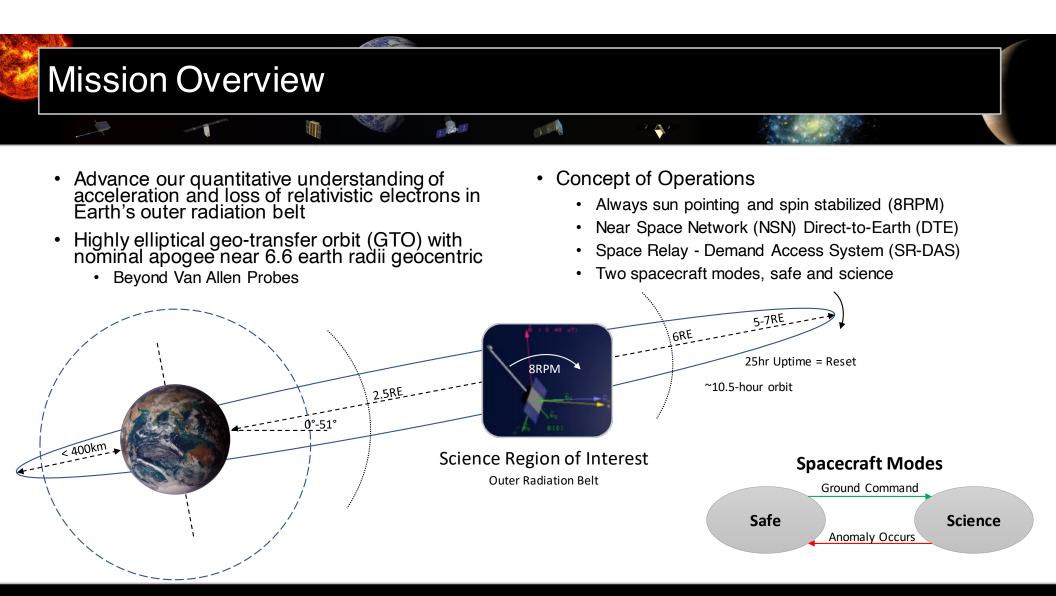

National Aeronautics and Space Administration



MSE: John.P.Lucas@nasa.gov

Co-I: Lauren.Blum@lasp.colorado.edu


Co-I: Larry.Kepko@nasa.gov

NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/





www.nasa.gov



www.nasa.gov

NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/

### Science Instruments

- Relativistic Electron Magnetic Spectrometer (REMS)
  - Developed by The Aerospace Corporation
  - Electron instrument is a miniaturized version of MagEIS onboard the Van Allen Probes with 9-pixel detectors measuring 100 keV to > 1 MeV
  - Proton detectors based on the micro Charged Particle Telescope from the AeroCube-10 with 2 detectors measuring <650 keV to > 7 MeV
  - Calibrated at The Aerospace Corp. using a series of radioactive sources and a beta radiation spectrometer
- Fluxgate Magnetometer (FMAG)
  - Developed by NASA GSFC's Solar System Exploration Division
  - Designed for satellite-based vector magnetic field measurements in Earth's magnetosphere
  - Modified version from MAVEN, Juno, and Parker Solar Probe missions
  - Sensor on one-meter extendable boom designed by FMAG team
  - Testing occurred at the NASA GSFC magnetic calibration facility



GTOSat



NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/

### **Geo-Transfer Orbit Complexities**

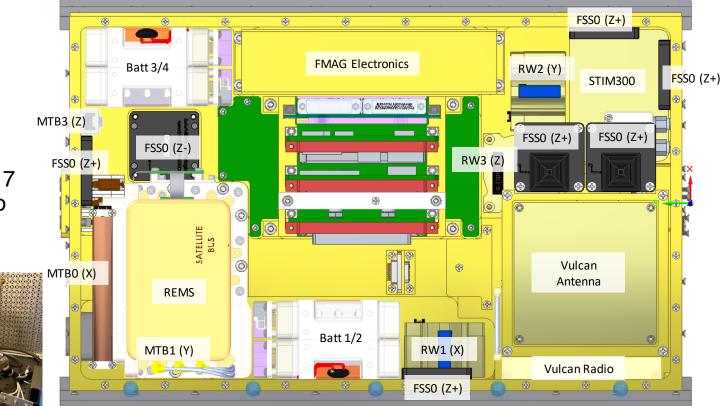
- Attitude Determination and Control
  - Enough control authority?
- Launch
  - Available? 25-year deorbit analysis? Conjunction assessment?
- Mechanical
  - Enough shielding? Does it all fit in the box? Vibration levels achievable? Under mass?

1

- Power
  - Long eclipses? Extra heaters required? Slow initial sun acquisition?
- Radiation
  - External components resistance to atomic oxidization? Surface charging?

- Individual component total ionizing dose? Single event upset detection and correction?
- Thermal
  - · Coatings for both long eclipses and extended sun periods?

NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/


# Architecture

- Commercial
  - CubeSpace
    - Custom MTBs x 3

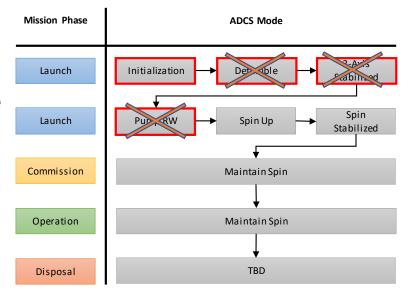
- Medium RWs x 3
- DHV Solar Arrays

-

- Ibeos EPS
  - 45Whr Batteries x 4
- SolarMEMS D60RH x 7
- Vulcan Wireless Radio
- Custom
  - Backplane
  - C&DH
  - Chassis
  - Z-Shield



4

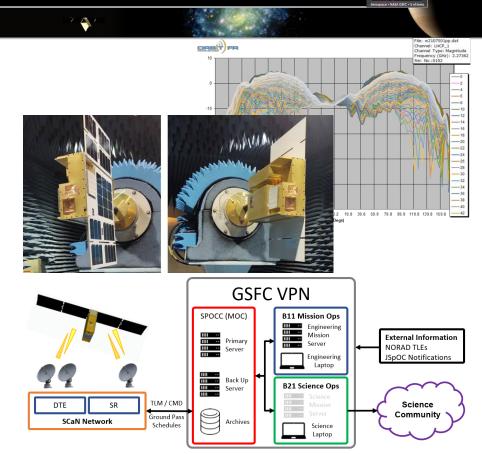

www.nasa.gov

NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/

# Attitude Determination and Control System

1

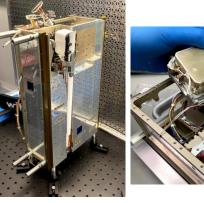
- Initial design required more authority
  - Acquired custom MTBs from CubeSpace
- Required to simplify design further to resolve issues
  - IMU expected to fail due to Helium exposure
  - RWs failed during flight proof vibration test
- Final design
  - Utilize tip-off momentum by transitioning it into our spin axis
  - Special cases and lots of tuning to resolve issues found during Monte Carlo runs in 42

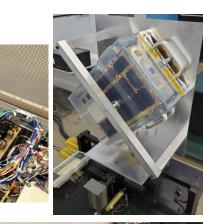



# Communications

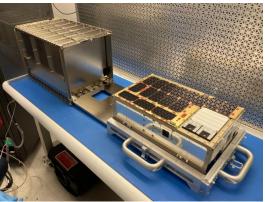
- Vulcan Radio and Antennas
  - Splitter to antennas on top and bottom

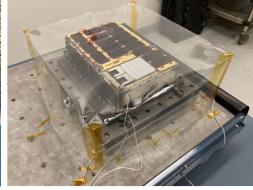
1 11


- Direct To Earth
  - Full Duplex
  - 50 kbps uplink / 500 kbps downlink
    - Reduced downlink from maximum due to C&DH throughput and link issues
- Space Relay Demand Access Service
  - 2kbps downlink only
  - TDRS-ANY mode
    - Accepts "unplanned" transmits from spacecraft
- Testing
  - Antenna pattern testing at NASA WFF
  - End-to-end compatibility testing at GSFC




#### **Mechanical Structures and Mechanisms**

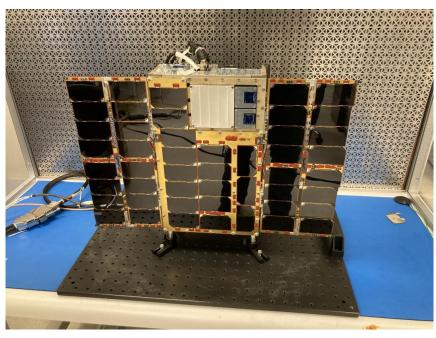




- 0.15" vault aluminum chassis
  - Lowers TID to acceptable levels
- Custom one meter boom
- PSC CSD deployer
- · Z-Shield lid and GSE cover
  - Provided by NASA Langley
- Integration and transport
  - Optical posts thread into chassis
  - Custom carrying case
- Testing
  - 3D printed model
  - · Mass properties
  - Fit check into deployer
  - Flight proof vibration (+3db over)





GTOSat





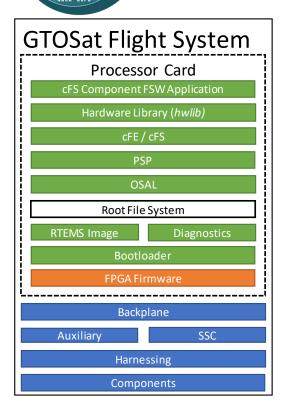

NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/



- DHV Solar Arrays
  - · Custom sizing with back-wiring
    - Limits magnetic interference with bus
  - Double deployable wings
  - Specialty coatings
  - Standard burn wire circuitry
- Ibeos Electrical Power System
  - 45Whr Batteries x 4
  - I2C communications
  - Components isolated to individual switches when possible
  - Standard dual fault tolerant scheme for inhibits not including a remove before flight



# Command and Data Handling

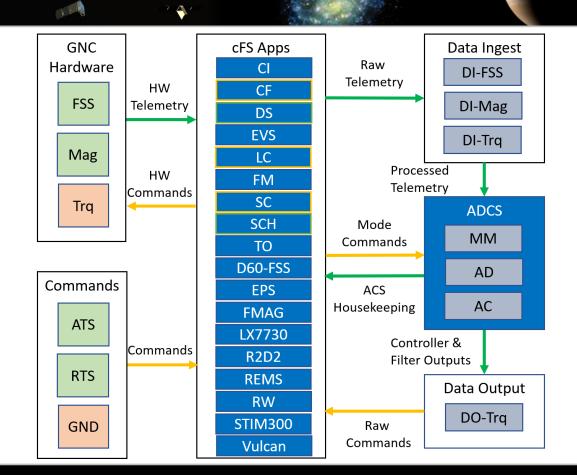

- MARES
  - Modular Architecture for a Resilient Extensible SmallSat

1

- TID > 30krad and SEL immune
- Processor card

----

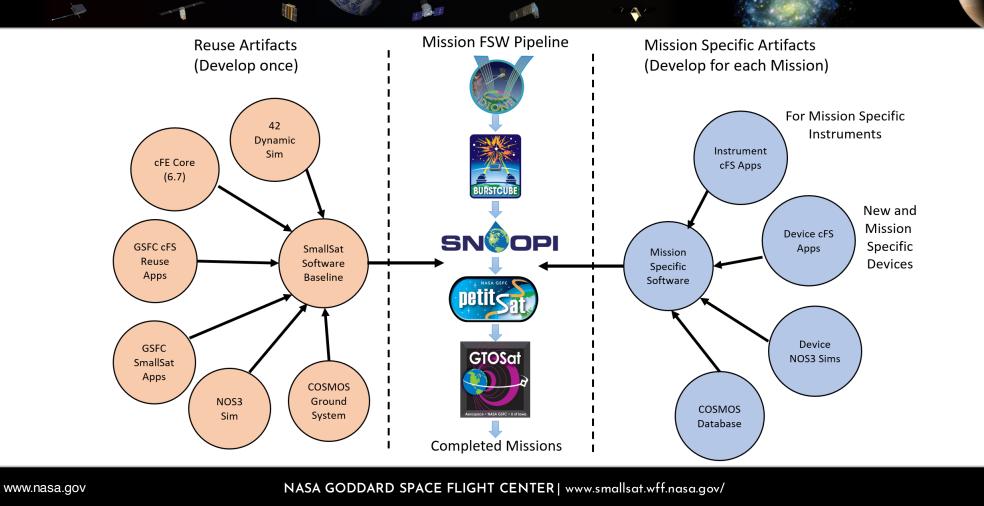
- RTG4 FPGA with LEON3FT softcore
- 16GB nonvolatile flash memory
- Auxiliary card
  - Protocol support, LX7730 ADC, and science dosimeter
- Special Services card
  - Rad-Tol DC/DC converter for -12V to FMAG
  - H-Bridge and deployment circuitry
- Software
  - Real-Time Executive for Multiprocessor Systems (RTEMS)
  - core Flight System (cFS)
  - NASA Operational Simulator for Small Satellites (NOS3)




MAKE

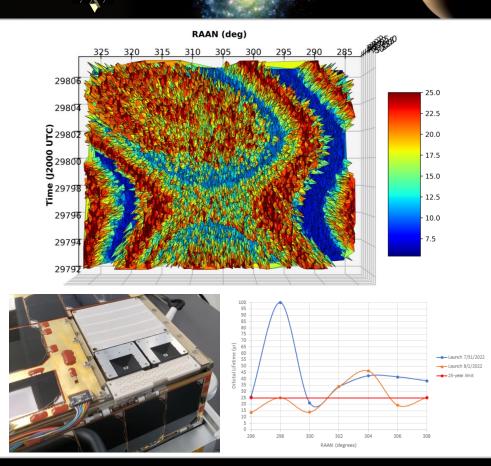
# Flight Software

- Scheduler (SCH)
  - Generates data via commands to applications to produce it


- Data Storage (DS)
  - Stores set amount of data
  - Filter specific packets into files
- CFDP (CF)
  - Transfer files to/from ground
- Stored Commands (SC)
  - Relative Time Sequence (RTS)
  - Mission specific
- Limit Checker (LC)
  - Monitors telemetry packets
  - Responds by running an RTS



www.nasa.gov


NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/





### Launch - EZIO-6 / SBIRS GEO-6

- Deorbit Analysis
  - Final launch window had some of the longest lifetimes
  - Waiver required for 25-year rule
- Tracking
  - Van-Atta Retroreflector added
    - Compliments of SWARM and SPAWAR
    - SSC20-WKVI-04
  - · Installed at delivery facility
- SBIRS GEO-6
  - Launched without secondary payloads



1 800

# Path Forward

- Conjunction Assessment and Risk Analysis
  - Working directly to ensure compliance with requirements
  - GTOSat is the pathfinder
    - Helping to define how future missions obtain compliance
    - Whitepaper in work to document process and decisions made along the way

#### Storage

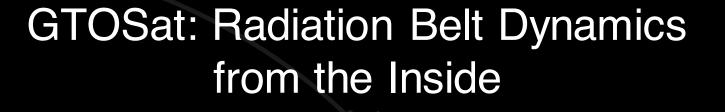
- De-integrating spacecraft from deployer
- Returning to NASA GSFC for long term storage
- Working on a new launch opportunity
  - NASA CubeSat Launch Initiative (CSLI)
  - Space Force Mission Manifest Office (MMO)

#### Special thanks to everyone who made this possible

- Co-I, Lauren Blum
- Co-I, Larry Kepko
- PDL, Eddie Tsui
- MSE, John P. Lucas
- ADCS Lead, Hasnaa Khalifi
- ADCS, Pavel Galchenko
- COMM, Behnam Azimi
- C&DH, James Fraction
- Custom Cards, Scott Hesh
- Flight Software Lead, Matthew Grubb

- Flight Software, Alan Cudmore
- Flight Software, Mark Suder
- Mechanical / I&T, Steven West
- Power / I&T, Dakotah Rusley
- Thermal, Michael Madden
- Scientist, Mykhaylo Shumko

• REMS


1 1

- PI, Christine Gabrielse
- PM, William Chavez
- SE, William Crain
- EE, Susan Crain
- ME, Geoff Maul
- Scientist, Drew Turner
- Scientist, J. Bernard Blake
- Scientist, James Clemmons
- FMAG
  - PI, Jared Espley
  - EE, David Sheppard
  - ME, Scott Murphy
  - Scientist, Jacob Gruesbeck

#### Too many others to mention!

NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/

National Aeronautics and Space Administration

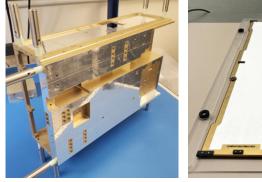


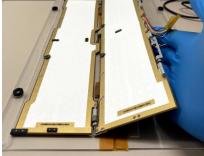
MSE: John.P.Lucas@nasa.gov

Co-I: Lauren.Blum@lasp.colorado.edu

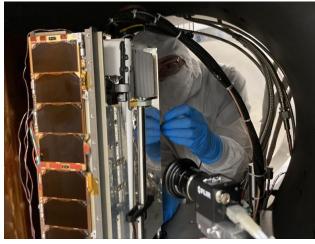
Co-I: Larry.Kepko@nasa.gov

NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/




www.nasa.gov

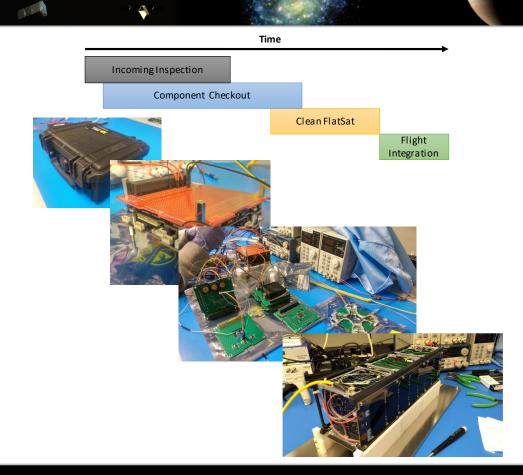

# Thermal

- Cold biased passive design
  - Arrays and batteries isolated from bus
- Coatings
  - Ag FEP on bus
  - Z93C55 on back of arrays
- Minimal heaters
  - One on each battery pack 9.6W
  - FMAG Sensor 1W
  - REMS 6W
  - Two spare bus heaters 2W





GTOSat

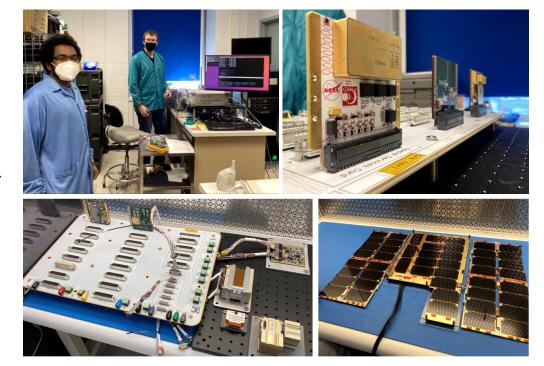



1

# Workflow

- Incoming Inspection
  - Utilize Work Order Authorizations (WOAs)

- · Visual part count and condition inspection
- Photos of parts and storage location
- Component Checkout
  - Test configuration
  - Isolation / Resistance / Continuity (IRC)
  - · Power measurements (in-rush and steady state)
  - · Functional test
- Clean FlatSat
  - · Use flight components and harness
  - · Confirm ADCS component phasing
  - Inhibit and Thermistor Checkouts
  - Timing test
- Flight Integration
  - · Fault detection and correction
  - Comprehensive Performance Test (CPT)

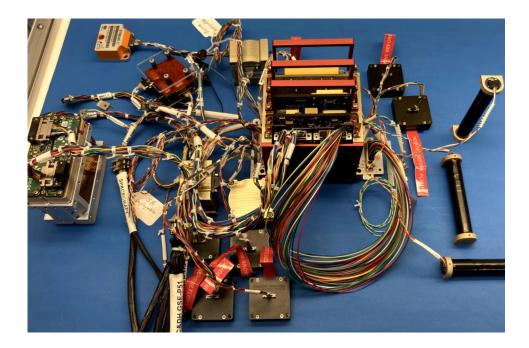



NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/

#### Issues Overcome – Component Checkouts



- C&DH
  - ✓ LX7730 ADC reset logic updated
- EPS
  - ✓ Low voltage protection logic updated
- Components Issues Resolved
  - Dual Antenna
    - ✓ Antenna pattern testing completed at WFF
  - Fine Sun Sensors
    - ✓ Issue with floating point unit resolved
  - Inertial Measurement Unit
    - Parsing algorithm reworked due to high data rate
  - Reaction Wheels
    - ✓ Enable lines for X and Y tied together

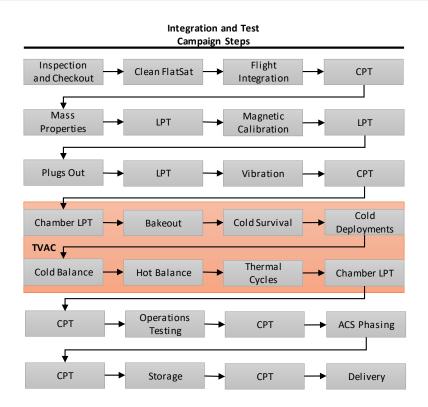



1 1

# Issues Overcome – Clean FlatSat



- Card Stack Issues Resolved
  C&DH JTAG harness
  - ✓ Inhibit harness improvement
- Component Issues Resolved
  - FMAG Emulator
    - ✓ Issue with data processing resolved
  - Radio
    - ✓ Baud rate out of supported range
  - REMS Emulator
    - Added JTAG interface for future updates
  - Solar Arrays
    - ✓ Issue with single cell resolved




# Integration and Test Campaign

- Comprehensive Performance Test
  - Verify spacecraft functionality
  - External sensors and different spacecraft configurations / orientations
- Limited Performance Test
  - Fully automated

-

- No external sensors or measurements
- Aliveness, commanding, and system



1

4

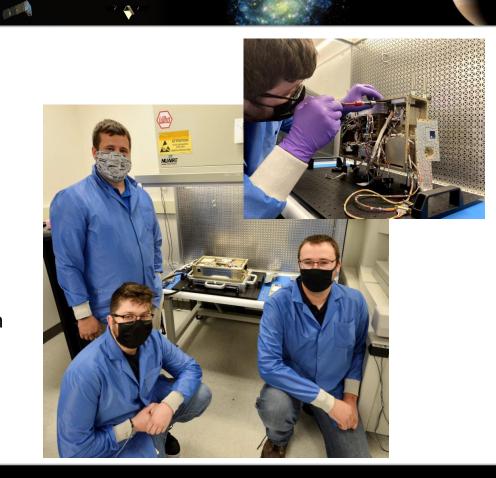
# Issues Overcome – Integration and Test Campaign

- Integration issues resolved C&DH
  - ✓ Processor utilization
  - ✓ Radio throughput

✓ FMAG

- ✓ Harness interference
- Test issues resolved

✓ Fit Check


Inhibit switches proven to work (again)

✓ Radio

- ✓ Near Space Network campaign reduction
- Spacecraft end-to-end RF testing

Vibration

"Max Random" button required for test



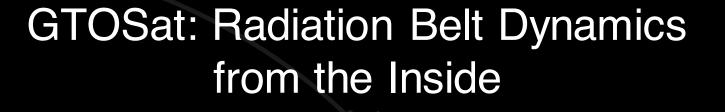
NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/

# Lessons Implemented on GTOSat

• Buddy system implemented for hardware and procedures

• Debug RF port in addition to multiple consoles available in umbilical

1 11


- Integration and handling considered early
- Testing
  - Test as you fly
  - Keep it simple
  - Prioritize system level
  - Test soon and often
- Workflow defined and followed for all components



- Confirm throughput and system overhead incurred in each component
- Encourage experimentation
  - Procedures required prior to running on flight hardware
- GEVS may not truly be all encompassing
  - "Flight proof" vibe levels
- If it can be updated, ensure you can do it after integration
- · Keep the team small and dedicated
- Perform deployment testing prior to TVAC
  - Obtain an engineering model to allow procedures and technique to be extensively tested
- Schedule time to:
  - Capture lessons learned
  - Maintain a realistic schedule
  - Update risks and issues

NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/

National Aeronautics and Space Administration



MSE: John.P.Lucas@nasa.gov

Co-I: Lauren.Blum@lasp.colorado.edu

Co-I: Larry.Kepko@nasa.gov

NASA GODDARD SPACE FLIGHT CENTER | www.smallsat.wff.nasa.gov/





www.nasa.gov