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Abstract 

Principal response curve (PRC) analysis was applied to an assessment of the ecological impact of 

the genetically-modified (GM), insect-resistant, cotton MON 88702 on predatory Hemiptera 

communities in the field. The field community was represented by ten taxa collected ten times 

across the season at six sites, in which individual taxa were not observed in at least 25% of the 

time (unique site x collection combinations). These complete absences and those nearly so, 

called sparse subsets of the data in this investigation, were the result of geoclimatic and seasonal 

variations, which are both independent of the treatment effect for which the PRC analysis is 

intended. If the sparse subsets were included in the analysis, the treatment effect would be 

underestimated. Here, a modified analysis is proposed to remove those sparse subsets and to be 

performed on the incomplete data. In the application to MON 88702, four components (PRC1-4) 

were significant at the 5% level by the modified method, when more than 50% of the data were 

excluded due to no- or low responses, and five (PRC1-5) by the classical method. While PRC1-2 

was highly consistent between two methods, PRC3-5 was largely different because of sparse 

subsets of the data. Differences in results between two methods demonstrate that excluding 

sparse subsets prevented the bias in the estimation of the treatment effect and the relationship 

with the community from confounding with the environmental variation that caused the sparse 

data. In this regard, the modification should be considered as a supplement of the classical PRC 

analysis and recommended when abundance data have sparse subsets.  

Key words: Principal response curve analysis; Reduced rank regression; GM crop safety 

assessment; Analysis of arthropod community abundance; Sparse abundance data.  
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Introduction 

Principal response curve (PRC) analysis is a multivariate statistical method for the ecological 

assessment of stress effects on a community across temporary/spatial intervals. A large 

proportion of the application has been on abundance data by transformation (see Paliy and 

Shankar 2016 for a review). The analysis can reveal inter-related responses of the treatment 

among species representative of the community, so that, the derived relationship can be used to 

order and compare the community responses in a reduced dimensional space (Van den Brink and 

Ter Braak 1998; Ter Braak and Smilauer 1998b, 2015). The algorithm of the analysis is a least-

square based multivariate analysis of variance (MANOVA). The implementation of the analysis 

has been relying on the software CANOCO (Ter Braak and Smilauer 1998a; Smilauer and Leps 

2014).  

Often, individual species are absent or rare at given intervals, which will be called sparse 

subsets of the data in this investigation, due to large environmental variations independent of the 

treatment effect for which the PRC analysis is intended. Firstly, these sparse subsets, if analyzed 

as part of complete data, would underestimate the main treatment effect as an average over 

intervals due to lack of information for the treatment comparison. Secondly, sparse subsets 

would inflate interactions between the treatment and intervals with and without sparse data thus 

confound the treatment effect with the environmental variation that caused sparse data. The same 

would be true for covariances between species. Despite the generalized linear model likely being 

a better solution for sparse subsets, the classical PRC analysis by transformation was considered 

as computationally attractive in the ordination context due to a large number of species, and 

therefore has been the main option for the analysis of abundance data (Naranjo 2005; Ter Braak 

and Smilauer 2015; Auber et al. 2017). Nonetheless, the objection of a transformation has been 

well received in the literature (O’Hara and Kotze 2010). To a large extent, these objections were 

results of the biased estimation due to completely sparse data or a fraction of sparse subsets 

which hold true for both univariate and multivariate analyses.  

In this investigation, a modification was proposed for the PRC analysis of abundance data to 

remove sparse subsets using a predetermined threshold (criterion). Although the remaining data 

are unsuitable for MANOVA by the classical PRC analysis, the modified method was proposed 

to estimate the multivariate treatment variations by the univariate analysis of variance (ANOVA) 
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separately for each species and analysis of covariance (ANCOVA) for each pair of species. The 

modified method will become the classical analysis if no sparse subset presents. The calculation 

of the modified method can be performed by any statistical software e.g., SAS (SAS 2012). An 

application to a motivating example of a genetically-modified, insect-resistant, cotton showed 

consistent estimates of the first two canonical components between two methods, but substantial 

differences in other components because of sparse subsets. The modified method prevented the 

bias in the estimation of the treatment effect on the arthropod community from confounding with 

the environmental variation that caused the sparse data. Hence, the modified method should be 

recommended for the PRC analysis of abundance data when sparse subsets present. 

In the following sections, at first the motivating example is described, and followed by 

introductions of the classical PRC analyses. Then, the modification was proposed and illustrated 

by the example. Additional discussions can be found in the discussion section.  

A motivating example: MON 88702 ecological safety data 

MON 88702 is a genetically-modified (GM) cotton developed by Bayer Crop Science with 

an insect-resistant trait targeted a hemipteran pest Lygus (Bachman et al. 2017). A field trial was 

conducted in 2018 at six sites representative of U.S. cotton growing regions each with a 

randomized complete block design of three blocks (see Asiimwe et al 2021 for details). The 

objective of the trial is an ecological assessment of the impact of MON 88702 on the abundance 

of the predatory Hemiptera community under the field condition with the traditional 

management including insecticide application. Five treatments consist of combinations of 

(multiple) insecticide applications and cotton varieties (GM variety MON 88702 and a near-

isogenic conventional control DP393) abbreviated as: C2 = DP393 with a conventional broad-

spectrum insecticide, C1 = DP393 with minimal or selective insecticides, T1 = MON 88702 with 

minimal or selective insecticides, C0 = DP393 with no insecticide, T0 = MON 88702 with no 

insecticide. Abundances of ten taxa representative of the community were collected ten times 

over the course of the season and analyzed in this investigation.  

A summary of the data was listed in Table 1. The table shows large variations of abundance 

among sites/collections due to geoclimatic and seasonal differences. Out of 600 (10 taxa x 6 sites 

x 10 collections) combinations (each with 15 responses of five treatments and three replicates), 

150 (25%) have zero abundance. When analyzed as complete data, these zero-abundance subsets 
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will underestimate the main treatment effect due to averaging. The same would be true for 

subsets with low abundance as will be shown next.  

Table 1. MON 88702 ecological abundance data: Mean counts and numbers of collections with 

non-zero abundance by arthropod taxon and site 

As abundance varying as wide as those in Table 1, to see how assumptions of a linear model 

analysis would be satisfied by a transformation, a simulation study was performed, and results 

were presented in Fig 1. Let x be the observed count, and 𝑦𝑦 = √𝑥𝑥  and 𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥 + 1) 

representing two popular transformations in practice (St-Pierre et al. 2018).  

Figure 1 is the graphical representations of sample mean difference (Diff) and standard error 

(SE) and t ratio (= Diff/SE) as functions of the expected mean count with and without 

transformation. Two random samples of 𝑛𝑛 = 10 were generated from two negative binomial 

distributions with mean differing by 25% and average of two means ranging (0.1~10) and 

variance of each distribution 𝜎𝜎2 = 𝜇𝜇 + 𝑎𝑎𝜇𝜇2 as 𝑎𝑎 = (0, 0.1, 0.2). Scales include count (Count), 

square root (SQRT), and logarithm (Log). Each point represents a mean of 10000 replications. 

Fig 1 provides convincing evidence of the roles of a transformation in a linear model analysis 

of abundance data which were generated from a generalized distribution for count (despite slight 

differences in performance by two transformations). Without transformation, both mean (the top 

Taxa 
Mean Count (# of collections with capture > 0) by Site 

Mean 
AZMA AZYU LACH MSGV NCRC TXUV 

Aphids 0.2 (7) 0.0 (3) 203.9 (10) 85.7 (10) 34.0 (10) 1.5 (7) 54.2 (7.8) 

Cotton Flea hoppers 4.4 (10) 4.3 (10) 0.0 (1) 0.1 (1) 0.2 (10) 13.9 (10) 3.8 (7.0) 

Geocoris 6.0 (10) 8.7 (10) 1.1 (10) 10.4 (10) 2.3 (10) 3.4 (10) 5.3 (10) 

Lygus 3.4 (10) 2.0 (10) 2.4 (9) 5.4 (10) 3.9 (10) 0.0 (3) 2.9 (8.7) 

Nabis 0.3 (4) 1.1 (10) 0.0 (3) 0.5 (10) 0.5 (10) 0.0 (2) 0.4 (6.5) 

Orius 5.4 (10) 5.7 (10) 2.5 (10) 4.2 (10) 7.1 (10) 91.3 (10) 19.4 (10) 

Predatory Stink bugs 0.0 (0) 0.1 (2) 0.2 (6) 1.2 (8) 0.3 (7) 0.0 (0) 0.3 (3.8) 

Stink bugs 0.9 (8) 0.3 (9) 0.2 (5) 1.3 (9) 1.0 (9) 0.3 (6) 0.7 (7.7) 

Whiteflies 74.0 (9) 57.1 (10) 0.2 (6) 34.9 (7) 0.6 (8) 158.7 (9) 54.3 (8.2) 

Zelus 2.7 (10) 0.7 (8) 0.2 (3) 0.0 (1) 0.0 (0) 1.7 (10) 0.9 (5.3) 

Average 9.7 (7.8) 8.0 (8.2) 21.1 (6.3) 15.1 (7.6) 5.0 (8.4) 25.8 (6.7) 14.1 (7.5) 
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plots) and standard error (the middle plots) of the sample difference are increasing functions of 

the average of two distribution means, and after transformation, both mean difference and the 

standard error are effectively stabilized over a wide range of abundance except for the average 

approximately < 1. Therefore, assumptions of linearity (or additivity of the treatment effect) and 

homogeneity (of variance across intervals) of a linear model are mostly achieved by both 

transformations if the average count is approximately > 1. These results indeed support 

Warton’s remark (2005) “Surprisingly, transformed least squares appeared to fit data about as 

well as” a generalized linear model. However, Fig 1 also shows the poor performance of 

transformation when the mean count is low (O’Hara and Kotze 2010). Most samples from those 

distributions with low means could be called sparse data as defined in this investigation, which 

provide little information for the treatment comparison as shown by low values of the t ratio (the 

bottom plots). Therefore, a threshold of mean count < 1.0 was applied for defining the sparse 

subsets of abundance data in this investigation. In spite a somewhat arbitrary definition, different 

thresholds in a range of (0.5 ~ 1.0) were not shown to make substantial differences likely due to 

the large environmental variation as the main source of sparse data. The application of the 

criterion will be discussed further in the analysis of MON 88702 data.  

For the analysis of MON 88702 data, despite those sparse subsets as shown in Table 1, the 

PRC analysis by transformation is likely the only option due to multiple taxa. Thus, a modified 

analysis was proposed next. At first, a brief introduction was provided for the classical method. 

Then, the modification was described according to steps of a classical analysis. 

PRC analysis of abundance data with sparse subsets 

RDA of Davies and Tso: The following multivariate model was assumed by Davies and Tso 

(1982) for the RDA.  

𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝑬𝑬           (1) 

where 𝒀𝒀(𝑛𝑛 × 𝑝𝑝) consists of 𝑝𝑝 responses observed from 𝑛𝑛 samples, 𝑿𝑿(𝑛𝑛 × ℎ) represents the 

design matrix, 𝑴𝑴(ℎ × 𝑝𝑝) for the treatment effect, and 𝑬𝑬(𝑛𝑛 × 𝑝𝑝) for the residual. RDA assumes 

that there exists a factorization 𝑴𝑴𝒔𝒔 = 𝑨𝑨(ℎ × 𝑠𝑠)𝑩𝑩(𝑠𝑠 × 𝑝𝑝) with 𝑠𝑠 < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝,ℎ) which could 

provide a reduced model equivalent to (1) with the rank of 𝑴𝑴𝒔𝒔 spend by 𝑠𝑠 canonical components 

less than the rank of 𝑴𝑴. That is, a reduced rank model assumes that 
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𝒀𝒀 = 𝑭𝑭𝑭𝑭 + ∆ + 𝑬𝑬           (2) 

where 𝑭𝑭 = 𝑿𝑿𝑿𝑿 represents a set of new (or latent) independent variables, and B is a new set of 

coefficients, and ∆ (a part of 𝑿𝑿𝑿𝑿 in (1)) is assumed to be comparable with 𝑬𝑬.  

Let 𝑺𝑺𝑺𝑺𝑌𝑌, 𝑺𝑺𝑺𝑺𝑌𝑌� , and 𝑺𝑺𝑺𝑺𝑌𝑌�𝑠𝑠 denote sums of squares and cross products (SSCP) of the observed 

and the estimated responses from fitting the models (1) and (2). An estimate 𝒀𝒀�𝒔𝒔 = 𝑭𝑭�𝑩𝑩� = 𝑿𝑿𝑴𝑴� 𝒔𝒔 

under (2) can be obtained from a multivariate analysis of variance (MONOVA) and the single 

value decomposition (SVD) of 𝑺𝑺𝑺𝑺𝑌𝑌�  (detailed in the following sections) through 

𝑺𝑺𝑺𝑺𝑌𝑌 = 𝑺𝑺𝑺𝑺𝑌𝑌�+𝑺𝑺𝑺𝑺𝑒𝑒 = 𝑺𝑺𝑺𝑺𝑌𝑌�𝑠𝑠 + 𝑺𝑺𝑺𝑺∆� + 𝑺𝑺𝑺𝑺𝑒𝑒        (3) 

where 𝑺𝑺𝑺𝑺𝑒𝑒 is the residual under (1), and the hypothesis 𝐻𝐻0:𝑴𝑴 = 𝑴𝑴𝒔𝒔 = 𝑨𝑨𝑨𝑨 can be statistically 

tested by comparing 𝑺𝑺𝑺𝑺∆�  with 𝑺𝑺𝑺𝑺𝑒𝑒.  

The classical PRC analysis: The PRC analysis was developed by Van den Brink and Ter Braak 

(1998) and Ter Braak and Smilauer (1998b) for longitudinal ecological data with the model 

𝒀𝒀 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝑬𝑬          (4) 

where 𝑴𝑴 is for the treatment effect as in (1), and 𝑫𝑫 is for those of environmental factors 

including (temporary/spatial) intervals. The PRC analysis is a partial RDA interested only in the 

treatment effect 𝒀𝒀|𝒁𝒁 = 𝑿𝑿𝑿𝑿, including main effects and interactions of the treatment with the 

interval as the name PRC suggests. More importantly, a Monte Carlo permutation test was 

proposed for the significance of each canonical component of 𝑴𝑴𝒔𝒔 and implemented in CANOCO 

(Ter Braak and Smilauer 1998a, and Smilauer and Leps 2014). The test can separate the true 

components from random residuals of the same order (Legendre and Ter Braak 2011). 

Both above procedures rely on the least-squares based MANOVA of complete data of 𝑝𝑝 

responses from 𝑛𝑛 samples. 

Modified PRC analysis of abundance data with sparse subsets: In this section, MON 88702 

data were used as an example for abundance data with sparse subsets. Let 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 be a 

transformed response of the 𝑘𝑘𝑡𝑡ℎ taxon from the 𝑖𝑖𝑡𝑡ℎ site, the 𝑗𝑗𝑡𝑡ℎ block, the 𝑚𝑚𝑡𝑡ℎ collection with the 

𝑙𝑙𝑡𝑡ℎ treatment. A univariate form of (4) for the 𝑘𝑘𝑡𝑡ℎ taxon (except the covariance structure) can be 

expressed as 
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𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝜇𝜇𝑘𝑘 + 𝑠𝑠𝑘𝑘𝑘𝑘 + 𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑘𝑘 + 𝑡𝑡𝑘𝑘𝑘𝑘𝑘𝑘 + (𝑎𝑎𝑎𝑎)𝑘𝑘𝑘𝑘𝑘𝑘 + (𝑎𝑎𝑎𝑎)𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘    (5) 

where 𝜇𝜇𝑘𝑘 is the taxon mean, 𝑎𝑎𝑘𝑘𝑘𝑘, 𝑠𝑠𝑘𝑘𝑘𝑘, 𝑟𝑟𝑘𝑘𝑘𝑘𝑘𝑘, 𝑡𝑡𝑘𝑘𝑘𝑘𝑘𝑘 are main effects of the treatment, site, replicate 

and collection within site, (𝑎𝑎𝑎𝑎)𝑘𝑘𝑘𝑘𝑘𝑘 and (𝑎𝑎𝑎𝑎)𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 are the corresponding interactions, and 𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is 

the residual. If 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is in sparse subsets, the modified method was proposed to exclude 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

from the analysis which was described next in steps of a classical PRC analysis. 

At first, with the exclusion of sparse subsets, the estimation of 𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍 of the classical PRC 

analysis must be modified due to incomplete responses. Despite the exclusion, however, the 

treatment is still balanced with the replicate in the remaining collections. Let 𝑦𝑦�𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 and 𝑦𝑦�𝑘𝑘𝑘𝑘.𝑚𝑚 be 

means of the lth treatment and over all treatments, respectively, at a given site and collection. All 

means are over replicates with the subscript omitted. Elements of 𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍 can be calculated as 

�𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍�𝑘𝑘1𝑘𝑘2
= 𝑛𝑛𝑟𝑟 ∑ ∑ ∑ �𝑦𝑦�𝑘𝑘1𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑘𝑘1𝑖𝑖.𝑚𝑚��𝑦𝑦�𝑘𝑘2𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑘𝑘2𝑖𝑖.𝑚𝑚�𝑚𝑚𝑙𝑙𝑖𝑖       (6) 

Let 𝑺𝑺𝑺𝑺𝑎𝑎, 𝑺𝑺𝑺𝑺𝑎𝑎𝑎𝑎, and 𝑺𝑺𝑺𝑺𝑎𝑎𝑎𝑎(𝑠𝑠) be SSCPs of 𝑎𝑎𝑘𝑘𝑘𝑘, (𝑎𝑎𝑎𝑎)𝑘𝑘𝑘𝑘𝑘𝑘 and (𝑎𝑎𝑎𝑎)𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 in (5), which can be calculated 

in a similar way. Then, 𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍 can be decomposed into or calculated alternatively as a sum as 

𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍 = 𝑺𝑺𝑺𝑺𝑎𝑎 + 𝑺𝑺𝑺𝑺𝑎𝑎𝑎𝑎 + 𝑺𝑺𝑺𝑺𝑎𝑎𝑎𝑎(𝑠𝑠)         (7) 

Let 𝑐𝑐𝑘𝑘1𝑘𝑘2𝑖𝑖 be the observed number of collections at the 𝑖𝑖𝑡𝑡ℎ site with both 𝑘𝑘1
𝑡𝑡ℎ and 𝑘𝑘2

𝑡𝑡ℎ taxa. 

Let 𝑛𝑛𝑎𝑎, 𝑛𝑛𝑠𝑠, 𝑛𝑛𝑟𝑟 and 𝑛𝑛𝑐𝑐 be numbers of the treatment, site, block, and collection per site for 

complete data. Let 𝑦𝑦�𝑘𝑘𝑘𝑘.., 𝑦𝑦�𝑘𝑘.𝑙𝑙. and 𝑦𝑦�𝑘𝑘𝑘𝑘𝑘𝑘. be means of a given site and treatment, and 𝑦𝑦�𝑘𝑘... be the 

overall mean. The decomposition of (7) can be calculated as 

⎩
⎪⎪
⎨

⎪⎪
⎧(𝑺𝑺𝑺𝑺𝑎𝑎)𝑘𝑘1𝑘𝑘2 = 𝑛𝑛𝑟𝑟𝑐𝑐𝑘𝑘1𝑘𝑘2 ∑ �𝑦𝑦�𝑘𝑘1.𝑙𝑙. − 𝑦𝑦�𝑘𝑘1...��𝑦𝑦�𝑘𝑘2.𝑙𝑙. − 𝑦𝑦�𝑘𝑘2...�𝑙𝑙                  

(𝑺𝑺𝑺𝑺𝑎𝑎𝑎𝑎)𝑘𝑘1𝑘𝑘2 = 𝑛𝑛𝑟𝑟 ∑ ∑ 𝑐𝑐𝑘𝑘1𝑘𝑘2𝑖𝑖�𝑦𝑦�𝑘𝑘1𝑖𝑖𝑖𝑖. − 𝑦𝑦�𝑘𝑘1𝑖𝑖.. − 𝑦𝑦�𝑘𝑘1.𝑙𝑙. + 𝑦𝑦�𝑘𝑘1…�   𝑙𝑙𝑖𝑖    
                                                  �𝑦𝑦�𝑘𝑘2𝑖𝑖𝑖𝑖. − 𝑦𝑦�𝑘𝑘2𝑖𝑖.. − 𝑦𝑦�𝑘𝑘2.𝑙𝑙. + 𝑦𝑦�𝑘𝑘2…�   

�𝑺𝑺𝑺𝑺𝑎𝑎𝑎𝑎(𝑠𝑠)�𝑘𝑘1𝑘𝑘2 = 𝑛𝑛𝑟𝑟 ∑ ∑ ∑ �𝑦𝑦�𝑘𝑘1𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑘𝑘1𝑖𝑖𝑖𝑖. − 𝑦𝑦�𝑘𝑘1𝑖𝑖.𝑚𝑚 + 𝑦𝑦�𝑘𝑘1𝑖𝑖..�𝑚𝑚𝑙𝑙𝑖𝑖  

                                                    �𝑦𝑦�𝑘𝑘2𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑘𝑘2𝑖𝑖𝑖𝑖. − 𝑦𝑦�𝑘𝑘2𝑖𝑖.𝑚𝑚 + 𝑦𝑦�𝑘𝑘2𝑖𝑖..�

               (8) 

where 𝑐𝑐𝑘𝑘1𝑘𝑘2 is the total number of collections with both 𝑘𝑘1
𝑡𝑡ℎ and 𝑘𝑘2

𝑡𝑡ℎ taxa over all sites. Both 

(6) and (8) provide consistent estimate of 𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍 since each element is a least-square estimate 
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though some off-diagonal elements could be zero. Notice that the modified method differs from 

the classical analysis in numbers of responses for 𝑦𝑦�𝑘𝑘𝑘𝑘.., 𝑦𝑦�𝑘𝑘.𝑙𝑙., 𝑦𝑦�𝑘𝑘𝑘𝑘.𝑚𝑚, 𝑦𝑦�𝑘𝑘𝑘𝑘𝑘𝑘., and 𝑦𝑦�𝑘𝑘....  

In the second step, regardless of the exclusion of sparse subsets, 𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍 of (6) and (7) is non-

negative definite and SVD of 𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍 can proceed as the classical analysis of Davies and Tso 

(1982). Let 𝜆𝜆𝑖𝑖2 and 𝒖𝒖𝑖𝑖 be eigenvalues and eigenvectors of 𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍 with 𝜆𝜆12 ≥ 𝜆𝜆22 ≥ ⋯ ≥ 𝜆𝜆𝑝𝑝2 . A PRC 

analysis of rank 𝑠𝑠 can be derived from  

𝑺𝑺𝑺𝑺𝒀𝒀�𝑠𝑠|𝒁𝒁 = 𝜆𝜆12𝒖𝒖1𝒖𝒖1′ + ⋯+ 𝜆𝜆𝑠𝑠2𝒖𝒖𝑠𝑠𝒖𝒖𝑠𝑠′          (9) 

where 𝜆𝜆𝑖𝑖2 represents the variation captured by the 𝑖𝑖𝑡𝑡ℎ canonical component (PRC𝑖𝑖), 𝒖𝒖𝑖𝑖 is the 

weight (or contribution) of each taxon, and 100 ∙ 𝜆𝜆𝑖𝑖2 ∑ 𝜆𝜆𝑖𝑖2𝑖𝑖⁄  is the percent variation captured.   

For the third step, the significance test for each component of (9) remains the same as the 

classical analysis by a restricted permutation within each non-sparse combination of collections, 

blocks, and sites. The following pseudo-F statistic can be used for the test of the 𝑖𝑖𝑡𝑡ℎ component 

(also called a marginal test by Pierre et al. 2011). The P value of the test is the fraction of 

permutations with 𝐹𝐹 values greater than the one from the analysis of the original data. 

𝐹𝐹 =
𝜆𝜆𝑖𝑖2 𝑑𝑑𝑑𝑑ℎ𝑖𝑖⁄

𝑡𝑡𝑡𝑡(𝑺𝑺𝑺𝑺𝑒𝑒) 𝑑𝑑𝑑𝑑𝑒𝑒⁄  

where 𝑺𝑺𝑺𝑺𝑒𝑒 can be calculated as the difference between the total and individual SSCPs under (5) 

or as interactions of the replicate with the treatment and the collection within each site, 𝑑𝑑𝑑𝑑ℎ𝑖𝑖 and 

𝑑𝑑𝑑𝑑𝑒𝑒 are degrees of freedom of the 𝑖𝑖𝑡𝑡ℎ component and the residual and both are constants across 

permutations with no effects on the test. Comparing 𝑴𝑴(ℎ × 𝑝𝑝) of (1) with 𝑴𝑴𝒔𝒔(ℎ × 𝑝𝑝) =

𝑨𝑨(ℎ × 𝑠𝑠)𝑩𝑩(𝑠𝑠 × 𝑝𝑝) in (2), the number of parameters is reduced by (𝑝𝑝 − 𝑠𝑠)(ℎ − 𝑠𝑠) (Davies and 

Tso 1982). With sparse subsets excluded, ℎ becomes ℎ� = (𝑛𝑛𝑎𝑎 − 1)∑ (∑ 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 − 1) 𝑘𝑘 𝑝𝑝⁄  on 

average over taxa. For 𝑠𝑠 = 2, 𝑑𝑑𝑑𝑑ℎ1 = 𝑝𝑝 + ℎ� − 1,  𝑑𝑑𝑑𝑑ℎ2 = 𝑝𝑝 + ℎ� − 3, 𝑑𝑑𝑑𝑑𝑒𝑒 = 𝑝𝑝(𝑛𝑛𝑟𝑟 − 1)ℎ� +

(𝑛𝑛𝑟𝑟 − 1)∑ ∑ (𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖 − 1)𝑘𝑘  with 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘 ≥ 1. When PRC1 is significant, �𝒀𝒀�|𝒁𝒁�𝒖𝒖1 will be added to 

the covariates of 𝒁𝒁 and the permutation will be applied to the residual for the test of PRC2, and 

so on for additional components.  

Though the PRC analysis is interested in the total treatment variation, each component of (9) 

can be decomposed under (5) into  
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 𝜆𝜆𝑖𝑖2 = 𝒖𝒖𝑖𝑖′𝑺𝑺𝑺𝑺𝑎𝑎𝒖𝒖𝑖𝑖 + 𝒖𝒖𝑖𝑖′𝑺𝑺𝑺𝑺𝑎𝑎𝑎𝑎𝒖𝒖𝑖𝑖 + 𝒖𝒖𝑖𝑖′𝑺𝑺𝑺𝑺𝑎𝑎𝑎𝑎(𝑠𝑠)𝒖𝒖𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑖𝑖2 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖2 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖(𝑠𝑠)
2    (10) 

For visualizing the canonical component of (10) by the ordination diagram, a univariate form of 

the reduced model similar to Van den Brink and Ter Braak (1999) can be expressed as 

𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘∗ = 𝑏𝑏𝑘𝑘1�𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖1𝑎𝑎 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖1𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖1
𝑎𝑎𝑎𝑎(𝑠𝑠)� + ⋯+ 𝑏𝑏𝑘𝑘𝑘𝑘�𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑎𝑎𝑎𝑎(𝑠𝑠)� + 𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (11) 

where 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘∗  represents the deviation of the 𝑙𝑙𝑡𝑡ℎ treatment from the mean of all treatments in a 

given site, replicate, and collection, 𝑏𝑏𝑘𝑘 is the species weight, and 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 , 𝑐𝑐𝑖𝑖𝑙𝑙𝑚𝑚𝑎𝑎𝑎𝑎 , and 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎(𝑠𝑠) are the 

main effects and interactions of each component, and 𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is the combination of (∆ + 𝑬𝑬) in (2). 

Coefficients in (11) can be estimated from the difference in (8) and 𝒖𝒖𝑖𝑖 in (10). 

In the following analysis of MON 88702 data, the safety assessment of the GM trait relies on 

the comparison of the treatment effect across the community. While the modified method 

prevented the underestimation of the main treatment effect 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 , the classical PRC analysis, as 

results were compared between two methods, confound the treatment effect with the 

environmental variation which caused sparse subsets and inflated the estimation of the 

interactions 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎  and 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎(𝑠𝑠).  

PRC analyses of MON 88702 data 

In this section, both the modified and the classical PRC analyses were applied to 

MON 88702 data. For the modified method, a threshold (criterion) of 1.0 was applied to each 

(taxon x collection) combination. That is, sparse subsets consist of not only these with no capture 

(25%) as shown in Table 1 but also those with 0 < mean < 1.0 (32.5%). Only 42.5% of the 

complete data exceeds the threshold with taxa Geocoris and Orius from all six sites, pest Lygus 

from five sites, and Nabis, Predatory stink bugs, and Stink bugs each from only one site. The 

observed counts were then transformed by the square root and scaled by the residual standard 

deviation (Ter Braak 1995) from the univariate analysis using (5). SAS procedures PROC 

MEANS were used for 𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍 in (6) and PROC IML was used for SVD in (9). PROC PLAN 

generated 1000 treatment permutations within each (site x collection x replicate) combination. 

The classical analysis was performed on the complete data with 𝑺𝑺𝑺𝑺𝑌𝑌�|𝑍𝑍 estimated by PROC GLM 

option MONOVA. Results of two methods were compared in Table 2 and Fig 2. 
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Table 2. PRC analyses of MON 88702 data by the modified and the classical methods: 

Percentages of total treatment variation (%𝜆𝜆𝑖𝑖2 = 100 𝜆𝜆𝑖𝑖2 ∑ 𝜆𝜆𝑖𝑖2𝑖𝑖⁄ ) captured by each component and 

contribution of the main effect (%𝜆𝜆𝑖𝑖𝑖𝑖2 = 100 𝜆𝜆𝑖𝑖𝑖𝑖2 𝜆𝜆𝑖𝑖2⁄ ), and the statistical significance (P value).  

PRC 
Modified PRC Analysis Classical PRC Analysis 

%𝝀𝝀𝒊𝒊𝟐𝟐 (%𝝀𝝀𝒊𝒊𝒊𝒊𝟐𝟐 ) P value %𝝀𝝀𝒊𝒊𝟐𝟐 (%𝝀𝝀𝒊𝒊𝒊𝒊𝟐𝟐 ) P value 

PRC1 36.7 (44.9) <0.001 29.5 (35.8) <0.001 

PRC2 17.3 (28.5) <0.001 13.6 (22.6) <0.001 

PRC3 13.2 (15.9) <0.001 12.1 (2.6) <0.001 

PRC4 10.4 (19.8) <0.001 10.5 (1.0) 0.005 

PRC5   8.1 (3.1) 0.035 

Sum 77.6 (33.0)  73.8 (19.4)  

Table 2 lists four statistically significant components (PRC1-4) by the modified method and 

five (PRC1-5) by the classical method at the 5% level. The total variations account for 77.6% 

and 73.8% of the treatment variation over all taxa, and the modified method with fewer number 

of components captured a higher proportion of variation. The contribution of the main effect 

(%𝜆𝜆𝑖𝑖𝑖𝑖2 ) are 33.0% and 19.4%, respectively, showing a substantial difference. PRC3-5 by the 

classical method consist almost entirely of the interaction. These results confirm that the classical 

analysis underestimates the main treatment effect and excluding sparse subsets by the modified 

method can prevent the confounding of the treatment effect with the environmental variation that 

caused the sparse data. Two methods were further compared next by the ordination diagram. 

Fig 2 compares ordinations of the main treatment effect 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎  (arrow) and the taxa weight 𝑏𝑏𝑘𝑘 

(dot) between two methods for PRC1-4. If two methods provided similar results, all arrows and 

dots would have lined up along the line (𝑥𝑥 = 𝑦𝑦). Indeed, PRC1-2 in Fig 2 are highly consistent 

between two methods. For PRC1, (C2, C1, T1) are all negative and (C0, T0) are positive 

demonstrating the depressing effect of the insecticide on most taxa indicated by the mostly 

positive weights; and in contrast for PRC2, (C2, C1, C0) are all positive and (T1, T0) are 

negative demonstrating the effect of the GM trait against the targeted pest Lygus indicated by a 

predominant weight 0.905 for the modified method and 0.791 for the classical method.  
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Fig 2. contains ordination diagrams of PRC analyses of MON 88702 data: Comparing the 

estimated main treatment effect (arrow)and taxa weight (dot) of PRC1-4 between the classical 

and modified methods. Labels were described in text for the treatment, and by initials of Table 1 

for the taxa. To fit taxa weight 𝑏𝑏𝑘𝑘 and the treatment effect 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎  in the same plot, the treatment 

effect was multiplied by 0.75, and rescaled for PRC2-4 in reciprocally proportional to the square 

root of the variation relative to that of PRC1. 

For PRC3-4 in Fig 2, however, large differences can be found between two methods. For 

example, three taxa (“N”, “P”, “S”) each with data from only one site showed no effect as 

expected by the modified method but noticeable effects by the classical method. For PRC3 by 

the modified method, the treatment effect represents a contrast (C2, C1, T1) versus (C0, T0) for 

the effect of insecticide like PRC1 but differential effects among taxa indicated by 𝑏𝑏𝑘𝑘 e.g., Lygus 

versus Cotton Flea hoppers. Similarly, PRC4 by the modified method represents a contrast (C1, 

T1) versus (C2, C0, T0), suggesting additional effect of the selective insecticide e.g., Orius 

versus Aphid which are mostly negligible in PRC1-3. However, PRC3-4 by the classical method 

show substantial weights for several taxa with mostly sparse data and provide no interpretation. 

In summary, the classical PRC analyses of MON 88702 data demonstrated that a large 

proportion of sparse subsets in abundance data could substantially bias the estimation of the 

treatment effect. Excluding sparse subsets can provide estimates independent of the 

environmental variation which caused sparse data.  

Discussion 

Abundance data of an ecological community often include subsets of no- or low responses 

for species in certain spatial/temporary intervals regardless of the treatment, which have been 

called sparse subsets in this investigation. MON 88702 data is a typical example due to both 

geoclimatic and seasonal variations. It was shown in this investigation that sparse subsets, if 

included in PRC analysis by transformation, would underestimate the main treatment effect (due 

to averaging over intervals as shown in Fig 1) and inflate the interaction by confounding with the 

environment that caused sparse data. While a systematic treatment effect among species is the 

main interest of the PRC analysis under assumptions of the reduced rank model (2), the 

interactions with the environment which caused sparse data were largely random and should not 
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be part of the PRC components. Excluding spare subsets can prevent this type of bias in 

estimating the treatment effects among species. Despite a possibly slight loss of information, a 

robust inference of the true relationship between the treatment effect and the community would 

justify the modification. 

To define a criterion for sparse subsets in the MON 88702 example, alternative thresholds in 

the range (0.5 ~ 1.0) as well as the log-transformation were tried and only slight differences in 

results (not presented) were discovered. In practice, species abundance often varies in a wide 

range as is shown in Table 1 and a high proportion of sparse subsets with an average count in a 

narrow range e.g., (0.5 ~ 1.0) is not expected due to the large environmental variation. Hence, 

whether a threshold would be applied is much more important than which threshold should be 

chosen in preventing the estimation bias of the treatment effect except that a threshold too high 

may cause unnecessary loss of information.  

The modified PRC analysis in this investigation estimates the multivariate treatment 

variation by the least-square based ANOVA separately for each species and ANCOVA for each 

pair of species. In addition to consistency of the estimation, the modified method is efficient, and 

easily implemented by most statistical software. Furthermore, if no sparse subset presents, the 

modified analysis will become the classical method. Hence, the modified method should be 

regarded as a supplement of the classical analysis of abundance and recommended whenever the 

proportion of sparse subsets are substantial, say > 10% of the complete data. 
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Fig 1. Graphical representations of sample mean difference (Diff) and standard error (SE) 

and t ratio (= Diff/SE) as functions of the expected mean count with and without 

transformation. Two random samples of 𝑛𝑛 = 10 were generated from two negative binomial 

distributions with mean differing by 25% and average of two means ranging (0.1~10) and 

variance of each distribution 𝜎𝜎2 = 𝜇𝜇 + 𝑎𝑎𝜇𝜇2 as 𝑎𝑎 = (0, 0.1, 0.2). Scales include count (Count), 

square root (SQRT), and logarithm (Log). Each point represents a mean of 10000 repeats. 
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Fig 2. Ordination diagrams of PRC analyses of MON 88702 data: Comparing the estimated 

main treatment effect (arrow)and taxa weight (dot) of PRC1-4 between the classical and 

modified methods. Labels were described in text for the treatment, and by initials of Table 1 for 

the taxa. To fit taxa weight 𝑏𝑏𝑘𝑘 and the treatment effect 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎  in the same plot, the treatment effect 

was multiplied by 0.75, and rescaled for PRC2-4 in reciprocally proportional to the square root 

of the variation relative to that of PRC1. 
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Abstract

Principal response curve (PRC) analysis was applied to an assessment of the ecological impact of the genetically-modified (GM), insect-resistant, cotton MON 88702 on predatory Hemiptera communities in the field. The field community was represented by ten taxa collected ten times across the season at six sites, in which individual taxa were not observed in at least 25% of the time (unique site x collection combinations). These complete absences and those nearly so, called sparse subsets of the data in this investigation, were the result of geoclimatic and seasonal variations, which are both independent of the treatment effect for which the PRC analysis is intended. If the sparse subsets were included in the analysis, the treatment effect would be underestimated. Here, a modified analysis is proposed to remove those sparse subsets and to be performed on the incomplete data. In the application to MON 88702, four components (PRC1-4) were significant at the 5% level by the modified method, when more than 50% of the data were excluded due to no- or low responses, and five (PRC1-5) by the classical method. While PRC1-2 was highly consistent between two methods, PRC3-5 was largely different because of sparse subsets of the data. Differences in results between two methods demonstrate that excluding sparse subsets prevented the bias in the estimation of the treatment effect and the relationship with the community from confounding with the environmental variation that caused the sparse data. In this regard, the modification should be considered as a supplement of the classical PRC analysis and recommended when abundance data have sparse subsets. 
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Introduction

Principal response curve (PRC) analysis is a multivariate statistical method for the ecological assessment of stress effects on a community across temporary/spatial intervals. A large proportion of the application has been on abundance data by transformation (see Paliy and Shankar 2016 for a review). The analysis can reveal inter-related responses of the treatment among species representative of the community, so that, the derived relationship can be used to order and compare the community responses in a reduced dimensional space (Van den Brink and Ter Braak 1998; Ter Braak and Smilauer 1998b, 2015). The algorithm of the analysis is a least-square based multivariate analysis of variance (MANOVA). The implementation of the analysis has been relying on the software CANOCO (Ter Braak and Smilauer 1998a; Smilauer and Leps 2014). 

Often, individual species are absent or rare at given intervals, which will be called sparse subsets of the data in this investigation, due to large environmental variations independent of the treatment effect for which the PRC analysis is intended. Firstly, these sparse subsets, if analyzed as part of complete data, would underestimate the main treatment effect as an average over intervals due to lack of information for the treatment comparison. Secondly, sparse subsets would inflate interactions between the treatment and intervals with and without sparse data thus confound the treatment effect with the environmental variation that caused sparse data. The same would be true for covariances between species. Despite the generalized linear model likely being a better solution for sparse subsets, the classical PRC analysis by transformation was considered as computationally attractive in the ordination context due to a large number of species, and therefore has been the main option for the analysis of abundance data (Naranjo 2005; Ter Braak and Smilauer 2015; Auber et al. 2017). Nonetheless, the objection of a transformation has been well received in the literature (O’Hara and Kotze 2010). To a large extent, these objections were results of the biased estimation due to completely sparse data or a fraction of sparse subsets which hold true for both univariate and multivariate analyses. 

In this investigation, a modification was proposed for the PRC analysis of abundance data to remove sparse subsets using a predetermined threshold (criterion). Although the remaining data are unsuitable for MANOVA by the classical PRC analysis, the modified method was proposed to estimate the multivariate treatment variations by the univariate analysis of variance (ANOVA) separately for each species and analysis of covariance (ANCOVA) for each pair of species. The modified method will become the classical analysis if no sparse subset presents. The calculation of the modified method can be performed by any statistical software e.g., SAS (SAS 2012). An application to a motivating example of a genetically-modified, insect-resistant, cotton showed consistent estimates of the first two canonical components between two methods, but substantial differences in other components because of sparse subsets. The modified method prevented the bias in the estimation of the treatment effect on the arthropod community from confounding with the environmental variation that caused the sparse data. Hence, the modified method should be recommended for the PRC analysis of abundance data when sparse subsets present.

In the following sections, at first the motivating example is described, and followed by introductions of the classical PRC analyses. Then, the modification was proposed and illustrated by the example. Additional discussions can be found in the discussion section. 

A motivating example: MON 88702 ecological safety data

MON 88702 is a genetically-modified (GM) cotton developed by Bayer Crop Science with an insect-resistant trait targeted a hemipteran pest Lygus (Bachman et al. 2017). A field trial was conducted in 2018 at six sites representative of U.S. cotton growing regions each with a randomized complete block design of three blocks (see Asiimwe et al 2021 for details). The objective of the trial is an ecological assessment of the impact of MON 88702 on the abundance of the predatory Hemiptera community under the field condition with the traditional management including insecticide application. Five treatments consist of combinations of (multiple) insecticide applications and cotton varieties (GM variety MON 88702 and a near-isogenic conventional control DP393) abbreviated as: C2 = DP393 with a conventional broad-spectrum insecticide, C1 = DP393 with minimal or selective insecticides, T1 = MON 88702 with minimal or selective insecticides, C0 = DP393 with no insecticide, T0 = MON 88702 with no insecticide. Abundances of ten taxa representative of the community were collected ten times over the course of the season and analyzed in this investigation. 

A summary of the data was listed in Table 1. The table shows large variations of abundance among sites/collections due to geoclimatic and seasonal differences. Out of 600 (10 taxa x 6 sites x 10 collections) combinations (each with 15 responses of five treatments and three replicates), 150 (25%) have zero abundance. When analyzed as complete data, these zero-abundance subsets will underestimate the main treatment effect due to averaging. The same would be true for subsets with low abundance as will be shown next. 

Table 1. MON 88702 ecological abundance data: Mean counts and numbers of collections with non-zero abundance by arthropod taxon and site

		Taxa

		Mean Count (# of collections with capture > 0) by Site

		Mean



		

		AZMA

		AZYU

		LACH

		MSGV

		NCRC

		TXUV

		



		Aphids

		0.2 (7)

		0.0 (3)

		203.9 (10)

		85.7 (10)

		34.0 (10)

		1.5 (7)

		54.2 (7.8)



		Cotton Flea hoppers

		4.4 (10)

		4.3 (10)

		0.0 (1)

		0.1 (1)

		0.2 (10)

		13.9 (10)

		3.8 (7.0)



		Geocoris

		6.0 (10)

		8.7 (10)

		1.1 (10)

		10.4 (10)

		2.3 (10)

		3.4 (10)

		5.3 (10)



		Lygus

		3.4 (10)

		2.0 (10)

		2.4 (9)

		5.4 (10)

		3.9 (10)

		0.0 (3)

		2.9 (8.7)



		Nabis

		0.3 (4)

		1.1 (10)

		0.0 (3)

		0.5 (10)

		0.5 (10)

		0.0 (2)

		0.4 (6.5)



		Orius

		5.4 (10)

		5.7 (10)

		2.5 (10)

		4.2 (10)

		7.1 (10)

		91.3 (10)

		19.4 (10)



		Predatory Stink bugs

		0.0 (0)

		0.1 (2)

		0.2 (6)

		1.2 (8)

		0.3 (7)

		0.0 (0)

		0.3 (3.8)



		Stink bugs

		0.9 (8)

		0.3 (9)

		0.2 (5)

		1.3 (9)

		1.0 (9)

		0.3 (6)

		0.7 (7.7)



		Whiteflies

		74.0 (9)

		57.1 (10)

		0.2 (6)

		34.9 (7)

		0.6 (8)

		158.7 (9)

		54.3 (8.2)



		Zelus

		2.7 (10)

		0.7 (8)

		0.2 (3)

		0.0 (1)

		0.0 (0)

		1.7 (10)

		0.9 (5.3)



		Average

		9.7 (7.8)

		8.0 (8.2)

		21.1 (6.3)

		15.1 (7.6)

		5.0 (8.4)

		25.8 (6.7)

		14.1 (7.5)





As abundance varying as wide as those in Table 1, to see how assumptions of a linear model analysis would be satisfied by a transformation, a simulation study was performed, and results were presented in Fig 1. Let x be the observed count, and   and  representing two popular transformations in practice (St-Pierre et al. 2018). 

[bookmark: IDX]Figure 1 is the graphical representations of sample mean difference (Diff) and standard error (SE) and t ratio (= Diff/SE) as functions of the expected mean count with and without transformation. Two random samples of  were generated from two negative binomial distributions with mean differing by 25% and average of two means ranging  and variance of each distribution  as . Scales include count (Count), square root (SQRT), and logarithm (Log). Each point represents a mean of 10000 replications.

Fig 1 provides convincing evidence of the roles of a transformation in a linear model analysis of abundance data which were generated from a generalized distribution for count (despite slight differences in performance by two transformations). Without transformation, both mean (the top plots) and standard error (the middle plots) of the sample difference are increasing functions of the average of two distribution means, and after transformation, both mean difference and the standard error are effectively stabilized over a wide range of abundance except for the average approximately . Therefore, assumptions of linearity (or additivity of the treatment effect) and homogeneity (of variance across intervals) of a linear model are mostly achieved by both transformations if the average count is approximately . These results indeed support Warton’s remark (2005) “Surprisingly, transformed least squares appeared to fit data about as well as” a generalized linear model. However, Fig 1 also shows the poor performance of transformation when the mean count is low (O’Hara and Kotze 2010). Most samples from those distributions with low means could be called sparse data as defined in this investigation, which provide little information for the treatment comparison as shown by low values of the t ratio (the bottom plots). Therefore, a threshold of mean count < 1.0 was applied for defining the sparse subsets of abundance data in this investigation. In spite a somewhat arbitrary definition, different thresholds in a range of (0.5 ~ 1.0) were not shown to make substantial differences likely due to the large environmental variation as the main source of sparse data. The application of the criterion will be discussed further in the analysis of MON 88702 data. 

For the analysis of MON 88702 data, despite those sparse subsets as shown in Table 1, the PRC analysis by transformation is likely the only option due to multiple taxa. Thus, a modified analysis was proposed next. At first, a brief introduction was provided for the classical method. Then, the modification was described according to steps of a classical analysis.

PRC analysis of abundance data with sparse subsets

RDA of Davies and Tso: The following multivariate model was assumed by Davies and Tso (1982) for the RDA. 

										 (1)

where  consists of  responses observed from  samples,  represents the design matrix,  for the treatment effect, and  for the residual. RDA assumes that there exists a factorization  with  which could provide a reduced model equivalent to (1) with the rank of  spend by  canonical components less than the rank of . That is, a reduced rank model assumes that

										 (2)

where  represents a set of new (or latent) independent variables, and B is a new set of coefficients, and  (a part of  in (1)) is assumed to be comparable with . 

Let , , and  denote sums of squares and cross products (SSCP) of the observed and the estimated responses from fitting the models (1) and (2). An estimate  under (2) can be obtained from a multivariate analysis of variance (MONOVA) and the single value decomposition (SVD) of  (detailed in the following sections) through

							 (3)

where  is the residual under (1), and the hypothesis  can be statistically tested by comparing  with . 

The classical PRC analysis: The PRC analysis was developed by Van den Brink and Ter Braak (1998) and Ter Braak and Smilauer (1998b) for longitudinal ecological data with the model

									 (4)

where  is for the treatment effect as in (1), and  is for those of environmental factors including (temporary/spatial) intervals. The PRC analysis is a partial RDA interested only in the treatment effect , including main effects and interactions of the treatment with the interval as the name PRC suggests. More importantly, a Monte Carlo permutation test was proposed for the significance of each canonical component of  and implemented in CANOCO (Ter Braak and Smilauer 1998a, and Smilauer and Leps 2014). The test can separate the true components from random residuals of the same order (Legendre and Ter Braak 2011).

Both above procedures rely on the least-squares based MANOVA of complete data of  responses from  samples.

Modified PRC analysis of abundance data with sparse subsets: In this section, MON 88702 data were used as an example for abundance data with sparse subsets. Let  be a transformed response of the  taxon from the  site, the  block, the  collection with the  treatment. A univariate form of (4) for the  taxon (except the covariance structure) can be expressed as

			 (5)

where  is the taxon mean, , , ,  are main effects of the treatment, site, replicate and collection within site,  and  are the corresponding interactions, and  is the residual. If  is in sparse subsets, the modified method was proposed to exclude  from the analysis which was described next in steps of a classical PRC analysis.

At first, with the exclusion of sparse subsets, the estimation of  of the classical PRC analysis must be modified due to incomplete responses. Despite the exclusion, however, the treatment is still balanced with the replicate in the remaining collections. Let  and  be means of the lth treatment and over all treatments, respectively, at a given site and collection. All means are over replicates with the subscript omitted. Elements of  can be calculated as

 				 (6)

Let , , and  be SSCPs of ,  and  in (5), which can be calculated in a similar way. Then,  can be decomposed into or calculated alternatively as a sum as

								 (7)

Let  be the observed number of collections at the  site with both  and  taxa. Let , ,  and  be numbers of the treatment, site, block, and collection per site for complete data. Let ,  and  be means of a given site and treatment, and  be the overall mean. The decomposition of (7) can be calculated as

             		(8)

where  is the total number of collections with both  and  taxa over all sites. Both (6) and (8) provide consistent estimate of  since each element is a least-square estimate though some off-diagonal elements could be zero. Notice that the modified method differs from the classical analysis in numbers of responses for , , , , and . 

In the second step, regardless of the exclusion of sparse subsets,  of (6) and (7) is non-negative definite and SVD of  can proceed as the classical analysis of Davies and Tso (1982). Let  and  be eigenvalues and eigenvectors of  with . A PRC analysis of rank  can be derived from 

 								 (9)

where  represents the variation captured by the  canonical component (PRC),  is the weight (or contribution) of each taxon, and  is the percent variation captured.  

For the third step, the significance test for each component of (9) remains the same as the classical analysis by a restricted permutation within each non-sparse combination of collections, blocks, and sites. The following pseudo-F statistic can be used for the test of the  component (also called a marginal test by Pierre et al. 2011). The P value of the test is the fraction of permutations with  values greater than the one from the analysis of the original data.



where  can be calculated as the difference between the total and individual SSCPs under (5) or as interactions of the replicate with the treatment and the collection within each site,  and  are degrees of freedom of the  component and the residual and both are constants across permutations with no effects on the test. Comparing  of (1) with  in (2), the number of parameters is reduced by  (Davies and Tso 1982). With sparse subsets excluded,  becomes  on average over taxa. For ,     with . When PRC1 is significant,  will be added to the covariates of  and the permutation will be applied to the residual for the test of PRC2, and so on for additional components. 

Though the PRC analysis is interested in the total treatment variation, each component of (9) can be decomposed under (5) into 

 			(10)

For visualizing the canonical component of (10) by the ordination diagram, a univariate form of the reduced model similar to Van den Brink and Ter Braak (1999) can be expressed as

	(11)

where  represents the deviation of the  treatment from the mean of all treatments in a given site, replicate, and collection,  is the species weight, and , , and  are the main effects and interactions of each component, and  is the combination of  in (2). Coefficients in (11) can be estimated from the difference in (8) and  in (10).

In the following analysis of MON 88702 data, the safety assessment of the GM trait relies on the comparison of the treatment effect across the community. While the modified method prevented the underestimation of the main treatment effect , the classical PRC analysis, as results were compared between two methods, confound the treatment effect with the environmental variation which caused sparse subsets and inflated the estimation of the interactions  and . 

PRC analyses of MON 88702 data

In this section, both the modified and the classical PRC analyses were applied to MON 88702 data. For the modified method, a threshold (criterion) of 1.0 was applied to each (taxon x collection) combination. That is, sparse subsets consist of not only these with no capture (25%) as shown in Table 1 but also those with 0 < mean < 1.0 (32.5%). Only 42.5% of the complete data exceeds the threshold with taxa Geocoris and Orius from all six sites, pest Lygus from five sites, and Nabis, Predatory stink bugs, and Stink bugs each from only one site. The observed counts were then transformed by the square root and scaled by the residual standard deviation (Ter Braak 1995) from the univariate analysis using (5). SAS procedures PROC MEANS were used for  in (6) and PROC IML was used for SVD in (9). PROC PLAN generated 1000 treatment permutations within each (site x collection x replicate) combination. The classical analysis was performed on the complete data with  estimated by PROC GLM option MONOVA. Results of two methods were compared in Table 2 and Fig 2.

Table 2. PRC analyses of MON 88702 data by the modified and the classical methods: Percentages of total treatment variation (%) captured by each component and contribution of the main effect (%), and the statistical significance (P value). 

		PRC

		Modified PRC Analysis

		Classical PRC Analysis



		

		% (%)

		P value

		% (%)

		P value



		PRC1

		36.7 (44.9)

		<0.001

		29.5 (35.8)

		<0.001



		PRC2

		17.3 (28.5)

		<0.001

		13.6 (22.6)

		<0.001



		PRC3

		13.2 (15.9)

		<0.001

		12.1 (2.6)

		<0.001



		PRC4

		10.4 (19.8)

		<0.001

		10.5 (1.0)

		0.005



		PRC5

		

		

		8.1 (3.1)

		0.035



		Sum

		77.6 (33.0)

		

		73.8 (19.4)

		





Table 2 lists four statistically significant components (PRC1-4) by the modified method and five (PRC1-5) by the classical method at the 5% level. The total variations account for 77.6% and 73.8% of the treatment variation over all taxa, and the modified method with fewer number of components captured a higher proportion of variation. The contribution of the main effect () are 33.0% and 19.4%, respectively, showing a substantial difference. PRC3-5 by the classical method consist almost entirely of the interaction. These results confirm that the classical analysis underestimates the main treatment effect and excluding sparse subsets by the modified method can prevent the confounding of the treatment effect with the environmental variation that caused the sparse data. Two methods were further compared next by the ordination diagram.

Fig 2 compares ordinations of the main treatment effect  (arrow) and the taxa weight  (dot) between two methods for PRC1-4. If two methods provided similar results, all arrows and dots would have lined up along the line (). Indeed, PRC1-2 in Fig 2 are highly consistent between two methods. For PRC1, (C2, C1, T1) are all negative and (C0, T0) are positive demonstrating the depressing effect of the insecticide on most taxa indicated by the mostly positive weights; and in contrast for PRC2, (C2, C1, C0) are all positive and (T1, T0) are negative demonstrating the effect of the GM trait against the targeted pest Lygus indicated by a predominant weight 0.905 for the modified method and 0.791 for the classical method. 

Fig 2. contains ordination diagrams of PRC analyses of MON 88702 data: Comparing the estimated main treatment effect (arrow)and taxa weight (dot) of PRC1-4 between the classical and modified methods. Labels were described in text for the treatment, and by initials of Table 1 for the taxa. To fit taxa weight  and the treatment effect  in the same plot, the treatment effect was multiplied by 0.75, and rescaled for PRC2-4 in reciprocally proportional to the square root of the variation relative to that of PRC1.

For PRC3-4 in Fig 2, however, large differences can be found between two methods. For example, three taxa (“N”, “P”, “S”) each with data from only one site showed no effect as expected by the modified method but noticeable effects by the classical method. For PRC3 by the modified method, the treatment effect represents a contrast (C2, C1, T1) versus (C0, T0) for the effect of insecticide like PRC1 but differential effects among taxa indicated by  e.g., Lygus versus Cotton Flea hoppers. Similarly, PRC4 by the modified method represents a contrast (C1, T1) versus (C2, C0, T0), suggesting additional effect of the selective insecticide e.g., Orius versus Aphid which are mostly negligible in PRC1-3. However, PRC3-4 by the classical method show substantial weights for several taxa with mostly sparse data and provide no interpretation.

In summary, the classical PRC analyses of MON 88702 data demonstrated that a large proportion of sparse subsets in abundance data could substantially bias the estimation of the treatment effect. Excluding sparse subsets can provide estimates independent of the environmental variation which caused sparse data. 

Discussion

Abundance data of an ecological community often include subsets of no- or low responses for species in certain spatial/temporary intervals regardless of the treatment, which have been called sparse subsets in this investigation. MON 88702 data is a typical example due to both geoclimatic and seasonal variations. It was shown in this investigation that sparse subsets, if included in PRC analysis by transformation, would underestimate the main treatment effect (due to averaging over intervals as shown in Fig 1) and inflate the interaction by confounding with the environment that caused sparse data. While a systematic treatment effect among species is the main interest of the PRC analysis under assumptions of the reduced rank model (2), the interactions with the environment which caused sparse data were largely random and should not be part of the PRC components. Excluding spare subsets can prevent this type of bias in estimating the treatment effects among species. Despite a possibly slight loss of information, a robust inference of the true relationship between the treatment effect and the community would justify the modification.

To define a criterion for sparse subsets in the MON 88702 example, alternative thresholds in the range (0.5 ~ 1.0) as well as the log-transformation were tried and only slight differences in results (not presented) were discovered. In practice, species abundance often varies in a wide range as is shown in Table 1 and a high proportion of sparse subsets with an average count in a narrow range e.g., (0.5 ~ 1.0) is not expected due to the large environmental variation. Hence, whether a threshold would be applied is much more important than which threshold should be chosen in preventing the estimation bias of the treatment effect except that a threshold too high may cause unnecessary loss of information. 

The modified PRC analysis in this investigation estimates the multivariate treatment variation by the least-square based ANOVA separately for each species and ANCOVA for each pair of species. In addition to consistency of the estimation, the modified method is efficient, and easily implemented by most statistical software. Furthermore, if no sparse subset presents, the modified analysis will become the classical method. Hence, the modified method should be regarded as a supplement of the classical analysis of abundance and recommended whenever the proportion of sparse subsets are substantial, say > 10% of the complete data.
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Fig 1. Graphical representations of sample mean difference (Diff) and standard error (SE) and t ratio (= Diff/SE) as functions of the expected mean count with and without transformation. Two random samples of  were generated from two negative binomial distributions with mean differing by 25% and average of two means ranging  and variance of each distribution  as . Scales include count (Count), square root (SQRT), and logarithm (Log). Each point represents a mean of 10000 repeats.
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Fig 2. Ordination diagrams of PRC analyses of MON 88702 data: Comparing the estimated main treatment effect (arrow)and taxa weight (dot) of PRC1-4 between the classical and modified methods. Labels were described in text for the treatment, and by initials of Table 1 for the taxa. To fit taxa weight  and the treatment effect  in the same plot, the treatment effect was multiplied by 0.75, and rescaled for PRC2-4 in reciprocally proportional to the square root of the variation relative to that of PRC1.
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the 



season



 



at



 



six 



sites



, 



in which



 



individual tax



a



 



w



ere



 



not observed



 



in 



at least 



2



5



%



 



of the 



time 



(unique site



 



x 



collection 



combinations



)



.



 



These complete absences and those nearly so



,



 



called sparse subsets 



of the data



 



in this investigation



, 



were



 



the 



result of



 



geoclimatic 



and



 



seasonal 



variation



s



, which are



 



both independent of 



the



 



treatment effect



 



for wh



ich the PRC analysis is 



intended



.



 



If the sparse subsets were included in the analysis, the treatment effect would be 



underestimated



. 



Here, a 



modifi



ed analysis



 



i



s 



proposed



 



to



 



remove 



those 



sparse subsets



 



and 



to be 



performed 



on



 



the incomplete data



. 



In 



the



 



appl



ication



 



to MON



 



88702



,



 



four components 



(PRC1



-



4) 



were



 



significan



t



 



at the 5% level 



by



 



the modified 



method



,



 



when



 



more than 



50%



 



of the data 



were 



excluded



 



due to 



no



-



 



or low responses



,



 



and five (PRC1



-



5)



 



by



 



the classical method. While



 



PRC1



-



2



 



w



as



 



highly



 



consisten



t



 



between two methods



, 



PRC3



-



5



 



w



as



 



large



ly



 



different



 



because of sparse 



subsets



 



of the data



.



 



Differences in



 



results between two methods 



demonstrate



 



that excluding 



sparse subsets 



prevent



ed



 



the bias in



 



the estimation of the treatment effect and the relationship 



with the community 



from



 



confound



ing



 



with



 



the environmental variation that caused the sparse 



data.



 



In this regard



, the modifi



cation



 



should be 



co



nsidered



 



as 



a



 



supplement



 



of the classical 



PRC 



analysis 



and recommended 



when 



abundance data have 



sparse 



subsets



. 
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