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Approximation Techniques for Stochastic
Analysis of Biological Systems
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and Chris J. Myers

Abstract There has been an increasing demand for formal methods in the design
process of safety-critical synthetic genetic circuits. Probabilistic model checking
techniques have demonstrated significant potential in analyzing the intrinsic proba-
bilistic behaviors of complex genetic circuit designs. However, its inability to scale
limits its applicability in practice. This chapter addresses the scalability problem by
presenting a state-space approximation method to remove unlikely states resulting
in a reduced, finite state representation of the infinite-state continuous-time Markov
chain that is amenable to probabilistic model checking. The proposed method is
evaluated on a design of a genetic toggle switch. Comparisons with another state-of-
the-art tool demonstrate both accuracy and efficiency of the presented method.

12.1 Introduction

Computational biologists typically construct models to better understand and explore
the possible behaviors of biological systems [35]. By using formal methods, such as
model checking, to analyze these models, researchers are able to ensure that certain
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properties hold in biological systemdesigns [19]. In order to numericallymodel check
a system, the system’s state space must be enumerated. For systems that are highly
concurrent and have infinite states, such as genetic circuits (i.e., the collections of
geneswithinDNA that interact to control the behavior of cells, see Sect. 12.4 formore
details), enumerating the state space can be computationally intractable due to the
state-space explosion problem. Techniques such as partial order reduction that reduce
the number of reachable states in a system have shown some promise in tackling this
problem [3, 4, 9], but these methods often rely on transition dependencies based
on the disablings (and/or enablings) and commutativity of independent transitions.
Most models of genetic circuits do not contain transitions that disable/enable other
transitions leading researchers to seek other solutions to this problem.

Anotherway to reduce the state space of a system is to introduce threshold abstrac-
tions to collapse multiple states of the system together [31]. This type of abstraction
works very well in systems where there exist groups of states in equivalence classes.
This is often the case in genetic circuits where firing a single transition does not have
a great effect on the likelihood of firing other transitions in the system. Although
this type of abstraction has previously been successfully applied to genetic circuits,
selecting the threshold values is currently done in a manual ad hoc manner.

This chapter presents an alternative method for deriving a reduced, finite-state
representation of a genetic circuit’s behavior. This method works by computing the
approximate probability of reaching each state on the fly and stops exploring different
paths when the cumulative path probability drops below a predetermined value, and
these paths are routed to an abstract absorbing state, which accumulates probability
leakage during theMarkovian analysis. The resulting continuous-time Markov chain
(CTMC) can be analyzed using probabilistic model checking approaches to deter-
mine the probability that the original genetic circuit satisfies a desired temporal logic
property given in continuous stochastic logic (CSL) [2, 25]. This chapter illustrates
the utility of this method by applying it to a model of the genetic toggle switch and
by comparing the results to a previous approach where the thresholds were deter-
mined by hand to produce the finite-state representation [29, 31]. Additionally, this
method is compared with a state-of-the-art stochastic hybrid analysis tool on several
benchmarks, and comparisons of results demonstrate both accuracy and efficiency
of our proposed method.

12.2 Related Work

To improve the scalability of probabilistic model checking, bi-simulation minimiza-
tion (e.g., [11–13]) has been extended to the probabilistic setting [22] to achieve up
to a logarithmic state-space reduction. Probabilistic abstraction (e.g., [10, 21, 23])
applies coarser state merging to achieve better reduction, while ensuring a simula-
tion relation between the abstract and concrete Markov models. A transition on the
abstract Markov model has a range of probabilities, represented by an interval with
the maximal and minimal probabilities for taking the transition. In particular, [23]
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presents a theoretical framework for reducing discrete-timeMarkov chains (DTMCs)
and CTMCs using a three-valued abstraction and for model checking these abstrac-
tions. However, how to partition the state space in this framework is not discussed,
nor is the refinement of the abstractions in the case that inconclusive results are
produced. Although these reduction techniques can be powerful, they may not be
effective in alleviating the exponential state growth caused by concurrency as they
are not designed to tackle concurrency in the first place. Unfortunately, concurrency
is inherent in most synthetic biological systems.

To address the state explosion problem, some approaches attempt to truncate
the state space. For instance, [32] presents a method for selectively exploring states
involving rare events; however, this technique requires themodification of parameters
in the system to help guide this exploration. Other approaches attempt to dynamically
explore the state space and continually add states until the resulting state space
satisfies a desired level of precision [5, 33, 34].

A probabilistic counterexample-guided abstraction refinement approach is devel-
oped in [21, 38]. Predicate abstraction is applied to programs in a probabilistic
guarded command language, and counterexamples are represented as finite Markov
chains, where additional predicates are extracted by using an SMT solver in the
case that such counterexamples are spurious. [26] presents a compositional verifi-
cation approach to probabilistic systems using assume-guarantee reasoning. Both
component assumptions and guarantees are represented as probabilistic safety prop-
erties. Component verification can be expensive in this approach as it is reduced
to a linear programming problem. Furthermore, assumptions are derived manually.
Additionally, [21, 26, 38] are all based on probabilistic automata, which support
nondeterminism but with discrete-time semantics.

In [31], genetic circuit models are converted into CTMCs using operator site
reduction abstractions relying on quasi-steady-state approximations. To avoid the
state explosion problem, the authors employ a state aggregation method to collapse
states together based on user-provided thresholds. While the application of proba-
bilistic model checking to the reduced CTMC can produce results in a fraction of
the time of simulation-based approaches, this method is incapable of quantifying
the error introduced by this aggregation and relies on user input for good choices of
thresholds.While there has been work to address the former [1], our method attempts
to alleviate the latter by automatically determining a finite-state representation by
removing states that are found to be extremely unlikely during the generation of the
CTMC from the genetic circuit model.

A similar approach to the one presented in this chapter is the sliding window
abstraction [20]. This method approximates a solution to the chemical master equa-
tion (CME) by dividing the time period of interest into small time steps, iteratively
constructing a window of an abstract state space that preserves the probability mass
at the current time step, and then “sliding” the window in each subsequent time
step to include newly generated states with significant probability while abstract-
ing away those with negligible probability contribution until the last time step has
elapsed. This method effectively performs transient CTMC analysis on a manage-
able approximated state space and successively updates a state-space approximation
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by following the direction in which probability mass moves as time evolves. The
abstract state-space construction is based on a worst-case estimation of lower and
upper bounds on the populations of the chemical species.

Amore recent improvement of the slidingwindow implementation is the STochas-
tic Analysis of biochemical Reaction networks (STAR) [28]. It computes approximate
solutions to population Markov processes using a stochastic hybrid model that com-
bines moment-based and state-based representations of probability distributions, and
has been optimized to drop unlikely states and add likely states on the fly.

Our approach differs from the sliding window method in that it does not require
many manual factors (e.g., several different initial states to compute a state update,
a limited window size, etc.) to compute its state space. Additionally, the method
presented in this chapter has the potential to optimize the choice of the termina-
tion indicator factor to preserve accuracy while requiring a manageable state space.
Finally, our approach is based on a reaction-based abstraction model, and as a result,
is readily applied to genetic circuit models while the method in [20] focuses on
Markov chains that are specified by a finite set of transition classes.

12.3 Preliminaries

The high-level modeling formalism used in this chapter is the stochastic chemical
kinetic (SCK) model [35].

Definition 1 A SCK model is a tuple M = 〈S,R, x0〉 which is composed of n
chemical species S = {S1, . . . , Sn}, m reaction channels R = {R1, . . . ,Rm}, and an
initial molecule count of each chemical species at the beginning of analysis (i.e.,
x0 : Sn → N).A reactionRi = 〈αi , vi 〉 includes apropensity functionαi : N

n → R
+

that corresponds to the probability of a reaction, and the state-change vector vi ∈ Z
n

that corresponds to the change in molecule count for each species due to reaction Ri.

A reaction Ri can occur in state x ∈ X, if its propensity is greater than zero (i.e.,
αi (x) > 0). The propensity function αi essentially determines the likelihood that Ri

occurs in the current state. After a reaction Ri occurs, the state is updated as follows:
x′ = x + vi .

The execution of reactions in an SCK model creates a state graph as defined
below:

Definition 2 A state graph is a tuple G = 〈X, δ, x0〉 where
– X is a non-empty set of states.
– δ ⊆ X × R × X is the set of state transitions.
– x0 : Sn → N is the initial state.

Note that |G | represents the state count of G .
For most SCK models of real biological networks, they incur an infinite number

of states. Therefore, the goal of this chapter is to find a finite subset of the states
that sufficiently represents states that are actually likely to occur. Once a finite-state



12 Approximation Techniques for Stochastic Analysis … 331

graph is obtained, properties can be verified on this state graph using probabilistic
model checking.

Probabilistic model checking is a formal verification method for checking quan-
titative properties of probabilistic systems. The models of interest include DTMCs
and CTMCs, both of which belong to a class of stochastic processes that are used to
reason about random phenomena in application domains such as synthetic biology.
Both Markov models are essentially a transition system with each transition labeled
by a discrete probability for DTMCs or a transition rate for CTMCs. A DTMC is a
transition system with a discrete probability labeled on each transition [25], which
describes the likelihood of a single step moving from one state to another. A CTMC,
on the other hand, is a transition system with a transition rate r(s, s ′) labeled on the
transition emanating from state s to s ′. This rate determines the probability of execut-
ing this transitionwithin t time units, which is 1 − e−r(s,s ′)t . The rate r(s, s ′) uniquely
characterizes an exponential distribution to govern the average state residence time
of state s, which is 1

r(s,s ′) . CTMCs allow for modeling of real-time systems, as the
delay of a transition can be any arbitrary real value.

Properties to verify using probabilistic model checking are specified using Prob-
abilistic Computation Tree Logic (PCTL) [18] for DTMCs and CSL for CTMCs.
PCTL extends Computation Tree Logic (CTL) [6] by replacing existential and uni-
versal path quantifiers with a probability operator, and hence expresses probabilistic
properties for a DTMC. In addition to path probabilities, two traditional properties
of CTMCs are the transient and steady-state behaviors. Transient analysis reports
the probability of being in each state of the Markov chain at a particular time instant,
and steady-state analysis gives the corresponding probability in the long run. Model
checking algorithms for PCTL (e.g., [7, 8, 18]) have identical structure to the model
checking algorithm for CTL.Model checking CTMCfirst discretizes the CTMC into
an embedded DTMC, from which many properties of the corresponding CTMC can
be deduced, for example, checking state reachability properties regardless of how
long it takes, and the expected time objectives. For checking state reachability within
some time bound, the CTMC is discretized into a uniformized DTMC with the iter-
ative numerical method uniformization [16, 17]. The uniformized DTMC preserves
the state resident time so that its transient behavior is equal (up to some accuracy) to
the corresponding CTMC.

In order to perform probabilistic model checking on CTMCs, CSL can be used.
CSL properties consist of state formulae (formulae that are either true or false in
a specific state) and path formulae (formulae that are either true or false along a
specific path). CSL properties are specified using the following grammar:

Prop :: = U(T, Ψ, Ψ ) | F(T, Ψ ) | G(T, Ψ ) | St(Ψ )

Ψ :: = true | Ψ ∧ Ψ | ¬Ψ | φ � φ | φ > φ | φ = φ

φ :: = vi | ci | φ + φ | φ − φ | φ ∗ φ | φ/φ | Prop
T :: = true | T ∧ T | ¬T | t � ci | t > ci | t = ci
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where vi is a variable, ci is a constant, and t stands for time in the system. In CSL, Ψ
is a state formula that can be either comparisons between numerical expressions, φ,
or other state formula combined using logical connectives. A CSL property, Prop,
is a path property over state formula. For example, the Until property is of the
form U(T, Ψ1, Ψ2), and it returns the probability that along paths originating in the
current state,Ψ1 remains true untilΨ2 becomes true during the time specified by time
expression, T . The eventually operator, F, is simply a shorthand for an until property
where Ψ1 is true. The globally true operator, G, is another shorthand that specifies
that Ψ remains true during the time in which T evaluates to true. The steady-state
operator, St, returns the probability that when the SCKmodel reaches a steady state
that it has reached a state whereΨ is true. Finally, CSL formulae, Prop, can be nested
within other formula, creating recursive properties.

For example, theCSLpropertySt(x > 5 ∧ y � 10)would return the probability
that in the steady state, the system reaches a state where the variable x is greater than
5 and the variable y is greater than or equal to 10. Alternatively, the CSL property
F(t > 100 ∧ ¬(t � 200), x > 5 ∧ y � 10) would return the probability that the
system follows an execution path originating in the initial state where the variable
x becomes greater than 5 and the variable y becomes greater than or equal to 10
sometime between 100 and 200 time units non-inclusive. For a path to satisfy this
property, the system does not need these conditions to hold true for the entire 100
time unit interval; they just both need to become true simultaneously at some point
within this time frame.

12.4 Motivating Example

A genetic circuit is constructed using DNA, and it typically includes, at a minimum,
regions that act aspromoters, ribosomebinding sites (RBS), coding sequences (CDS),
and terminators. The promoters are regions where transcription is initiated when an
RNA polymerase (RNAP) molecule binds, and then begins to walk along the DNA
copying the sequence to form a messenger RNA (mRNA) molecule until it reaches
the location of the terminator. The terminator causes the RNAP to be released and
thus ends transcription. The RBS region when copied to an mRNA results in a
region that binds to a ribosome to initiate the translation process. During translation,
the CDS region on the mRNA is used as instructions following the genetic code
to select the amino acids to use to construct a protein. Proteins are a fundamental
component for almost all molecular functions within a cell. Proteins can also bind
to promoters to activate or repress transcription, i.e., increasing or decreasing the
associated promoters binding affinity to RNAP.

The motivating example used in this chapter is a genetic circuit for a toggle
switch [14] shown in Fig . 12.1. This genetic circuit is constructed from two tran-
scriptional units. The one on the left begins with the promoter Ptet (shown as a bent
arrow), followed by its RBS (shown as a half circle), a CDS that codes for the protein
LacI, and finally a terminator (shown as a 
). The one on the right begins with the
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Fig. 12.1 The genetic toggle switch. This switch is created using two repressors, LacI and TetR,
which repress each other’s production, denoted by the ⊥ and 
 arrows on promoters Ptet and Plac.
The small-molecule IPTG can bind to LacI, effectively reducing LacI’s ability to repress TetR and
GFP production. Similarly, the small-molecule aTc can bind to TetR to reduce TetR’s ability to
repress LacI’s production. To indicate the ON and OFF states of this switch, this circuit includes
the reporter protein GFP to cause the cell to glow green when it is present

Plac promoter, which initiates transcription of the CDSs for the TetR protein and the
green fluorescent protein (GFP). GFP is a reporter, since the cells glow green when
it is present. The switch-like behavior is created by mutual repression. Namely, the
TetR protein binds to Ptet to repress LacI production, while the LacI protein binds to
Plac to repress TetR production. The state of the switch is changed by adding small-
molecule chemical inducers. Namely, when the switch is OFF (i.e., LacI is present
but no TetR or GFP is present), IPTG can be added, which binds to LacI forming the
complex C1, which is unable to repress Plac. This situation leads to TetR and GFP
being produced, which represses LacI production and thus changes the switch to the
ON state. To change back to the OFF state, aTc can be added, which binds to TetR
to form the complex C2, which is unable to repress Ptet . This situation leads to LacI
being produced, which represses further production of TetR and GFP and thus the
changes the genetic toggle switch to the OFF state.

One possible reaction-based model of the genetic toggle switch is shown in
Fig. 12.2. This model is derived from a more detailed model, using quasi-steady-
state approximations and reaction-based abstractions as described in [24, 35]. This
model is composed of a species for each protein (i.e., LacI, TetR, and GFP) and each
small molecule (i.e., IPTG and aTc). This model also includes a production reac-
tion for each promoter, Ptet and Plac, and a degradation reaction for each protein.
The reactions are shown as boxes in the diagram, with their propensity functions
shown inside the boxes. The parameters for these propensity functions are given in
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Fig. 12.2 Reaction graph adapted from [29] for the genetic toggle switch after applying reaction-
based abstractions to the chemical reaction network

Table 12.1 List of parameters for the genetic toggle switch model

Parameter Symbol Value Units

Degradation rate kd 0.0075 sec−1

Complex formation equilibrium Kc 0.05 molecule−1

Stoichiometry of binding nc 2 molecules

Repression binding equilibrium Kr 0.5 molecule−1

RNAP binding equilibrium Ko 0.033 molecule−1

Open complex production rate kp 0.05 sec−1

Stoichiometry of production np 10 dimensionless

Number of RNAP molecules |RNAP| 30 molecules

Number of Ptet promoters |Ptet | 2 molecules

Number of Plac promoters |Plac| 2 molecules

Table12.1. Note that these are simply reasonable default parameters and not mea-
sured experimentally, and they can be easily updated if better information becomes
available. The edges are labeled to indicate reactants (r), species consumed by the
reactions, products (p), species produced by the reactions, andmodifiers (m), species
neither produced or consumed. The stoichiometry, the number of molecules pro-
duced or consumed, for each reaction is assumed to be 1, unless indicated otherwise
(e.g., production reactions produce np molecules). The degradation reactions have a
propensity that is just the degradation rate, kd , times the current number of molecules
of the species that is degrading. The production reactions have a propensity that is
the number of molecules produced, np, times the rate of production, kp, times the
proportion of promoters bound to RNAP in steady state. This proportion is a func-
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tion of the amount of repressor molecules present in free form (i.e., not bound to the
corresponding small-molecule inducer). Further details are outside the scope of this
chapter, but they can be found in [24, 35].

Unlike an electronic circuit, the behavior of a genetic toggle switch circuit is
extremely noisy due to the small-molecule counts involved. It is, therefore, neces-
sary to evaluate a genetic circuit’s behaviors using stochastic analyses. Figure 12.3
shows the average output response of 100 stochastic simulation runs using Gille-
spie’s stochastic simulation algorithm (SSA) [15]. These simulations start with the
same initial state with 60 LacI molecules, and 0 for other species. At time 5,000,
100 molecules of IPTG are applied, which activates the production of TetR and GFP
to bring them to the high state, and represses LacI to slow down its production to
allow its degradation to reduce its molecule count. When the input IPTG is removed
at time 10,000 making both inputs absent, the outputs retain their current states. At
time 15,000, applying inducer aTc causes the circuit to switch output states again.
Removing aTc at time 20,000, once again leaves the outputs to hold their states. It
should be noted that this figure shows the average output responses of 100 simula-
tion runs, as an individual run may fail to exhibit meaningful logical behavior due to
the noise in the circuit. This chapter aims to efficiently determine the probability of
erroneous behavior induced by the inherent noisy nature of genetic circuits.

12.5 State-Space Approximation and Analysis

Algorithms 1–3 describe the state-space approximation procedures for a given SCK
model M = 〈S,R, x0〉 with reaction-based abstractions. Note that models with
reaction-based abstractions utilize quasi-steady-state approximations [37], where
extremely fast reactions are approximated as parameters on propensity functions to
prevent starvation of other slower reactions during stochastic analysis. The presented
state-space approximation method assumes that probability mass is distributed on
a finite and relatively small number of states, and the probability mass does not
distribute uniformly as time progresses.

With a given SCKmodelM = 〈S,R, x0〉, state-space generation starts by assign-
ing the sole initial state x0 a 1 to the termination indicator κ̂ , as shown in Algorithm 1.
The termination indicator is a function κ̂ : X → R

+, which indicates whether state
search should terminate from a state onwards. The initial state graph G0 includes the
initial state x0 as its set of states. The subsequent state graphs are then constructed
and refined by Algorithm 2. In general, both state graphs Gk−1 and Gk are constructed
based on the same SCK model M and refined from the same initial state x0. The
difference is that Gk refines κ̂ values for some explored states in Gk−1, which may
expand Gk−1 to include new states in Gk . This process of expansion and refinement
is repeated until the size of the approximate state graph stabilizes, at which point an
absorbing state is added to this state graph by Algorithm 3. Algorithm 1 terminates
by returning the approximated state graph Gk .
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Algorithm 1: Construction of approximate state space.
Input: An SCK model M = 〈S,R, x0〉.
Output: Approximated state graph Gk = 〈Xk , δk , x0〉.

1 G0 = 〈X0, δ0, x0〉, where X0 = {x0}, δ0 = ∅;
2 κ̂(x0) := 1, γ̂ (x0) := 0;
3 k := 0;
4 repeat
5 k := k + 1;
6 Construct finite state graph Gk = 〈Xk , δk , x0〉 for M using Algorithm 2.
7 until |Gk | = |Gk−1|;
8 Update Gk by adding an an extra absorbing state xabs using Algorithm 3.

Algorithm 2 constructs the approximate finite-state space based on a user-defined
termination indicator κ. Starting with the initial state x0, all possible reactions are
scheduled to be explored (line 6). For each such reaction Ri, its updated state x′ is
obtained by adding the state-change vector vi specified by Ri to the current state
x (line 7). It should be noted that since the state search in each iteration k begins
at the same initial state x0, x′ may not necessarily be a new state after this step.
The termination indicator value at the current state x is then compared against κ

to determine if state exploration should continue (line 11). If the former is lower,
then x becomes a (partially) terminal state, whose state expansion only includes its
outgoing transitions leading to existing states in the current state set Xk , but omits
transitions leading to states not in Xk . Therefore, if x′ already exists in Xk (line 12),
the algorithm includes the new state-transition relation (x,Ri, x′) and updates its
termination indicator (lines 13–15). For every state x′ to be updated, its predecessor
set is constructed (line 14). Each element of this set is a pair of the predecessor state x
and the reaction index i , in which a unique existing state transition (x,Ri, x′) defines
reachability of x′ from x through reaction Ri. Then the updated termination indicator
γ̂ (x′) is determined by line 15. It should be noted that the updated termination
indicator γ̂ is not used to update termination indicator values for other states explored
in the current iteration k, and only becomes available at the end of the current iteration,
at which point it is assigned to the current termination indicator κ̂ (line 26). For each
predecessor state x of x′, its contribution to γ̂ (x′) is the product of its current state
termination value κ̂(x) and the probability of transitioning from x to x′, defined as
the ratio of propensity αi , evaluated at x, to the sum of all propensities at this state.
Intuitively, γ̂ (x′) accumulates path probabilities from all of its predecessor states
that have been explored in iteration k. On line 16, the function explored(x′, k)
checks whether state x′ has been either expanded or updated at the current iteration
k. This state can be a state discovered at the current iteration or any of the previous
iterations. This state is only scheduled to be explored, if it has not been explored
yet in the current iteration. For the case where κ̂(x) � κ, in addition to updating
the state-transition relation and termination indicator for x′, the algorithm includes
it in the state set Xk (line 22). This is because x cannot be the terminal state due
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to its large termination indicator value, and therefore its successor x′ becomes the
potential candidate for a terminal state. This state is then scheduled for exploration,
if the current iteration has not explored it.

The termination indicator update is performed every time a new incoming path
is added to a state. It is crucial to have frequent updates since a new incoming path
can add its probability contribution to the state, potentially bringing the termination
indicator value above κ, which in turn changes a terminal state to be nonterminal.
This update, therefore, guarantees to explore a statewithmany incoming pathswhose
accumulative probabilities are significant, although each individual onemight be low
compared to κ.

Algorithm 2: State space construction and approximation using breadth-first
search.
Input: An approximated global state graph Gk−1 = 〈Xk−1, δk−1, x0〉.
Output: Updated state graph Gk = 〈Xk , δk , x0〉.

1 Xk := Xk−1;
2 δk := δk−1;
3 Enqueue(queue, x0);
4 while queue = ∅ do
5 x := Dequeue(queue);
6 forall the i ∈ { j | α j (x) > 0} do
7 Determine the state after reaction Ri: x′ := x + vi ;
8 if x′ /∈ Xk then
9 κ̂(x′) := 0;

10 γ̂ (x′) := 0;
11 if κ̂(x) < κ then
12 if x′ ∈ Xk then
13 δk := δk ∪ {(x,Ri, x′)};
14 Pre(x′) := {(x, i) | (x,Ri, x′) ∈ δk ,∀i ∈ (1, . . . ,m)};
15 γ̂ (x′) := ∑

(x,i)∈Pre(x′)

(

κ̂(x) · αi (x)∑m
j=1 α j (x)

)

;

16 if ¬explored(x′, k) then
17 Enqueue(queue, x′);
18 else
19 δk := δk ∪ {(x,Ri, x′)};
20 Pre(x′) := {(x, i) | (x,Ri, x′) ∈ δk ,∀i ∈ (1, . . . ,m)};
21 γ̂ (x′) := ∑

(x,i)∈Pre(x′)

(

κ̂(x) · αi (x)∑m
j=1 α j (x)

)

;

22 Xk := Xk ∪ {x′};
23 if ¬explored(x′, k) then
24 Enqueue(queue, x′);

25 forall the x ∈ Xk do
26 κ̂(x) := γ̂ (x);

The theoretical state space for the genetic toggle switch described in Sect. 12.4 is
infinite. To analyze the model, the state space is truncated based on the value of κ.
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This truncation, however, leads to probability leakage (i.e., cumulative probabilities
of reaching states not included in the explored state space) during theCTMCanalysis.
To account for probability loss, an absorbing state xabs is created as the sole successor
state for all terminal states on each truncated path, and is added by Algorithm 3 to
the state space generated by Algorithm 1. For all states in the global state set, each
possible reaction for state x is checked for exploration. For each reaction Ri, if it
has not been explored, its updated state x′ is set to xabs (line 5). It is obvious that all
unexplored transitions from such a terminal state x lead to the absorbing state.

Algorithm 3: Absorbing state update from approximated global state graph.
Input: An approximated global state graph G .
Output: Updated state graph G with an absorbing state xabs .

1 X := X ∪ {xabs};
2 forall the x ∈ X do
3 forall the i ∈ { j | α j (x) > 0} do
4 Determine the state after reaction Ri: x′ := x + vi ;
5 if (x,Ri, x′) /∈ δ then
6 δ := δ ∪ {(x,Ri, xabs)};

The state graph returned by Algorithm 1 is essentially a (sparse) representation
of the transition rate matrix. A standard CTMC analysis can be applied directly to
it to compute the approximate probability distribution. It should be noted that the
termination indicator value for each state is only used to determine terminal states
and is omitted for the CTMC analysis.

With the addition of the absorbing state, the CTMCanalysis provides a probability
bound [l, u], where 0 � l < u � 1, and (u − l) is the probability accumulated inxabs .
Assuming the actual probability to satisfy a CSL property φ is p, then it holds that
l � p � u. Because the lower bound l does not account for probabilities from paths
that, if were not truncated, would feed probabilities back to the explored states, as
is the case for calculating p. For the upper bound u, it is always greater or equal to
p. Because u includes probabilities accumulated by the absorbing state, of which
probabilities from truncated paths that would lead to falsification of φ are counted,
in addition to probabilities of those leading to the satisfaction of φ.

Complexity: The size of generated state-space models depends on the distri-
bution of probability over states and the termination threshold. Therefore, detailed
characterization of state-space complexity is challenging. Intuitively, the state-space
complexity increases as the termination threshold decreases. This is because a lower
termination threshold would allow exploration of states with lower accumulated path
probabilities that would otherwise be ignored with a higher termination threshold.
Exploration of these states would likely lead to other new states. Moreover, if the
majority of probability is distributed over a small number of states, a smaller number
of states may be explored compared with a more even probability distribution.

The complexity is highly dependent on the user-provided termination indicatorκ.
Determining a reasonable value ofκ can be an iterative process. Initially,κ can be set
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to any value that satisfies 0 < κ << 1, and a state graph and probability bound [l, u]
can be generated. The user can then decrease the value of κ, if necessary, to tighten
the probability bound window. The user can repeat the process until the probability
bound returned is guaranteed to prove or disprove the given CSL property.

12.6 Proof of the Termination Condition

The presented algorithms in Sect. 12.5 are guaranteed to terminate under certain
conditions. This section provides a description of the termination conditions for
each algorithm and presents a proof for termination.

To facilitate the following proof, we first define finite paths of a state graph
and depth for breadth-first search. A finite path ρ of a state graph is a sequence

x0
R0−→ x1

R1−→ . . . xn−1
Rn−1−−→ xn such that for every 0 � i < n, (xi ,Ri, xi+1) ∈ δ holds

for some Ri. State xn is reachable in G if xn is reachable from the initial state through
a finite path included in G . Denote the set of all states with depth ı as ıX. At
depth 0, 0X = {x0}. At depth ı > 0, ıX is obtained by collecting all newly cre-
ated states resulted from the one-step BFS search on all states in ı−1X. Therefore,
the depth for a state is determined when it is explored for the first time. Note that
0X ∩ 1X · · · ı−1X ∩ ıX = ∅.

Termination condition for Algorithm 1 requires that, as both the depth ı and
iteration k increase, the sum of termination indicator values for all states of ıXk

decreases, with possibly finitely many iterations where this sum remains constant.
This is formulated by Theorem 1 below.

Theorem 1 (Termination of Algorithm 1)Algorithm 1 terminates after a finite num-
ber of iterations with a given κ, where 0 < κ << 1, if the state graph Gj+1 satisfies
the following condition: for each depth j > 0, there must exist depth 0 � ı � j such

that xd
Rh−→ xd+1

Ri−→ . . . xd+(m−1)
Rl−→ xd+m is a finite path in Gj+1, and xd ∈ ıXj+1,

xd+(m−1) ∈ jXj+1, xd+m ∈ 0Xj+1 ∪ 1Xj+1 ∪ · · · j−1Xj+1 ∪ jXj+1, and m ∈ Z�0.

Proof Initially, X0 = {x0} and κ̂(x0) = 1.At iteration k = 1, during the construction
of G1 (line 6 of Algorithm 1), each state at depth 1, 1x ∈ 1X1 , is discovered for
the first time when x0 is explored (line 6–24 of Algorithm 2). Therefore, the current
termination indicator κ̂( 1x) is assigned a 0 (line 9 of Algorithm 2), but its next
termination indicator γ̂ ( 1x) gets updated by κ̂(x0), so that 0 < γ̂ ( 1x) � 1. Each
new state 2x ∈ 2X1 generated from 1X1, is ignored, since κ̂( 1x) = 0, which is less
than κ, and 2x /∈ X1 (line 11–16 of Algorithm 2). Then at iteration k = 2, the sum
of termination indicators is 1ζ 2 = ∑

x∈ 1X2 κ̂(x), where each κ̂(x) is a fraction of
0ζ 1, and 0ζ 1 = κ̂(x0) = 1. Therefore, 1ζ 2 is solely contributed from 0ζ 1. If a self-
loop transition {x0,R0, x0} exists, then 0ζ 1 > 1ζ 2; otherwise 0ζ 1 = 1ζ 2. Therefore,
0ζ 1 � 1ζ 2. Similar to the previous iteration, the updated γ̂ ( 2x) will be used in the
next iteration.
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In general, state set ıX at depth ı is first obtained in iteration ı by collecting all
the new states, i.e., states whose depth has not been determined, which are expanded
from states in ı−1X. The sum of all termination indicator values for states in ıX is
calculated at iteration ı + 1 by either line 15 or 21 of Algorithm 2. To differentiate
the termination indicator function κ̂ in different iterations, we denote κ̂ ı (x) as the
termination indicator value for state x at iteration ı . The sum of all termination
indicators at iteration ı + 1 is computed as follows:

ıζ ı+1 =
∑

x′∈ ıXı+1

κ̂ ı+1(x′)

=
∑

x′∈ ıXı+1

∑

(x,i)∈Pre(x′)

(

κ̂ ı (x) · αi (x)
∑m

j=1 α j (x)

)

If
⋃

x′∈ ıXı+1 Pre(x′) is equal to all transition firings of every state in ı−1Xı , then
termination indicator values for all the states at depth ı − 1 are passed to depth ı , and
hence ıζ ı+1 = ı−1ζ ı . On the other hand, if there exists one or more transition firings
from ı−1Xı to depth other than ı , then ıζ ı+1 < ı−1ζ ı . Therefore, ı−1ζ ı � ıζ ı+1.

We can, therefore, establish the following conclusion:

1 = 0ζ 1 � 1ζ 2 � · · · ı−1ζ ı � ıζ ı+1 · · · j−1ζ j � j ζ j+1

From the termination condition stated inTheorem1, the slowest termination scenario,
i.e., the maximal number of iterations required to terminate Algorithm 1, is the
following:

1 = 0ζ 1 = 1ζ 2 = · · · = ıζ ı+1 = · · · = j−1ζ j > jζ j+1

The inequality j−1ζ j > jζ j+1 holds only if at least one state in j−1Xj executes a
transition leading to a state in 0Xj+1 ∪ 1Xj+1 ∪ · · · j−1Xj+1, but not in jXj+1. State
xd+m in Theorem 1 is such a state. Additionally, the termination condition requires
that at least ıζ ı+1 = · · · = j−1ζ j > jζ j+1 holds for every depth j . This requirement
guarantees that the sum of termination indicator values keeps decreasing, with pos-
sibly many (or zero) iterations where this sum remains unchanged. Therefore, after
a finite number ξ of iterations, ξ−1ζ ξ < κ. Since ξ−1ζ ξ is the sum of all individ-
ual termination indicator values, in the next iteration (ξ + 1), termination indicator
κ̂( ξx) is less than κ for all states in ξXξ+1, and they become terminal states. Hence,
|Gξ | = |Gξ+1|.

Finally, Algorithm 3 terminates, provided its input state graph generated by Algo-
rithm 2 is finite. This has been proven true, and hence Algorithm 3 always terminates.
Therefore, Theorem 1 is true. �
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12.7 Results

Algorithms 1, 2, and 3 were implemented in Java as a prototype tool within the
iBioSim genetic design automation (GDA) tool [30, 36, 39]. This tool constructs
an approximate CTMC transition rate matrix, which is then analyzed with the help
of the PRISM probabilistic model checking tool [27]. Experiments were performed
on a 3.2 GHz AMD Debian Linux PC with six cores and 64 GB of RAM. The
presented CTMC approximation method was evaluated on several CSL properties
for the genetic toggle switch described in Sect. 12.4. This method is then applied to
several benchmark examples, and the results are compared with those generated by
the STAR tool.

12.7.1 Toggle Switch

An important metric for a toggle switch circuit is the response time. In the first set of
experiments, the goal is to determine the genetic toggle switch’s response time (i.e.,
the time it takes to switch from the OFF state to the ON state). The initial OFF state
for the toggle switch has 60 LacI, 0 TetR, and 100 IPTG molecules, representing the
circuit has just received the set input to switch to the ON state. It should be noted that
the input value of 100 molecules is chosen to ensure that the circuit should switch
to the ON state, but any moderately large value of input could be used as IPTG is
represented as a boundary condition species which means that its molecule count is
treated as non-depleting and that it is not consumed by any reactions that it occurs in.
The CSL property, F(t � 2100,LacI < 20 ∧ TetR > 40), describes the probability
of the circuit eventually switching to the ON state within a cell cycle of 2, 100 s (an
approximation of the cell cycle in E. coli [40]). The ON state is characterized by
LacI dropping below 20 and TetR rising above 40 molecules.

The termination indicator values are set to 10−5, 10−6, 10−7, and 10−9. Approxi-
mate state-space generation and CTMC analysis are performed for each such value.
In addition, intermediate verification results are generated on a time course from
0 to 2,100s with the increment of 100s. To measure the accuracy of the presented
state-space approximations with different termination indicator values, a reference
finite-state SCK model is created allowing both LacI and TetR to reach the upper
bound of 300 molecules each, which is significantly higher than the upper bounds of
TetR and LacI for all experiments performed. The reference model, therefore, incurs
significantly larger state space with 90,601 states, but provides accurate verification
results for comparison.

Both the accuracy and performance results for the response rate verification are
presented in Table12.2. The column “|G |” lists results for the approximate state graph
size used for the CTMC analysis, respectively. The column “ε” reports the difference
betweenminimum (Pmin) andmaximum (Pmax) final response rate probability, which
can be taken as the uncertainty window. The columns labeled TPmin and TPmax provide
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Table 12.2 Genetic toggle switch response rate results

κ |G | Pmin Pmax ε TPmin TPmax

ref 90601 0.991789007 − − 23.49 −
10−5 6171 0.990640972 0.991838990 1.20 × 10−3 0.492 0.499

10−6 7394 0.991705919 0.991794344 8.84 × 10−5 0.714 0.629

10−7 8623 0.991781737 0.991789578 7.84 × 10−6 0.811 0.809

10−9 11394 0.991788952 0.991789012 5.98 × 10−8 1.161 1.152

the CTMC analysis time taken by the PRISM tool to calculate the minimum and
maximum probability value, respectively.

As the table shows, reducing the termination indicator value improves the accu-
racy of the final probability, at the price of increased performance cost. Furthermore,
the final probability for t � 2100 of the reference model switching its state lies
between the window of minimum and maximum probability for all approximate
models obtained for different values ofκ. As we decrease the value forκ, from 10−5

to 10−9, the error window becomes narrower from 1.20 × 10−3 to 5.98 × 10−8.
The reference model has the final probability of 0.991789007. With κ = 10−5, its
final probability already produces very accurate final probability with significantly
smaller performance cost. The approximate model only explores 6333 states, com-
pared to 90,601 states from the reference model, but it produces the minimum result
0.990640972 andmaintains the error bound 1.20 × 10−3. The runtime for the CTMC
analysis on the referencemodel is 23.49 s,much longer than the runtime for analyzing
the approximate CTMC. As an additional comparison, the same toggle switch model
built with predetermined thresholds of molecule counts for LacI and TetR in [31]
produces a state graph of 70 states, and CTMC analysis with the same initial condi-
tion and CSL property reports a final probability of 98.7 percent. The significantly
smaller state space is a direct result of predetermined thresholds, which requires prior
knowledge of the circuit behavior to determine. The presented state approximation
method does not require threshold determination from the user, and it achieves more
accurate final probability at a slightly increased performance cost, compared to [31].

The second set of experiments involves computing the probability that the circuit
changes state erroneously within a cell cycle of 2,100s. This behavior occurs if
production of LacI erroneously and significantly inhibits TetR’s production to let
TetR degrade away and consequently switch state. The toggle switch is initialized
to a starting state with 60 LacI molecules, and 0 molecules for all other species.
The same CSL properties are verified, and the results are summarized in Table12.3.
Similar to the above experiment, the final probability for t � 2100 of the reference
model erroneously changing its state lies between the window of minimum and
maximum probability for all approximate models obtained for different values of
κ. Decreasing the value for κ from 10−5 to 10−9 decreases the error window from
4.46 × 10−3 to 1.73 × 10−7. Figure 12.4b shows the time-series plot for the genetic
toggle switch failure rates with κ = 10−5 and κ = 10−9.
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Table 12.3 Genetic toggle switch failure rate results

κ |G | Pmin Pmax ε TPmin TPmax

ref 90601 0.013098589 − − 25.041 −
10−5 2703 0.011892475 0.016356430 4.46 × 10−3 0.239 0.241

10−6 3489 0.013076325 0.013578975 5.03 × 10−4 0.287 0.285

10−7 4306 0.013097869 0.013166728 6.89 × 10−5 0.361 0.358

10−9 6697 0.013098588 0.013098761 1.73 × 10−7 0.560 0.566

(a) Genetic toggle switch failure rate with κ = 10−5

(b) Genetic toggle switch failure rate with κ = 10−9

Fig. 12.4 Error window comparison for different values of κ
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Table 12.4 State probability comparison for birth–death model with κ = 10−9

t εmax TiBioSim TPRISM TSTAR

10 1.34 × 10−8 0.06 0.304 0.22

20 8.75 × 10−8 0.06 0.311 0.34

30 5.84 × 10−7 0.06 0.303 0.46

40 1.40 × 10−6 0.06 0.307 0.59

50 2.84 × 10−6 0.06 0.309 0.72

Table 12.5 State probability comparison for switching rate experiment of toggle switch model
with κ = 10−9

t εmax TiBioSim TPRISM TSTAR

400 1.84 × 10−9 18.86 4.44 7.24

800 2.18 × 10−9 18.86 4.51 17.90

1200 1.91 × 10−8 18.86 4.59 29.70

1600 5.50 × 10−8 18.86 4.69 40.65

2000 1.02 × 10−7 18.86 4.79 50.35

12.7.2 Comparisons with the STAR Tool

To illustrate the accuracy and efficiency of the presented method, we compared the
probability distribution results with the STAR tool for the birth–death model and the
presented toggle switch model. Table12.4 summarizes the comparison for a simple
birth–death model, whose birth rate is 1 and death rate is 0.1. Column “t” shows the
time point at which the state probability is computed, and column labeled εmax shows
the maximum absolute probability difference for the same individual state obtained
from the two tools, among all explored states. Columns labeled TiBioSim and TPRISM
list runtimes in seconds to generate the state space in iBioSim and to analyze the
model in PRISM for each given time point, respectively. Column TSTAR lists the
runtime reported by STAR. The maximum probability difference reaches its peak
value of 2.84 × 10−6 at time point t = 50. All other time points show significantly
smaller errors. The runtime to analyze the model in iBioSim and PRISM is less
than a second as the generated state space is only 28 states. The STAR tool also
reports a similar runtime.

Table12.5 shows a comparison of results for the aforementioned toggle switch.
Our proposed method produces accurate results compared to those from the STAR
tool, as is indicated by the maximal probability difference (εmax ). Columns TiBioSim
and TPRISM list runtimes in seconds to generate the state space in iBioSim and to
analyze the model in PRISM for each given time point, respectively. Column labeled
TSTAR lists the runtime reported by STAR. The combined runtime to generate the
state space and analyze the model for our method is less than 24s for different time
points and remains almost constant as the time point t increases. The STAR tool
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reports shorter runtime for smaller t but linear increase in runtime as the time point
value gets larger.

12.8 Conclusion

This chapter presents a method that builds an approximate state space of genetic
circuit models to analyze infinite-state continuous-timeMarkov chains. This approx-
imation method iteratively expands from the initial state using a breadth-first search,
computes and updates the termination indicator value for each state on the fly, based
on the cumulative path probabilities for all incoming transitions to a state. The prob-
ability of each path segment is the ratio of the propensity of a reaction to the sum of
all propensities for any given state. Our state-space approximation is determined by
comparing the state termination indicator to a user-provided termination threshold
and only exploring states with a significant termination indicator value. This method
is capable of computing the approximate state space with no prior knowledge and is
completely automated.

For future work, we plan to improve and optimize probability approximation
for re-convergent paths that close cycles during the state exploration in order to
achieve potentially faster termination of the state search. We will consider different
approaches to determining the termination indicator value automatically from the
CSL property being analyzed. Additionally, we plan to explore augmenting our
technique with bi-simulation minimization and abstraction to further minimize the
generated state space and better allow for scalability. To improve performance of
tool implementation, we plan to investigate tighter integration with the PRISM tool.
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