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Abstract:
I explore three related issues concerning pooling of error variances: when is it appropriate (or
not) to pool, how best to evaluate equality of variances, and whether there is a cost to never
pooling. I focus on pooling decisions in a combined analysis of a multi-site experiment. A-priori,
sites should have different error variances. My primary question is whether an analysis that
ignores unequal variances is wrong.

I find that ignoring heteroscedasticity between sites maintains, or provides slightly conservative,
tests of average treatment effects and treatment-by-site interactions. Models with site-specific
variances do provide more powerful tests when variances are different. Never pooling, i.e., using
site-specific variances when variances are equal, also reduces power. In contrast to the relatively
benign effects of pooling across sites, incorrectly pooling across treatments is much more serious.

AIC-based evaluations of variances are very sensitive to non-normality, with a strong tendency to
indicate unequal variances when that is incorrect and the data are non-normal. While Levene’s
test is somewhat liberal when errors are skewed or heavy-tailed, it is much more robust than
AIC.

I conclude that ignoring site-specific error variances is not wrong, but modeling that heterogeneity
will increase power. If there is any possibility that errors are non-normal, I suggest that variance
models be evaluated using Levene’s test instead of AIC.
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1 Introduction1

The combined analysis of repeated experiments extracts more information from a collection of2

related experiments than does a series of experiment-specific analyses. As just one example,3

Thompson et al. (1993), describe what was provided by a combined analysis using mixed models4

of 12 grazing studies: “The mixed models procedure permitted estimation of the fixed effects of5

treatments over a broad inference space of future years and different tall fescue pastures over6

a wide geographic range; detected relationships that had not been apparent in the individual7

studies, such as the interactions between clover presence and E+ infestation levels; and provided8

a more coherent body of information than did the results obtained from each discrete study.”9

Repeated experiments study the same question, usually applying the same treatments, in mul-10

tiple environments. Because repetition of an experiment can occur in multiple ways, i.e., over11

years, or over sites, or both, for simplicity we will refer to each repetition as an environment.12

My primary focus is repetition over sites. Repeated experiments commonly use the same exper-13

imental design in each repetition, but this is not essential. Repeated experiments have various14

names, including repeated experiment or multi-environment trial in the agronomic literature and15

multi-center clinical trial in the biomedical literature. The combined analysis of data from a re-16

peated experiment uses one model fit to all the observations. Alternate analyses, not discussed17

here, include meta-analysis (Koricheva et al., 2013) and two-stage analysis (Piepho et al., 2012)18

A combined analysis raises issues that are not usually relevant for environment-specific analyses19

(Moore and Dixon, 2015; Dixon et al., 2020). These issues include how to model the environment-20

by-treatment interaction (as a fixed effect or as a random effect), whether and how to subdivide a21

random environment-by-treatment interaction, and whether or not to pool error variances. Dixon22

et al., 2020, discuss all three issues. This paper elaborates on the issue of pooling error variances.23

Specifically, I discuss the consequences of pooling when variances are not equal, the consequences24

of not pooling when variances are equal, and how to evaluate whether error variances are similar.25

I will use an repeated oat cultivar study to illustrate the issues and simulation to evaluate26

consequences.27

1.1 Consequences of ignoring heteroscedasticity in simpler situations28

There are four general approaches to pooling:29

1. Assume that a treatment only shifts the population mean, so always assume equal variances.30

2. Assume that a treatment may change both the population mean and population variance, so31

always assume unequal variances.32

3. Use the data to decide whether to assume equal or unequal variances.33

4. Model the variance using a function of the mean, as in a generalized linear model.34

There is a large literature discussing these approaches in simpler situations such as comparison of35

means from two or more independent samples. Especially good summaries of this literature are36

in Miller (1986), Madansky (1988), and Keppel and Wickens (2004). The literature on pooling37



shows many strong opinions and only a moderate amount of consensus, especially when applied38

practices are compared across fields, e.g., agronomy and psychology.39

My sense of the prevailing opinion in agriculture and biology includes:40

1. When there is a variance to mean relationship, transform the data to more equal variances or41

use a generalized linear model.42

2. Two-sample t-tests and overall F tests in a one-way ANOVA are robust to unequal variances43

so long as sample sizes are equal.44

3. Factor-specific F tests in a factorial ANOVA are sensitive to unequal variances across levels45

of that factor and robust to unequal variances across levels of the crossed factors (Box 1954).46

4. Comparisons of pairs of treatments after an ANOVA are sensitive to unequal variances.47

5. Likelihood-based tests of equal variances are very sensitive to non-normality.48

The consequences of pooling have not been investigated for repeated experiments. Those con-49

sequences might differ because repeated experiments are more complicated than what has been50

previously studied. These additional complications include interactions between factors (not51

considered by Box 1954) and potentially a mixed model when some interactions are modeled as52

a random effect.53

2 A model for data from a repeated experiment, with54

some variations55

I will focus on data from a balanced randomized complete block design, repeated in multiple56

environments. One common model for such data is:57

Yijk = µ+ αi + αβik + τj + ατij + εijk (1)

εijk ∼ N(0, σ2),

where αi are the environment effects, αβik are block effects nested within environments, τj are the58

treatment effects, and ατij are the environment-by-treatment interaction effects, and εijk are the59

observation-specific errors. In model (1), errors are assumed to come from a single distribution,60

so they all have the same variance. Later, this assumption will be modified.61

For simplicity of exposition, the rest of this section describes properties for completely balanced62

data, with the same number of replicates for each treatment in each environment, and assumes63

all quantities are estimable. In general, all the statements below apply to estimable functions of64

model parameters but that will be left unsaid.65

Model (1) can be varied many ways. Different choices of experimental design, e.g., completely66

randomized, split plot, or lattice, will remove or introduce additional terms to account for the67

restrictions on randomization (Casella 2008). Those experimental design terms may be modeled68

as fixed effects or as random effects. For example, block effects may be modeled as random by69

adding, αβik ∼ N(0, σ2
block) to model (1). The consequences of the choice of model for block70

effects is explored in Dixon (2016).71



The most important modeling choice is whether the environment by treatment interactions, ατij,72

are modeled as fixed effects or as random effects (Dixon et al. 2020). This choice always changes73

the interpretation of treatment effects and often has a large effect on the numerical results.74

When the interaction is considered a fixed effect, inferences about treatment effects, τj, describe75

averages over the specific environments used in the study. This is narrow-sense inference (McLean76

et al., 1991). When the interaction is considered a random effect, inferences about treatment77

effects describe averages over a large population of environments. Those environments used in78

the study are considered to be a simple random sample from that large population. This is79

broad-sense inference (McLean et al., 1991).80

Practically, the choice of fixed or random interaction has large consequences on the results81

because the precision of treatment effects depends on that choice (Dixon et al., 2020). When the82

interaction is fixed, the variance of the difference (or linear contrast) among treatment means83

depends only on the mean square error. When the interaction is random, the variance of the84

difference (or linear contrast) among treatment means depends on the interaction mean square.85

Compared to the error mean square, the interaction mean square is generally larger with fewer86

degrees of freedom. Both characteristics reduce the precision of estimated treatment effects in87

broad- or intermediate-sense inference.88

3 A repeated oat cultivar study89

Issues associated with pooling will be illustrated with data from a repeated oat cultivar study,90

described briefly in Dixon et al., 2020. In this study, 10 oat cultivars were grown in a randomized91

complete block design. This was repeated at 3 locations (Ames, Kanawha and Washington, all92

in Iowa) and 2 years (1985, 1986), with 3 blocks per location. The response is harvest index (HI),93

the ratio of grain to total shoot biomass, expressed as a percentage. The data set is available in94

the supplemental material for Dixon et al, 2020.95

Model (1) was fit to these data. The block effects, αβik, were considered random; the block96

variance component was estimated by REML.97

Figure 1 shows average HI for two cultivars in each of the 6 environments (all combinations of98

locations and years). The Don cultivar has a consistently larger HI than does Cherokee, but the99

difference between the two appears to vary across locations and years.100

The estimated error variances, i.e., V̂ar εijk, and block variances, i.e., V̂ar αβik, for each environ-101

ment are given in Table 1. The error variances are similar in 1985 and 1986 but are consistently102

about twice as large at Ames than at Kanawha.103
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Figure 1: Average harvest index (HI) for 2 oat cultivars, grown in 2 years at 3 locations.

Location Year Observations Blocks

(V̂ar εijk) (V̂ar αβik)
Ames 1985 18.1 0

1986 17.1 0
Kanawha 1985 8.8 0.47

1986 7.5 0
Washington 1985 6.12 0

1986 11.9 0

Table 1: Variance components for observations and blocks, for each location and year.



3.1 What results change when you change the variance model?104

In a repeated experiment, error variances may depend on the treatment or the environment105

or both. I will focus on heterogeneity among environments. When environment includes both106

locations and years, as in the oat study, there are at least four variance models:107

1. complete pooling, i.e., one variance for all locations and years,108

2. pooling over years, i.e., one variance for each location, shared by all years,109

3. pooling over sites, i.e. one variance for each year, shared by all locations, and110

4. no pooling, i.e., a different variance for each combination of location and year.111

To simplify the discussion, I suppress years and consider only the 1985 data. This is consistent112

with the larger source of heteroscedasticity in error variances (Table 1). I consider two variance113

models: location-specific error variances or a single pooled error variance.114

When a narrow sense analysis is used, the choice of variance model has no effect on either the115

estimates or their standard errors. The estimated means and standard errors for two cultivars116

are the same for either variance model, both for this data set (Table 2) and in general (proof117

in Supplemental material). Intuitively, the proof is analogous to why the type III least-squares118

means in a factorial ANOVA do not depend on the number of replicates. Because the oat study119

has an equal number of replicates per location and cultivar and no missing data, the standard120

errors are also the same (Table 2).

Variety Pooled Location-specific
Cherokee 43.33 (1.11) 43.33 (1.11)
Don 51.67 (1.11) 51.67 (1.11)

Table 2: Narrow sense inference for two oat cultivars when variances are pooled and when
variances are location-specific. Values are mean harvest index (standard error).

121

When broad-sense inference is used, the interaction (location*trt) effects are no longer columns122

of X. The estimated cultivar means depend on the variance model (Table 3). The marginal123

means for each cultivar are a weighted average of the cell means (i.e., means for each treatment124

and location), with weights that depend on the variance model. With equal sample sizes, under125

the pooled variance model, each location contributes equally to the marginal mean. Under126

the location-specific variance model, sites with larger error variances contribute less, in the127

sense of having a smaller weight, to the marginal mean. Using the Cherokee cultivar as an128

example, the three location-specific averages are 43.0 for Ames, 37.3 for Kanawha, and 49.67 for129

Washington. The Cherokee marginal mean with location-specific variances is larger than that130

with pooled variances because the cell mean for Washington has a smaller variance and hence a131

larger contribution to the marginal mean.132



Variety Pooled Site-specific
Cherokee 43.33 (1.65) 43.55 (1.71)
Don 51.67 (1.65) 51.48 (1.71)

Table 3: Broad sense inference for two oat cultivars when variances are pooled and when variances
are location-specific. Values are mean harvest index (standard error).

3.2 Which variance model is more appropriate?133

Under broad-sense inference, the results for the two variance models are not identical. So which134

analysis should be reported? Different data-based evaluations provide different answers. AIC,135

small-sample corrected AIC (AICc) or BIC all suggest that variances are location-specific, but136

the support for that model is not overwhelming (Table 7). Applying Levene’s test to the residuals137

provides no evidence of unequal variances. Potential reasons for the discrepancy between these138

results are explored in Section 5.139

Variance model
Criterion Pooled Location p-value Decision

AIC 456.0 455.1 location-specific (weakly)
AICc 456.4 455.9 location-specific (weakly)
BIC 456.6 456.1 location-specific (weakly)

-2 log L 326.3 320.7 0.061 location-specific (weakly)
Levene’s 0.47 pooled

Table 4: Evaluation of pooled and location-specific variance models. Model selection statistics
(AIC, AICc, and BIC) and log likelihoods are for the model with random block(location) and
cultivar*location interactions. Levene’s test is computed from absolute values of residuals from
the same model. Results are similar when based on the model with fixed effects of location,
block(location), cultivar and cultivar*location.

4 Consequences of pooling when location-specific vari-140

ances are unequal141

I used simulation to better understand the consequences of pooling when locations have different142

variances. The hypothetical study is a repeated completely randomized design, with 3 locations143

and 10 treatments. The simulation scenarios consider different location-specific variances and144

both equal or unequal numbers of replicates per location. The analysis uses broad sense infer-145



ence, so the location*treatment interaction is modeled as a random effect. Because broad-sense146

inferences about treatment effects depend on the magnitude of the location*treatment variance147

component, the simulation scenarios also consider a range of location*treatment variances. De-148

tails of the simulation scenarious are given in the Location*Trt, Variance and Sample size columns149

of Table 5.150

2500 data sets were simulated and analyzed using SAS PROC MIXED with the Kenward-Rogers151

adjustment. We focus on inference about differences in treatment means. Some pairs of treat-152

ments had the same mean; these were used to estimate the empirical type-I error rate. Other153

pairs of treatments had different means; these were used to estimate power.154

Table 5 shows empirical type-1 error rates for nominal 5% tests in 8 simulation scenarios. The155

estimated standard error for all estimated error rates is circa 0.3%. Pooling when variances are156

as much as 10 fold different leads to conservative analyses (type-1 error rate less than nominal),157

especially when sample sizes are the same at each location (Table 5). For example, when the158

location-specific variances are 6, 9, and 60 with the same sample size at each location (3/3/3 in159

Table 5), a nominal 5% test using the pooled error variance has an estimated empirical type-1160

error rate of 2.8%. Inferences based on the location-specific variance model for the same data161

sets are also conservative, with an estimated empirical type-1 error rate of 3.5% (Table 5). As162

expected, increasing the location*treatment interaction variance component increases the type-1163

error rate towards the nominal 5%. Moderately unequal sample sizes do not change the basic164

conclusion; the empirical type-1 error rates with a pooled variance are conservative or close to165

the nominal 5%, even when the location with the smallest variance has the largest sample size.166

Scenario When variances are:
Location*Trt Variance Sample size Pooled Location-specific

0 6 / 9 / 18 3 / 3 / 3 0.031 0.037
0 6 / 9 / 60 3 / 3 / 3 0.028 0.035
1 6 / 9 / 60 3 / 3 / 3 0.035 0.044
1 6 / 9 / 18 3 / 3 / 3 0.048 0.049
3 6 / 9 / 60 3 / 3 / 3 0.054 0.054
5 6 / 9 / 60 3 / 3 / 3 0.052 0.054

0 6 / 9 / 60 6 / 4 / 2 0.046 0.038
0 6 / 9 / 60 2 / 4 / 6 0.052 0.043

Table 5: Empirical type-I error rates for nominal 5% tests for different combinations of loca-
tion*treatment interaction variance, location-specific error variances, and number of replicates
per location and treatment. Study design mimics the oat experiment, with 10 treatments and
3 locations. The type I error rate is computed from 2500 simulated data sets analyzed by both
the pooled variance model and the location-specific variance model.

In repeated experiments, I do not find the large inflation of type-1 error that is seen in simpler167



designs when the group with the smallest variance has the largest sample size. Two possible168

reasons for this are:169

1) The focus is on treatment differences, but variances differ among locations. Treatment dif-170

ferences are averaged over locations, so the variance of a treatment mean is the same for all171

treatments.172

2) The usual model for a repeated experiment (1) includes a location*treatment interaction that173

may absorb unanticipated variability in cell (i.e., location- and treatment-specific) means.174

Pooling when variances are unequal does reduce the approximate power of the comparison be-175

tween treatment means (Table 6). The rejection probabilities reported in Table 6 are “User’s176

power”; they are the probability that a nominal 5% test rejects the null hypothesis. Because the177

empirical type-1 error rates are not 5%, the values only approximate the power of an α = 5% test.178

Even so, the differences between the pooled and location-specific variance models are substan-179

tial, especially when the location*treatment interaction variance is small (Table 6). For example,180

when the location*treatment variance is 0, using a location-specific variance model rejects the181

null hypothesis of no difference in 80% of the data sets, while the pooled variance model rejects182

only in 51% of the data sets. It is when the location*treatment interaction variance is small183

that the cell means, i.e. location- and treatment-specific means, have the most unequal vari-184

ances. As the location*treatment interaction variance component increases, the power difference185

diminishes, as expected because the variances of cell means are more similar.186

Scenario When variances are:
Location*Trt Variance Sample size Pooled Location-specific

0 6 / 9 / 60 3 / 3 / 3 0.51 0.80
1 6 / 9 / 60 3 / 3 / 3 0.48 0.69
3 6 / 9 / 60 3 / 3 / 3 0.30 0.33
5 6 / 9 / 60 3 / 3 / 3 0.20 0.20

0 6 / 9 / 60 2 / 4 / 6 0.91 0.96
0 6 / 9 / 60 6 / 4 / 2 0.55 0.93

Table 6: Empirical rejection rates for nominal 5% tests when the true treatment difference =
2, for different combinations of location*treatment interaction variance, location-specific error
variances, and number of replicates per location and treatment. Study design mimics the oat
experiment, with 10 treatments and 3 locations. Rejection rates are computed from 2500 sim-
ulated data sets analyzed by both the pooled variance model and the location-specific variance
model.



5 Performance of AIC-based variance model selection when187

errors are non-normal188

Model selection statistics such as the Akaike Information Criterion (AIC), small-sample corrected189

AIC (AICc), or Bayesian Information Criterion (BIC) are the standard approach to choose a190

model for the random effects in a linear mixed model (Diggle et al. 2002). Hu et al. (2014)191

illustrates using AIC to choose whether or not to pool variances. However, current knowledge192

about testing equality of variances suggests that AIC, AICc, and BIC will be very sensitive to193

the assumption of normality. Both the likelihood-ratio test and Bartlett’s test of equal variances194

are known to be very sensitive to non-normality (Box 1953). Both of these tests are based on the195

log-likelihood. AIC, AICc, and BIC are also based on the log-likelihood, but their robustness to196

non-normality has never been evaluated.197

Non-normality may be an issue with the oat cultivar study. A normal quantile plot of the198

residuals from the pooled variance, broad sense inference model (equ. 1) shows weak evidence199

of heavy tailed residuals (Figure 2).200
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Figure 2: Normal quantile-quantile plot of the residuals from the broad-sense analysis of the oat
cultivar study.

I use Tukey g-h distributions (Tukey 1960, Hoaglin 1983) to generate data sets with different201

amounts of skewness and kurtosis. The Tukey g-h family of distributions has a probability density202

function with 4 parameters. Two parameters, A, and B control the location and spread. The g203

parameter controls the skewness. A symmetric distribution has g = 0. The h parameter controls204

the kurtosis. When h = 0, the kurtosis = 3, the same as a normal distribution. To simulate a205



value from a Tukey g-h distribution, generate Z ∼ N(0, 1), then transform Z by:206

A+B eh/2Z
2
Z when g = 0

A+B eh/2Z
2

(egZ − 1) when g 6= 0

Figure 3 shows the probability density functions for a normal distribution, g = 0 and h = 0, 2207

non-zero values of g with h = 0, 4 non-zero values of h with g = 0, and one instance with both208

skewness and kurtosis (g = 0.25, h = 0.1).209
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Figure 3: Plots of density functions for distributions in the Tukey g-h family with different values
of g controlling the skewness (top panel) and h controlling the kurtosis (bottom panel).

I ran two sets of simulations. One evaluated the performance of AIC and BIC model selection in210

a one-way ANOVA with all combinations of k=3 or k =10 groups and # replicates per group,211

N , of 3, 10, 25, or 100. The second set evaluated performance in repeated experiments like the212

oat cultivar study. That is with 3 locations, 10 treatments, and 3 replicates per location and213

treatment.214

In both sets of simulations, observation errors were generated from distributions with equal215

variances and the specified values of g and h. The location and scale parameters were set to 0216

and 1. In the repeated experiment, the random location*treatment interactions were generated217

from normal distributions with a variance of 0.2. AIC, AICc, and BIC statistics were computed218

for the pooled and the unequal variance models. The model with the smaller model selection219

statistic was recorded for each criterion. This was repeated for 2500 data sets.220

None of the model selection statistics are robust to non-normality, in either the one-way ANOVA221

or the repeated experiment. When observations are simulated from normal distributions (g=0,222



h=0), AIC selects the equal variance model, i.e., the model used to generate the data, between223

63.8% and 99.9% of the time for the one-way ANOVA and 85.6% of the time for the repeated224

experiment (Table 7). Increasing either the skewness or the kurtosis reduces the probability of225

selecting the correct model (Table 7). Kurtosis is a more serious issue than skewness. When226

h = 0.5, AIC selects the correct model between 0.9% and 18.6% of the time for the one-way227

ANOVA and 18.7% of the time for the repeated experiment.228

Increasing the number of replicates per group from N = 3 or N = 10 per group to N = 100 per229

group is good when the populations are slightly non-normal and bad when the populations are230

more severely non-normal (Figure 7). For example, when h = 0.2, the correct model is chosen231

54.7% of the time for N = 10 and 68.7% of the time for N = 100. But, when h = 0.5, the232

correct model is chosen less often when N = 100. Increasing the number of groups from k = 3 to233

k = 10 decreases the probability of choosing the correct model unless the populations are close234

to normal. This is especially so when the populations are heavy tailed. With k = 10 groups of235

N = 10 observations with h = 0.5, AIC almost always chooses the wrong model (Table 7).236

k=3 k=3 k=3 k=10 repeated
g h N=3 N=10 N=100 N = 10 experiment

0.00 0.0 63.8 91.6 99.9 99.0 85.6
0.25 0.0 57.2 84.4 98.3 92.8 75.7
0.50 0.0 47.5 64.9 82.1 51.8 56.2

0.00 0.1 46.4 74.9 93.5 78.6 68.8
0.00 0.2 34.9 54.7 68.7 37.2 50.5
0.00 0.3 30.8 36.7 39.6 12.6 36.1
0.00 0.4 22.2 23.6 20.2 3.2 25.8
0.00 0.5 18.6 15.4 10.2 0.9 18.7

0.25 0.1 45.3 66.4 80.4 56.2 59.1

Table 7: Probability of AIC choosing the equal variance model when observation errors are from
normal and non-normal distributions in the Tukey g-h family. Results for k = 3 groups with
N = 3, N = 10, and N = 100 observations per group, k = 10 groups with N = 10 observation
per group, and a repeated experiment with 3 locations, 10 treatments, and 3 observations per
group.

While the performance of Levene’s test, using | Yij − Ŷij |, is far from ideal (Table 8), it is237

much better than that using model selection. For the one-way ANOVA model with normal238

and non-normal errors, a nominal 5% Levene’s test has an empirical type-1 error rate of up to239

≈ 14.5%. That is for 10 replicates from the population with the largest kurtosis (h = 0.5). The240

performance of Levene’s test consistently improves with a larger sample size. For example, for241

N = 100 observations per group, the empirical type-1 error for h = 0.5 drops to 8.2%.242

There are three different ways to conduct Levene’s test for data from a repeated experiment.243



g h N=10 N=100
0.00 0.0 6.5 4.8
0.25 0.0 8.4 6.4
0.50 0.0 13.0 12.8

0.00 0.1 6.1 6.0
0.00 0.2 8.0 4.5
0.00 0.3 9.4 5.1
0.00 0.4 11.9 6.6
0.00 0.5 14.3 8.2

0.25 0.1 8.7 6.6

Table 8: Empirical type-1 error rates for nominal 5% Levene’s tests applied to data from Tukey
g-h distributions. g controls the skewness and h controls the kurtosis. Data sets have k = 3
groups with N = 10 or N = 100 observations per group.

The residuals that are the starting point for Levene’s test could be estimated from a fixed-effects244

model with location, treatment, and their interaction, or they could be estimated from a mixed-245

model where the location*treatment interaction is modeled as a random effect. The model fit to246

the absolute values of the residuals could include only location and treatment effects or it could247

additionally include the interaction. I considered three combinations:248

narrow/main: fixed effect residuals with location and treatment in the analysis model249

narrow/interaction: fixed effect residuals with location, treatment and their interaction in the250

analysis model251

broad/main: mixed model residuals with location and treatment in the analysis model.252

2500 data sets were simulated for each of the 9 combinations of g and h and analyzed using the253

R lm() and lme() functions. The residuals from lme() are the difference between the observed254

value and the sum of the estimated fixed effect and the BLUP of the random effects.255

The empirical type-1 error rates for nominal 5% tests are shown in Table 9. These suggest that256

the fixed effect residuals should not be used for studies of this size. Levene’s tests using the fixed257

effect residuals have unacceptable type-1 error rates, even for normally distributed data (g = 0,258

h = 0). Fitting an analysis model with an interaction is even worse. The performance using the259

mixed model residuals is much better. The empirical type-1 error rates are above 10% only for260

the most skewed data sets (g = 0.5).261

I suspect the poor performance with the narrow-sense residuals occurs because there are only 3262

observations for each fitted mean. Each group of 3 residuals sums to zero, which induces a very263

large negative correlation and distorts Levene’s test. The broad-sense residuals do not sum to264

zero, so their correlation is much smaller. This hypothesis remains to be investigated.265

Because the error rates are lower and consistently improve with increasing sample size, I sug-266



Narrow Narrow Broad
g h Main Interaction Main

0.00 0.0 14.1 18.5 5.6
0.25 0.0 18.2 25.5 9.1
0.50 0.0 22.1 37.7 12.0
0.00 0.1 18.4 27.8 6.6
0.00 0.2 23.6 38.6 7.2
0.00 0.3 29.3 51.5 7.2
0.00 0.4 32.4 60.0 7.2
0.00 0.5 36.7 68.6 7.3
0.25 0.1 19.2 30.2 7.7

Table 9: Empirical type-1 error rates for nominal 5% Levene’s tests applied to data from Tukey
g-h distributions from a repeated experiment. g controls the skewness and h controls the kur-
tosis. Data sets have 3 locations, 10 groups, and N = 3 observations per location and group.
Narrow and Broad indicate how residuals were estimated, from a fixed effect or mixed model, re-
spectively. Main and Interaction indicate the model used to conduct Levene’s test, with location
and treatment only, or additionally with their interaction.

gest using Levene’s test instead of model selection statistics to assess a variance model. When267

applied to repeated experiments with relatively few replicates (e.g., 3) per location and treat-268

ment, I suggest calculating residuals from a mixed model with a random location by treatment269

interaction.270

6 Why not always fit a location-specific variance model?271

Instead of using the data to choose a variance model, one could decide to always use the location-272

specific variance model. This is the second approach to pooling in section 1.1. What are the273

consequences of always fitting location-specific variances? This evaluation is ongoing, so the274

conclusions are preliminary.275

Intuitively, these consequences of always fitting location-specific variances will be largest when276

the equal variance model is actually the correct model. Hence, I simulate data sets from re-277

peated experiments with a relatively small location*treatment interaction variance component.278

I consider three study designs: one modeled on the oat cultivar study with 3 locations and 10279

treatments, one with 10 locations and 3 treatments, and one with 10 locations and 2 treatments.280

In each, there are three replicates of each combination of treatment and location, all locations281

have the same error variance, and the location*treatment variance component is 20% of the error282

variance. All random variables are drawn from independent normal distributions. I simulated283

2500 data sets for each of the three study designs and analyzed them using SAS PROC MIXED.284



Degrees of freedom were calculated using the Kenward-Rogers approximation.285

I focus on inferences about the difference between two treatments from two models: one with286

pooled error variances (here, the correct model) and the other with location-specific variances.287

For each variance model and study design, I calculate the empirical type-1 error rate, the variance288

of the estimated differences, and the average degrees of freedom for the variance of the difference289

(Table 10). I expect that inferences using the location-specific model (the incorrect model) will290

have fewer error degrees of freedom and more variable estimates.291

variance error ave. empirical
# Locations # trts model rate d.f. var. diff

3 10 pool 0.045 42.8 0.252
3 10 locations 0.048 40 0.266
10 3 pool 0.044 42.3 0.074
10 3 locations 0.0492 33.3 0.089
10 2 pool 0.037 27.1 0.073
10 2 locations 0.053 19.6 0.096

Table 10: Inferences about the difference of two treatments using pooled and location-specific
variance models in replicated experiments with three different combinations of locations and
treatments. The error rate is the empirical type-1 error rate of a nominal 5% test, ave. d.f. is
the average Kenward-Rogers error degrees of freedom, ave. and var. diff. is the sample variance
of the estimated differences.

The type-1 error rates for the location-specific variance models are close to the nominal 5%, while292

those for the pooled variance model are slightly conservative, i.e., < 5%. This mirrors the results293

in Section 4. With 10 locations and 2 treatments per location, the error degrees of freedom294

using the location-specific variance model is substantially smaller than that using the pooled295

variance model, but both degrees of freedom are large enough that there is only a 2% difference296

in the 0.975 quantiles of the respective T distributions. However, the estimated differences from297

the pooled variance model are much less variable than those from the location-specific variance298

model. The pooled model has a relative efficiency of 1.31 ( = 0.096 / 0.073) relative to the299

location-specific variance model in studies with 2 treatments and 10 locations. Increasing the300

number of treatments to 3 reduces the differences between the two variance models. The error301

d.f. for both models are larger and the relative efficiency of the pooled variance model drops302

to 1.20. With 3 locations and 10 treatments, there is little difference between the two variance303

models. In summary, when the design has many locations and few treatments per location, as is304

common in on-farm studies, there is a moderate cost to always using a location-specific model.305

When there are fewer locations and more information about each location’s variance, as with306

more treatments per location, the cost of always using a location-specific variance model is quite307

small.308



7 Extensions and Recommendations309

Discussions of pooling in models for repeated experiments, where there many components, can310

get very complicated. I have chosen to focus on the conclusions a user will make about treat-311

ment main effects. This focus ignores issues such as the estimation of the location*treatment312

interaction variance component or predictions of location-specific treatment effects. Either could313

be the topic of another study.314

Every random effect in a model reflects a decision about pooling, although this decision is often315

made by default. For example, if blocks within environments are random, the common default316

model assumes that variability among block means is the same in each environment. Even when317

error variances are assumed to be location-specific, I rarely see analyses with location-specific318

block variances. A data-based decision about block variances will be hard because there are319

fewer degrees of freedom for blocks than for errors.320

I have focused on location-specific error variances in studies with a factorial structure for treat-321

ments and locations. Error variances could also vary between treatments. This could arise in an322

agronomic study when one cultivar is more sensitive than another to random variation in plot323

characteristics. Box (1954) evaluated the consequences of heteroscedasticity in two-way factorial324

designs. Applied to locations and treatments, his results imply that treatment-specific error vari-325

ances have large consequences for conclusions about treatment effects and minimal consequences326

for conclusions about location effects. Hence, if there is concern about unequal variances in a327

repeated experiment, I recommend that the priority be to evaluate treatment-specific variances.328

My focus has been on estimation of treatment means and their differences. In variety trials,329

cultivar is often modeled as a random effect, because this provides more accurate predictions of330

performance at new locations or in future years. Those predictions are functions of the error331

variance. When error variances are location- or environment-specific, it is unclear how to make332

predictions of random treatment effects. Intuitively, pooling provides an estimated error variance333

that is an average over environments and could be used to make predictions for new environments.334

The properties of such an approach remain to be studied.335

I have shown that there are clear advantages to using the correct model for error variances.336

When variances are equal, pooling gives more precise estimates of treatment means and their337

differences. When variances are not equal, using location-specific variances gives more powerful338

tests of treatment differences. However, it can be very difficult to determine the correct model,339

especially in studies with few replicates per treatment and location. AIC-based model selection340

is very sensitive to non-normality of the residuals, so I recommend using Levene’s test, which is341

more robust. For repeated experiments, residuals from broad-sense inference provide the best342

calibrated Levene’s test. When the correct model is unclear, there is no harm in pooling error343

variances, but fitting location-specific variances will increase the power.344
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10 Supplemental material387

Comparison of treatment means estimated by narrow-sense inference with pooled-388

and location-specific variances.389

For any study, write the treatment design matrix as X, not necessarily of full column rank.390

Under the pooled variance model, estimates of any estimable function of the treatment effects,391

Cβ can be written as:392

Ĉβ = CX(X ′X)−X ′Y = CŶ ols. (2)

Under the unequal variance model, the estimates are:393

Ĉβ = CX(X ′WX)−X ′WY = CŶ wls, (3)

where W is a diagonal matrix with the reciprocal variances for each observation along the394

diagonal. These are equal iff CX(X
′
X)−X

′
= CX(X

′
WX)−X

′
W .395

Index the elements of Y by three indices, i, j, and k. i includes all treatment effects that have396

different variances. j includes all treatment effects that have the same variance, and k indexes397

the replicates. For example, consider a 3 x 4 factorial treatment design in a randomized complete398

block experiment design with 5 blocks. The variance depends on the combination of treatment399

factors, so i would have 12 values, one for each combination of treatment factors. j would have400

1 value, because all treatments have different variances, and k would have 5 values, one for each401



block. As a second example, consider 4 treatments evaluated at 3 locations, with 5 replicates in402

a completely randomized design at each location. The variance depends on the location but not403

the treatment. i has 3 values, one for each location, j has 4 values, one for each treatment, and404

k has 5 values.405

It can be proven that CX(X
′
X)−X

′
= CX(X

′
WX)−X

′
W when:406

1) The treatment design is saturated, so Ŷij = Y ij. for all i, j, and407

2) The weights do not depend on k.408

The weighted least squares estimates of Ŷ wls minimize Σijkwijk(Yijk− Ŷijk)2. Since wijk depends409

only on i,410

Σijkwijk(Yijk − Ŷijk)2 = Σijwi Σk(Yijk − Ŷijk)2

= Σijwi Σk

[
(Yijk − Y ij.)− (Y ij. − Ŷijk)

]2
= Σijwi Σk(Yijk − Y ij.)

2 + Σijwi Σk(Y ij. − Ŷijk)2

+2Σijwi Σk(Yijk − Y ij.)(Y ij. − Ŷijk)

The last term in the sum is zero because Σk(Yijk − Y ij.)(Y ij. − Ŷijk) = 0 for all i, j. The first411

term in the sum is a positive constant. The second term is a weighted sum of non-negative412

values. This is minimized when Ŷij = Y ij so long as Y ij is in the column space of X, which is413

always the case when the X matrix specifies a separate mean for each combination of location414

and treatment. Hence,415

Ŷijk = Y ij, for all patterns of wi, including wi = 1 for all i, so

Ŷ wls = Ŷ ols, so:

CX(X
′
X)−X

′
Y = CX(X

′
WX)−X

′
WY , for all Y , so:

CX(X
′
X)−X

′
= CX(X

′
WX)−X

′
W

In general, the estimated variance of CŶ ols is not the same as the estimated variance of CŶ wls.416

One exception is when all treatments have the same variance, but locations have different vari-417

ances, and there are the same number of replicates of each combination of treatment and location.418

Using BIC to choose whether or not to pool variances:419

Here I provide details on the performance of BIC as the criterion to decide whether variances are420

equal or not. These results are based on the same data sets and model fits described in Section421

5.422



k=3 k=3 k=3 k=10 repeated
g h N=3 N=10 N=100 N = 10 experiment

0.00 0.0 32.0 96.6 100.0 100.0 98.4
0.25 0.0 28.2 92.6 99.6 99.9 95.4
0.50 0.0 25.3 78.0 94.0 94.2 83.2

0.00 0.1 22.2 86.5 98.4 99.0 91.5
0.00 0.2 15.7 68.3 84.6 84.2 76.4
0.00 0.3 13.3 52.1 57.4 55.1 60.4
0.00 0.4 9.8 37.5 34.6 28.2 45.0
0.00 0.5 8.7 26.7 20.5 13.7 35.6

0.25 0.1 21.5 79.4 92.9 92.8 84.2

Table 11: Probability of BIC choosing the equal variance model over the unequal variance model
when observation errors are from normal (g=0, h=0) and non-normal distributions in the Tukey
g-h family. Results shown for k = 3 groups with N = 3, N = 10, and N = 100 observations
per group, k = 10 groups with N = 10 observation per group, and a repeated experiment with
3 locations, 10 treatments, and 3 observations per group.


