

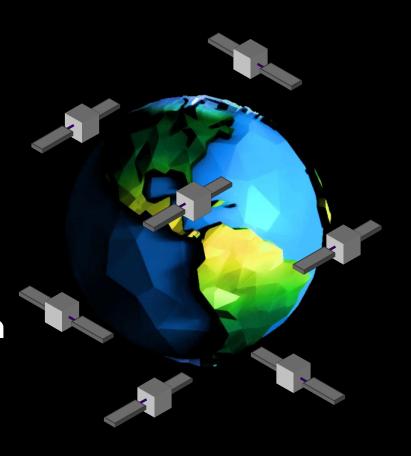
#### INFINITE WAYS TO AUTONOMY

SmallSat Conference 2022

LOW-THRUST **RECONFIGURATION STRATEGY** FOR FLEXIBLE SATELLITE CONSTELLATIONS

Federica PAGANELLI AZZA Pietro **DE MARCHI** Matteo **STOISA** Paolo **MADONIA** 

www.aikospace.com\_info@aikospace.com

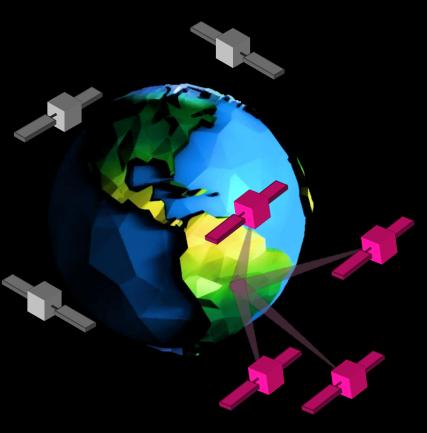

FOLLOW US ON in f 🖾 💆







Changes in the space ecosystem and increasing commercialization




### NEW **OPPORTUNITIES**

□ AIKO

Changes in the space ecosystem and increasing commercialization

Reconfigurable constellations enabled by advancements in electric propulsion technologies and able to offer enhanced flexibility



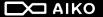
# Reconfigurable constellations to overcome the limitations of standard approaches

**Low-thrust** reconfiguration strategy to provide **feasible** constellation geometries that guarantee **enhanced coverage** over a desired target. The cost of the **maneuvers** needed to reach the target pattern is **minimized**.

GA-BASED OPTIMIZATION

□ AIKO




ENABLE
COMPLEX
COVERAGE



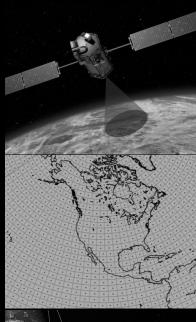
TRADE-OFF
PERFORMANCE
METRICS



FOCUS
AVAILABLE
RESOURCES



COVERAGE MODEL

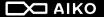

Circular Field of View



Near-equal area tiles

**SATELLITE** POSITION

Propagation with RKF45





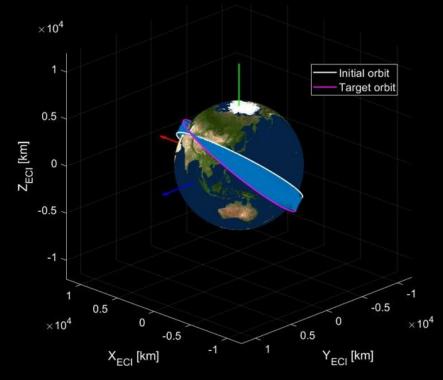

### PROBLEM **DEFINITION**

# Mathematical modeling

Classical orbital parameters taken as optimization variables. Multi-processing architecture to distribute the computational load amongst several processes.

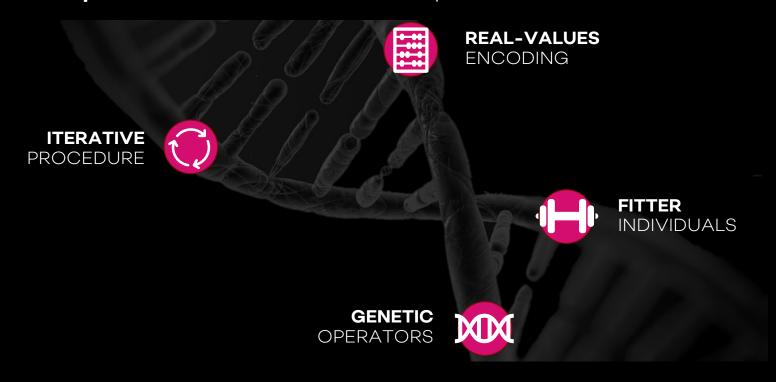


## Maneuvers strategy


The **cost** to reach a target orbit is assessed in terms of **required**  $\Delta V$ .

#### **SEPARATE** MANEUVERS

- + Changes performed **separately** on different orbital parameters
- + Analytical expressions available in *Ruggiero et al. (2011)*


#### **COMBINED** MANEUVERS

- + Orbital parameters vary together during the maneuver
- + Analytical expressions available in *Di Carlo, Vasile (2021)*



## GENETIC ALGORITHM

Fast **exploration** of the wide solution space.





## Multi-objective evaluation of candidate solutions

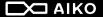
FIVE CONTRIBUTIONS ARE COMBINED IN THE OVERALL FITNESS FUNCTION.














- +6 satellites
- +3 orbital planes

- +10° Field of View
- + ROI in central Europe
- + 48 hours propagation horizon
- + Reconfiguration from Walker- $\delta$  (64) 6/3/2

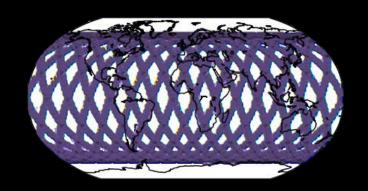




#### **NARROW** ROI

Study the GA **behavior** with an increasing number of optimization variables.

#### **WIDE** ROI

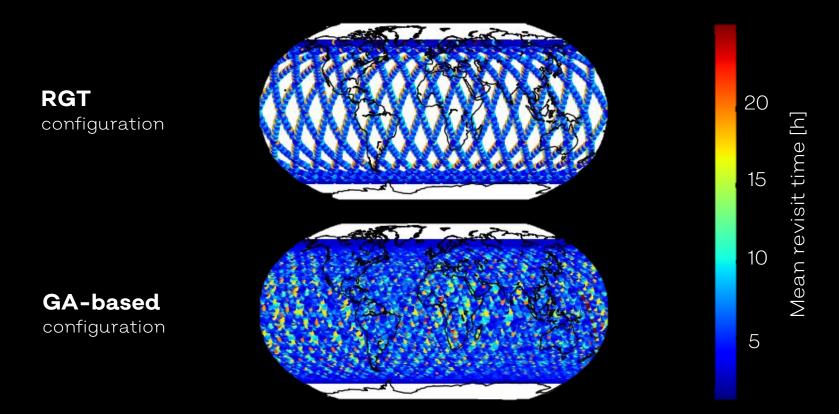

Assess the GA **performance** and show its advantages for regional observations.

### NARROW ROI SCENARIO

Analyze the GA behavior and its sensitivity to the set of optimization variables.

#### **REPEATING GROUND TRACK ORBITS**

- + Commonly used for regional coverage
- + Obtained through simple SMA changes
- + RGT constraints included in the GA

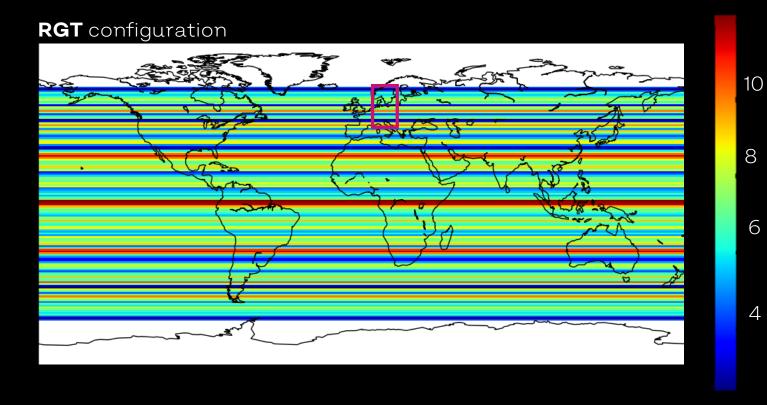




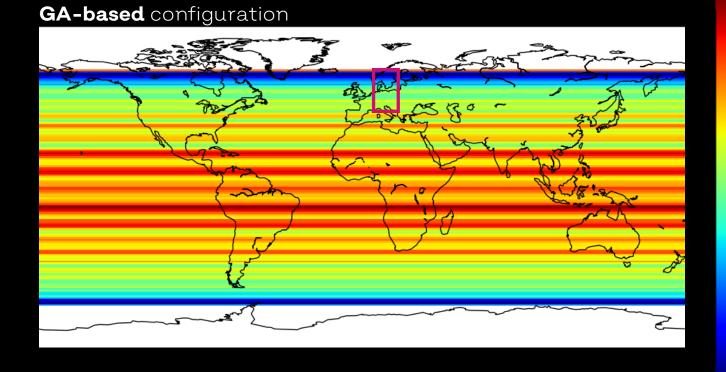

□ AIKO

Obtain comparable observation performance with a smaller  $\Delta V$ 

### NARROW ROI SCENARIO

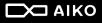



### WIDE ROI SCENARIO


Assess the GA performance in achieving regional coverage.

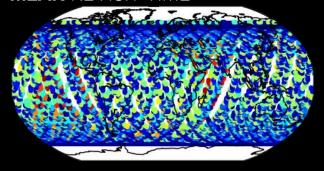
Mean revisit time [h]

## WIDE ROI SCENARIO



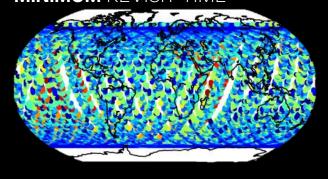

## WIDE ROI SCENARIO




10 Mean revisit time [h] 6

8




### WIDE ROI SCENARIO

#### **MEAN** REVISIT TIME





#### MINIMUM REVISIT TIME





o 등 등 등 North Mean/Minimum revisit time [h]



MULTI-OBJECTIVE OPTIMIZATION



**REPEATING**GROUND TRACK



LEO SCENARIO VALIDATION



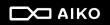
# Take-away points

Future work will make the problem closer to a **real scenario**. Additional constellation configurations will be included in the analysis to provide a **practical tool** to identify reconfiguration opportunities.

Thanks for your attention!



#### INFINITE WAYS TO AUTONOMY


SmallSat Conference 2022

LOW-THRUST RECONFIGURATION **STRATEGY** FOR FLEXIBLE SATELLITE CONSTELLATIONS

Images credits: [5.a] Jet Propulsion Laboratory [5.c] European Space Agency

www.aikospace.com\_info@aikospace.com

FOLLOW US ON in f 🖾 💆



AIKOSPACE.COM

BACKUP SLIDES.

## MANEUVERS COSTS

#### **Reconfiguration** from Walker- $\delta$ (64)6/3/2

| Parameter | Unit       | Initial value | Target value |
|-----------|------------|---------------|--------------|
| a         | $_{ m km}$ | 6978          | 7078         |
| e         | [-]        | 0.01          | 0.02         |
| i         | $\deg$     | 64            | 60           |
| ω         | deg        | 10            | 50           |





### NARROW ROI SCENARIO

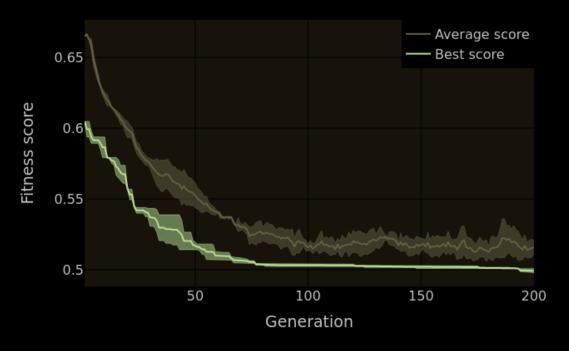
Analyze the GA **behavior** and its **sensitivity** to the set of optimization variables.

| Test case | RGT | Maneuvering | Optimization variable |   |   | GA parameters |   |   | Runtime  |         |         |                   |
|-----------|-----|-------------|-----------------------|---|---|---------------|---|---|----------|---------|---------|-------------------|
|           |     | 3           | a                     | e | i | Ω             | ω | ν | Pop size | Max gen | Elitism |                   |
| 0         | Yes | Separate    | 1                     |   |   |               |   | 6 | 100      | 100     | 5       | $747\mathrm{min}$ |
| 1         |     | Separate    | 1                     |   |   |               |   | 6 | 100      | 100     | 5       | $752\mathrm{min}$ |
| 2         |     | Separate    | 3                     |   |   |               |   | 6 | 120      | 100     | 6       | 798 min           |
| 3         | Yes | Separate    | 1                     | 3 |   |               | 3 | 6 | 150      | 100     | 8       | 927 min           |
| 4         |     | Separate    | 3                     | 3 |   |               | 3 | 6 | 150      | 100     | 8       | 983 min           |
| 5         |     | Separate    | 3                     | 3 | 3 |               | 3 | 6 | 150      | 150     | 8       | 1132 min          |
| 6         |     | Combined    | 3                     | 3 |   |               | 3 | 6 | 150      | 100     | 8       | 986 min           |
| 7         |     | Combined    | 3                     | 3 | 3 |               | 3 | 6 | 150      | 150     | 8       | 1160 min          |
| 8         |     | Combined    | 3                     | 3 | 3 | 3             | 3 | 6 | 150      | 150     | 8       | 1232 min          |

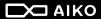
### NARROW ROI SCENARIO

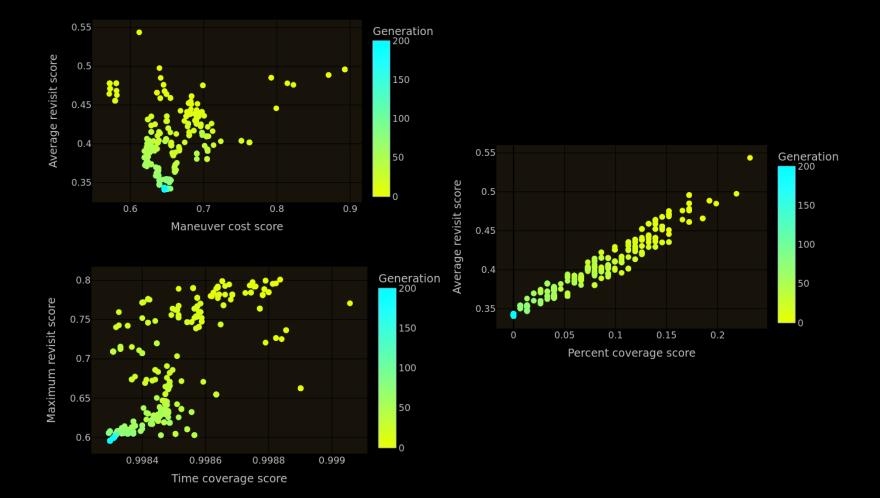
Analyze the GA **behavior** and its **sensitivity** to the set of optimization variables.

| Test case        | f2 [min] | f3 [h] | f4 [h] | f5 [m/s] |
|------------------|----------|--------|--------|----------|
| Walker- $\delta$ | 1        | 31.93  | 23.99  | -        |
| 0                | 14       | 7.866  | 3.18   | 48.117   |
| 1                | 7.2      | 7.95   | 5.87   | 2.708    |
| 2                | 9.3      | 8.1    | 4.68   | 6.667    |
| 3                | 14       | 7.88   | 3.18   | 195      |
| 4                | 11       | 7.73   | 3.98   | 169      |
| 5                | 10       | 7.9    | 4.07   | 253      |
| 6                | 10.98    | 7.93   | 3.98   | 49       |
| 7                | 12.6     | 7.85   | 3.54   | 312      |
| 8                | 16       | 6.76   | 2.8    | 700      |


### WIDE ROI SCENARIO

| Variable                     | $\mathbf{Unit}$ | Plane #1 | Plane #2 | Plane #3 |  |
|------------------------------|-----------------|----------|----------|----------|--|
| a                            | km              | 6890     | 6890     | 6890     |  |
|                              |                 | 7046     | 7168     | 7157     |  |
| e                            | _               | 0.01     | 0.01     | 0.01     |  |
|                              |                 | 0.0005   | 0.0188   | 0.0295   |  |
| i                            | $\deg$          | 64       | 64       | 64       |  |
|                              |                 | 63       | 64       | 64       |  |
| $\Omega$                     | deg             | 0        | 120      | 240      |  |
|                              | B               | 107      | 73       | 234      |  |
| $\omega$                     | $\deg$          | 0        | 0        | 0        |  |
|                              | 8               | 193      | 249      | 232      |  |
| $ u_1 \qquad \qquad { m de}$ | $\deg$          | 4        | 176      | 103      |  |
|                              | 0               | 201      | 91       | 52       |  |
| heta                         | $\deg$          | 21       | 145      | 122      |  |
|                              |                 | 32       | 143      | 116      |  |


#### **RECONFIGURATION COST**


- + RGT configuration
  - + 20 m/s
- + GA-based configuration
  - + 110 m/s

### WIDE ROI SCENARIO



- + 200 max generations
- + 250 population size
- + 8 elitism
- + 500m/s max  $\Delta V$



