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Abstract:
I use two examples to illustrate three methods for model averaging: using AIC weights, using
BIC weights, and fully Bayesian analyses. The first example is a capture-recapture study that
estimates the population size by averaging over 4 models for capture probabilities. The second
is an analysis of a study of logging impacts on Curculionid weevils using a before-after-control-
impact (BACI) study design. The estimated impact is averaged over 4 ecologically relevant
models.

Both examples demonstrate the sensitivity of model weights, or posterior model probabilities, to
the choice of prior model probabilities and prior distributions for parameters. The model averaged
estimates and their confidence intervals are less influenced by those choices. The BACI-design
example also demonstrates the need to carefully choose the model parameterization so that the
parameter of interest, the interaction, has the same interpretation for all models in the model set.
I also briefly discuss three other frequentist approaches to model averaging: bagging, stacking,
and model-averaged-tail-area confidence intervals.
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1 Introduction1

A statistical analysis relies on a model. Commonly, multiple models are possible. Some examples2

of model choices include:3

• predictive modeling of observational data. It is well-known that using an appropriately4

chosen subset of the possible “X” variables provides more precise predictions. The question5

is then choosing an appropriate subset.6

• using propensity score matching to reduce bias in estimated treatment effects due to con-7

founding (Guo and Fraser 2010). The propensity score model predicts the probability that8

a unit receives the treatment instead of a control. What set of possible “X” variables9

should be included in that propensity score model?10

• including baseline covariates in a randomized experiment. Although randomization guar-11

antees unbiased estimates of treatment means, including baseline covariates may increase12

the precision of those estimates. Again, the question is which covariates to include.13

• estimating population size using mark-recapture methods. The goal is to estimate N , but14

doing that requires modeling the detection process (Otis et al. 1978). The question is which15

detection model is most appropriate for the population under study.16

• modeling variances in a designed experiment. The study design may specify the model for17

the expected values, but what model should be used for the variances? Homoscedastic?18

Dependent on the mean? Unstructured heteroscedastic?19

• interpolating spatial data. Using kriging requires choosing a model for the covariance20

between pairs of observations. There are many different possible models. The question is21

which is the most appropriate.22

• choosing a variance-covariance matrix for repeated measurements on the same subjects.23

There are many possible models for repeated measures data (Diggle et al. 2002). Which24

one is most appropriate?25

• for any of the above situations, what distribution should be assumed for the observations?26

Often, choices are made by default. The model for continuous data from a randomized ex-27

periments frequently assumes equal variances and normally distributed errors. It is good data28

analysis practice to then use diagnostic tools to assess the adequacy of these choices.29

An alternative is to use the data to select a single model. This can be done formally by using a30

statistic such as AIC or BIC to choose variables, variance structures, spatial correlation models,31

or distributions. Or, it can be done informally by using graphical diagnostics such as different32

types of residual plots to assess preliminary model choices. Once all the choices have been made,33

the resulting model is treated as if it were known a-priori. The fact that the data were used to34

choose that model is ignored. Breiman (1992) has called this a “quiet scandal in the statistical35

community”. He continues, “it is clear that selecting a sequence of submodels in terms of an36

optimum or suboptimum fit to the data can produce severe biases in all statistical measures used37

for the classical linear model.” (Breiman 1992, p. 738).38
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Model averaging (MA) provides a mechanism to avoid the choice of a single model. Multiple39

models are fit to a data set and the results combined. The benefits of model averaging can be40

viewed from two complementary perspectives:41

• The MA estimator of a parameter is often less biased than a single model estimator. This is42

because estimators from different models are likely to have different biases. If some biases43

have opposite signs, the bias of the averaged estimate is the average of the biases. This is44

often closer to 0.45

• MA accounts for the uncertainty in the choice of model. The variance of an MA estimator46

is usually larger than the variance from a single model, because MA accounts for the47

heterogeneity of estimates across models.48

An analogy due to Ripley (2004) provides a useful comparison between selecting a single model49

and model averaging. Imagine you have a large panel of experts, each of whom has provided an50

estimate. What is the best way to use that collection of estimates? You could decide on the51

expert you trust the most and adopt their estimate and ignore all others. That is selecting a52

single model. Or, you could seek a consensus estimate that combines all the estimates. That53

is model averaging. If you could consistently identify the most accurate expert, choosing their54

single estimate is the best approach. In many empirical studies, it is hard to identify the most55

accurate estimate. In those situations, a consensus estimate turns out to be more accurate.56

Model averaging is not a new idea. One early example is forecasting future observations in a time57

series of airline passenger counts (Bates and Granger 1969). Applications of model averaging58

in agriculture and natural resources include yield prediction (Huang et al. 2017), forecasting59

precipitation (Kleiber et al. 2011), and yield-gap analysis of the factors limiting crop yield (Prost60

et al., 2008). Modern computing power and software have made MA more feasible.61

The MA estimator of some quantity, θ̂MA, is very simple. Consider multiple models, Mk, k =62

1, 2, . . . , K, where K is the number of models under consideration. All of the models provide an63

estimate of the quantity of interest, θk. Fitting all models to the data gives you K estimates of64

θ: θ̂k, k = 1, 2, . . . , K. Associated with each model is a model weight, wk. Model weights are65

non-negative and sum to 1, i.e. wk ≥ 0 ∀k and
∑

k wk = 1. The MA estimator is then66

θ̂MA =
∑
k

wkθ̂k. (1)

Everything else about model averaging is just the details. Three of the important details are:67

• How do you choose the model weights, wk?68

• How do you estimate the precision of θ̂MA or construct an interval estimate from θ̂MA?69

• Should you take a frequentist or Bayesian approach to model averaging?70

The literature on these details is extensive. Fletcher (2018) provides a summary of MA methods71

and a thorough overview of the literature. Dormann et al. (2018) review the use of model72

averaging in ecology. I will use two examples to provide an introduction to model averaging73

methods.74
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2 Examples75

I use data from a mark-recapture study of eastern chipmunks and a before-after-control-impact76

(BACI) study of logging impacts on Chironomid weevils to motivate, describe, and illustrate77

model averaging. R code, BUGS code and both data files are included in the supplemental78

material (to be provided soon).79

The chipmunk data set is based on Mares et al. (1981) experimental introduction of 85 eastern80

chipmunks to an island in Pymatuning Reservoir, Pennsylvania. Prior to the introduction, there81

were neither chipmunks nor predators on the island. A mark-recapture study with 194 traps on82

a regular grid across the island was set up. Traps were checked once or twice a day for a total83

of 13 capture occasions over 8 days. Mares et al. used these data to compare the accuracy of84

Lincoln-Peterson and related estimators of population size. To emphasize the consequences of85

model averaging, I removed data for 3 capture occasions with especially low capture probability.86

The result is data from 10 capture occasions; 71 animals are seen at least once. Three animals87

died or were removed from the island, so the population size during the mark-recapture sampling88

was 82 animals.89

Mares et al. (1981) report the numbers of tagged animals and total animals caught each trap-90

ping occasion and the frequency distribution of the number of recaptures. I simulated capture91

histories consistent with these summaries. One difference is that Mares et al. suggest that there92

were two subpopulations with different capture probabilities. My simulated data assumed no93

heterogeneity.94

The second example is based on a study of the impact of logging a tract of tropical forest on the95

abundance of many species of herbivores (Basset et al. 2001). My example is based on the data96

for Chironomid weevils. Two tracts of tropical forest were delineated. The number of weevils was97

counted in each tract monthly for 11 months (the “before” data). One tract was randomly chosen98

to be logged, while the other was left undisturbed. The number of weevils were again counted99

monthly for 11 months (the “after” data). Basset et al. (2001) provided the means and standard100

errors for each of the four groups of samples from which I recreated the data set. The monthly101

counts were independent Poisson samples constrained to match the means provided by Basset et102

al. (2001). Because there is no replication of the logging treatment, logging status is confounded103

with the tract. This is typical when BACI designs are used to assess the environmental impact104

of a facility or point source of pollution. One advantage of the BACI design is that the “before”105

data helps control for pre-existing differences between tracts. Stewart-Oaten and Bence (2001)106

and Underwood (1994) provide more background on BACI designs and related approaches to107

assess environmental impact.108
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3 Model selection using the chipmunk data109

The goal of the chipmunk data analysis is to estimate the population size. The population110

is sampled by 10 capture occasions over 8 days, so it is reasonable to assume closure, i.e.,111

no births, deaths, immigrants, or emigrants. Because of imperfect detection (not all animals112

are trapped on a capture occasion), the true population size is likely to be larger than the113

number of animals seen at least once. The classic approach to estimate the size of a closed114

population is to fit one of the Otis et al. (1978) models. Different models correspond to different115

assumptions about detection probabilities. Model M0 assumes that every animal has the same116

capture probability on all sampling occasions. Model Mt assumes that the capture probability117

varies between sampling occasions (times) but each animal has the same capture probability118

on a sampling occasion. Model Mb models a behavioral response known as “trap-happiness”119

or “trap-shyness”. That is each animal has one capture probability until the first time they120

are captured; subsequent times have a different recapture probability. Model Mtb includes both121

time-varying capture probabilities and a behavioral response. In its most general form, this122

model is overparameterized. A common approach is to assume a logit-additive model for the123

capture probability. That is, logit pij = µ + tj + cXij, where pij is the capture probability for124

animal i on occasion j, µ and ti model the time-specific probability of first capture, Xij is an125

indicator variable with the value of 1 if animal i has been captured prior to occasion j and 0126

otherwise. The parameter c describes the behavioral change in capture probabilities. Otis et al.127

(1978) proposed 4 additional models that include heterogeneity of capture probability between128

individuals. I do not consider any of the heterogeneity models.129

All four Otis models can be fit by maximum likelihood. The estimated population sizes, N̂ , from130

each model are given in Table 1. Although similar, they are not identical. Which value should131

be reported? The current standard approach is to use model selection to identify the best model.132

Model # param AICc ∆ AICc N̂ se
Mtb 12 395.5 0 76.7 5.3
Mt 11 396.3 0.79 72.5 1.6
Mb 3 396.6 1.08 78.1 4.9
M0 2 402.1 6.57 72.7 1.6

Table 1: Number of parameters, model fit statistics, estimated population size N̂ and the stan-
dard error of N̂ for each of the four Otis models fit to the chipmunk data. Models are sorted
from best (smallest AICc value) to worst fit.

The model selection approach (Burnham and Anderson 2002) is to identify a set of biologically133

reasonable models, fit each to the data, compute a model fit statistic for each model, then choose134

the best model. Inferences for parameters such as N are then conditional on that choice of135

model. For my analysis of the chipmunk data, the model set is the four models, M0, Mt, Mb,136

and Mtb. Two frequently used model fit statistics are the Akaike Information Criterion (AIC)137

and its small-sample corrected modification, AICc. Both are computed from the log likelihood138
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evaluated at the maximum likelihood estimates of the parameters, logL, and the number of139

model parameters, p. AIC is:140

AIC = −2 logL+ 2p. (2)

AICc also depends on the number of observations n.141

AICc = AIC +
2p(p+ 1)

n− p− 1
.

Both can be viewed as measure of the fit of the model to the data, quantified by the deviance142

= −2 logL, with a penalty for the complexity of the model. For AIC, that penalty is 2p. The143

AICc penalty is slightly larger. When the number of observations is large relative to the number144

of parameters in the model, the difference between the two statistics is small. AICc values for145

the four models are given in Table 1.146

The best model is the one with the smallest AIC or AICc value. Here, that is model Mtb (Table147

1, although two other models have very similar AICc values. Since AICc is a statistic computed148

from the data, it is subject to sampling variability. A new sample of data may indicate a different149

best model. Burnham and Anderson (2002) suggest that models with AICc values within 2 units150

(or 4 units, Burnham and Anderson 2004) of the best model are possible alternatives to the best151

model and models with AICc values more than 10 units from the best model can be ruled out152

as implausible. Using these guidelines, models Mt and Mb are possible alternatives.153

Model selection is often complemented by a model sensitivity analysis. Results from other154

reasonable models are reported along with those from the best model. Applying this approach155

to the chipmunk data, you would report an estimated population size (standard error) of 76.7156

(5.3) from model Mtb along with results from model Mt: 72.5 (1.6) and Mb: 78.1 (4.9). Each of157

these estimates assumes that the named model is the model that generated the data. Instead158

of reporting multiple results, model averaging will provide a single estimate with an uncertainty159

that accounts for the choice of model.160

4 Introduction to model averaging, using the chipmunk161

data162

A model averaged estimate is a weighted average of the model-specific estimates from multiple163

models. The weights for each model are the wk coefficients in Equation (1). There are three164

general approaches to determining those model weights (Fletcher 2018):165

1. The probability that a model is the “true” model.166

This approach assumes that the “true” model, the one that generated the data, is one167

of the models in the evaluation set. In practice, the true model can be relaxed to be168

an approximation to the true model. The model weights quantify the probability that a169

particular model is the true model or its approximation. This approach is closely related to170
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the use of Bayesian estimates of posterior model probabilities or the BIC statistic (defined171

below).172

2. The out-of-sample prediction error for a model.173

This approach focuses on estimation and prediction of parameters or responses. The model174

weights reflect the accuracy of out-of-sample predictions. That out-of-sample prediction175

error can be estimated either by in-sample prediction error penalized for model complexity176

or out-of-sample prediction error. The model set need not include the true model. The goal177

of model averaging is to obtain more accurate estimates by trading off bias and variance.178

This approach is closely related to the use of the AIC, AICc, or cross-validation.179

3. Targeted criteria that focus on some other important aspect of a model.180

Using out-of-sample prediction error or the model probability as the criterion implicitly181

considers all parameters in a model. An alternative is to focus on specific parameters or182

linear combinations of them. Model weights are based on a focused information criterion183

that targets that specific aspect of the model (Claeskens and Hjort (2008, pp 145 et seq.). If184

multiple aspects are relevant, different model weights will be used for each target. Targeted185

approaches will not be discussed here. Further information can be found in Claeskens and186

Hjort (2003) and Claeskens and Hjort (2008); an application is described in Yang et al.187

(2015).188

Each of these approaches can be implemented in a frequentist manner or a Bayesian manner.189

4.1 Frequentist model averaging190

Burnham and Anderson (2002) recommend frequentist model averaging using model weights191

calculated from model AIC or AICc statistics. At least for now, this approach is the most192

commonly used model averaging method in wildlife research. I illustrate this approach using the193

chipmunk study. The AICc estimated weight for model k in a model set of K models is defined194

as195

wk =
exp(−∆AICck/2)∑

i=1···K exp(−∆AICci/2)
. (3)

The quantity ∆AICci is the difference in AICc statistics between the best model in the model set,196

i.e., the one with the lowest AICc statistic, and the AICc statistic for model i. The AIC weight197

is similar, except using AICk instead of AICck. Either set of weights sums to 1 because of the198

denominator. Table 2 shows the AIC weights for the four models fit to the chipmunk data. We199

see that the largest weight is given to model Mtb that has the smallest AICc statistic. The two200

models, Mt and Mb, with AICc statistics within 2 units of model Mtb have appreciable model201

weight. The weight given to a model declines as its AICc statistic is further from that of the202

best model, so model M0 with a moderately large ∆ AICc has a small model weight. The model203

averaged estimate of N̂ is N̂MA =
∑

k=1,2,3,4wk (N̂k | Mk) = 75.8. In this case, I am explicitly204

indicating the dependence of N̂k on the model, Mk.205

Calculating a standard error or a confidence interval for frequentist model averaging is difficult206

for two reasons (Hjort and Claeskens 2003). The sampling distribution of N̂MA is a mixture207
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Model ∆ AICck wk N̂k se
Mtb 0 0.436 76.7 5.3
Mt 0.79 0.294 72.5 1.6
Mb 1.08 0.254 78.1 4.9
M0 6.57 0.016 72.7 1.6

Table 2: Model weights, AICc statistics, wi, and estimated population size N̂i and the standard
error of N̂i for each of the four Otis models fit to the chipmunk data. Models are sorted from
best (smallest AICc value) to worst fit.

of the model-specific sampling distributions, with mixture proportions given by the estimated208

model weights. And, the estimates from different models are almost always correlated with a209

usually unknown correlation structure.210

There are two standard error estimators in common use. Both combine within-model uncertainty211

and between-model heterogeneity of the estimates. The first, Burnham and Anderson (2004)’s212

“revised estimator” ignores the correlation between estimators and calculates213

se1 =

√√√√ K∑
k=1

wk

[
v̂ar(N̂k | mk) + (N̂k | mk − N̂MA)2

]
.

This averages the variances and contributions to heterogeneity, then takes the square root to214

convert a variance to a standard error. The alternative, proposed by Buckland et al. (1997),215

se2 =
K∑
k=1

wk

√
v̂ar(N̂k | mk) + (N̂k | mk − N̂MA)2.

This averages the standard errors. Buckland et al. motivate their estimator as an ad-hoc cor-216

rection for the correlation among estimates. For the chipmunk data, the two standard error217

estimates of N̂MA have very similar values: 4.40 for the revised se estimator and 4.48 for the218

Buckland estimator. An extensive set of simulations by Burnham and Anderson (2004) suggests219

the two estimators frequently have very similar values.220

Calculating an appropriate confidence interval for a model-averaged estimate is even more trou-221

blesome than calculating the standard error. The problem is that the sampling distribution of222

N̂MA is a mixture distribution. If the model-specific estimates are maximum likelihood estimates,223

they have asymptotic normal distributions. The model-averaged estimate may have a sampling224

distribution that is a mixture of normal distributions, which could be skewed or multimodal,225

depending on the model-specific estimates and model weights. This suggests that the empirical226

coverage of Wald-style confidence intervals may be far from nominal. The currently best avail-227

able confidence interval estimator is the model-averaged-tail-area (MATA) estimator (Fletcher228

and Turek 2011, Fletcher and Turek 2012). Given a cumulative sampling distribution, FN̂(x) for229

a model-specific estimate N̂ , the lower bound of a 1 − α two-sided equal-tailed model-specific230

7



Type Interval 95% CI
Model averaged MATA-Wald (72.4, 100.1)
Model averaged Wald (72.5, 107.9)
Model-specific Wald Mtb (74.0, 174.0)
Model-specific Wald Mt (72.6, 102.1)
Model-specific Wald Mb (74.0, 172.9)
Model-specific Wald M0 (72.6, 103.7)

Table 3: 95% confidence intervals for the model-averaged estimate of number of chipmunks,
computed using either the MATA method or Wald intervals, and the four model-specific Wald
confidence intervals.

confidence interval is the value, xl, for which FN̂(xl) = α/2. Turek and Fletcher (2011) extend231

this to a model-averaged estimate by considering the weighted average of the lower tail proba-232

bilities. The lower confidence bound of a two-sided equal-tailed 1− α confidence interval is the233

value, xl, that solves234

K∑
k=1

wk FN̂k
(xl) = α/2.

This approach can be used with any valid cumulative sampling distribution. Turek and Fletcher235

(2012) give the name “MATA-Wald interval” to MATA intervals computed from normal or T236

sampling distributions; Fletcher and Turek (2011) give the name “MATA-profile interval” to237

MATA intervals computed from profile likelihood statistics. Simulation-based comparisons of238

the coverage of the MATA intervals and various alternatives show that the MATA intervals have239

coverages closer to nominal than do the alternatives. The full confidence distribution can be240

estimated by computing model-averaged tail probabilities for a sequence of x values (Fletcher et241

al. 2019).242

For the chipmunk data, the AICc-selected model, Mtb, has a very large upper bound for the243

95% Wald confidence interval for N̂ (Table 3). The upper bound of the MATA-Wald interval is244

much lower. An alternative confidence interval is a Wald interval computed from log N̂MA and245

its standard error; this has a slightly larger upper bound than does the MATA-Wald interval.246

The estimated sampling distributions of log N̂MA and N̂MA (Figure 1) illustrate why the MATA247

interval differs from the Wald interval. Log N̂MA has a skewed sampling distribution, while the248

Wald interval method assumes a normal distribution. When back transformed to population249

sizes, the consequence is that upper quantiles of the empirical distribution are smaller than those250

assumed by the Wald method.251

When AIC is used to determine model weights, the model set needs to be chosen carefully to avoid252

redundant or near-redundant models. Near-redundant models are two or more models containing253

highly correlated variables. To illustrate the issue caused by redundant models, consider a set254

of 6 models. Model 1 includes temperature in degrees Celsius; model 2 includes temperature255

in degrees Fahrenheit. These are redundant models and will have the same log Likelihood and256

AIC statistics. The other 4 models have different variables. The 6 models have ∆AIC statistics257
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Figure 1: Sampling distributions for log N̂MA and N̂MA estimated from a sequence of MATA
confidence intervals. Each is compared to their sampling distributions assumed by the Wald
method, normal for log N̂MA and log normal for N̂MA.
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of 0, 1, 1, 3, 5 and 6, where models 1 and 2 both have ∆AIC statistics of 1. The associated258

model weights are 0.39, 0.24, 0.24, 0.09, 0.03, and 0.02. If only one of the temperature models is259

included in the model set, there are now only 5 models. The ∆AIC statistics are 0, 1, 3, 5 and 6,260

with associated model weights of 0.51, 0.31, 0.11, 0.04, and 0.03. The weight given to the single261

temperature model, 0.31, is neither the weight given to either model 1 or 2, 0.24, when both are262

in the model set, nor their sum, 0.48.263

AIC is just one of the statistics that can be used to determine frequentist model weights (Fletcher264

2018, section 3.2). Two promising alternatives are bagging (Buckland et al. 1997) and stacking.265

I summarize them here; more details are given in Fletcher (2018).266

Bagging is the use of a bootstrap samples to estimate model weights. The bootstrap can be a267

parametric or non-parametric bootstrap of observations or residuals. The choices depends on268

what is most appropriate for the problem at hand (Buckland et al. 1997). For each of B bootstrap269

samples, a model selection criterion is computed for every model in the model set; the identity270

of the “best” model and the estimated parameter (or prediction) for the “best” model, θ̂k are271

recorded. The model weight, wB
k , for model k is the proportion of bootstrap samples for which272

model k is selected, i.e. wB
k = Bk/B, where Bk is the number of times model k is selected. The273

model averaged estimate is then:274

θ̂BAG =
K∑
k=1

wB
k θ̂k,

where θ̂k is the average estimate when model k is selected.275

Bagging provides a way around the redundant or nearly-redundant model issue with AIC-based276

weights. If there are two redundant models, only one will be selected for any bootstrap sample.277

The total number of times models 1 and 2 are selected will equal, within Monte-Carlo error, the278

number of times one of the models will be selected when the other is not included in the model279

set.280

Stacking derives model weights from the ability of a model to make out-of-sample predictions,281

using cross-validation (Stone 1974). Define θ̂k[−i] as the prediction of observation i applying282

model k to the leave-one-out cross-validation sample, i.e., omitting observation i. Given a set of283

model weights, wk, the stacking predictor of θi is284

θ̂i =
K∑
k=1

wk θ̂k[−i].

The model weights are those that maximize
∑N

i=1 logL(θ̂i | yi). Here, logL(θ̂i | yi) is the con-285

tribution of observation i to the log likelihood using θ̂i based on the data omitting observation286

i. Although AIC and cross-validation are derived from different principles, they are asymptoti-287

cally equivalent (Stone 1977). That suggests that when N is large, stacking model weights and288

AIC-based model weights will be similar.289
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4.2 Bayesian model averaging290

Bayesian approaches to model averaging have advantages and disadvantages. The primary ad-291

vantage is that model choice can be included as a random variable in the analysis. This provides292

both a posterior probability for each model and the posterior distribution of the model-averaged293

estimate or prediction. That posterior distribution can be interpreted directly or summarized294

as the posterior mean, the posterior median, or a credible interval. The disadvantage is that295

posterior model probabilities depend on the prior distributions assigned to both the model prob-296

ability and the parameters, so care is required in specifying and justifying the choice of prior297

distributions. I use the chipmunk data to illustrate two approaches for Bayesian model averaging.298

The simplest approach is to construct model weights from the (Schwartz) Bayesian Information299

Criterion:300

BIC = −2 logL+ p log(N).

Like the closely related AIC statistic, equation (2), the BIC statistic combines the fit of the data301

to the model and a penalty for model complexity, p log(N). For any reasonable sample size, the302

BIC penalty is larger than the AIC penalty (2p) so when used as model selection statistics, BIC303

will tend to select models with fewer parameters than does AIC. Differences in BIC statistics are304

converted to posterior model probabilities in exactly the same way as are differences in AIC or305

AICc statistics:306

wk =
exp(−∆BICk/2)∑K
j=1 exp(−∆BICj/2

.

Applied to the four capture probability models for the chipmunk data, using BIC selects a simpler307

model, Mb, (Table 4) than does AICc (Table 1). BIC gives essentially all the model weight to308

models Mb and M0 (Table 4). The BIC-based model-averaged estimate of population size is309

76.2.310

Model ∆ BICi wi N̂i

Mb 0 0.615 78.1
M0 0.94 0.385 72.7
Mt 35.89 0.0 72.5
Mtb 39.59 0.0 76.7

Table 4: BIC statistics, as difference from the best model, model weights, wi, and estimated
population sizes N̂i for each of the four Otis models fit to the chipmunk data. Models are sorted
from best (smallest BIC value) to worst fit.

A Bayesian justification for using BIC is that BIC provides an approximation to the Bayes factor311

comparing two models, when a unit-information prior is used for the model parameters (Raftery312

1999). Conceptually, the unit information prior is a prior distribution that provides the same313

information about a parameter as does a single typical observation (Raftery 1999). If the model314

set includes the data generating model, or an approximation to it, the model weights computed315
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using BIC can be interpreted as posterior probabilities that a model is the data generating316

model. AIC-based model weights can also be interpreted as posterior model probabilities; the317

difference is the choice of prior model probabilities. BIC implicitly puts equal prior probabilities318

on each model; AIC corresponds to a prior model probability that increases with the number of319

parameters in the model in a specific way (Burnham and Anderson 2004, section 4).320

A second approach to Bayesian model averaging is to specify explicit prior distributions for321

parameters and explicit prior model probabilities. Then, Bayes rule can be used to obtain322

posterior distributions of parameters and posterior model probabilities. This is most commonly323

implemented numerically using MCMC methods. Model averaging requires sampling across324

multiple models. This can be done in various ways (O’Hara and Sillanpää 2009), including325

adding 0/1 indicator variables to the model (Kuo and Mallick 1998) or by using a reversible326

jump MCMC algorithm (Green 1995).327

When the models in the model set differ only the set of parameters included in each model, the328

simplest multi-model inference analysis adds a 0/1 indicator variable for each parameter that329

may or may not be included. This approach was developed by Kuo and Mallick (1998) and is330

described well by Link and Barker (2010). This approach is closely related to the Stochastic331

Search Variable Selection method of George and McCulloch (1993). To illustrate the approach,332

consider a linear regression model with two potential variables. The model, augmented with 0/1333

indicator variables, is:334

Yi = β0 + Z1β1X1i + Z2β2X2i + εi

Z1 ∼ Bernoulli(π1)

Z2 ∼ Bernoulli(π2)

When Z1 = 0, X1 is excluded from the model; when Z2 = 0, X2 is excluded from the model.335

The posterior estimates of π1 or π2 are the marginal probabilities that X1 or X2 are included336

in the model. The joint distribution of Z1 and Z2 gives the posterior probabilities for all four337

combinations of X1 and X2.338

A Baysian model averaging of capture-recapture data can be constructed by combining the data339

augmentation strategy of Royle, Dorazio and Link (2007) and the Kuo-Mallick indicator variable340

parameterization. The Royle, Dorazio and Link (2007) data augmentation strategy is to consider341

a superpopulation of M individuals, where M > C, the number of individuals captured at least342

once. Some of the M − C individuals are in the population but never captured. An indicator343

variable, Z0i, is defined for each of the M individuals. Individual i is in the population when344

Z0i = 1 and not when Z0i = 0. The estimated population size, N̂ , is then N̂ =
∑M

i=1 Z0i.345

The four Otis capture probability models can be written as a single equation for the capture346

probability, pij, for individual i on occasion j, as347

logit pij = β0 + αcij +
∑
j

βjtij, (4)

where tij is a set of indicator variables identifying the capture occasion. They have the value348

1 on occasion tj and 0 otherwise. The cij indicate whether an individual has been previously349
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captured. Each cij has the value of 1 if individual i has been capture before occasion j and 0350

otherwise. The α parameter quantifies the behavioral response and has the value of 0 if there is351

no behavioral response, so the model is M0 or Mt. The set of β1 · · · βT quantify the variability352

across capture occasions. When all are 0, there is no time variation in capture probability, so the353

model is model M0 or Mb. Using the Kuo-Mallick approach, there are two indicator variables,354

Zb and Zt:355

logitpij = β0 + Zbαcij + Zt(
∑
j

βjtij),

where a value of Zb = 0 drops the behavioral response term and Zt = 0 drops all the time effects.356

The model is completed by specifying distributions for the indicator variables, Z0i, Zb and Zt,357

and prior distributions for all parameters:358

Z0i ∼ Bernoulli(ψ)

Zb ∼ Bernoulli(πb)

Zt ∼ Bernoulli(πt)

ψ ∼ U(0, 1)

πb ∼ U(0, 1)

πt ∼ U(0, 1)

β0 ∼ U(−2, 2) or U(−3.5, 3.5)

α ∼ U(−2, 2) or U(−3.5, 3.5)

β1 · · · βT ∼ U(−0.7, 0.7)

The prior distributions for πb and πt were chosen to give equal prior probabilities to the four359

capture probability models. I consider two choices of prior distributions for model parameters.360

With prior 1, the intercept and the coefficient for the behavioural effect are given uniform(-2, 2)361

distributions. With prior 2, those coefficients are given uniform(-3.5, 3.5) distributions. Uniform362

prior distributions were used so that back-transformed capture probabilities did not venture too363

close to 0 or 1.364

The model was fit using rjags with 3 parallel chains and a burnin of 10000 samples. The posterior365

distributions were estimated from the next 10000 samples, thinned to 1000 samples. Convergence366

was assessed by the Gelman-Rubin statistic and visual inspection of the trace plots. Gelman-367

Rubin statistics for all parameters were less than 1.05. The posterior model probabilities are368

given in Table 5.369

The weakness of Bayesian model averaging is that posterior model probabilities are sensitive to370

the choice of prior distributions for model parameters (Raftery 1999), even when sample sizes are371

large. This is in sharp contrast to the relative robustness of posterior parameter distributions.372

This is illustrated by the difference in posterior model probabilities between Prior 1 and Prior 2373

(Table 5). The posterior model probabilities are more different than expected from 3000 Monte-374

Carlo samples.375

Although the posterior model probabilities for the Mtb model depend on the choice of prior376

distributions, Mtb has the highest posterior probability with either. The estimated population377
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Model P[model | data]
Prior 1 Prior 2

Mtb 0.59 0.46
Mt 0.26 0.37
Mb 0.14 0.13
M0 0.02 0.04

Table 5: Posterior model probabilities using the Kuo-Mallick approach to model averaging with
uniform (0,1) prior distributions for probabilities. Prior 1 is U(-2, 2) probabilities for logit effects
on capture probabilities; prior 2 is U(-3.5, 3.5) probabilities for those parameters.

sizes are very similar for the two prior distributions. The model-averaged posterior estimate of378

N̂ is 78 with a standard error of 8.9 for prior 1 and 79 with a standard error of 8.3 for prior379

2. The 90% credible intervals are (72, 92) and (71, 96). Both sets of results for the estimated380

population size are similar between the BIC-based and Kuo-Mallick based approaches, in large381

part because models Mb and Mtb have similar model-specific estimates of N̂ . The Kuo-Mallick382

approach has the advantage of easily providing standard errors and credible intervals, in spite of383

a highly skewed posterior distribution for N̂ (Figure 2).384
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Figure 2: Posterior model-averaged estimate of the population size, N̂ for the chipmunk data.

An alternative to the Kuo-Mallick indicator variable approach is a reversible-jump Markov chain385

Monte-Carlo chain (RJMCMC) algorithm. The reversible jump aspect allows the Markov chain386

to move between models with different parameters. King et al. (2010) provide an accessible de-387

scription of the RJMCMC algorithm. Conceptually, the Kuo-Mallick and RJMCMC approaches388

are similar; the major difference is their behavior when a parameter is being considered to be389

added to the current model. The Kuo-Mallick considers proposals from the prior distributions390

(O’Hara and Sillanpää 2009) while the RJMCMC considers proposals that are randomly shifted391

versions of previous values (King et al. 2010). As a result the RJMCMC algorithm is expected392

to mix better and converge more quickly. If the prior distributions for the parameters in the393
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capture probability model are too large, the Kuo-Mallick algorithm will not mix well and may394

never transition to a model with time effects.395

5 Model averaging the intervention effect in a BACI study396

The second example of model averaging evaluates the impact of forest cutting on the abundance397

of insect herbivores in Guyana (Basset et al. 2001). The study design was a simple example of a398

Before-After-Control-Impact (BACI) design. Two large forest tracts were delineated. Herbivo-399

rous insects were measured monthly for 11 months in both tracts. One tract was randomly chosen400

to be logged; insect sampling continued monthly for another 11 months. Basset et al. (2001)401

report total counts for many insect groups. The data used here are based on the reported totals402

of Curculionid weevils. Monthly counts were simulated from Poisson distributions constrained403

so that the sum over 11 months matched the reported total count for that period and tract.404

The mean counts in each combination of period (before/after) and tract (control/impacted by405

logging) are shown in Figure 3. The control and logged tracts appear to have different temporal406

trends (after - before).
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Figure 3: Mean numbers of weevils, with 95% confidence intervals, before and after logging in
the control and the logged forest tract. 95% confidence bars are jittered for clarity.
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The difference in trend can be evaluated by fitting a model that estimates the interaction effect,408

(before - after in the logged tract) - (before - after in the control tract, after accounting for409

preexisting differences between the two tracts (i.e., in the before period) and common temporal410

trends (after - before) in both sites. The 11 sample quadrats for each combination of period411

and tract are subsamples, not true replicates. This is not uncommon in environmental BACI412

studies where there is only one impact site and the object of inference is these two specific tracts413

(Stewart-Oaten and Bence 2001).414

The mean number of weevils in site i, i = c, i and period j, j = b, a is denoted by θij. The415

interaction effect is then (θib − θia) − (θcb − θca). A linear link will be used for interpretability.416

This doesn’t cause any issues with negative estimates of θ̂ij because all mean counts are larger417

than 10.418

The standard model for the 2x2 BACI design is θij = µ + αi + βj + γij. This can be fit as a419

generalized linear model by defining indicator variables for site effects, Xsite, for period effects,420

Xperiod, and the interaction effect, Xinteraction:421

Yij ∼ Poisson(θij)

θij = µ+ α Xsite + β Xperiod + γ Xinteraction.

The estimated interaction effect is 4.36 individuals with a 95% confidence interval of (-0.04, 8.79).422

The hierarchy principle requires that when a model includes an interaction term, it also includes423

all component terms (Nelder 1977). For a 2x2 BACI design, the only model set that respects424

hierarchy has two models, one with and the other without the interaction term. Factorial de-425

signs with 3 or more factors have many more submodels that respect hierarchy (Fletcher and426

Dillingham 2001).427

When model averaging is näively applied to all three terms in equation (5), the results illustrate428

the importance of respecting hierarchy. The indicator variables in equation (5) are commonly429

defined one of three ways (Table 6). The interaction effect in the full model, equation (5), is the430

same for all 3 parameterizations, except perhaps for a sign change or constant multiplier. This is431

not the case for reduced models that do not respect hierarchy, e.g., θij = µ+γXinteraction. Under432

this model with “set first to 0” indicator variables, γ is the mean difference between the logged,433

before cell and the average of the other three cells. With “set last to zero” indicator variables,434

γ is the mean difference between the control, after cell and the average of the other three cells.435

With “sum to 0” indicator variables, γ is still the interaction effect in the full model. Because436

model averaging only makes sense when all models estimate the same population quantity, a437

model-averaged estimate of the interaction can not be done with “set first to 0” or “set last438

to 0” indicator variables. It can be done with “sum to 0” indicator variables, which produce439

orthogonal columns of the X matrix.440

A better way to choose models to be averaged is to specify simpler models that are ecologically441

relevant. For a study using a 2x2 BACI design, two ecologically relevant simplifications are:442

• No difference between impact and control sites during the before period443
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• No change at the control site, i.e., no difference between before and after at the control444

site.445

We will define βbefore = θcb − θib and βcontrol = θca − θcb. We want to estimate the interaction,446

βinteraction = (θib − θia)− (θcb − θca) and will also include the overall intercept, β0 = (θib + θia +447

θcb + θca)/4. This set of four parameters can be written as a matrix of linear combinations of the448

four θij:449

β = C
′
θ =


β0

βbefore
βcontrol

βinteraction

 =


0.25 0.25 0.25 0.25

0 1 0 -1
-1 1 0 0
1 -1 -1 1



θca
θcb
θia
θib


With this parameterization, the ecologically relevant simplifications correspond to setting βbefore450

or βcontrol to 0.451

“set first to 0” “set last to 0” “sum to 0”
Site Period Xsite Xperiod Xint. Xsite Xperiod Xint. Xsite Xperiod Xint.

control after 0 0 0 1 1 1 −1 −1 +1
control before 0 1 0 1 0 0 −1 +1 −1
impact after 1 0 0 0 1 0 +1 −1 −1
impact before 1 1 1 0 0 0 +1 +1 +1

Table 6: Values of indicator variables for the site effect, the period effect and the site*period
interaction under three schemes, “set first level to 0”, “set last level to 0”, and “sum to 0”.

To estimate the four β parameters using a (generalized) linear model, we need to find coefficients452

for X variables so that β = (X
′
X)−1X

′
θ = C

′
θ. When working with the cell means, θ, both453

the C and X matrices are full rank and invertible. The desired X is given by C
′−1

, which can454

be verified by substitution into β = (X
′
X)−1X

′
θ. For the C matrix given above, we get:455

C matrix X matrix coding
C B 0.25 1 -1 1 1 0.5 0.5 -0.25

A 0.25 0 1 -1 1 0.5 -0.5 -0.25
I B 0.25 -1 0 -1 1 -0.5 0.5 -0.25

A 0.25 0 0 1 1 -0.5 -0.5 0.75

456

All the models in the model set to be considered include β0 and βinteraction, because we are457

interested in the interaction effect. The model set is the four models with different combinations458

of βsite and βperiod. When the Xperiod variable is removed from the full model, equation (5), the459

estimated coefficient for Xinteraction, γ̂, equals θca − θcb, which is the estimate of the interaction460

under the restriction βbefore = θcb−θib = 0. When the Xsite variable is dropped, γ̂ equals θia−θib,461

again what it should be under the restriction βcontrol = θca − θcb = 0. When both the Xperiod462

and Xsite variables are removed, γ̂ = 0.75[θia − (θib + θca + θcb)/3].463
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For each of these models, table 7 shows the estimated interaction effect, its standard error, and464

AICc and BIC statistics. The standard error of the interaction effect is smallest for when the465

model includes only the interaction effect and increases as more terms are added. The model with466

period and interaction effects has the smallest AICc and BIC statistics. The full model, with467

period, site and interaction effects is 2.2 AICc units and 3.5 BIC units larger. A model selection468

approach would make conclusions about the interaction effect using the period + interaction469

model. A model averaging approach will combine information from all models.470

Model β̂int se AICc BIC
Period 5.09 1.77 268.0 272.8

Period + Site 4.36 2.25 270.2 276.3
Neither 7.76 1.47 275.2 278.5

Site 8.73 1.67 276.2 281.0

Table 7: Estimated interaction effect, its standard error, and AICc and BIC statistics for four
possible models for the number of Curculionid weevils.

I consider model averaging using AIC weights, BIC weights, and Kuo-Mallick when the prior471

distributions for βsite, βperiod and βinteraction are normal with mean 0 and sd of either 10 or 100.472

The same two models (Period and Period+Site) have appreciable probability, using AICc-derived473

weights, BIC-derived weights, or Kuo-Mallick with the prior sd = 10. (Table 8). The model with474

period and interaction effects has the largest weights and posterior model probability, but the475

full model also has appreciable probability, especially using AICc weights. This is consistent476

with the larger prior model probability given to the full model (more parameters) by AIC and477

AICc weights. With a very diffuse prior distribution (sd = 100) for βsite, βperiod and βinteraction,478

the two models with appreciable prior probability are the model with Period and the model with479

neither Period nor Site.480

Model AICc weight BIC weight post. model prob.
prior sd=10 prior sd = 100

Period 0.722 0.802 0.818 0.590
Period, Site 0.246 0.139 0.122 0.008

Neither 0.020 0.046 0.052 0.390
Site 0.012 0.013 0.008 0.011

Table 8: Model weights for the four possible models for Curculionid weavils.

The model averaged estimates of the interaction effect (Table 9) account for the uncertainty in the481

choice of model. The mean estimated interaction effect depends on the prior probabilities given482

to the different models and the prior probabilities for model parameters (Table 9). However, all483

the estimates are within approximately 1 standard error of each other.484
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Model weights Estimate se. 90% interval
AIC-based 5.09 2.00 (1.65, 8.37)
BIC-based 5.16 1.98 (1.84, 8.48)

Kuo-Mallick, prior sd = 10 5.03 1.94 (1.82, 8.20)
Kuo-Mallick, prior sd = 100 6.22 2.13 (2.73, 9.66)

Table 9: Estimated interaction effect, its standard error, and 90% credible intervals for four
possible model averaging approaches.

6 When is model averaging useful?485

The primary value of model averaging is to reflect the scientifically honest admission that the486

model is not known. Model averaging accounts for the uncertainty in the choice of model. As a487

result, model averaging is likely to decrease the precision of the estimate or prediction. At the488

same time, model averaging is likely to increase the validity of an estimate or prediction, in the489

sense that model averaging does not assume that a single model used in an analysis is the data490

generating model (or a close approximation).491

My two examples illustrate two frequent uses of model averaging. The chipmunk capture-492

recapture study illustrates model averaging over sets of nuisance parameters, in this case, those493

describing the capture process. The BACI study illustrates model averaging over ecologically494

relevant hypotheses.495

There are many other possible uses of model averaging. One is a randomized study where various496

covariates are measured before treatment initiation. Regression matching on a relevant set of497

covariates usually increases the precision of the treatment effect (Cox 1958). The issue is choosing498

the relevant set, or sets, of covariates. Averaging estimated treatment effects over models with499

different sets of covariates accounts for the uncertainty in the choice of covariate model.500

A second, quite different example, is combining predictions made by different methods, e.g. a501

random forest, a generalized additive model, and a neural network. If all methods provide a log502

likelihood, one could model average using AIC or BIC. If not, a prediction-based method, e.g.503

stacking, can provide model weights.504

7 When is model averaging a distraction?505

The fundamental assumption of model averaging is that the parameter being averaged has the506

same interpretation in all models (Cade 2015). In the chipmunk capture-recapture analysis, it507

is clear that N , the number of individuals in the population, has the same interpretation for all508

models of the capture process. Whether model averaging is appropriate for the BACI analysis509
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depends on the choice of parameterization. When the model parameterization is the default R510

(set first to 0) or SAS (set last to 0) parameterizations, MA is not appropriate. It is appropriate511

with an orthogonal (e.g., sum to 0) or an ecologically relevant parameterization.512

The importance of this fundamental assumption is often overlooked when model averaging is used513

with multiple linear regressions. This has two potential consequences. The interpretation of a514

parameter in a multiple regression is conditional on the other variables in the model unless all the515

variables in the model are uncorrelated (Cade 2015). Different models condition on different sets516

of variables. One multiple linear regression quantity that does have the same interpretation in517

all models is a prediction at a specific set of covariate values. In a linear regression, the predicted518

value is a linear combination of the regression coefficients, so model averaged coefficients provide519

a short cut to computing model averaged predictions. This is not the case for a generalized520

linear model with a non-linear link function, e.g., log or logit, because of that non-linear link.521

Predictions can still be model averaged, but they are no longer linear functions of the model522

averaged coefficients.523

The second consequence is relevant when multiple regression results are interpreted in terms of524

the importance of individual variables. For an individual variable, this is quantified by the sum525

of model weights or posterior model probabilities for models that include that variable. Those526

posterior model probabilities can depend on the parameterization of the model, again unless527

the variables are uncorrelated. Those posterior model probabilities, and hence the variable528

importance measure, are sensitive to the explicit or implicit specification of prior distributions529

for parameters and prior model probabilities. Unless there are good justifications for a specific530

choice of prior, I suggest not calculating sums of model probabilities.531

8 Conclusions532

Model averaging provides an alternative to selecting a single model and making conclusions that533

are conditional on that choice. There are many ways to implement model averaging, includ-534

ing using information criteria (AIC, AICc, or BIC), bootstrapping, cross-validation, and fully535

Bayesian approaches. It should not be used blindly because the estimated model weights or536

posterior model probabilities depend on the choice of method. Given those model weights or537

posterior probabilities, the model averaged estimated or predicted values are weighted averages538

of the model-specific quantities. With a fully Bayesian approach, estimated standard errors and539

credible intervals are simple to compute from the posterior distribution of a model-averaged540

quantity. However, the posterior distribution and especially the posterior model probabilities de-541

pend on choices of prior distributions for parameters and models. Whenever possible, these prior542

distributions should reflect knowledge of the study system; default choices may be inappropri-543

ate. Standard errors and confidence intervals are harder to compute in the frequentist paradigm.544

The current best way to compute frequentist confidence intervals is the model-averaged-tail-area545

method.546
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