Twin Ion Engine Demonstration for Small Spacecraft Applications

Michael Tsay, Riley Terhaar, Kyle Emmi and Carl Barcroft Busek Co. Inc., Natick, MA, 01760 USA

36th Small Satellite Conference Utah State University, Logan, UT, USA August 6-11, 2022

APPROVED FOR DISTRIBUTION

Copyright © by Busek Co. Inc.

BIT-3 Overview and Gen-1 Upcoming Flights

- BIT-3 is an RF gridded ion thruster with an RF cathode neutralizer, both fueled by iodine
- Iodine has many advantages over xenon while equal in performance
 - \succ Solid storable; simpler tank requirement
 - ➤ 4.9 g/cc I2 storage density vs. 1.8-2.0 g/cc Xe
 - <\$100/kg I2 cost vs. >\$27,000/kg Xe (at least 300X difference)
- Busek one of pioneers on iodine EP
 - ➤ I2 HET
 - I2 RF gridded ion
 - I2 RF cathode

PROPELLANT

INJECTOR

RF ion thruster

Two Gen-1 BIT-3 on SLS Artemis 1

LOW VOLTAGE

1cm RF Cathode "BRFC-1"

SLS Artemis 1's Ten 6U CubeSat Secondary Payloads Installed in the **Orion Stage Adapter (OSA)**

BIT-3 Development Timeline

01/2016		01/2020		01/2021		01/2022		06/2022	
	 Iodine gridded RF ion thruster proof of concept Gen-1 flight development began 		 3x Gen-1 FM delivered Gen-1 3,500hr wear test began Gen-2 development began 		 Gen-1 3,500hr wear test completed Gen-2 fight production began 		 Gen-2 10k hot-fire cycling test completed 		 Dual-engine demonstration 24x Gen-2 FM delivered (25x built)

Gen-1 Units

Gen-2 Fleet

Dual Engine Test Objectives and Setup

Objectives

- Demonstrate two BIT-3s can fire in close proximity (<10cm separation), simulating micro-sat volume constraints
 - Operating gridded ion clusters is not new (e.g. JAXA's Hayabusa mission), but never so close
- Demonstrate there is no electrical or plasma interferences during thruster startup and throttling (3 scenarios tested)
- Demonstrate ion beam neutralization
 - Total neutralizer electron emission current equal or higher than ion beam current

Setup

- Water-cooled mounting plates, simulating spacecraft mounting interface
- Two sets of bench power supplies and LabView/RS-485 controls
- Busek T-4 vacuum chamber, dedicated to BIT-3 iodine hot fire tests

Video Shown at 4x Speed

Video Shown at 4x Speed

Video Shown at 2x Speed

Result – Simultaneous Startup

Screen

- Both thruster started up near simultaneously • (<1sec offset due to command timing)
- No startup plasma interference issue ٠
- Achieved overall neutralization (total cathode • current > or = total ion beam current)

Cathode Electron Current

Combined Beam vs. Cathode Current

Result – Sequential Startup

18

16 14 14

Screen Grid (Beam) Cu

- Thrusters fired sequentially to simulate unsynchronized startups or single engine flameout recovery
- No startup plasma interference issue ٠
- Achieved overall neutralization (total cathode • current > or = total ion beam current)

Cathode Electron Current

Combined Beam vs. Cathode Current

Result – Throttling

Screen

۳A

- Thrusters throttled sequentially from Lv4 (1.0mN) to Lv0 (no thrust) and back to Lv4
- No plasma interference issue / no flameouts •
- Achieved overall neutralization (total cathode • current > or = total ion beam current)

Cathode Electron Current

Combined Beam vs. Cathode Current

Conclusion

- Two Gen-2 BIT-3 systems successfully demonstrated iodine hot firing side by side
 - Close proximity (6.5cm separation) had no observable electrical or plasma-interaction issues
 - Plasma plumes not entangled
 - Greatly reduces risk of clustering BIT-3 in confined s/c volume
- Three scenarios examined; thruster and cathode stable in all cases
 - Simultaneous ignition
 - Sequential startup
 - Independent throttling
- Iodine ion plumes were fully neutralized
 - The two cathode neutralizers were able to couple to the plumes via plasma bridge, and emit greater than or equal to the ion beam current