National Science Foundation's

Adapting On Orbit: Conclusions of the STP-H6 Spacecraft Supercomputing for Image and Video Processing Experiment

 Mission-Critical Computing NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
 AND RESILIENT COMPUTING (SHREC)

Small Satellite Conference 2022

Dr. Alan George Mickle Chair Professor of ECE

Industry/University Cooperative Research (I/UCRC) Program

University of Pittsburgh

Evan Gretok Seth Roffé Antony Gillette Sebastian Sabogal Theodore Schwarz Research Students University of Pittsburgh

- Acknowledgements and Programs
- Mission Background
 - $\circ\,$ SHREC and STP
 - Hybrid Space ComputingOverview of STP-H6-SSIVP
- On-Orbit Approach
 - \circ Thermal Constraints
 - $\circ\,$ Day in the Life

Results and Conclusions

- Radiation-Effects Data
- Earth-Observation Imagery
- Successor Platforms

Acknowledgements and Programs

- NSF Center for Space, High-Performance, and Resilient Computing (SHREC)
 - $\circ\,$ Founded in 2017
 - Formerly CHREC (2007-2017)
 - $\circ\,$ Four university sites
 - \circ Over 30 industry and government partners

• STP-Hx Missions are a Collaborative Effort

- Builds on success and experience of previous payloads and student research for experiments
- $^{\circ}$ Key development partners:
 - DoD Space Test Program
 - University of Pittsburgh
 - SHREC Members

• Space Test Program – Houston

- Sole interface to NASA for all DoD payloads on International Space Station (ISS)
- Timely spaceflight and payload readiness
- $\circ\,$ Management and support for safety and integration

History of Mission Success

- $\,\circ\,$ Build upon successes of HREP, MISSE 6/7/8, STP-H3-5
- Incorporate valuable lessons learned
- Two-year build/integration schedule

Mission Background

• Hybrid Design for Space Resilience

Commercial devices for optimal performance, efficiency, and cost
 Radiation-hardened components for monitoring and mitigation
 Automotive-, industrial-, or defense-rated components

• Hybrid System-on-Chip (SoC)

- \circ General-purpose processor for core versatility
- Field-programmable gate array (FPGA) fabric
 - Interfacing devices, sensors, networks, and I/O
 - Accelerators for mission-specific apps

• Fault-Tolerant Computing

- $^{\circ}$ Redundant operating-system images with checksum validation
- $\circ\,$ Error correction codes and FPGA scrubbing

CHREC Space Processor

Selective Component Population •

• Conventional or radiation-tolerant NAND flash • Radiation-hardened watchdog and reset circuit • Radiation-hardened power electronics

• Xilinx Zyng 7020 SoC

• Dual-core ARM Cortex-A9 at 667 MHz • Artix-7 FPGA fabric – 90k LUTs, 220 DSPs

• Flight Heritage and Radiation Testing ○ STP-H5/6/7, NASA CeREs, Lockheed Martin LunIR • Neutron, proton, and heavy-ion characterization

SSIVP Introduction

Next-Generation Spacecraft Supercomputing

- $\circ\,$ Develop, demonstrate, and evaluate onboard image and video processing
- $^{\circ}$ Task parallel jobs and apps like a typical supercomputing cluster
- $\circ\,$ Compute capability enables novel algorithms such as deep learning in space

• 3U Small-Satellite Form Factor

Cluster of five networked CSP flight computers
Two imagers with different fields of view

Technology Demonstration Sandbox

Test student software and FPGA accelerator research in orbit
 Deploy SHREC industry and government member apps

pproach and Experiments

ESILIENT COMPUTING (SHREC)

Thermal Constraints

Unexpected Thermal Conditions

• Observed high extremes at negative beta angles Imagers most vulnerable: outside operating range

Data Collection and New Model Development

 Collected thermal data from devices onboard • Created new model of orbital conditions

Camera Testing

• Tested flight camera in new thermal window • Constant operation above observed temperatures

Software Adaptation

- Reduced camera duty cycle to very small periods
- Built thermal safeguards into automation
- Coordinated shutdowns for extreme negative betas

University Shutdown

Constant Automated Operation

Naïve image capture every ten minutes
FPGA scrubbing and radiation upset monitoring

- Regular Manual Commanding
 - Manual imaging over ground targets
 Collection of data from GaN PoL subexperiment
- Weekly or Monthly Adaptation
 - New function and app testing
 Upload of new operational modes

17

Results and Conclusions

18

Review of Science Objectives

	Minimum Success	Comprehensive Success	2.5 years of operation	
	Collect science products for at least 30 days	Collect science products for over one year		
	Acquire profile of daytime and nighttime full- resolution images for analysis	ofile of daytime and nighttime full- olution images for analysisPerform autonomous algorithm correction based on observed conditionsparallel computing experimentsComplete CSPv1 network reprogramming		
	Perform parallel computing experiments			
Flash-based FPGA	Record upset rates for CSPv1 flight boards	Complete functional tests of SHREC space	inicolori godio	
resilience	Record upset rate for µCSP			
Due to effect	Upload and reconfigure at least one CSP device	Perform integrated autonomous camera		
mission goals	Upload and program at least one new parallel application	configuration based on observed conditions	Thermal limitations	
	Collect GaN PoL science products for at least 30 days during night cycles	Collect GaN PoL science products for entire mission lifetime for all experiments		

Radiation-Effects Data

Ten Device Years Observed

- $\circ~$ Single-event upsets (SEUs) due to radiation
- $\,\circ\,$ L1/L2 caches of processors
- $\circ~$ Configuration and block memory of FPGAs
- $\circ\,$ Some software bugs and logging issues
- \circ Results are representative, but not complete

• Multi-Bit Upsets (MBUs)

- $\circ\,$ MBUs are interesting due to their ability to:
 - Overwhelm error-correction codes
 - Cause issues with triple-modular redundancy designs

 \circ Detect by timestamp and adjacent address, word, or bit

CSP#	L1	L2	CRAM	BRAM	
0			12		
1	5	5	6		
2	8	8	8		
3	1	1	3		
4	1	1	2	1	

47 total SEUs

	CSP	Timestamp	LFA	PFA	Word	Bit
	0	1569779499	0000193 <mark>E</mark>	0042131 <mark>8</mark>	7	3
			0000193 F	00421319	7	3
	0	1599816094	00000770	00001B1C	78	4
			00000771	00001B1D	78	3
	0	1613692326	000012EA	0040209C	86	9
			000012EA	0040209C	86	10
	1	1595498931	0000141 <mark>E</mark>	00420012	87	4
			0000141 F	00420013	87	3
	2	1596177465	000005A6	000014A0	82	23
			000005A7	000014A1	82	24
	2	1599201045	000017F6	00420E86	35	14
			000017F9	00420E89	35	12
			000017FA	00420E8 <mark>A</mark>	35	13
			000017F B	00420E8 <mark>B</mark>	35	12
	2	1601314869	00000424	00000F1C	8	10
			00000424	00000F1C	8	11

7 MBUs, including a 4-bit

GaN PoL Converter Testing

• Benefits of GaN PoL Converters

- \circ Inherent radiation tolerance
- $\circ\,$ Low switching and conduction losses
- Smaller supporting component packages

Critical Results

Demonstrated long-term function in low-Earth orbit
 Up to 85% efficiency for devices tested

Earth-Observation Imagery

Nearly **20,000** images cleared for public release

STP-H6 SSIVP was integrated and flown by the DoD Space Test Program. Images are courtesy of the DoD Space Test Program.

22

lission-Critical Computing sf center for space, high-performance nd resilient computing (shrec)

• Improved Frame Grabber

Isla Juan Stuven, Chile

- Integrated and tested on the ground
- $\circ\,$ Upload could not be completed before shutdown date
- $\circ\,$ Adapted on-orbit capabilities to suit new functions

Successful Image Bursts

- $\circ~$ Up to 31 frames per burst
- $\circ\,$ Combined on the ground
- Up to 22k-pixel swath

Santiago del Estero, Argentina

South Argentina

- MAG	
A A A A A A A A A A A A A A A A A A A	HEALTH :Temp: 64.23 degC Free RAM: 218768 kB Uptime: 940620 s
	HB HEALTH :Temp: 65.70 degC Free RAM: 148900 kB Uptime: 29 s
A CARLEN AND AND AND AND AND AND AND AND AND AN	HEALTH :Temp: 61.77 degC Free RAM: 218164 kB Uptime: 1288145 : HEALTH :Temp: 68.53 degC Free RAM: 218504 kB Uptime: 1288149 : HEALTH :Temp: 68.53 degC Free RAM: 213024 kB Uptime: 415928 s
	HEALTH :Temp: 64.10 degC Free RAM: 218768 kB Uptime: 940624 s HEALTH :Temp: 66.69 degC Free RAM: 113760 kB Uptime: 33 s

SHREC Space Processor

SHREC Space Processor

Rev. A launched in December 2021
Rev. B completed in early 2022

• SSP Expands CSP Capabilities

○ 4-5× larger FPGA fabric

 \circ Dedicated memory for FPGA accelerators

 $\circ\,$ Multi-gigabit transceivers for rapid I/O

STP-H7-CASPR

- Configurable and Autonomous Sensor Processing Research
 - Launched in December 2021
 - $\circ\,$ Operating nominally aboard the ISS
- Incorporates SSIVP Lessons
 - $\circ\,$ CSP Rev. C and μCSP
 - $\circ\,$ Dual Networked SSPs
 - Larger partial-reconfiguration region
 - More versatile accelerator integration
 - Faster parallel computing capability
 - $\circ\,$ Improved radiation-effects tracking
 - $\circ\,$ Updated frame grabber and burst capability

• Definitive Mission Success

Collected data over 2.5 years of operation
TRL rise of CSP Rev. C and µCSP Smart Module
Captured over 20,000 images
Successfully deployed parallel apps onboard
Successful operation of GaN PoL converters

• SSIVP has Contributed to:

- 12 research publications
- \circ 3 Masters theses
- \circ 6 PhD disseratations

More Information?

- Dr. Alan D. George (PI), Department Chair, R&H Mickle Endowed Chair, Professor of ECE, and NSF SHREC Center Director
 - NSF Center for Space, High-Performance, and Resilient Computing (SHREC) ECE Department, University of Pittsburgh
 1238D Benedum Hall, 3700 O'Hara Street Pittsburgh, PA 15261 412-624-9664 Email: alan.george@nsf-shrec.org
- Evan Gretok, SHREC STP-Hx Operations Lead, NASA PoC
 - Email: evan.gretok@nsf-shrec.org
- Seth Roffé, CASPR Experiment Manager
 Email: seth.roffe@nsf-shrec.org

Thank You Very Much! Any Questions?

Backup Slides

SaboLink High-Bandwidth Interconnects

 High-speed SerDes differential signaling
 Resides in FPGA – entirely reconfigurable

Optimized Asymmetric Bandwidth

Designed for scatter-gather operations
Camera nodes have more transmission lanes
Central node has more reception lanes

Secondary Network

Resilient node communication if primary fails
 Low-bandwidth communication and control

NASA Core Flight System (cFS)

- NASA Goddard's reusable flight-software framework
- Core Flight Executive services
- Select cFS apps for mission-critical services
 - Health and status, telemetry
 - File transfer, file downlink, automated downlink

• "Wumbo" Linux

- Lightweight, custom operating system
- $\,\circ\,$ Based on Xilinx Linux kernel fork and BusyBox
- $\,\circ\,$ Variety of Linux shell apps and tools
- Tremendous versatility

• Wide Field of View

Wide 22.5° × 19.7° viewing angle
Angled 35° toward ram from nadir
Approximately 167 m GSD and 334 m GRD

• Narrow Field of View

Narrow 7.6° × 6.6° viewing angle
Angled 45° toward ram from nadir
Approximately 30 m GSD and 60 m GRD

• 5.0 MP 2448×2050 Pixel Frames

STP-H6-SSIVP Image Batch Details						
Batch		Images				
#	Start End Length (Days)					
0	3/4/2020	3/23/2020	19			
1	5/5/2020	5/14/2020	9	1495		
2	5/20/2020	5/28/2020	8			
3	7/2/2020	7/25/2020	23	1266		
4	9/9/2020	9/30/2020	21	1154		
5	11/11/2020	11/13/2020	2	168		
6	1/6/2021	1/11/2021	5	302		
7	1/12/2021	1/19/2021	7	107		
8	1/19/2021	1/28/2021	9	980		
9	2/26/2021	2/28/2021	2	156		
10	3/17/2021	4/1/2021	15	1783		
11	4/28/2021	5/14/2021	16	1953		
12	5/20/2021	5/24/2021	4	891		
13	6/29/2021	7/11/2021	12	1302		
14	7/21/2021	7/24/2021	3	179		
15	7/30/2021	8/12/2021	13	720		
16	8/21/2021	8/25/2021	4	105		
17	10/21/2021	11/17/2021	27	7247		
Bursts	11/8/2021	11/12/2021	4	260		
				20068		

