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ABSTRACT

Satellite remote sensing missions have grown in popularity over the past fifteen years due to their ability to
cover large swaths of land at regular time intervals, making them suitable for monitoring environmental trends
such as greenhouse gas emissions and agricultural practices. As environmental monitoring becomes central
in global efforts to combat climate change, accessible platforms for contributing to this research are critical.
Many remote sensing missions demand high performance of payloads, restricting research and development
to organizations with sufficient resources to address these challenges. Atmospheric remote sensing missions,
for example, require extremely high spatial and spectral resolutions to generate scientifically useful results.
As an undergraduate-led design team, the University of Toronto Aerospace Team’s Space Systems Division
has performed an extensive mission selection process to find a feasible and impactful mission focusing on
crop residue mapping. This mission profile provides the data needed to improve crop residue retention
practices and reduce greenhouse gas emissions from soil, while relaxing performance requirements relative
to many active atmospheric sensing missions. This is accompanied by the design of FINCH, a 3U CubeSat
with a hyperspectral camera composed of custom and commercial off-the-shelf components. The team’s
custom composite payload, the FINCH Eye, strives to advance performance achieved at this form factor
by leveraging novel technologies while keeping design feasibility for a student team a priority. Optical and
mechanical design decisions and performance are detailed, as well as assembly, integration, and testing
considerations. Beyond its design, the FINCH Eye is examined from operational, timeline, and financial
perspectives, and a discussion of the supporting firmware, data processing, and attitude control systems
is included. Insight is provided into open-source tools that the team has developed to aid in the design
process, including a linear error analysis tool for assessing scientific performance, an optical system tradeoff
analysis tool, and data processing algorithms. Ultimately, the team presents a comprehensive case study of
an accessible and impactful satellite optical payload design process, in hopes of serving as a blueprint for
future design teams seeking to contribute to remote sensing research.

INTRODUCTION

Effective environmental monitoring is crucial to
the development of sustainable climate strategies. In
recent years, the ongoing development of hyperspec-
tral remote sensing satellites—particularly smaller,
more affordable nanosatellite imaging platforms—
has become a cornerstone to furthering this cause.

In accordance with our goals to undertake feasi-
ble and scientifically valuable satellite missions, the
University of Toronto Aerospace Team’s (UTAT)
Space Systems Division is designing and launch-
ing FINCH, a 3U nanosatellite with a hyperspec-
tral spectrometer payload imaging in the shortwave
infrared (SWIR) region of the electromagnetic spec-
trum. FINCH’s 3U platform is ideal for a student
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team because there is sufficient volume to host a sci-
entifically valuable payload while keeping costs man-
ageable.

The optical payload, named the FINCH Eye, will
be built from a composite of off-the-shelf and cus-
tom components, to advance upon the performance
achieved by other remote sensing nanosatellite pro-
grams with similarly limited budget and expertise.
This paper will discuss optical design, optomechan-
ical design, and assembly, integration, and testing
(AIT) concerns. It will also detail supporting sub-
systems for the FINCH Eye, including imaging elec-
tronics and firmware, payload operations, and data
processing.

Hyperspectral remote sensing allows for the re-
trieval of atmospheric concentrations of molecules
from the absorption features present in their ab-
sorption spectra. In doing so, enhancements, or lo-
calized increases in atmospheric concentrations near
an emission source, of specific greenhouse gases
(GHGs) can be measured. As a substantial emitter
of methane (CH4), a potent GHG, municipal land-
fills represent one such source for which monitoring
becomes crucial, and as such, were investigated as
an original mission concept for FINCH. From spec-
tral absorption features of carbon dioxide (CO2) and
CH4 found near 1600 nm, the proxy retrieval method
as described by Frankenberg et al. can be used to
extract the column dry air mole ratio of methane
(XCH4) over landfills, from which emissions can be
derived.1

A previous design iteration revealed that the
FINCH Eye would fall short of the spectral resolu-
tion typical of CH4 missions (better than 1 nm) due
to physical constraints brought on by the small form
factor. This meant that it would be unable to dis-
tinguish features in the absorption spectrum which
are finer than 1 nm apart. To verify whether the
proposed payload design could sufficiently resolve
XCH4 enhancements over sources of interest, lin-
ear error analysis (LEA) was undertaken, the details
of which are described in the Linear Error Analysis
section. LEA results indicated that the necessary
signal-to-noise ratio (SNR) and spectral resolution
for a CH4 sensing mission were outside the feasible
performance range of the FINCH payload. As a re-
sult, the mission was rescoped to lie within design
constraints while still providing scientific value.

In the agricultural practice of crop residue reten-
tion, residue from a previous harvest is retained in
certain fields to reduce the amount of GHG emis-
sions from the soil. In order to implement this prac-
tice and measure its efficacy, accurate mapping of
crop residue coverage is essential. However, histor-

ical methods such as census surveys and roadside
measurements capture an insufficient level of spatial
and temporal detail.2 To this end, the use of satellite
remote sensing provides a much more efficient and
robust solution. This mission profile relaxes SNR
and spectral resolution requirements from those of a
methane sensing mission to be more feasible for an
amateur nanosatellite design. The FINCH payload
is thus in the process of being adapted to accommo-
date this new mission profile, discussed further in
the Future Work section.

FINCH is the second mission in UTAT Space
Systems’ undergraduate student-led and -funded
nanosatellite development program. The team seeks
to grow the technical knowledge and leadership
skills of undergraduate students through challeng-
ing projects with tangible benefits. The team
also strives to improve the accessibility of useful
aerospace projects by generating open-source de-
signs at an undergraduate expertise level. This pa-
per will outline FINCH’s mission scoping and instru-
mentation design processes, as well as anticipated
future work.

RELATED WORK

This section will investigate existing research and
projects focused on comparable satellite payloads,
remote sensing mission design, and compact spec-
trometer optical design.

Satellite Missions

Satellites have been used for remote sensing ap-
plications since the development and launch of Land-
sat by NASA in 1972.3 Since then, efforts have been
made to advance payloads to image the Earth with
better spatial, spectral, and temporal resolutions.
There has also been significant attention towards
miniaturizing these payloads and building constella-
tions of satellites for cheaper and more flexible data
collection.

NASA’s Landsat was a pioneer for the remote
sensing satellite field through its use of a whiskb-
room camera for imaging.3 The transition to Cube-
Sats for remote sensing applications brought on
by Aalborg University through the AAU-CubeSat
was also a significant leap.4 The University of
Tokyo’s PRISM satellitle made efforts to simplify
and shrink the remote sensing system for more prac-
tical use in small satellite platforms.5 The Univer-
sity of Toronto Space Flight Laboratory’s CANX-
2 3U nanosatellite also contains a spectrometer
payload as a technological demonstration.6 Re-
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mote sensing performance improved tremendously
with the advent of hyperspectral camera technol-
ogy, most notably in ESA’s SCIAMACHY System,7

ASI’s PRISMA,8 JAXA’s GOSAT,9 the Nether-
lands’ TROPOMI system,9 and ISRO’s HySIS.10

However, these platforms are massive, weighing be-
tween 200–1750 kg. Despite high spectral resolution
performance across multiple bands, the spatial reso-
lution performance of these satellites is on the order
of multiple kilometres. More recently, higher per-
formance small satellites with improved spatial and
spectral resolution have been developed by Planet
through their Dove constellation with a spatial res-
olution of 3–4 m,11 as well as GHGSat’s GHGSat-D
with a spectral resolution of 0.1 nm.12 Not only
has the performance improved, but the accessibil-
ity of these satellite platforms for teams with fewer
resources and less expertise has emerged through
MeznSat13 and SathyabamaSat,14 two university-
developed nanosatellites carrying spectrometer pay-
loads for greenhouse gas emissions research with
spectral resolutions around 6 nm and spatial reso-
lutions around 1 km.

It is clear that more accessible designs tend
to sacrifice significant performance, a gap that
FINCH’s design seeks to fill with its open-source
platform. FINCH provides an improved balance be-
tween the accessibility of the design and its scien-
tific usefulness through improved spectral and spa-
tial performance. Its spatial resolution even offers an
advantage over that of well-established hyperspec-
tral systems such as GOSAT and TROPOMI.

Atmospheric Sensing of Methane

Many previous hyperspectral satellite missions
which monitor methane, such as EnMAP15 and
PRISMA,8 have focused on the strong CH4 absorp-
tion features at 2300 nm. This feature is highly
conducive to retrieval due to its pronounced absorp-
tion of light by CH4 molecules, allowing low mea-
surement error to be achieved with spectral resolu-
tions as coarse as 5–10 nm. However, this comes
with a caveat of increased susceptibility to interfer-
ence from surrounding spectral features belonging to
other species.16

Other missions such as JAXA’s GOSAT have in-
stead made use of moderate absorption features at
1650 nm,17 which requires the proxy method for re-
trieving methane column concentrations.1 Although
this band has lower sensitivity to instrument perfor-
mance issues such as radiometric errors and stray
light, it requires finer spectral resolution to resolve
methane features than the strong band.16

These challenges make it difficult for low-cost

nanosatellite programs to design imaging payloads
geared towards the atmospheric sensing of methane,
and have required FINCH to divert its scientific ob-
jective to suit a more feasible design.

Crop Residue Mapping

To date, many remote sensing studies on crop
residue mapping have used spectral indices to quan-
tify percent residue cover. Notable examples in-
clude the Normalized Difference Vegetation In-
dex (NDVI)18 and the Cellulose Absorption Index
(CAI).19 However, these methods are limited by
their dependence on absorption features at very spe-
cific wavelengths, which often cannot be feasibly im-
aged by satellites designed for large area monitor-
ing.2

An alternative method for quantifying percent
residue cover is Spectral Mixture Analysis (SMA),
which uses endmembers, pure spectra of specific land
features selected directly from image data, to ex-
tract the relative abundance of each endmember in
each image pixel.20 Currently, much of the research
on SMA for satellite crop residue mapping has in-
volved multispectral sensors, such as the Advanced
Wide Field Sensor (AWiFS).21 It is hypothesized
that SMA performance would be enhanced by hy-
perspectral data due to the higher number of spec-
tral bands available for classifying each endmember.
Thus, there is a need for more hyperspectral satel-
lite data to assess its effectiveness at estimating crop
residue percent cover via SMA. This makes crop
residue mapping an optimal niche for the FINCH
mission to fill by supplying the hyperspectral data
necessary to validate hypotheses from literature.

Optical Designs

Grism-based spectrometers have seen use in land,
air, and space domains. A spectrometer in this
context is used to refer to a hyperspectral imager.
A grism is an optical element which sandwiches a
diffraction grating between two prisms. The combi-
nation of these components enables the wavelength
of interest to remain centered in the optical axis. At
the time of writing, the Technology Readiness Level
(TRL)—according to NASA’s designation22—of this
type of optical system is a Level 9. Grism-based
spectrometers have flight heritage through successful
space mission operations.23,24 However, CubeSat-
form factor, grism-based pushbroom spectrometers
are at a Level 6. Pushbroom spectrometers refer
to those that scan the ground target one across-
track line at a time, using the orbital motion of the
satellite, and incorporating active slewing. Grism-

Miles 3 36th Annual Small Satellite Conference



based pushbroom spectrometers have yet to be de-
ployed in a space environment, but have seen use
in land-based telescopes and have been tested in
aerial vehicles.25–27 Another major goal for FINCH
will be to advance the TRL of such optical sys-
tems to a Level 9 through the design, deployment,
and successful end-to-end mission operation of the
first CubeSat-compatible Volume Phase Holographic
(VPH) grism-based pushbroom spectrometer. VPH
gratings are a diffracting element composed of a
dichromate gelatin (DCG) film sandwiched between
two substrates. They surmount many of the draw-
backs associated with conventional diffraction grat-
ings, delivering significantly higher efficiency, greater
dispersion, and better polarization characteristics in
a robust package.

Ludovici et al. (2017) designed and built a low-
cost, low-resolution, compact, in-line, slitless, grism-
based spectrometer for use with small astronomi-
cal telescopes.25 A slitless spectrometer can only be
used to image point sources. It was constructed us-
ing commercial off-the-shelf (COTS) optical compo-
nents. The Ludovici system consists of five elements:
a transmission grating, two achromatic lenses for col-
limating and refocusing, and two wedge prisms. It
was designed to image in the the visible (VIS) spec-
trum (400 to 800 nm).

Kashiwagi et al. (2004) designed and fabricated
several large (110×106mm2) VPH grisms for the
Faint Object Camera and Spectrograph (FOCAS)
of the Subaru Telescope.28 The authors searched
for the optimal parameters such as grating thick-
ness and strength of the refractive index modulation
to achieve high-performing grism designs.

Hyvärinen et al. (2011) designed and built a
compact grism-based pushbroom spectrometer pro-
totype to be flown on unmanned aerial vehicle
(UAV) platforms. It was capable of imaging the vis-
ible and near-infrared (VISNIR) spectrum, 350 to
1000 nm, with a spectral resolution of 3 nm. The
optical design made use of both transmissive and
reflective optics to produce an off-axis design that
achieved high light throughput and large spatial im-
age size (as formed on the sensor) in a compact for-
mat. The prototype achieved an SNR of 800. The
imager weighed in at 1.4 kg, including fore-optics
and the imaging spectrograph with shutter and cam-
era. The proposed system was validated in a flight
test mission using a piloted aircraft.

Volent et al. (2017) designed and built a pushb-
room spectrometer for conducting airborne kelp for-
est mapping.27 It was capable of imaging in the
VIS spectrum (425 to 825 nm) at a spectral resolu-
tion of 5 nm. The battery-powered, energy-efficient

spectrometer weighed 680 g. It was designed with a
front focusing lens, entrance slit with the slit direc-
tion perpendicular to the flight direction, collector
lens, grism, and silicon CCD detector with a reso-
lution of 360 by 280 pixels fitted with a 50mm lens.
The system was flown onboard an aircraft to acquire
ocean colour data.

The Wide Field Camera 3 (WFC3) is an
ultraviolet-visible-infrared (UVISIR) spectrometer
installed onboard the Hubble Space Telescope in
2009. WFC3 provides two imaging channels: (1) an
ultraviolet-visible (UVIS) channel with sensitivity
from 200 to 1000 nm, and (2) an infrared (IR) chan-
nel covering 850 to 1700 nm.23 The WFC3 UVIS
channel also offers a large and diverse filter set, in-
cluding 62 filter elements and one ultraviolet (UV)
grism. The WFC3 IR channel contains 15 filters and
two grism elements.

The James Webb Space Telescope (JWST) near-
infrared camera (NIRCam) contains two grisms with
a resolvance of 1500 that can used for slitless spec-
troscopy over the mid-wavelength infrared (MWIR)
2400 to 5000 nm spectral range.24 Resolvance is de-
fined as the spectral wavelength of interest divided
by the spectral resolution.

Table 1 summarises the characteristics of the
aforementioned systems.

Summary of Contributions

The FINCH mission seeks to contribute the fol-
lowing to the field of remote sensing:

• Open-source the design process of a CubeSat
that can successfully take hyperspectral im-
ages, increasing accessibility for undergraduate
teams.

• Design, verify, and launch the first grism-based
pushbroom spectrometer onboard a CubeSat.

• Publish processed hyperspectral data to verify
literature results related to SMA for the pur-
pose of improving crop residue retention prac-
tices.

MISSION SCOPING

Mission scoping is the process of continuously
balancing desired scientific objectives and engineer-
ing constraints. Unlike traditional mission incep-
tions from science proposals, undergraduate teams
often begin with the goal of building a nanosatel-
lite and must endeavour to unearth a fitting mission
concept that can then guide further spacecraft de-
sign. As one such undergraduate design team with
limited expertise and resources, the mission scoping
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Table 1: Value Proposition Comparison Across Grism-Based Spectrometer Reference Designs

Characteristic FINCH Eye Ludovici Kashiwagi Hyvärinen Volent Hubble WFC3 JWST NIRCam

Domain Space Land Land Air Air Space Space
Compact ✓ ✓ ✕ ✓ ✕ ✕ ✕
In-line ✓ ✓ ✓ ✕ ✓ ? ?
Pushbroom (slit) ✓ ✕ ✓ ✓ ✓ ? ✕
SWIR ✓ ✕ ✕ ✕ ✕ ✓ ✕
VPH ✓ ✕ ✓ ✕ ✕ ✕ ✕
COTS ✓ ✓ ✕ ✕ ✕ ✕ ✕

process for the FINCH mission has involved multiple
iterations of research, consultation, and adaptation,
before ultimately converging on a mission and a de-
sign that balances scientific usefulness with technical
feasibility.

Initial scientific mission propositions with the po-
tential of being realised by a 3U CubeSat were teased
out of literature reviews as well as conversations with
experts in various remote sensing niches. A holistic
analysis of the feasibility and scientific value of each
mission profile was undertaken to select a mission for
FINCH. The feasibility portion of this analysis was
conducted by assessing the viability for other subsys-
tems and ruling out missions that required infeasible
designs from any subsystems, then selecting the mis-
sion profile that is most achievable for every satel-
lite subsystem. This process necessitated significant
upfront research to determine what was achievable
by each subsystem and where additional innovation
would be required. A few key criteria were assessed
to determine feasibility, including:

• Cost: FINCH has a limited budget, so op-
tions that require more costly components of
over $10,000 CAD are considered less feasible.

• Design Timeline: Since the FINCH team
has limited expertise, the learning required will
lengthen a design cycle. Elements of the design
should not take years to learn, as the launch
timeline is on the order of a few years.

• Volume: FINCH is restricted to a 3U form
factor based on financial constraints, meaning
the design cannot introduce components that
are too large.

• Image Quality: Since FINCH is small, the
amount of light reaching the sensor needs to
be maximized. This makes beam-splitting de-
signs, or the introduction of too many optical
surfaces, less feasible.

• Precedence: For design timeline considera-
tions, if a large portion of the design has never
been accomplished, it is less feasible that a stu-
dent team would be able to do it.

As these bounds vary from mission to mission,
mission progress can be stalled during the scoping
process. It is therefore advisable to begin early in
establishing mission requirements that allow design
work to commence. Starting mission scoping and
high-level payload design 1 to 2 years before detailed
design of the supporting subsystems will minimize
design bottlenecks for the entire spacecraft.

The usefulness portion of the analysis included a
few key evaluation criteria:

• Hyperspectral Imaging: How necessary is
hyperspectral data, as opposed to multispec-
tral data?

• Satellite Imaging: How necessary is satel-
lite imaging, as opposed to airborne imaging
or ground monitoring?

• Technological Advancement: How much
would the satellite built to address the chosen
mission advance remote sensing technology?

• Scientific Advancement: How much would
the chosen mission advance its scientific field?

• Mission Lifetime: How quickly can the mis-
sion provide useful trends and actionable out-
comes?

These criteria were evaluated in order to deter-
mine the quality of each mission from a holistic per-
spective, then defined with the feasibility analysis to
choose an overall mission preference.

Requirements were derived from the chosen mis-
sion, which guided the iteration of payload design
that ensued. Payload parameters from that itera-
tion were then tested using an in-house tool that
evaluated the performance of the proposed design in
attaining the scientific objectives of the selected mis-
sion profile. This information then guided the next
iteration of payload design. This mission scoping
feedback process is visualized in Figure 1.

In general, should the existing payload design
iteration fail the scientific objectives, the existing
mission profile can be descoped or pivoted to a new
one that is, for the most part, non-intrusive to exist-
ing high-level design parameters. While counterintu-
itive to the overarching scientific drive behind UTAT
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Space Systems, this constraint helps anchor feasibil-
ity of the new mission requirements when translated
to the next iteration of technical design. This design
workflow was clear through the transition from the
methane monitoring mission to one focused on crop
residue mapping as described in the Linear Error
Analysis section.

Figure 1: Mission Scoping Process.

MISSION PROFILE: METHANE MONI-
TORING

After much research, the team’s early interest
in a spaceborne greenhouse gas monitoring mis-
sion crystallised in the selection of methane as the
molecule of interest, imaged in the SWIR band.
Methane is known for its considerable impact on
global warming, and yet existing inventories of
methane concentrations often contain large discrep-
ancies.29–32 Key emitters of methane include land-
fills (active and buried), waste management sites,
and natural gas pipelines and stations.33 Upon

detection of an emission source such as a natural
gas leak, mitigation and/or recapture efforts are of-
ten practical and highly warranted. The Greater
Toronto Area (GTA) is itself home to a number of
high methane emitters including landfills as well as
compressor stations.34 As such, the initial scien-
tific objective of FINCH was to monitor atmospheric
CH4 enhancements over GTA landfills.

The strong CH4 absorption features at 2300 nm
and moderate features at 1650 nm correspond to the
SWIR range. The section of the SWIR spectrum be-
tween 900 nm and 1700 nm was deemed feasible for
FINCH’s form factor, budget, and component avail-
ability. A spectral range of 1600–1680 nm targeting
the 1650 nm band was selected, with in mind a proxy
retrieval of XCH4 utilising the nearby CO2 feature
at 1610 nm. Designing for fine spectral resolutions of
1 nm or less is recommended by literature in order to
guarantee adequate resolution of necessary features
for XCH4 retrieval, suggesting that the spectral res-
olution of the FINCH Eye should be refined to the
fullest extent possible.16

To facilitate the capture of multiple landfills in
one scene, a swath of at least 50–100 km is recom-
mended.35 Additionally, a spatial resolution on the
order of 100 m would enable the resolution of point
sources, and would be an improvement upon exist-
ing methane-monitoring satellite platforms such as
TROPOMI and GOSAT.369 These imaging systems
have the favoured global coverage at the expense of
spatial resolution, which falls on the order of a few
kilometres.

Table 2: Key Requirements for the Methane
Monitoring Mission

Parameter Anticipated Requirement

Spectral Range 1600–1680 nm

Spectral Resolution < 1 nm

Spatial Resolution 100 m

Swath 50-100 km

Mission Lifetime 1 year

Table 2 summarises the scientific requirements
derived from the methane mission profile. While the
mission profile was later determined to be infeasible
from the analysis outlined in the LEA section, the
following sections discuss the current iteration of the
payload design made to accommodate this mission.
Many design principles will carry forward to future
iterations of the FINCH Eye. The design changes
necessitated by the switch to crop residue mapping
are discussed in the Future Work section.
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FINCH EYE OPTICAL DESIGN

Table 3: FINCH Eye Specifications.
Specification Value Units
Cost $101,000 CAD
Mass <500 g

Dimensions
44 × 44
× 160

mm

Athermal Range −40 to 70 °C
Integrated Cooling Yes -
Power (max) 3.2 W
Voltage 5 V
Focal Length 100 mm
Aperture diameter 80 mm
F-number 2.5 -
Field of View
(across, along track)

11.42, 0.57 °

Transmission
efficiency (average)

60 %

Wavelength range 1600 to 1700 nm
Spectral resolution 2 nm
Bands (spatial, spectral) 640, 50 -
Specific spectral
bandwidth

10 px/band

Spectral nonlinearity < ±2 nm
Smile Subpixel -
Keystone Subpixel -

Straylight
Below sensor
noise floor

-

Flare(s) /ghost images None -
RMS Spot Diameter <15 µm
Polarization sensitivity <2 %
Signal-to-noise
(average)

85 -

Quantum efficiency
(average)

>60 %

Pixel well capacity 19 ke−

Noise TBD ke−

Radiometric resolution 14 bit
Radiometric stability < ±2.5 %
Non-linearity < 2 %
Method Pushbroom -
Spatial resolution
(500 km)

75 m

Swath (500 km) 100 km
Framerate (max) 60 Hz

Datacube dimensions
640 × 640
× 512

px

Datacube size
(uncompressed)

368 MB

Duration TBD s
Ground track
dimensions

48× 48 km

Pointing Constraint
(500 km)

TBD °

Slew rate TBD ° s−1

The FINCH Eye is the first compact, low-
cost, VPH grism-based pushbroom spectrometer,
designed to image the SWIR (1600–1700 nm) part of
the electromagnetic spectrum. It leverages custom
and commercial off-the-shelf components to reduce
costs and development time. Its design is driven
by the need for a hyperspectral imager with a spec-
tral resolution on the order of 1 nm that fits within
FINCH’s form factor. As of its inception, no other
commercial all-in-one spectrometers exist that fit
within the 3U CubeSat form factor. Table 3 presents

a summary of design specifications.

Key Optical Components

An in-line optical track, enabled by the VPH
grism diffraction mechanism, facilitates assembly
and integration with the rest of the spacecraft, while
reducing the volume of the payload. A custom cata-
dioptric fore-optic lens with a wide aperture is used
to maximise light throughput. Achromatic doublet
lenses are employed in the design to mitigate chro-
matic aberrations. A 640 × 512 Indium-Gallium-
Arsenide (InGaAs) sensor captures the diffracted
SWIR spectra. Figures 2, 3, and 4 show a render-
ing of the conceptual model for the payload, while
Figure 5 presents a mechanical drawing.

Figure 2: Isometric Figure 3: Side View

Figure 4: Payload in
CubeSat Body

Figure 5: FINCH Eye Mechanical Drawing

The FINCH Eye consists of the following seven
components:

• Fore-optics: Captures light from the ground
target. Employs a catadioptric lens design for
a low profile. Bespoke by Chromar Technol-
ogy.
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• Slit: Selects a row of the image formed by
the fore-optics. Reduces the field of view to
that of a rectangular scan line across the ter-
rain. Coated to reduce stray light. Bespoke by
Walthy.

• Collimator: Collimates light for relay into
the rest of the optical track. Employs an
achromatic doublet lens design to reduce chro-
matic aberration. By Edmund Optics.

• Bandpass filter: Blocks all light outside the
1600–1700 nm spectral band to reduce stray
light. Employs a dichroic filter substrate for
high efficiency. Bespoke by Iridian.

• Grism: Diffracts the light beam into its com-
ponent wavelengths. Employs a Volume-Phase
Holographic Grating technology for high effi-
ciency and prisms to enable an in-line design.
Sandblasted on the exterior to mitigate stray
light. By Wasatch Photonics.

• Focuser: Focuses the diffracted light onto the
imaging sensor. Employs an achromatic dou-
blet lens design. By Edmund Optics.

• Sensor: The Tau SWIR camera (discussed
below). Captures spatial and spectral infor-
mation in the across-track and along-track di-
rections, respectively. Incorporates a high-
resolution 640 × 512 InGaAs sensor. By Tele-
dyne FLIR.

Payload Sensor

The primary type of photosensitive semiconduc-
tor used for the SWIR range is InGaAs, for its
high sensitivity without the need to be cryogenically
cooled, which saves significant volume and mass.
Multiple vendors were consulted prior to the selec-
tion of the FLIR Tau SWIR sensor core. Other
candidate modules could only output data using the
Camera Link protocol, which uses a low-voltage dif-
ferential signaling (LVDS) physical layer. Although
better for signal integrity, this would have required
additional transceivers to deserialize the data into a
parallel format, unnecessarily increasing design com-
plexity. The FLIR Tau provided support for the
CMOS parallel image data output format in addi-
tion to a Camera Link option, making it the simpler
option for development. The FLIR Tau was also the
sole candidate to outline thermal shock, mechanical
shock, and vibration specifications, which indicate a
certain consideration for potential aerospace appli-
cations of the product. The FLIR Tau 2, the sister
product to the FLIR Tau, has flight heritage aboard
the Phoenix 3U CubeSat from Arizona State Uni-
versity.37

Throughput and Signal-to-Noise

Every fraction of light matters for an already
light-starved application, as is the case with a pas-
sive remote sensing, miniature, dispersive platform.
Figure 6 illustrates the expected light path through
the payload. The design employs stray light mitiga-
tion strategies, such as anti-reflective (AR) coatings
on the lenses, dark coatings on the housing walls,
and high-transmission materials, to minimise light
loss.

Figure 6: FINCH Eye Ray Trace Concept

The estimated SNR of the spectrometer across
the design spectral range is shown in Figure 7. This
estimate was generated using the team’s custom pay-
load and system modelling tool, Payload Designer.
Code can be found on the Payload Designer GitHub,
with full GitHub resources listed at the end of this
work.

Figure 7: FINCH Eye Theoretical Signal-to-
Noise Performance

Optical Design Trade Analysis

Various trade-offs were considered in the design
of the FINCH Eye.

The choice of focal length was driven by a trade
between spatial resolution and swath, as shown in
Figure 8, generated by the Payload Designer tool.
An increasing focal length yields a finer spatial reso-
lution, but results in a smaller swath. A focal length
of 100mm was chosen to enable a spatial resolution
of 80m and across-track swath of 17 km.

Miles 8 36th Annual Small Satellite Conference

https://github.com/spacesys-finch/payload-designer


Figure 8: Spatial Resolution and Swath Ver-
sus Focal Length

OPTOMECHANICAL DESIGN

The optomechanical design is essential in main-
taining the position, tolerance, and environmental
protection necessary for the high spectral and spa-
tial requirements of the FINCH Eye. In particular,
the design aims to maximise SNR through the reduc-
tion of stray light, precision of mounting interfaces,
and stability of structural design. Additionally, the
optomechanical design seeks to minimize cost, vol-
ume, and mass.

To maintain FINCH’s 3U form factor, the pay-
load was constrained to a 1.5U volume envelope and
a 1 kg mass budget. The CubeSat Design Specifi-
cation Rev. 13 places a mass constraint of 4.00 kg
on 3U CubeSats.38 The FINCH Eye’s optomechan-
ical design takes advantage of the radial symmetry
of key optical components through a modular barrel
assembly, threaded into a custom deformable grism
enclosure.

Figure 9: A CAD Rendering of the Proposed
FINCH Eye Housing

Utilizing modules for each of the optical compo-
nents ensures higher assembly and alignment pre-
cision.39 A separate barrel module was designed
for the slit to achieve tighter angular alignment tol-
erance, reducing optical errors. Additionally, the
highly compartmentalised nature of this design is

appealing for testing while the optics subsystem op-
timizes the spacing and the tolerances between pay-
load imaging elements.

The FINCH Eye’s housing is shaped around the
anticipated light path to reduce scattering and stray
light effects, as shown in Figure 9. As such, the bar-
rel geometry was chosen to match the geometry of
the lenses, filter, and slit, taking reference from the
double-imaging ARCSTONE payload.40 This lever-
ages the radial symmetry of the optical design, elim-
inating tolerance concerns with clock adjustments,
while meeting tight tip and tilt tolerances.

The tubular structure of the housing will be ma-
chined with Aluminium 6061-T4 due to its strength,
low density, and reliable spaceflight heritage. A
black anodized coating will be applied to the pay-
load’s internal surfaces to improve heat resistance,
radiation protection, and stray light mitigation.41

The structural performance metrics are detailed be-
low in Table 4. FOS refers to the factor of safety.

Table 4: Performance Metrics of the Pro-
posed FINCH Eye Optomechanical Design

Vol [cm3] Mass [g] Cost [CAD]

16.2 × 5.7 × 3.8 138.56 1724.38

FOS (X) FOS (Y) FOS (Z)

5 5 18

The Z-axis length is limited by the distance be-
tween optical elements and the length of the fore op-
tics. It is currently just over the volume envelope of
the 1.5U requirement, pending optical optimization.

The cost was estimated through the Hubs quote
generator42 using CNC machining and anodized sur-
face treatment. The use of off-the-shelf retaining
rings and an online vendor makes this design widely
accessible.

The FOS of the mounting structure was calcu-
lated using a quasi-static load of 70.5g, equal to
the 5σ value from the GSFC-STD-7000B qualifi-
cation for components weighing 22.7 kg or less.43

This load was applied to the optical components and
structure, accounting for compressive forces, bend-
ing of the barrel flanges, threading failure, and bolt-
ing interfaces. The Z-axis limiting FOS is found at
the interface between the grism mount and the M3
screws. Both the X- and Y-axis failures occur at the
threaded retaining rings. Another particular area
of concern is the FLIR Tau sensor, which is cur-
rently not rated for the expected launch vibrational
loads. The optomechanical design will rely on pas-
sive damping through mounting geometry, but care
will be taken in simulating and testing the sensor
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through environmental conditions, as discussed in
the following section.

Figure 10: Cross-sectional View of the Op-
tomechanical Structure

The placement of venting holes between modu-
lar optical components was inspired by the BRITE
telescope satellite.44 The choice of sandwiching op-
tical elements between two threaded retaining rings
also allows for easier assembly, fine-tuning, and dis-
assembly which is valuable during the AIT phase of
the mission. The first retaining ring can be threaded
to the optical element’s ideal position. The lens will
then be inserted, and the second retaining ring will
provide the pre-calculated load necessary to keep the
element in place during launch.39 A cross-sectional
view of this design can be seen in Figure 10.

This design calls for a toroidal sealing interface
between the achromatic lenses and the retaining
rings with off-the-shelf ThorLabs SM15RR threaded
fasteners that will be used during the prototyping
phase. This will allow for the precise alignment nec-
essary for payload assembly and verification, but
may cause excessive contact stresses depending on
the radius of curvature of the lenses.45 Detailed de-
sign following optical optimization and tolerancing
will explore different seal geometries.

Although the interface between the FINCH Eye
and the remainder of the spacecraft has not yet been
determined, low-thermal conductance, expansion-
controlled bipods similar to those used on ASTERIA
are currently being explored.46

ASSEMBLY, INTEGRATION, AND TEST-
ING

The verification and validation procedures for
optical designs can rival the design itself in required
financial and timeline resources. The payload should
be tested in numerous expected environments, which
incurs risk to the payload due to high testing loads
or cumulative damage. The testing campaign was
therefore developed with a cost-reduction mentality,

choosing the simplest and lowest-risk tests that ver-
ify the key performance metrics of the FINCH Eye.

Testing in representative environments is crucial
for optics, as small changes in temperature or load
can induce major imperfections in the final image.
The first representative environment is a thermal
vacuum (TVAC) chamber, which emulates the vac-
uum and temperature conditions in orbit. By per-
forming a series of image quality tests inside a ther-
mal vacuum chamber, the expected performance of
the FINCH Eye in orbit can be accurately predicted.

Figure 11 shows the testing setup for the im-
age quality testing campaign inside a TVAC cham-
ber. The Systems PCB in this figure refers to a
system-level debugging board developed in-house.
This board is connected through wire harnesses de-
signed to connect to the spacecraft via interfaces
built into the TVAC chamber wall. Using an optical
port, tests can be performed that verify simulated
and calculated payload performance.

Figure 11: Test Setup for the Thermal Vac-
uum Chamber Image Quality Testing Cam-
paign

The first image quality test is a spectral accuracy
and resolution test, determining how well the pay-
load is able to correctly identify an incoming wave-
length and resolve it to the expected spectral resolu-
tion. It does this by sending in a desired wavelength
through a uniform light source, then pivoting the in-
coming wavelength around that central wavelength
by a few nanometres, measuring how the sensor is re-
ceiving the data and changing to accommodate new
information.

The second test is for SNR, which is broken into
two components. The signal portion of the test sim-
ply measures the incoming intensity from a uniform
light source. The most important noise contribu-
tor, dark noise, can be characterised by covering the
optical port of the TVAC chamber and varying the
temperature.
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The third test is for stray light, and measures
spectral and geometric stray light using filtered and
skewed light sources, respectively, to ensure that the
acceptable limit of unintended light detected by the
sensor is not being exceeded.

The final test focuses on the linearity and uni-
formity of the response of the sensor itself, which is
important for establishing a baseline for future on-
orbit calibrations (as described in the Payload Oper-
ations and Manoeuvres section) by recording sensor
response under varying light source intensities.

A few important systematic errors are captured
in this testing campaign, including stray light, flat
field effects, and non-linearity. By determining the
absolute effect that other systematic errors have on
scientific accuracy, further tests can be included or
re-prioritized as well. This can be done using the
LEA tool.

Figure 12: Illustration of Proposed Vibration
Testing Strategy

Another critical environmental test is vibration
testing, which evaluates the satellite’s response to
launch loads. Launch imparts taxing loads onto the
entire satellite, which causes great risk to the deli-
cate optical system. A vibration testing campaign
was designed to minimize the risk of damaging flight
components while still qualifying the payload and
the structure for launch. First, an engineering model
consisting of mass models and other cheap optical
alternatives will be tested above expected launch
loads. Next, the flight components will be validated
for launch through an acceptance test that is done at
the expected launch loads. This test is accompanied
by functional testing, which focuses on ensuring that
optical alignment and overall image quality are not
affected by launch vibrations. There is also an op-
portunity to isolate the riskiest launch component,
the FLIR Tau SWIR sensor, to reduce some uncer-
tainty in functional testing. However, as this does

add additional risk of damaging expensive compo-
nents, further evaluation through simulation results
must be done before committing to a more complex
vibration campaign. Figure 12 shows the proposed
vibration campaign.

IMAGING ELECTRONICS AND FIRMWARE

Image Capture and Storage Architecture

The FLIR Tau SWIR sensor outputs 14-bit par-
allel data. There are three additional timing signals
which are referred to by vendors using multiple
equivalent terms. For changing the pixel, the name
used is pixel clock. For changing the row, the names
used are row clock, line valid, or horizontal sync.
For changing the frame, the names used are frame
sync, frame valid, or vertical sync. Figure 13 shows
a timing diagram for the parallel output camera.
Pixel data is transferred in a grid-wise manner from
left-to-right, top-to-bottom. On each pixel clock
cycle, the 14 data lines communicate the bit infor-
mation for the individual pixel. The line valid signal
synchronizes each row or line. The frame valid sig-
nal synchronizes each frame.

Figure 13: Timing Diagram for FINCH’s Par-
allel Output Camera

The STM32 family of microcontrollers by STMi-
croelectronics (ST) was primarily selected due to its
dedicated peripheral for parallel camera data, the
Digital Camera Interface (DCMI). It was also se-
lected because of its widespread adoption, as well
as a large online community with many open-source
designs that can be referenced.

The DCMI peripheral must be used in conjunc-
tion with the direct memory access (DMA) sys-
tem.47 DMA is a method of transferring data from
one location in the microcontroller to another with-
out the CPU. The application note for DCMI47

notes that “DMA2 ensures the transfer from the
DCMI to the memory (internal SRAM or external
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SRAM/SDRAM) for all STM32 devices embedding
the DCMI”. For reasons described below, using
RAM to hold camera data does not meet scientific
requirements, so a new flow is proposed.

Based on scientific requirements, the payload
would ideally take a 60 FPS sequence of frames at
512 × 640 resolution with a bit depth of 14 bits for
approximately 10 s while the satellite passes over the
ground target. This produces an upper bound of 368
MB per imaging pass. Should fewer than 512 rows of
pixels be needed for capturing the spectral dimen-
sion, cropping will be done onboard. This brings
about an issue of inadequate internal SRAM for data
from a single imaging pass. An external SRAM or
SDRAM memory that is not a ball grid array (BGA)
package was unable to be sourced to accommodate
the FINCH Eye’s data size, as the maximum capac-
ity available was 128 MB.48 A non-BGA package is
a payload requirement in order to facilitate manual
soldering. The idea of using multiple external RAM
modules was entertained, although the payload mi-
crocontroller only has capacity to address two exter-
nal SDRAM devices with the flexible memory con-
troller. This would give a total capacity of 256 MB,
which is not enough for a 368 MB imaging pass.

Figure 14: Image Data Flow through the Mi-
crocontroller

The proposed architecture is to stream DCMI
via DMA to the Secure Digital and MultiMediaCard
(SDMMC) controller which connects to an external
SD card. This flow is not explicitly stated to be
supported in ST’s documentation. Many reference
designs49 stream data to RAM, and only use an SD
card for single frame snapshots rather than stream-

ing multiple frames directly to an SD card. Test-
ing with STM32 Nucleo development boards and SD
card breakout boards will be performed before com-
mitting to this architecture. If needed, a custom
PCB will be created to achieve better signal integrity
compared to using breakout boards.

If this proposed architecture can stream camera
data to an SD card without dropped frames, it would
have two additional benefits. The NAND flash mem-
ory in SD cards is non-volatile, and SD cards with
gigabytes of capacity are readily available. Both of
these are improvements over the SDRAM solution,
which is volatile and has lower capacity. If the pro-
posed architecture does not work, the bitrate would
need to be decreased by reducing the FPS or image
resolution.

Figure 14 shows the image data flow through the
microcontroller. The Advanced High-Performance
Bus (AHB) matrix is visualized as an abstract cloud
because firmware work in that area is ongoing and
we do not yet have complete clarity into its opera-
tion.

Onboard Image Compression

The radio frequency (RF) downlink is antici-
pated to be the bottleneck in FINCH’s data chain.
As such, lossless compression of the acquired hy-
perspectral data is to be performed onboard the
satellite prior to its downlinking to the ground sta-
tion, in order to reduce the RF bandwidth re-
quired. The compression algorithm design follows
the CCSDS123 standard for low-complexity lossless
and near-lossless multispectral and hyperspectral
data compression,50 which meets FINCH’s require-
ments of lossless hyperspectral compression. This
standard is backed by a large consortium of space
agencies such as NASA, ESA, and JAXA. There
exist numerous open-source implementations in C,
Java, and for FPGAs as well.

A working implementation in Python can
be found on the Image Compression Algorithms
GitHub, which achieves lossless compression ratios
of ∼2 on a ∼50 MB dataset. Python was selected
for initial prototyping to facilitate in-depth under-
standing as well as verification. Translation to the C
language was then undertaken. Native ARM float-
ing point operations, available via the Digital Sig-
nal Processor (DSP) core,51 are used to accelerate
floating point and vector math operations in the
algorithm. Although virtually all academic papers
published that discuss the performance of this stan-
dard have implemented their designs on FPGAs, the
complexity of such a design would require signifi-
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cant time spent building expertise, rendering it an
unfavourable choice for the team. Pivoting to an
FPGA-based design would be considered should the
optimised C design take longer than the duration of
five orbits (∼450 min) to compress data from one
imaging pass. This time requirement was guided
by the predicted average downtime between imag-
ing passes from operations scheduling.

PAYLOAD OPERATIONS AND MANOEU-
VRES

The FINCH optical payload employs a pushb-
roommechanism, chosen for its straightforward opti-
cal design and spaceflight heritage. During imaging,
each individual frame captured by the detector array
contains a spatial and a spectral dimension, with the
spatial dimension corresponding to a single line of
ground pixels oriented in the across-track direction.
The along-track spatial dimension is captured by the
orbital motion of the spacecraft. The ADCS aboard
FINCH actively engages during imaging passes to
coordinate the pointing of the entire spacecraft with
the frame rate of the sensor core such that a hy-
perspectral data cube of sufficient quality can be
acquired. Forward motion compensation (FMC) is
required to slew the satellite backwards in the pitch
direction because the sensor’s frame rate is unable to
match the speed of the orbiting spacecraft relative to
the ground target. By performing FMC, the satel-
lite is able to scan the image target region without
any gaps. Figure 15 shows a visual representation of
the manoeuvres required for imaging passes.

FINCH is nominally a nadir-imaging instrument;
however, imaging can be done at off-nadir angles
through ADCS slewing to the extent at which the
ground resolution remains reasonably uncompro-
mised. A larger range of off-nadir imaging allows
for an increased data temporal resolution, referring
to the frequency of valid imaging opportunities that
FINCH will have. When restricted to nadir imag-
ing, the chosen sun-synchronous orbit offers a 15-
day revisit time. Thus, a trade-off is to be made. A
maximum off-nadir angle of 30 degrees corresponds
to 5-day clusters of daily imaging windows (over the
site of interest) separated by 10-day periods of down-
time, in which tasks such as onboard processing,
downlinking, and on-orbit calibration may be sched-
uled. This allows for study of daily fluctuations as
well as fortnightly trends in data.

Due to the radiation, thermal, and vacuum en-
vironmental conditions in low earth orbit, drift in
sensor parameters is expected over the course of
FINCH’s mission lifetime. As such, on-orbit calibra-

tion is intended to be performed between imaging
passes at least three times during the mission life-
time. On-orbit calibration can typically be achieved
by imaging a location with high spatial uniformity,
spectral stability, and time invariance, known as a
pseudo-invariant calibration site. The Niger 1 test
site from the USGS Test Sites Catalog52 was selected
as FINCH’s calibration site due to its high unifor-
mity and FINCH’s frequent passes over the region.53

When an image is taken, the known radiance levels
can be used to update sensor parameters such as its
flat-field characterization. The information obtained
from on-orbit calibration can be enhanced using a
side slither manoeuvre,54 in which the spacecraft is
yawed by 90 degrees such that each detector cap-
tures the same scene with the same illumination, ef-
fectively producing a flat field input. The spacecraft
performs imaging as shown in Figure 15, from this
yawed angle. This manoeuvre can improve calibra-
tion accuracy by 1–2%, but is still being investigated
for feasibility.54

Figure 15: Image Capture Process for Scien-
tific and Calibration Images

DATA PROCESSING

Raw data from the instrument is affected by
geometric and radiometric errors which must be
corrected in order to effectively analyze the data.
A ground processing pipeline was established for
FINCH, guided by NASA’s and Sentinel-2’s docu-
mentation of data processing levels.55,56

Data Processing Levels

The pipeline is described in terms of data pro-
cessing levels, spanning Levels 0 through 2. Table 5
below describes the data produced at each level.
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Table 5: Data Obtained at each Data Pro-
cessing Level

Level Data Product Description

0 Decompressed, communications error-corrected

1A
Time-referenced; appended with telemetry,
radiometric†, and geometric parameters

1B Radiometrically* and geometrically** corrected
2 Atmospheric processing and retrieval

† from on-orbit calibration
* dark noise correction, bad pixel correction, flat field cor-
rection, and destriping

** smile and keystone correction, orthorectification, coreg-
istration, and georeferencing

FINCH aims to provide open-source Level 1B
data, which can be used by the public for atmo-
spheric analysis. The focus thus lies in correcting ra-
diometric errors, caused by inconsistencies between
individual detectors of the CMOS sensor, as well as
geometric errors, caused by optical artifacts. Foot-
notes below Table 5 show the corrections performed
by FINCH. The FINCH data processing team is cur-
rently implementing adapted smile correction and
destriping algorithms.

Smile Distortion Correction

Smile distortion involves the mis-mapping of
spectral bands to other columns in the spectral di-
mension of a hyperspectral image.57 This is caused
by optical aberrations and misalignments due to
pushbroom systems recording across-track and spec-
tral pixels at the same time.58 Smile distortions are
to be corrected following the process described by
Md. Aktarazzaman: the spectral shift is first quan-
tified using a comparison process, and later corrected
through cubic spline interpolation.59 By comparing
the test spectra to reference spectra, the spectral
shift from a smile distortion can be obtained.

Destriping

Striping is a common radiometric error seen in
most remote sensing images, appearing as stripes
or streaks across the image.60 Different types of
striping can occur, including true striping, caused
by incorrect relative gain; oblique stripes, slanted
stripes caused by geometric registration; and satura-
tion striping, only visible over bright and saturated
targets. Commonly used destriping algorithms are
constructed for specific sensors or data types, requir-
ing in-depth knowledge of sensor model and imaging
parameters, and may require human judgement for
more complex stripes.60 FINCH opted for a neu-
ral network-based algorithm, bypassing the need for

comprehensive knowledge of sensor and imaging pa-
rameters, due to the generalizable nature of the ap-
proach. Following the SURE algorithm presented by
Han V. Nguyen et al. (2020),61 static noise was suc-
cessfully removed from bands 57, 27, and 17 of the
Pavia University dataset,62 a hyperspectral dataset
collected over the city of Pavia, Italy, using the re-
flective optics system imaging spectrometer (ROSIS-
3). As shown in Figure 17, the performance of the
model is evaluated by the peak signal to noise ratio
(PSNR) and the mean squared error (MSE) between
the original image and the denoised image. Both of
these metrics represent the quality of the reconstruc-
tion of the image through denoising. A lower MSE
refers to fewer discrepancies between images, and a
higher PSNR refers to a higher quality image due to
the greater difference between the signal (the origi-
nal image) and the added noise. As training itera-
tions increase, the training loss decreases while the
PSNR increases, signifying that the denoised image
becomes more similar to the original image.

Figure 17: Destriping Algorithm Perfor-
mance on Noisy Data

LINEAR ERROR ANALYSIS

Tool Implementation

LEA is a tool used to mathematically relate pay-
load performance to the scientific usefulness of the
intended mission. It does so by producing a math-
ematical model63 of the payload that encodes SNR
performance and systematic errors, producing an es-
timate of a known atmospheric state.64 LEA also
includes a model of the atmosphere to provide a ref-
erence for assessing how well different molecules will
be detected by the FINCH Eye payload. Further de-
tails on specific equations used in the algorithm and
the input values can be found on the Linear Error
Analysis GitHub.
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By evaluating how well a certain payload com-
position is able to estimate the atmospheric state,
referred to as the percent error, design tradeoffs and
optimizations can be made at a high level. As a
student team, there are numerous restrictions, in-
cluding budget, time commitment, and expertise.
By targeting the critical design drivers that affect
the scientific usefulness of the mission, the payload
can achieve acceptable performance under the es-
tablished constraints. This tool can also be used to
assess the overall feasibility of a proposed mission
profile.

Key Performance Insights

Hyperspectral cameras can benefit from high
spectral resolution, making them useful for atmo-
spheric sensing applications. For imaging methane,
it is recommended to use a camera with a spectral
resolution of at least 0.2 nm.65 Figure 16a shows
the relationship between spectral resolution and per-
cent error for the FINCH Eye. The percent er-
ror is the error between the estimated measurement
from the FINCH Eye model produced in LEA and
the atmospheric state consisting of concentrations of
methane, carbon dioxide, and water vapour.

Counterintuitively, spectral resolution has an in-
verse effect on the percent error, with the error de-
creasing as spectral resolution becomes worse. This
is due to the close dependence of SNR on spec-
tral resolution. As the spectral resolution improves,
there is less light, or signal, reaching each band that
the camera is detecting, thus decreasing the SNR.
This decrease in SNR causes an increase in percent
error. This highlights SNR as a principal design
driver for the FINCH Eye design, when targeting
an atmospheric sensing mission. Based on this anal-
ysis, optical components and positioning should pri-

oritize SNR above other performance metrics to best
achieve atmospheric remote sensing performance re-
quirements.

Figure 16b shows the relationship between sig-
nal to noise ratio (SNR) and the percent error. SNR
clearly has a large effect on minimizing the percent
error. Assuming a 25% percent error is acceptable
for the needs of the mission, and given the con-
straints of the team, a SNR of at least 2000 would
be required for imaging methane successfully. This
was deemed infeasible based on all FINCH Eye sim-
ulations, requiring a 100× increase in performance
to achieve. This quantitatively describes what moti-
vated the pivot from a methane remote sensing mis-
sion to a crop residue mapping mission.

MISSION PROFILE: CROP RESIDUE
MAPPING

In this updated mission profile, the scientific
imaging site would be an agricultural study site
where crop residue retention is being practised on
certain fields. From each hyperspectral image, crop
residue and soil endmembers would then be ex-
tracted from selected pixels as inputs to an SMA
algorithm. The resulting percent values of crop
residue coverage derived from SMA would then be
validated against ground truth measurements taken
of the same site, using a statistical analysis metric
such as root mean square error (RMSE). The quan-
tification of this error between satellite and ground
truth measurements would inform the accuracy of
the crop residue mapping data. In doing so, FINCH
would be contributing a valuable proof of concept for
the continued development of crop residue mapping
methods via hyperspectral remote sensing.

Many of the spectral index-based methods used
by remote sensing missions to quantify crop residue

(a) Estimated Error as a Function of Spectral Res-
olution for Methane, Carbon Dioxide, and Water
Vapour

(b) Estimated Error as a Function of SNR at a
Spectral Resolution of 2.0 nm for Methane, Car-
bon Dioxide, And Water Vapour
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cover generally require a high SNR and spectral res-
olution, along with a specific spectral range for ac-
curate results.66 This is due to their dependence
on specific fine absorption features associated with
crop residue, similar to the mechanism behind at-
mospheric sensing.

Since SMA relies only on the self-contained end-
member spectra unique to each image, the required
SNR and spectral resolution are consequently much
lower. When applied to hyperspectral data, SMA al-
gorithms have been shown to return acceptably low
RMSE values at an SNR of 30,67 which is far more
feasible than the SNR of 2000 required for CH4 re-
trieval.

Additionally, since SMA requires only that the
number of spectral bands be one greater than the
number of endmembers used,68 a spectral resolution
as coarse as 10 nm is acceptable for hyperspectral
sensors. Again, this greatly alleviates the strict re-
quirement of a spectral resolution better than 1 nm,
which was previously required for atmospheric sens-
ing of CH4.

Although there is ostensibly no specific required
spectral range for SMA to work, its application to
crop residue mapping in multispectral studies has
been found most effective when near-infrared (NIR)
and SWIR bands are included.2 With this in mind,
the spectral range of FINCH would ideally be ex-
tended to include the full possible sensor range of
900-1700 nm in order to yield measurements compa-
rable to literature.

In order for accurate identification of endmem-
ber pixels to occur, spatial resolution for crop residue
mapping must be finer than the smallest anticipated
unit of crop residue coverage. This exact value is de-
pendent on the size of fields in which crop residue
retention is being practised, which can vary between
agricultural sites. Accordingly, the required swath
is also flexible depending on the specific area of in-
terest. Given the largest field dimensions currently
accessible for measurements in Canada,2 an esti-
mated swath of 10-20 km and spatial resolution ap-
proaching 30 m is recommended, though not strictly
required. While this is a stricter recommendation
than the 100 m spatial resolution previously required
for atmospheric sensing of landfills, the overall re-
quirements for scientifically useful results from crop
residue mapping via SMA are much more likely to
be feasible for the FINCH Eye to achieve.
Table 6 summarises the comparison of scientific re-
quirements between the methane monitoring and
crop residue mapping mission profiles.

Table 6: Key Requirements for the Methane
Monitoring and Crop Residue Mapping Mis-
sions

Parameter
Methane
Mission

Requirement

Crop Residue
Mapping

Requirement

Spectral Range 1600–1680 nm 900–1700 nm

Spectral Resolution < 1 nm < 10 nm

Spatial Resolution 100 m 30 m

Swath 50 km 10-20 km

Signal-to-noise ratio 2000 30

Mission Lifetime 1 year 1 year

FUTURE WORK

Due to the updated mission profile, the FINCH
Eye will be redesigned to encompass the new sci-
entific requirements. In particular, this will con-
sider the spectral and spatial resolution as it affects
the optical assembly, payload spacing, and data size.
Since the new spectral range aligns with that of the
sensor, investigation into the detection limit drop-
off at either end (900 nm and 1700 nm) as a func-
tion of spatial position will be performed to deter-
mine whether cost and Z-axis volume consumption
can be saved by eliminating the primary bandpass
filter from the FINCH Eye. Additionally, spectral
wavelengths near the limits of the FLIR Tau’s spec-
tral range have a lower quantum efficiency, meaning
SNR will decrease. To ensure that the camera’s out-
put data is scientifically relevant, an SNR analysis
will be performed to quantify the FINCH Eye’s per-
formance.

Based on the current model for spatial resolu-
tion, shown in Figure 8, meeting the 30 m require-
ment necessary for crop residue mapping would cor-
respond to a focal length around 300 mm, which
exceeds the FINCH Eye’s volume constraints. This
requirement-design relationship will be further ex-
plored following the process detailed in Figure 1
through further consultation with researchers and
imaging sites, as well as optical optimization. Fi-
nally, a finer spatial resolution would increase the
size of FINCH’s hyperspectral data in two dimen-
sions, which would further strain downlink require-
ments. However, a reduced spectral resolution is ac-
ceptable with the SMA. Further analysis will allow
us to quantify the spatial-spectral resolution trade-
off necessary to meet data size requirements.

Ongoing coordination with Agriculture and Agri-
Foods Canada (AAFC) research teams is taking
place to determine which locations will be avail-
able for ground truth measurements at the time of
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FINCH’s launch. In the meantime, there is more
work to be done on selecting the specific SMA algo-
rithm that will be used.

For on-orbit calibration, continued investigation
into ADCS capabilities will allow us to gauge the ac-
curacy of flat-field correction through the feasibility
of performing a side slither maneuver.

To validate FINCH’s current optomechanical de-
sign, launch vibration conditions and loads will be
simulated using finite element analysis with Simcen-
ter 3D. In particular, detailed design surrounding
the mounting design will be crucial in the vibration
isolation of the FLIR Tau sensor.

For thermal design, the diffracting mechanism
around the grism is highly sensitive to temperature
variations. To validate optomechanical and ther-
mal supports and to determine the necessity for an
additional active heater/cooler within the payload,
Structural, Thermal, Optical Performance (STOP)
analysis will be performed. STOP analysis will inte-
grate the finite element models that the Structures
and Thermal teams are preparing. Iteration through
the STOP analysis pipeline will drive detailed design
decisions to the payload.

Following the finalization of FINCH’s engineer-
ing model, the vibration campaign will begin in Q1–
Q2 2023. TVAC testing is planned for Q1 2024, with
FINCH currently aiming for a Q3–Q4 2024 launch.
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