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ABSTRACT 
 The HOP Queue (Hyperspectral Onboard Processing Queue) demonstration leverages emerging COTS AI 
accelerators and GPUs to perform on-board processing of hyperspectral imagery data, with the aim of providing near-
real time conservation-oriented data and metrics from Low Earth Orbit (LEO). These include forest health, fire 
detection, and coastal water health. Phase 1 of this project is currently underway, including a completed lab 
demonstration of this technology and ongoing flight testing. The data from this mission will support Northrop 
Grumman’s enterprise “Technology for Conservation” campaign and will be provided to NASA’s Surface Biology 
and Geology (SBG) organization, as well as other conservation efforts.  

INTRODUCTION 
Advances in low-SWAP, COTS processing power 
provide an opportunity to procure timely, space-based 
environmental monitoring data that can directly aid 
conservation-related challenges at relatively low cost. 
The HOP Queue (Hyperspectral Onboard Processing 
Queue) CubeSat mission will utilize a visible and short-
wave hyperspectral (HSI) imager along with onboard 
processing (leveraging emerging COTS AI accelerators) 
to provide metrics of ecological health, with particular 
focus on forests and coastal waters. As part of Northrop 
Grumman’s “Technology for Conservation” campaign1, 
HOP Queue data will be provided to NASA’s Surface 
Biology and Geology (SBG) organization, as well as 
other conservation efforts.  

TECHNICAL APPROACH 
Hyperspectral imaging (HSI) sensors collect 
simultaneous images in hundreds of narrow-wavelength-
range bands across visible and infrared (IR) regions of 
the electromagnetic spectrum. By providing spectral 
information as well as spatial images, they have the 
flexibility to provide concurrent data suitable for 
informing multiple applications, such as determining the 
properties of water and of vegetation, as well as 
identifying events such as forest fires. However, the 
large size of the data files can cause challenges given 
typical bandwidth constraints. For this reason, we utilize 

onboard processing to enable data reduction via 
compression and image chipping around regions of 
interest. We further exploit advances in embedded sensor 
AI/ML in order to perform onboard image processing 
tasks. 

This demonstration utilizes a hyperspectral sensor and 
processor hardware that would be capable of space flight 
in a CubeSat. The approach for this project mimics 
NASA SBG requirements2,3, including GSD, signal to 
noise, and embedded algorithms designed to determine 
coastal water and forest health; however, the approach is 
applicable to other applications. The sensor is suitable 
for other missions requiring material identification. And, 
the algorithm methods and types can be extrapolated for 
not only other hyperspectral missions, but also other 
electro-optical (EO) sensors, including panchromatic 
and multispectral visible and infrared sensors. 

Hyperspectral Sensor 
HOP Queue is working in partnership with Spectral 
Sciences, Inc (SSI) to leverage a prototype HSI sensor. 
This miniaturized, lightweight turn-key hyperspectral 
sensor package incorporates a single, monolithic 
spectrograph, telescope and navigation system, which 
was built for airborne applications on small, Unmanned 
Aircraft Systems (UAS)4. The sensor uses components 
of Corning Inc.’s existing MicroHSI 410 Visible / Near 
Infrared (Vis/NIR) Selectable Hyperspectral Airborne 
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Remote sensing Kit (SHARK) that is currently used for 
airborne agricultural monitoring and climate research. It 
has 5 nm resolution, and measures only 46mm x 60mm 
x 76mm. Under DOE sponsorship, SSI and Corning 
developed a new monolithic spectrograph to cover the 
visible-to-extended-short-wave-infrared (Vis/SWIR) 
spectral range from 0.4-2.5 microns4,5.  This new design 
is incorporated in a Vis/SWIR HSI sensor that is rugged 
enough to maintain alignment under harsh conditions of 
small UAS flight. 

Note a version of the MicroHSI 425 was ruggedized for 
space flight in 2019 by Corning and Orbital Sidekick6. A 
ruggedization of the SSI/Corning sensor with the 
monolithic spectrograph for space flight would be 
advantageous for more robust alignment and a smaller 
size. 

The Vis/SWIR HSI sensor package contains the 
spectrometer, camera, cooler, fore optics, and data 
acquisition electronics. The total system weight is < 2.4 
kg (with foreoptics) and the dimensions are 9.4” x 4.9” 
x 4.7”. Power usage during data collection is less then 
~25 W. Sensor performance has been verified in test 
flights on a small UAS and manned aircraft. 

Spectrometer Design 

The Vis/SWIR sensor utilizes a solid monolithic block 
Offner spectrometer to enable a compact, high-
performance HSI platform. The design has the advantage 
of significantly lighter weight and smaller size than 
conventional air-spaced HSI sensor designs. When light 
travels through a solid block of monolithic material with 
a higher index of refraction than air, the reflecting angles 
are smaller for the same numerical aperture (NA). This 
enables the spectrograph to be significantly more 
compact, with higher NA (f/1.5), leading to better signal 
to noise ratio (SNR). 

 

Figure 1: (left) Spectrograph cross-section with ray 
trace, (right) rendering of the spectrograph solid 
model 

An Offner-based design also produces high image 
quality and low distortion. Manufacturing the 
spectrograph from a solid block, allows for tighter 
tolerances and higher mechanical and thermal stability, 
and provides lower cost manufacturing.  

Camera 

The spectrograph block is coupled to a back-thinned 
HgCdTe FPA covering the 0.4-2.5 micron spectral 
range. The camera has 640x512 pixels, with 15 μm pixel 
pitch. The camera’s maximum frame rate is 120 Hz. An 
order sorting filter (OSF) is integrated in close proximity 
to the FPA, to maintain high performance throughout the 
wide wavelength range. The sensor has quantum 
efficiency greater than 0.85 throughout the spectral 
range, a large well depth of >1 Me-, and low read noise, 
leading to high SNR as shown in Figure 3. 

Sensor Performance 

Figure 2 compiles the performance metrics for the 
Vis/SWIR sensor. The Signal to Noise Ratio (SNR) of 
the sensor is quite good.  The SNR shown in  Figure 3 is 
based on the sensor metrics and a MODTRAN calculated 
scene with  a 50% Lambertian reflector on ground, 
viewed from space, Solar Zenith Angle = 45 degrees, 
Rural aerosols, 20 km visibility, direct and diffuse 
transmission, and including aerosol scattering into the 
sensor. 

 

Figure 2: Sensor performance parameters 

Figure 3 shows different curves relevant to the recent 
aircraft tests and a Low Earth Orbit (LEO) sensor, which 
may utilize either the f/1.5 or f/2 optics in a CubeSat.  In 
either case the maximum frame rate is 120 Hz.  For the 
aircraft tests, with f/1.5 optics, 120 Hz data collection 
will be appropriate to meet the NASA SBG2,3 
requirements for target detection and ID with SNR of 
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order 200:1 in the extended SWIR. For an f/2 optic in 
LEO, the performance is somewhat lower but still within 
the SBG target range for sensors with 5 micron 
resolution.  Higher SNR can be achieved at a lower 
frame rate of 60 Hz.  

 

Figure 3: High SNR enables target detection and ID 

Onboard Processing 
To reduce data transmission requirements, the HOP 
Queue system concept is to process data onboard with 
low Size Weight and Power (SWaP) processors, perform 
data reduction, and transmit highly relevant data 
products.  HOP Queue computes mission-relevant 
environmental health metrics per-pixel onboard the 
platform, identifies areas of interest based on these 
metrics, and sends these areas as chips of data.  

The HOP Queue onboard processing architecture 
calibrates and registers raw sensor data, then corrects for 

atmospheric effects via an embedded C version of SSI’s 
FLAASH algorithm7 using a customized MODTRAN 
Look-Up-Table based on fight parameters like altitude 
and azimuth of the space vehicle.  

 

Figure 4: On-board processing flow 

SSI Level 1 Processing Algorithms  

The raw sensor data will be corrected and calibrated with 
SSI level 1 processing algorithms including bad pixels, 
scatter correction, radiometric non-uniformity correction 
(NUC), and crop and bin, as shown in Figure 5 and table 
1. 

The data are then processed through cloud detection and 
spectral mappers, such that only meaningful, calibrated 
data are sent on for use in calculating environmental 
health metrics. The HOP Queue runs a combination of 
algorithms that operate on the hyperspectral data cubes 
(e.g. spectral angle mapper) to produce multispectral 
products on-the-fly. Data are numerically losslessly 
compressed for downlink. 

 
Figure 5: Level 1 processing algorithms enable accurate AI/ML target detection and ID.  
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Algorithm Purpose 

Bad Pixels • Static map identified in calibration 
• Dynamic map identified from scene data 
• Replacement with 1D linear interpolation 

Scatter Correction • Subtract scattered light based on scene data 
• Scatter model is a set of coefficients for each type of scatter – updated for a 

new sensor build 

Radiometric Non-Uniformity Correction (NUC) Pixel gain coefficients measured in calibration 

Crop and Bin Based on static table 

Table 1: SSI Level 1 processing algorithms correct and calibrate data, preparing it for target detection and 
identification 

Environmental Health Metrics 
After the raw data has been registered and atmospheric 
correction performed via FLAASH, environmental 
health metrics are calculated in order to provide insight 
into the condition of the observed region.  

Coastal Water 
Monitoring the health of coastal water ecosystems is a 
key aim of the HOP Queue mission. HOP Queue utilizes 
a variety of water clarity metrics and other quantities via 
algorithms provided by the University of South Florida 
Optical Oceanography Laboratory8, as well as standard 
NASA ocean observation algorithms9. These include: 

• Remote sensing reflectance (RSR): ratio of 
water-leaving radiance to downwelling 
irradiance just above the surface 

• Photosynthetically active radiation (PAR): 
visible light available for photosynthesis 

• Chlorophyll a (the amount of cholophyll-a 
present in the water) 

• Kd, 490: diffuse attenuation coefficient at 490 
nm 

• Benthic available visible light (BA490): 

• Secchi disk depth: water clarity measurement 
corresponding to the depth at which a Secchi 
disk is no longer viewable by an observer 

These algorithms have been implemented and exercised 
with surrogate data during our lab demonstration. 
Further testing will occur during the airborne flight 
demonstrations, when we will also be able to calibrate 
algorithm output against in-situ measurements via 
“virtual buoy”10 data.  

Vegetation and Forest Health 
HOP Queue has implemented a number of algorithms to 
monitor vegetation and forest health11,12,13,14. These 
include: 

• Normalized Difference Vegetation Index 
(NDVI): detects green vegetation 

• Red-Edge Normalized Difference Vegetation 
Index (RENDVI): sensitive to early stages of 
plant senescence 

• Hyperspectral Fire Detection Index (HFDI): 
detects active fire 

• Normalized Burn Ratio (NBR): detects burned 
areas 

• Fuel Type Discrimination (e.g., grass, oak, 
pine) 

• Fuel Moisture Content 

• Fire Temperature and Sub-Pixel Fire Fraction 
These algorithms were exercised on surrogate data from 
JPL’s AVIRIS imagery during lab tests and were verified 
during flight testing.  

Compression and Image Chipping 
CubeSat downlink time is limited by orbit trajectory and 
communication payload constraints due to SWaP. 
Maximal data throughput is achievable if compression is 
leveraged. Since onboard compression needs to be fast 
and have low computational overhead, a C++ platform 
was chosen. True sensor data is needed for validation of 
onboard algorithms, and so numerically lossless 
compression is key. The Consultative Committee for 
Space Data Systems (CCSDS 123.0-B-1) industry 
standard compression algorithm was evaluated against 
the Northrop Grumman proprietary 1-D Differential 
Pulse Code Modulation (DPCM) algorithm. CCSDS is 
3-dimensional entropy encoding, has a parameterized 
block or sample, and is implemented in both firmware 
and software. DPCM is 1-dimensional entropy encoding, 
provides numerically lossless, visually lossless, and 
lossy compression modes, and is a highly parameterized 
implementation using table look-ups.  Previous hardware 
implementations have been performed on rad-hard, 
space qualified components and in space flight. 
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Table 2 compares the two compression approaches as 
tested on a common set of AVIRIS images.  Tests were 
run on the same computer to evaluate performance in 
terms of run time and compression ratio. Image segments 
were selected to probe a variety of scene content, texture, 
and dynamic range. Both the NG DPCM algorithm and 
the CCSDS standard demonstrated adequate 
performance to warrant further consideration for use in 
the HOP Queue mission. 

Table 2: Comparison of Compression methods. 

Margin CCSDS 123.0-B-1 NGSC DPCM 

Runtime 2.8 ± 0.9 s 0.60 ± 0.03 s 

Compression 
Ratio 

1.14 ± 0.08 1.68 ± 0.6 

Downlink use will vary based on the platform and 
mission, the sensor duty cycle, and the downlink budget. 
Typical scenarios for space vehicles collecting large data 
sets include: 1) Low collection duty cycle / high 
downlink budget: the current state of the art, which 
includes downlinking all data for ground processing; and 
2) high collection duty cycle / low downlink budget. The 
collection duty cycle is limited by data storage on the 
space vehicle, which will fill quickly between downlinks 
unless it is ported off-vehicle through a mesh network. 
The baseline approach on HOP Queue includes 
downlinking only data of interest. This baseline 

approach can include downlinking only select spectral 
bands or image regions cued by onboard algorithms 
(e.g., detection of ground cover type), or commanded 
(e.g., specific geographical area). This low downlink 
CONOPS can also include processing to downlink image 
chips containing pixels within a bounded geographic 
area. For example: the processor can always process 
Hyperspectral Fire Detection Index (HFDI), and store 
chips for downlink on fire detection. 

LABORATORY DEMONSTRATION OF 
PROTOTYPE PROCESSING CHAIN 
The laboratory demonstration took place in December 
2021 and included an execution of embedded processing 
algorithms on both a commodity server with Intel 
processor and an Nvidia GPU, and a Xilinx Versal 
VCK190 development board representative of onboard 
processing hardware. This demonstration used NASA 
AVIRIS airborne hyperspectral data as the input.  

The demonstration highlighted the ability of the onboard 
processing to calculate relevant metrics before sending 
data to the ground, and to use those metrics to make 
efficient use of downlink bandwidth by extracting and 
transmitting only the most relevant data. This was 
highlighted by using the HFDI index to identify image 
chips containing active fires to be packaged for 
downlink. Please see Figure 6.

 

 

Figure 6:  embedded processing is made efficient with the use of extracting and transmitting only the relevant 
data through the processing chain.
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Processor Hardware  
We have tested the HOP Queue processing concept on 
representative low-SWAP hardware by implementing a 
the processing chain on a surrogate embedded processor 
and demonstrated the generation of computing metrics 
for forest and maritime environments. A XILINX Versal 
VCK 190 development board which served as a 
surrogate embedded processor. In addition, we also 
prototyped key aspects of an eventual system and 
ensured that they could execute in relevant timeframes 
on a processor. Benchmarking in terms of execution 
ability, speed, and accuracy has been performed using 
generic algorithms (e.g., Gaussian blur, Hough 
transform) as part of the laboratory demonstration. This 
work will be extended in the near future to include HOP 
Queue-specific Deep Learning (DL) models, and 
algorithms will be evaluated.  

One key element of the prototyping effort was to the 
assess potential for applying XILINX’s DPU accelerator 
to onboard deep learning inference on multispectral and 
hyperspectral data. To validate the applicability of the 
DPU, we used DeepWaterMap16, an existing 
TensorFlow-based image segmentation model that 
segments land from water using six-band multispectral 
data. DeepWaterMap’s publicly available annotated 
training set allowed us to use it as an exemplar to walk 
through the process of modifying and retraining a 
multispectral image segmentation model to conform to 
the requirements of the XILINX DPU. After executing 
the existing model using an Nvidia GPU, we adapted it 
to create a model targeting the DPU’s feature set (8-bit 

quantization, using only TensorFlow layer types 
supported by XILINX’s Vitis tooling), and trained that 
DeepWaterMap-derived model from the original 
DeepWaterMap training set.  We executed it within 
XILINX’s VITIS framework to verify that it performed 
as acceptably on representative test images. 

In this prototype, the XILINX tools enabled a fairly rapid 
rehosting process from a TensorFlow-based model on 
commodity GPUs to the VCK190 board. This rapid 
rehosting shows promise for bringing additional onboard 
deep learning-based multispectral image segmentation 
and object classification capabilities to this platform in 
the future. 

FLIGHT TESTING 

A flight campaign will be conducted in order to simulate 
data collection from a LEO platform and provide 
realistic data to test the processing chain.  The SSI 
Vis/SWIR sensor will be flown in a jet aircraft at 
altitudes of up to 10.6km, and the data will be binned to 
simulate the 30m GSD of a LEO sensor. Please see 
Figure 7 for our overall approach. The airplane 
demonstration data collection will include flying over 
coastal water and forested areas.  For the coastal water 
collection, we are collecting data across the Chesapeake 
Bay. Smart buoys will be deployed to collect truth data, 
while NASA assets concurrently collect multispectral 
data overhead for comparison to hyperspectral 
capabilities. A similar setup will be used for forest data 
collections in Virginia, where USGS forest truth data 
will be used.  

 
Figure 7: Airplane demo 
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The airplane demonstration utilizes an SSI HSI 
prototype to capture data to validate an onboard 
processing chain that includes sensor calibration and 
correction, FLAASH atmospheric correction, cloud 
detection and deep learning, coastal and forest health 
metric calculations, compression, and NITF generation 
of the chipped target images over coastal waters and 
forested areas. 

After the data collection flight, a lab-based testbed will 
be used to play back hyperspectral data cubes along with 
navigation data. This testbed will impose the timing 
constraints of an onboard processor by presenting data 
via a socket at the speed it was collected during the flight 
test.  

While the initial lab demonstration used AVIRIS data 
with atmospheric correction already applied, the only 
pre-processing performed on our upcoming data 
collection will be operations to make the collected data 
better match what would be expected on a CubeSat. 
These corrections include applying a scatter correction 
to bring the collected data into line with what is expected 
from future production sensors, as well as combining 
spatially adjacent pixels to achieve a GSD representative 
of the CubeSat system concept. 

FUTURE WORK 
By leveraging lab-based demonstrations and airborne 
data collections, HOP Queue’s prototypes have validated 
key aspects of next generation imaging and processing 
subsystems for an HSI CubeSat.  

Meaningful metrics have been extracted from post-
atmospheric correction of exploited data onboard 
without launching a CubeSat. The collected data, and the 
lab-based onboard processing prototype will provide a 
testbed to evaluate additional candidate processors with 
the same code base, and prototype additional 
applications of onboard HSI processing, such as 
additional forest health assessment algorithms, material 
identification, and image segmentation by deep learning.  
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