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ABSTRACT

Bifurcations and Hysteresis in the Dynamics of Small Populations of Spherical Magnets

by

Peter T. Haugen, Doctor of Philosophy

Utah State University, 2022

Major Professor: Boyd F. Edwards, Ph.D.
Department: Physics

Spherical permanent magnets present an appealing opportunity to study the dynamics

of bodies with dipole interactions due to their ubiquity and exceptionally close approx-

imation to ideal dipoles. Starting with the interaction potential between two dipoles we

investigate the dynamics of two identically magnetized spheres sliding against each other

and show that their motion at all scales while they remain in contact is isomorphic with two

uncoupled pendulums after a coordinate transform. One of the system’s modes can have

an arbitrary amount of energy imparted and the spheres maintain contact, while the other

mode possesses a cut off point where the two spheres break contact and new dynamics take

hold.

The same interaction potential is then used to examine a system of six identical dipoles

fixed at the vertices of a regular hexagon with a seventh dipole of variable dipole strength

in the center. Their dipole moments are free to spin while constrained to orient entirely in

the plane of the hexagon and these orientations are examined. Macroscopic static properties

including net dipole moment and total potential energy are calculated and compared with

observation in two cases. Its normal modes of oscillation are also calculated and compared

with analytic results in two cases. Two distinct states of all these phenomena are observed

with discontinuous bifurcations as well as hysteresis.
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PUBLIC ABSTRACT

Bifurcations and Hysteresis in the Dynamics of Small Populations of Spherical Magnets

Peter T. Haugen

If you heat up some kinds of metals and then cool them down next to a magnet, they

will be a magnet when they cool, but if they cool down away from a magnet, they will

just be a lump of metal. This is an example of hysteresis and it’s very important for lots of

technology. Another example of hysteresis might be a water tower pump that turns on when

the tower is nearly empty and keeps going until the tower is nearly full. Whether or not

the pump is on when the tower is half full depends on what the condition of the tower was

recently. Hysteresis more generally can be thought of as when somethings present condition

depends very strongly on what it’s history was. A counter example would be for a gas, when

you know it’s temperature and pressure and volume, that’s all that matters.

Many systems with hysteresis are complicated, but this research has found that some

very simple arrangements of the simplest magnets can have still have hysteresis. I show this

primarily by looking at how the systems move around their resting position.

This research was funded by an NSF grant.



vi

To:
My patient and accommodating advisor Dr. Edwards.
My supportive and nurturing parents, Alice and Tom.
All my many other exasperated teachers and mentors.

And most importantly to my dearest Amy.



vii

ACKNOWLEDGMENTS

To coffee, without which many graduate students’ work would go unfinished.

And to antidepressants, without which many graduate students’ work would be finished

tragically early.

Peter Haugen



viii

CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PUBLIC ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Equilibrium and Linearization . . . . . . . . . . . . . . . . . . . . . 4
1.2.5 Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Dynamics of Two Freely Rotating Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Describing the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Dimensionless coordinates . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Analytic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Hysteresis in A System of Seven Magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 System And Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Comparing with Prior Results . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Normal Modes of Oscillation . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Large α Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



ix

4 Base Case for Magnet Systems Exhibiting Hysteresis . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Why Two Dipoles Are Unremarkable . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Three Dipoles in a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 The Triangular Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



x

LIST OF TABLES

Table Page

4.1 A summary of the eigenfrequencies and how they vary with α in the two
cases for a set of three linearly arranged dipoles. . . . . . . . . . . . . . . . 37



xi

LIST OF FIGURES

Figure Page

1.1 In this figure m is used to denote dipole moment. . . . . . . . . . . . . . . . 3

2.1 Schematic of labeling system describing two spheres in the plane featuring
both the independent coordinates and the center of mass coordinates. . . . 8

2.2 Numerical results for four frames of an orbital mode with period 3 (top row),
and a spinning mode with period 8 (bottom row). . . . . . . . . . . . . . . 14

2.3 Above is a plot of large amplitude period vs. total system energy. . . . . . . 18

3.1 Diagram depicting six dipoles arranged at the vertices of a regular hexagon
with a seventh dipole at the center. . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Schematic representations of the seven eigenmodes of oscillation about the
circular state for a central dipole with relative strength α = 1.3. . . . . . . . 25

3.3 Panel (a) is the eigenvalue ω2 vs. α for each of the seven modes of oscillation
about the circular state, labeled based on ascending order at α = 0. . . . . 27

3.4 Panels (a) through (d) are the vectors corresponding to modes 4 through 7
about the circular state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Ri is the ratio of eigenvalue ω2
i /α at α and its projected value for α → ∞ . 31

3.6 Panel (a) is ω2α−1 vs. α−1 while panels (b) through (d) depict the vectors
corresponding to the perturbations of the first three modes in the dipole state
presented in the same fashion as Fig. 3.3. . . . . . . . . . . . . . . . . . . . 32

3.7 Panel (a) through (d) are the perturbations of the remaining four modes in
the dipole state presented in the same fashion as Fig. 3.3. . . . . . . . . . . 33

4.1 Dipoles arranged in an equilateral triangle. . . . . . . . . . . . . . . . . . . 37

4.2 The normal mode information for the low α state. . . . . . . . . . . . . . . 39

4.3 The normal mode information for the high α state. . . . . . . . . . . . . . . 40

4.4 The potential energy of the ground state as a function of α. . . . . . . . . . 41



CHAPTER 1

Introduction

1.1 Background

The monopole term is dominant in systems governed by gravity because negative mass

has yet to make its way off the chalkboard and into observation, let alone be present in equal

amounts as normal mass. Meanwhile, the dipole term has far more longevity and importance

in the realm of electromagnetism. The dipole moment of a water molecule is responsible

for many of its bizarre and helpful properties. The dipole term is the strongest term yet

observed for magnetic objects and has been exploited for navigational purposes for over

two millennia. Simple permanent magnets have been employed in making electricity with

generators for over a century. Now permanent magnets are being used in mechanical con-

texts, such as gears, latches and motors with a variety of advantages including smoothness

of force transmission, longevity and failing gracefully under excessive loads [1].

Systems with statistically large numbers of dipoles already are a rich field of study as

they are the basis of the Ising model and are one of the preferred models featuring group phe-

nomena such as phase transitions. Slightly less well studied are small quantities of dipoles.

These smaller sets correspond more closely to the burgeoning field of magnetomechanical

engineering and more basic analyses of their building blocks may provide useful insights.

Some systems with small numbers of dipoles have been explored previously. Pollack

examined the rotation of two dipoles that are free to spin about fixed axes [2]. Stump et

al. investigated the normal modes for arbitrary numbers of dipoles that are fixed at the

vertices of a regular polygon [3]. Edwards et al. showed that a uniformly magnetized sphere

generates and interacts with magnetic fields as though it were a point dipole [4], setting a

context for the examination of a dipole that slides freely along the surface of another fixed

dipole [5] and the dynamics of a free dipole bouncing against a fixed dipole [6, 7].
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1.2 Methods

Approaching the dynamics of magnetic dipoles from the direction of Newton’s equations

of motion would entail determining the torques applied to each dipole and determining

angular accelerations from there. There is some discourse [8–11] as to how to calculate

those torques, so to obviate that question entirely I skipped straight to Lagrange’s equations

of motion. This had the added benefit that the results found were more adaptable. This

adaptability makes the method generally more appealing as a matter of personal taste. To

find the Lagrange equations of motions for a system we need to describe its potential energy

and its kinetic energy.

1.2.1 Potential Energy

The interaction potential [12] that captures the behavior at time scales slow enough to

disregard radiation is

U =
µ0

4π

1

r3
[
m1 ·m2 − 3(m1 · r)(m2 · r)r−2

]
, (1.1)

where m is a magnetic dipole as a vector, r and r are the separation vector and absolute

distance between the two dipoles, and µ0 is the magnetic permeability of the vacuum. The

geometry is shown pictorially in figure 1.1. In the case where all three vectors are co-planar

the expression can be simplified down to [5]

U = −µ0

4π

m1m2

2r3
[cos(ϕ1 − ϕ2) + 3 cos(ϕ1 + ϕ2 − 2θ)], (1.2)

where the angles ϕ1, ϕ2 and θ reference the angle between some vector and a common axis.

The angles ϕ1 and ϕ2 relate to the orientation of dipoles one and two respectively, while θ

describes the orientation of the separation vector r.

where ϕ1 and ϕ2 represents the angle that that dipole’s orientation makes with some

specified axis and θ represents the angle the separation vector r makes with the previously

mentioned axis. For the sake of concreteness I’ll be referencing those angles as deflections
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Figure 1.1: In this figure m is used to denote dipole moment.

from the x-axis.

1.2.2 Kinetic Energy

The kinetic energy of a sphere is

Ti =
1

2
(Miṙ

2 + Iiϕ̇
2
i ), (1.3)

where ṙ refers to the change in the sphere’s position over time and governs the translational

component of the sphere’s kinetic energy, while ϕ̇ refers to its rotation around an axis over

time and governs the rotational component of the kinetic energy. Because we are limiting

our investigations to spheres, the moment of inertia I is a constant, rather than a tensor

as would be the fully general case, and the angular velocity likewise is a scalar. In the case

where the sphere is fixed in space, or we have chosen an inertial frame of reference where

the sphere is stationary, the translational component would be fixed at zero.
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1.2.3 Equations of Motion

Equipped with expressions for potential and kinetic energies, Lagrange’s equations of

motion are determinable. The quantity

L = T − U (1.4)

is known as the Lagrangian and when a system’s kinetic and potential energy functions are

used it can provide the equations of motion for that system as

∂qL =
d

dt
(∂q̇L), (1.5)

where ∂q is an operator taking the partial derivative with respect to some general coordinate

q of the quantity it’s acting on. The fact that q is entirely arbitrary is the major strength

of this method. It could be a position relative to some axis like cartesian coordinates, or

it could be a relative position to some other object, a displacement along some prescribed

curve, an orientation, or even some strange combination of all the above.

1.2.4 Equilibrium and Linearization

While these equations can be generated for wide range of interaction potentials they

are rarely solvable, in the sense of determining closed form solutions for the evolution of a

state in time. Frequently even determining equilibrium states where all the net forces are

zero requires resorting to numerical methods. But supposing you know the equilibrium of

a system, you can learn something about the system’s dynamics.

First in the one dimensional case where ∂qL = −∂qU and the potential is lacking any

pathologies like discontinuities at the equilibrium it is possible to approximate the potential

near a point q0 as

U(q) ≈ U |q0 + ∂qU |q0(q − q0) + ∂2
qU |q0

(q0 − q)2

2
+O((q0 − q)3) (1.6)

This leaves the domain of mathematical curiosity and becomes incredibly useful when q0
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is an equilibrium of Eq. 1.5. If that is the case, ∂qU |q0 = 0 by the nature of equilibrium.

And since U |q0 does not vary in q it is irrelevant when we try to determine equations

of motion by taking derivatives. While |q0 − q| << 1, we can ignore the higher order

terms and are left with a harmonic potential and its attendant natural frequency. This

approximation is only valid for small deviations from equilibrium, arising either from initial

conditions or a stochastic external force. However it highlights stimuli that could excite

large deviations from equilibrium as periodic forcing at the natural frequency would cause

a resonant response, typically causing motion where |q0 − q| << 1 was no longer true.

This is useful knowledge for experimental design as it might be the first step to observing

interesting phenomena.

1.2.5 Higher Dimensions

If there are two or more degrees of freedom in the system the natural frequency analysis

can still be done straightforwardly in the case where ∂q̇iL is linear in q̇i, or, symbolically,

expressible as Miq̇i where Mi is a constant. This condition and knowing an equilibrium

state q∗ allows us to write out an approximation of the equations of motion as

Miq̈i ≈ −∂qiΣjΣk

[(
∂qj∂qkU

)
|q∗
]
(qj − q∗j )(qk − q∗k) = Σj

[(
−∂qj∂qiU

)
|q∗
]
(qj − q∗j ) (1.7)

where i, j and k are indices for the degrees of freedom. This approximation of the equations

of motion already produces periodic motion, so we may assume solutions of the form

q(t) = q∗ + δq(t), (1.8)

where

δq(t) = a exp(iωt). (1.9)

This allows us to rewrite the left hand of equation 1.7 as

q̈i = δ̈qi = −ω2ai exp(−iωt). (1.10)
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If we define matrices M̂ and K̂ as

Mi,i = Mi, (1.11)

and

Ki,j = ∂qi∂qjU. (1.12)

Then we can rewrite the whole set of equations as the matrix problem

−ω2M̂δq(t) = −K̂δq(t) (1.13)

or (
K̂ − ω2M̂

)
δq(t) = 0. (1.14)

For the non-trivial case where there is any movement at all, equation 1.14 will only hold

if a is an eigenvector and ω2 is an eigenvalue of K̂ − ω2M̂ = P̂ which I will refer to as

the perturbation matrix from this point. The vector a was the directional component of the

periodic assumption that was made in equation 1.9. For a system with N degrees of freedom,

there will be up to N pairs of eigenvalues and eigenvectors, or taken together, normal modes.

If all the eigenvalues are unique, then the eigenvectors are fully determined and have the

property of all being mutually orthogonal. They can also be combined to describe any

initial condition in the space, a property known as being a spanning set. If some of the

eigenvalues are identical, also known as degenerate, then there is some indeterminacy and

the eigenvectors associated with the degenerate eigenvalues can take any value so long as

the set as a whole remains mutually orthogonal and spanning.
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CHAPTER 2

Dynamics of Two Freely Rotating Dipoles

2.1 Introduction

To begin, we’ll examine the simplest number of magnets possible, two dipoles inter-

acting absent any additional fields. In looking at a pair of unrestrained magnetized spheres

we’ve taken a simpler system and increased its degrees of freedom. While it’s common to

maintain the same level of complexity of the motion or increase it, here we find that making

the phase space more complex decreases the complexity of the motion.

Several simple cases have been examined analytically. Pollack [2] has investigated in-

teractions between two point dipoles fixed in space but which are free to rotate, and finds

quasi periodic motion. Edwards et al. has taken advantage of some work that shows mag-

netized spheres experience magnetic fields as though those spheres were point dipoles [4] to

discover how one sphere freely sliding around on the surface of another sphere that is fixed

in space and orientation leads to chaotic motion [5]. Fixing one sphere breaks the symmetry

in space equivalent to an external torque and prevents conserved total angular momentum

from arising.

We take a union of the Pollack and Edwards systems by allowing both spheres to

freely rotate and slide along each other. While each of these systems has two degrees of

freedom, they are different pairs chosen from the more general case and thus not immediately

comparable. Our combined system has three degrees of freedom. While Edwards’ system

exhibited chaos, this new system does not, even at large amplitudes. It is shown to exhibit

separate pieces of movement with irrational frequencies, resulting in quasi-periodic behavior,

rather than chaos.

Numerical methods have been developed for arbitrarily complicated arrangements [13]

and by examining this simple case analytically we can provide an additional check on their
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results.

Figure 2.1: Schematic of labeling system describing two spheres in the plane featuring
both the independent coordinates and the center of mass coordinates.

2.2 Describing the System

Intrinsic properties of the two dipoles are: their respective radii, which we shall label

as a1 and a2, their masses, M1 and M2, and magnitudes of their dipole moments, m1 and

m2.

2.2.1 Coordinates

Cartesian

Each of the dipoles has a location constrained to the x-y plane r1 and r2 along with an

orientation for the dipole ϕ1 and ϕ2 which we will also constrain to the x-y plane, measured

from the x-axis.

Center Of Mass

We can define a set of composite coordinates and quantities more appropriate for
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analyzing two-body system using the aforementioned independent coordinates following

Taylor’s approach [14].

These composite coordinates are as follows: the total and reduced mass,

Mt = M1 +M2, Mr =
M1M2

M1 +M2
, (2.1)

the center of mass,

R =
M1r1 +M2r2

Mt
, (2.2)

and the displacement of dipole 2 from dipole 1,

r = r2 − r1 = r[cos(θ)x̂+ sin(θ)ŷ]. (2.3)

Here θ is the angle r makes with the x-axis.

2.2.2 Hamiltonian

To take advantage of the numerous analytic techniques that can be applied to a system’s

Hamiltonian, it must first be calculated. This in turn requires that we find its kinetic and

potential energy in terms of its coordinates.

Energies

The kinetic energy, T , is [14]

T =
1

2
(M1ṙ1

2 +M2ṙ2
2 + I1ϕ̇

2
1 + I2ϕ̇

2
2)

=
1

2
(MtṘ

2 +Mrṙ
2 +Mrr

2θ̇2 + I1ϕ̇
2
1 + I2ϕ̇

2
2).

(2.4)

The first three terms in the second equation are for two bodies in center of mass coordinates

with the final two terms accounting for the internal degrees of freedom of the spheres. The

potential interaction between two dipoles was addressed in the introduction in equation 1.2.
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Having an expression for kinetic and potential energy, the Lagrangian is

L = T − U =
1

2
(MtṘ

2 +Mrṙ
2 +Mrr

2θ̇2 + I1ϕ̇
2
1 + I2ϕ̇

2
2)

+
µ0

4π

m1m2

2

1

r3
[cos(ϕ1 − ϕ2) + 3 cos(ϕ1 + ϕ2 − 2θ)].

(2.5)

It might be noted that this Lagrangian takes into account only magnetostatic interac-

tions which ignores the resulting damping one would see from accelerating dipoles which

would necessarily happen anytime the system is away from equilibrium. The scale of those

corrections will be addressed in a later section.

Momenta

The first observation we make is that the Lagrangian is independent of the center of

mass position making the corresponding momenta a constant of motion and we will proceed

assuming we are in the inertial frame where the center of mass momentum is 0 and R is 0.

Determining the other momenta we use the relationship ∂q̇iL = pi to arrive at

∂ϕ̇1
L = I1ϕ̇1 = pϕ1 , (2.6a)

∂ϕ̇2
L = I2ϕ̇2 = pϕ2 , (2.6b)

∂θ̇L = Mrr
2θ̇ = pθ, (2.6c)

∂ṙL = Mrṙ = pr. (2.6d)

Allowing us to find the Hamiltonian with the expression of

H = Σipiq̇i − L =
1

2

(
p2r
Mr

+
p2θ

Mrr2
+

p2ϕ1

I1
+

p2ϕ2

I2

)
+ U(ϕ1, ϕ2, θ, r). (2.7)

2.2.3 Dimensionless coordinates

To get at the essentials of the system we will examine it in a natural set of dimensions.

First we will characterize the second dipole in terms of the first such that M2 = αM1,
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a2 = βa1, m2 = γm1. This lets us rewrite the energies as

T =
1

2

[
(1 + α)M1

αM2
1

p2r +
(1 + α)M1

αM2
1

p2θ
r2

+ p2ϕ1

5

2M1a21
+ p2ϕ2

1

αβ2

5

2M1a21

]
, (2.8a)

U = −µ0

4π

γm2
1

2

1

r3
[cos(ϕ1 − ϕ2) + 3 cos(ϕ1 + ϕ2 − 2θ)]. (2.8b)

We go on to define our units as follows: L0 = 2a1 for length, m1 for magnetic moment,

F0 = 3µ0m
2
1/(2πL

4
0) for force, F0L0 for energy, T0 =

√
M1L0/F0 for time, T−1

0 , T−2
0 for an-

gular velocities and accelerations, M1L0/T0 for linear momentum and M1L
2
0/T0 for angular

momentum. This lets us rewrite the energies as

T =
1

2

[
(1 + α)

α
p2r +

(1 + α)

α

p2θ
r2

+ 10p2ϕ1
+

10

αβ2
p2ϕ2

]
, (2.9a)

U = − γ

12

1

r3
[cos(ϕ1 − ϕ2) + 3 cos(ϕ1 + ϕ2 − 2θ)]. (2.9b)

Let us finally make two more assumptions. First, that the two spheres are identical,

α = β = γ = 1. Second, that there is some contact potential energy UC preventing the two

spheres from overlapping that prohibits r from getting less than 1. These two assumptions

produce the Hamiltonian we’ll be investigating for the remainder of our discussion

H = T + U =
1

2

(
2p2r + 2

p2θ
r2

+ 10p2ϕ1
+ 10p2ϕ2

)
− 1

12

1

r3
[cos(ϕ1 − ϕ2) + 3 cos(ϕ1 + ϕ2 − 2θ)] + UC .

(2.10)

2.3 Analysis

2.3.1 Analytic Results

Equilibrium Analysis

Let us first examine the equations of motion and see if there exist any equilibria between

the spheres while they are in contact with each other (r = 1). The Hamiltonian equations
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of motion we find are

ṗϕ1 = −∂ϕ1H = − 1

12
sin (ϕ1 − ϕ2)−

1

4
sin (ϕ1 + ϕ2 − 2θ), (2.11a)

ṗϕ2 = −∂ϕ2H =
1

12
sin (ϕ1 − ϕ2)−

1

4
sin (ϕ1 + ϕ2 − 2θ), (2.11b)

ṗθ = −∂θH =
1

2
sin (ϕ1 + ϕ2 − 2θ), (2.11c)

ṗr = −∂rH = 2p2θr
−3 −

[
1

4
cos (ϕ1 − ϕ2) +

3

4
cos (ϕ1 + ϕ2 − 2θ)

]
r−4 + FC . (2.11d)

Inspecting Eq. (2.11c) we see immediately that the orbital momentum, pθ, is static if and

only if ϕ1 + ϕ2 − 2θ = jπ where j is any integer. Using that as a constraint we then see

that both spin momenta are static if the previous equation holds and ϕ1 − ϕ2 = kπ where

k is an integer independent of j. These two constraints produce a set of equilibrium curves

where

ϕ1 =
j + k

2
π + θ, (2.12a)

ϕ2 =
j − k

2
π + θ, (2.12b)

and all the forces on the three angular momenta are 0. However since our Hamiltonian is

periodic over 2π we can cover everything by permuting (j, k) through 0 and 1. This leaves

us with 4 curves, until we consider the constraint that Eq. (2.11d) must be negative to

maintain contact. If j is odd, then we’re left with a resulting positive radial force of 1/2,

and we lose contact. So we’ve narrowed down from an infinite number of equilibrium curves

to two, which, using the j-k notation are (0,0) and (0,1). These curves correspond with the

continuous ground states Schönke [15] found despite not fixing the dipoles to rotate in place.

Normal Mode Analysis

Equilibria and equations of motion in hand, we can do small angle perturbations.

Noting that near an equilibrium point Γi = (ϕ1i, ϕ2i, θi, pϕ1i
, pϕ2i

, pθi) = (ϕ1i, ϕ2i, θi, 0, 0, 0)
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the changes in momenta will be small. Doing a Taylor approximation around these equilibria

points as described in the introduction section on higher dimension linearization[1.2.5] we

find P̂ matrices for each of the equilibria.

For the (0,0) equilibrium we find the perturbation matrix to be


ω2

10 − 1
3 −1

6
1
2

−1
6

ω2

10 − 1
3

1
2

1
2

1
2

ω2

2 − 1

 (2.13)

Which only has two non-zero eigenmodes corresponding to when ω2 is equal to 5/3 and

7. The lower frequency mode has an eigenvector of [1, -1, 0], indicating it has no motion in

the orbital angle, θ. For this reason we shall refer to it as the spinning mode for its sole form

of motion. It possesses an interesting isomorphism we shall examine in more depth later.

The second, higher, frequency’s eigenvector is [5/2, 5/2, -1] indicating it does possess orbital

motion and thus earns the moniker of orbital mode. These modes correspond to the α and

β modes in Pollack [2] respectively. The spinning mode matches α exactly. Allowing for θ to

be dynamical appears to result in a higher restoring force as the frequency is higher than is

the case with β. Brief algebra will reveal that both modes have net-0 angular momentum.

Additionally this result along with the work Stump did on radiation damping of os-

cillating dipoles [16] lets us estimate the significance of that phenomenon on this system.

When approximating the damping effect as producing an exponential decay the oscillations

have a time constant, that when expressed in our units, is

τdecay = 180c3
(
L2
0ω

2
0

L0

T0

)−1

T0. (2.14)

This means for reasonably sized dipoles (dipole moment of 0.5 H/m2 and diameter of

0.01 m) we would observe an enormous amount of oscillations before any significant energy

was lost to simple dipole radiation, on the order of several life times of the universe; τdecay ≈

1020 years. Other forms of dissipation would almost certainly dominate.
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t=0.000 t=0.753 t=1.507 t=2.252

t=0.000 t=2.023 t=4.013 t=6.002

Figure 2.2: Numerical results for four frames of an orbital mode with period 3 (top row),
and a spinning mode with period 8 (bottom row). Color editions have blue arrows denoting
velocities, with green arrows denoting dipole orientations.

For the (0,1) equilibrium the perturbation matrix is


ω2

10 − 1
6 −1

3
1
2

−1
3

ω2

10 − 1
6

1
2

1
2

1
2

ω2

2 − 1

 (2.15)

Which merits two points of observation. First, all the same eigenvectors come forth

along with 2 non-zero fundamental frequencies. Second, while the orbital mode has the

same frequency, the spinning mode’s ω2 = −5/3. It follows then that the frequency has a

negative complex component. When that frequency is put back into the periodic solution

of eiωt we’ll have a growing exponential indicating that it is unstable.

Both the (0,0) and (0,1) equilibria points have an ω2 = 0 mode where all the angles

have been translated by some equal amount. With all the translation being the same, there’s
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no restoring force and thus no oscillation.

Isomorphisms

Examining the spinning mode in more depth we present the variable substitution for

the difference and sum of the dipole orientations and corresponding velocity

ϕd = ϕ1 − ϕ2 (2.16a)

ϕt = ϕ1 + ϕ2 (2.16b)

ϕ̇d = ϕ̇1 − ϕ̇2 (2.16c)

ϕ̇t = ϕ̇1 + ϕ̇2 (2.16d)

Making these substitutions in the original Lagrangian we find new momenta and a new

Hamiltonian. The momenta are pϕd
= ϕ̇d/20 and pϕt = ϕ̇t/20 while the contact Hamiltonian

in these coordinates is

H = T + U =
1

2

(
2p2θ + 20p2ϕd

+ 20p2ϕt

)
− 1

12
[cosϕd + 3 cos(ϕt − 2θ)]

(2.17)

Let us consider just the spinning mode with ϕt = θ = pϕt = pθ = 0. Using this

Hamiltonian it becomes clear that when those four variables all start at 0 they stay at 0,

reducing this phase space from 6 dimensions to 2.

Hϕd
= 10p2ϕd

− 1

12
cosϕd (2.18)

It is important to note the similarities of this Hamiltonian with the Hamiltonian for

a simple pendulum. As is the case for a pendulum, the Hamilton equations lead us to a

second order differential equation ϕ̈d = −5
3 sinϕd providing a second check that the small

amplitude frequency is correct. The large amplitude period is not expressible in terms of an

elementary function, but is expressible in terms of an elliptic integral of the first kind.
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Coupling

Considering now the Hamiltonian for the other two angles we have

Hϕt,θ =
1

2

(
2p2θ + 20p2ϕt

)
− 1

12
[3 cos(ϕt − 2θ)], (2.19)

which holds while the contact criterion is observed.

−∂ϕtH = ṗϕt = −1

4
sin (ϕt − 2θ) (2.20a)

−∂θH = ṗθ =
1

2
sin (ϕt − 2θ) = −2ṗϕt (2.20b)

∂pϕtH = ϕ̇t = 20pϕt (2.20c)

∂pθH = θ̇ = 2pθ (2.20d)

The rates of change for the momenta (Eq. 2.20b plus two times Eq. 2.20a equals zero)

clearly denote a conserved quantity we’ll call total angular momentum and denote as Lt =

pθ+2pϕt . This is to be expected as the angular components only appear in the Hamiltonian

together in a single periodic function. With this we can produce the expression

ϕt(t) = ϕt0 +

∫ t

0
ϕ̇tdt = ϕt0 +

∫ t

0
20pϕtdt = ϕt0 +

∫ t

0
10(Lt − pθ)dt

= ϕt0 + 10Ltt− 10

∫ t

0
pθdt.

, (2.21)

which we’ll rearrange to get

∫ t

0
pθdt = Ltt+ (ϕt0 − ϕt(t))/10. (2.22)

A similar integral can be set up for θ

θ(t) = θ0 +

∫ t

0
θ̇dt = θ0 +

∫ t

0
2pθdt∫ t

0
pθdt =

1

2
[θ(t)− θ0].

(2.23)
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While the integral of pθ is not analytic, the equality between the two holds while contact

is maintained which allows us to algebraically rearrange Eq. (2.22) and Eq. (2.23) to get

ϕt(t) = −5

[
θ(t)− θ0 −

1

5
ϕt0

]
+ 10Ltt. (2.24)

Considering the force on pθ from Eq. (2.20b) and making this new substitution starting

from equilibrium and a zero angular momentum starting condition we have

θ̈ = sin(−5θ − 2θ) = − sin 7θ ≈ −7θ (2.25)

And doing the same with pϕt from Eq. (2.20a) produces

ϕ̈t = −20

4
sin(ϕt +

2

5
ϕt) = −5 sin

(
7

5
ϕt

)
≈ −7ϕt, (2.26)

showing that while the contact constraint holds, the orbital state is also isomorphic with the

simple pendulum with the same asymptotic behavior as the small amplitude oscillations we

found earlier. With this we see that when Lt = 0 and contact maintained we have reduced

the problem to two independent pendula. While the periods are independent of each other

and unlikely to form a rational fraction, both are periodic. This fact makes the system as a

whole no more complicated than quasi-periodic.

2.3.2 Numerical Results

Method

An adaptive fourth order Runge-Kutta method was implemented to calculate the tra-

jectory of the system using two different sized time steps, both made smaller until they

agreed within a specified precision. To determine if a trajectory has returned through its

original point in phase space Γ(0) = Γ0 linear interpolation was used between steps Γn and

Γn+1 to get an estimated time for when the initial value was revisited. This generated six

estimated recurrence times. If all six calculated values fell between tn and tn+1 the average
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was taken and stored. This process was continued until 75 time units had elapsed. The

stored recurrence times were fit to the equation tm = t0m where m is an integer. The slope

t0 was taken to be the period.

Period versus Energy curves

The spinning and orbital modes were examined independently as they are not coupled

together when the contact criterion is maintained. Two hundred initial conditions were

simulated with closer resolution taken near transition points. In the case of the spinning

mode, the maximum initial kinetic energy was 1/2, taking it well past the point where it

begins spinning freely. We see that its period as a function of energy reproduces the curve

described in a detailed analysis of the basic pendulum [17]. In the case of the orbital mode,

the maximum energy was just below the point where the contact criterion was broken, 1/3

units of initial kinetic energy.

0.3 0.2 0.1 0.0 0.1

Energy (U0 +T0 )

0

2

4

6

8

10

12

P
e
ri

o
d
 

Spinning Mode

Orbital Mode

Large Amplitude Period vs System Energy

Figure 2.3: Above is a plot of large amplitude period vs. total system energy. Solid lines
denote numerical results, dashed lines denote asymptotic small amplitude limit
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2.4 Conclusions

In the analysis of this system so far we have found an interesting example of a coupled

non-linear Hamiltonian that counter intuitively does not produce chaotic motion. However

this is only the first of many questions this system leaves open for discussion. Using equation

Eq. (2.9) we can ask whether this splitting of the Hamiltonian works for any set of spheres

or if there are certain ratios that must hold. We can also explore stability of circular orbits

that likely exist. With the appropriate numerical techniques we can examine how these

spheres interact with bouncing. These questions and more are available for investigation.
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CHAPTER 3

Hysteresis in A System of Seven Magnets

3.1 Introduction

Having examined the twin dipole system in more depth, one of the things that intrigued

me was the work by Stump et al. [3] on magnets arranged in a polygon and how it would

change under different circumstances. An easy experiment would ask how does the system

react to changes. The hexagonal system would be very easily modified by introducing a

seventh in the center. This is trivial to do with off-the-shelf toy magnets and making an

approximate system with variable strength electromagnets is also within the realm of the

imaginable. This motivates the theoretical work that follows.

We consider a system of six identical dipoles at the vertices of a regular hexagon

and a seventh dipole fixed at the center identical to the other six except that its dipole

strength is variable. All seven are constrained to spin frictionlessly on axes so their dipole

moments remain coplanar with the hexagon. To find equilibrium states, we begin with the

solution of Stump et al. [3], which is applicable for a central dipole of zero strength. We then

construct equilibrium states for finite central dipole strength by increasing the central dipole

strength incrementally and introducing an effective drag in Lagrange’s equations to enable

the system to relax until the net torque on each dipole vanishes. These states agree with

those obtained by Smith et al. [18] by minimizing the magnetostatic potential energy. We

explore normal modes of oscillation by considering small-amplitude periodic perturbations

about these states.

Two qualitatively different overlapping regimes of oscillatory motion are observed with

discontinuous transitions at critical values of the central dipole strength. These critical

values agree with those found by Smith et al. [18] by considering transitions in the magne-

tostatic potential energy. For vanishing central dipole strength, our numerical results agree
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Figure 3.1: Diagram depicting six dipoles arranged at the vertices of a regular hexagon
with a seventh dipole at the center. Dipole orientations are denoted by arrows, with ϕi

denoting the angle that dipole i makes with the x-axis. The distance between dipoles i and
j is denoted by rij . The angle that segment rij makes with the x-axis is denoted by θij .
The perimeter dipoles m1,m2, ...,m6 all have the same strength m, while the central dipole
may have a different strength, m0.

with analytical calculations by Stump et al. [3]. At very large values of the central dipole

strength, our numerical results converge to our analytical calculations for an infinitely strong

central dipole.

3.2 System And Methods

3.2.1 Geometry

The centers of six identical dipoles are fixed at the vertices of a hexagon, and a seventh

dipole with variable strength but identical moment of inertia is fixed at the center of the

hexagon. All seven are allowed to spin freely in the plane of the hexagon about axes that are

perpendicular to this plane, with their magnetic moments directed parallel to this plane.

The ith dipole’s orientation relative to the x-axis is denoted as ϕi, with i = 0, 1, 2, ..., 6.

The distance between dipoles i and j is denoted as rij and the angle of the associated line

segment with the x-axis is denoted as θij (Fig. 3.1).
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3.2.2 Equations of Motion

We start with the magnetostatic potential energy of a pair of magnetic dipoles as

described in the introduction 1.2 with some modifications and algebraic simplifications [19],

Uij = −U0
Cij

2

(
a

rij

)3

[cos(ϕi − ϕj) (3.1)

+ 3 cos(ϕi + ϕj − 2θij)]. (3.2)

Here,

U0 =
µ0m

2

4πa3
(3.3)

is the energy scale, µ0 is the vacuum permeability, m is the strength of a perimeter dipole,

and a is the distance between adjacent dipole centers. The coefficient is

Cij =


α if i = 0 or j = 0

1 otherwise

(3.4)

involves the ratio α = m0/m of the central dipole strength m0 to the perimeter dipole

strength m. The limiting case illustrated in Fig. 3.1 shows a = D, the sphere diameter. Our

calculations are also valid for a > D, which would apply if the dipoles were kept a fixed

distance from each other by some other force. The total magnetostatic potential energy of

the system is given by

U(ϕ⃗) =
1

2
Σ6
i,j=0,i ̸=jUij , (3.5)

where the factor 1/2 ensures that each pairwise interaction is counted only once. The total

kinetic energy is

T =
I

2
Σiϕ̇

2
i , (3.6)
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where I is the moment of inertia of a dipole. The Lagrangian and equations of motion are

L = T − U (3.7a)

d

dt

(
∂ϕ̇i

L
)
= ∂ϕi

L (3.7b)

Iϕ̈i = −∂ϕi
U, (3.7c)

where ∂ϕi
= ∂/∂ϕi. To determine equilibrium states, we begin with the ground state of

orientations found in Stump et al. [3] for hexagonally arranged dipoles and increase α

incrementally from α = 0. Increasing α generally drives the system out of equilibrium, and

integrating Eqs. (3.7c) leads to undamped oscillations about some new equilibrium state.

We use an RK45 numerical integrator [20] to evolve the system in time. To damp these

oscillations and settle into the new equilibrium, we slowly increase a damping factor γ to

dissipate energy,

Iϕ̈i = −∂ϕi
U − γϕ̇i. (3.8)

The objective is to pass through critical damping and to reduce the sum of the squares of

the accelerations until this sum is below a small threshold ϵ,

Σ6
i=0ϕ̈

2
i < ϵ. (3.9)

For most of the simulations, we use ϵ = 10−8. Once this threshold is reached we consider

the configuration to be an equilibrium state, ϕ⃗∗(α).

These equilibrium states agree with those obtained by minimizing the magnetostatic

potential energy [18]. The total system’s net dipole moment and potential energy undergo a

bifurcation at a critical value α = α2 ≈ 2.47, above which the central magnet plays a dom-

inant role. We therefore refer to this state as the “dipole state”. When lowering α through

α2, the dipole state persists until a lower critical value α = α1 ≈ 1.16 is reached, below

which the system reverts to the original state, called the “circular state” because because
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of the significant role of the perimeter magnets. Thus, the system possesses hysteresis.

With equilibrium states in hand we can use the linearization process described in section

[1.2.5] to find the eigenstates. It is slightly easier than Eq. [1.13] as all our mass terms are

identical and the matrix capturing them behaves as a scalar. We also take advantage of

having bundled all our units for potential energy into a leading term to produce

−ω2
i

Ω2
δ⃗ϕi = K̂δ⃗ϕi, (3.10)

where the elements of K̂ are defined by

Kij = −
(
∂ϕj

∂ϕi

U

U0

)∣∣∣∣
ϕ⃗∗

. (3.11)

These are evaluated numerically. The characteristic frequency is defined by

Ω2 =
U0

I
(3.12)

and is the same used in Stump [3].

3.3 Analysis

3.3.1 Comparing with Prior Results

The α = 0 case provides an opportunity to validate our method by comparing it with

the magnetic polygon analysis of Stump et al. [3], as our α = 0 case is equivalent to their

N = 6 case. For N magnets located at the vertices of a regular N-gon, their normal-mode

frequencies are given by

ω2
j = Ω2

(
ZN +ΣN−1

ν=1

[
1 + sin2 πν

N

ρ(ν)

]
cos

2π

N
jν

)
. (3.13)
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Figure 3.2: Schematic representations of the seven eigenmodes of oscillation about the
circular state for a central dipole with relative strength α = 1.3. The thin lines denote the
equilibrium dipole orientations for this configuration, ϕ⃗∗. The arrows denote the perturbed
orientations, ϕ⃗∗ + δϕ⃗i.



26

Here j is the mode label ranging from 1 to 6,

ρ(n) =
sin(πn/N)

sin(π/N)
(3.14)

is the dimensionless distance between a pair of dipoles, and

ZN = ΣN−1
n=1

1 + cos(πn/N)2

ρ(n)3
(3.15)

is a quantity related to the potential energy per dipole,

When N = 6 there are four unique eigenvalues. To account for scaling factors, we

compare the ratios in rising order, ω2
2/ω

2
1 and so on. Since there are four unique eigenvalues,

there will be three such ratios. To six decimals, they are 1.364407, 1.722194, and 1.578773.

The values generated by our methodology agree within machine precision(1 part in 1014). A

seventh mode exists in our system associated with the free spinning of the central magnet,

as at α = 0 the central magnet is uncoupled to the orientation of the six perimeter magnets.

3.3.2 Normal Modes of Oscillation

Figure 3.2 shows the normal modes of oscilllation about the circular state for α = 1.3.

Using Eq. (3.10) to evaluate the normal modes as a function of α, we obtain Figs. 3.3 and

3.4. These plots allow us to survey the behavior of the normal modes over the full range of

the circular state.

One noteworthy feature in Fig. 3.3a is the splitting from four distinct modes at α = 0,

two of which are doubly-degenerate, to six distinct modes for α > 0. Additionally, a new

eigenmode (ω1) associated with movement of the central magnet appears, and its frequency

eventually surpasses the next lowest and briefly the third lowest.

The frequencies vary continuously throughout the process until α = α2, where the

circular state equilibrium becomes unstable. This and characteristic ratios between different

coordinates that remain constant provides a consistent way to identify each mode. For

example, in mode 1, δϕ1/δϕ4 > 0 so if you were calculating normal modes and unsure if a
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Figure 3.3: Panel (a) is the eigenvalue ω2 vs. α for each of the seven modes of oscillation
about the circular state, labeled based on ascending order at α = 0. Panels (b) through (d)
are plots of the vectors of oscillation about the circular state, δϕ⃗ For modes 1-3. Dashed
traces correspond to ϕ1,ϕ2 and ϕ3, while the thicker markers correspond to ϕ4, ϕ5 and
ϕ6. The solid trace denotes the value of ϕ0. In many cases two degrees of freedom are
synchronized, in which case the variables are listed as a comma-separated pair.
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Figure 3.4: Panels (a) through (d) are the vectors corresponding to modes 4 through 7
about the circular state. Labeling is the same as for panels (b) through (d) described in
Fig. 3.3.
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vector was associated with mode 1, 2, or 3, calculating δϕ1/δϕ4 would tell you if you had

mode 1, or either mode 2 or 3.

3.3.3 Large α Limit

One of the difficulties in developing an analytic method for calculating the eigenmodes

of this system is that it is hard to solve the nonlinear forces and find the system’s equilibria.

However, there are two values of α where the calculation is simple. Stump et al. [3] has

already examined α = 0, as was mentioned earlier, exploiting the system’s strong symmetry

to determine the equilibrium. The other such case is α = ∞. As α increases, the perimeter

magnets will increasingly align with the field of the central magnet. At the extreme limit,

all other interactions will be swamped by the central magnet’s field. From this we know

that

m̂i ∥ B0 ∥
(
2 cos2 θ0i − sin2 θ0i

)
x̂+ 3 cos(θ0i) sin(θ0i)ŷ, (3.16)

where θ0i is the angle defined in Sec. 3.2.1 and B0 is the magnetic field generated by the

central dipole at that location. For i = 1, 2, ..., 6, these equilibrium angles are [18] 0, π −

tan−1(33/2), tan−1(33/2)− π, 0, π − tan−1(33/2), tan−1(33/2)− π. Specifying these angles

allows us to evaluate the elements of the linearization matrix K̂ in a known configuration.

It works out that K̂ contains terms of α to at most the first power, and is analogous to

the spring constant k in a simple harmonic oscillator. As α approaches infinity, all ω2
i would

also approach infinity. For this reason we will actually calculate the matrix limα→∞(K̂/α)

which is presented here to 4 decimal places:
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

−9.2915 −1.0 −1.5118 −1.5118 −1.0 −1.5118 −1.5118

−1.0 −2.0 0 0 0 0 0

−1.5118 0 −1.3228 0 0 0 0

−1.5118 0 0 −1.3228 0 0 0

−1.0 0 0 0 −2.0 0 0

−1.5118 0 0 0 0 −1.3228 0

−1.5118 0 0 0 0 0 −1.3228



, (3.17)

for which computer algebra systems [21] can readily determine the eigenvalues. These values

correspond to −ω2
i /Ω

2α and are, to 4 decimal places, -0.1815, -1.3229, -1.9126, -2.0000, and

-10.5203. The second-lowest mode is triply degenerate. We will refer to these as Ω2
i where

lim
α→∞

ω2
i

Ω2α
= Ω2

i . (3.18)

To compare Ωi with the normal modes of the system at other values of α we define a

ratio,

Ri =
ω2
i

αΩ2

1

Ω2
i

, (3.19)

that captures how close a mode’s eigenvalue matches its limiting behavior, with 1 being an

exact match. Figure 3.5 is a plot of Ri vs. 1/α.

The limiting behavior in Fig. 3.5 for α → ∞ supports the claim that the process used

for intermediate values is sound. The values for the eigenvalues and corresponding modes

are produced much like the circular state and are presented in Fig. 3.6 and Fig. 3.7. One

point of interest is that ω2
1 approaches 0 at α ≈ 2.07 before rebounding and then surpassing

the value of ω2
2 which falls and goes negative at the transition point. One contribution to

this phenomenon is that at this value the perimeter dipoles are all moving in synchronous

in such a way that the magnetic field at the origin tracks the movement of the central dipole

in this mode. This behavior has parallels to the transition from the circular state to the

dipole state. Another point of interest is the varying rates of convergence on the extremal
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Figure 3.5: Ri is the ratio of eigenvalue ω2
i /α at α and its projected value for α → ∞, Ωi.

All modes of the dipolar state converge on their α → ∞ limiting behavior at varying rates.
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Figure 3.6: Panel (a) is ω2α−1 vs. α−1 while panels (b) through (d) depict the vectors
corresponding to the perturbations of the first three modes in the dipole state presented
in the same fashion as Fig. 3.3. The arrow in panel (a) indicates that ω2

7 is off the scale
relative to the other six.
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Figure 3.7: Panel (a) through (d) are the perturbations of the remaining four modes in
the dipole state presented in the same fashion as Fig. 3.3.
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eigenvalues. For example the seventh mode converging quite rapidly while the first mode

oscillating substantially.

3.4 Conclusions

A system of seven magnets presents an opportunity to examine bifurcations in a manner

that is physically realizable and has few degrees of freedom. The two associated states

have qualitatively different normal modes of oscillation and limits. Additionally, the system

exhibits hysteresis, transitioning back to the circular state at α1 which is lower than when

it transitions to the dipole state. As a theoretical system, it suggests additional avenues for

investigation. What is the simplest configuration of dipoles that can exhibit this behavior?

How does the system behave for large N? Insights into the behavior of large collections

of dipoles in this configuration may be of application for modeling cylindrical wave guides

made of materials with significant molecular dipole moments. This question we will address

next.
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CHAPTER 4

Base Case for Magnet Systems Exhibiting Hysteresis

4.1 Introduction

When confronted with a new problem or system, it is often useful to identify the

simplest case that maintains the basic qualitative properties of interest. Stripping away any

extraneous details helps find the parts that are most important and increases your chances

at understanding the fundamental “why” of a phenomenon. This is the basic premise when

Claude Shannon advocated simplifying a problem to the point where it barely resembled

what it looked like when you saw it first. [22]

Before we can identify the simplest system that has the interesting properties of the

filled hexagon, we must first identify what those properties are. This will necessarily partially

be a matter of aesthetics, but I consider the key properties to be: made up of dipoles spinning

in a common plane, with a member varying in strength relative to the others which are all

equivalent, that exhibits at least two distinct vibrational mode regimes which overlap, or in

other words possesses hysteresis.

We will look at the two dipole system and argue why it can only satisfy the first two and

not the latter one. Then we will examine three dipoles arranged in an equilateral triangle

and see how they qualitatively behave like the filled hexagon, and what ways they differ

quantitatively.

4.2 Why Two Dipoles Are Unremarkable

The interaction between any two dipoles co-aligned in a plane that has been used so

far is equation 1.2 and regardless of the coefficient term out front describing the strength of

the interaction will always have the same equilibrium where the dipoles are aligned parallel

to each other and to the line segment between the two centers. The layout of the potential
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energy function won’t change as the leading coefficient grows larger, merely steeper. From

this we infer that while the frequencies of the two modes described by Pollack would increase,

the eigenvectors would not.

4.3 Three Dipoles in a Line

The next step up from two dipoles would be three dipoles, still arranged along a line

at equally spaced intervals. This permits us the choice of either placing the varying dipole

in the center, producing the potential energy function of

Ucenter = −α

2
[cos (ϕ0 + ϕ1) + 3 cos (ϕ0 + ϕ1) + cos (ϕ0 − ϕ2) + 3 cos (ϕ0 + ϕ2)]

− 1

16
cos (ϕ1 − ϕ2)−

3

16
cos (ϕ1 + ϕ2),

(4.1)

or along the edge

Uedge = −α

2

(
cos (ϕ0 − ϕ1) + 3 cos (ϕ0 + ϕ1) +

1

8
cos (ϕ1 − ϕ2) +

3

8
cos (ϕ1 + ϕ2)

)
− 1

2
cos (ϕ0 − ϕ2)−

3

2
cos (ϕ0 + ϕ2).

(4.2)

By inspection we see that at equilibrium all the dipoles are aligned with each other

(ϕ0 = ϕ1 = ϕ2 = 0), and by the same logic in the two dipole case, will continue to be aligned

with each other for any value of α we might choose. Because the equilibrium is known for

each value of α, the K̂ matrices can be calculated with it included. They are

K̂center =


−4α −α −α

−α −2α− 1
4 −1

8

−α −1
8 −2α− 1

4

 (4.3)

and

K̂edge =


−2α− 2 −α −1

−α −9
4α −1

8α

−1 −1
8α −1

4α− 2

 . (4.4)

These matrices produce three eigenfrequencies at which these systems oscillate around
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Table 4.1: A summary of the eigenfrequencies and how they vary with α in the two
cases for a set of three linearly arranged dipoles. Here Fc = [3(α2 − 1

8α + 3
256)]

1/2 and

Fe =
3
2(

179
192α

2 − 3
4α+ 1)1/2.

Mode Center Edge

ω2
slow 3α+ 3

16 − Fc(α)
27
16α+ 3

2 − Fe(α)

ω2
medium 2α+ 1

8
18
16α+ 1

ω2
fast 3α+ 3

16 + Fc(α)
27
16α+ 3

2 + Fe(α)

Figure 4.1: Dipoles arranged in an equilateral triangle. A typical configuration for α < 1.

their equilibrium. A summary of these curves is presented in table 4.1. The most important

result is that these curves are strictly positive for positive values of α, indicating this

configuration is stable in that same range and thus doesn’t undergo the kind of phase

transitions the filled hexagon does. The unexpected result is that for all values of α it holds

that ω2
slow + ω2

fast = 3ω2
medium. This result holds for other spacings I’ve looked at.

4.4 The Triangular Case

Having addressed the simpler line cases, I move onto the simplest planar case, an

equilateral triangle. For concreteness I place two dipoles on the y axis at y = ±1/2 and the

third variable strength dipole on the x axis at x =
√
3/2, as portrayed in 4.1. The potential
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for this system is

U(ϕ0, ϕ1, ϕ2) = −α

2

[
cos (ϕ0 − ϕ1) + cos (ϕ0 − ϕ2)

+ 3 cos
(
ϕ0 + ϕ1 +

π

3

)
+ 3 cos

(
ϕ0 + ϕ2 −

π

3

)]
− 1

2
cos (ϕ1 − ϕ2)−

3

2
cos (ϕ1 + ϕ2 − π).

(4.5)

Using the same annealing method described in equation 3.8, I arrive at equilibria and normal

mode plots as shown in figure 4.2. While less exotic than the filled hexagon system, mode

1 does trend lower hitting 0 and becoming unstable at α ≈ 6.5. I also note that while there

is a degeneracy at α = 1, there is only one solution of eigenvectors that would maintain

continuous curves.

Starting from the other extreme with very large α and the starting orientations aligned

with the field lines generated by the variable dipole we get the curves in figure 4.3. Looking

at the high α regime’s eigenmodes we see nearly flat lines with the only noteworthy point

being that mode 1 becomes unstable at α ≈ 2.47.

These two results provide evidence that these three dipoles have a low α state and a

high α state, two distinct modes of behavior. Furthermore the two states overlap for values

of α 2.47 < α < 6.5 meaning the state of the system depends on its previous condition, or

more concisely put, it has hysteresis. Having laid out arguments for why dipoles arranged

in a straight line would not, I conclude that the simplest arrangement of dipoles that has

hysteresis associated with a variable strength member is the equilateral triangle.

Examining figure 4.4 we see the two states in a more macroscopic comparison of their

potential energies at equilibrium. Notice for the bulk of the region where their phases

overlap, the low α phase is metastable until it becomes fully unstable and only the high α

phase can be maintained.
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Figure 4.2: The normal mode information for the low α state. The eigenfrequencies in
term of the characteristic frequency are illustrated in panel (a). In panels (b) through (d)
the solid black curve denotes the displacement from equilibrium of ϕ0, the dashed and
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Figure 4.3: The normal mode information for the high α state. The curves are formatted
with the same structure as 4.2.
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Figure 4.4: These are curves of the potential energy of the ground state as a function of
α. Both low and high α states presented. Low α is in red with high α in blue. The dashed
portions indicate the regions where they are unstable. The vertical dashed lines represent
the critical values where the transitions are forced.
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CHAPTER 5

Conclusions

In chapter 2 we examined a system that was a strict superset of a chaotic system. We

then showed that counter intuitively the more complicated system exhibited the simpler

quasi-periodic motion. However this is only the first of many questions this system raises for

future discussion. Using Eq. (2.9) we can explore whether splitting the Hamiltonian works

for any set of spheres or if there are certain ratios that must hold. We can also explore

stability of circular orbits that likely exist. With the appropriate numerical techniques we

can examine how these spheres interact with bouncing. These questions and more are open

for investigation.

In chapter 3, a system of seven magnets presents an opportunity to examine bifurcations

in a manner that is physically realizable and has few degrees of freedom. The two associated

states have qualitatively different normal modes of oscillation and limits. Additionally, the

system exhibits hysteresis, transitioning back to the circular state at α1 which is lower

than when it transitions to the dipolar state. As a theoretical system, it suggests additional

avenues for investigation. How does the system behave for larger collections of magnets?

Insights into the behavior of large collections of dipoles in this configuration may be of

application for modeling cylindrical wave guides made of materials with significant molecular

dipole moments.

What is the simplest configuration of dipoles that can exhibit hysteresis of this nature?

This question is addressed in chapter 4 and was found that a system with as few as three

dipoles at the vertices of an equilateral triangle has two overlapping states. An interesting

parallel is that three magnets in a one dimensional configuration doesn’t even bifurcations.

Is there some underlying similarity between this small collection of dipoles and the Ising

Model where only in two dimensions or higher can phase changes take place?
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