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ABSTRACT

The identification of functional genetic variants and 
associated candidate genes linked to feed efficiency may 
help improve selection for feed efficiency in dairy cattle, 
providing economic and environmental benefits for the 
dairy industry. This study used RNA-sequencing data 
obtained from liver tissue from 9 Holstein cows [n = 5 
low residual feed intake (RFI), n = 4 high RFI] and 10 
Jersey cows (n = 5 low RFI, n = 5 high RFI), which 
were selected from a single population of 200 animals. 
Using RNA-sequencing, 3 analyses were performed to 
identify: (1) variants within low or high RFI Holstein 
cattle; (2) variants within low or high RFI Jersey cattle; 
and (3) variants within low or high RFI groups, which 
are common across both Holstein and Jersey cattle 
breeds. From each analysis, all variants were filtered for 
moderate, modifier, or high functional effect, and co-
localized quantitative trait loci (QTL) classes, enriched 
biological processes, and co-localized genes related to 
these variants, were identified. The overlapping of the 
resulting genes co-localized with functional SNP from 
each analysis in both breeds for low or high RFI groups 
were compared. For the first two analyses, the total 
number of candidate genes associated with moder-
ate, modifier, or high functional effect variants fixed 
within low or high RFI groups were 2,810 and 3,390 
for Holstein and Jersey breeds, respectively. The major 
QTL classes co-localized with these variants included 
milk and reproduction QTL for the Holstein breed, and 
milk, production, and reproduction QTL for the Jersey 
breed. For the third analysis, the common variants 
across both Holstein and Jersey breeds, uniquely fixed 
within low or high RFI groups were identified, reveal-
ing a total of 86,209 and 111,126 functional variants 

in low and high RFI groups, respectively. Across all 
3 analyses for low and high RFI cattle, 12 and 31 co-
localized genes were overlapping, respectively. Among 
the overlapping genes across breeds, 9 were commonly 
detected in both the low and high RFI groups (IN-
SRR, CSK, DYNC1H1, GAB1, KAT2B, RXRA, SHC1, 
TRRAP, PIK3CB), which are known to play a key role 
in the regulation of biological processes that have high 
metabolic demand and are related to cell growth and 
regeneration, metabolism, and immune function. The 
genes identified and their associated functional variants 
may serve as candidate genetic markers and can be 
implemented into breeding programs to help improve 
the selection for feed efficiency in dairy cattle.
Key words: feed efficiency, Holstein, Jersey, RNA-
sequencing

INTRODUCTION

Feed costs are a highly variable expense in cattle pro-
duction and represent up to 75% of production costs 
(Food and Agriculture Organization, 2017), emphasiz-
ing the importance in improving genetic selection for 
feed efficiency in cattle production. In addition, the 
correlation between feed efficiency and methane emis-
sion traits suggests that feed efficiency contributes to 
variation in the environmental footprint of the dairy 
industry (Connor et al., 2012). Therefore, there is a 
demand for improving the accuracy of selection for 
superior feed efficiency, and thus milk production ef-
ficiency, in dairy cattle, which can lead to economic 
benefits, reduced production costs, and improved envi-
ronmental sustainability for the dairy industry (Connor 
et al., 2012; Seymour et al., 2019).

A strategy to better understand the genetic architec-
ture of feed efficiency traits is using high throughput 
RNA-sequencing (RNA-seq). The RNA-seq allows for 
the identification of differentially expressed genes in 
specific tissues across phenotypically divergent groups 
and has been performed to identify differentially ex-
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pressed genes between divergent feed efficiency groups 
in cattle (Kern et al., 2016; Salleh et al., 2017; Keel, 
et al., 2018; Higgins et al., 2019). In addition to dif-
ferentially expressed gene analysis, RNA-seq has been 
applied to identify mRNA isoforms and functional ge-
netic variants such as SNP and insertions and deletions 
(INDEL) associated with desirable traits (Mortazavi 
et al., 2008; Cánovas et al., 2013; Cardoso et al., 2017; 
Wickramasinghe et al., 2014). Accordingly, it has suc-
cessfully been applied to large scale SNP discovery 
analyses in livestock, leading to the identification of 
functional genetic markers, a deeper understanding of 
the genetic architecture, and a reduction in genome 
complexity of important production traits such as feed 
efficiency, health, fertility, and meat quality traits in 
ruminants (Cánovas et al., 2010, 2014a; Dias et al., 
2017; Weber et al., 2016). To explain and understand 
the genetic variation related to feed efficiency or meta-
bolic status, genetic markers influencing the regulation 
of these traits must be identified. In addition to iden-
tifying putative genetic markers, the functional study 
of positional candidate genes, along with the identifica-
tion of QTL co-localized with functional variants, can 
be performed to generate a greater understanding of 
feed efficiency and to identify associated genomic re-
gions (Pareek et al., 2016). Currently, the identification 
of genetic variants associated with feed efficiency using 
RNA-seq and their subsequent functional annotation in 
dairy cattle has not been fully completed. This could 
provide insight into the biology underlying genetic 
markers that may influence the regulation of feed ef-
ficiency in dairy cattle and ultimately improve selection 
strategies for feed efficiency, resulting in economic and 
environmental benefits for dairy production.

This study aimed to improve the understanding of 
the genetic architecture underlying genetic variants and 
candidate genes that may influence the regulation of 
this trait in dairy cattle. This was done by using Hol-
stein and Jersey cattle, which were previously selected 
for extreme feed efficiency groups based on residual 
feed intake (RFI; kg/d) from a larger population. The 
objectives of this study were to: (1) identify SNP and 
INDEL uniquely fixed within low or high RFI Holstein 
or Jersey cattle (independent breeds), and SNP and 
INDEL uniquely fixed within low or high RFI groups 
common across both Holstein and Jersey cattle (both 
breeds); (2) determine functional information of the 
genetic variants by evaluating variant functional effect, 
co-localized QTL classes, significantly enriched biologi-
cal processes, and functional candidate genes associ-
ated with genetic variants related to feed efficiency; 
and (3) determine the overlapping positional candidate 
genes associated with low or high RFI groups across all 

3 analyses (Holstein analysis, Jersey analysis, across-
breeds analysis).

MATERIALS AND METHODS

RNA-Seq Data Set Information

The data used for this study were obtained from 
National Center for Biotechnology Information Gene 
Expression Omnibus public database (liver RNA-seq 
data) accession number: GSE92398 (Salleh et al., 
2017). The RNA-seq raw sequence reads from liver tis-
sue of 9 Holstein (n = 5 low RFI, n = 4 high RFI) 
and 10 Jersey cattle (n = 5 low RFI, n = 5 high RFI) 
divergent for feed efficiency were analyzed. Feed ef-
ficiency groups were classified based on RFI (kg/d), 
which is a calculation for feed efficiency that accounts 
for body weight and growth (Koch et al., 1963). The 
RFI classification groups in this study included low 
RFI, which represents the high feed efficient group, 
and high RFI, which represents the low feed efficient 
group. The 9 Holstein (5 low RFI and 4 high RFI) 
and 10 Jersey cows (5 low RFI and 5 high RFI) were 
selected from a larger research herd of 200 dairy cattle. 
Detailed animal management and sampling informa-
tion has been previously described (Salleh et al., 2017). 
Briefly, animals in this study with the lowest (more feed 
efficient) and highest RFI (less feed efficient) values 
were used, classifying them as extreme RFI animals 
with the intention to capture the greatest phenotypic 
and genetic differences to facilitate characterization of 
the RFI trait. The RFI values were calculated using 
one-step approach and random animal solutions were 
extracted from random regression model. The RFI was 
adjusted for stage of lactation, age, management group, 
breed, and parity. Two liver tissue samples were col-
lected per animal via biopsy (Salleh et al., 2017). The 
RNA was extracted from liver samples using QIAzol, 
RNeasy Mini Kit (Qiagen, Hilden, Germany), and the 
cDNA was paired-end sequenced using Illumina HiSeq 
2500 machine (Illumina, San Diego, CA), generating 
paired-end reads (100 bp length).

Variant Site Detection and Analysis Workflow

The workflow used for SNP and INDEL detection 
for each analysis is summarized in Figure 1 and was 
adapted from a study that determined an optimized 
RNA-seq pipeline to detect genetic variants for RNA-
seq data from multiple samples per animal (Lam et al., 
2020). Additionally, the overall study workflow is shown 
in Figure 2, which was performed for the independent 
breeds analysis, as well as the across-breeds analysis, 
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in which the detected SNP and INDEL unique to the 
RFI groups (low or high RFI) were pooled for both 
Holstein and Jersey breeds. Quality of sequence reads 
were verified using FastQC (Andrews, 2014) to identify 
sequencing read artifacts including sites with low qual-
ity Phred scores, duplicated reads, uncalled bases (N 
sequences) and potential contamination (Cardoso et 

al., 2018; Cánovas et al., 2014b). Reads were trimmed 
to remove Illumina adapters and low quality bases at 
the start and end of reads (sites were removed if lower 
than Phred score = 30) using Trimmomatic (Bolger 
et al., 2014). Additionally, using Trimmomatic, reads 
with an average quality score below 20 within a sliding 
window of 5 nucleotides were removed, and reads with 
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Figure 1. Workflow diagram to identify unique functional SNP and INDEL within low or high RFI groups and predict corresponding QTL 
regions and types in Holstein and Jersey cattle.
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a minimum length of 75 bp following trimming were 
retained. Quality of sequence reads were re-evaluated 
after trimming of reads using FastQC (Andrews, 2014). 
Trimmed reads were individually aligned to the Bos 
Taurus reference genome (Assembly UMD3.1. release 
94), using STAR (Dobin et al., 2013). The alignment 
statistics of mapped reads are reported in Table 1. 
ReadGroups were then added to each sample using 
SAMtools (Version 1.4; Li, 2011) consequently allowing 
the differentiation of samples by assigning the origin 
of the read (low or high RFI group) and assignment 
of SNP to a specific genotype. Additionally, PCR du-
plicates were marked and removed using Picard tools 
(Version 2.18.25.; Picard tools; http:​/​/​broadinstitute​
.github​.io/​picard/​). Then, multisample calling was 
performed to enhance the sensitivity of variant detec-
tion and accuracy of genotype calling over calling each 
sample independently (Brouard et al., 2019). This was 
due to the availability of 2 replicate samples for each 
animal, which included replicate 1 representing the tis-
sue sample collected during low concentrate diet treat-
ment and replicate 2 representing the tissue sample 
collected during the high concentrate diet (Salleh et 
al., 2017). Therefore, BAM files of animals in the same 
RFI group were merged for each tissue sample and were 
called for variants using multisample calling, resulting 
in 1 variant calling format (VCF) file for each tis-
sue, each containing 2 genotypes (1 genotype per RFI 
group; Lam et al., 2020). Variant calling was performed 
to identify SNP and INDEL using the mpileup and call 
commands from BCFtools (Version 1.9–77-gd0cf724+; 
Danecek and McCarthy, 2017). After BAM files with 
the corresponding merging methodology was created 
for each approach, variant filtering was performed us-
ing VCFtools to remove variants with a minimum read 
depth below 10 and a minimum of 2 supporting reads 
for the alternative allele, as well as to filter SNP within 
3 bp surrounding a gap (Cánovas et al., 2010). The 
BCFtools filter was then used to remove variants with 
quality values below 30 (based on Phred scaled scores 
for the assertion made in the alternative allele), filter 
SNP within 5 bp of an INDEL, and filter any alternative 
allele with a lower frequency of 20% in the population.

To categorize the functional genetic variants, the 
unique SNP fixed within low or high RFI groups were 
identified using the VCF files containing filtered SNP. 
SnpSift (Version 4.0; Cingolani et al., 2012) was used 
to filter variants present in one RFI condition, and not 
present in the other. The VCF file was then split using 
VCFtools vcf-subset to create one VCF file with all low 
RFI variants and one VCF file with all high RFI vari-
ants, which were then compared using the BCFtools 
isec command to determine the intersection of the files 
and create 3 files: SNP or INDEL exclusive to low RFI 

VCF file, SNP or INDEL exclusive to high RFI VCF 
file, and SNP or INDEL shared between both low and 
high RFI groups VCF file.

Comparison of Variant Calling Performance  
Using Merged Replicate Samples Compared  
with Nonmerged Individual Replicate  
Samples Approach

Additional analyses were performed to ensure merging 
the technical replicate samples by RFI group improved 
the performance of variant calling for SNP and INDEL 
for the purpose to identify potential candidate variants 
associated with the trait of interest. Optimization of 
RNA-Seq pipelines using different sample merging ap-
proaches to improve power and accuracy of variant call-
ing is described in detail by Lam et al. (2020). BCFtools 
isec was used to determine the percentage of unique 
and shared SNP or INDEL between the nonmerged 
(individual replicate samples) and merged (merged 
replicate samples by RFI group) approach. The percent 
proportion of SNP and INDEL detected uniquely by 
each variant calling approach and detected commonly 
between both variant calling approaches was performed 
to determine the intersection of the files. This resulted 
in 3 files: SNP or INDEL exclusive to replicate sample 
1 (representing the tissue sample collected during low 
concentrate diet treatment), SNP or INDEL exclusive 
to replicate sample 2 (representing the tissue sample 
collected during the high concentrate diet), and SNP or 
INDEL shared between both replicate samples.

To compare the performance of the nonmerged (in-
dividual replicate samples) and merged (merged rep-
licate samples by RFI group) approaches, the quality 
of detected variants was analyzed. The variant quality 
distribution was evaluated for SNP and INDEL for 
each Holstein and Jersey population, separately. This 
resulted in violin plots illustrating the variant quality 
for detected SNP and INDEL in the Holstein popula-
tion and detected SNP and INDEL in the Jersey popu-
lation.

Identification of Functional Variants and Percentage 
of Variants Overlapping/Co-localized with QTL 
Classes and QTL Related to Specific Traits

Functional variants based on the variant effect predic-
tion tool and the percentage of variants overlapping/co-
localized with QTL classes and QTL related to specific 
traits were identified. In this study, QTL classes are 
defined as QTL categorized into a major trait category, 
including milk, meat and carcass, production, health, 
exterior, and reproduction. Furthermore, this study 
also discusses trait-specific QTL, which are defined as 
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QTL related to specific traits, for example, milk yield, 
milk protein percent, calving ease, and pregnancy 
rate, among others (Supplemental Figures S1–S12, 
https:​/​/​figshare​.com/​s/​dedb14cd92bd854fa7d5). The 
unique SNP and INDEL fixed within low or high RFI 
groups for each Holstein or Jersey breed (Figure 3), 
and common SNP and INDEL within low or high RFI 
groups common across both Holstein and Jersey cattle 
(Figure 4), were analyzed for their variant functional 
consequences using variant effect predictor (McLaren 
et al., 2010). Variants were selected based on moder-
ate, modifier, or high functional effect, which included 
missense, stop gain, stop loss, intergenic, splice, 5′or 
3′ untranslated region, upstream or downstream gene 

variant for SNPs, and frameshift deletion, inframe de-
letion, inframe insertion, 5′ or 3′ untranslated region, 
upstream or downstream gene variant for INDEL. 
The chromosome number and start and end position 
information of these variants of the unique variants 
fixed within low or high RFI groups and identified as 
a moderate, modifier, or high functional effect variant, 
were used to determine the percentage of variants co-
localized with QTL regions and classes (Asselstine et 
al., 2019). This analysis allowed for the characteriza-
tion of potential cattle QTL classes and QTL related to 
specific traits that may be influenced by the functional 
variants with moderate, modifier, or high functional ef-
fect. This was performed using R (R Version 3.6.0.; R 
Foundation for Statistical Computing, Vienna, Austria) 
and the R package: Genomic functional annotation in 
livestock for positional candidate loci, also known as 
GALLO (https:​/​/​github​.com/​pablobio/​GALLO) with 
previously known QTL class and trait information 
from the Cattle QTL Database that were filtered for 
dairy cattle breeds (Hu et al., 2007), sourced from the 
Animal QTL Database (Hu et al., 2019). To evaluate 
if the QTL classes and traits identified around the se-
lected variants were significantly overrepresented, the 
qtl_enrich() function from GALLO was used. Briefly, 
this function performs a bootstrap analysis though the 
random sampling of each QTL class or trait (depending 
on the user’s choice) present in the list of annotated 
QTL co-localized with the candidate variants. This 
random sampling is performed respecting the number 
of record proportions of each QTL class or trait by 
chromosome in the input list. In this study, after 1,000 
iterations of random sampling, the number of observed 
and expected QTL classes and traits, per chromosome, 
were compared and the enrichment status was defined 
for all QTL classes and traits.

Functional Analysis of Positional Candidate Genes 
Associated with Variants Fixed Within Low  
or High RFI Groups

To compare the overlapping positional candidate 
genes unique to low or high RFI groups from each 
analysis, the positional variants (i.e., SNP and INDEL) 
uniquely detected in low or high RFI groups from each 
analysis (independent analysis for Holstein and Jersey 
breeds and across-breeds analysis) were used. Using 
variant effect predictor tool (McLaren et al., 2010), 
genes co-localized with these variants were identified. 
Duplicate genes were removed from the gene lists and 
Venn diagrams were generated using R (R Version 
3.6.0.) VennDiagram-package to compare the overlap-
ping of the resulting genes from each analysis. The re-
sulting genes were used to perform the network analysis 
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functional analyses used to analyze Holstein and Jersey dairy cattle 
breeds.
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using NetworkAnalyst software (Xia et al., 2014) for 
each low or high RFI group for each analysis.

The gene network analysis was performed using 
the gene names detected for each RFI group, using 
protein-protein interaction network analysis on Net-
workAnalyst software (Xia et al., 2014, 2015; http:​/​
/​www​.networkanalyst​.ca). This approach used the 
pre-defined protein-protein interaction network avail-
able in the STRING database to build a gene network 
composed of the list of candidate genes used as input 
and other proteins, which creates a broader overview 
of the biological processes involved with the evaluated 
phenotype. To build this network, the option Minimum 
Interaction Network was used to construct a minimally 
connected network that contains all of the genes (seeds) 
uploaded for the analysis, which is performed by keep-

ing only those additional nodes (proteins not presented 
in the input files) that are necessary to connect the 
seed nodes. A biological processes analysis (GO:BP ex-
plorer) was performed using Overrepresentation Analy-
sis to identify significantly enriched biological processes 
associated with the submitted gene lists (and other 
related genes added by the software) based on Gene 
Ontology (GO) terms through the NetworkAnalyst 
software. An example of the use of GO terms to better 
understand the functional characteristics of positional 
variants identified by RNA-seq in livestock was done by 
Cánovas et al. (2012). The following biological processes 
that were most related to metabolic efficiency from the 
GO:BP functional explorer were selected to construct 
a subnetwork: lipid biosynthetic process, carbohydrate 
transport, regulation of protein metabolic process, en-

Lam et al.: GENETIC ARCHITECTURE OF DAIRY CATTLE FEED EFFICIENCY

Table 1. Sample information regarding feed efficiency group, total reads, number of uniquely mapped reads, and percent uniquely mapped 
reads for Holstein and Jersey cattle

Sample accession 
number by breed  

Feed efficiency 
group Total reads

No. uniquely 
mapped reads

% uniquely 
mapped reads

Holstein
  SRR5110641 high 25,321,432 23,666,950 93.47
  SRR5110642 high 25,057,354 23,3612,00 93.23
  SRR5110605 high 23,502,530 21,729,637 92.46
  SRR5110606 high 24,403,058 22,759,681 93.27
  SRR5110615 high 24,427,969 22,783,258 93.27
  SRR5110616 high 25,282,382 23,533,724 93.08
  SRR5110625 high 24,847,652 23,400,261 94.17
  SRR5110626 high 25,618,485 23,928,688 93.40
  SRR5110635 high 24,671,570 22,878,009 92.73
  SRR5110636 high 24,043,757 22,098,566 91.91
  SRR5110607 low 24,840,679 23,216,873 93.46
  SRR5110608 low 23,491,361 21,874,159 93.12
  SRR5110617 low 21,658,806 20,216,184 93.34
  SRR5110618 low 23,109,961 21,646,222 93.67
  SRR5110621 low 24,537,168 22,615,327 92.17
  SRR5110622 low 24,578,437 23,023,871 93.68
  SRR5110633 low 24,050,940 22,508,736 93.59
  SRR5110634 low 22,914,036 21,297,319 92.94
  Average ± SD   24,242,088 ± 996,513.08 22,539,851 ± 964,518.76 93.16 ± 0.56
Jersey
  SRR5110613 high 22,869,282 21,080,678 92.18
  SRR5110614 high 23,556,898 21,848,994 92.75
  SRR5110619 high 22,850,990 21,461,451 93.92
  SRR5110620 high 24,563,768 22,976,995 93.54
  SRR5110623 high 22,817,590 20,803,374 91.17
  SRR5110624 high 24,200,729 22,434,967 92.70
  SRR5110631 high 25,221,268 23,604,244 93.59
  SRR5110632 high 30,716,358 27,750,531 90.34
  SRR5110637 high 22,828,294 21,510,319 94.23
  SRR5110638 high 24,049,084 22,886,706 95.17
  SRR5110609 low 23,388,117 21,712,208 92.83
  SRR5110610 low 22,751,232 21,271,977 93.50
  SRR5110611 low 27,078,436 25,325,368 93.53
  SRR5110612 low 24,580,784 23,098,526 93.97
  SRR5110627 low 25,438,093 23,890,611 93.92
  SRR5110628 low 26,824,275 24,885,483 92.77
  SRR5110629 low 26,255,195 24,536,291 93.45
  SRR5110630 low 24,637,330 22,757,648 92.37
  SRR5110639 low 27,771,572 25,726,479 92.64
  SRR5110640 low 24,431,226 22,834,599 93.46
  Average ± SD   24,841,526 ± 2,052,720.86 23,119,872 ± 1,801,865.61 93.00 ± 1.08

http://www.networkanalyst.ca
http://www.networkanalyst.ca
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ergy reserve metabolic process, cellular carbohydrate 
metabolic process, fatty acid oxidation, lipid catabolic 
process, regulation of growth, skeletal muscle tissue 
development. The reported enriched GO:BP terms 
were obtained using the subnetwork composed by those 
nodes associated with the most biologically relevant 
GO:BP terms. Consequently, resulting P-values may 
by slightly inflated but still are representative of the 
functional profile of our candidate genes. The genes 
associated with the latter biological processes were 
used to construct the subnetwork using only the nodes 
associated with the previously reported biological pro-
cesses. An enrichment analysis was then performed on 
this subnetwork for the biological processes. The top 
50% most significantly enriched biological processes of 
the first quartile, corrected for False Discovery Rate 

(FDR <0.05), were reported in Table 2. This resulted 
in 16 and 18 significantly enriched biological pathways 
in the low and high RFI group for the Holstein analysis, 
16 and 15 significantly enriched biological pathways in 
the low and high RFI group in the Jersey analysis, and 
16 and 17 significantly enriched biological pathways 
in the low and high RFI group in the across-breeds 
analysis (Table 2).

RESULTS AND DISCUSSION

Alignment Statistics

The number of total reads, total uniquely mapped 
reads, and percentage of uniquely mapped reads are 
shown in Table 1. For Holstein low RFI samples, the 
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Figure 3. Total and proportion (%) of variants identified as unique or shared across low or high RFI groups in Holstein or Jersey cattle 
breeds.
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average number of total reads, total uniquely mapped, 
and percent uniquely mapped was 24,717,619 ± 
644,888.7, 22,905,631 ± 750,453.8, and 93.0 ± 0.6%, 
respectively. For Holstein high RFI samples, the aver-
age number of total reads, total uniquely mapped, and 
percent uniquely mapped was 23,647,674 ± 1,072,433.4, 
22,049,836 ± 997,383.5, and 93.0 ± 0.5%, respectively. 
For Jersey low RFI samples, the average number of to-
tal reads, total uniquely mapped, and percent uniquely 
mapped was 24,367,426 ± 2,384,616.2, 22,635,826 ± 
2,009,950.7, and 93.0 ± 1.5%, respectively. For Jersey 
high RFI samples, the average number of total reads, 
total uniquely mapped, and percent uniquely mapped 
was 25,315,626 ± 1,646,094.0, 2,635,826 ± 2,009,950.7, 
and 93.0 ± 0.6%, respectively. Overall, on average, 
93.13% reads from each sample were uniquely mapped 
to the UMD3.1 bovine reference genome, release 94 

(Table 1). This alignment statistic was expected, as in 
vitro and in vivo bovine embryo samples have shown 
91 and 92% alignment of uniquely mapped reads to 
the bovine reference (btau 4.0), respectively (Driver et 
al., 2012), whereas Salleh et al. (2017) showed 91% of 
uniquely mapped reads to the bovine reference genome 
release 82. Two technical replicate samples were avail-
able for each animal, as the previous study collected 
2 samples at different time points. The availability of 
replicate samples allowed for the merging of sample 
RNA-seq data by each RFI group, resulting in increased 
read quality and improving accuracy of variant calling 
(Supplemental Tables S7–S9, https:​/​/​figshare​.com/​s/​
dedb14cd92bd854fa7d5).

The percentage of shared and unique variants between 
the replicate samples were evaluated for the detected 
SNP (Supplemental Table S5, https:​/​/​figshare​.com/​
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Figure 4. Proportion (%) of SNP and INDEL detected across Holstein or Jersey cattle breeds for low or high RFI groups.
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Continued

Table 2. Significantly enriched biological processes identified for the independent breed analyses (Holstein and Jersey breeds) and the across-
breeds analysis (Holstein and Jersey breeds)

Pathway1
Total 
genes2 Hits3 P-value FDR4

Holstein low RFI        
  Regulation of transcription from RNA polymerase II promoter 498 63 2.71·10−27 1.80·10−24

  Lipid biosynthetic process 374 51 1.53·10−23 5.07·10−21

  Regulation of cytokine biosynthetic process 708 55 4.95·10−14 1.09·10−11

  Actin filament-based process 161 25 2.99·10−13 4.95·10−11

  Immune response 28 12 1.26·10−12 1.67·10−10

  Energy reserve metabolic process 206 27 2.12·10−12 2.34·10−10

  Carbohydrate transport 146 22 1.56·10−11 1.48·10−09

  Positive regulation of T cell proliferation 126 19 3.92·10−10 3.24·10−08

  Cell maturation 426 35 7.72·10−10 5.68·10−08

  Response to hypoxia 105 17 1.09·10−09 7.21·10−08

  Nitrogen compound metabolic process 227 24 3.30·10−09 1.99·10−07

  Fatty acid oxidation 292 27 6.34·10−09 3.50·10−07

  DNA damage checkpoint 487 36 7.48·10−09 3.81·10−07

  DNA damage response, signal transduction by p53 class mediator 317 26 1.41·10−07 6.45·10−06

Holstein high RFI        
  Regulation of transcription from RNA polymerase II promoter 498 64 4.91·10−30 3.25·10−27

  Lipid biosynthetic process 374 56 1.18·10−29 3.89·10−27

  Regulation of cytokine biosynthetic process 708 59 5.70·10−18 1.26·10−15

  Immune response 28 12 5.44·10−13 9.01·10−11

  Actin filament-based process 161 23 3.81·10−12 4.22·10−10

  Carbohydrate transport 146 22 3.83·10−12 4.22·10−10

  Cell maturation 426 37 5.82·10−12 5.51·10−10

  Response to hypoxia 105 18 4.07·10−11 3.37·10−09

  Energy reserve metabolic process 206 23 6.20·10−10 4.56·10−08

  Positive regulation of T cell proliferation 126 18 9.10·10−10 6.03·10−08

  Fatty acid oxidation 292 27 1.35·10−09 8.12·10−08

  Regulation of protein metabolic process 147 19 1.74·10−09 9.59·10−08

  DNA damage checkpoint 487 35 3.98·10−09 1.98·10−07

  Nitrogen compound metabolic process 227 23 4.19·10−09 1.98·10−07

  Regulation of binding 83 14 7.87·10−09 3.47·10−07

  Regulation of transcription from RNA polymerase II promoter 498 64 4.91·10−30 3.25·10−27

Jersey low RFI        
  Lipid biosynthetic process 374 78 9.76·10−47 6.46·10−44

  Regulation of transcription from RNA polymerase II promoter 498 81 5.16·10−40 1.71·10−37

  Positive regulation of T cell proliferation 126 32 5.09·10−22 1.12·10−19

  Regulation of binding 83 27 6.97·10−22 1.15·10−19

  Inflammatory response 80 24 1.23·10−18 1.62·10−16

  Carbohydrate transport 146 28 6.05·10−16 6.68·10−14

  Energy reserve metabolic process 206 32 2.68·10−15 2.54·10−13

  Fatty acid oxidation 292 37 1.31·10−14 1.08·10−12

  Regulation of cytokine biosynthetic process 708 59 3.40·10−14 2.50·10−12

  Regulation of protein metabolic process 147 25 4.14·10−13 2.74·10−11

  Response to hypoxia 105 21 1.26·10−12 7.59·10−11

  Nitrogen compound metabolic process 227 29 9.20·10−12 5.07·10−10

  Cell maturation 426 39 7.94·10−11 4.04·10−09

  Immune response 28 11 1.14·10−10 5.40·10−09

  Reciprocal meiotic recombination 145 21 7.37·10−10 3.25·10−08

Jersey high RFI        
  Lipid biosynthetic process  374 68 8.93·10−39 5.91·10−36

  Regulation of transcription from RNA polymerase II promoter 498 71 2.37·10−33 7.84·10−31

  Positive regulation of T cell proliferation 126 29 1.08·10−19 2.38·10−17

  Energy reserve metabolic process 206 34 4.54·10−18 7.52·10−16

  Regulation of binding 83 23 8.55·10−18 1.13·10−15

  Fatty acid oxidation 292 36 6.53·10−15 6.68·10−13

  Carbohydrate transport 146 26 7.06·10−15 6.68·10−13

  Inflammatory response 80 18 1.76·10−12 1.46·10−10

  Regulation of protein metabolic process 147 23 4.56·10−12 3.35·10−10

  Nitrogen compound metabolic process 227 27 4.49·10−11 2.97·10−09

  Regulation of cytokine biosynthetic process 708 50 9.73·10−11 5.86·10−09

  Immune response 28 10 1.18·10−09 6.49·10−08

  Response to hypoxia 105 17 1.77·10−09 9.01·10−08

  Positive regulation of lymphocyte activation 33 10 7.38·10−09 3.49·10−07
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s/​dedb14cd92bd854fa7d5) and INDEL (Supplemental 
Table S6). This revealed a proportion of detected SNP 
(27.46%) and INDEL (34.01%) that were unique to 
each replicate sample. The use of RNA-seq as a tool for 
variant calling is novel in livestock research and is con-
tinuously improving. These uniquely detected variants 
to each replicate sample may represent low frequency 
variants or errors associated sequencing errors during 
library preparation in RNA-seq. This is possible due 
to highly differential coverage among different genes, 
resulting in different variants detected in the replicate 
samples, leading to allele-specific expression (Han et 
al., 2015). However, this study aimed to identify posi-
tional candidate markers associated with the trait of 
interest that involves capturing allele-specific expres-
sion. Further analysis was performed to validate the 
variant calling approach used in this study.

To validate merging the replicate samples by RFI 
group for the purpose of identifying potential candidate 
variants associated with the trait of interest, in compari-
son to traditionally calling from individual samples, the 
variant quality distribution and variant density at those 
variants was evaluated (Supplemental Figures S13–S16, 
https:​/​/​figshare​.com/​s/​dedb14cd92bd854fa7d5), along 
with the descriptive statistics of the variant quality 
(Supplemental Table S7). It was observed that the 
unique SNP for the nonmerged (individual replicate 
samples) approach in both the Holstein and Jersey 
population, showed a smaller median and larger density 
of variants with low quality values (Supplemental Table 
S7). Additionally, the quality values in the nonmerged 
VCF file, for the variants shared between the merged 
and nonmerged approaches showed a larger median and 
highest values for the third quartile of quality distribu-

Lam et al.: GENETIC ARCHITECTURE OF DAIRY CATTLE FEED EFFICIENCY

Table 2 (Continued). Significantly enriched biological processes identified for the independent breed analyses (Holstein and Jersey breeds) 
and the across-breeds analysis (Holstein and Jersey breeds)

Pathway1
Total 
genes2 Hits3 P-value FDR4

Across-breeds low RFI        
  Lipid biosynthetic process 374 94 3.23·10−48 2.13·10−45

  Regulation of transcription from RNA polymerase II promoter 498 103 1.77·10−44 5.87·10−42

  Energy reserve metabolic process 206 47 3.74·10−22 8.25·10−20

  Positive regulation of T cell proliferation 126 36 1.04·10−20 1.71·10−18

  Regulation of binding 83 29 1.28·10−19 1.69·10−17

  Fatty acid oxidation 292 51 1.61·10−18 1.78·10−16

  Nitrogen compound metabolic process 227 43 4.18·10−17 3.95·10−15

  Regulation of cytokine biosynthetic process 708 80 1.49·10−16 1.23·10−14

  Regulation of protein metabolic process 147 33 1.22·10−15 8.95·10−14

  Inflammatory response 80 24 9.80·10−15 6.48·10−13

  Carbohydrate transport 146 30 3.03·10−13 1.82·10−11

  Response to hypoxia 105 25 9.19·10−13 5.07·10−11

  Cell maturation 426 51 9.90·10−12 5.04·10−10

  Immune response 28 12 4.45·10−10 2.11·10−08

  Actin filament-based process 161 27 6.34·10−10 2.80·10−08

Across-breeds high RFI        
  Lipid biosynthetic process 374 93 4.02·10−48 2.66·10−45

  Regulation of transcription from RNA polymerase II promoter 498 101 1.13·10−43 3.72·10−41

  Regulation of cytokine biosynthetic process 708 90 7.97·10−23 1.76·10−20

  Fatty acid oxidation 292 54 3.33·10−21 5.51·10−19

  Positive regulation of T cell proliferation 126 35 4.92·10−20 6.30·10−18

  Energy reserve metabolic process 206 44 5.71·10−20 6.30·10−18

  Regulation of binding 83 28 9.10·10−19 8.60·10−17

  Cell maturation 426 59 9.09·10−17 7.52·10−15

  Carbohydrate transport 146 31 2.57·10−14 1.89·10−12

  Regulation of protein metabolic process 147 31 3.14·10−14 2.08·10−12

  Inflammatory response 80 23 6.21·10−14 3.74·10−12

  Nitrogen compound metabolic process 227 38 9.57·10−14 5.28·10−12

  Immune response 28 14 7.89·10−13 4.02·10−11

  Actin filament-based process 161 30 2.49·10−12 1.18·10−10

  Response to hypoxia 105 24 4.27·10−12 1.89·10−10

  Reciprocal meiotic recombination 145 25 9.68·10−10 4.01·10−08

1Pathways that were in the top 50% biological processes of the first quartile of the most significantly enriched biological pathways (P < 0.05, 
FDR < 0.05) were reported in this table.
2Total genes = total number of genes from gene list associated with that specific biological pathway.
3Hits = gene hits within the network.
4FDR = false discovery rate < 0.05.
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tion (Supplemental Table S7). These results may sug-
gest that the variants which are shared between the 
merged and nonmerged approach are those with the 
highest probability to be true variants as opposed to 
false positives. Additionally, it is important to highlight 
that the quality distribution of the variants uniquely 
identified in the merged approach was higher than the 
quality distribution of the unique SNP for the non-
merged approach (Supplemental Figures S13 and S15).

Interestingly, the described quality distribution and 
read density patterns are observed in the opposite direc-
tion for INDEL, with the nonmerged groups displaying 
greater medians, means, and third quartile values in both 
Holstein and Jersey populations (Supplemental Table 
S7, https:​/​/​figshare​.com/​s/​dedb14cd92bd854fa7d5). 
This may be explained by the higher heterogeneity of 
reads and consequently increased difficulty to accurate-
ly align reads to perform the INDEL calling. However, 
it is important to highlight that the majority of INDEL 
detected in this study are shared between merged and 
nonmerged approaches. Additionally, the minority of 
INDEL uniquely identified in the approach used in this 
study (merging samples by RFI group), were subjected 
to a quality filtering where only those INDEL that 
qualified for minimum read depth of 10, minimum of 
2 supporting reads for the alternative allele, quality 
values greater than 30 (based on Phred scaled scores 
for the assertion made in the alternative allele), and 
a minimum frequency of 20% in the population, were 
retained for the functional analysis.

In addition to variant quality and variant distribu-
tion, this study also compared variant calling from 
nonmerged samples and merged samples approach by 
evaluating the average total reads overlapping the al-
ternative allele of each variant (SNP or INDEL) in the 
nonmerged and merged approach for each Holstein and 
Jersey population. The results are displayed in violin 
plots in Supplemental Figures S17–S20 (https:​/​/​figshare​
.com/​s/​dedb14cd92bd854fa7d5) and corresponding de-
scriptive statistics are shown in Supplemental Table S8. 
This illustrated that the average number of reads over-
lapping the alternative alleles for the uniquely detected 
SNP is higher in the merged approach in both Holstein 
and Jersey populations, compared with the nonmerged 
approach. Additionally, the third quartile of the alter-
native allele count for the unique SNP was higher in the 
merged approach compared with the nonmerged ap-
proach in both Holstein and Jersey populations. Nota-
bly, the average reads overlapping the unique SNP are 
higher in the Holstein population, which may suggest 
read coverage variability between the population data, 
which would influence coverage of the alternative allele. 
This may be explained by different overall coverage, 
library preparation, among other factors.

As similarly observed from the quality distribution 
analysis (Supplemental Table S7, https:​/​/​figshare​
.com/​s/​dedb14cd92bd854fa7d5), the INDEL showed 
an opposing pattern indicating higher coverage of the 
alternative alleles in the nonmerged approach, which, 
as stated, can be a consequence of the limitations and 
challenges associated with INDEL calling caused by 
the increase in read sequence variability. On the other 
hand, in the Jersey population, this effect appears neg-
ligible with all groups showing similar distributions for 
the number of reads overlapping the alternative allele 
of the uniquely called INDEL. Interestingly, the third 
quartile of the distribution for the unique INDEL called 
in the merged approach is higher than all the other 
groups. These results reinforce that INDEL calling is 
complex and is affected by different variables.

Furthermore, correlation values were calculated be-
tween the average number of reads overlapping the alter-
native allele and the quality values for uniquely detected 
and commonly detected variants in each nonmerged 
and merged sample approaches (Supplemental Table 
S9, https:​/​/​figshare​.com/​s/​dedb14cd92bd854fa7d5). 
The results revealed a higher correlation between the 
average number of reads overlapping the alternative 
allele and quality in the uniquely detected groups 
regarding SNP regardless of the approaches in both 
Holstein and Jersey populations. These results suggest 
that a higher number or reads covering the alterna-
tive allele is associated with higher quality SNP call-
ing. Additionally, highly significant correlations were 
observed in the shared groups, suggesting the shared 
variants have a stronger positive correlation between 
the number of reads overlapping the alternative allele 
and variant detection quality (Supplemental Table S9). 
Furthermore, when considering both the distribution of 
reads overlapping the alternative allele (Supplemental 
Figures S17–20), and the correlation results (Supple-
mental Table S9), the results suggest that calling vari-
ants from merged samples produce more reliable SNP 
callings when the unique SNP are considered.

Regarding the INDEL, the highest correlations were 
observed for the shared groups. However, it is observed 
that the unique INDEL from the merged groups also 
show higher correlation values between the average 
reads overlapping the alternative allele and quality 
when compared with the uniquely detected INDEL 
from the nonmerged groups.

Overall, these results reinforce the hypothesis that 
merging replicate samples for variant calling, increase 
the variant quality, and therefore reduce the false-posi-
tive detection rate. This has been previously described 
in exome data (Zhang et al., 2014). In addition, the 
use of multisample calling (or joint calling) method has 
shown to enhance the sensitivity of SNP detection and 
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accuracy of genotype calling over calling each sample 
independently in data sets with low sequencing depth 
(Nielsen et al., 2011). Furthermore, Brouard et al. 
(2019) has previously demonstrated the improved sen-
sitivity of joint genotype calling using GATK compared 
with individual calling, supporting these results.

SNP and INDEL Uniquely Identified Within Low  
or High RFI Groups for Each Analysis

For the independent breeds analyses, functional 
SNP and INDEL within low or high RFI groups for 
each Holstein and Jersey cattle breeds were identified 
(Figure 2). In total, 251,622 SNP and 9,513 INDEL 
were identified for the Holstein cattle breed (Figure 3). 
For the Jersey cattle breed, 275,642 SNP and 10,411 
INDEL were identified (Figure 3). A greater number of 
SNP were identified compared with INDEL across feed 
efficiency groups for both breeds (Figure 3). This was 
expected as INDEL occur less frequently in the genome; 
however, they are still capable of causing substantial ge-
netic and phenotypic variation (Mullaney et al., 2010). 
The majority of variants were observed to be shared 
among low and high RFI groups for both Holstein and 

Jersey cattle (Figure 3). On average, 5.94%, and 5.54% 
of variants were uniquely fixed within low RFI and high 
RFI groups respectively, which could be contributing 
to the biological regulation of feed efficiency. The total 
number of uniquely detected and commonly detected 
SNP and INDEL for low or high RFI groups for each 
breed, are shown in Figure 3.

For across-breeds analysis, functional SNP and IN-
DEL within low or high RFI groups that are common 
across both Holstein and Jersey cattle breeds were 
identified, revealing a total of 159,767 in low RFI and 
111,148 in high RFI groups (Figure 4). Identification 
of common putative genetic variants across breeds is 
important to build supportive evidence for selection of 
variants that may serve as potential genetic markers to 
select for production traits in livestock (Pareek et al., 
2016).

Variants Associated with Feed Efficiency  
that are Co-localized with Dairy Cattle QTL  
Classes and QTL Related to Specific Traits

It was observed that variants unique to more feed 
efficient Holstein cattle are mainly co-localized with 
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Figure 5. Percent (%) proportion of QTL classes co-localized with variants including both SNP and INDEL for low or high RFI groups in 
Holstein and Jersey cattle breeds.
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milk (38.36%) and reproduction (28.56%) QTL classes 
(Figure 5). Variants unique to more feed efficient Jersey 
cattle are mainly co-localized with the milk QTL class 
(64.12%; Figure 5). When examining less feed efficient 
Holstein and Jersey cattle, milk and reproduction are 
also the major QTL classes co-localized with SNP and 
INDEL unique to these groups (Figure 5). This may 
suggest that variants unique to more or less feed ef-
ficient animals may be regulating the same QTL but 
in different ways to influence the regulation of feed 
efficiency in dairy cattle. In addition, it was expected 
that these variants are co-localized mainly within 
milk QTL, as feed efficiency in dairy cattle refers to 
milk production efficiency, which is related to milk 
production and milk composition traits. In addition, 
feed efficiency in cattle is known to be correlated with 
reproduction traits (Hurley et al., 2018), suggesting the 
large percentage of variants unique to low or high RFI 
would be co-localized with both milk and reproduction 
QTL. It is known that there is a negative correlation 
between fertility traits, in both females (Ferreira Júnior 
et al., 2018) and bulls (Awda et al., 2013) with feed 
efficiency. However, it is important to note that there is 
a higher probability that co-localized QTL are mainly 
in QTL associated with milk traits, due to the Cattle 
QTL database having information predominantly in 
milk QTL, leading to a bias toward overlapping with 
milk related QTL. This is due to the larger number of 
existing studies that have evaluated milk traits in dairy 
cattle, in comparison with other traits in other breeds. 
However, it is shown that the QTL classes and QTL 
related to specific traits are significantly enriched for 
the variants unique to low or high RFI groups detected 
commonly across breeds (Figure 7, Figure 8). Results 
from the latter QTL enrichment analysis are shown 
in Supplemental Tables S3 and S4 (https:​/​/​figshare​

.com/​s/​dedb14cd92bd854fa7d5), which report the trait 
related to the QTL, chromosome, number of QTL, P-
value, and adjusted P-value, for all QTL co-localized 
with variants uniquely fixed to low or high RFI Hol-
stein and Jersey cattle. The QTL related to specific 
traits that the variants were co-localized were identified 
to perform a more in-depth analysis, which are shown 
in Supplemental Figures S1–12 (https:​/​/​figshare​.com/​
s/​dedb14cd92bd854fa7d5). The Holstein low and high 
RFI groups were both mainly associated with milk fat 
yield and milk fat percentage QTL. Additionally, the 
reproductive traits related to the QTL identified were 
also of the same order for both RFI groups for Holstein 
as well, including calving ease, and interval to first 
estrous after calving QTL classes. This may further 
suggest that these variants are influencing similar QTL 
differently, which could either improve or reduce the 
metabolic status or level of feed efficiency in Holstein 
cattle. In addition, as feed efficiency is a complex trait, 
regulated by multiple genes, pleiotropic effects should 
be considered, as multiple loci could be simultaneously 
regulating feed efficiency (Fonseca et al., 2018).

When evaluating the QTL related to specific traits 
associated with the Jersey cattle variants (Figure 5), it 
is observed that the milk QTLs related to the more feed 
efficient Jersey cattle included milk fat yield and milk 
yield. Additionally, the major milk QTL type associ-
ated with less feed efficient Jersey cattle is milk yield 
and milk fatty acid index. Reproduction QTLs related 
to both Jersey feed efficiency groups included calving 
ease and interval to first estrous after calving. Compa-
rably, the milk and reproduction QTL types were fairly 
similar across efficiency groups and dairy breeds.

The substantial overlapping of milk and reproduc-
tion QTL classes with divergent feed efficiency groups 
was expected, as metabolic energy utilization influences 
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Figure 6. Percent (%) proportion of QTL classes co-localized with variants including both SNP and INDEL for low or high RFI groups that 
were common across both Holstein and Jersey cattle breeds.
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Figure 7. Significantly enriched (P < 0.005) QTLs co-localized with variants (i.e., SNP and INDEL) unique to low RFI animals across both 
Holstein and Jersey cattle breeds. The area of the bubbles represents the number of observed QTL for that QTL class, and the color represents 
the P-value scale (darker color = smaller P-value). The richness factor for each QTL represents the ratio of the number of QTL and the expected 
number of QTL.



Journal of Dairy Science Vol. 104 No. 2, 2021

1942Lam et al.: GENETIC ARCHITECTURE OF DAIRY CATTLE FEED EFFICIENCY

Figure 8. Significantly enriched (P < 0.005) QTL co-localized with variants (i.e., SNP and INDEL) unique to high RFI animals across both 
Holstein and Jersey cattle breeds. The area of the bubbles represents the number of observed QTL for that QTL class, and the color represents 
the P-value scale (darker color = smaller P-value). The richness factor for each QTL represents the ratio of the number of QTL and the expected 
number of QTL.



1943

Journal of Dairy Science Vol. 104 No. 2, 2021

milk traits (Berry and Crowley, 2013) and reproductive 
conditions (Awda et al., 2013; Ferreira Júnior et al., 
2018). It is known that increased milk yield is associated 
with improved energetic efficiency due to the “dilution 
of maintenance effect” in which high producing dairy 
cows may use less energy for body maintenance relative 
to a low producing cow of the same body size (Bauman 
et al., 1985; de Vries et al., 2000; Collard et al., 2000). 
When considering feed efficiency and reproduction, 
it is known that greater milk yield is associated with 
poor fertility conditions and metabolic imbalance (de 
Vries and Veerkamp, 2000; Oltenacu and Broom, 2010; 
Wathes et al., 2014). The strong correlation between 
reproduction, milk production, and metabolic efficiency 
supports our results of the substantial overlap of these 
QTLs within each feed efficiency group (Figure 6).

In the across-breed analysis, positional candidate 
genes co-localized with SNP and INDEL that were 
common across both Holstein and Jersey breeds were 
identified. Then, co-localized QTL classes and QTL 
related to specific traits associated with these variants 
were determined. This revealed that the variants unique 
to low RFI or more efficient dairy cattle were mainly 
co-localized with QTL classes related to milk (49.97%) 
and reproduction (23.07%; Figure 4). From this, the 
most highly significant QTLs related to milk and re-

production enriched for variants uniquely fixed to low 
RFI (Figure 7) and high RFI (Figure 8) groups across 
breeds were identified, revealing that specific QTLs are 
more prevalent or significant than others. This includes 
a larger number of QTLs enriched for milk yield, milk 
protein yield, and milk fat yield associated with low 
RFI cattle, with higher significant enrichment for spe-
cific QTLs such as milk yield, teat length, milk pro-
tein percentage, foot angle, daughter pregnancy rate, 
calving ease QTLs (Figure 7). Regarding the high RFI 
group, QTL classes associated with milk (52.00%) and 
reproduction (21.60%) QTLs were also overlapping in 
high RFI, or less feed efficient animals (Figure 4), with 
variants being more significantly enriched in specific 
QTL classes (Figure 8). This includes a larger num-
ber of QTLs enriched for teat length, milk yield, and 
clinical mastitis (Figure 8). Similar QTLs were signifi-
cantly enriched, which was expected, as the majority 
of the overlapping QTL classes were associated with 
the similar trait-specific QTLs when evaluating the 
dairy breeds individually. However, when evaluating 
the common variants across both breeds, more similar 
proportion sizes of overlapping for each QTL class was 
observed when comparing high and low feed efficiency 
groups, which can be observed in Figure 6. This may 
support the hypothesis that although the genetic vari-
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Figure 9. Venn diagram of genes co-localized with low RFI variants (SNP and INDEL) from each analysis (Holstein breed, Jersey breed, 
and both Holstein and Jersey breeds).
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ants identified within low or high RFI cattle are dif-
ferent; they are still influencing similar genes but in 
a different manner, leading to an animal being more 
or less feed efficient. This is further supported as the 
2 most significant QTL classes for both the low and 
high RFI cattle groups were the same for both milk 
and reproduction QTL classes. These milk trait QTLs 
included milk fat yield and milk kappa-casein percent-
age, whereas the trait-specific QTLs for reproduction 
involved calving ease and interval to first calving.

Biological Processes and Positional Candidate 
Genes Associated with Variants Uniquely Found  
in High or Low Feed Efficient Cattle

After filtering positional candidate genes co-localized 
with functional variants fixed within low or high RFI 
groups, we identified 1,444 and 1,366 genes for low RFI 
and high RFI, respectively within the Holstein breed. 
For the Jersey breed analysis, 1,683 and 1,707 posi-
tional genes were identified for low RFI and high RFI, 
respectively. Analysis across breeds revealed 2,268, and 
2,248 genes for low RFI and high RFI, respectively. Us-
ing RNA-seq technology, detection of positional genetic 
variants associated with an extreme phenotype can be 
identified from mRNA reads (Cánovas et al., 2010). 

However, the mRNA reads are not necessarily differen-
tially expressed or highly expressed in the tissue. The 
discussion of the following positional variants and their 
associated functional information (co-localized genes, 
enriched biological processes, and overlapping QTL 
classes), are approached by considering the positional 
variants that are unique or fixed within RFI groups and 
how their functional characteristics could be related to 
the feed efficiency trait.

The resulting significantly enriched biological pro-
cesses associated with the genes co-localized with the 
variants fixed within low or high RFI groups from each 
analysis are reported in Table 2. Due to the substantial 
amount of significantly enriched biological processes 
detected, only the top 50% biological processes of the 
first quartile of the most significantly enriched bio-
logical processes (P < 0.05, FDR <0.05) were reported 
(Table 2). Many reported biological processes associ-
ated with the genes co-localized with variants fixed 
within RFI groups were related to metabolic function 
(Table 2). The study of metabolic energy, partitioned 
into multiple physiological functions and systems has 
shown that major metabolic activities contributing to 
the variation of RFI includes protein turnover, tissue 
metabolism, and stress (37%), physical activity (8%), 
and body composition (5%; Herd and Arthur, 2009). 
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Figure 10. Venn diagram of genes co-localized with high RFI variants (SNP and INDEL) from each analysis (Holstein breed, Jersey breed, 
and both Holstein and Jersey breeds).
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Table 3. Genes co-localized with variants fixed within low RFI or high RFI groups overlapping between the 3 analyses (Holstein breed, Jersey 
breed, and across-breeds analysis)

RFI group   ENSEMBL ID   Gene name

Gene region

BTA Start (bp) End (bp)

Low RFI (high feed efficiency)
  ENSBTAG00000003054 INSRR 3 13,991,619 14,008,734
  ENSBTAG00000021424 CSK 21 33,873,489 33,892,160
  ENSBTAG00000016598 DYNC1H1 21 66,850,740 66,911,778
  ENSBTAG00000002813 GAB1 17 14,421,800 14,549,193
  ENSBTAG00000000746 KAT2B 1 157,277,141 157,374,828
  ENSBTAG00000006909 PIK3CB 1 130,293,099 130,471,254
  ENSBTAG00000010989 PIK3R1 20 11,397,628 11,480,087
  ENSBTAG00000008063 PPARA 5 116,438,987 116,507,065
  ENSBTAG00000017851 RXRA 11 105,021,683 105,114,871
  ENSBTAG00000010627 SF3B3 18 1,578,539 1,618,405
  ENSBTAG00000019838 SHC1 3 15,616,454 15,626,916
  ENSBTAG00000007113 TRRAP 25 37,265,876 37,353,871
High RFI (low feed efficiency)
  ENSBTAG00000021181 BUB1 11 1,585,412 1,618,575
  ENSBTAG00000001700 CDC42 2 130,732,620 130,787,969
  ENSBTAG00000010109 CDK1 28 16,488,142 16,582,565
  ENSBTAG00000026403 CREBBP 25 3,054,344 3,173,309
  ENSBTAG00000021424 CSK 21 33,873,489 33,892,160
  ENSBTAG00000016598 DYNC1H1 21 66,850,740 66,911,778
  ENSBTAG00000005676 EHMT2 23 27,467,178 27,480,388
  ENSBTAG00000017355 ERCC1 18 53,024,536 53,039,604
  ENSBTAG00000002813 GAB1 17 14,421,800 14,549,193
  ENSBTAG00000004736 GRB2 19 56,117,146 56,181,857
  ENSBTAG00000012698 HDAC1 2 121,225,584 121,257,548
  ENSBTAG00000006270 HSP90AA1 21 66,936,747 66,945,064
  ENSBTAG00000001354 INPP5E 11 103,876,330 103,886,130
  ENSBTAG00000003054 INSRR 3 13,991,619 14,008,734
  ENSBTAG00000000746 KAT2B 1 157,277,141 157,374,828
  ENSBTAG00000013790 MAP3K1 20 22,340,163 22,417,428
  ENSBTAG00000020783 MAPK14 23 9,969,009 10,044,336
  ENSBTAG00000030965 MCM7 25 36,349,409 36,356,836
  ENSBTAG00000006909 PIK3CB 1 130,293,099 130,471,254
  ENSBTAG00000014453 PLK1 25 21,334,598 21,345,432
  ENSBTAG00000053390 RAC1 25 38,278,343 38,297,376
  ENSBTAG00000011043 RAC2 5 75,656,456 75,673,313
  ENSBTAG00000004279 RHOA 22 50,701,226 50,751,132
  ENSBTAG00000015473 RPS27A 11 37,970,354 37,972,652
  ENSBTAG00000017851 RXRA 11 105,021,683 105,114,871
  ENSBTAG00000019838 SHC1 3 15,616,454 15,626,916
  ENSBTAG00000009985 SIN3A 21 33,383,914 33,450,894
  ENSBTAG00000019220 SMARCA4 7 15,424,807 15,515,086
  ENSBTAG00000011643 SOS1 11 21,308,259 21,434,854
  ENSBTAG00000008938 SRC 13 66,295,099 66,349,583
  ENSBTAG00000007113 TRRAP 25 37,265,876 37,353,871

Table 4. Common genes identified overlapping between low and high RFI groups that were common across 3 
analyses (Table 3; Holstein breed, Jersey breed, and both Holstein and Jersey breed)

ENSEMBL ID   Gene name

Gene region

BTA Start (bp) End (bp)

ENSBTAG00000003054 INSRR 3 13,991,619 14,008,734
ENSBTAG00000021424 CSK 21 33,877,662 33,877,662
ENSBTAG00000016598 DYNC1H1 21 66,870,569 66,870,569
ENSBTAG00000002813 GAB1 17 14,417,132 14,417,132
ENSBTAG00000000746 KAT2B 1 157,273,917 157,273,917
ENSBTAG00000006909 PIK3CB 1 144,408,494 144,408,494
ENSBTAG00000017851 RXRA 11 105,114,221 105,114,221
ENSBTAG00000019838 SHC1 3 15,452,192 15,452,195
ENSBTAG00000007113 TRRAP 25 3,051,535 3,051,535
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This supports the gene network analysis results in this 
study, as several major metabolic processes related to 
feed efficiency were present in the analyses including 
lipid biosynthetic process, immune response, carbohy-
drate transport, fatty acid oxidation, and energy reserve 
metabolic process (Table 2). Additionally, the observa-
tion of similar biological processes detected across the 
analyses and RFI groups may suggest the greater influ-
ence of these functions on RFI, and further support the 
previous results suggesting multiple variants may be 
influencing similar QTLs in low and high RFI groups 
(Figure 6). These results highly support the study of 
positional variants which may be influencing the same 
gene regions and biological processes to regulate feed 
efficiency in cattle.

The associated candidate genes were identified and 
compared for overlapping among the 3 analyses (Hol-
stein breed, Jersey breed, and both Holstein and Jersey 
breeds) for low RFI (Figure 9) and for high RFI (Figure 
10). Table 3 shows all 12 (Figure 9) and 31 (Figure 10) 
genes identified as common across all 3 analyses for 
low and high RFI analyses, respectively. The associated 
variants identified as co-localized with these genes are 
found in Supplemental Table S1 (https:​/​/​figshare​.com/​
s/​dedb14cd92bd854fa7d5). Additionally, many of the 
genes identified were similar across low and high RFI 
analyses including INSRR, CSK, DYNC1H1, GAB1, 
KAT2B, RXRA, SHC1, TRRAP, and PIK3CB which 
are shown in Table 4, with the corresponding gene re-
gion information and corresponding variants shown in 
Supplemental Table S2.

The INSRR gene, also known as IRR (insulin 
receptor-related receptor), is a member of the insulin 
receptor family, which includes its homologs insulin-
like growth factor receptor (IGF-IR) and the insulin 
receptor (IR) (Tatulian, 2015). The IRR gene is found 
in cells of highly functioning metabolic organs includ-
ing the kidney, pancreas, and stomach (Petrenko et al., 
2013), and works in synchrony with liver function to 
regulate glucose (Raile et al., 2005). Specifically, IRR 
has shown to be expressed in liver tissue (Mathi et al., 
1995), suggesting possible IRR signaling involved with 
the regulation of glucose homeostasis. Similarly, Lysine 
Acetyltransferase 2B (KAT2B), identified in this study, 
plays a key role in stimulating hepatic gluconeogenesis, 
by which its concentration affects the regulation of 
blood glucose concentrations (Ravnskjaer et al., 2013).

The C-Terminal Src Kinase (CSK) gene along with 
Phosphoinositide-3-Kinase Regulatory Subunit 3 (PI-
K3R3) gene, which leads to the quaternary structure 
PIK3CB found in the present study, was identified in 
Cobb chickens as differentially expressed across feed ef-
ficiency groups in breast muscle and liver samples (Liu 
et al., 2018). In this study, both genes revealed upregu-

lated expression in low RFI Cobb chickens compared 
with high RFI, suggesting their importance in the regu-
lation of feed efficiency. The CSK gene is additionally 
known to influence the Hippo signaling pathway, also 
known as Salvador-Warts-Hippo pathway, which regu-
lates organ size and tissue growth (Kwon, et al., 2015). 
The PIK3R3 was also identified in a study on Duroc 
boars ear tissue where it was significantly associated 
with average daily feed intake (Ding et al., 2017). Spe-
cifically, PIK3CB has been shown to be upregulated in 
breast muscle of high feed efficiency chickens, suggest-
ing increased activity in breast muscle of higher feed 
efficient animals (Zhou et al., 2015), and also has been 
found to be associated with leukocyte trans-endothelial 
migration and melanoma KEGG pathways (Taye et al., 
2017).

The DYNC1H1 gene known as Cytoplasmic dynein 
1 heavy chain 1, results in the production of a protein 
that is part of a group (complex) of proteins called 
dynein. This gene has not yet been identified in associa-
tion with feed efficiency traits in livestock. However, it 
has been shown that mRNA levels of dynein increase 
as chickens are induced with cardiotoxicity, suggesting 
a relationship between dynein production and cardiac 
function (Li et al., 2018). In addition, dynein plays a 
major functional role in energy production for bovine 
sperm motility, suggesting its importance in reproduc-
tive function in cattle (McConnell et al., 1987; Lorch 
et al., 2008).

The GAB1 gene also known as growth factor receptor 
bound protein 2-associated protein 1, is known to play 
a key role in endothelial cell migration, blood capil-
lary formation, and pathways associated with vascular 
endothelial growth factor (Laramée et al., 2007). More 
recently, evaluation of metabolic pathways related to 
hepatic growth in high feed efficient pigs has shown 
overexpression of GAB1 suggesting its role in liver 
function in increased feed efficiency (Horodyska et al., 
2019). In the same study, GAB1 was significantly en-
riched in immune response pathways, which was also 
a commonly enriched biological process across the 3 
analyses in this study. Based on the role of GAB1 gene 
in hepatic function, it may serve as a good candidate 
gene for feed efficiency, as the gut and liver contrib-
ute 38% to total energy expenditure in cattle, which 
is related to metabolic efficiency (Ortigues-Marty et 
al., 2017). In support, a study examining hepatic tis-
sue transcriptome in beef cattle divergent for feed ef-
ficiency identified genes differentially expressed across 
RFI groups, which were related to immune function 
(Higgins et al., 2019).

The RXRA is a transcription factor gene, which is 
part of the retinoid X receptors (RXR). It is known 
that RXR initiates tocopherol metabolism pathways in 
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mammals (Azzi et al., 2004). Many beneficial effects 
result from tocopherol (for example vitamin E) supple-
mentation in livestock feed, including tocopherols act-
ing as an antioxidant and improving immune function 
and health in dairy cattle, which has been shown to 
reduce incidence of mastitis and retained placenta in 
transition dairy cattle (Spears and Weiss, 2008).

The SHC1 (SHC Adaptor Protein 1) is a scaffold 
protein coding gene, which helps regulate the epidermal 
growth factor (EGF) signaling pathway by directing the 
signal information after the EGF is stimulated, regulat-
ing cell proliferation (Zheng, et al., 2013). In addition, 
a prior study has shown that SHC1 was upregulated 
in the liver, which functioned to promote cell division 
and growth as a hepatic response to realimentation in 
feed-restricted steers (Connor et al., 2010).

The TRRAP is a cofactor transformation/transcrip-
tion domain-associated protein which, in conjunction 
with Histone Acetyltransferase 1 (HAT), has an im-
portant role in liver regeneration after toxic shock by 
helping with cell cycle progression and cell proliferation 
(Shukla et al., 2011).

An animal’s efficiency to use feed for production is 
dependent on metabolic efficiency, which is depicted 
by metabolic tissue function and capacity at the whole 
body and cellular level (Cantalapiedra-Hijar et al., 
2018). The liver, specifically, elicits high metabolic 
activity, being the primary site of gluconeogenesis and 
producing 90% of glucose to the host (Nafikov and Be-
itz, 2007), which is a major energetic product needed 
to support meat and milk production (Connor et al., 
2010). As several candidate genes were associated with 
hepatic function, this reinforces the importance of the 
positional candidate genes identified in this study. The 
genes described may serve as potential candidate genes 
for selecting for feed efficiency, as they are involved 
in many metabolically demanding biological processes 
related to cell growth and regeneration, metabolism, 
and immune function. These genes may provide insight 
on which animals exhibit lower energy requirements 
to respond to high metabolic needs. In addition, the 
relationship of these genes with metabolic processes 
that have been studied in previous experiments, may 
suggest that the associated functional variants that af-
fect these genes (Table 4) may be valuable functional 
variants (Supplemental Table S2, https:​/​/​figshare​
.com/​s/​dedb14cd92bd854fa7d5) for selecting animals 
for feed efficiency. Currently, the Canadian dairy indus-
try implements genomic breeding strategies to select 
for desirable milk production and composition traits. 
However, feed efficiency is a novel trait that is recently 
being implemented into genomic selection. With fur-
ther validation studies, these functional variants can be 

implemented into genotype panels in aim to help select 
for more feed efficient dairy cattle.

In addition to the across-breeds analysis, the genes 
co-localized with the SNP and INDEL unique to low 
and high RFI groups were analyzed for overlapping 
with the differentially expressed genes between RFI 
groups identified by the prior study, which used the 
same animal population (Salleh et al., 2017). It was 
observed that 2 genes including ABR and SOCS2 were 
found to be overlapping between the studies. Active 
breakpoint cluster region-related protein (ABR) plays 
a key role in GTPase activation, which modulates path-
way and signaling activation (Tan et al., 1993). Inter-
estingly, suppressor of cytokine signaling 2 (SOCS2) is 
a key regulator of growth hormone receptor sensitivity 
and has been shown to greatly influence body growth 
(Vesterlund et al., 2011). Salleh et al. (2017) observed 
that both ABR (FC = 0.329, P-value = 0.032) and 
SOCS2 (FC = 0.422, P-value = 0.044) were upregulat-
ed in high RFI Holstein, which may suggest the higher 
energy expenditure for metabolic function and growth 
in less feed efficient cattle.

The similar detection of these genes in both studies 
may be explained by their critical roles in growth and 
metabolic function. However, this lack of overlapping 
results may be due to the fewer amount of significantly 
differentially expressed genes detected by Salleh et al. 
(2017) which were in total, 69 for Holstein and 19 for 
Jersey. Contrastingly, our study identified 2,268 and 
2,248 genes co-localized with the variants fixed within 
low or high RFI groups, respectively. This highlights 
the importance of using RNA-seq to identify positional 
candidate variants in addition to the study of differen-
tially expressed genes between 2 extreme phenotypic 
groups to better understand the functional genetics 
underlying a desirable trait.

CONCLUSIONS

The findings obtained in this study were important 
for identifying functional genetic variants which may 
be candidate genetic markers for feed efficiency, due 
to their supporting positional and functional evidence 
and their co-localization with relevant cattle QTL. 
Additionally, this study improved the knowledge of 
genetic variants and associated biological processes and 
candidate genes, which are largely related to highly 
metabolically demanding processes, underlying feed 
efficiency in Holstein and Jersey dairy cattle. Further 
validation analyses in additional independent cattle 
populations of these functional genetic variants and 
positional candidate genes may lead to their use in im-
proving selection strategies for feed efficiency, leading 
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to the improvement of the economic and environmental 
sustainability of the dairy cattle industry.
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