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ABSTRACT 

 

The survivability and mission of a military aircraft is often designed with 

minimum radar cross section (RCS) to ensure its long-term operation and 

maintainability. To reduce aircraft’s RCS, a specially formulated Radar Absorbing 

Structures (RAS) is primarily applied to its external skins. A Ni-coated glass/epoxy 

composite is a recent RAS material system designed for decreasing the RCS for the 

X-band (8.2 – 12.4 GHz), while maintaining efficient and reliable structural 

performance to function as the skin of an aircraft. Experimentally measured and 

computationally predicted radar responses (i.e., return loss responses in specific 

frequency ranges) of multi-layered RASs are expensive and labor-intensive. Solving 

their inverse problems for optimal RAS design is also challenging due to their 

complex configuration and physical phenomena. 

An artificial neural network (ANN) is a machine learning method that uses 

existing data from experimental results and validated models (i.e., transfer learning) 

to predict complex behavior. Training an ANN can be computationally expensive; 

however, training is a one-time cost. In this work, three different Three ANN models 

are presented for designing dual slab Ni-coated glass/epoxy composite RASs: (1) the 

feedforward neural network (FNN) model, (2) the inverse neural network (INN) 

model – an inverse network, which maintains a parallel structure to the FNN model, 

and (3) the tandem neural network (TNN) model – an alternative to the INN model 

which uses a pre-trained FNN in the training process. The FNN model takes the 

thicknesses of dual slab RASs to predict their returns loss in the X-band range. The 

INN model solves the inverse problem for the FNN model. The TNN model is 

established with a pretrained FNN to train an INN that exactly reverses the operation 

done in the FNN rather than solving the inverse problem independently. These ANN 

models will assist in reducing the time and cost for designing dual slab (and further 

extension to multi-layered) RASs. 
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INTRODUCTION 

 

The radar cross section (RCS) of an aircraft is the effective area visible to radar. 

The survivability and mission effectiveness of military aircraft is often dependent on 

minimizing its RCS to limit the ranges at which the aircraft can be detected [1]. Radar 

Absorbing Structures (RASs) are specially-designed materials covering the surface 

of an aircraft to reduce aircraft’s overall RCS, thus increasing its survivability.  

In general, RASs are dielectric lossy materials that have low return loss and high 

directional gain, meaning that they absorb a high fraction of radar microwave and 

electromagnetic waves rather than reflect them. Conventional RASs are constructed 

of a high-volume percent of conductive nanoparticles dispersed in an epoxy matrix 

[2,3]. These RASs have two major disadvantages. First, they are difficult to 

manufacture with a consistent quality because the uniform dispersion of conductive 

nanoparticles over larger aircraft skins is extremely challenging and requires careful 

attention to quality in manufacturing and maintenance. The presence of aggregates 

and non-uniform distribution of conductive particles may locally increase RCS, thus 

potentially reducing survivability. Second, conductive nanoparticle-based RASs 

typically yield low mechanical strengths [4] and cannot be used as the skin of the 

aircraft. Therefore, the RAS must be applied on top of the skin of the aircraft. This 

reduces the fuel efficiency of the aircraft as it must carry the weight of both the RAS 

and the skin material separately instead of the RAS being the skin of the aircraft [4]. 

Nam et al. [4–7] have developed thin and lightweight EM wave absorber 

composites with nickel-plated dielectric fibers via an electroless plating method that 

provides clues for resolving the problem of nano-conductive particles dispersed in 

polymer matrix resin. The designed absorber with nickel-plated glass fiber bonded 

with structural adhesive films was used to achieve their designed thickness, 

implementing the impedance matching between the developed EM wave absorber 

and free-space condition. The total thickness of designed nickel-plated absorber with 

optimization processes used in genetic algorithm for the X-band target has a 

lightweight and thin thickness compared with conventional absorbers, having 

excellent absorption performance. 

The radar absorbing performance of the Ni-coated glass/epoxy RAS is 

determined by measuring radar return reflected from a target called a return loss 

function. Figure 1 shows schematic of geometry of and a representative return loss 

function for Ni-coated glass/epoxy composites RAS. The return loss is a negative 

logarithmic value, where a return loss of -10 dB indicates that 99% of the incident 

radar is absorbed. The return loss function of the dual slab Ni-coated glass fiber RAS 

is determined by the electric permittivity of the RAS which is dependent on the 

thicknesses of the slabs [4].  

 
 



 
 

Figure 1. Ni-coated glass/epoxy RAS: (a) electromagnetic simulation model of the double-slab RAS 

with boundary conditions and (b) representative return loss function.  

 

Experimentally measuring the return loss function of a dual slab Ni-coated glass 

fiber RAS is labor-intensive (especially for sample preparation) as it requires 

electroless-plating and lamination of the specimen. It is computationally expensive 

to simulate the return loss function for dual slab RASs due to complex material 

configuration and physical phenomena. To ensure sufficient radar absorbing 

performance, the individuals who design, maintain, and repair aircraft must be 

capable of predicting the return loss function of a specific RAS and determining what 

RAS will produce a specific return loss function. 

An artificial neural network (ANN) is a machine learning (ML) algorithm that 

identifies clear relationships between each individual variables and the overall 

performance of a given dataset. The training process for an ANN is computationally 

expensive. However, this is a one-time cost. Once the network is optimally trained, 

the behavior of the system is well characterized and can be used to predict unknown 

data with high accuracy and low computational costs [8]. Meta material absorbers 

(MMA) are radar absorbers that combine the effects of polarization conversion and 

interference cancellation in a single RAS [9]. Chen et al. [9] used a NN-based 

algorithm to predict the efficiency of MMAs with a constant thickness from the 

combination of meta-atoms. Ma et al. [10] used a convolutional auto-encoder NN 

and its inverse network to predict relationship between the geometry of a meta-

surface (a two dimensional meta material) and its electromagnetic responses. Hou et 

al. [11] used a target driven neural network model and its inverse model to determine 

the relationship between the MMA design parameters and the absorptivity spectrum 

of the MMAs. The primary focus of this paper is to propose a new methodology for 

simulating the radar absorbing performance of dual slab Ni-coated glass/epoxy 

composite RASs using reliable ANN models, which are briefly discussed in the 

following section. 

 

 

 

 

 

 

 



NEURAL NETWORK  

 

The present work proposes three ANN models developed for the glass/epoxy 

composite RASs design: (1) the feedforward neural network (FNN) model, (2) the 

inverse neural network (INN) model, and (3) the tandem neural network (TNN) model. 

The FNN model (Fig. 2a) predicts the return loss function of the RAS from its top 

and bottom thicknesses (t1 and t2 in Fig. 2). The INN model (Fig. 2b) solves an 

inverse problem of the FNN model, i.e., t1 and t2 are predicted from a specific return 

loss function. Predicting t1 and t2 using an INN model is not straightforward if the 

training dataset describes a system where multiple RASs could produce the same 

return loss function (i.e., non-unique case solutions and local minima problems) [8]. 

The TNN model (Fig. 2c), which can potentially avoid this issue, allows the INN 

model to converge in spite of non-unique cases in the training dataset [8,12]. In the 

training process for the TNN model, a trainable INN model is placed in series with a 

non-trainable, pre-trained FNN model. Therefore, both the input and the output 

during training is the return loss function of the RAS. As only the INN model is 

trainable in the TNN, the INN model is trained to exactly reverse the operation done 

by the FNN model. This leads to the INN model predicting the necessary thicknesses 

of the RAS, while avoiding the non-unique case problem. Figure 2 summarizes the 

inputs and outputs of the three ANN models developed in the current study. 

 

 
 

Figure 2. Schematics of neural network models: (a) feedforward neural network (FNN), (b) inverse 

neural network (INN), and (c) tandem neural network (TNN). 

 

 

 

 

 



Development 

 

Each ANN model was developed using the Keras API – a python based machine 

learning software developed as a module of the TensorFlow Library [13]. The 

experimental dataset of slab thicknesses (t1 and t2) and return loss functions, provided 

by Nam et. al [4], were used to train the models. The RAS specimens (N = 15) had 

top thicknesses (t1) ranging from 0.158~1.456 mm and bottom thicknesses (t2) 

ranging from 0.412~3.082 mm. These thickness ranges were designated as a baseline 

in this study. Due to the small size of the experimental dataset (N = 15), the dataset 

was divided into 90% training and 10% testing in this work. Note that we generated 

reliable synthetic dataset (N = 1,000~10,000) using the trained FNN model and 

combined the synthetic dataset with the experimental dataset to develop the INN and 

TNN models. More details are provided in the following sections. 

The FNN models have two input dimensions: top and bottom thicknesses of the 

dual slab RAS. The return loss function (output of the FNN model) was processed at 

20~200 evenly-spaced discrete frequencies to reduce model training time and 

improve accuracy. As expected, a larger dimensionality (toward 200 frequency data) 

of model output exponentially increases model training time. Using a small dataset 

(toward 20 frequency data for each RAS specimen) did not produce a significant 

increase (< 2%) in model error (i.e., root-mean-square deviation (RMSE), herein). 

Therefore, the FNN model has an output of 20 return loss values at evenly-spaced 

frequencies across the X-band. Figure 3 shows the RMSE loss function of each 

iteration of the training process for the fully developed FNN, INN, and TNN models. 

 

 
 

Figure 3. RMSE loss function for: (a) the FNN model trained on an experimental dataset, (b) the 

INN model trained on a synthetic dataset, and (c) the TNN model trained on a synthetic dataset. 



Architecture 

 

A typical NN with a back propagation (BP) algorithm consists of a series of 

neurons in input, hidden, and output layers. Individual neurons in each layer take the 

input data, processes it using summation and activation functions, and transfers the 

results to the neighboring neurons. A BP algorithm iteratively updates the weight (w) 

and bias (b) parameters until they reach their optimal values that minimize the 

variation between a known output and the model’s predictions. Figure 4 shows a 

schematic of a typical FNN architecture with a BP algorithm used for the NNs 

developed in this study. The INN model has identical architecture, but the inputs and 

outputs are swapped to solve the inverse problem. As shown in Fig. 2c, the TNN 

model is constructed based on the INN model and followed by the FNN model.  

 

 
 

Figure 4. Schematic of FNN architecture with a back propagation algorithm [14]. 

 

 

 

 

 

 



The total number of neurons and hidden layers are problem-dependent and should 

be optimization for model accuracy and computational efficiency. In general, an 

increase in the numbers of neurons and hidden layers are more efficient for solving 

nonlinear problems but can result in longer computational (training) time, overfitting, 

and poor predictive performance for simpler problems. Therefore, a preliminary 

study on hyperparameter optimization (by minimizing RMSE) was conducted for the 

FNN model. Figure 5 shows the optimized FNN architecture consisting of eight 

hidden layers, where the number of neurons in each hidden layer varies according to 

a multiplication factor m. In this study, m is a user-defined constant that allows the 

number of neurons in each hidden layer to vary without changing the overall structure 

of the network. A higher m value produces a more accurate neural network, but 

simultaneously increases training time. Therefore, optimal m must be found to 

provide a sweet spot that may exist between model accuracy (i.e., RMSE) and 

computational efficiency (i.e., training time). Increasing the number of neurons by 

adjusting the neuron multiplication factor m did not significantly decrease the RSME 

of the FNN model. As shown in Fig. 6, increasing m from 2 to 7 decreased the RSME 

of the FNN model (Fig. 5) by approximately 0.03. This improvement in FNN model 

performance is not sufficient to compensate for the increased computational costs 

(i.e., the computational time increases exponentially with m). Therefore, the optimal 

multiplication factor m = 2 is used in the following analysis. This indicates that the 

baseline FNN model constructed 960 neurons in eight hidden layers. The FNN model 

was developed with Adam optimizer, a learning rate of 10-3, a maximum iteration 

number of 5000, and early stopping (if the model does not improve after 20 iterations). 

 

 
 

Figure 5. FNN architecture after hyperparameter optimization with multiplication factor m 

determining a number of neurons in each layer. 

 

 



 
 

Figure 6. RMSE calculated from the FNN models. 

 

Performance 

 

In the present study, the NN model performance is defined by three metrics: 

(1) the magnitude of the error function of the network, (2) the slope of the best-fitting 

line (or linear regression line) and the value of the coefficient of determination (R2), 

and (3) the fraction of ill-conditioned return loss functions predicted by the FNN 

model. First, the RMSE metric is used to evaluate the performance of the models 

developed with experimental dataset only or combined experimental/synthetic 

dataset. The smaller RMSE refers to better model performance. Second, the slope and 

R2 value of the linear regression line between the true values and the model 

predictions are critical parameters in assessing model performance. The slope 

directly indicates how predicted values are proportional to their actual values, i.e., a 

slope of 1 means perfect match between true and predicted values. The R2 is a 

statistical measure of how close model precision is to the fitted linear regression line. 

Therefore, the slope measures the accuracy of the model and the R2 value measures 

the precision of the model. Third, the NN models developed in the current study were 

initially trained on the limited experimental dataset (N = 15). In this work, the FNN 

model trained on the small experimental dataset showed superior model performance 

to the INN and TNN models. Therefore, we generated a large reliable synthetic 

dataset based upon the experimental dataset. The synthetically-generated data may 

be well-conditioned or ill-conditioned depending on the input data (i.e., t1 and t2 for 

the FNN model). A typical return loss function descends to a global minimum at 

frequency around 10 GHz before increasing at higher frequencies (Fig. 1 and Fig. 7a). 

However, ill-conditioned return loss functions (Figs. 7b-7d) from synthetic data 

generation may have several local minima and unexpected global and local maxima 

in the X-band. The details on synthetic data generation are discussed in the following 

section. 

 

y = 0.0691e-0.221x

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8

R
M

S
E

Nueron Multiplication Factor m



 
 

Figure 7. (a) well-conditioned and (b)-(d) ill-conditioned return loss functions. The green and red 

lines each refers to the synthetically-generated return loss and correspond model prediction. 

 

Synthetic Data Generation 

 

In the FNN model, the relationships between the input (t1 and t2) and output 

(return loss function) variables are relatively straightforward. When trained on an 

experimental dataset only, the FNN model showed excellent performance in return 

loss prediction. However, the INN/TNN models trained on an experimental dataset 

relatively poor predictions due to the complexity of the solution. To overcome such 

issue and correspondingly improve model accuracy, we generated a synthetic dataset 

using the pre-trained FNN model using the experimental dataset. The synthetic 

dataset consisted of three variables (10,000 data points each): t1, t2, and return loss. 

In the synthetic dataset, the t1, t2 were generated randomly using a python random 

number generator function randint() within a specified range and the return loss 

function was predicted from the pre-trained FNN model that takes inputs t1 and t2. 

Figure 8 shows the distributions of synthetic t1 and t2 generated using the baseline t1 

(0.158~1.456 mm) and t2 (0.412~3.082 mm) ranges from the experimental dataset. 

The range of model input parameters can be adjusted to control ill-conditioned return 

loss function generation. It is expected that a narrower input parameter range results 

in less ill-conditioned return loss functions due to the limited size of the experimental 

dataset.  

 



 
 

Figure 8. Synthetic data generation: (a) t1 and (b) t2. 

 

 

RESULTS AND DISCUSSION 

 

FNN Model 

 

Figure 9a shows linear curve-fitting between the minimum return loss values 

captured from an experimental dataset (x-axis) and those predicted from the FNN 

model (y-axis). Note that the FNN model was trained with only experimental dataset. 

As shown in the figure, the linear regression plot shows the R2 value of 0.999, 

standard deviation σ of 0.011, the slope of 1.005, and the loss function value of 0.081, 

indicating excellent model performance. Figure 9b compares two representative 

return loss functions plotted in the X-band frequency range. The FNN model 

prediction (red line) shows a very good agreement with the experimental observation 

(green line). The FNN model trained on only experimental dataset provided sufficient 

accuracy (Fig. 9) and no further training with synthetic data is required. Thus, the 

FNN model was employed to generate a reliable synthetic dataset to improve the INN 

and TNN models. Note that a reliable synthetic dataset has relationships between 

input and out parameters identical to those from an experimental dataset.  

 

 
 

Figure 9. FNN model performance: (a) linear curve fitting between true (experimental) and predicted 

minimum return loss values and (b) return loss function plotted in the X-band frequency range. 

 

 



TABLE I. PERCENTAGE OF ILL-CONDITIONED RETURN LOSS FUNCTION PREDICTION 

FOR VARIOUS T1 AND T2 RANGES. 

Range 
t1, Top  

Thicknesses (mm) 

t2, Bottom Thicknesses 

(mm) 

% ill-conditioned return 

loss function 

Baseline 0.158-1.456 0.412-3.082 17.2 

1 0.158-1.456 2.186-3.082   2.3 

2 0.185-1.456 2.186-3.082   2.1 

3 0.259-1.456 2.186-3.082   0.2 

 

The pre-trained FNN model, when taking synthetic t1 and t2, may predict ill-

conditioned return loss functions. Whenever the top or bottom thickness in the 

experimental dataset is on the lower end of the thickness range, the other thickness is 

on the larger end of the thickness range. Therefore, the experimental dataset may not 

provide sufficient information on the response of dual slab RASs, where both 

thicknesses are simultaneously on the lower end of the experimental range. Table 1 

shows t1 and t2 ranges used to generate 1,000 synthetic data points and the percentage 

of ill-conditioned return loss functions (i.e., Figs. 7b-7d). A decrease in both the t1 

and t2 ranges reduced ill-conditioned return loss function generation. Furthermore, 

increasing the lower limit of t2 from 0.412 to 2.186 mm, while its upper limit remains 

unchanged, decreased the percentage of ill-conditioned return loss functions from 

17.2 to 2.3%. Similarly, increasing the lower limit of t1 from 0.158 to 0.259 mm also 

reduced the ill-conditioned return loss functions from 2.3% to 0.2%. Therefore, the 

FNN models presented in this study predict reasonable results for dual slab RASs 

with t1 in the range of 0.259 - 1.456 mm and t2 in the range of 2.186 - 3.082 mm. The 

Range 3 in TABLE I was used to generate the 10,000 datapoint synthetic dataset to 

train the INN and TNN models. 

 

INN Model 

 

Figure 10 compares predicted t1 and t2 from the INN models trained on the 

experimental dataset (N = 15 in Fig. 9a) and the synthetic dataset (N = 10,000 in 

Fig. 9b). As a reminder, the synthetic datasets is generated using t1 = 0.259-

1.456 mm and t2 = 2.186-3.082 mm (Range 3 in TABLE I). All statistical parameters 

(R2, σ, linear regression slope, and loss function value) indicate that the INN models 

trained on the synthetic dataset shows excellent model performance and efficiency 

comparable to the FNN model. In contrast to the limited experimental dataset, the 

synthetic dataset contains thousands of data points located within the upper and lower 

limits of t1 and t2. As confirmed in Fig. 10, the INN model developed using the 

synthetic dataset can be a reliable tool for designing dual slab RASs with t1 and t2 

thicknesses within Range 3.  

 



 
 

Figure 10. Performance of the INN models trained on (a) experimental and (b) synthetic datasets. 

 

TNN Model 

 

Figure 11 shows linear regression results for the predicted t1 and t2 from the TNN 

models trained on the experimental and synthetic datasets (Fig. 11a and Fig. 11b, 

respectively). Overall, the TNN model performance was poor compared to the INN 

models, regardless of dataset size and type. The TNN model improved slightly when 

trained with the synthetic dataset (Fig. 11), but this was far lower than the FNN model 

(Fig. 9a) and the INN model (Fig. 10b). Considering only a small improvement of 

the TNN model performance with N = 10,000 synthetic dataset, the TNN model may 

achieve an acceptable performance level when N > 1M, making it computationally 

unfavorable. When an identical synthetic dataset is used for training, the TNN model 

is less effective than the INN model. This is probably because the relationships 

between the input and output parameters (t1, t2, and return loss function) is simple 

enough, thus the TNN model may overfit (or have high variance) to the training data, 

which results in poor testing results in this study. In general, the TNN model likely 

performs better in predicting more complex relationships defined by larger 

experimental datasets [8]. TABLE II summarizes the performance parameters of the 

FNN, INN, and TNN models trained on the experimental and synthetic datasets. The 

values in the table clearly shows that using a reliable synthetic dataset is beneficial 

for improving model performance and the INN model performs better than the TNN 

model for given dataset. 

 



 
 

Figure 11. Performance of the TNN models trained on (a) experimental and (b) synthetic datasets. 

 
TABLE II. ANN MODEL PERFORMANCE. 

Model 

Linear Regression Analysis 

R2 
Standard 

Deviation 
Slope 

RMSE 

Loss 

FNN (Exp.) 0.999 0.011 1.005 0.081 

INN (Exp.) 0.889 0.066 0.996 0.146 

INN (Syn.) 0.977 0.001 1.004 0.002 

TNN (Exp.) 0.201 0.244 0.441 3.181 

TNN (Syn.) 0.857 0.010 1.123 1.539 

 

 

CONCLUSION 

 

This work proposes three artificial neural network (ANN) models developed for 

the design dual slab Radar Absorbing Structures (RASs): (1) feedforward neural 

network (FNN), (2) inverse neural network (INN), and (3) tandem neural network 

(TNN) models. The FNN model takes slab thicknesses to predict RAS’s radar 

responses, while the INN and TNN models are inverse models that predict slab 

thicknesses from given RAS’s radar response. The key findings of the present work 

are as follows: 

• The FNN model after hyperparameter optimization shows excellent 

performance in return loss prediction, regardless of a dataset’s size. 

• Using a reliable synthetic dataset generated from an experimental dataset, the 

performance of the INN and TNN models can be significantly improved.  

• The INN model performed better than the TNN model under all conditions, 

regardless of the experimental and synthetic datasets. The INN model trained 

on the 10,000 synthetic dataset good model performance compared to the 

FNN model. 
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