equal volume (50 µl) of both in one-pot. In 100 mM Hepes buffer pH 7.5, the 

CETCH-BHAC assay mix contained 5 mM ATP, 5 mM NADPH, 5 mM NADH, 5 mM MgCl2, 20 mM 
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polyphosphate, 50 mM bicarbonate, 20 mM formate, 1 mM CoA, 0.1 mM vitamin B12, 1 mM glycine, 0.1 

mM PLP, and the enzymes with amounts specified in table S5. In 50 mM Tris pH 8.0, the terpenoid assay 

mix contained 20 mM formate, 3 mM PEP, 10 mM KCl together with the enzymes listed in table S5 

including 80 µg limonene synthase, 60 µg sabinene synthase, 80 µg α-pinene synthase, 40 µg α-bisabolene 

synthase, 40 µg β-farnesene synthase. After mixing both the mixes to 100 µl, the reaction was started 

with 0.1 mM propionyl-CoA and were incubated at 30 °C with shaking at 400 rpm up to 24 h. As positive 

controls, the CETCH-BHAC and the terpene assays were performed in parallel by adding 0.5 mM acetyl 

CoA to the latter. At regular intervals, samples were withdrawn from both the positive controls and the 

tests. Work-up of the samples to detect 1-5 was performed as described in In vitro reconstitution of the 

terpene biosynthesis modules. All the reactions were set up in triplicates. 

 

Analysis of CO2 incorporation using 13C-labeled sodium bicarbonate and sodium formate 

To verify the incorporation of CO2 by the CETCH cycle as described in Schwander et al.,  we performed the 

CETCH-BHAC coupling (Figure 1C) with 50 mM 13C-labeled sodium bicarbonate (and carbonic anhydrase) 

and 20 mM 13C-labeled sodium formate. 13C-labeled sodium formate was used to derive 13CO2 released by 

the formate dehydrogenase for NADPH regeneration. All the other components that were present are 

described in Coupling of CETCH and BHAC and the sampling procedure remained the same.  Malate-CoA 

ligase was ommited to produce malate as the final readout. The reaction was started with either 100 µM 

propionyl-CoA (positive control) or ddH2O (negative control). For the evaluation by LC-MS, we used a 

targeted method to quantify the decarboxylated fragment of malate. 

 

UPLC-MS analysis of malate  

The different fragments of 13C-labeled malate were measured on a triple quadrupole mass spectrometer 

(Agilent Technologies 6495 Triple Quad LS/MS) equipped with an UHPLC (Agilent Technologies 1290 

Infinity II) using a 150 x 2.1 mm C18 column (Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection volume 

was 1 µl of the diluted samples (1:25 in water). The flow was set to 0.100 ml/min and the separation was 

performed using dH2O with 0.1% formic acid (buffer A) and methanol with 0.1% formic acid (B). Since 

malate is a dicarboxylic acid and it was unclear which carboxylic group leaves the molecule, we measured 

all the possible transitions The parameters for the multiple reaction monitoring (MRMs) are displayed in 
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table S3 and the gradient in table S4. Data analysis was done using the Agilent Mass Hunter Workstation 

Software. 

Table S3 MRM transitions for decarboxylated fragment of malate 

Compound Precursor Ion Product Ion Dwell Fragmentor Collision Energy Cell Accelerator Volt. Polarity 

Malate +0 (Quant.) 133 89 35 380 11 5 Negative 

Malate +0 (Qual.) 133 133 35 380 0 5 Negative 

Malate +1 (Quant.) 134 89 35 380 11 5 Negative 

 134 90 35 380 11 5 Negative 

Malate +1 (Qual.) 134 134 35 380 0 5 Negative 

Malate +2 (Quant.) 135 90 35 380 11 5 Negative 

  91 35 380 11 5 Negative 

Malate +2 (Qual.) 135 135 35 380 0 5 Negative 

Malate +3 (Quant.) 136 91 35 380 11 5 Negative 

 136 92 35 380 11 5 Negative 

Malate +3 (Qual.) 136 136 35 380 0 5 Negative 

Malate +4 (Quant.) 137 92 35 380 11 5 Negative 

Malate +4 (Qual.) 137 137 35 380 0 5 Negative 

 

 

Table S4 Gradient used for the measurement of the decarboxylated fragments of malate 

Time [min] A [%] B [%] 

0 100 0 

4 100 0 

6 0 100 

7 0 100 

7.1 100 0 

12 100 0 

 

 

Coupling of CETCH, BHAC and PDH production 

In 100 mM phosphate buffer pH 8.0, 40 mM KHCO3, 2.5 µM PKSSgcE, 40 µM TESgcE and 2 µM Pcc* were 

added to a total of 50 µl. The list of enzymes and their amounts are listed in table S5. The reaction was 

initiated by adding equal volume of CETCH-BHAC mix (test) or 1.2 mM acetyl CoA (positive control). The 

assay was performed at 30 °C with shaking at 400 rpm up to 24 h. At specified intervals, the sample was 

withdrawn and the polyketides were extracted twice the volume with ethyl acetate. After evaporating the 

organic layer with an upstream flow of nitrogen, the residue was dissolved in 100 µl ethyl acetate. After 

adding equal volume of methanol to the bottom aqueous layer to precipitate proteins, the mix was spun 

down at 20,000 g at 4 °C for 10 min. All the reactions were set up in triplicates. 
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UPLC-MS analysis of terpene and polyketide intermediates 

Analysis of the all the terpenes was done in GCMS (Agilent 5973N/6890N single quadrapole) by measuring 

1 µL of the samples. An OPTIMA 5 column (30 m long, 0.32 mm inner diameter, 0.25 µm thick) was used 

for the separation with an initial temperature of 60 °C (2 min hold) followed by a gradient from 20 °C (1 

min) to 150 °C then from 40 °C (1 min) to 320 °C. A constant flow rate of 1 ml/min was used. The injector 

had a temperature of 210 °C and was set for a 1:25 split. The MS had a mass range from 34 to 550 Da 

covered. The aqueous phase from the independent and coupled terpene experiments was directly 

analysed for the isoprenoid intermediates using UPLC-high resolution mass spectrometer (Orbitrap IDXTM) 

set to negative ionisation mode. SeQuant ZIC-pHILIC (150 x 4.6 mm) was used for separating the 

isoprenoid intermediates. UPLC conditions: isocratic elution (10 mM ammonium carbonate and 118 mM 

ammonium hydroxide in acetonitrile:water (60.1:39.8)) for 10 min at a flow rate of 0.45 ml/min; injection 

volume: 3 µL; mass range: 65 – 1100 m/z). For the analysis of polyketides, both the organic and aqueous 

phased were analysed directly using UPLC-high resolution mass spectrometer (Orbitrap IDXTM) set to 

positive ionisation mode. Kinetic EVO C18 column (50 x 2.1 mm) was used for the separation of the 

polyketide intermediates. UPLC conditions: 95 % of 0.1 % formic acid in water (Solvent A) for 2 min; 5 – 

95 % 0.1 % formic acid in acetonitrile (Solvent B) for 2 – 11 min; 95 % B at 12 min; 95 % until 14 min. flow 

rate: 0.25 ml/min; injection volume: 5 µL; mass range: 100 – 1100 m/z). 

 

3.6.3. Supplementary Text 

 

Optimization of CETCH, summarized from earlier publications  

CETCH had been optimized earlier in several rounds (CETCH 1.0 to CETCH 5.4)2. All versions of CETCH were 

tested in buffer containing 50 mM sodium bicarbonate which was further equilibrated with carbonic 

anhydrase to provide CO2 in a dissolved form to the assay. In CETCH 2.0, methylsuccinyl-CoA 

dehydrogenase was engineered into a methylsuccinyl-CoA oxidase (Mco) to catalyze the oxidation of 

methylsuccinyl-CoA with molecular oxygen, which allowed CETCH to turn multiple times as shown by 13C-

labeling experiments. In CETCH 3.0, a read-out module was introduced to convert glyoxylate to malate 

that allowed a better quantification of CETCH assays. Also, an engineered formate dehydrogenase was 

used to regenerate the cofactor NADPH and (simultaneously) CO2 in the assay. In CETCH 4.0, to protect 

the cofactors and intermediates and to prevent the oxidative damage from H2O2 (produced by Mco), 
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catalase (KatE) was added which resulted in increased efficiency in CO2 fixation. In CETCH 5.0, to maintain 

a stable ATP pool and to regenerate ATP for Hbs, a polyphosphate transferase (Ppk) was included that 

increased the efficiency of the cycle to fix 4.3 CO2-equivalents per acceptor molecule in 90 min. Finally, 

after further improvements to the cycle (optimizing Ccr), the efficiency of CETCH 5.4 reached a maximum 

of 5.4 fixed CO2-equivalents per acceptor in 90 min. The CETCH cycle reached a plateau after 90 min and 

malate production could not be increased beyond 540 µM, indicating that malate inhibits CETCH cycle 

enzymes.  

 

Optimization of BHAC, this work 

To establish and optimize the BHAC, we reconstituted the BHAC in vitro using N-terminal His-tagged 

proteins, produced in E. coli. To test the functioning of the BHAC cycle, we started the reaction with 500 

µM glyoxylate and monitored the formation of malate from oxaloacetate, using malate dehydrogenase 

(Mdh) over time. Note that β-hydroxyaspartate aldolase (BhcC), the first enzyme reaction of the BHAC 

that catalyzes the aldol condensation of glyoxylate with glycine, has an apparent Km of 4.3 ± 0.3 mM for 

glycine3.  Thus, while providing high glycine concentrations might facilitate the first reaction, it might also 

lead to a faster depletion of glyoxylate, which is required in the last step as acceptor for aspartate-

glyoxylate aminotransferase (BhcA), eventually creating a bottleneck. To optimize BHAC productivity, we 

initially tested two different glycine (0.5 mM and 5 mM), as well as two different BhcA (0.79 µM and 19.83 

µM) concentrations. However, over the course of 90 min, total malate yields were comparable between 

the different conditions tested (~70%), indicating that the BhcC was operating robustly across a wide 

range of co-substrate and BhcA concentrations in vitro (Figure S1A). 
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3.6.4. Supplemetary Figures and Tables 

 

 

Figure S1 BHAC reconstitution and coupling to CETCH cycle for acetyl-CoA production. A) Malate production by the BHAC after 
90 min. The general setup is described in: In vitro reconstitution of BHAC. All the reactions were started with 500 µM glyoxylate. 
With this setup, we tested different BhcA and glycine concentrations: 1) 0.5 mM glycine and 0.79 µM (0.043 mg/ml) BhcA, 2) 5.0 
mM glycine and 0.79 µM (0.043 mg/ml) BhcA, 3) 0.5 mM glycine and 19.83 µM (0.890 mg/ml) BhcA and 4) 5.0 mM glycine and 
19.83 µM (0.890 mg/ml) BhcA. The data represent n=2 ± standard deviation. B) Acetyl-CoA vs. glycolate production by the CETCH 
(+BHAC). The general setup is described in: Coupling of CETCH and BHAC. All the reactions were started with 100 µM propionyl-
CoA. In this setup we tested whether the low acetyl-CoA yield is due to interference of the BHAC enzymes with the core cycle or 
due to intermediate drainage. (a) CETCH core cycle with Glyoxylate reductase (Gor). (b) Glyxoylate reductase added after 60 min. 
(c) BHAC enzymes, Mdh and MtkAB added after 60 min. (d) CETCH with BHAC enzymes, Mdh and MtkAB. The data represent n=3 
± standard deviation. 

 

 

Figure S2 Fractional labeling of malate by incorporation of 13CO2. +0, +1, +2, +3, +4 indicates the number of 13C are incorporated 
into malate. To verify the incorporation of CO2 by the CETCH cycle we repeated the CETCH-BHAC coupling (Figure 1C) with 50 
mM 13C-labeled sodium bicarbonate (and carbonic anhydrase) and 20 mM 13C-labeled sodium formate. 13C-labeled sodium 
formate was used to derive 13CO2 released by the formate dehydrogenase for NADPH regeneration. In the first three turns of the 
CETCH cycle only single labeled glyoxylate is produced while the second 13CO2 derived carbon is incorporated into CETCH cycle 
intermediates. For the formation of oxaloacetate and therefore malate by the BHAC, initially added glycine is used. Since the last 
reaction in the BHAC for the production of oxaloacetate requires another molecule of glyoxylate generated from fixed CO2, a 
single labeled molecule of malate is stoichiometrically completely build from fixed CO2. A) Total level of malate dissected into the 
labeled fractions. For fractional labeling of the positive control see Figure 1D. B) Fractional labeling in percentage of the negative 
control containing buffer. C) Total malate in the negative control. The data represent n=3 ± standard deviation. 
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Figure S3 Profile of CoA esters in the CETCH-BHAC coupled assay. A) Residual concentration of malyl-CoA in the assay shown in 
Figure S1B (c). Stability of B) acetyl-CoA and C) malyl-CoA under assay conditions described in Coupling of CETCH and BHAC. All 
enzymes and cofactors except Mcl (to avoid the cleavage of malyl-CoA) was added to the positive control (+). Only the cofactors 
are added to the negative control (—). 100% corresponds to 300 µM of acetyl- and malyl-CoA. While acetyl-CoA was stable, malyl-
CoA was depleted in less than 60 min. The data represent n=2 ± standard deviation.  

 

 

Figure S4 Optimization of terpene extraction in different solvents as measured by GCMS. Comparison of yield of A) 50 µM 
limonene (1) (representation) and B) 50 µM β-farnesene (5) (representation) with different organic solvents. IPM: 
isopropylmyristate. 30 µl IPM was added as an overlay to a 100µl standard + buffer mix. After a brief incubation, the IPM layer 
was carefully withdrawn and diluted with hexane before measurement using GCMS. Similarly, 10 % dodecane was also tested as 
an overlay to trap the terpenes. The withdrawn dodecane layer was further diluted with ethyl acetate for GCMS measurement. 
As a third solvent, 2x volumes of ethyl acetate (200 µl to a 100 µl standard + buffer mix) was tested. Followed by centrifugation 
at 20,000 g for 15 min at 4 °C, the organic phase was directly used for GCMS measurement. IPM resulted in maximum trapping 
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of monoterpenes 1-3 which was routinely used for subsequent measurements. For sesquiterpenes 4-5, ethyl acetate was the 
best solvent. C) Measurement of terpene standards by GCMS. The linear range used for quantification of the corresponding 
terpenes is shown as dashed double-arrowed lines. 

 

 

 

Figure S5 Comparison of different terpene synthase concentration (0 to 640 µg) for the production of terpenes and measurement 
by GCMS. The reaction is started with 0.5 mM acetyl CoA and run at 30 °C for 24 h. The extraction of monoterpenes 1-3 was done 
using isopropylmyristate overlay followed by dilution with hexane while sesquiterpenes 4-5 were extracted using 2x volumes of 
ethylacetate. The concentration of individual terpenes was quantified using the standard graph (Figure S4C linear range). The 
concentration at which maximum terpene production was observed has been chosen for the subsequent analysis. 
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Figure S6 A) General scheme of the assay as described in methods section ‘Coupling of CETCH, BHAC and terpene biosynthetic 
modules’. Net production of terpenes in non-direct vs. direct coupling assay in 24 h. B) The CETCH-BHAC assay is first run 
independently for 4 h to which the terpene assay mix was subsequently added. In this non-direct coupling assay, the overall yield 
of monoterpenes 1-3 and sesquiterpenes 4-5 were below 20 µM. C) CETCH-BHAC cascade and terpene biosynthesis modules 
were operated in a single pot continuously. In this direct coupling approach, the net yield of terpenes improved 3- to 4-fold.   

 

 

Figure S7 A) General scheme of the direct coupling assay as described in methods section ‘Coupling of CETCH, BHAC and terpene 
biosynthetic modules’. a, b, c, d, e refers to individual reactions with limonene synthase, sabinene synthase, α-pinene synthase, 
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α-bisabolene synthase and β-farnesene synthase respectively. B) Accumulation of mevalonate pathway intermediates measured 
by LCMS at 24 h. Equal volume of methanol was added to the final assay mix to stop the reaction and to precipitate the proteins. 
After centrifugation at 20,000 g for 15 min at 4°C, the supernatant was used directly to measure by LCMS. C) Concentration of 
residual acetyl-CoA measured over 4 h. From 4 h, only negligible amounts of acetyl-CoA could be detected. D)  Acetyl CoA to 
terpenes as a positive control. The reaction is started with 0.5 mM acetyl-CoA. 

 

 

 

Figure S8 GCMS analysis of the production of mono- and sesquiterpenes from the CETCH-BHAC-terpene coupled assay (refer 
figure 2C) and comparison with authentic standards. The assay is performed as described in the methods section ‘Coupling of 
CETCH, BHAC and terpene biosynthetic modules’. For clarity, only the traces at 24 h time point are shown.  A) Representative 
trace of limonene (1) from 100 µM propionyl-CoA. B) Representative trace of sabinene (2). A fraction of α-pinene (3) was also 
observed at a retention time of 4.4 min. C) Representative trace of α-pinene (3). D) Representative trace of α-bisabolene (4). The 
bisabolene standard come as a mixture of isomers however, exclusively α-bisabolene is observed in the GCMS trace in the assay 
sample. E) Representative trace of β-farnesene (5). 
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Figure S9 LCMS analysis of the terpene intermediates from the CETCH-BHAC-terpene coupled assay (refer figure 2C) and 
comparison with authentic standards. Representative traces of A) mevalonate, B) IPP/DMAPP, C) GPP and D) FPP. IPP and DMAPP 
could not be separated even after optimizing the chromatographic method. Equal volume of methanol was added to the final 
assay mix (and the standards, as a positive control) to stop the reaction and to precipitate the proteins. After centrifugation at 
20,000 g for 15 min at 4°C, the supernatant was used directly to measure by LCMS. 

 

 

Figure S10 A) UV-Vis profile of pentadecaheptaene (7). 7 exhibited a spectrum typical of a polyene with multiple absorption 
maxima between 300 and 400 nm. B) Absorbance of the ethyl acetate extracts from the PKS enzymatic assay at 395 nm. The 
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production of 7 at various PKSSgcE and TESgcE concentrations is shown. 2.5 µM PKSSgcE and 40 µM PKSTE was used for the subsequent 
analysis. C) Analysis of the KSC171A mutant. Compared to the positive control (+TE), neither the production of 6 nor 7 was observed. 
D) Formation of substituted heptaenes (8 and 9) from 100 µM propionyl-CoA in the CETCH-BHAC-PKS coupled assay, using 
different extender units. I: malonyl-CoA (positive control); II: methylmalonyl-CoA; III: ethylmalonyl-CoA; IV: malonyl- + 
methylmalonyl-CoA; V: malonyl- + ethylmalonyl-CoA; VI: malonyl- + methylmalonyl- + ethylmalonyl-CoA. All the assays were 
performed in triplicates and the mean ± S.D. are plotted.  

Table S5. List of enzymes used in the study 

Cycle/pathway Abbreviation Full name Source Vector Tag Origin 

Reference 

CETCH Pco Propionyl-CoA oxidase A. thaliana pET16b His 2 

CETCH Ccr Crotnonyl-CoA carboxylase/reductase M. extorquens pET16b His 2 

CETCH Epi Epimerase R. sphaeroides pET16b His 8 

CETCH Mcm Methylmalonyl-CoA mutase R. sphaeroides pET16b His 9 

CETCH Scr Succinyl-CoA reductase C. kluyveri pCDF-Duet-1 His 2 

CETCH Ssr Succinic semialdehyde reductase H. sapiens p2BP1 His 2 

CETCH Hbs 4-hydroxybutyryl-CoA synthetase N. maritimus pET16b His 10 

CETCH Hbd 4-hydroxybutyryl-CoA dehydratase N. maritimus pRSET-B His 2 

CETCH Ecm Ethylmalonyl-CoA mutase R. sphaeroides pET16b His 8 

CETCH Mco Methylsuccinyl-CoA oxidase R. sphaeroides pET16b His 2 

CETCH Mch Mesaconyl-CoA hydratase R. sphaeroides pET16b His 11 

CETCH Mcl Malyl-CoA/citramalyl-CoA lyase R. sphaeroides pET16b His 12 

CETCH KatE Catalase E. coli pCAN24N (ASKA 

JW1721) 

His 4 

CETCH Fdh Formate dehydrogenase (D221A) M. vaccae pET21a His 13 

CETCH smPPK2-I Polyphosphate kinase ADP - ATP S. meliloti pET28a His 2 

CETCH Gor Glyoxylate/sucinnic semialdehyde 

reductase 

G. oxidans pTE1125 Strep Gift from 

Martina Carrillo 

Camacho 

BHAC BhcA Aspartate glycine aminotransferase P. denitrificans pET16b His 3 

BHAC BhcD Iminsuccinate reductase P. denitrificans pET16b His 3 

BHAC BhcB Beta-hydroxyaspartate dehydratase P. denitrificans pET16b His 3 

BHAC BhcC Beta-hydroxyaspartate aldolase P. denitrificans pET16b His 3 

BHAC Mdh Malate dehydrogenase E. coli pCAN24N (ASKA 

JW3205) 

His 4 

BHAC MtkAB Malate thiokinase M. extorquens pET28b His Gift from 

Thomas 

Schwander 

Terpene PhaA Acetyl‐CoA acetyltransferase C. necator pET28a His 5 

Terpene Hmgs HMG-CoA synthase (A110G) E. faecalis pET28a His 5 

Terpene Hmgr HMG-CoA reductase E. faecalis pET28a His 5 

Terpene Mvk Mevalonate kinase M. mazei pET28a His 5 

Terpene Pmvk Phosphomevalonate kinase S. pneumoniae pET28a His 5 

Terpene Mdc Mevalonate-PP decarboxylase S. pneumoniae pET28a His 5 
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Terpene Idi Isopentenyl-PP isomerase E. coli ASKA 

JW2857 

His 4 

Terpene Gpps Farnesyl-PP synthase (S82F) G. stearothermophilus pET28a His 5 

Terpene IspA Farnesyl-PP synthase E.coli pET28a His 4 

Terpene LimSyn (+)-Limonene synthase M. spicata pET28a His 5 

Terpene SabSyn Limonene synthase (N345A) M. spicata pET28a His 5 

Terpene PinSyn α-Pinene synthase P. sitchensis pET28a His 5 

Terpene BisabSyn α-Bisabolene synthase A.grandis pET28a His Synthesized 

gene 

Terpene FarSyn β-Farnesene synthase M.piperita pET28a His Synthesized 

gene 

Terpene PK/LDH Pyruvate kinase/lactate dehydrogenase Sigma    

PKS PKSSgcE C-1027 polyketide synthase S.globisporus pET28a His Synthesized 

gene 

PKS TESgcE C-1027 thioesterase S.globisporus pET28a His Synthesized 

gene 

PKS Pcc* Propionyl-CoA carboxylase (D407I) M. extorquens JZ105 His Gift from Jan 

Zarzycki 

 

Table S6. Kinetic data of enzymes 

Cycle/pathway Abbreviation[a] mg mL-1 mg in assay[b] 
Vmax 

(U mg-1) 

KM 

(mM) 
U ml-1 assay Reference 

CETCH Pco 2.5 0.007 12 0.044 0.8 2 

CETCH Ccr 6.1 0.001 110 0.17 1 2 

CETCH Epi 5.0 0.0005 440 0.08 2 8 

CETCH Mcm 4.8 0.001 20 0.14 0.2 14 

CETCH Scr 15.1 0.007 29 0.003 2 15 

CETCH Ssr 8.3 0.001 3.9 0.013 0.04 2 

CETCH Hbs 14.1 0.02 2 0.19 0.4 10 

CETCH Hbd 8.8 0.002 26 0.06 0.5 10 

CETCH Ecm 8.4 0.002 7 0.06 0.1 8 

CETCH Mco 35.0 0.07 0.1 0.03 0.07 2 

CETCH Mch 4.5 0.005 1500 n.d. 75 11 

CETCH Mcl 5.9 0.025 5 0.01 1 12 

CETCH KatE 27.6 0.006 11740 86.5 704 16 

CETCH Fdh 27.0 0.03 1.4 0.37 0.4 13 

CETCH smPPK2-I 7.5 0.004 12 0.032 0.5 17 

CETCH Gor 3.65 0.001 n.d. n.d.  unpublished 

BHAC BhcA 2.7 0.005 116 0.23 6 3 

BHAC BhcD 5.8 0.003 57 0.2 2 3 

BHAC BhcB 36.3 0.025 358 0.09 90 3 

BHAC BhcC 43.4 0.004 1 2.9 0.04 3 



120 
 

BHAC Mdh 23 0.002 1611 0.04 32 18 

BHAC MtkAB 10.2 0.05 n.d. n.d.  unpublished 

Terpene PhaA 19 0.002 81 0.4 2 5 

Terpene Hmgs 10 0.005 1.5 0.01 0.08 5 

Terpene Hmgr 3.6 0.03 4 0.02 1.2 5 

Terpene Mvk 17.9 0.005 8 0.07 0.4 5 

Terpene Pmvk 18.6 0.005 15 0.008 0.8 5 

Terpene Mdc 11.8 0.03 4 0.1 1.2 5 

Terpene Idi 4.6 0.025 2.1 0.0035 0.5 19 

Terpene Gpps 10 0.005 7 0.005 0.4 5 

Terpene IspA 9.5 0.005 n.d. n.d.   

Terpene LimSyn 34 0.08 n.d. n.d.  5 

Terpene SabSyn 29 0.06 n.d n.d.  5 

Terpene PinSyn 19 0.08 n.d. n.d.  5 

Terpene BisabSyn 29 0.04 n.d. n.d.   

Terpene FarSyn 9 0.04 n.d n.d.   

Terpene PK/LDH 1U/µl 0.0005 n.d. n.d.   

PKS PKSSgcE 20.2 0.03 n.d. n.d.   

PKS TESgcE 15 0.06 n.d. n.d.   

PKS Pcc* 3.1 0.03 n.d. n.d.   

[a] Refer to Table S3 for enzyme name and source [b] Amount corresponds to 100 µl assay volume 

 

Table S7 Synthesized genes 

 

β-Farnesene synthase 
 

GCTAGCATGGCGACTAACGGCGTAGTGATTAGCTGCCTGCGTGAAGTGAGACCGCCGATGACTAAACATGCGCCTAGCATGTGGACTGACA
CCTTCTCTAACTTTAGTCTTGATGATAAAGAGCAACAGAAATGTAGTGAAACCATTGAAGCACTGAAACAGGAAGCGCGCGGTATGCTGATG
GCTGCTACCACTCCACTGCAGCAGATGACCCTGATCGACACCCTGGAACGTCTGGGTCTGTCCTTCCATTTCGAAACCGAAATCGAATATAAA
ATTGAACTGATCAACGCTGCTGAAGACGACGGTTTCGACCTGTTTGCGACCGCTCTGCGTTTCCGTCTGCTGCGTCAGCACCAGCGTCATGTTT
CTTGTGACGTTTTCGATAAATTCATCGATAAAGATGGTAAATTCGAAGAATCTCTGTCTAACAACGTTGGTGGCCTGCTGTCCCTGTACGAAGT
TGCGCACGTGGGTTTCCGTGAAGAACGCATCCTGCAGGAAGCTGTGAACTTCACCCGTCACCACCTGGAAGGTGCTGAACTGGACCAGAGCC
CGCTGCTGATCCGTGAAAAAGTTAAACGTGCGCTGGAACACCCGCTGCACCGTGACTTCCCGATAGTCTACGCACGTCTGTTCATCTCTATTTA
TGAAAAGGACGACTCGCGCGATGAACTGTTGCTGAAACTCAGTAAGGTGAACTTTAAATTTATGCAGAACCTGTATAAAGAAGAACTGTCTC
AGCTGTCTCGTTGGTGGAACACCTGGAACCTGAAATCTAAACTGCCGTATGCACGTGATCGTGTTGTTGAAGCATACGTTTGGGGCGTTGGTT
ACCACTACGAACCGCAGTACTCCTATGTTCGTATGGGTCTGGCTAAAGGTGTTCTGATCTGCGGTATTATGGATGACACCTATGACAACTACG
CTACCCTGAACGAAGCACAGCTGTTCACCCAGGTTCTGGATAAATGGGATCGTGACGAAGCGGAACGTCTGCCGGAATACATGAAAATCGTT
TACCGTTTCATCCTGTCTATCTACGAAAACTACGAACGTGATGCTGCGAAACTGGGTAAATCCTTCGCTGCTCCGTACTTCAAAGAAACCGTGA
AACAGCTGGCGCGTGCATTCAACGAAGAACAGAAATGGGTAATGGAACGTCAGCTGCCGTCCTTCCAGGACTACGTGAAAAACAGTGAAAA
AACCTCCTGCATCTACACCATGTTCGCGAGCATCATCCCAGGCCTGAAATCCGTTACCCAGGAAACCATCGACTGGATCAAATCTGAACCGAC
CCTGGCAACCTCTACCGCGATGATCGGTCGCTACTGGAACGATGCGAGCTCTCAGCTGCGTGAATCTAAAGGCGGTGAAATGCTGACCGCTC
TGGACTTCCACATGAAAGAATACGGTCTGACCAAAGAAGAAGCTGCGTCTAAATTCGAAGGCCTGGTGGAAGAAACTTGGAAAGATATCAA
CAAAGAATTCATCGCGACCACTAACTACAACGTTGGCCGTGAAATCGCTATCACCTTCCTGAACTACGCGCGTATCTGCGAAGCAAGCTATAG
CAAAACCGACGGTGACGCGTACAGCGATCCGAACGTTGCGAAAGCGAACGTTGTGGCGCTGTTCGTTGATGCTATCGTTTTCTAAGTCGAC 

 

α-Bisabolene synthase 
 

CAGTTCCCGCAGACCGTTGATTGGATTCTTAAAAACCAGTTGAAAGATGGCAGCTGGGGCATTCAGTCCCACTTCCTGCTGTCTGACCGTCTC
CTGGCCACTCTGTCTTGCGTGCTGGTTCTGCTGAAATGGAACGTTGGCGACCTGCAAGTTGAACAGGGCATCGAATTCATTAAATCTAACCTG
GAACTGGTTAAAGATGAAACTGATCAGGATTCTCTTGTAACTGACTTCGAAATCATCTTCCCGTCCCTGCTGCGTGAAGCGCAGTCTCTGCGTC
TCGGCCTGCCTTATGACCTGCCGTACATCCATCTGCTGCAGACTAAACGCCAGGAACGTCTGGCAAAACTGAGCCGTGAAGAAATTTACGCG
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GTTCCGAGCCCGCTGCTGTACTCTCTGGAAGGTATCCAGGACATCGTAGAATGGGAACGCATCATGGAAGTTCAATCCCAGGATGGTAGCTT
CCTGAGCTCTCCGGCTAGCACTGCATGCGTCTTTATGCACACCGGTGACGCTAAATGCCTGGAATTCCTGAACTCCGTAATGATCAAATTTGGT
AACTTCGTTCCGTGCCTGTACCCGGTAGATCTCCTGGAACGTCTGCTGATTGTTGACAACATCGTGCGCCTGGGTATCTACCGTCATTTTGAAA
AAGAAATCAAAGAAGCACTGGACTACGTTTACCGTCACTGGAACGAACGTGGCATCGGCTGGGGCCGCCTGAATCCGATTGCAGACCTGGA
AACCACCGCTCTGGGCTTTCGCCTGCTGCGCCTGCACCGCTACAACGTTTCCCCGGCAATCTTCGACAACTTCAAAGATGCTAATGGTAAATTC
ATCTGCTCCACCGGTCAGTTTAACAAAGATGTAGCGTCCATGCTGAACCTCTACCGCGCTTCCCAGCTGGCGTTTCCGGGTGAAAACATCCTC
GATGAAGCTAAATCCTTCGCGACCAAATATCTGCGTGAAGCCTTGGAAAAATCTGAAACCAGCAGCGCTTGGAACAACAAGCAAAACCTGTC
CCAGGAGATCAAATACGCGCTTAAAACTTCCTGGCACGCTTCAGTGCCGCGCGTTGAAGCGAAACGTTACTGCCAGGTTTACCGTCCAGACTA
TGCACGTATCGCAAAGTGCGTGTACAAACTGCCGTACGTAAACAACGAAAAATTCCTGGAGCTGGGTAAACTGGATTTCAACATTATTCAGTC
AATCCACCAGGAAGAAATGAAAAACGTGACCTCTTGGTTCCGTGATTCTGGTCTGCCGTTGTTCACCTTCGCGCGTGAACGTCCTCTGGAATT
CTACTTCCTGGTTGCCGCAGGTACCTACGAACCGCAGTATGCAAAATGTCGTTTCCTGTTCACTAAAGTTGCGTGCCTGCAGACTGTTCTGGAC
GACATGTATGATACCTACGGCACTCTGGACGAACTGAAACTGTTCACTGAGGCTGTGCGTCGTTGGGATCTGTCTTTCACCGAAAACCTGCCG
GATTACATGAAACTTTGTTACCAGATCTACTATGACATTGTCCACGAAGTGGCGTGGGAAGCTGAAAAAGAACAGGGTCGTGAACTCGTTTC
GTTCTTCCGTAAAGGTTGGGAAGATTACCTGCTTGGTTATTATGAAGAAGCAGAATGGCTGGCTGCTGAATACGTGCCGACCCTGGATGAGT
ACATCAAAAACGGTATCACCTCCATCGGTCAACGCATCCTGCTGCTGAGCGGTGTGCTGATCATGGACGGCCAGTTGCTGAGCCAGGAAGCA
CTGGAAAAAGTTGATTACCCAGGTCGTCGTGTACTGACCGAACTGAATTCTCTGATCAGCCGTCTGGCGGATGACACCAAAACTTATAAAGCG
GAAAAAGCACGTGGTGAACTGGCTTCCTCTATTGAATGCTATATGAAAGATCACCCGGAATGTACCGAAGAAGAGGCACTGGATCACATTTA
CTCCATCCTCGAACCGGCGGTTAAAGAACTGACCCGTGAGTTCCTGAAACCGGATGATGTTCCGTTCGCGTGTAAGAAAATGCTGTTCGAAG
AAACTCGTGTGACCATGGTTATCTTCAAAGATGGTGACGGTTTCGGTGTTTCTAAACTGGAAGTTAAAGACCACATCAAAGAATGCCTGATCG
AACCGCTGCCGCTGTAACTCGAG 

 
 

PKSSgcE 

CATATGAGCCGTATCGCTATCGTTGGTGTTGCATGCACCTATCCGGACGCAACCACCCCGCGTGAACTGTGGGAAAACGCAGTAGCAGGCCG
TCGTGCCTTTCGTCGTCTGCCGGACGTGCGTATGCGTCTGGACGATTACTGGAACCCGGACCCGACCGTTCCGGACACCTTCTACGCGCGTAA
CGCGGCTGTTCTGGAAGGCTGGGAATTCGATCGTGTAGCTCATCGTATTGCTGGTTCCACCTTCCGTAGCACTGATCTGACCCACTGGCTGGC
TCTGGACACCGCGACGCGTGCGCTGGCTGACGCAGGTTTCCCGGCAGGTGAAGGTCTGCCGACTGAACGTACCGGCGTTGTAGTTGGTAAC
ACCCTGACGGGTGAGTTTAGCCGCGCTAACGGTCTGCGCCTGCGTTGGCCGTACGTTCGCCGCATCCTGGCTGACGCACTGCAGGAACAGGA
ATGGGACGACGACCGCCTGGGCGCCTTCCTGCGCGGCGTGGAAGAAGCCTACAAGAAACCGTTCCCGGCTGTCGACGAAGACACGCTGGCC
GGCGGCTTGAGCAACACCATTGCTGGTCGCATCTGTAACCACTTTGACCTGAACGGTGGCGGCTACACGGTTGATGGCGCGTGCTCCTCTAG
CTTGCTGAGCATCACCACCGCGGCTACCTCTCTGCAGTCCGGTGACCTGGACGTCGCAGTGGCGGGTGGCGTTGATCTGAGCATTGACCCGT
TTGAAATCATCGGCTTCGCCAAAACTGGGGCGCTGGCGCGTAAAGAAATGCGTCTGTACGATCGTGGCTCCAACGGTTTCTGGCCGGGCGAG
GGTTGCGGCATGGTTGTTCTGATGCGTGAAGAAGACGCCGTTGCGTCCGGCCACCGCATCTATGCATCTATCGCGGGTTGGGGCATTAGCTC
TGACGGTCAGGGCGGCATTACTCGCCCGGAAGTATCCGGCTACCAGCTGGCACTGTCCCGCGCTTATGACCGTGCCGGTTTCGGTATTGAAA
CCGTGCCGCTGTTCGAGGGTCATGGTACCGGCACCGCGGTAGGGGACGCAACGGAACTGCGTGCGATCATGAGCGCACGTGCGGCGGCGG
ATCCGCACGCGCCGTCTGCTGTGATCACCTCTATCAAAGGCATGATCGGTCACACCAAAGCCGCTGCAGGCATCGCTGGCCTGATTAAGGCTG
TAATGGCGCTGGACAGCGGTGTGCTGCCGCCGGCTATTGGTTGTGTTGATCCGCATGACCTGCTCACTGACGAATCGGCGAACCTGCGTGTT
CTGCGTAAGGCGGAAAGCTGGCCGGAAAACGCGCCGTTGCGTGCGGGCATCACCGCGATGGGTTTCGGCGGTATCAACACCCATGTTGTCC
TGGATCGCTCCGACGCCTCCGGTCGTCGTCCGGCGGTTAACCGTCGTACTACTCTGCTGGCGAACTCTCTCCAGGATTCTGAGCTGCTCCTGCT
TGACGGTGAGTCCCCGGCGGCGCTGGCGCGTCGTCTGACCCAGGTGGCGGATTTCGCCGCACAGGTATCCTATGCGCAGCTGGGTGACCTG
GCAGCCACGCTCCAGCGTGAACTGCGTGATCTGCCTCACCGCGCCGCCGTAGTGGCTACCTCTCCAGAAGATGCGGAACTCCGTCTTCGTGGC
CTGGCGGAAACCGCCGGCGGTCGTGCACCTGATGATGGTCCGGTATTCAGTCAAGATGGCCGCGCGTTCCTGGGTACCGCTGCTGAAGGTG
CACGTGTAGGCTTCCTGTTTCCGGGTCAGGGCTCCGGTACCTCCACCGCTGGCGGCGCTCTGGCACGTCGCTTTACTGAAGCAGCAGAAGTG
TATGCACGTGCTGGTTTACCTACTGCAGGTGACATGGTTGCTACCCATGTTGCTCAGCCACGTATCGTTACCGGTTCGACCGCTGGTTTGCGC
GTGCTGGAAGCGCTCGGCATCGAAGCTGATATCGCGCTGGGTCATTCCCTGGGCGAACTGTCTGCGCTGCACTGGGCCGGTGCACTGGATGA
AACTACCCTCCTGGAAGCGGCCCGCACGCGCGGCGCGGCTATGGCGGCACACTCTGCGTCTGGTACCATGGCTTCCCTGACTGCCACTCCAG
AGGAAGCTGTGCGCTTAGTGGAAGGTCTGCCGGTGGTGATCTCGGGCTACAACGGCCCGCGTCAGACCGTAGTAGCCGGGACTGTGGAAGC
GGTTGAATCCGTTGGCGAGCGCGCGGCGGCCGCTGAGATTGCGTTCACCCGTTTAGCGGTTAGCCACGCGTTCCATAGCCCGCTGGTAGCTC
CGGCTGCCGAATCCTTTGGTGACTGGCTCGCGAAAGCACCGCTGGGTGGTCTGGGCCGTCGCGTAGTTTCCACCGTGACGGGCGCTGAACTG
GAGCGTGACACAGATCTGGCTAAACTCCTTCGTCAACAGATTACCGACCCGGTCTTATTTACCCAGGCGGTTCGTGCGGCTGCCGCGGAAGTA
GACCTGTTCGTTGAAGTTGGCCCAGGTCGTGTCCTGAGCGTTCTGGCTGCAGAAACCGCGGGTAAACCGGCGGTTGCGTTGAATACTGACGA
TGAATCTCTGCGCGGTCTGCTGCAGGTTGTTGGCGCTGCGTTCGTAATCGGCGCCCCGATCATTCACGAGCGTCTGTTCAATGATCGCCTGAC
TCGCCCGTTAGAAGTAGGCAAAGAATTCCTGTTTCTGTCAAGCCCGTGTGAACAGGCGCCGGAATTTACCCTGCCGGCAGCGGCTCGCGAAC
CGCTGGTGCAGGAGCATGACGCTCCCACCACCGCTGGCGCTGGTGACACTGCTGAAGAATCTGCCCTGGACGTCCTGCGTGCGCTGGTTGCG
GAGCGTGCTGAACTGCCGTCTGAGCTGATCGATGAAAATTCCTCCCTGCTGGACGATCTGCACATGTCGTCTATCACTGTTGGCCAGATTGTT
AACCAGACCGCAGTGCGTCTGGGTCTGGCACCGTCCAGCATCCCGACCAACTTCGCTACCGCGACCCTGGCTGAACTGGCGTCCGCGCTGAC
TACTTTGGTCGAAACCGGCGCGGATCCGACTGCTGCTCCGGTTGTAACGGGTTCCGCGGCGTGGGCCCGTCCTTTCTCTGTCGATCTGGACGA
ATTACCACTGCCGCCGGCGGTGGCTGATGAAAAGGACGGCACTTGGGAATTGTTTACCTCTGCTGATCACCCGTTCGCTGAAGAAGTTCGTC
GTGCTCTGCAGGACGCGGCTGTAGGTTCTGGTGTTCTAGTCTGCCTGCCGGCTGGCTGCTCTCCGGACCAGCTGGAACTGGCTTTAGATGGC
GCACGTAGCGCACTCGCGGGTTCTCAGGAAGGCCGTTTCGTGCTGGTTCAGCATGATCGTGGTGCTGCTGGTCTGGCAAAAACTCTGCACCT
GGAAGCCCCGCACCTCCGCACTACCGTGGTTCACACCCCGGTAGCTGACGGTGCTGCTGACCGTGTTGCCGCGGAAGTGGCGGCGACTACCC
ACTTTTCTGAAGTTCACCTGGACCGTGATGGTACCCGTCGTGTTCCGGTGCTGCGTGCGCTGCCGTTCGCACCGGACCGTACTGACCAGGTTC
TGGGTCCGGATGACGTTCTGCTGGTTACCGGTGGTGGTAAAGGCATCACTGCTGAATGTGCTCTGGCAGTTGCTGAACGTACCGGTGCGGCT
CTGGCGGTGCTGGGCCGTTCTGATCCGGGCTCTGACCAGGATCTGGCTGCGAACCTGGGTCGTATGCGTGAGTCCGGTATTCGCGTTGCGTA
CGCGGCCGCTGATGTGACCGATCCGGTCCGTGTTGCGGGCGCCGTTGCTGAACTGACTGGTGCACTGGGCAGCGTTACCGCTGTTCTGCACG
GCGCAGGTCGTAACGAACCGACCGCGCTGGGTGGCCTGGATATGGCAGCGGTGCGCTCGACTCTGGCACCGAAAGTTGATGGCCTGCGTCA
CGTGCTCGACGTTGTAGGTGAACAGAACCTGCGTCTGCTTGTTACCTTCGGTTCTATCATTGGTCGCGCTGGCCTCCGTGGCGAAGCGCACTA
CGCTACCGCTAACGAATGGCTGGCAGGCCTGACCGAGGATGTTGCACGTCGTAACCCGGACTGTCGTGCACTGTGCATGGAATGGAGCGTG
TGGTCTGGTGTTGGTATGGGTGAAAAACTGTCCGTAGTTGAATCTTTGTCCCGTGAGGGTATCGTTCCGGTTTCTCCGGATCAGGGTATCGAA
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ATCCTGCTGCGCCTGATCTCCGACCCGGACGCTCCAGTAGTGACCGTTATCAGCGGTCGTACCGAAGGTATCGGTACTGTTCGTCGTGAGCAG
CCGCCGCTCCCGCTGCTGCGCTTCACCGGTGAACCGCTGGTTCGCTACCACGGTGTTGAACTGGTTACCGAAGCGGAACTGAACGCAGGCAC
TGATCTGTATCTGACCGACCACATGCTTGATGGCAACCTGCTCCTGCCGGCAGTGATTGGTATGGAAGCTATGGTTCAGGTTGGCTCTGCGGT
TACTGGCCGTCGTGACGTACCGGTCATTGAAGACGCTCGCTTCCTGCGTCCGATTGTTGTGCCACCGGGCGGTACCACTCGTATCCGTATCGC
CGCCACCGTTACCGGTACCGATCGTGTTGACGTTGCGGTTCACGCCCAGGACACCGGTTTTGCGGCTGAACACTTCCGCGCTCGTCTGGTATA
CGGCGGCGCAGCGATCCCGGATGGTGCGCCGGACCAGGTGGGCCCGAAAGTACCGACCGCACCGCTGGATCCGGCGACTGATCTGTATGGT
GGTGTGCTGTTCCAGGGGGAACGCTTCCAGCGTCTGCGTCGTTTCCATCGTGCTGCGGCACGTCACGTGGATGCGGAAGTCGCACTGGACAC
CGCTAGCGGCTGGTTCGCGGGTTTTCTGCCGGGCACTCTGCTGCTCTCTGATCCGGGTATGCGTGACGCTCTGATGCACGGGAACCAGGTTT
GCGTGCCGGACGCAACCCTGCTGCCAAGCGGCATCGAACGTCTGTACCCGATGGCGGCTGGCGAAGATCTGCCGGAACTGGTTCGCTATTGC
GCAACTGAACGTCATCGCGACGGCGACACCTACGTGTACGACATCGCGGTTCGTACCCCGGACGGTTCTGTAGTTGAACGTTGGGACGGTCT
GACGCTGCACGCTGTACGTAAAAGCGACGGTTCCGGCCCATGGGTGGCTCCGCTGCTGGGTTCCTACCTGGAACGTACTCTGGAAGAAGTTC
TGGGCACCCACGTTGATGTTGCAGTGGAGCCGGTTCCGGCTGATAGCGGTGGTAGCGTTGCTGACCGTCGTAAAGCGACCGCCCGTGCAGTT
CAGCGTGCGCTGGGTGAATCCGTTAAAGTGCGTTATCGCCCGGATGGTCGTCCGGAACTGGACGGCGTTCGTCGTCTGAGCGCGGCGCACG
GCCCAGGCGTGACCCTGGGCGTAGTCGGTACTACCACTGTAGCATGCGACATCGAAGCCGTGACCGCACGTGGCGCTCAGGAATGGGAAGG
TCTGCTGGGTGAACACGGTAACCTGGCAGCTCTGGTAGCGAAAGAAACCGGTGAAACCCCAGATCACGCGGCGACCCGTGTTTGGACGGCG
GTTGAATGTCTGAAAAAAGCTGGTCTGCCGGCGGGCGCACCGCTGACCCTGGAACCGCAGGTACGCTCCGGTTGGATCGTGCTGACCGCGG
GTGGTCTGCGCATCGCCACCTTTGCGACCACCCTGCGTCACGTTGAAGAACCGGTAGTGCTGGCGTTCCTGACCGCAGGCACTGATGATGCT
GCGCCGGGCTCTGCTCGTGCTTAAAAGCTT 
 
TESgcE 
 
CATATGACCGCGACCAACCCGGATTACTTCGAACTGCGTCACACCGTTGGTTTCGAAGAAACCAACCTGGTTGGTAACGTTTACTACGTTAAC
TACCTGCGTTGGCAGGGTCGTTGCCGTGAACTGTTCCTGAAAGAACGTGCGCCGTCTGTTCTGGCTGAAGTTCAGGAAGACCTGAAACTGTTC
ACCCTGAAAGTTGACTGCGAATTCTTCGCTGAAATCACCGCGTTCGACGAACTGAGCATCCGTATGCGTCTGTCTGAACTGCGTCAGACCCAG
CTGGAATTCACCTTCGACTACATCAAACTGGGTGACGACGGTGGTGAAACCCTGGTTGCGCGTGGTCGTCAGCGTATCGCGTGCATGCGTGG
TCCGAACACCGCGACCGTTCCGACCCTGATCCCGGAAGCGCTGGCGGAAGCTCTGGCGCCGTACTCTGACCGTGCGGGTTCTTACGCGGGTC
GTGCGGCTTAAAAGCTT 
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4.1. Abstract 

Anaplerosis is an essential feature of metabolism that allows the robust operation of central metabolic 

pathways (e.g. the citric acid cycle) by constantly replenishing drained intermediates. However, this 

fundamental concept has not been applied to the construction of synthetic metabolic networks so far. 

Here, we sought to employ this strategy to the CETCH cycle, a new-to-nature in vitro CO2-fixation pathway 

that features several C3-C5 biosynthetic precursors. We drafted four different anaplerotic reaction 

modules, which allow the direct use of CO2 to replenish the cycle’s intermediates and demonstrate 

functionality of our designs by producing 6-deoxyerythronolide B (6-dEB), the C21 macrolide backbone of 

erythromycin. Our best design allowed the carbon-positive synthesis of 6-dEB via 54 reactions catalyzed 

by more than 30 enzymes in vitro, notably at yields comparable to the isolated polyketide synthase. 

Overall, this work showcases how anaplerotic modules can be tailored to enhance and expand the 

synthetic capabilities of complex catalytic reaction networks. 

 

4.2. Introduction 

Synthetic biology aims at creating biological parts and systems that do not exist in nature. This includes 

the design and realization of new-to-nature enzymes and metabolic networks, which allow to expand the 

biochemical capabilities of metabolism beyond those developed by natural evolution1,2. Design and 

realization of synthetic pathways for the capture and conversion of carbon dioxide (CO2) that are more 

efficient than natural photosynthesis are of particular interest3,4. A prominent example is the CETCH cycle, 

a synthetic CO2 fixing in vitro reaction network. It requires 20% less energy than the Calvin cycle5 and 

features the reductive carboxylation of enoyl-CoA esters, a recently discovered CO2 fixation principle that 

is an order of magnitude more efficient than to RubisCO6,7.  

While new-to-nature pathways offer multiple opportunities to access novel products as well as more 

efficient biosynthetic routes8-10, the properties and biosynthetic capabilities of such designer networks are 

still lacking behind those of naturally evolved metabolic networks. Natural pathways operate robustly in 

the context of living cells and enable the flexible (re-)distribution of metabolic flux depending on the 

biosynthetic needs of the cell. This is in stark contrast to their synthetic counterparts that are typically 

limited in metabolic flexibility and adaptability, especially in an in vitro setup11.  

In case of the CETCH cycle, one of the shortcomings is that this synthetic pathway is restricted to only one 

dedicated output reaction that yields the C2 compound glyoxylate as primary product of two CO2 fixations 
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per turn of the cycle. It has been shown recently that glyoxylate can be further converted into acetyl-CoA 

and fuel the biosynthesis of different high value products, including several mono- and sesquiterpenes in 

vitro12. Yet, to harness the full potential of the CETCH cycle, it would be necessary to access also the cycle’s 

core sequence intermediates. Being able to use different C3-, C4-, and C5-Coenzyme A thioesters for 

biosynthetic purposes would allow to turn the CETCH cycle into a versatile biosynthetic platform that 

could feed into various biosynthetic routes. However, removing core intermediates without re-filling them 

would quickly drain the pool of acceptor molecules required to keep CO2 conversion running and 

inevitably lead to a stalling of the CETCH cycle. 

One fundamental building principle of naturally evolved metabolic networks is anaplerosis, i.e., reactions 

or reaction sequences that continuously replenish those intermediates of central carbon metabolism that 

are directed away into different biosynthetic routes, thereby allowing for a robust and dynamic operation 

of metabolic networks13-16. The defining example is the citric acid cycle, which acts as turntable of cellular 

metabolism and is constantly refilled by multiple reaction sequences, such as (phosphoenol)pyruvate 

carboxylase, malic enzyme, and the glyoxylate cycle17-22. Consequently, to build synthetic (in vitro) 

metabolic networks and complex biocatalytic reaction cascades that match the flexibility and adaptability 

of natural metabolism, it will be essential to include anaplerosis as a fundamental design principle into 

the design of new-to-nature metabolic systems.  

Here we sought to expand the biosynthetic capabilities of the CETCH cycle beyond its output molecule 

glyoxylate by developing anaplerotic reaction sequences to use otherwise non-accessible intermediates 

from the cycle, in particular propionyl- and methylmalonyl-CoA, which serve as extender units in the 

biosynthesis of natural products, such as polyketides23. Inspired by natural metabolic routes, we designed 

four anaplerotic reaction sequences for the carbon-neutral and carbon-positive conversion of glyoxylate 

into different intermediates of the CETCH cycle. We reconstructed the different pathways, optimized their 

performance and tested their ability to support the biosynthesis of the polyketide 6-deoxyerythronolide 

B (6-dEB)24,25, the macrolide backbone of erythromycin directly from CO2 via the CETCH cycle.  

Overall, implementing the concept of anaplerosis into a complex in vitro metabolic network of more than 

50 different reactions, enabled us to operate this system without the need to provide additional 

substrates to directly synthesize complex molecules from CO2. Our work represents a stepping-stone 

towards the realization of biocatalytic cascades mimicking the properties and intricacies of the natural 

metabolic networks of living cells. 
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Figure 1. Overview scheme for all reaction cascades presented in this study. a The core reactions from CETCH (module 1), BHAC 
(module 2) and partial serine cycle (module 3) for the conversion of glyoxylate as CETCH output molecule into acetyl-CoA. 
Additionally shown are DEBS (module 5) and the anaplerotic reaction sequences (colored arrows), which are elaborated in detail 
b-e, indicating the point of re-entry into module 1 as well as other bifurcations in module 4b. 
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4.3. Results 

Reconstitution of the CETCH cycle (module 1) 

The CETCH cycle is revolving around two reductive carboxylation reactions (#1, #7) that catalyze the two 

carbon extension steps of the cycle. Starting from the C3-compound propionyl-CoA, the C4-metabolite 

methylmalonyl-CoA is formed (#6-7) and further converted into the C5-molecule ethylmalonyl-CoA 

through a series of reactions (#8-12, #1). Ethylmalonyl-CoA is subsequently transformed into methylmalyl-

CoA that is cleaved into glyoxylate and propionyl-CoA (#2-5), the latter can enter another round of the 

CETCH cycle, while the former remains as the primary CO2 fixation product and output molecule of the 

CETCH cycle.  

To establish the CETCH cycle in vitro (module 1, Figure 1) we modified its setup compared to its initial 

description (CETCH version 5.4)5. To circumvent the use of externally added acetyl-CoA, we replaced the 

malate-readout of the original cycle by a glycolate-based readout, using glyoxylate reductase, which 

irreversibly converts glyoxylate into glycolate. In addition, we used a creatine phosphokinase-based ATP 

regeneration system instead of polyphosphate kinase. When starting the reaction with 100 µM propionyl-

CoA, the optimized cycle produced 381 ± 6.6 µM glycolate within 90 minutes. This translates into 7.6 ± 0.2 

fixed CO2 molecules per starting acceptor molecule (propionyl-CoA) and 3.8 cycle turnovers, which is 1.4-

fold better compared to the recently published setup (Figure 2a)5  

Establishing modules 2 & 3 for glyoxylate conversion 

To convert glyoxylate – the output molecule of module 1 (i.e. CETCH cycle) – back into intermediates of 

the core cycle, we sought to establish downstream reaction modules, which would transform glyoxylate 

into oxaloacetate, malate and/or acetyl-CoA. These compounds could then serve as starting points for 

different anaplerotic reaction sequences. To that end, we aimed at employing the beta-hydroxyaspartate 

cycle (BHAC) from Paracoccus denitrificans that transforms two molecules glyoxylate through amino-

group cycling and consumption of one NADH into oxaloacetate (module 2, Figure 1a)12,26,27. Extending the 

BHAC by an additional reaction sequence, involving malate dehydrogenase (Mdh, #17), malate:thiokinase 

(Mtk, #18) and malyl-CoA lyase (Mcl, #5, #19) would allow the further conversion of oxaloacetate into 

glyoxylate, which could reenter the BHAC, and acetyl-CoA (module 3, Figure 1a)12 . 

However, one crucial reaction in module 2 (i.e. BHAC) is the immediate reduction of the labile 

intermediate imminosuccinate (#14) to prevent its spontaneous hydrolysis into oxaloacatetate and 

concomitant loss of the amino group for recycling27. To verify that the concentration of imminosuccinate 
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reductase (Isr, #15) would be sufficient to drive full reduction of iminosuccinate to aspartate, we tested 

different glyoxylate concentrations ranging from 0 to 1000 µM, while fixing the concentration of the 

amino-donor molecule glycine at 250 µM (Figure 2b). As readout, we used malate dehydrogenase (Mdh)28, 

which converts oxaloacetate into malate. Reaching conversions close to the expected theoretical yields in 

all assays showed that module 2 was indeed fully active without significant hydrolysis (Figure 2b, Figure 

S2).  

 

 

Optimizing the interplay of modules 1-3  

Coupling modules 1, 2 and 3 yielded approximately 100 µM acetyl-CoA (Figure 2c), when starting from 

100 µM propionyl-CoA, indicating one complete turnover through the combined modules 1-3. As already 

observed during optimization of module 1, switching to a creatine phosphokinase-based ATP regeneration 

significantly improved acetyl-CoA yield of modules 1-3 to 260 µM within 3 hours. However, after 30 

minutes acetyl-CoA production had already stalled and even started to decrease after 3 hours (Figure 2c). 

This is explained through the condensation of acetyl-CoA with glyoxylate back into malyl-CoA, when 

reaching a certain acetyl-CoA threshold concentration due to the reversibility of Mcl (#5)5,12,29. We aimed 

at further improving productivity of the coupled system by constantly withdrawing acetyl-CoA through 

Figure 2. Optimization of module 1-3. a CETCH efficiency. CO2/acceptor shows how many CO2 molecules per molecule of initially 
added substrate (propionyl-CoA) were fixed. Data for CETCH 5.4 is taken from Schwander et al.. Compared to the publication 
the CETCH 5.5 contains several minor adaptations (see reconstitution of the CETCH cycle). b Substrate concentrations to 
determine BHA cycle efficiency and amino group recycling. The reactions were started with either 0, 250, 500 750 or 1000 µM 
glyoxylate while the glycine concentration is fixed at 250 µM, stopped after 60 minutes and measured by LC-MS. The theoretical 
maximum yield of full glyoxylate conversion is displayed in light blue, the measured values as dark purple (86 % ± 1 % conversion). 
The dashed line indicates the threshold above which the amino group is obligatorily recycled (see Figure S2). c Coupling of the 
CETCH module with feedback module 2 and 3. All reactions were started with 100 µM propionyl-CoA. Experiments utilizing 
phosphocreatine for ATP regeneration included 2 U/ml Creatine phosphokinase, the experiments using polyphosphate 0.5 U/ml 
Polyphosphate kinase. Conversion of acetyl-CoA to malonyl-CoA was ensured by addition of 100mU/ml propionyl-CoA 
carboxylase D407I (Pcc*, #26). All experiments were performed in technical triplicates. 
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carboxylation into malonyl-CoA, using a propionyl-CoA carboxylase variant Pcc* (#26)30, as reported 

recently12. Indeed, the yield of malonyl-CoA almost doubled when using Pcc* together with the 

phosphocreatine ATP regeneration system, while a similar effect of Pcc* was not observed in the 

polyphosphate setup (Figure 2c). Reaching a yield of more than 450 µM of malonyl-CoA, the coupled 

modules 1-3 were even more productive than module 1 alone: Starting from 100 µM propionyl-CoA, we 

observed more than 4.5 cycle turnovers of coupled modules 1-3 within 3 hours, and notably 4 cycle 

turnovers after 90 min, compared to only 3.8 for optimized module 1 alone (Figure 2a). Having established 

the basic reaction network to convert glyoxylate into oxaloacetate, malate or acetyl-CoA, we moved on 

to the design and implementation of different anaplerotic feedback modules. 

Design of the different anaplerotic modules 4a-d 

In the next step, we drafted different anaplerotic pathways to transform oxaloacetate, malate or acetyl-

CoA into intermediates of module 1. To that end, we searched for known pathway segments that would 

allow to regenerate above starting molecules into different C3- or C4-CoA esters. Starting from malate, 

we identified a reaction series from the reductive TCA cycle31 that produces succinyl-CoA as re-entry point 

into module 1 (module 4a, Figure 1b). Starting from acetyl-CoA (and oxaloacetate), we sought to utilize 

reactions of the glyoxylate cycle14 that yield succinyl-CoA (module 4b, Figure 1b), reactions of the 3-

hydroxypropionate (3-OHP)32,33 cycle regenerating propionyl-CoA (module 4c, Figure 1b), and reactions of 

the ethylmalonyl-CoA (EMC) pathway providing crotonyl-CoA (module 4d, Figure 1b)15,34.  

We analyzed the thermodynamic profile of anaplerotic modules 4a-d, to test for thermodynamic 

feasibility (Figure S1), and established the different reaction sequences in the following. To assess and 

optimize the performance of the different feedback modules, we decided to quantify the production of 

methylmalonyl-CoA by modules 1-4[a/b/c/d] starting from glyoxylate. Even though we were still working 

in a closed-loop system with no direct output molecule, we reasoned that high methylmalonyl-CoA levels 

could serve as proxy for production yields of 6-dEB, our final benchmark molecule (see below).  

Realization of anaplerotic module 4a (reductive TCA) 

Feedback module 4a (Figure 1b) is the only C4-conserving pathway, which does not start from acetyl-CoA. 

This is achieved by branching off module 3 after reduction of oxaloacetate to malate (Figure 1b, #17). 

Malate is subsequently converted via a fumarate hydratase (Fum, #20) into fumarate, reduced to 

succinate (Frd, #21) and finally converted into the core cycle intermediate, succinyl-CoA, by a 

succinate:CoA ligase (Scs, #22).  
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While two of the three additional enzymes required (Fum and Scs) could be directly deployed from 

E.coli35,36, finding a suitable candidate for reduction of fumarate proved to be more difficult. Most Frd are 

quinone-dependent, multi-subunit membrane-bound enzymes, which are oxygen sensitive, excluding 

their application in an aerobic in vitro setup. However, we identified a suitable candidate from 

Trypanosoma brucei mitochondria that is NADH dependent and composed of a single, soluble subunit. 

Unfortunately, in the absence of fumarate Frd reduces molecular oxygen, thereby generating H2O2 and 

consuming NAD(P)H37. While H2O2 can be detoxified by catalase (Cat), which is present in the assay at 1.5 

U/ml, this substrate-independent side reaction of Frd with oxygen strongly affects the NAD(P)H pool. 

When testing different concentrations of Frd in the context of the full pathway, starting from 250 µM 

glyoxylate, we found that 10 mU Frd resulted in the highest yields of methylmalonyl-CoA (49 ± 18.9 µM 

after 90 minutes). Additional formate to increase NAD(P)H regeneration by Fdh did not improve the yield, 

even when using 100 mU Frd (Figure 3a).  

Developing anaplerotic module 4b (glyoxylate part cycle) 

The design of feedback module 4b (1b) resembles the glyoxylate cycle14. To synthesize citrate from acetyl-

CoA and oxaloacetate (#23), we decided to use citrate synthase from Synechocystis sp. PCC 6803 (Cit, 

#23)38. In contrast to citrate synthases from heterotrophic bacteria, Synechocystis Cit has an ‘inverted’ 

responsiveness towards allosteric effectors, i.e., shows no inhibition by MgCl2, ATP or NADH, and becomes 

activated by ADP. For the generation of isocitrate from citrate (Acn, #24), we employed AcnA from E. coli, 

which compared to its homologue AcnB, has a lower catalytic efficiency, but is more oxygen tolerant39. 

We selected E. coli isocitrate lyase (Icl) to convert isocitrate into glyoxylate and succinate (#25), which can 

re-enter CETCH cycle as succinyl-CoA via succinate:CoA ligase (#22), as in module 4a.  

Note that module 4b uses oxaloacetate (produced by module 2) for the condensation reaction with acetyl-

CoA by Cit (#23), as well as for the formation of acetyl-CoA itself via module 3 (#17-19), which leads to a 

direct competition between Cit and Mdh for oxaloacetate. Due to the more favorable kinetic parameters 

of Mdh towards oxaloacetate (KM ≈ 40 µM, kcat ≈ 930 s-1)38 compared to Cit (KM ≈  90 µM, kcat ≈ 2.8 s-1, KM, 

acetyl-CoA = 220 μM)38, we hypothesized that a successful implementation of module 4b would directly 

depend on the concentration of Mdh. Indeed, the amount of acetyl-CoA produced when combining 

modules 1- 4b showed an inverse correlation with the amount of Mdh used (Figure S4a). Indeed, the setup 

with 7.9 U/ml Mdh led to an accumulation of acetyl-CoA and produced only 6 µM methylmalonyl-CoA, 

indicating that the oxaloacetate pool was completely drained by Mdh (Figure 3, Figure S4Aa). In contrast, 

the setup containing 0.8 U/ml Mdh was able to produce almost 60 µM methylmalonyl-CoA, indicating that 
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sufficient oxaloacetate was available for the Cit reaction to proceed. Therefore, we chose this Mdh 

concentration for the implementation of module 4b. 

Establishing anaplerotic module 4c (3-OHP part cycle) 

Feedback module 4c (Figure 1b) is based on reactions of the 3-OHP bi-cycle. We used the aforementioned 

engineered propionyl-CoA carboxylase (Pcc*, #26)30 to produce malonyl-CoA from acetyl-CoA. Malonyl-

CoA is further reduced via a bifunctional malonyl-CoA/malonate semialdehyde reductase (#27, #28)40,41, 

resulting in 3-OHP. Finally, for the reaction of 3-OHP to propionyl-CoA (#29-31), we used propionyl-CoA 

synthetase (Pcs), a multicatalytic nanocompartment which was characterized recently42. The whole 

module 4c is comprised of only three enzymes catalyzing six reactions, consuming three NADPH and three 

ATP equivalents, resulting in the highest change of Gibbs free energy (ΔrG’) compared to the other 

feedback modules (Figure S1). Initial experiments resulted in the formation of up to 490 µM 

methylmalonyl-CoA after two hours starting from 250µM glyoxylate (Figure 3c). Addition of adenylate 

kinase to regenerate the AMP produced by Pcs increased the yield further to more than 700 µM after four 

hours (Figure 3c).  

Realization of anaplerotic module 4d (EMC pathway) 

Feedback module 4d comprises a partial EMC pathway (Figure 1b). This module requires only three 

reactions, yielding crotonyl-CoA, which allows re-entering the CETCH cycle prior to one of the 

carboxylation steps (#1). Module 4d is by far the most energetically efficient sequence based on the 

calculated Gibbs free energy change (Figure S1).  

To establish the pathway, we employed the acetyl-CoA-acetyltransferase Aat (#32), its cognate reductase 

Aar (#33)43 and a putative β-hydroxybutyryl-CoA dehydratase Bbd (#34). Functionality and kinetic 

parameters of Bbd were determined beforehand (Figure S8a). While Aat showed some promiscuity with 

propionyl-CoA in vitro (Figure S3b), only acetoacetyl-CoA formation was observed in context of the CETCH 

cycle (Figure S3b). Note that the condensation reaction of Aat is inhibited by free CoA44 (Figure S3a). To 

assess the effects of CoA, we systematically varied the initial amount of free CoA up to 1 mM in the assay, 

when testing the full feedback module starting from 250 µM glyoxylate. Interestingly, and contrary to 

earlier observations with the isolated enzyme, where 1 mM of CoA inhibited the condensation reaction 

of Aat almost completely (Figure S3a), 1 mM CoA showed the highest yields of methylmalonyl-CoA when 

introduced into the whole pathway (Figure S4b), but also caused the highest accumulation of acetyl-CoA 

(Figure S4c). To test whether higher CoA concentrations further increase yield, we repeated the 
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experiment with 1 mM or 2.5 mM CoA. Using 2.5 mM CoA reduced the production of methylmalonyl-CoA, 

indicating that the level of free CoA in module 4d is optimal around 1 mM (Figure 3d).  

 

Figure 3. Methylmalonyl-CoA accumulation enabled by anaplerotic feedback pathways with varying conditions. All conditions 
contained Modules 1, 2 & 3. a Module 4a with different amounts of Frd.. +form.indicates usage of 100 mM formate, whereas all 
other experiments were carried out with 50 mM formate. b Module 4b with different amounts of Mdh. c Module 4c with or without 
Adk. d Module 4d with different amounts of CoA. All experiments were performed in technical triplicates.  

 

Anaplerotic feedbacks allow efficient 6-dEB production from CO2 

To test our anaplerotic modules in a complex biosynthetic scenario, we next aimed at assessing the 

performance of the different pathway versions for the biosynthesis of 6-dEB. 6-dEB is synthesized by the 

6-deoxyerythronolide B synthase (DEBS), a type I polyketide synthase (PKS) that uses propionyl-CoA as a 

starter unit and six methylmalonyl-CoA as extender units per molecule of 6-dEB (module 5, Figure 1a, 

Figure S5). The polyketide is synthesized via six subsequent decarboxylative Claisen condensations, 

accompanied by release of CoA and the consumption of six NADPH reducing equivalents45. To quantify 6-

dEB production, we correlated the linear range of polyketide production from a positive control with 

measured reduction rates25 (Figure S6). 

Before quantifying 6-dEB production, we verified and compared methylmalonyl-CoA production of our 

four optimized pathways without module 5 (i.e. DEBS). When testing modules 1-4[a/b/c/d], all four 

feedback routes accumulated methylmalonyl-CoA at comparable levels observed earlier (Figure 3 and 4a). 

The different pathway networks were able to convert 250 µM glyoxlyate into methylmalonyl-CoA with an 

effective carbon conversion of 104% (modules 1-4a), 88% (modules 1-4b), 398% (modules 1-4c) and 55% 

(modules 1-4d), respectively (Figure 4a, Table S7). Thus, (at least) two out of four anaplerotic pathways 

were carbon-positive in respect to methylmalonyl-CoA yield under these conditions.  
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When testing the different pathways together with DEBS (modules 1-4[a/b/c/d]-5), three out of the four 

anaplerotic modules yielded detectable amounts of 6-dEB, in contrast to the control, i.e. module 1+5 

without any anaplerotic reaction sequence (Figure 4b). Interestingly, only the setup with module 4d did 

not show detectable polyketide production, even though modules 1-4d had produced methylmalonyl-CoA 

at relevant concentrations in the absence of module 5 before (see above, Figure 4a)46. Although we did 

not detect 6-dEB for modules 1+5 and modules 1-4d-5, we noticed that the profiles of CoA esters shifted 

between the setups with and without module 5, indicating that the presence of DEBS had influenced 

carbon flux in the systems, probably by depleting the system quickly from methylmalonyl-CoA (Figure 4 

c-e).   

The setups with feedback module 4a and 4b yielded 6.0 ± 0.2 µM and 2.8 ± 1.0 µM 6-dEB, respectively, 

while the setup with module 4c produced 31.9 ± 1.6 µM 6-dEB (Figure 4b). Synthesis of one molecule of 

6-dEB requires one C3-CoA (propionyl-CoA) and six C4-CoAs (methylmalonyl-CoA). Thus, the production 

of 32 µM 6-dEB through modules 1-4c-5 was carbon-positive, with an effective carbon conversion of 172% 

(Table S7), indicating that this system had successfully captured CO2 into 6-dEB. Notably, the yields of 

modules 1-4c-5 were comparable to module 5 provided directly with propionyl- and methylmalonyl-CoA 

(39.1 ± 0.3 µM from 0.8 mM propionyl- and 1 mM methylmalonyl-CoA, respectively, Figure 4b), 

demonstrating that the anaplerotic feedback module allowed our system consisting of 54 reactions to 

operate similarly efficient compared to the isolated DEBS alone.   
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Figure 4. Substrate accumulation and polyketide production by the different anaplerotic pathways. a Methylmalonyl-CoA (MM-
CoA) accumulation in the different feedback pathways and the CETCH core cycle. b 6-dEB production by the different pathways 
and a control *not detectable **positive control was started with 0.8 mM propionyl-CoA and 1.0 mM methylmalonyl-CoA. c Gly-
colate production of module 1 (CETCH core cycle) with and without module 5 (DEBS). d and e show relative CETCH core cycle 
intermediate formation with (E) or without (D) DEBS. The highest EIC value (from D and E) of each displayed compound was set 
to 11.11% (9 compounds = 100%) and all other extracted ion counts (EIC) values of that compound were set relative to that. For 
absolute values of the EIC including the standard error, see Figure S7. All experiments were performed in technical duplicates.  

 

4.4. Discussion 

One of the biggest challenges in contemporary biology and chemistry is to construct synthetic systems 

that exhibit the complexity and characteristics of naturally existing biological systems. Here we aimed at 

creating an in vitro catalytic network that is able to produce a chemically challenging molecule, 6-dEB, 

directly from CO2. This was achieved by developing and subsequently coupling different reaction modules, 

and in particular different anaplerotic reaction sequences to replenish core metabolites of the network 
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by CO2. While the core network alone (CETCH cycle, module 1) failed to synthesize 6-dEB, our anaplerotic 

feedback modules enabled it to produce the polyketide with up to 172% carbon conversion and notably 

at yields compared to the isolated polyketide machinery in vitro. Our results highlight the importance of 

anaplerotic reaction sequences, not only for the robust operation of natural, but also synthetic catalytic 

networks. While we focused in our work on 6-dEB as model product, we note that many other complex 

molecules, such as other polyketides and polymers (polyhydroxyalkanoates), could in principle be derived 

from the core cycle augmented with our anaplerotic modules.  

What determines productivity of anaplerotic reaction modules? One important aspect is their energetic 

requirements, i.e. their Gibbs free energy profile (Figure S1, module 4c > 4b > 4a > 4d), but probably also 

their re-entry point into the core network (CETCH cycle, module 1). Module 4c, which is the most efficient 

(but also energetically most expensive) reaction sequence, directly yields propionyl-CoA, the starter unit 

of DEBS, that can be converted by just two additional steps into methylmalonyl-CoA, the extender unit of 

DEBS. Modules 4a and b, on the other hand, yield succinyl-CoA, and therefore require another 11 and 13 

enzymatic reactions, respectively, to arrive at the same metabolites, potentially subjected to more kinetic 

and enzymatic bottlenecks. As an example, Frd in module 4a has a high side reactivity with NAD(P)H and 

oxygen as an alternative electron acceptor, likely depleting the pools of NAD(P)H, affecting the activity of 

all NAD(P)H dependent enzymes of the whole reaction network. This is indicated by accumulation of 

reaction substrates of NAD(P)H-dependent enzymes (e.g. succinyl-CoA and crotonyl-CoA, Figure 4d). 

Further protein engineering efforts or screening of alternative homologs could yield variants overcoming 

the deficiencies of Frd or any other enzymes constraining the reaction network.  

Overall, the successful coupling and simultaneous operation of up to 54 reactions provides a first step 

towards the creation of dynamic, yet robust in vitro catalytic networks. Considering future approaches of 

building complex catalytic systems, we note that while using anaplerotic reaction sequences provides 

more robustness and flexibility to catalytic networks, more and additional layers of regulation will be 

required to achieve the intricate design of natural metabolic networks. This includes the allosteric control 

and/or compartmentalization of reactions, as well as layers of translational regulation to dynamically 

regulate catalytic networks. Approaches using cell-free transcription-translation systems and recent 

efforts to couple synthetic metabolism to light-controlled energy modules might provide the 

requirements to establish such exquisite control in the future, paving the way for further efforts that make 

use of complex enzymatic cascades in biology and chemistry47.  
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4.6. Supplementary Information 

4.6.1. Materials & Methods 

Plasmid construction 

Except for Cit, all used plasmids were constructed previously (see Table S9). For construction of a Cit 

expression plasmid, previously described methods were adapted1. In brief, Synechocystis PCC 6803 was 

grown in BG-11, harvested via centrifugation, lysed through sonication and the cell debris used as a 

template for PCR amplification of its citrate synthase with the following primers: forward – 

CAAGGTACCGACTGATAACGAAGTGTTTAAAG, reverse – CTGCGGCCGCTTAAATAATCGCATTGGGGTC. The 

corresponding product was purified and, together with the target vector pET-51b, cut with FastDigest 

restriction enzymes (Thermo Scientific) KpnI and NdeI (underscored). Following DNA purification, vector 

and insert were ligated with a T4 ligase according to protocol (NEB) and the ligation mix transformed into 

electrocompetent E. coli DH5-α. The final construct (N-Strep Cit) was verified via sequencing (Microsynth). 

 

Production and purification of recombinant proteins 

Unless otherwise denoted, all proteins were purified alike. Upon transformation into the E. coli expression 

strain BL21(DE3) (Thermo Scientific) (carrying an additional plasmid for co-expression of the chaperones 

GroEL-GroES for Hbs), E. coli BL21(DE3) Rosetta (Novagen) for Mco and Pco and E. coli BAP12 for all DEBS 

plasmids, 2 L of salt buffered TB medium were directly inoculated with colonies from the selection plates 

and grown on 37°C and 90 rpm till OD600 0.5-1.0. Subsequently, cultures were cooled down to 21°C, 

induced with 25 µM IPTG and grown overnight. Cultures producing Hbd, where 100 µM of Fe(II)SO4, 100 

µM Fe(III)citrate and 20 mM fumarate were added at induction, grown to an OD600 4 and cooled down in 

a sterile Schott bottle for protein production under microaerobic conditions. Furthermore, production of 

Pco was done at 25°C for 4 h. Following cell pellet collection by centrifugation (15 min, 4°C, 6000x g), the 

cells were resuspended in two parts (w/v) lysis buffer (buffer A, 500 mM NaCl, 50 mM HEPES, 10% glycerol, 

pH 7.8) and 5 mM MgCl2, 10 µg/ml DNAse and one tablet of SigmaFAST Protease Inhibitor Cocktail (Sigma-

Aldrich) added. Cell lysis was performed using a microfluidizer (two iterations at 16.000 psi), followed by 

centrifugation at 50.000 xg for 1 h at 4°C. The supernatant was filtered through a 0.45 µm membrane, 

mixed with 3 ml preequilibrated (Buffer A) Protino Ni-NTA agarose beads (Macherey-Nagel) and incubated 

on ice for 30-45 min (70 rpm). Afterwards the beads were collected in a 14 ml gravity column and washed 

with three column volumes (cv) of lysis buffer, followed by two washing steps with three cv of lysis buffer 
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containing additional 50 mM of imidazole and three cv with 75 mM imidazole. The elution was done with 

two cv of lysis buffer containing 500 mM imidazole (buffer B). The elution fractions were concentrated 

with an Amicon Ultra 15 mL Centrifugal Filters (Merck), possessing an adequate molecular weight cutoff.  

All CETCH core enzymes, as well as the propionyl-CoA synthase were desalted on a HiLoad 16/600 

Superdex 200 pg column (GE Healthcare). Downstream enzymes for the feedback modules 1, 2a 2b and 

2c were desalted with 2 x 5 ml HiTrap® desalting columns (GE Healthcare). For both steps a 

desalting/storage buffer containing 200 mM NaCl, 50 mM HEPES and 10% glycerol, pH 7.8 (buffer C) was 

used. For Hbs and Hbd, buffer C contained 500 mM NaCl.  All DEBS proteins, except the strep-tagged LD(4) 

(see below), got additionally separated using a 5 ml Q-Sepharose HiTrap® anion exchange column (GE 

healthcare), with an 80 ml gradient from buffer D (50 mM HEPES, 10% glycerol, pH 7.8) to buffer E (500 

mM NaCl, 20% glycerol, pH 7.8). The collected fractions were pooled and concentrated again. FAD was 

added to Pco and Mco equivalent to the protein concentration. Enzymes requiring MgCl2 or Coenzyme B12 

were stored in buffer C containing 2 mM of the respective cofactor. If not already included in storage 

buffer, glycerol was added to a final concentration of 20% (v/v) and the proteins flash-frozen in liquid 

nitrogen and stored at -80 °C. 

Production of proteins containing a Strep-Tag (LD(4) and Cit) was as stated above. For all following steps, 

buffer C was used. After lysis and centrifugation, the supernatant was loaded onto a preequilibrated 1 ml 

StrepTrap column (GE healthcare) and ultimately eluted using buffer C containing 2 mM d-desthiobiotin. 

Concentration and storage did not differ from the steps described above.  

 

Enzyme Kinetics 

Activity Assay of β-hydroxybutyryl-CoA dehydrogenase (Bbd) (Figure S1A) 

The activity of Bbd was measured in a coupled assay using Etr1p. The assay was done in 150 µL volume in 

a high precision quartz cuvette (10 mm, Hellma Analytics) at 30°C and contained 200 mM HEPES-KOH pH 

7.5, 0.5 mM NADPH, 0.009 µg Bbd and 3 µg Etr1p. The reactions were started with 5, 10, 25, 50, 100, 200 

and 300 µM (R)-3-hydroxybutyryl-CoA. The consumption of NADPH was observed at 365 nm (∆ε365 = 3.3 

mM-1 cm-1) using a UV-Vis spectrophotometer (Cary 60, Agilent Technologies). The Vmax and Km were 

determined by fitting the values for U/mg using the Michaelis-Menten equation.  
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Activity Assay of Malate:thiokinase (MtkAB) (Figure S1B) 

MtkAB activity was determined by coupling the reaction to Mcl, producing acetyl-CoA and glyoxylate. The 

latter was further reduced to glycolate using a corresponding reductase (Gox) and monitored following 

NADPH consumption at 360 nm (∆ε360 = 3.4 mM-1 cm-1) on a on a Cary-60 UV/Vis spectrometer (Agilent) 

using high precision quartz cuvettes (10 mm, Hellma Analytics). The assay contained 200 mM HEPES-KOH 

pH 7.5, 100 mM MgCl2, 5 mM ATP, 2 mM CoA and, 0.8 mM NADPH, 14.73 µg MtkAB (equivalent amounts 

of both subunits), 3 µg Mcl, 2.1 µg Gox and varying amounts of L-malate in a final volume of 100 µl. 

Enzyme assays 

All samples were processed as follows: The samples were taken and quenched in a solution containing 

10% v/v 50% formic acid and 10% v/v 500 mM sodiumpolyphosphate to promote protein precipitation 

(except for the coupling experiments (Figure 4) where no polyphosphate was used). The samples were 

centrifuged at 11.000 xg for 20 min at 4°C to pellet the proteins. The supernatant was transferred into a 

new tube and stored at -80°C until measurement. 

CETCH 5.5 (Figure 2A) 

The assay for the CETCH 5.5 was done in triplicates in 30 µl assay volume and included 100 mM HEPES-

KOH pH 7.5, 5 mM MgCl2, 20 mM phosphocreatine, 50 mM bicarbonate (NaHCO3), 20 mM formate 

(HCOONa), 1 mM Coenzyme A, 0.1 mM Coenzyme B12, 2 mM ATP and 5 mM NADPH. The enzyme 

concentrations were used according to table S1. The reaction was started with 100 µM propionyl-CoA and 

the tubes were shaken at 450 rpm at 30°C. The samples (8 µL) were taken after 90 min and quenched. 

BHAC validation (Figure 2B) 

The assay for the BHAC validation was done in triplicates in 50 µl assay volume and included 100 mM 

HEPES-KOH pH 7.5, 5 mM MgCl2, 10 mM NADPH, 10 mM NADH, 0.25 mM glycine and 0.1 mM 

pyridoxalphosphat. The enzymes for the BHAC and Mdh were used according to the concentrations shown 

in table S1. The reactions were started with 0, 0.25, 0.5, 0.75 or 1 mM of glyoxylate and the tubes were 

shaken at 450 rpm at 30°C. The samples (12 µL) were taken after 60 min and quenched. 

Malonyl-CoA stability test (Figure S3A) 

The assay was done in duplicates in 15 µl assay volume and included 100 mM HEPES-KOH pH 7.5, 5 mM 
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MgCl2, 20 mM sodiumpolyphoshate, 50 mM bicarbonate (NaHCO3), 20 mM formate (HCOONa), 1 mM 

Coenzyme A, 0.1 mM Coenzyme B12, 5 mM ATP, 5 mM NADH, 5 mM NADPH. 1 mM glycine and 0.1 mM 

pyridoxalphosphat. The enzyme concentrations were used accordingly to table S1. One setup was done 

with all enzymes needed for the production of acetyl-CoA except Mcl. One setup included only the matrix 

without enzymes. The reactions were started with 300 µM malonyl-CoA and the tubes were shaken at 

450 rpm at 30°C. The samples (4.5 µL) were taken at 0, 60 and 120 min and quenched. 

CETCH to acetyl-CoA optimization (Figure 2C) 

The assay was done in triplicates in 100 µl assay volume and included 100 mM HEPES-KOH pH 7.5, 5 mM 

MgCl2, 20 mM phosphocreatine or sodiumpolyphoshate, 50 mM bicarbonate (NaHCO3), 20 mM formate 

(HCOONa), 1 mM Coenzyme A, 0.1 mM Coenzyme B12, 5 mM ATP, 5 mM NADH, 5 mM NADPH. 1 mM 

glycine and 0.1 mM pyridoxalphosphat. The enzyme concentrations were used accordingly to table S1. 

One setup was done with and one without Pcc*. The reactions were started with 100 µM propionyl-CoA 

and the tubes were shaken at 450 rpm at 30°C. The samples (12 µL) were taken at 0, 30, 60, 90, 120, 180 

and 240 min and quenched. 

CETCH with Module 4a (Figure 3) 

The assay was done in triplicates in 50 µl assay volume and included 100 mM HEPES-KOH pH 7.5, 10 mM 

MgCl2, 20 mM phosphocreatine, 50 mM bicarbonate (NaHCO3), 50 or 100 mM formate (HCOONa), 2 mM 

Coenzyme A, 0.1 mM Coenzyme B12, 5 mM ATP, 5 mM NADH, 5 mM NADPH. 1 mM glycine and 0.1 mM 

pyridoxalphosphat. The enzyme concentrations were used accordingly to table S1, whereas the conditions 

with 50 and 100 mU Frd included 5, respectively 10 times more Frd as stated. The reactions were started 

with 250 µM glyoxylate and the tubes were shaken at 450 rpm at 30°C. The samples (8 µL) were taken at 

30, 60, 90 and 120 min and quenched.  

CETCH with Module 4b (Figure 3 and S3B) 

The assay was done in triplicates in 75 µl assay volume and included 100 mM HEPES-KOH pH 7.5, 10 mM 

MgCl2, 20 mM phosphocreatine, 50 mM bicarbonate (NaHCO3), 20 mM formate (HCOONa), 2 mM 

Coenzyme A, 0.1 mM Coenzyme B12, 5 mM ATP, 5 mM NADH, 5 mM NADPH. 1 mM glycine and 0.1 mM 

pyridoxalphosphat. The enzyme concentrations were used accordingly to table S1. Mdh was either used 

at 7.9 U/ml or 0.8 U/ml. The reactions were started with 250 µM glyoxylate and the tubes were shaken at 

450 rpm at 30°C. The samples (8 µL) were taken at 0, 30, 60, 90, 120 and 240 min and quenched.  
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CETCH with Module 4c (Figure 3) 

The assay was done in triplicates in 75 µl assay volume and included 100 mM HEPES-KOH pH 7.5, 10 mM 

MgCl2, 20 mM phosphocreatine, 50 mM bicarbonate (NaHCO3), 20 mM formate (HCOONa), 2 mM 

Coenzyme A, 0.1 mM Coenzyme B12, 5 mM ATP, 5 mM NADH, 5 mM NADPH. 1 mM glycine and 0.1 mM 

pyridoxalphosphat. The enzyme concentrations were used accordingly to table S1, one assay with and 

one without Adk. The reactions were started with 250 µM glyoxylate and the tubes were shaken at 450 

rpm at 30°C. The samples (8 µL) were taken at 0, 30, 60, 90 and 120 min (+240 min sample for the 

experiment with Adk) and quenched. 

CETCH with Module 4d (Figure S3C-D) 

The assay was done in triplicates in 90 µl assay volume and included 100 mM HEPES-KOH pH 7.5, 5 mM 

MgCl2, 20 mM phosphocreatine, 50 mM bicarbonate (NaHCO3), 20 mM formate (HCOONa), 0.25, 0.5 or 1 

mM Coenzyme A, 0.1 mM Coenzyme B12, 5 mM ATP, 5 mM NADH, 5 mM NADPH. 1 mM glycine and 0.1 

mM pyridoxalphosphat. The enzyme concentrations were used accordingly to table S1. The reactions 

were started with 500 µM glyoxylate and the tubes were shaken at 450 rpm at 30°C. The samples (12 µL) 

were taken at 0, 15, 30, 60, 120 and 240 min and quenched.  

CETCH with Module 4d (Figure 3) 

The assay was done in triplicates in 65 µl assay volume and included 100 mM HEPES-KOH pH 7.5, 10 mM 

MgCl2, 20 mM phosphocreatine, 50 mM bicarbonate (NaHCO3), 20 mM formate (HCOONa), 1 or 2.5 mM 

Coenzyme A, 0.1 mM Coenzyme B12, 5 mM ATP, 5 mM NADH, 5 mM NADPH. 1 mM glycine and 0.1 mM 

pyridoxalphosphat. The enzyme concentrations were used accordingly to table S1. The reactions were 

started with 500 µM glyoxylate and the tubes were shaken at 450 rpm at 30°C. The samples (8 µL) were 

taken at 0, 30, 60, 90, 120 and 240 min and quenched.  

CETCH with all modules with and without DEBS (Figure 4) 

The assays were done in duplicates in 150 µl assay volume and included 100 mM HEPES-KOH pH 7.5, 10 

mM MgCl2, 20 mM phosphocreatine, 50 mM bicarbonate (NaHCO3), 20 mM formate (HCOONa), 2 or 1 

(Module 4d) mM Coenzyme A, 0.1 mM Coenzyme B12, 5 mM ATP, 5 mM NADH, 5 mM NADPH. 1 mM 

glycine and 0.1 mM pyridoxalphosphat. The enzyme concentrations were used accordingly to table S1. 

For the assay with module 4a the 4Fe-4S cluster of Acn was reconstituted before the assay. Therefore, the 

purified enzyme was incubated with 5 mM dithiothreitol and 15 mM ammonium iron II sulfate. After 30 
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min on ice the buffer was exchanged with the storage buffer using a Zeba™ Micro Spin Desalting Column, 

7K MWCO, 0.5 mL (ThermoScientific) accordingly to the provided protocol. To avoid NADPH oxidation by 

Frd during preparation of the assay, Frd was added as the last enzyme before starting the reaction in the 

assay with module 4a. The reactions were started with 250 µM glyoxylate or 125 µM propionyl-CoA 

(CETCH controls) and the tubes were shaken at 450 rpm at 30°C. The samples (13 µL) were taken at 0, 0.5, 

1, 1.5, 2, 4, 6, 8, 10, 12 and 24 h and quenched.  

DEBS assays 

All DEBS assay were carried out in duplicates and contained 100 mM HEPES-KOH pH 7.5, 200 mM NaCl, 4 

mM NADPH (0.7 mM for spectrophotometric assays), 4 µM Epi and 2 µM of each DEBS protein (see Figure 

S5). The reactions were started upon addition of 0.8 mM propionyl-CoA and 1 mM methylmalonyl-CoA 

(which were omitted for the negative control). For quantification, samples were taken after 0, 20, 40, 60, 

80, 100, 120, 150 and 180 minutes, quenched with a final concentration of 5 % (v/v) formic acid and stored 

at -80°C until measurement.  

Reduction rates were measured on a Cary-60 UV/Vis spectrometer (Agilent) using 10 mm quartz cuvettes 

(Hellma) following NADPH absorption at 360 nm (Δε360 = 3.4 mM-1cm-1). 
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Table S1. Concentrations of enzymes used in the assays. * Wilbur-Anderson unit.** Cell extract All 

commercially available enzymes were purchased from Sigma-Aldrich. 

 CETCH Module 4a Module 4c Module 4b Module 4d    

 µM µM µM µM µM  

 
U/mg Source 

Abb         
Pco 3.00 3.00 3.00 3.00 3.00  12 3 

Ccr 0.58 0.58 0.58 0.58 0.58  110 3 

Epi 0.60 0.60 0.60 0.60 0.60  440 4 

Mcm 0.36 0.36 0.36 0.36 0.36  20 5 

Scr 2.68 2.68 2.68 2.68 2.68  29 6 

Ssr 0.76 0.76 0.76 0.76 0.76  4 3 

Hbs 5.12 5.12 5.12 5.12 5.12  2 7 

Gbd 0.56 0.56 0.56 0.56 0.56  26 7 

Ecm 0.55 0.55 0.55 0.55 0.55  7 4 

Mco 21.4 21.4 21.4 21.4 21.4  0.1 3 

Mch 1.26 1.26 1.26 1.26 1.26  1500 8 

Mcl 13.6 13.6 13.6 13.6 13.6  5 9 

Cat 1.37 1.37 1.37 1.37 1.37  11740 10 

Fdh 14.4 14.4 14.4 14.4 14.4  1 11 

Cpk 0.39 0.39 0.39 0.39 0.39  150 commercial 

Ppk         

CA 0.02 0.02 0.02 0.02 0.02  *2000 commercial 

       
 

 
Gor 1.10      - 12 

       
 

 
Bha  2.26 2.26 2.26 2.26  116 13 

Bhd  1.37 1.37 1.37 1.37  92 13 

Isr  14.8 14.8 14.8 14.8  358 13 

Agt  1.93 1.93 1.93 1.93  77 13 

Mdh  1.33 1.33 0.13 1.33  1611 14 

Mtk       1.5 This Work 

       
 

 
Fum  0.66     340 15 

Frd  1.05     0.007 16 

Scs  1.00  1.00   19 17 

       
 

 
Pcc*   7.69    1 18 

Mcr   0.28    10 19 

Pcs   3.09    1 20 

Adk   0.18    1247 21 

       
 

 
Cit    8.98   4 1 

Acn    15.88   6 22 

Icl    12.54   38 23 

       
 

 
Aat     17.74  5 24 

Aar     28.27  **0.6 25 

Bbd     52.47  965 This work 
         

DEBS (each 
protein) 2      

 
- 
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4.6.2. LC-MS Measurements 

Analysis of CoA esters 

All CoA esters were measured on a triple quadrupole mass spectrometer (Agilent Technologies 6495 Triple 

Quad LS/MS) equipped with an UHPLC (Agilent Technologies 1290 Infinity II) using a 50 x 2.1 mm C18 

column (Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection volume was 2 µl of the diluted samples 

(1:10 in water). The flow was set to 0.250 ml/min and the separation was performed using 50 mM 

ammonium formate pH 8.1 (buffer A) and acetonitrile (B). We quantified the CoAs using external standard 

curves prepared in 1:10 diluted (water) sample matrix. The parameters for the multiple reaction 

monitoring (MRMs) are displayed in table S3 and the gradient in table S2. Data analysis was done using 

the Agilent Mass Hunter Workstation Software. 

Table S2. Gradient for the separation of CoA esters  

Time [min] A [%] B [%] 

0 100 0 

2 100 0 

5 94 6 

8 77 23 

10 20 80 

11 20 80 

12 100 0 

12.5 100 0 

 

Table S3. MRM transitions  

Compound Precursor Ion Product Ion Dwell Fragmentor 
Collision 
Energy 

Cell 
Accelerator 

Volt. 
Polarity 

Malyl-CoA 
(Quantifier) 

884.1 377.1 25 380 37 5 Positive 

Malyl-CoA 
(Qualifier) 

884.1 428 25 380 29 5 Positive 

Acetyl-CoA 
(Quantifier) 

810.1 302.2 25 380 35 5 Positive 

Acetyl-CoA 
(Qualifier) 

810.1 428 25 380 35 5 Positive 

Ethylmalonyl-CoA 
(Quantifier) 

882.1 331.2 25 380 41 5 Positive 

Ethylmalonyl-CoA 
(Qualifier) 

882.1 428 25 380 29 5 Positive 

Methylsuccinyl-CoA 
(Quantifier) 

882 375.1 25 380 33 5 Positive 

Methylsuccinyl-CoA 
(Qualifier) 

882 428 25 380 29 5 Positive 

Mesaconyl-CoA 880.1 375.1 25 380 25 5 Positive 
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(Quantifier) 

Mesaconyl-CoA 
(Qualifier) 

880.1 428 25 380 35 5 Positive 

Succinyl-CoA 
(Quantifier) 

868.1 361.1 25 380 35 5 Positive 

Succinyl-CoA 
(Qualifier) 

868.1 428.1 25 380 35 5 Positive 

Methylmalonyl-CoA 
(Quantifier) 

868.1 317.1 25 380 41 5 Positive 

Methylmalonyl-CoA 
(Qualifier) 

868.1 428 25 380 31 5 Positive 

Malonyl-CoA 
(Quantifier) 

854.1 245 25 380 32 5 Positive 

Malonyl-CoA 
(Qualifier) 

854.1 428 25 380 28 5 Positive 

Γ-hydroxybutyryl-
CoA (Quantifier) 

854.1 347.1 25 380 37 5 Positive 

Γ-hydroxybutyryl-
CoA (Qualifier) 

854.1 428 25 380 30 5 Positive 

Crotonyl-CoA 
(Quantifier) 

836.1 329 25 380 33 5 Positive 

Crotonyl-CoA 
(Qualifier) 

836.1 428 25 380 26 5 Positive 

Propionyl-CoA 
(Quantifier) 

824.1 317.1 25 380 31 5 Positive 

Propionyl-CoA 
(Qualifier) 

824.1 428 25 380 28 5 Positive 

Methylsuccinyl-CoA 
(Quantifier) 

824.1 317.1 25 380 31 5 Positive 

Methylsuccinyl-CoA 
(Qualifier) 

824.1 428 25 380 28 5 Positive 

Β-methylmalyl-CoA 
(Quantifier) 

898.1 391.1 25 380 39 5 Positive 

Β-methylmalyl-CoA 
(Qualifier) 

898.1 428.1 25 380 33 5 Positive 

 

Glycolate quantification 

Glycolate was measured on a triple quadrupole mass spectrometer (Agilent Technologies 6495 Triple 

Quad LS/MS) equipped with an UHPLC (Agilent Technologies 1290 Infinity II) using a 150 x 2.1 mm C18 

column (Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection volume was 1 µl. The diluted samples (1:10 

in water) as well as the external standard curve were diluted 1:2 with 10 µM 13C-labeled glycolate as 

internal standard. The flow was set to 0.100 ml/min and the separation was performed using dH2O with 

0.1% formic acid (buffer A) and methanol with 0.1% formic acid (B). The parameters for the multiple 

reaction monitoring (MRMs) are displayed in table S5 and the gradient in table S4. Data analysis was done 

using the Agilent Mass Hunter Workstation Software. 

Table S4. Gradient for the analysis of glycolate 

Time [min] A [%] B [%] 

0 100 0 

4 100 0 
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6 0 100 

7 0 100 

7.1 100 0 

12 100 0 

Table S5. MRM transitions  

Compound Precursor Ion Product Ion Dwell Fragmentor 
Collision 
Energy 

Cell 
Accelerator 

Volt. 
Polarity 

12C-Glycolate 
(Quantifier) 

75 47 150 380 9 5 Negative 

12C-Glycolate 
(Qualifier) 

75 75 150 380 0 5 Negative 

13C-Glycolate 
(Quantifier) 

77 48 150 380 9 5 Negative 

13C-Glycolate 
(Qualifier) 

77 77 150 380 0 5 Negative 

 

Malate quantification 

Malate was measured on a triple quadrupole mass spectrometer (Agilent Technologies 6495 Triple Quad 

LS/MS) equipped with an UHPLC (Agilent Technologies 1290 Infinity II) using a 150 x 2.1 mm C18 column 

(Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection volume was 5 µl. The diluted samples (1:10 in 

water) as well as the external standard curve were diluted 1:2 with 10 µM 13C-labeled malate as internal 

standard. The flow was set to 0.150 ml/min and the separation was performed using dH2O with 0.1% 

formic acid (buffer A) and methanol with 0.1% formic acid (B). The parameters for the multiple reaction 

monitoring (MRMs) are displayed in table S5 and the gradient in table S6. Data analysis was done using 

the Agilent Mass Hunter Workstation Software. 

Table S6. Gradient for the analysis of malate 

Time [min] A [%] B [%] 

0.0 85 15 

7.0 0 100 

9.0 0 100 

9.1 85 15 

15.0 85 15 

 

Table S7. MRM transitions  

Compound Precursor Ion Product Ion Dwell Fragmentor 
Collision 
Energy 

Cell 
Accelerator 

Volt. 
Polarity 

12C-Malate 
(Quantifier) 

133 115 150 80 11 5 Negative 
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12C-Malate 
(Qualifier) 

133 133 150 80 0 5 Negative 

13C-Malate 
(Quantifier) 

137 119 150 80 11 5 Negative 

 

 

HPLC-MS analysis of 6-dEB 

5 µl of the quenched assays were analyzed via HPLC-ESI-TOF on a 6550 iFunnel Q-TOF LC-MS (Agilent) 

with a 1.8 µm Zorbax SB-C18 column, 50 x 2.1 mm (Agilent) and using H2O (A) and acetonitrile (B) both 

containing 0.1% formic acid. The gradient condition were as follows: 0 min 5 % B, 1 min 5  % B, 6 min 95 

% B, 6.5 min 95 % B, 7 min 5 % B with a flow rate of 250 µl/min.. Capillary voltage was set at 3.5 kV and 

nitrogen gas was used as nebulizing (20 psig), drying (13 l/min, 225 °C) and sheath gas (12 l/min, 400°C). 

MS data were acquired with a scan range of 50-1200 m/z. Data were analyzed using the MassHunter 

Analysis software (Agilent). Evaluated 6-dEB (RT 3.26 min) adducts are shown in table S6. 

Table S8. Analyzed 6-dEB adducts  

Adduct [M+H]+ [M+Na]+ [M-H2O+H]+ 

m/z 387.274116 409.256058 369.263551 

 

4.6.3. CoA Standards Synthesis 

All CoA thioesters were synthesized and purified according to previously established protocols26,27 
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4.6.4. Supplementary Figures and Tables 

 

Table S9. List of enzymes used in this work 

# Name Full name Catalyzed reaction Origin Comment Source 

1 Ccr crotonyl-CoA 

carboxylase/reductase 

Crotonyl-CoA + NADPH + CO2 ⇌ Ethylmalonyl-

CoA + NADP+ 

M. extorquens   3 

2 Epi methylmalonyl-

/ethylmalonyl-CoA 

epimerase 

(2S)-Ethylmalonyl-CoA ⇌ (2R)-Ethylmalonyl-CoA R. sphaeroides   3 

Ecm ethylmalonyl-CoA mutase (2R)-Ethylmalonyl-CoA ⇌ Methylsuccinyl-CoA R. sphaeroides   3 

3 Mco methylsuccinyl-CoA 

oxidase 

Methylsuccinyl-CoA + O2 ⇌ Mesaconyl-

CoA + H2O2 

R. sphaeroides   3 

4 Mch mesacony-CoA hydratase Mesaconyl-CoA + H2O(l) ⇌ beta-Methylmalyl-CoA R. sphaeroides   3 

5 Mcl β-methylmalyl-CoA lyase beta-Methylmalyl-CoA ⇌ Glyoxylate + Propionyl-

CoA 

R. sphaeroides   3 

6 Pco propionyl-CoA oxidase Propionyl-CoA + O2 ⇌ Acrylyl-CoA + H2O2 A. thaliana A. thaliana short 

chain acyl-CoA 

oxidase 4 T134L  

3 

7 Ccr Crotonyl-CoA 

carboxylase/reductase 

Acrylyl-CoA + NADPH + CO2 ⇌ Methylmalonyl-

CoA + NADP+ 

M. extorquens   3 

8 Epi methylmalonyl-

/ethylmalonyl-CoA 

epimerase 

(2S)-Ethylmalonyl-CoA ⇌ (2R)-Ethylmalonyl-CoA R. sphaeroides   3 

Mcm methylmalonyl-CoA 

mutase 

Methylmalonyl-CoA ⇌ Succinyl-CoA R. sphaeroides   3 

9 Scr succinyl-CoA reductase Succinyl-CoA + NADPH ⇌ Succinic 

semialdehyde + NADP+ + CoA 

C. kluyveri   3 

10 Ssr succinic semialdehyde 

reductase 

Succinic semialdehyde + NADPH ⇌ 4-

Hydroxybutyric acid + NADP+ 

H. sapiens   3 

11 Hbs 4-hydroxybutyryl-CoA 

synthetase 

4-Hydroxybutyric acid + ATP + CoA ⇌ 4-

Hydroxybutyryl-CoA + ADP + Pi 

N. maritimus   3 

12 Hbd 4-hydroxybutyryl-CoA 

dehydratase 

4-Hydroxybutyryl-CoA ⇌ Crotonyl-CoA + H2O(l) N. maritimus   3 

13 Bha β-hydroxyaspartate 

aldolase 

3-hydroxyaspartate ⇌ Iminosuccinate + H2O P. denitrificans bhcC 28 

14 Bhd β-hydroxyaspartate 

dehydratase 

Glyoxylate + Glycine ⇌ 3-hydroxyaspartate P. denitrificans bhcB 28 

15 Isr imminosuccinate 

reductase 

Iminosuccinate + NADPH ⇌ Aspartate + NADP+ P. denitrificans bhcD 28 

16 Agt aspartate-glyoxylate 

aminotransferase 

Aspartate + Glyoxylate ⇌ Oxaloacetate + Glycine P. denitrificans bhcA 28 

17 Mdh malate dehydrogenase Oxaloacetate + NADH ⇌ Malate + NAD+ E. coli   29 

18 Mtk malyl-CoA synthetase Malate + ATP + CoA ⇌ Malyl-CoA + ADP + Pi M. extorquens mtkAB; subunit 

beta A, subunit 

alpha B 

29 

19 Mcl β-methylmalyl-CoA lyase Malyl-CoA ⇌ Glyoxylate + Acetyl-CoA R. sphaeroides   3 
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20 Fum fumarate hydratase Malate ⇌ Fumarate + H2O E. coli  30 

21 Frd fumarate reductase Fumarate + NADH ⇌ Succinate + NAD+ T. brucei  16 

22 Scs succinyl-CoA synthetase Succinate + ATP + CoA ⇌ Succinyl-CoA + ADP + Pi E. coli sucC subunit beta, 

sucD subunit 

alpha  

30 

23 Cit citrate synthase Acetyl-

CoA + Oxaloacetate + H2O(l) ⇌ Citrate + CoA 

Synechocystis sp.6803  This 

work 

24 Acn aconitate hydratase A Citrate ⇌ Isocitrate E. coli  30 

25 Icl isocitrate lyase Isocitrate ⇌ Glyoxylate + Succinate E. coli  30 

26 Pcc* propionyl-CoA carboxylase Acetyl-CoA + HCO3- + ATP ⇌ Malonyl-

CoA + AMP + PPi 

M. extorquens M. extorquens 

propionyl-CoA 

carboxylase D407I  

31 

27 Mcr malonyl-CoA reductase Malonyl-CoA + NADPH ⇌ Malonate 

semialdehyde + NADP+ + CoA 

C.aurantiacus   19 

28 Mcr malonyl-CoA reductase Malonate semialdehyde + NADPH ⇌ 3-

Hydroxypropionate + NADP+ 

C.aurantiacus   19 

29 Pcs propionyl-CoA synthase 3-Hydroxypropionate + ATP + CoA ⇌ 3-

Hydroxypropionyl-CoA + AMP + PPi 

Erythrobacter NAP1   32 

30 Pcs propionyl-CoA synthase 3-Hydroxypropionyl-CoA ⇌ Acrylyl-CoA + H2O(l) Erythrobacter NAP1   32 

31 Pcs propionyl-CoA synthase Acrylyl-CoA + NADPH ⇌ Propionyl-CoA + NADP+ Erythrobacter NAP1   32 

32 pha acetoacetyl-CoA thiolase 2 Acetyl-CoA ⇌ Acetoacetyl-CoA + CoA C.necator  33 

33 phb acetoacetyl-CoA reductase Acetoacetyl-CoA + NADPH ⇌ (S)-3-Hydroxybutyryl-

CoA + NADP+ 

C.necator  33 

34 phj enoyl-CoA hydratase (S)-3-Hydroxybutyryl-CoA ⇌ Crotonyl-CoA + H2O(l) P.aeruginosa  34 

35 DEBS 6-deoxyerythronolide B 

synthase 

Propionyl-CoA + 6 NADPH + 6 Methylmalonyl-CoA 

⇌ 6-Deoxyerythronolide B + 6 CO2 + 7 CoA + 

6 NADP+ + H2O 

S. erythrea summarized 

reaction sequence 

35 

 

Table S10. Yield comparison of the different modules. mm-CoA: methylmalonyl-CoA. Carbons/mm-CoA 

and Total carbons in product are calculated for the methylmalonyl backbone (C4). 

  

Substrate 

(glyoxylate) [µM] 

Initial carbons 

[µM]

Product (mm-

CoA) [µM]

Carbons/

mm-CoA

Total carbons in 

product [µM]
Yield [%]

4a 250 500 130 4 520 104

4b 250 500 110 4 441 88

4c 250 500 498 4 1992 398

4d 250 500 69 4 276 55
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Figure S1. Gibbs free energy profiles. (A) Overview of all reactions. (B) Modules 2+3+4a, (C) Modules 2+3+4b, (D) 

Modules 2+3+4c, (E) Module 2+3+4d. All reactions start from glyoxylate, branching points between modules are 

indicated by grey dashed lines. The ΔrG’ values were estimated using the eQuilibrator v3.0 tool36 at pH 7.5, I = 0.25 

and pMg = 3. All substrate and product (CoA, acids, aldehydes) concentrations were assumed to be 250 µM, with 

the following exceptions: #23 200 µM acetyl-CoA and 50 µM oxaloacetate, #24-25 all reactants 50 µM (and 250 µM 

glyoxylate), #32-34 125 mM acetoacetyl-CoA and every following reactant. Concentrations of other metabolites 

were estimated as follows: NADPH = 4.5 mM; NADP+ = 0.5 mM; NADH = 4.5 mM, NAD+ = 0.5 mM; ATP = 3 mM; ADP 
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= 1.4 mM; AMP = 0.5 mM; CoA = 1 mM; CO2(g) = 3.31 mM; CO2(total) = 50 mM. 

 

 

 

Figure S2. BHAC performance at different glyoxylate concentrations. To assess whether the whole BHAC 

is active, we tested different concentrations of glyoxylate while the amount of glycine was fixed at 250 

µM. An incomplete reaction sequence could lead to non-enzymatic hydrolysis (red arrow) of 

iminosuccinate to oxaloacetate and therefore to a usage of carbons from the initially added glycine. All 

values of the measured yield, which exceed 250 µM, indicate a functional cycle because only the recycling 

of the amino group from the aspartate (#16), and therefore the usage of another molecule of glyoxylate, 

allows for these concentrations. This implies the usage of two glyoxylate molecules (C2) for the formation 

of one molecule of oxaloacetate (C4). 
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Figure S3. Inhibition of the condensation reaction of Aat by free Coenzyme A. (A) Promiscuity of Aat 
assayed with acetyl-CoA and propionyl-CoA. (B) Dark grey are EIC values obtained for each compound in 
an assay containing all three pathway enzymes (Aat, Aar, Bbd), acetyl-CoA and propionyl-CoA. In the final 
feedback assay, only 3-hydroxybutyryl-CoA and crotonyl-CoA were detected (light grey).



158 
 

Figure S4. Enzyme assays for pathway optimization. A) Acetyl-CoA accumulation when using module 4b with different amounts 
of Mdh. More Mdh leads to accumulation of acetyl-CoA and a decrease in methylmalonyl-CoA (Figure 3). Setup see 1.3.6. B) and 
C) Methylmalonyl-CoA and acetyl-CoA accumulation when using module 4d with different amounts of CoA (1, 0.5 and 0.25 mM). 
Setup see 1.3.8. 

 

 

Figure S5. 6-deoxyerythronolide B synthase (DEBS). Displayed is the genetic architecture (DEBS 1-3), as well as the dissected in 
vitro assembly line (DEBS 1 into loading domain (LD), module 1 and module 2), indicated by the linker domains35. Each molecule 
6-dEB is derived from one molecule propionyl-CoA and six molecules (2S)-methylmalonyl-CoA, under the consumption of six 
reducing equivalents NADPH. 
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Figure S6. 6-dEB quantification. NADPH oxidation by DEBS was measured spectrophotometrically (A). After establishing 
stoichiometric equivalence between NADPH oxidation and 6-dEB production, the incremental reduction rates were related to the 
6-dEB EIC measurements. Note that the ordinate offset has been subtracted to yield the concentrations discussed in the main 
text. 
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A) 

B) 
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C) 

D) 
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E) 

F) 
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G) 

H) 
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Figure S7. Extracted Ion Counts (EIC) of CoA intermediates of module 1. All shown values are the peak areas of the EICs of the 
quantifiers (see Table S3.). The vertical lines separate the different assays as labelled on the x-axis. The bars represent the 
timepoints 0, 0.5, 1, 1.5, 2, 4, 6, 8, 10, 12 and 24 h (from left to right) in each assay. A) Propionyl-CoA) B) Methylmalonyl-CoA C) 
Succinyl-CoA D) γ-hydroxybutyryl-CoA E) Crotonyl-CoA F) Ethylmalonyl-CoA G) Methylsuccinyl-CoA H) Mesaconyl-CoA I) β-
methylmalyl-CoA 

  

I) 
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Figure S8. Enzyme Kinetics for Bbd (A) and Mtk (B) 
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5. Discussion and outlook 

5.1. Machine learning guided optimization of the CETCH cycle 

The publication of the CETCH cycle in 2016 was a milestone in synthetic biology. It was the first new-to-

nature CO2-fixation cycle, which was realized in vitro and harnessed the superior performance of Ccr. The 

workflow for the optimization was based on the identification of bottlenecks by measuring and identifying 

accumulation of intermediates of the pathway. The quantification of intermediates however, can be very 

time-consuming. A LC/MS method for each class of molecules is needed, which can lead to the demand 

of developing several methods and the measurement of each sample multiple times. Secondly, not each 

metabolite is stable enough to be suited for LC/MS measurements. Therefore, suitable high-throughput 

workflows remain a bottleneck in the realization- and omptimization-process of complex new pathways. 

The identification of the most important factors using METIS however, fulfills the same purpose by only 

measuring the product of the pathway and the analysis of the different tested system parameters. This 

allows accelerated optimization, reduces the requirements for expertise in analytics, and therefore makes 

such approaches feasible for research facilities with fewer resources. Besides overcoming major 

bottlenecks, the orchestration of enzymes from different metabolic backgrounds requires a compromise 

in assay parameters such as temperature and pH, leading to an environment in which only a few enzymes 

work at their maximum capability. The different metabolic backgrounds of the enzymes usually lead to 

side reactions. Enzymes naturally evolve within the metabolic framework of the host organism with a set 

of metabolites present. The presence of similar metabolites in a different metabolic context can lead to 

their transformation into dead-end products since the enzyme did not evolve to differentiate between 

the naturally occurring and the non-natural substrates. In theory, a well-tuned composition of enzyme 

amounts can minimize side reactions by an immediate turnover of critical metabolites as well as limiting 

the overabundance of critical enzymes.  

The correlation of the production rate and the loss of intermediates hints towards a positive effect of 

higher fluxes, preventing the occurrence of side reactions and simultaneously reducing the potential of 

hydrolysis of and damage to intermediates by a constant turnover. A closer look at the determining factors 

predicted by the algorithm revealed only a few important components, while others could be present in 

various concentrations without having a major impact on the outcome. The most important factors 

predicted by the algorithm were Mco, Hbs and Coenzyme B12. The need for high concentrations of Mco 

can be explained by its low activity compared to the other enzymes. Furthermore, its substrate 

methylsuccinyl-CoA has a half-life of 24 min and therefore needs to be rapidly converted to avoid 
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hydrolysis1. Mco is an engineered enzyme, which has only a fraction of its native activity2. Attempts to 

optimize the CETCH cycle in vitro should therefore aim at the further engineering of Mco to increase its 

activity or towards another way to dispose of electrons of the native Mcd reaction. While higher 

concentrations of Mco were beneficial, the opposite was the case for Hbs. When calculating the 

theoretical flux of the best conditions, Hbs was identified as the catalytic bottleneck of the whole pathway 

(data not shown). Why those low concentrations of Hbs are beneficial remains unclear, but they do 

indicate an interference with the pathway. Further testing on side reactivity, substrate independent ATP 

hydrolysis or contaminations from the purification are planned. Since none of the Coenzyme B12-

dependent enzymes (Mcm and Ecm) were highlighted as important factors, the beneficial concentrations 

of additional Coenzyme B12 (0 to 100 µM) seem to be sufficient. Coenzyme B12 is needed to form a radical 

intermediate during the rearrangement of the carbon skeleton by those mutases3,4. This complex reaction 

can lead to the inactivation of the enzyme itself and it was recently shown that a second enzyme (MeaB) 

protects and reactivates Mcm in both eukaryotes and prokaryotes5,6. Although none of the B12-dependent 

enzymes are highlighted as potential bottlenecks, further experiments with MeaB in the context of the 

whole CETCH cycle are envisioned to assess whether the reactivation of Mcm can prolong pathway 

functionality.  

Conclusively, we hope that our findings highlight the capability to identify bottlenecks and fine-tune 

biological networks by exclusively measuring the product of a pathway and encourages other scientists to 

use it for the faster prototyping of existing or new-to-nature systems. The guidance of an algorithm can 

help to understand non-obvious flaws of biological systems and stimulate follow-up experiments. 

Therefore, machine learning should be seen as a tool to explore the combinatorial space and give hints, 

which scientists still have to interpret and put into the context of the current research.  

 

5.2. Extending the product portfolio of the CETCH cycle 

The transformation of CO2 into value added products is a very expensive procedure since most of those 

compounds are rather complex multi-carbon compounds and CO2 sequestration is energy intensive. 

Therefore, most approaches in biotechnology aim to use sugars as the starting material, which are derived 

from plants. To harness the superior efficiency of the CETCH cycle, our goal was to showcase the direct 

conversion of CO2 into complex molecules. We could demonstrate the feasibility of combining synthetic 

and natural pathways, such as the BHAC, into larger metabolic networks with the desired features for the 

production of specific molecules. While the production of terpenes was achieved by coupling enzymatic 
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cascades downstream of the CETCH cycle to convert glyoxylate into C5-C15 compounds, the anaplerotic 

feedback sequences enabled the production of molecules from CETCH cycles’ intermediates. Beside the 

proven feasibility for the production of 6-dEB, there are many other compounds of interest which can be 

derived from the core cycle intermediates, such as polyhydroxybutyric acid, polylactic acid, crotonic acid 

or olefins. For the application in biotechnology (i.e. large-scale production) however, the complexity and 

the costs accompanied with protein purification and cofactor supply exceed the value of the compounds. 

Therefore, dramatic cost reduction by using cell lysate or the specialization on extremely expensive 

compounds, which are for example not producible in vivo due to toxicity, could close the gap between 

production costs and the value of the final product. Nevertheless, the integration of anaplerosis as a 

feature into a synthetic metabolic network does not only expand the product portfolio, but does add a 

layer of robustness that mimics the appearance of natural evolved pathways. Although those “complex” 

in vitro metabolic networks are orders of magnitude simpler than cells, the progress in building more 

complex setups will help to create even more adaptive systems to close the gap between in vitro and in 

vivo. For the future of synthetic metabolism, the implementation of more strategies adapted from nature 

to control in vitro metabolic networks will help to improve and understand fundamental designs of nature. 

 

5.3. Further optimization of the CETCH cycle 

Despite the improvement by a factor of >10 compared to the already manually optimized CETCH 5.4, the 

loss of intermediates reduces the production rates after ~60 minutes. Experiments to initialize a second 

production phase and revive the initial production rate by adding more substrate after 120 minutes were 

not successful (data not shown). Beside the most obvious explanations of enzyme wear-out or insufficient 

energy-supply, other factors such as inhibition by side products or damaged cofactors might contribute 

to reduced production rates. The character of our assays, which are usually started with energy 

equivalents and substrate once, is considerably passive compared to processes like continuous stirred-

tank reactors or the highly adaptive metabolism in cells. The future optimization of the CETCH cycle, and 

in vitro systems in general, must therefore aim to adopt more strategies from nature to create truly 

adaptive environments. In contrast to many attempts of building a synthetic cell from bottom up, those 

strategies can be transferred to other setups to actually exceed the boundaries of nature and exploit the 

recent progress in engineering, like the emerging field of microfluidics. Microfluidics is mainly divided into 

two categories. Microfluidic chips are predominantly used to either form vesicles or droplets (often cell 

sized) or to build miniaturized reaction chambers with concomitant control elements, such as spatial and 
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temporal control, while simultaneously reducing the use of resources and therefore costs7. While vesicles 

and droplets are undoubtedly useful for studying cell-cell interactions or for screening approaches8-10, 

their utilization is sometimes misused to claim a synthetic cell although adding only little to no advantage 

over bulk setups11. The complexity of already existing setups and the possibilities by using simulation 

guided chip designs are indicating that the aforementioned limitation of pathways by side reactions could 

be circumvented, leading to a higher efficiency of pathways. The division into smaller (thermodynamically 

favored) reaction blocks ending on stable intermediates could also mitigate the risk of loss of unstable 

intermediates. Beside the high level of control of substrate and energy supply through spatial and 

temporal regulation, the opportunity to govern additional layers of assay parameters like pH and 

temperature in the different chambers could lead to setups, which are actually exceeding the capabilities 

of nature.  

Alongside the supply of substrate and energy equivalents, sufficient amounts of functional catalysts are 

vital for the integrity of pathways. The stability of enzymes can be highly dependent on their environment. 

While some of them are sensitive towards elevated temperatures or oxygen, others are working within a 

broad range of conditions. In the case of the CETCH cycle for example, the methylmalonyl-CoA and 

ethylmalonyl-CoA mutates are coenzyme B12 dependent enzymes. As mentioned earlier, the addition of 

helper enzymes to repair or reactivate enzymes such as MeaB could contribute to an extended assay. The 

same is true for other cofactors or molecules like NADH or NADPH, which can be damaged during the 

assay and where repair mechanisms exist in nature 12. One strategy to counteract enzyme wear-out is the 

in situ production of proteins by cell free transcription-translation machinery. Some of the fixed carbon 

could be directly converted into amino acids to renew some of the critical enzymes in the CETCH cycle. 

Since two out of the four anaplerotic feedback sequences lead to TCA cycle intermediates, the de-novo 

biosynthesis of amino acids from α-ketoglutarate or oxaloacetate could be feasible. Beside the 

replenishment of proteins to endure the assays lifespan, the in situ production would open new 

possibilities for the optimization. Because the production and purification of enzymes is an expensive and 

laborious work, the number of mutants with potential gain of function properties that can be tested, is 

limited. Utilizing cell-free translation and transcription however, (un)targeted mutagenesis of genes could 

be employed, and those variants directly expressed together with the other enzymes to benchmark the 

performance within the assay. Afterwards, the information which variant outperformed the others could 

be retrieved from sequencing the DNA it was expressed from. Furthermore, genetic regulatory elements 

could be implemented to gain control over the assay. In contrast to engineering allosteric regulation, the 

tools for regulation of gene expression are easier to implement and faster to realize.  
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The shuttling of resources from inactive or damaged proteins to other parts of metabolism to scavenge 

carbons and energy, known as catabolism, is a common scheme in nature. Recently it was shown that 

proteins can be degraded and recycled into new proteins with a cell-free expression system in vitro13. 

Since the cell-free expression system itself consists of several proteins and numerous other components, 

the initial costs are high for purified components. The use of lysate however, could lower the cost to 

contribute to the efficiency of the assay. Besides the aforementioned protein-recycling, there are several 

pathways that salvage and degrade proteins into TCA cycle intermediates such as succinyl-CoA, acetyl-

CoA or oxaloacetate14. Since a lot of carbon and energy is stored in enzymes, the conversion into a 

pathways’ substrate could increase the productivity. The breakdown of already inactive catalysts could 

therefore endure the pathways lifetime and supply the pathway with energy and carbon for a final 

production phase to increase the yield. 

 

5.4. Closing remarks 

The progress in the field of synthetic biology led to astonishing new techniques and the realization of ideas 

that were thought to be science fiction a few decades ago. The combination of new screening techniques 

enabled by new technologies and instruments as well as decreasing prices in DNA synthesis led to the 

generation of enormous datasets. In parallel, the computational power and emergence of new algorithms 

to understand and predict biological systems enabled the use of the generated data. Artificial intelligence 

is already being employed for predicting protein structures or novel drugs, and is applied in almost all 

research areas where large (multi)omics datasets are available. While in vitro systems offer a great control 

to study their behavior, their application in real world processes for production is often limited to 

compounds, which cannot be synthesized chemically or are too toxic for the production in vivo. To unleash 

the potential of synthetic designer pathways it is mandatory to transfer them into organisms to lower the 

costs and labor. The great challenge will be the accessibility of non-model organisms with superior 

characteristics for tailor-made pathways, capable of accommodating the properties of such compounds. 

A first step will be to bridge the gap of in vitro and in vivo by engineering new screening platforms to study 

the interference of the host metabolism and new pathways. The 2021 iGEM team from Marburg 

developed such cell-free systems of various plants to tackle the problem of the slow process of plant 

engineering15. The prototyping with those approaches speeds up the transition process for the 

transplantation of complex pathways into production organisms. Together with recently developed 

CRISPR/Cas based genetic modification tools, the whole development from synthetic pathways designed 
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on paper to new organisms with superior characteristics will be faster than ever before and will help to 

tackle some of the most challenging problems humanity faces today. While the emergence of new 

technologies to fight climate change and world hunger indicate that it is possible to build a sustainable 

and fair world, the increasing gap between rich and poor mandates decisive actions of governments to 

promote and enforce the use of those technologies for a greater good. The ongoing corona pandemic and 

its consequences illustrate this quite well: While it was possible to develop a new type of vaccines within 

months, its production and distribution is largely limited to developed countries. Furthermore, the 

increasing disenchantment with politics and industry leads to an increased distrust in science. Therefore, 

the progress in science needs to be accompanied by sophisitcated societies, politicians, and scientists who 

are striving to make these new technologies accessible for everyone.  
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