



# Fatigue Life Predictions of Additively Manufactured Components for Satellite Structures

Air University: The Intellectual and Leadership Center of the Air Force Aim High...Fly - Fight - Win



#### **Research Objective**



The AFIT of Today is the Air Force of Tomorrow.

#### **Objective**

- Develop a method to predict critical defect sizes
- Develop a method to predict potential failure locations

#### <u>Approach</u>

- Identify required input parameters
- Predict critical defect sizes and stresses
- Connect fatigue failure with geometry locations

#### <u>Application</u>

- Define Minimum Defect Size of Interest
- Define Inspection Locations for AM components



## **Fatigue Failure Method**







Air University: The Intellectual and Leadership Center of the Air Force

Aim High...Fly - Fight - Win







- Demonstrating the application with a 12U CubeSat
- Design Life: 3x10<sup>5</sup> Cycles
- Loading: NASA GEVS vibration profile
- Material: Aluminum
- Configurations:
  - Empty Chassis
  - 12 mass stacks for 24Kg total mass





## **Defect Populations**



The AFIT of Today is the Air Force of Tomorrow.

- Generate a defect distribution for the material of choice
- Potential methods to ID the largest expected defect
  - Statistical expectation
  - Historical data
- Set largest expected defect to 400µm
  - ~1 of 5 million defects
  - Larger than documented internal defects



Maximum

Defect

Size

Expected

(Maskery et al., 2016), (Beretta and Romano, 2017), (Wu et al., 2021), (Gumpinger et al., 2020) *Air University: The Intellectual and Leadership Center of the Air Force Aim High...Fly - Fight - Win* 



Generate

Defect

Distributio

n



#### **Material Properties**



The AFIT of Today is the Air Force of Tomorrow.

Basquin Law: •

| $\sigma_{maxN}$ | _ | $(A)N^b$ |
|-----------------|---|----------|
|-----------------|---|----------|



• Paris Law:

 $= C \Delta K^n$ 

 $\bigcirc$ 

 $10^{1}$ 

da

Finite Life

El-Haddad

Model

## **Finite Fatigue Life Model**





Aim High...Fly - Fight - Win

#### **Fatigue Failure Method**







Air University: The Intellectual and Leadership Center of the Air Force Aim High...Fly - Fight - Win

# **Minimum Failure Defect of Interest**



The AFIT of Today is the Air Force of Tomorrow.

- Input
  - Design Life
  - Max Stress
- Output
  - Smallest defect predicted to cause failure

Changing the structure has a large impact on critical defect sizes





## **Minimum Failure Stress of Interest**



The AFIT of Today is the Air Force of Tomorrow.

- Input
  - Design Life
  - Largest Expected Defect
- Output
  - Smallest stress with potential to cause failure

Triangle above the El-Haddad curve predicts defect size and stress combinations that lead to early failure



with Max

**Defect Size** 

![](_page_10_Picture_0.jpeg)

## **CubeSat Critical Failure Areas**

![](_page_10_Picture_2.jpeg)

11

The AFIT of Today is the Air Force of Tomorrow.

Empty 12U predicted potential failure locations at:

- Screws •
- Curve changes ٠
- Thickness transitions

Full 12U predicted potential failure locations at:

Mass Stacks •

![](_page_10_Figure_10.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

![](_page_11_Figure_3.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_2.jpeg)

#### **References**

- 1) Rhys Jones, Jan Cizek, Ondrej Kovarik, Jeff Lang, Andrew Ang, and John G Michopoulos. Describing crack growth in additively manufactured scalmalloy. Additive Manufacturing Letters, 1:100020, 2021.
- Ian Maskery, NT Aboulkhair, MR Corfield, Christopher Tuck, AT Clare, Richard K Leach, Ricky D Wildman, IA Ashcroft, and Richard JM Hague. Quantification and characterization of porosity in selectively laser melted al-si10-mg using x-ray computed tomography. Materials Characterization, 111:193–204, 2016.
- 4) S. Beretta and S. Romano. A comparison of fatigue strength sensitivity to defects for materials manufactured by am or traditional processes. International Journal of Fatigue, 94:178–191, 2017. Fatigue and Fracture Behavior of Additive Manufactured Parts.
- 5) Zhengkai Wu, Shengchuan Wu, Jianguang Bao, Weijian Qian, Suleyman Karabal, Wei Sun, and Philip J Withers. The effect of defect population on the anisotropic fatigue resistance of alsi10mg alloy fabricated by laser powder bed fusion. International Journal of Fatigue, 151:106317, 2021.
- 6) Johannes Gumpinger, Ana D Brand<sup>\*</sup>ao, Emilie Beevers, Thomas Rohr, Tommaso Ghidini, Stefano Beretta, and Simone Romano. Expression of Additive Manufacturing Surface Irregularities Through a Flaw-Based Assessment. ASTM International, 2020.

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

![](_page_13_Picture_2.jpeg)

- Primary axial frequencies from 20-2000 Hz
- Creates the relationship between location and stress

![](_page_13_Figure_6.jpeg)

FEM