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ABSTRACT 

Spatial and temporal patterns of land surface temperature (LST) have been used in 

studies of surface energy balance, landscape thermal patterns and water management. An 

effective way to investigate the landscape thermal dynamics is to utilize the Landsat legacy and 

consistent records of the thermal state of earth’s surface since 1982. However, only a small 

proportion of studies emphasize the importance of historical Landsat TIR data for investigating 

the relationship between the urbanization process and surface thermal properties. This occurred 

due to the lack of standardized LST product from Landsat and the unevenly distributed remote 

sensing datasets caused by poor atmospheric effects and/or clouds. Despite the characterization 

of annual temperature cycles using remote sensing data in previous studies, yet the statistical 

evidence to confirm the existence of the annual temperature cycle is still lacking. The objectives 

of the research are to provide statistical evidence for the existence of the annual temperature 

cycle and to develop decomposition technique to explore the impact of urbanization on surface 

thermal property changes. The study area is located in Los Angeles County, the corresponding 

remotely sensed TIR data from Landsat TM over a decadal year (2000-2010) was selected, and 

eventually a series of 82 cloud-free images were acquired for the computation of LST. The 

hypothesis technique, Lomb-Scargle periodogram analysis was proposed to confirm whether 

decadal years’s LSTs showed the annual temperature cycle. Furthermore, the simulated LSTs 

comprised of seasonality, trend, and noise components are generated to test the robustness of the 

decomposition scheme. The periodogram analysis revealed that the annual temperature cycle was 

confirmed statistically with p-value less than 0.01 and the identified periodic time at 362 days. 
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The sensitivity analysis based on the simulated LSTs suggested that the decomposition technique 

was very robustness and able to retrieve the seasonality and trend components with errors up to 

0.6 K. The application of the decomposition technique into the real 82 remote sensing data 

decomposed the original LSTs into seasonality, trend, and noise components. Estimated 

seasonality component by land cover showed an agreement with previous studies in Weng & Fu 

(2014). The derived trend component revealed that the impact of urbanization on land surface 

temperature ranged from 0.2 K to 0.8 K based on the comparison between urban and non-urban 

land covers. Further applications of the proposed Lomb-Scargle technique and the developed 

decomposition technique can also be directed to data from other satellite sensors. 
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PREFACE 

This thesis is an original and unpublished intellectual product and an independent work by the 

author, P. Fu.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research background 

 

Land surface temperature (LST), routinely mapped from remotely sensed thermal 

infrared (TIR) data to represent the skin temperature of the Earth’s surface, is an indispensable 

parameter in analyzing and characterizing landscape thermal behaviors (Bechtel 2012), modeling 

surface energy balance (Oke et al. 1992, Friedl 2002, Renzullo et al. 2008), quantifying 

evapotranspiration for water management (Anderson et al. 2011, Anderson et al. 2012), and 

understanding the interactions between human activities and environmental change. 

Understanding of landscape thermal behaviors has displayed its profound implications in many 

fields including ecology (Luck & Wu 2002, Buyantuyev & Wu 2010), urban planning (Svensson 

& Eliasson 2002), hydrological cycles, and environmental pollution (Sarrat et al. 2006).  

Exploration of landscape thermal characteristics is usually dependent on the surface temperature 

parameter derived from the remotely sensed thermal infrared information.  

The spatial and temporal distributions of landscape thermal patterns have implications for 

land surface processes and in turn, these processes have their alterations in LSTs. Urban areas 

are centers to a large proportion of the world’s population, economic activities, and physical 

infrastructure that are subject to the impacts and risks of increased temperature, extreme heat 



2 

 
 

events, and heat islands (Romero-Lankao et al. 2012). Accordingly, detailed information of LST 

fluctuations contributes to the studies on urban vulnerability pertaining to the risks of 

temperature related hazards and may suggest the potential adaption strategy that can be adopted. 

Furthermore, it is also reported in the literature that surface temperature conditions are associated 

to the outbreak and propagation of vector-borne disease (Reisen et al. 2004, Ruiz et al. 2010, Liu 

& Weng 2012), and thus related to the quality of life. Therefore, estimation of LST and its 

distributions can not only facilitate the understanding of environmental and ecological processes, 

but also favor the concern of human well-being.  

 

1.2 Research Problem 

 

Rhythmic patterns occur at all land surface processes dominated by the annual cycle 

caused by the changes in solar radiation. Surface temperature is not an exceptional parameter 

controlled by the solar radiation fluctuations. Previous studies mainly focus on LST dynamics of 

the annual cycle, usually referred as A(t)Cos(2πt+θ), which can be attributed to the fact that 

surface temperature seasonality is incumbent, within a phase lag, on the yearly cycle of 

insolation at the top of atmosphere aroused by the Earth’s changing position (Thomson 1995). 

However, it should be noted that solar radiation reaching land surface is not or no longer the 

same as that reaching the top of atmosphere due to the nonlinear response of earth climate and 

environmental system (Qian et al. 2011). This situation is further complicated by the 

increasingly rapid urbanization processes, characterized by the increase in sensible heat fluxes, 

decrease in latent heat fluxes, and an extra component of anthropogenic heat discharge in light of 

surface energy balance in urban areas (Oke et al. 1992, Zhou et al. 2012). The notorious 
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phenomenon, urban heat island (UHI), is a typical consequence resulting from the urbanization 

process. In turn, turbid spatial and temporal thermal patterns further disorder the urbanization 

rate, urban form, energy consumption and infrastructure configuration. These bidirectional 

feedbacks and interactions between urbanization and environmental change have received less 

attention compared to the myriad literature on whether and how urbanization has a positive or 

negative effect on the environment (Seto 2011). 

The Landsat legacy and consistent records of the thermal state of earth’s surface since 

1982 represents hitherto the only long term archival TIR information with spatial scales 

appropriate for human scale studies globally (Schott et al. 2012). The time series Landsat image 

data provide a history of how urbanized land cover and ecosystem have evolved over the past 30 

years in the face of increased human population, resource consumption, and environmental 

change. So far, only a small proportion of studies emphasize the importance of historical Landsat 

TIR data for investigating the subtle and dedicated inter-relationship between the urbanization 

process and climate variables. Possible reasons for underutilization of the Landsat archive may 

be imputed to the following aspects: 1) Although the open access data policy allows the 

procurement of Landsat data held by the United States Geological Survey (USGS) freely 

available (Wulder et al. 2008), an effort to completely and consistently calibrate the archive into 

absolute surface leaving radiance and to surface radiometric temperature is still in progress 

(Schott et al. 2012). Lack of atmospherically compensated and calibrated Landsat thermal 

radiance/LST operational products, unlike the MODIS operational thermal radiance and LST 

products, constrains the use of Landsat archive for characterizing landscape thermal patterns 

over a long time scale. 2) Technically, there exist difficulties in analyzing the alleged time series 

Landsat TIR data. The sampling frequency taken by the satellite sensor is fixed (e.g., 16 days for 



4 

 
 

Landsat), while the recorded information may be irregularly distributed because of constant 

cloud contamination and other poor atmospheric conditions (Ju & Roy 2008). These irregularly 

spaced data pose a challenge for extracting periodic patterns with known and acceptable 

confidence level using traditional statistics and techniques. 

A popular computational technique utilized to identify rhythmic patterns is Fast Fourier 

Transform (FFT) (Priestley 1982), which isolates periodicities by searching for sharp peaks in 

the ordinary periodograms calculated from the Fourier transform of the time series. Van De 

Kerchove et al.  (2013) differentiated the short term weather components from strong, climate 

related, periodic patterns by applying the FFT technique to the 8 year of MODIS both daytime 

and nighttime LST time series to unfold the complicities of spatio-temporal variations in the 

Russian Altay Mountains. An alternative way similar to FFT is to use a parametric model with 

fixed angular frequency, amplitude, and constant trend to fit the time series data. This method 

can be regarded as a derivative from FFT but differs itself from the decomposition into fixed and 

known frequency cycles. Bechtel  (2012) proposed an annual temperature cycle (ATC) to 

characterize landscape thermal patterns and the sinusoidal model used to describe ATC is in the 

aforementioned style. Considering the global environment change as well as the urban local 

environment change, merely characterizing the long term ATC ignores the modifications caused 

by human disturbances, land management, and inter-annual climate change. Furthermore, it is at 

least worth discussion that land cover change and conversion by urbanization may cause changes 

in LST phonological cycle, i.e., changes in amplitude, angular frequency, and trend. Therefore, 

new ways are still needed to develop for exploring the LST variations. 

 

1.3 Research Objectives 
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In general, it is assumed that there should be four types of changes within LSTs: 1) 

seasonal dynamics (phenology cycle), driven by the changes in surface solar insolation; 2) 

gradual changes such as the inter-annual climate variability or gradual change caused by land 

management or land degradation; 3) abrupt changes, caused by urbanization, fire, or 

deforestation; 4) inconsequential changes caused by the short-term weather conditions, such as 

rainfall and clouds. A challenge in examining the relationship between urbanization and 

environmental change is how to isolate the thermal fluctuations attributed to urban activities 

amidst background variations. In addition, it should be noted that urbanization related activities 

can also result in alterations in these three types of changes. Analyses in Weng &Fu  (2014) 

presented that LST seasonal dynamics differed in each land cover and suggested possibly 

disordered thermal variations in urban areas. Since urban expansion means the replacement of 

natural settings by impervious surface, there will be corresponding modifications in LST 

phenology cycle. The existence of urban micro-climate, such as UHI and urban canyon 

phenomena, can also lead to abrupt changes. Thus, a question of interest is: Over what time-scale 

are urbanization related activities coupled with LST dynamics?  

Based on the aforementioned challenges, specific objectives of this research include: 1) 

to provide the statistical probability evidence for the existence of periodic patterns within LSTs; 

2) to propose new methods to decompose unevenly spaced LST time series into a seasonal, a 

trend and a stochastic component; 3) to validate the efficiency of proposed method by using both 

simulated LST data and the Landsat time series data; and 4) to analyze the impacts or changes 

imputed to urbanization activities in the decomposed components. The hypothesis to be tested is 

that urbanization processes/human activities weaken land surface temperature annual cycles, i.e., 
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there is a weakened seasonality in urban areas compared to rural locations. Aside from this 

speculation, it is conjectured that there are much more strongly intensified inter-annual trend 

variations in conurbation areas than those in the surrounding sylvan regions. Specifically, it is 

predicated that urbanization related activities intensify the inter-annual trend fluctuations besides 

the already known global warming trends. The statistical probability tests anticipate that 

differences exist in the variances explained in the different regions by the annual temperature 

dynamics. These hypothetical expectations all point to the same questions: How does 

urbanization affect LSTs and to what degree these LSTs are influenced by human activities? 

 

1.4 Structure of thesis 

 

The thesis is organized in six chapters. Chapter 1 “INTRODUCTION” focuses on the 

introduction to the research, including research background, research problem, research objective, 

and thesis structure. Chapter 2 “LITERATURE REVIEW” places efforts in reviewing significant 

publications in land surface temperature mapping, urban landscape thermal patterns from an 

ecological perspective, and the current state-of-art methods in analyzing time series LST data. 

The land surface temperature mapping not only summarizes the direct ways to derive LST maps 

from the Landsat thermal sensors, but also outlines the potential techniques used to downscale 

coarse TIR data from other sensors (e.g., MODIS, GOES) to the fine Landsat spatial resolution. 

Both temporal and spatial enhancements of the TIR data are presented. Currently, there is a lack 

of detailed review in urban thermal landscape patterns, especially from an urban ecological 

perspective. The review here attempts to provide some insights into the current urban ecology 

studies. Furthermore, the time series LST data analysis section discusses the current techniques 
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employed to analyze long term remotely sensed data. Chapter 3 and Chapter 4 detail the 

proposed study area, data procurement and processing, and methodology, respectively. Chapter 5 

presents the results analysis based on which, Chapter 6 transfers and discloses the conclusions 

and discussions. Potential applications, as well as the limitations of proposed research will also 

be discussed in details in this section. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter reviews the methods used for mapping LST, studies pertaining to landscape 

thermal patterns, and techniques used for dealing with time series data. The last part of the 

review aims to support the worth of the proposed study to utilize the long term-series stack for 

analyzing urban environmental change. 

 

2.1 Land surface temperature estimation 

 

Surface temperature estimation based on satellite sensors ranges from spatial scales of 

dozens of meters (e.g., Landsat TM/ETM+) to several kilometers (e.g., GOES, SEVIRI). 

Different methods have been developed for mapping surface temperature by compensating the 

brightness temperature, i.e., converted by using the top of atmosphere radiance, for the 

atmospheric absorption effects to estimate the surface leaving radiance. Since the focus of the 

study centers on the utilization of Landsat TM for analyzing the human related thermal patterns, 

the review of LST mapping here only lists the technique devised specifically for Landsat sensors. 

            Remotely sensed thermal infrared information proves to be an efficient facility to deliver 

LST maps at varying scales and over years, a substantial number of techniques and algorithms 
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have been devised for achieving this goal, including split-window, two/multi-channel algorithms, 

and two/multi-angle methods (Sobrino et al. 1996, Sobrino et al. 2004, Dash et al. 2005). 

Landsat sensors (until Landsat 7) consist of six bands with one thermal bands in the range from 

10.4µm to 12.5µm. Basically, there are three different methods for retrieving LST from Landsat 

TM/ETM+ thermal infrared sensors (Sobrino et al. 2004) and these techniques share a common 

physically theoretical basis which can be described by the radiative transfer equation (RTE) 

(Ottle & Stoll 1993).  

           [    (  )   (    )      
 ]         

         ( ) 

Where           is the at-sensor radiance or Top of Atmosphere (TOA) radiance, i.e., the radiance 

measured by the sensor. ελ is the land surface emissivity, B(Ts) is the blackbody radiance given 

by the Planck’s law and Ts is the LST.     
  is the down-welling atmospheric radiance, τ is the 

total atmospheric transmissivity between the surface and the sensor, and     
  is the upwelling 

atmospheric radiance. The variants of the deriving methods for LST estimation depend on how 

to obtain the necessary parameters to solve the radiative transfer equation.  

The direct utilization of RTE relies on the in situ atmospheric radiosoundings which are 

generally input into a radiative transfer code, such as MODTRAN (Berk et al. 1987) to simulate 

the parameters of atmospheric transmissivity, up-welling and down-welling radiances. Then the 

surface leaving thermal radiances can be calibrated and compensated for the atmospheric effects 

through the RTE and thus converted to surface temperature with known land surface emissivity 

values. It should be noted that the RTE depends on the wavelength considered, bandwidth, view 

angle and spectral response function. This method is the most straightforward way to derive LST 

whereas the limitation remains in the situation where, in most cases, lack of such in situ data at 

the same with the satellite overpass time is routine. 
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In order to avoid the dependence on the in situ radiosounding data, Qin et al.  (2001) 

developed a mono-window algorithm for acquiring LST for TM sensor. By simplifying the 

Planck’s law into a linear expression, the proposed algorithm eventually transformed the RTE 

equation to an expression integrated by the brightness temperature and atmospheric mean 

temperature. Although it does not require as many atmospheric profiles as the direct utilization 

of RTE, near surface air temperate and water vapor properties are also needed for estimating the 

mean atmospheric temperature and transmissivity. Qin’s technique is relatively easy to 

implement, despite its unclear definition of atmospheric mean temperature and its constraints of 

using meteorological data.  

Finally, Jimenez-Munoz &Sobrino  (2003) proposed a generalized single channel 

algorithm for retrieving LST driven by the total atmospheric water vapor content. The 

dependence on water vapor content is due to the fact that this atmospheric content is the main 

absorber in the thermal infrared region. The atmospheric function used in the algorithm was 

simulated using the MODTRAN codes with inputs from the TOVS Initial Guess Retrieval 

(TIGR) database for each specific sensor. In spite of a general spectral response function, 

Gaussian filter, used in the study for the effective wavelength estimation, a particularized one 

was also computed for Landsat sensors. Compared to the two techniques mentioned above, the 

main advantage of the generalized single channel algorithm is that in situ radiosoundings or 

effective atmospheric mean temperature values are not required in addition to the convenient 

extension of the method to other thermal sensors. 

All these methods require the inputs of land surface emissivity values into the RTE for 

inverting LSTs. The effects of land surface emissivity on satellite measurements can be 

categorized into the following aspects including the reduction of surface emitted radiance and the 
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uncertain variations (i.e., either increase or decrease) in radiance caused by the anisotropy (Prata 

1993). Accurate emissivity values are, therefore, essential for recovering thermal radiances from 

multi-spectral images. Emissivity is a function of wavelength, while at the meantime, it is 

controlled by such factors as surface roughness, structure, soil moisture content, chemical 

composition (Snyder et al. 1998). Emissivity estimation for surface features from the remotely 

sensed data has been computed using different techniques, including the normalized emissivity 

method (Gillespie 1986), thermal spectral indices (Becker et al. 1992), spectral ratio method 

(Watson 1992), Classification based method (Snyder et al. 1998), and the temperature-emissivity 

separation (TES) method (Gillespie et al. 1998), and the NDVI-threshold method (Sobrino et al. 

2008). Depending on the study properties, these methods can be selected for estimating surface 

emissivity values prior to recovering LSTs except the TES method, which requires at least two 

thermal channels for calculation.  

Other than the mapping methods aforementioned, efforts have also been made to enhance 

the thermal infrared information of coarse resolution to approximate Landsat spatial scale (~100 

m), referred as downscaling, disaggregation, or thermal sharpening. Algorithms dedicated to the 

spatial or/and temporal enhancement of LST images can fall into two broad categories: (1) the 

statistical based methods and (2) the physical based models. The basic idea of the statistical 

method to achieve the downscaling scheme is to establish a reasonably functional relationship 

between TIR radiance/ LST and biophysical and/or socio-economic variables that are associated 

with LST variations. The assumption is the established function holds across different scales and 

the biophysical, socio-economical and other associated ancillary data can be easily acquired and 

scaled. The classic sharpening technique, known as TsHARP, enhances the thermal data using 

the inverse relationship between LST and Normalized Difference Vegetation Index (NDVI) 
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(Kustas et al. 2003). However, studies have showed that the LST-NDVI relationship is ill 

defined over many complex heterogeneous landscapes (Inamdar & French 2009, Merlin et al. 

2010, Dominguez et al. 2011, Jeganathan et al. 2011) and thus the approach could be applied 

locally within relatively homogeneous sub-regions, but not on a regional basis. 

The physical models are usually involved in utilizing the spectral mixture analysis (SMA) 

to achieve the downscaling purpose. It should be noted that the application of SMA into the 

spatial enhancement of thermal information has technical limitations, i.e., twice as many thermal 

bands as the number of end-members are required and rarely more than five appropriate bands 

are available (Zakšek & Oštir 2012). Therefore, studies using SMA decompose the TIR pixel 

into multiple isothermal components and produce a set of component temperature (Dozier 1981, 

Gillespie 1992, Liu & Pu 2008). However, this method has been accused of providing no 

solution on the position of each component (Liu & Pu 2008, Zakšek & Oštir 2012). 

In spite of the progresses made by these downscaling techniques and algorithms, thermal 

sharpening techniques cannot replace the actual thermal imagery at fine resolutions or missions 

that provide high quality thermal band imagery at high temporal and spatial resolution critical for 

many land and water resource management applications (Gao et al. 2012). Compared to a large 

proportion of literature on downscaling development, less attention has been paid to the direct 

computation of LST from Landsat sensors. This is evident considering the unavailability of 

operational LST product from Landsat achieve. To some extent, the lack of consistent and 

accurate LST maps constrains the further extraction of valuable information from historical 

records. As a result, effective methods for generating operational LST maps are highly 

demanded and sought.  
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2.2 Urban Landscape Thermal Patterns 

 

Urban landscape thermal patterns originate from landscape patterns studied in the field of 

landscape ecology to explore the causes and consequences of spatial heterogeneity across a range 

of scales (Turner et al. 2001). Most studies pertaining to the landscape thermal patterns focus on 

the relationship between landscape patterns and LST variations in the urban areas. A typical 

topic of landscape thermal patterns is to examine impacts of land cover and land use 

configuration and composition on LST variations.  

Weng et al.  (2004) investigated the interplay between thermal and vegetation dynamics 

by using vegetation fraction derived from the linear spectral mixture analysis (LSMA). The 

analyses suggested that the areal measure of vegetation abundance by unmixed vegetation 

fraction possessed a more direct correlation with the radiance, thermal, and moisture properties 

of Earth surface that determined LST. Yuan &Bauer  (2007) presented that the relationship 

between percent impervious surface and LST was much stronger than that between NDVI and 

LST in urban areas.  Xian &Crane  (2006) conducted a research by using the sub-pixel 

impervious surface and land use data to identify surface thermal characteristics and patterns. 

Detailed examination demonstrated that thermal effects are strongly correlated with urban 

development densities in which the higher temperature is usually associated with higher 

imperviousness surface. Lu &Weng  (2004) developed a spectral mixture analysis to explore the 

relationship between urban thermal features and landscape pattern types in the City of 

Indianapolis, Indiana. The results suggested that impervious surface and LSTs had a positive 

linear relationship while vegetation and LSTs had a negative linear relationship for the study area. 

Small (2006) presented a comparative analysis of urban reflectance and surface temperature for 
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24 urban areas and their surrounding areas using Landsat ETM+ imagery.  The researcher 

discovered that the urban thermal fields varied across regions and identified a visible variability 

in the inverse correlation between surface temperature and vegetation fraction at moderate spatial 

resolutions. Chen et al.  (2006) explored the relationship between urban heat island and land 

use/cover. By utilizing several biophysical indices, the presented study employed a regression 

analysis and found out that the spatial distribution of urban heat island has been changed from a 

mixed pattern to an extensive one, in which higher LSTs scattered across the land cover. They 

also discovered a negative relationship between NDVI, NDWI and temperature, while a positive 

relationship between NDBI and temperature. Deng &Wu  (2013) proposed a two-step physically 

based method, spectral unmixing and thermal mixing (SUTM) to investigate the impacts of 

urban composition on landscape thermal patterns. The evidence that the SUTM outperformed 

other regression analyses for NDVI, percent impervious area, and percent vegetation may imply 

the complicated function of land cover composition on surface temperature distributions. 

In addition to the directly quantitative analysis to assess the interplay between land cover 

abundance and thermal characteristics, landscape metrics are also utilized to discuss how 

landscape dynamics affect LST variations or how landscape patterns of LST are influenced by 

the land cover configuration.  The integration of landscape metrics and remote sensing allows 

correlating the surface characteristics with LST variations in evaluating the thermal behaviors 

and dynamics of landscapes (Weng et al. 2007). Li et al.  (2011) found a strong correlation 

between the mean LST and landscape metrics, indicating that the urban landscape configuration 

also influences the formation of urban heat island by employing ETM+ images. Weng et al.  

(2007) assessed the effects of land use and land cover patterns on thermal conditions using 

landscape metrics at landscape land cover level. The derived LST maps were also divided into 
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each zone based on mean and standard deviation values so as to quantify the thermal dynamics. 

The use of landscape metrics allows the comparisons between land cover composition and 

thermal patterns. These findings are helpful for understanding urban ecology as well as land use 

planning to minimize the potential environmental impacts of urbanization. Nonetheless, as the 

same in the landscape ecology, the scale issues should be dealt with carefully due to the 

increased LST and land cover heterogeneity. Liu & Weng (2009) conducted a scale analysis in 

terms of the relationship between landscape patterns and LST. The case study in Indianapolis 

concluded that thirty meter was the optimal spatial resolution in the study of the relationship 

between urban LULC and LST classes and that ninety meter was the optimal resolution for 

assessing the landscape-level relationship between LULC and LST patterns.  

However, these studies only focus on the impacts of landscape patterns on thermal 

variations, and ignore how different landscape configuration/composition brings about different 

alterations in the overall thermal characteristics. In other words, the presented studies only 

investigate the static relationship between landscape patterns and thermal behaviors. Detailed 

analyses into the dynamic changes into the landscape patterns are promising to shed some lights 

on the current dark aspects. 

 

2.3 Urban heat island (UHI) intensity 

 

One special aspect that evolves from the characterization of landscape thermal patterns, 

which is also one of the objectives to monitor thermal conditions, is to develop efficient and 

effective indicators and/or models to represent the intensity of urban heat island. The term urban 

heat island (UHI) states the phenomenon of altered temperatures in urban areas compared to their 
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rural regions (Oke 1982, Voogt & Oke 2003, Kim & Baik 2005) due to the replacement of 

natural land covers with impervious surfaces, such as parking lot and concrete highways. The 

UHI not only lowers the quality of life (Harlan et al. 2006, Lafortezza et al. 2009), but also alters 

the ecological functions, such as the provision of air quality and water resources (Grimm et al. 

2008), and biodiversity (Knapp et al. 2010). 

An important and critical issue in urban thermal remote sensing is how to quantify UHI 

observed at meso-scale and macro-scale by using pixel-based LST measurements (Weng et al. 

2011). The most simple and direct, as well as the classic way to compute the UHI intensity is to 

compute the difference between urban and rural temperatures (Roth et al. 1989, Dousset & 

Gourmelon 2003). However, the definition of urban and rural is not consistent and confusing 

(Schwarz et al. 2011) in the remote sensing studies. Imhoff et al.  (2010) defined urban ring 

zones based on the percent impervious surface area(ISA) while stated that the rural zones are 

pixels located in 5 km wide ring ranging between 45 km and 50 km away from the 25% ISA 

contour. The researchers unfolded that ecological context significantly influences the urban heat 

island intensity. Furthermore, the difference of pixels around urban and rural weather station 

(Tomlinson et al. 2012), and around the selected downtown and rural districts (Dousset & 

Gourmelon 2003) has also been used to quantify the intensity of UHI. 

Other than the traditional difference means to measure the UHI magnitude, several other 

indicators have also been developed. Streutker  (2003) utilized a least square fit of the entire heat 

island to a Gaussian surface from which the magnitude, spatial extent, orientation, and central 

location of the UHI can be determined. Based on a non-parametric model, Gaussian process, 

Rajasekar &Weng  (2009) quantified the UHI magnitude, spatial pattern and intensity and 

illustrated how the landscape thermal patterns evolve over space and time using the MODIS time 
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series LST stacks. In a research conducted by Zhang &Wang  (2008) to study the relation of 

spatial extent of UHI to urban characteristic factors, an indicator of hot island area (HIA) was 

proposed to quantify the evolvement of UHI. The HIA is defined as a region possessing LST 

values greater than the mean plus one standard deviation. The non-parametric model and the 

HIA representation are examples of the indicators that do not dictate the prior definition of urban 

and rural boundary.  

Despite of the valuable progresses, a recent review presented by Schwarz et al.  (2011) 

suggested that these indicators individually revealed diurnal and seasonal variations and show a 

relatively low correlation over time. Thus, it can be concluded that temporal aspects and 

selection of indicators are import factors determining the UHI intensity estimation (Schwarz et al. 

2011). Cautions should be placed to the instabilities and inconsistence of these indicators and 

using some of these indicators in parallel may help describe the UHI properly. 

 

2.4 Time-series LST data analysis  

 

The utilization of remotely sensed time series stacks for extracting useful information for 

investigating landscape thermal dynamics have received less attention compared to a substantial 

number of literatures concentrating on employing only one or several images for analyses. These 

studies seem to suggest the dynamics appear to be “static” as if they do not change over time. In 

the earlier time, a critical issue faced by the scientific communities is the pressing demand for 

the procurement of thermal infrared data delivered by satellite sensors. However, current status 

has been shifted to how to utilize the large amount of thermal data, such as information from 

Landsat and MODIS (Weng & Fu 2014). The recent Urban Observatory project 
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(http://www.urbanobservatory.org/) initiated by the ESRI Inc. to showcase the remote sensing, 

census, and other derivative data for many global cities, which allows the comparisons among 

cities in different dimensions, may also represent an innovative way to use the large amount of 

data that currently the scientific communities have. The connotation transmitted by the 

observatory project is that it is worthy of extracting valuable information through the mass data 

for answering questions related to the impacts occurring in global cities. Moreover, the recent 

GEO work plan (the sub task-global observation and information 2012-2015) identifies 

objectives to support development of global observation and analysis system and to produce up-

to-date information on the status and development of the urban system. Naturally, the assets of 

the existing remotely sensed archive should be an indispensable part of the to-be-established 

urban system, which will allow the real time monitoring and assessment of the built-up 

environment. 

In spite of the fact that only a few studies have been conducted by utilizing the thermal 

time series stacks for urban remote sensing studies, useful data mining techniques have already 

been devised to reduce the data amount. Gottsche &Olesen  (2001) employed a harmonic and an 

exponential term to model the diurnal cycles of surface temperature derived from the 

Geostationary Operational Environmental Satellite (GOES). The proposed diurnal 

characterization reduced the 48 measurements per pixel to 5 parameters, advantageous to the 

climatological studies which require the processing of long term time series. Keramitsoglou et al.  

(2011) used a total of 3401 MODIS LST images to reveal the magnitude, spatial extent, and 

maxima of thermal patterns in Greater Athens area, Greece by virtue of an object-based image 

analysis method. Although these studies are merely based on the coarse resolution thermal data, 

the data mining methods may also be suitable for high spatial resolution thermal data. Bechtel  

http://www.urbanobservatory.org/
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(2012) discovered that modeling the annual temperature cycle (ATC) with Landsat archive was 

also feasible to obtain the mean annual surface temperature, yearly amplitude of surface 

temperature, and phase shift parameters. His study in the city of Hamburg, northern Germany, 

collected 35 thermal images from Landsat-5 and -7, and estimated approximate 1 K accuracy for 

the ATC model. Weng &Fu  (2014) further analyzed the ATC model, correlated the derived 

parameters to surface biophysical descriptors, and suggested that the parameters can be acquired 

even at cloudy conditions. These efforts, to our knowledge, represent the current frontiers to take 

full advantage of time series data in thermal studies of remote sensing. 

A detailed survey of how NDVI time series have been utilized for modeling ecosystem 

functions and dynamics can also shed lights for the current thermal remote sensing studies.  A 

previous focus of the relevant projects is to recover clear-sky NDVI time series considering the 

frequent contamination of clouds and the atmospheric instability. Roerink et al.  (2000) 

described the Harmonic ANalysis of Time Series (HANTS) algorithm to remove cloudy 

observations and interpolate the missing measurements for reconstructing gapless NDVI values. 

With the assumptions that NDVI time-series follow annual cycles of growth and decline of 

vegetation, Chen et al.  (2004) proposed a simple but robust method to smooth out noise in 

NDVI time-series based on the Savitzky–Golay filter. Seasonal vegetation variations are closely 

associated with vegetation phenology, such as green-up, peak and offset of development 

(McCloy & Lucht 2004). Various algorithms and techniques use time series NDVI to derive 

parameters to describe the vegetation phenology and production that are of primary importance 

for modeling vegetation dynamics (Pettorelli et al. 2005). Methods for modeling NDVI time 

series include Fourier analysis (Juarez & Liu 2001, Wagenseil & Samimi 2006), wavelet 

decomposition (Martinez & Gilabert 2009), and curve fitting (Paruelo & Lauenroth 1998). 
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Despite the valuable techniques, these studies only have the capacity to quantify the vegetation 

phonological cycle while ignore the internal changes caused by the varying disturbances, such as 

deforestation, urbanization, and wildfire. Subject to the possible interruptions to the ecosystem, 

the developed methods may also show the inconsistence although they are assumed to quantify 

the same vegetation phenology. Recent studies presented by Verbesselt et al.  (2010) suggested 

that decomposition of time series NDVI into different components made possible the real-time 

disturbance detection that contributed to investigation of seasonal, gradual, and abrupt changes. 

Therefore, establishing a standard analysis system based on the time series remotely sensed data 

would be useful for understanding ecosystem dynamics and functions. 

Lessons can be learned from studies using NDVI time series for the landscape thermal 

variations. Current research projects in the thermal field to utilize time series stacks pay their 

primary attention in quantifying LST fluctuations over space and time. The coupling relationship 

between thermal variations and the environment have been relatively neglected. In the large scale, 

it is evident that there is a global warming taking place, while at the regional/local scale the 

urbanization is also influencing the environment. The implications brought by the interactions of 

the global and regional environment and climate change remain unresolved. Therefore, the future 

research should be directed to deepen the current understanding of specific thermal changes, how 

they interact with environment, and the current transition to sustainability. 
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CHAPTER 3 

 

STUDY AREA & DATA 

 

3.1 Study Area 

 

The study area consists of nearly the whole Los Angeles County, California, except for 

the southern part and two offshore islands, the Santa Catalina Island and the San Clemente Island. 

According to the 2000 census, the county has a total area of 4752.32 square miles, of which 85.5% 

is land and the remaining is water. Los Angeles County is the most populous county in the nation, 

with a population of 9,818,605. The primary mountain ranges are Santa Monica Mountains and 

the San Gabriel Mountains in the southwestern and southeastern part of Los Angeles County, 

respectively. The Mojave Desert / barren land begins at the northeastern part of the county and 

stretches westward. The valleys are largely the population centers, and compose a large 

percentage of the urban areas. This area comprises of geographically diverse regions ranging 

from hilly mountains, deep valleys, ocean coastlines, forests, lakes, rivers, and barren land. The 

National Land Cover Database (NLCD) 2006 (available at http://www.mrlc.gov/nlcd06_data.php) 

identified 8 land cover types in the study area, i.e., water, developed, barren, forest, shrubland, 

herbaceous, planted/cultivated, and wetlands (Fig. 3-1). This geographical diversity made it an 

ideal study area for the examination of LST variability. Besides, the selection of the study area as 

http://www.mrlc.gov/nlcd06_data.php
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the Los Angeles County is due to its greater chance to acquire clear sky images than other 

regions, such as Chicago or Houston, to facilitate the subsequent time series analysis. 

 

Figure 3- 1 The geographical location of study area 

The area possesses a Subtropical-Mediterranean climate with a dry summers and moist 

winters. The average high air temperature is 29 ˚C in August and 20 ˚C in January based on the 

weather records from the Downtown-University of Southern California campus. Temperature 

experiences apparent change between the inland and coastal areas, as elevation and the distance 

to the coast increase. According to a study by the urban heat island group, the urbanization of 

city has negatively affected the urban community, such as the increased energy use, impaired air 

quality, and the aggravation of heat-related and respiratory illness 

(http://heatisland.lbl.gov/coolscience/cool-science-urban-heat-island). Los Angeles has a known 

problem in air quality, which is related to its UHI phenomenon. According to the Heat Island 
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Group (http://heatisland.lbl.gov/), the heat island effect costs about US $100 million per year in 

energy. 

 

3.2 Data Sources 

 

An operational LST product from Landsat TM/ETM+ archive will definitely benefit the 

current research. Considering that the product is still in progress, an alternative way to derive 

LST maps is to use the NASA Correction Parameter Calculator (Barsi et al. 2005), which uses 

the National Centers for Environmental Prediction (NCEP) modeled atmospheric global profiles 

interpolated to a particular date, time, and location as input for the MODTRAN radiative transfer 

code and a suite of integrative algorithm to infer the up-welling, down-welling radiances and 

site-specific transmission. Land surface emissivity values are to acquire by virtue of the NDVI 

threshold method (Sobrino et al. 2004). The data used in the research were from the Thematic 

Mapper (TM) sensor on board Landsat 5 during the period of February 3, 2000 to December 31, 

2010. TM data have six spectral bands with different spatial resolution, i.e., 30-m resolution for 

bands 1-5 and 7, and 120-m resolution for band 6 (TIR band). The level L1T product was 

downloaded from the Landsat archive at the USGS Earth Resources Observation and Science 

Center website. Only clear-sky images for the study area are chose for further analysis. The 

acquired images from path 41, row 36 and path 41, row 37 were first mosaicked and then subset 

to the study area. Eventually, a total of 82 scenes available from the Landsat archive were 

utilized for the analysis. The mean acquisition time was 18:13 PM UTC (10:13 AM local time) 

with the standard deviation of 6 min, indicating the images were recorded at the time of 

temperature rapid increase. The monthly distribution of image scenes is illustrated in Fig. 3-2. 
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These scenes were also grouped by season: winter (December- February: 15 scenes), spring 

(March-May: 22), summer (June-August: 25), and autumn (September-November: 15). The 

original images were first cropped into the study area and projected to UTM coordinate system 

(UTM, Zone N 11) before subsequent processing. 

 
Figure 3- 2 The number of the image scene collected grouped by month 

Another data source used for the research to test the efficiency of the proposed 

decomposition method comes from the data simulation. The simulation strategy introduces 

changes in seasonal and trend components with different levels of noise. Simulated LSTs will be 

generated by summing individually simulated seasonal, trend, and noise components.  The 

seasonal component is produced by a sinusoidal model with changes in amplitude and angular 

frequency. The stochastic item is created by using a random number generator that follows a 

normal distribution N (µ=0, δ=x). Finally, different percent (up to 50%) of the simulated LST 

time series data points will be removed to keep the consistence with the real observations. 
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CHAPTER 4  

 

METHODOLOGY 

 

Urbanization related activities inevitably alter the natural environment, resulting in 

corresponding changes in climate variables, including LSTs. Consequently, it is expected that  

Figure 4- 1 Specific procedures for proposed study. 
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urbanization process, to some degree, wreaks havoc on the landscape thermal patterns. 

Furthermore, at the global scale, it is obvious that global warming is happening although the 

specific warming trend is still uncertain and obscured. Then it is evident that there is an 

increasingly rapid growth for urbanization and the rapid development has been accused of 

accounting for local, regional and even global climate change. Therefore, it is of important 

necessity to conduct the statistical hypothesis testing for LST periodicity and to decompose long-

term LST observations. The flowchart in Fig. 4-1 shows the specific procedures for this proposed 

study. First, acquired TM time series data are subject to the pre-processing, including subset, 

atmospheric calibration, and computation of LSTs. Then the derived LST time series will be 

analyzed by using the Lomb-Scargle periodogram technique and by using the proposed 

decomposition method. The performance of the new decomposition method is evaluated by 

virtue of simulated LST observations. Section 4.1 and section 4.2 will present the statistical 

hypothesis testing technique and the decomposition method, respectively. 

 

4.1 Statistical hypothesis testing for periodicity using Lomb–Scargle periodogram 

 

 

Although visually rhythmic patterns within LST variations have been known for over 

decadal years, yet there still lacks detailed statistical analysis and evidence for confirmation. This 

situation is further acerbated by the unevenly distributed time series data, positing a challenge to 

search for the periodicity. In this research, we propose to use the Lomb–Scargle periodogram for 

the statistical hypothesis testing and for searching for possible periodic components. For a LST 

value at a pixel observed at time ti, we denote that the time series by Y(ti) for i = 1, 2, 3, … N. To 

model Y(ti) for periodicity, we have 
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Where S(ti) is a periodic function with a positive period T such that  (  )   (    ) for all ti; 

and ε(ti) is assumed as a sequence of norm random errors with mean 0 and homogeneous 

variance (Scargle 1982). Unlike the Fourier Transform, in which the Fourier frequencies are used, 

it is assumed that there are M test frequencies f1, f2, . . . , fM and their corresponding angular 

frequencies are ω=2πfj, for j = 1, 2, …, M. The Lomb-Scargle periodogram is defined by Press 

&Rybicki  (1989) as equation (3). 
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The null distribution of the Lomb-Scargle periodogram     (  ) at a given frequency ωj is 

exponentially distributed (Scargle 1982), i.e., the cumulative distribution function is  
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For the present study, the null hypothesis is LST time series is non-periodic versus the alternative 

one that it is periodic. Thus, the observed statistical significance level, the p-value, of testing the 
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null hypothesis that such a peak in Lomb-Scargle periodogram is due to chance is calculated by 

equation (5) suppose there are M independent frequencies. 

 

             (     )    ( ) 

 

With the above steps, it is possible to identify periodic patterns claimed to show statistically 

significant level for a given false discovery rate (FDR) q. 

 

4.2 LST decomposition 

 

The decomposition of LST time series allows a closer examination of thermal dynamics 

caused by human disturbances. A breakdown scheme proposed here is to disassemble observed 

records into a seasonal, a trend, and a remainder component, respectively. The procedure to 

estimate each component is described as below for irregularly spaced time series data. 

Consider a time series Y in the form described by equation (6). M represents the 

deterministic trend and R is a stationary stochastic process with mean zero. To extract the trend, 

a local linear regression scheme based on the kernel smoothing (i.e., a weighting function) is 

adopted given the boundary data effect (Hastie et al. 2001). For a consistent time series, this 

local kernel regression is adequate in isolating the trend change; however, an irregularly spaced 

time series requires additional efforts to consider the impacts of different observations intervals 

on trend extraction. Here a further weighting function is proposed for optimization showed in 

equation (7). 
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With d the normal observation interval (for Landsat time series, d is 16), and N is the number of 

the observations. The weighting function is inversely related to observation density. 

The seasonal estimation is based on the study by Eckner (2012) using the averaging of 

subintervals method. Suppose a time series in the form described by equation (8). 

 

 (  )   (  )   (  )   ( ) 

 

S(ti) represents the seasonal component with period l present in the time series Y. Then the 

seasonal item is extracted via equation (9). 

 

     [ ( )   (   (  )     (  ))  ( )   ]    ( ) 

 

Where   denotes the function that maps a time point to its relative position within the period 

for      . It is usually necessary to drop a sampled value Y(r) from the calculation of the 

average if the associated time point r is not close to any observation time of Y. Otherwise, linear 

interpolation would “trim down the valleys and fill in the troughs” of seasonal fluctuations 

(Eckner 2012).  
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For the present research, we propose to decompose the LST time series into seasonal, 

trend, and remnant components specified by equation (10) for multi-timescale analysis. An 

iterative scheme should be developed for jointly isolating each component. Detailed procedures 

include: 1) initializing the S item with 0; 2) estimating the trend of Y-S using the local linear 

regression above; 3) estimating the seasonality of Y-M using the averaging of subintervals 

method; 4) repeating the step 2) and 3) until no changes in the S and M, i.e., a convergence is 

reached. 

 

 (  )   (  )   (  )   (  )   (  ) 

 

Then the proposed decomposition method is applied to both the simulated LST time series and 

real observed Landsat satellite images for further quantitative analysis.  
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CHAPTER 5  

 

RESULTS ANALYSIS 

5.1 Rhythmic patterns analysis 
 

 

The application of the Lomb–Scargle periodogram to the time series LST images 

produced estimates of power density, periodic frequency, and the corresponding statistical 

significance level for individual pixels. The power density is defined in equation (3), which 

makes the periodogram analysis invariant to the shift of the origin time and equivalent to the 

least square fitting process (Hornes & Baliunas 1986). To illustrate the usefulness of the three 

parameters in analyzing the periodic patterns of LST time series, a urban pixel with UTM 

coordinate (3865953.603, 3751873.495, unit in meters) was selected and the corresponding LST 

values and periodogram results were shown in Figure 5-1.  
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Figure 5- 1 The LST observations (A) and the corresponding Periodogram results including the 

power density (B) and the False Discovery Rate (C).  

Panel (A) displayed the LST variations between 2000 and 2010. Since the defined power 

density was invariant to the origin of the time, the first day of 2000 was considered as day 1, 

from which the day numbers for different images were calculated. Based on the fact that the 

Landsat revisit time is 16-day, the maximum frequency for the periodogram analysis was set up 

to 0.03125 (1/32), the sampling Nyquist frequency to reduce confusion. However, for the present 

study, this option seemed to be not necessary since the derived periodogram results only 

provided frequency up to around 0.011. This was due to the inherent capability of Lomb-Scargle 

technique to determine the frequency range under the limit of the maximum frequency. In the 

Panel (B), obviously, there are several local peaks occurring at frequency 0.00275 (period 362), 

0.00552 (period 181), and 0.00853 (period 117). These three peaks were meaningful because 

these three periodic times were essentially consistent with annual (1/365), semi-annual (2/365), 

and seasonal-like LST dynamics (3/365). Another reason for the interests in the three periodic 

times was that the Panel (C) provided the matching downward peaks for the statistical 
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significance values although the last two periodic times should be rejected at a given significance 

level either of 0.05 or 0.01. Nevertheless, since the Lomb-Scargle is a statistical hypothesis 

testing technique, the rejection did not mean that there were not semi-annual and seasonal-like 

variations within the time series LSTs. In contrast, the derived results merely showed that LST 

observations did not provide strong evidence for determining the semi-annual and seasonal-like 

variations. It could be concluded that the obtained 82 time series were not adequate in studying 

semi-annual and seasonal-like variations. The results from the application of the Lomb-Scargle 

analysis to all pixels of the study area suggested the same conclusion that the 82 LST images 

could be used for isolating the annual variations at the significance level of 0.01 with a period 

time of 362.18 days and that there was no strong evidence to demonstrate the semi-annual and 

seasonal-like dynamics.  

Compared to the study conducted by Weng & Fu (2014), the difference was that the 

assumed annual temperature cycle was 365 days rather than the identified 362.18 days in the 

present research. To determine whether the difference was caused by data missing or was limited 

by the Landsat revisit intervals, the simulated annual LST time series variations with the periodic 

time of 365 days were employed. Without clouds or poor atmospheric conditions, the used time 

series data would have roughly 250 images scenes over decadal years. Therefore, the Lomb-

Scargle analysis utilized the simulated 250 LST time series with interval of 16-day to illustrate 

the tolerance of the technique to the data missing. The amplitude for the annual dynamics and the 

mean annual surface temperature were set at 15 K and 295 K, respectively. Table 5-1 showed the 

tolerance of the Lomb-Scargle technique to data missing, ranging from 20 to 190. The number of 

images less than 60 is not considered since the identified periodic time decrease greatly after that. 

Overall, the detection capability of the periodogram technique decreased with the increased 
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number of missing data observations as evident in the table results of the Periodic time. The 

exception occurred to the number of 70 or 60 images, which was probably due to the robustness 

of the Lomb-Scargle analysis, which preserves the periodic identification ability even with a 

small number of temperature observations. Therefore, the difference of the annual temperature 

periodic time between the study of Weng & Fu (2014) and the present research was attributed to 

the data missing caused by clouds contamination and/or poor atmospheric conditions.  

Table 5- 1 The tolerance of the Lomb-Scargle technique to data missing 

Image Number 250 230 210 190 170 150 

Periodic time 365.0 364.8 364.5 364.1 363.7 363.1 

Image Number 130 110 90 80 70 60 

Periodic time 362.5 361.59 360.8 360.2 360.6 360.9 

 

Figure 5- 2 The percent variance map explained by the identified annual temperature cycle over 

2000-2010 

Figure 5-2 revealed the percent variance map by which the identified periodic patterns 

would explain for the decadal years LST dynamics. To facilitate the variance computation, the 
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sinusoidal function was assumed and employed. The resultant variance image of figure 5-2 was 

multiplied by 100 to display the percent variance. Overall, it was evident that there was an 

increase trend for the percent variance as the latitude increased. However, the study area is not 

big enough to accommodate too many changes of ocean climatic effects. Thus, the observed 

variance patterns could be attributed to the geographic location of the study area, i.e., the land 

cover and land use composition. In addition, a low percent variance could be observed in 

vegetated areas, suggesting the impact of vegetation on surface temperature fluctuations. From 

the perspective of surface energy balance, the vegetation acted on LST mainly through latent 

fluxes, and this process generated extra complexity for temperature variations that may not be 

identified as the periodic pattern from the remote sensing perspective. In the urban areas, mainly 

the southern part of the study area, the percent variance was also relatively low with the mean 

value of the percent variance of 25.3. Although the low value could be explained by the effects 

of the sea breeze, it was reasonable to assume that the urbanization may have produced its own 

temperature pattern compared to other land covers, thus lowering the variance explained by the 

isolated rhythmic pattern. As such, urbanization could be regarded as to weaken the annual 

temperature dynamics by producing urbanization associated LST variations. High percent 

variance mainly occurred in the northern and northeastern part of the study area, from which the 

Mojave Desert / barren land stretched westward. This phenomenon revealed that surface 

compositions could impact the temperature patterns and the corresponding acting force 

magnified with the increased complexity of surface fabrics given the comparisons of materials 

between urban and barren land regions. The inland water region displayed a low percent variance 

due to the high thermal capacity of water to resist temperature changes and/or energy exchange 

between water and the surrounding land cover and or atmosphere, thus creating non-annual 



36 

 
 

temperature distributions and reducing the percent variance. Therefore, it could be concluded 

that the variance explained by the identified periodic pattern in the study area was subject to 

surface compositions. More importantly, urbanization generated additional LST variations, thus 

weakening the annual surface temperature dynamics evident by the low value of the percent 

variance explained by the annual temperature dynamics. 

 

5.2 Decomposition analysis 

 

5.2.1 Test of the decomposition technique by simulated LST data 

Since there was not any field observed data available, the validation of the decomposition 

technique was implemented by using simulated LST consisting of seasonality, trend, and noise 

components. The specific parameters for the three components were listed in table 5-2. Figure 5-

3 showed the results derived from the application of the iterative decomposition technique to the 

simulated LST. Only results for amplitude of 15 K and trend of 0.1 K per year were summarized 

in the figure since similar results were obtained for other amplitude and trend values. The 

seasonality estimation errors were also not showed in the figure since the estimated seasonality 

error was always below 0.1 by using the different noise level and different preserved point 

number of points. Therefore, the seasonality component estimation was not subject to the noise 

level and the number of points used in decomposition process. As illustrated from figure 5-3, the 

estimation of trend component was influenced by the noise level and the corresponding errors in 

trend component increased as the noise level expanded. The preserved number of points also 

impacted the performance of the decomposition technique. This was reasonable since the 

missing of data points could obscure the temperature dynamics thus magnifying the absolute 

errors. Finally, the estimation of the seasonal component did not affect the derivation of trend 
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variations.  Figure 5-3 also showed that the impact of the combination of the preserved number 

of points and the noise level on the absolute difference was up to 0.06 K, 60% percentage of the 

simulated trend per year. Overall, figure 5-3 illustrated that the absolute difference increased 

slowly as the noise level and the missing of data points increased. 

Table 5- 2 Parameter values for simulating LST time series 

Parameters Values 

Seasonality (Amplitude) 15, 20 

Trend (change/per year) 0, 0.1, 0.2 

Noise (variance δ
2
) 1, 2, 3, 4, 5 

Preserved point number*  150, 130, 110, 90, 70 

* Initially the simulated LST time series have 250 observations. 

 

Figure 5- 3 The sensitivity analysis of the decomposition technique by using simulated LSTs 

(Amplitude = 15, Trend = 0.1/per year). The preserved number of points represented the number 

of points used in the decomposition process. The absolute error was used to measure the errors in 

estimated trend component compared to the simulated trend. 

 

5.2.2 Application of the decomposition technique to remote sensing data 
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Since the iterative algorithm requires a long computation time for each pixel, it should be 

better for the comparison analysis between urban and non-urban regions by creating 

mean/median composite. Moreover, the composite data could also further eliminate/remove 

some of the noised pixels produced in the LST computation. In this study, the NLCD 2006 was 

employed and the median composite LSTs were created for each land cover. Figure 5-4 provided 

the decomposition results derived from the application of the decomposition technique to remote 

sensing data for each land cover. In terms of seasonality component, it should be explained in the 

way in which the temperature increased by a number based on the corresponding trend 

component.  

The amplitudes of the seasonality for individual land covers were successfully retrieved, 

i.e., 3.0 K (water), 18.8 K(developed), 22.7 K(barren), 16.4 K(forest), 17.8 K(shrubland), 21.5 

K(herbaceous), 20.7 K(planted/cultivated), and 15.4 K (wetlands). These results are comparable 

to the study of Weng & Fu (2014).  As in the sensitivity test, the seasonality component could be 

estimated robustly. Overall, the estimated seasonality amplitude corresponded well to each land 

cover. Therefore, for a simplified analysis of annual temperature dynamics, a sinusoidal model 

was adequate. 

The trend component could be considered as the inter-annual change or the temperature 

variations (increase or decrease) over decadal years. Land covers of developed, barren, forest, 

shrubland, and wetlands displayed an increase pattern with temperature increases of 1.2 K, 0.5 K,  
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Figure 5- 4 Application of the decomposition technique to individual land covers including water, 

developed, barren, forest, shrubland, herbaceous, planted/cultivated, and wetlands. In each panel, 

the figure showed the original median LST observations, decomposed seasonality, trend, and 

noise components. 

1.0 K, 0.7 K, 0.4 K respectively over decadal years (temperature in 2010-temperature in 2000). 

In contrast, the remaining land covers, including water, herbaceous, and planted, showed a 

temperature decrease trend -0.2 K, -0.8 K, and -1.3 K, respectively. The existence of positive and 

negative trend change values may suggest different variation patterns for different land covers 

and could possibly attribute to the fact that only 10 years’ remote sensing data was used for 

analysis which may partly obscure the trend change. However, even with the land covers 

showing a temperature decrease from 2000 to 2010, it could be observed from the trend 

component that there was an increase in LST. It seemed that year 2004-2005 was a time period 

in which the trend began to increase or decrease, suggesting either some climatic events in the 

period or the inter-annual change may also showed a periodic pattern, not captured by the annual 

temperature dynamics, or merely a non-periodic pattern. Therefore, for the ease of the trend 
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comparisons between urban and non-urban regions, only land covers showing a consistent 

increase change were selected and eventually the land covers of developed and forest and 

wetlands were used for the comparisons. In these three land covers, the developed regions 

revealed the highest trend change over the ten years, and showed a range of 0.2 K to 0.8 K 

difference compared to the other two land covers, suggesting that the urbanization associated 

land covers may further create a trend change rather than the already known climate change. 

Furthermore, it should be noted that the reason for not using other land covers as comparison 

basis was because they did not uncover a consistent trend change and should be explored in a 

much longer period to check if the inter-annual change showed a periodic or non-periodic pattern. 

Thus the temperature increase or decrease change could be confirmed and could be used for the 

comparison of urban and non-urban regions to show the possible trend variations caused by 

urbanization. In the present study, it was concluded that the urbanization associated land cover 

created a trend change pattern ranging from 0.2 K to 0.8 K. The noise component should be 

regarded as the weather impacts on temperature changes. Further analysis suggested that the 

noise component resolved around the zero line, indicating that the extracted seasonality and trend 

components could well represent the temperature dynamics. As such, the noise component could 

also be assumed as a way to measure the efficiency and robustness of the decomposition 

technique, especially when the validation data was missing.  
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CHAPTER 6 

 

DICUSSIONS & FUTURE WORK 

 

The major contribution of the thesis research is to provide the statistical evidence of the 

existence of the rhythmic patterns and the decomposition technique for the obtained evenly 

distributed time series data. The main characteristics of the Lomb-Scargle periodogram and the 

proposed decomposition technique are both revealed by using simulated LST data consisting of 

either the seasonality or the combination of the seasonality, trend, and noise components. The 

lomb-Scargle periodogram is a statistical hypothesis technique with the assumption that the null 

distribution of each frequency is exponentially distributed and its corresponding application is 

only subject to the extent to which the time series data is unevenly distributed. Previous studies 

in Bechtel (2012) and Weng & Fu (2014) showed that the annual temperature cycle (ATC) was 

adequate in studying urban thermal patterns; however, statistical evidence was lacking to explain 

why such an ATC exists.   

The decomposition technique is developed mainly for analyzing to what degree the 

urbanization impacts the surface thermal properties. Simulation of LST time series data 

illustrated that the proposed technique was influenced by the noise level and the preserved 

number of point of the observations. Nonetheless, the derivation of LST from NASA Correction 

Parameter Calculator (Barsi et al. 2005) reported an error of ± 1K, which at most results in, 
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according to the sensitivity analysis of the decomposition technique, 30% biases in estimating 

the trend component when the time series data is seriously unevenly distributed (only 70 points). 

The biases can be further attenuated in this study since it focused on the comparisons between 

urban and other land cover regions. The most important contribution of this iterative technique is 

its ability to break down the time series data into seasonality (annual change) and trend (intra-

annual change) components, facilitating the study of the impacts of urbanization. Considerations 

for further research can be fallen into several aspects: 

1) The proposed Lomb-Scargle technique can be used for studying the periodic patterns 

involved in other biophysical parameters, such as NDVI and LAI, and even data from MODIS 

time series. The critical point is that the periodogram analysis cannot only detect annual change, 

but also shows potential to isolate the periodic patterns at intra-annual (less than a year) and 

inter-annual (more than a year) temporal scales depending on the availability of the data. Despite 

the robustness of the technique, it is still necessary to obtain as much time series data as possible 

to reduce the possible calculation biases. If some of the biophysical parameters only show 

different periodic patterns, they could be reconstructed from the remote sensing observations at 

even finer scales, such as from 16 days (Landsat revisit frequency) to a daily basis. The 

application of the proposed method would be very useful especially for some areas experiencing 

severe clouds days. 

2) Further application of the decomposition technique should work with an even longer 

period of time series LSTs to confirm the LST changes attributed to urbanization other than the 

changes caused by the already known global climate change. Up until now, it is still uncertain 

about whether urbanization results in regional and/or global climate change. However, the thesis 

research does show a higher trend component in urban regions compared to the regions (forest 
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and wetlands) showing consistent increase trend variations. The remaining land covers does not 

show a consistent increase or decrease patterns, probably suggesting either a periodic pattern at 

an intra-annual scale or a non-periodic pattern showing some climate events that needs to be 

further considered and explored. Therefore, the alternative can be to employ the Landsat TIR 

data obtained since 1982 for the decomposition analysis. Currently, the only problem is the lack 

of standardized LST product from the Landsat archive despite the availability of other Landsat 

products, such as surface reflectance climate data record (CDR) and surface derived indices. The 

way to compute LSTs using the NASA Correction Parameter Calculator can only be applied to 

the Landsat data after 2000 (Barsi et al. 2005) due to the lack of atmospheric profiles. The 

promising aspect is that such a LST product is in progress (Schott et al. 2012) and thus the 

decomposition technique is expected to further confirm the climate change attributed to 

urbanization with the upcoming Landsat LST product. In addition, the iterative decomposition 

technique assumes that the seasonality component should be time constant and there is no intra-

annual change for the seasonality component. Such an assumption can be held over a decadal 

year since only ten years data does not allow the discrimination of the change of seasonality. 

However, if more than one decadal years LST data is utilized, it will become obvious that the 

seasonality component is time-varying. The noteworthy point is that the proposed decomposition 

technique has the capacity to absorb a time varying seasonality component as long as the locally 

weighted scatterplot smoothing (LOWESS) scheme is employed in the seasonality estimation 

described in equation (9).  

3) The proposed decomposition technique illustrates potentials in the continuous change 

detection and classification of land covers (Zhu & Woodcock, 2014). In the study of Zhu & 

Woodcock (2014), they utilized a parametric model comprising seasonality, trend, and break 
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components to estimate reflectance and brightness temperature for the detection of land cover 

change. Then the land cover classification is realized through the Random Forest Classification 

with inputs from the coefficients of the time series model. The same scheme can also be 

employed by using the proposed decomposition technique. Therefore, the operation can be 

performed on a pixel basis rather than using the median composite present in this thesis research. 

As to the difference between the proposed decomposition technique and the parametric model 

used in Zhu & Woodcock (2014), further comparisons will be done in terms of land cover 

change detection. 

Despite the mentioned promising aspects, further considerations should be directed to the 

possible biased introduced from the factors of elevation and inherent thermal anisotropy 

characteristics. The elevation influence was evident since apparently the percent variance map of 

figure 5-2 showed the hilly shade effects. Given that the LST is an anisotropy parameter, the 

combined effect of the elevation and thermal anisotropy on the multi-timescale analysis may be 

more complicated. Furthermore, the thesis research aimed at analyzing dynamics of the unevenly 

distributed LST time series data and at how the remotely sensed data could help illustrate the 

impact of the urbanization on surface thermal properties. Therefore, the results need to be further 

confirmed by investigating the linkages between the urban developments and the surface thermal 

properties.  Future directions can be placed on correlating the urban morphology and 

compositions with the time series data to illustrate the interactive aspects between urbanization 

and surface thermal properties. Hopefully, the causes and consequences of the surface thermal 

property changes can be revealed and effective measures can be taken for future environmental 

sustainability. 
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CHAPTER 7 

 

CONCLUSIONS  

The thesis research aims at analyzing the impacts of urbanization on the surface thermal 

properties, i.e., the LST dynamics over decadal years by using Landsat TM LST data. To our 

knowledge, the existence of the periodic pattern in the LST dynamics is first confirmed in the 

presented study from a statistical perspective although previous studies illustrated the suitability 

of an ATC model to characterize thermal patterns. By using simulated LST data consisting of 

only the seasonality component, the robustness of the Lomb-Scargle periodogram technique is 

illustrated and the corresponding application is influenced by the preserved number used in the 

computation. The error for the frequency estimation of the rhythmic patterns can be up to 5 days 

following the decrease of available time series data. The analysis of variance explained by the 

assumed annual temperature cycle showed a percent mean variance value of 25.3 in urban 

regions, a relatively low value compared to other natural land covers, suggesting a weakened 

annual temperature cycle caused by the urbanization as expected from the hypothesis.  

The iterative decomposition technique consisting of seasonality, trend, and noise 

components provides a specific way to measure the influence of urbanization in the LST 

variations. The sensitivity analysis of the decomposition technique suggests the robustness of the 

break-down scheme and indicates that the estimation of seasonality is not influenced by the 

preserved number of points and noise level whereas the trend estimation can be affected by both 
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factors and the total combined error can be up to 0.06 K per year for trend component estimation. 

Further comparison analysis of the trend component among different land covers, i.e., urban and 

non-urban regions, indicated that urbanization would cause climate change circa 0.2-0.8 K. 

Future work will be directed to the further confirmation of the urbanization related climate 

change by utilizing several decades’ LST data from all the available Landsat TIR data. 
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