



## Developing Machine Learning Models for Space Based Edge AI Platforms

James Murphy

Space Software & AI Engineer, PhD Student

jmurphy@realtra.space

www.realtra.space





- Increasing number of satellites
  - Small satellites in large numbers
  - New low cost missions
  - Large constellations
- Increased need for automation
  - Satellite operator workload
  - Large amounts of data generated
  - Mission sustainability & costs
- How can we account for this new space environment?



Credit: ESA Phi-Lab





- Artificial Intelligence/Machine Learning
- Use cases:
  - Earth Observation
  - Collision Avoidance
  - Communications Monitoring
  - Satellite Health Monitoring
- Onboard data processing vs ground based
  - Real-time reactions
  - Reduction in image data sizes
  - Limited hardware







DUBL

- What is an anomaly?
  - Unexpected variance in telemetry data
- What does an anomaly look like?
  - Point/Contextual
- What causes anomalies?
  - The Space Environment





- Current Industry Standards
  - FDIR: Failure Detection, Isolation and Recovery
  - Thresholding on data streams
  - Statistical methods
- How Machine Learning can enhance current methods
  - Better at detecting contextual anomalies
  - Multivariate analysis on multiple channels
  - Online learning to update model throughout mission
  - Real-time reactions to potential catastrophic events





- Basic Dense Autoencoder
- Compress and Decompress Data

Models Used

- Compares reconstructed data to original
- Trains only on nominal data
- Learns to recognise nominal



- Multi-Layer Perceptron
- Basic feed forward network
- Trains on both nominal and abnormal data with labels
- Learns to distinguish between nominal and abnormal



DUBL



Approach to ML Anomaly Detection

- What is a Feature?
- What is a Hyperparameter?
- Moving window approach
- Window size becomes a Hyperparameter
- Autotuning software written to search for best parameters
  - Grid Search of hyperparameters
  - 512 models trained per telemetry channel
  - 2 hours total training time per channel



DUBL





| Channel | Source | Anomaly Type       | AUC Autoencoder | AUC MLP |
|---------|--------|--------------------|-----------------|---------|
| P-3     | SMAP   | Point              | 0.918           | 0.905   |
| G-7     | SMAP   | Point & Contextual | 0.850           | 0.365   |
| A-2     | SMAP   | Contextual         | 0.833           | 0.641   |
| P-1     | SMAP   | Contextual         | 0.354           | 0.453   |
| F-5     | MSL    | Point              | 0.933           | 0.453   |





Results Contd.

606

\*



| Channel | Source | Anomaly<br>Type       | CPU Time<br>AE (s) | NCS Time<br>AE (s) | CPU Time<br>MLP (s) | NCS Time<br>MLP (s) |
|---------|--------|-----------------------|--------------------|--------------------|---------------------|---------------------|
| P-3     | SMAP   | Point                 | 0.00018            | 0.00181            | 0.000129            | 0.0017              |
| G-7     | SMAP   | Point &<br>Contextual | 0.000175           | 0.00198            | 0.000135            | 0.00179             |
| A-2     | SMAP   | Contextual            | 0.000183           | 0.00192            | 0.000152            | 0.00174             |
| P-1     | SMAP   | Contextual            | 0.000176           | 0.00185            | 0.000151            | 0.00176             |
| F-5     | MSL    | Point                 | 0.00044            | 0.00193            | 0.000138            | 0.00178             |

Deployment





Credit: Intel Movidius Neural Compute Stick



- Anomalies within spacecraft telemetry can be detected using basic model architectures
- These models can detect anomalies with a modest to high amount of classification accuracy
- The autocoder used in this study had superior results on this dataset
- Sufficient hardware exists to deploy these models on "the edge"



 Phase 2 study with more complex models with features such as convolutional neural networks CNN and long to short-term memory cells is feasible and will be conducted

Future Work

- Space ready hardware using Myriad 2 available in a Cubesat form factor
- Already flown on previous missions (Phi-Sat-1)



Credit: Réaltra Space Systems Engineering





## Thank You!

## James Murphy

## jmurphy@realtra.space

This work was supported by Réaltra Space Systems Engineering. This work was also supported by the Irish Research Council under the Employment-based postgraduate Scheme (IRC-EBPPG/2020/11).