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ABSTARCT 

 Data on insemination records of Holstein Friesian (HF) purebred (n=45,497) and 

crossbred (n=58,497) collected from the BAIF Research Foundation were utilized. The 

conception rate was modeled as a binary trait, using linear repeatability models. Random 

regression models (RRM) were used to obtain the trajectory of variance components across age 

of the bulls. Legendre Polynomials up to order of fit of 4 were used for the random effects of 

additive genetic and permanent environmental effects. 200,000 Gibbs samples were generated 

with a burn-in of 20,000 and thinning interval of 50 using the THRGIBBS1F90 program. 

Heritability estimates were very low (<0.1) in both breeds but peaked at the extreme ages. 

Heritability and repeatability estimates ranged between 0.038 (8 years) to 0.627 (10 years) and 

0.060 to 0.809 respectively in purebreds. Narrower ranges of 0.010 (4 years) to 0.087 (11 years) 

and 0.532 to 0.832 for heritability and repeatability respectively, were obtained in crossbreds. 

Effect of permanent environment was low in purebreds compared to the crossbreds. The study 

using RRM was able to provide genetic parameter estimates of fertility for all ages throughout 

the productive lifespan of bulls. 
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INTRODUCTION 

 India has the world’s largest cattle population but the average milk yield per cow is 

lower compared to other developed countries which could be attributed to the lack of 

genetically superior animals. To increase India’s milk production, several dairy development 

programs were implemented for crossbreeding and grading up indigenous and non-descript 

cattle. The most important biotechnological tool used is artificial insemination (AI) which 

allows the dissemination of a large number of semen doses from genetically superior bulls. 

 Most dairy development programs only incorporate milk production traits where the 

bulls are selected based on their dams’ milk-producing ability. Semen production traits are 



negatively correlated with the milk production traits (Hagiya et al., 2018) which can lead to a 

decline in fertility that reduces the genetic gain and profitability in the long term.  

 The conception rate is measuring the non-return rate (NRR) after 56 to 76 days of the 

first AI service (Murray et al. 1983; Kuhn and Hutchison, 2008; Norman et al., 2008). This 

can be used as a measure of male fertility which provides an index for genetic prediction of AI 

bulls. The outcome of an insemination event depends on male as well as female fertility (Averill 

et al., 2006) but the correlation between male and female fertility is low which emphasizes the 

study of bull (male) fertility independently (Butler et al., 2020). Directly measuring the 

conception rate provides a combined estimate of the manifestation of several semen traits. 

Haugan et al. (2005) demonstrated the superiority of elite bulls over ordinary bulls which 

reiterates the importance of the study of bull fertility. 

 Conception rate estimates collected at the field level (farmers’ herds) are an important 

indicator of bull fertility, which depends on the semen quality. The main advantage of this 

study was these records of insemination that were available from the field level. This not only 

provides insights into the differences in fertility for purebreds and crossbreds but also helps us 

to understand the effects of various factors affecting fertility under practical situation of cattle 

rearing. 

  These insemination records are repeatable in nature and thus, random regression models 

can be beneficial for understanding the trajectories of underlying (co)variance structures over 

the age of the bulls. There are no studies available that have used random regressions for 

modeling conception rates and understanding the variability in bull fertility over the age of the 

bulls is important. This study is also unique as it compares two different genetic groups of 

purebred and crossbred Holstein Friesian bulls. 

 With this background, this study was undertaken to obtain the trajectories for 

conception rate over the productive lifespan of the bulls as well as to understand the differences 

between HF purebred and crossbred bulls. 

MATERIALS AND METHODS 

Semen collection 

 Semen collection was done at two semen stations located at Uruli Kanchan (Pune, 

Maharashtra) and Dharouli (Jind, Haryana). The frozen semen station at Uruli Kanchan is 



situated at 18.5° N and 73.8° E at an altitude of 559 m above sea level and at Dharouli is 

situated at 29.2° N and 76.2°E at an altitude of 227 m above sea level. 

Semen collection was done using a teaser bull in an artificial vagina when the bulls 

were sufficiently stimulated after 2 to 3 false mounts. The time between the two mounts 

differed between the bulls. 1 or 2 ejaculates were collected in a glass tube and stored at 37° C. 

Ejaculate volume was recorded directly and sperm concentration was estimated using a digital 

photometer (IMV technologies). Initial motility was assessed subjectively after semen dilution 

after which 0.25 ml straws with 20 × 106 spermatozoa per straw were prepared. Sealed and 

printed semen straws were then cooled to 4° C for 3 hours followed by stepwise cooling to 

reach -140° C over a span of 7 to 8 minutes and then immersion stored in liquid Nitrogen at -

196° C using a programmable freezer (IMV technologies). Post-thaw motility was also 

assessed subjectively 24 hours post-freezing using a phase-contrast microscope. The ejaculates 

which did not fulfill the minimum standards (https://www.nddb.coop) were discarded though 

the records have been included in the analysis. 

Artificial insemination 

 Data on conception rate was collected from the field where AI was done by Bharatiya 

Agro Industries Foundation’s (BAIF) 170 cattle breeding stations. This included regions from 

Uttar Pradesh (Etah, Unnao, Bareilly, and Meerut districts), Bihar (Chhapra, Chhapra-Siwan, 

Siwan, Samastipur, and Vaishali districts), and Maharashtra (Jalgaon and Beed districts) states. 

AI service is provided at the farmer’s doorstep when they contact the AI technician after which 

the pregnancy diagnosis is done trans-rectally 60 to 70 days later. All the information about the 

cow as well as the farmer maintaining it is recorded by the AI technician at the time of AI. 

Data structure 

 The fertility trait of interest in the present study was the conception rate which was 

recorded as a binary trait with 1 (conceived) and 0 (not conceived). This is done to include all 

the information available and take into account all the factors that could affect male and female 

fertility to reduce bias (Averill et al., 2004). 45,497 HF purebred and 58,497 HF crossbred 

insemination records from 87 purebred and 78 crossbred bulls were utilized for the study. 

Factors included 

 Different factors that could affect the conception rate were identified from the data 

available.  Berry et al. (2011) reported the importance of including these systematic factors in 

https://www.nddb.coop/


the mixed models as they influence the ranking of bulls for their fertility. Fixed factors included 

in the analysis were the location of semen station (Pune, Jind), breed of the cow (HF purebred, 

HF crossbred), breed of the cow (exotic, indigenous, non-descript), the season of semen 

collection (summer- March to June, monsoon- July to October, winter- November to February), 

the year of semen collection (yearly intervals from 2010 to 2016), the season of AI (summer- 

March to June, monsoon- July to October, winter- November to February), the year of AI 

(yearly intervals from 2010 to 2016), the time of semen collection (hourly intervals between 5 

AM to 12 PM), collection interval (≤2 days, 3 days, 4 days, ≥5days), agro-climatic zone 

(Central plain of Uttar Pradesh, Mid-western plain of Uttar Pradesh, Western plain zone of 

Uttar Pradesh, North-west alluvial plain of Bihar, Central plateau with assured rainfall regions 

of Maharashtra), the body condition of the cow (No ribs exposed, 1 rib exposed, 2 ribs exposed, 

3 ribs exposed, all ribs exposed), the heat stage in which AI was done (early, mid, late), parity 

(heifers, first, second, third, fourth, fifth, beyond fifth), and AI sequence (first, second). The 

age of the bull was taken as a covariate. The effects of the semen collector, bull, and AI 

technician were included as random effects. 

Statistical analysis 

The Bayesian approach was used for obtaining the posterior distributions of parameter 

estimates using MCMC (Markov Chain Monte Carlo) and the Gibbs sampling algorithm 

(Magnabosco et al., 2000) to generate Gibbs samples. The average of the samples (posterior 

mean) as a point estimate of variance components was calculated. The standard deviation of 

samples (posterior SD), which is corresponding to the standard error in a frequentist approach 

(e.g., REML) was also obtained. In this study, a linear model was used to model a binary trait 

like the conception rate instead of a threshold model as the number of observations was higher 

in which case the normality assumption of the linear models can be met. Guerra et al. (2006) 

have reported that linear and threshold models rank sires similarly. In general, logistic 

regression is used for modeling probability of binary outcomes but linear models have been a 

suitable alternative for use in mixed models, which enable estimation of variance components 

and further predict breeding value, corrected for various factors affecting the trait. (Gomila 

(2021).   

Records beyond mean ± 4 SD were excluded before analysis as outliers to reduce the 

effect of sampling error. Collectors with less than 20 records, bulls with less than 30 records, 

and AI technicians with less than 100 records were eliminated from the analysis. The second 



insemination recorded which were within 10 days of the first insemination were discarded. 

Records of cows that were sold or which died after the service were also eliminated. 

Exploratory and descriptive analysis of the traits was done using the “psych” package in R 

software. Eight models were formed with different interactions of the fixed factors. The best 

model with the lowest Deviance Information Criterion (DIC) was selected for the identification 

of fixed factors. The fixed factors that were significant at a 5% level of significance and were 

included in the further analysis were the breed of the bull, the breed of the cow, year of AI, 

location of semen station, body condition of the cow, parity of the cow, AI sequence, heat stage 

of the cow, and time of semen collection. The factors related to the cow which affect the bull 

fertility like the breed, body condition, parity, and heat stage of the cow are known as nuisance 

variables that were included to predict bulls’ true capability of impregnating cows (Norman et 

al., 2008; McWhorter et al., 2020). The model can be represented as given below 

Yijklmnopqrstuv = μ + Li + Bj + Ck + CTl + +Sm + Yn + Ro + Hp + Pq + Ar+Ws + Ut + Tu + eijklmnopqrstuv 

Yijklmnopqrstuv = Conception record 

µ  = Overall mean 

Li  = Fixed effect of ith location 

Bj  = Fixed effect of jth bull breed 

Ck  = Fixed effect of kth cow breed 

CTl  = Fixed effect of lth collection time 

Sm  = Fixed effect of mth AI sequence 

Yn  = Fixed effect of nth year of AI 

Ro  = Fixed effect of oth body condition of the cow 

Hp  = Fixed effect of pth heat stage of the cow 

Pq  = Fixed effect of qth parity of the cow 

Ar = Age of the bull in days taken as a covariate 

Ws  = Random effect of sth semen collector, NID (0, 𝜎𝑠
2) 

Ut  = Random effect of tth bull, NID (0, 𝜎𝑎
2) 

Tu  = Random effect of uth AI technician, NID (0, 𝜎𝑡
2) 

eijklmnopqrstuv = Random error associated with each record, NID (0, 𝜎𝑒
2) 



The significant fixed factors identified from the best model were then used for obtaining 

the variance component estimates using univariate and random regression models. For both 

analyses, 200,000 Gibbs samples were generated with a burn-in of 50,000 and thinning interval 

of 50. The stability of the model was ascertained using trace plots, which were obtained from 

post-Gibbs samples, of the parameters plotted along with the number of iterations.  

For univariate analysis, a repeatability animal model was used for obtaining the (co) 

variance components and estimating the genetic parameters. For individual conception records, 

y = Xb + Za +Wpe + e 

Where y = n×1 vector of observations with n = number of records; b= p×1 vector of 

fixed effects with p as the number of levels for all fixed effects; a = q×1 vector of random 

animal effect with q as the number of animals including pedigree; pe = r×1 vector of random 

permanent environmental effects and non-additive genetic effects with r as the number of 

animals with records; e = n×1 vector of random residual effects; X = design matrix of order 

n×p which relates records to fixed effects; Z = design matrix of order n×q which relates records 

to animal’s direct genetic random effects and W = design matrix of order n×r which relates 

records to permanent environmental effects. The assumed variance-covariance structure will 

be 

V [
a
pe
e
] = [

Aσa
2 0 0

0 Iσpe
2 0

0 0 Iσe
2

] 

Animal genetic effect ‘a’ was assumed to be normally distributed with mean 0 and 

variance 𝐴σa
2 where A is the numerator relationship matrix and σa

2 is the additive genetic 

variance. Permanent environmental and residual effects were assumed to be normally 

distributed with mean 0 and variances Iσpe
2  and Iσe

2 respectively where I is the identity matrix 

of the order of the number of records and σpe
2  and σe

2, the variances for permanent 

environmental and residual effects, respectively. In addition to the above effects, semen 

collector and AI technician were included as random effects for production and fertility traits 

with mean 0 and variances 𝜎𝑠
2and 𝜎𝑡

2 respectively. 

For random regression models, the age of the bulls in days was taken as the control 

variable to obtain the trajectories of genetic parameters for conception rate over the age of the 

bulls. The animal and permanent environmental effects were modeled using Legendre 



polynomials up to the order of fit of four with error variance modeled as a homogenous class 

of random effects. Seven models with different combinations of animal and permanent 

environmental effects were formed for purebreds and crossbreds. The best model with the 

lowest DIC value was selected which was then used for obtaining the trajectories o genetic 

parameters over the age of the bulls.  

Yij = Xb + ∑ Zaak + ∑ Zppk

kp−1

k=0

+ Cm + e

ka−1

k=0

 

Where Yij is the conception rate of ith animal at jth age, b is the vector of significant fixed 

effects or incidence matrix relating fixed effects with Y, ak and pk: set of n values (n = number 

of bulls) of k random regression coefficients corresponding to animal and permanent 

environment effects, with the order of fit ka and kp respectively, Za and Zp are incidence matrices 

with dimensions n × ka and n × kp respectively, Cm: random effect of semen collector with mean 

zero and variance 𝜎𝑚
2  and ‘e’ is the random residual heteroscedastic error variance. The model 

also included fixed regression for age with the order of that of the animal effect.  

The elements of the different Z matrices are  

Z = фi = Λi(tij) 

Where, where фi is the ith (i=0,..,k-1) Legendre polynomial for a k-order of fit, Λi are 

the coefficients of Legendre polynomial for order i, and tij, the elements for ith order and jth age 

of Legendre polynomial are the ages standardized between -1 and +1, derived as 

tij = (
2(T − Tmin)

Tmax − Tmin
) − 1 

The Legendre polynomials for the respective ages were obtained using the 

‘Orthopolynom’ package in R.  

Mixed model equations for the effects included in these models are 

[

𝑋′𝑋 𝑋′𝑍𝑎 𝑋′𝑍𝑝

𝑍𝑎
′𝑋 𝑍𝑎

′𝑍𝑎 + 𝐴−1𝑘𝑎
−1 𝑍𝑎

′𝑍𝑝

𝑍𝑝
′𝑋 𝑍𝑝

′𝑍𝑎 𝑍𝑝
′𝑍𝑝 + 𝐼𝑝𝑘𝑝

−1

] [
𝑏
𝑎
𝑝
] = [

𝑋′𝑦

𝑍′𝑎𝑦

𝑍′𝑝𝑦
] 



Where A is the numerator relationship matrix, I is the identity matrix,  is the 

Kronecker’s product, and Ki is the (co)variance matrix of the random regression coefficients of 

the effects indicated in subscript. 

The genetic (co)variance between ages was estimated from the matrix of random 

regression coefficients using the general expression 

Gxj = ΦxjKxjΦ’xj 

Where Gx is the (co)variance matrix for x = animal or individual permanent 

environment and Φxj is the vector of Legendre polynomials for the random effect of x and jth 

age group.  

All analyses were done in a Bayesian framework using the BLUPF90 family of 

software (Misztal et al. 2018). THRGIBBS1F90 was used for generating Gibbs samples and 

Post-Gibbs analyses were done with POSTGIBBSF90.  

Heritability estimates were calculated as the ratio of additive genetic variance (σa
2) to 

total phenotypic variance (σp
2). 

h2 =
σa
2

σp2
 

Repeatability (r) was estimated as a ratio of the sum of additive genetic variance (σa
2) 

and permanent environmental variance (σpe
2 ) to total phenotypic variance (σp

2). 

r =
σa
2 + σpe

2

σp2
 

RESULTS AND DISCUSSION 

 The numbers of AI records available over the age of the bulls in months have been 

plotted in Figure 1. The numbers of records for both breeds were lower at the extreme ages. A 

higher number of records were available for HF crossbreds than purebreds which could be 

attributed to earlier semen collection in the case of crossbred bulls.  



 

Figure 1: Number of records for conception rate over the age at collection in months 

The results of the descriptive statistics and the genetic parameter estimates obtained 

through the univariate analysis have been represented in Table 1. 

Table 1: Descriptive statistics, heritability and repeatability estimates with their 

posterior standard deviations 

Breed N n Mean SD CV h2 PSD r PSD 

HF purebreds 87 45,497 53 50 94.34 0.0023 0.0021 0.0053 0.0033 

HF crossbreds 78 58,497 49 50 102.04 0.0006 0.0005 0.0013 0.0008 

N: number of bulls, n: number of records, SD: standard deviation, CV: coefficient of variation, h2: heritability, r: repeatability, 

PSD: posterior standard deviation 

 The mean conception rate was higher in purebreds than in crossbreds though the 

standard deviation remained constant for both the genetic groups. The conception rate in HF 

purebred bulls was in accordance with Ortega et al. (2018) and Bhave (2021) while it was very 

high compared to McWhorter et al. (2020). In the case of binary data, the standard deviation 

approaches 0.5 as the number of records increases (Schumm et al., 2019). This could be the 

reason why the standard deviation was larger than the mean in the case of HF crossbred bulls 

which lead to a larger coefficient of variation. A lower mean for conception rate in the case of 

crossbreds could be due to a higher number of morphologically abnormal spermatozoa (Sarder, 

2003; Rabidas et al., 2012). Kumaresan et al. (2021) also reviewed male sub-fertility in the 

case of crossbred bulls and attributed it to spermatozoal abnormalities which are greater in the 

case of crossbred bulls compared to purebreds.  



 The heritability and the repeatability estimates obtained from the univariate analysis 

were very low in both the genetic groups. These estimates though low, were precise as the PSD 

obtained for the estimates was also lower. The heritability estimates from other studies were also 

low and were below 0.1 (Averill et al., 2004; Aguilar et al., 2011; Hagiya et al., 2018; Berry 

et al., 2014) for HF purebred and crossbred bulls. Fertility is a fitness trait and thus as observed 

in the present study heritability is expected to be low. As this is a binary trait, even a small 

difference in the genetic ability of the bulls could determine the outcome (conceived or not 

conceived) of some inseminations. This trait is influenced more by the environment and thus 

improvement in this trait requires more sources of information from relatives to improve the 

accuracy of selection. Indirect selection where the correlation of fertility (conception rate) is 

high with some semen production traits is also another possibility. Berry et al. (2011) studied 

the correlation between male and female fertility and concluded that selection in one will 

improve fertility in the other. This shows that even though the estimates of genetic parameters 

are lower for bull conception rate, improvement in bull fertility will improve the cow fertility 

which is desirable in any breeding program.  

Berry et al. (2011) and McWhorter et al. (2020) studied the variation in the sire 

conception rate along with the age of the bulls and suggested that the age of the bull at semen 

collection had a large impact on the conception rate. Averill et al. (2004) implied that the 

relationship between the conception rate and the age of the bull cannot be studied using simple 

regression techniques as they are non-linearly related. This phenotypic variability with age 

could have underlying genetic variability which was understood in this study using random 

regression models to model the variance components and the genetic parameter estimates for 

the conception rate in bulls. 

 Models with Legendre polynomials of different orders of fit up to 4 for the additive effect 

and the permanent environmental effect were needed to accommodate for the variance in the fertility 

trait. The DIC values for each combination are given in Table 2. HF purebreds showed best fit of 4th 

order for additive effects and 3rd for permanent environmental effects whereas the reverse was true in 

the case of crossbreds. This shows that there was higher additive genetic variability in HF purebreds 

and higher environmental variability in HF crossbreds. 

Table 2: Order of fit of Legendre polynomials for additive and permanent environmental 

effects along with the DIC values  



Order of fit Breeds 

𝝈𝒂
𝟐 𝝈𝒑𝒆

𝟐  HF purebred HF crossbred 

2 2 64683.85 83840.58 

2 3 64682.63 83831.80 

3 2 64685.70 83839.07 

3 3 64687.12 83835.93 

3 4 64682.26 83831.78 

4 3 64678.98 83835.96 

4 4 64693.76 83832.73 

DIC: Deviance information criteria, 𝜎𝑎
2: additive genetic variance, 𝜎𝑝𝑒

2 : permanent environmental variance 

 Figure 2 depicts the trajectories of heritability and repeatability over the age in months 

and Table 3 summarizes the estimates for additive genetic effect, permanent environmental 

effect, heritability and repeatability for conception rate in HF purebred and HF crossbred bulls.

 

Figure 2: Heritability and repeatability estimates over the age of the bulls (Horizontal green line is the 

heritability for post-thaw motility obtained through univariate analysis) 

 In purebreds, the trend for additive genetic and permanent environmental variance was 

almost horizontal except at the endpoints where the variances were higher. The heritability and 

repeatability also followed a similar trend and the two estimates did not differ much. The 

estimates of heritability were very low in the middle and overall it ranged from 0.038 (8 years) 

to 0.627 (10 years) while repeatability ranged from 0.060 to 0.809. However, the higher 



estimates were found at the extreme ages with less no of records. The values were uniform and 

low for the ages between 4 and 8 years and were under 0.15 for heritability and 0.2 for 

repeatability. 

 In the case of HF-crossbreds, the trends for all the estimates declined initially up to 4 

years of age and then gradually increased up to 9 years followed by a short declining phase 

again. Heritability was again very low with a narrow range of 0.011 (4 years) to 0.087 (3 years). 

Estimates obtained were uniform and closely mimicked the values obtained through univariate 

analyses. Repeatability ranged from 0.532 (4 years) to 0.862 (3 years) and was considerably 

higher than heritability for all the ages. 

 The conception rate had a low heritability in both breeds excluding extreme ages. This 

overestimation could be attributed to the less number of records (Carabaño et al., 2007; Strathe 

et al., 2013; Al-Kanaan et al., 2015) as seen in Figure 1 as well as the ‘end-of-range’ problem 

or ‘Runge’s phenomenon’ (Meyer, 2005; Venkataramanan, 2021). These higher estimates were 

imprecise as seen from the higher PSD for these ages (Table 3).  

Lower heritability estimates obtained from univariate, as well as random regression 

models, is expected for a trait like fertility which is related to fitness. A part could be attributed 

to stringent protocols followed during lab screenings to eliminate spermatozoa that do not meet 

the required criteria and sperm concentration modifications by dilution which could reduce the 

genetic variability (Kuhn et al., 2008). Further estimates obtained using threshold models are 

usually on the higher side (Kadarmideen et al., 2000; Kuhn et al., 2008). Effect of the 

permanent environment was also low in HF purebred bulls which is evident from less gap 

present between the heritability and repeatability values. Estimates of heritability were very 

close to the univariate values and were mostly consistent without any major fluctuations and 

so selection on the basis of univariate analyses could be practiced for these traits. 

Table 3: Additive genetic effect, permanent environmental effect, heritability and 

repeatability of conception rate in HF purebred and HF crossbreds 

 
𝝈𝒂
𝟐 𝝈𝒑𝒆

𝟐  h2 PSD r PSD 𝝈𝒂
𝟐 𝝈𝒑𝒆

𝟐  h2 PSD r PSD 

     Breed 

Age 

HF purebreds HF crossbreds 

3 years 0.176 0.086 0.345 0.158 0.513 0.004 0.026 0.026 0.087 0.130 0.862 0.070 



4 years 0.033 0.027 0.107 0.159 0.194 0.006 0.003 0.007 0.011 0.127 0.532 0.104 

5 years 0.016 0.023 0.054 0.148 0.134 0.007 0.005 0.011 0.018 0.109 0.653 0.117 

6 years 0.014 0.018 0.051 0.141 0.113 0.007 0.009 0.013 0.033 0.099 0.724 0.113 

7 years 0.014 0.013 0.051 0.143 0.099 0.006 0.015 0.018 0.052 0.098 0.792 0.107 

8 years 0.010 0.007 0.038 0.150 0.063 0.006 0.022 0.024 0.074 0.101 0.845 0.102 

9 years 0.071 0.022 0.208 0.159 0.272 0.005 0.024 0.027 0.079 0.111 0.856 0.098 

10 years 0.817 0.236 0.627 0.166 0.809 0.005 0.013 0.014 0.046 0.127 0.757 0.094 

𝜎𝑎
2: additive genetic variance, 𝜎𝑝𝑒

2 : permanent environmental variance, h2: heritability, r: repeatability, PSD: Posterior 

standard deviation 
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