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ABSTRACT

Statistical Challenges and Methods for Missing and Imbalanced Data

by

Rose Adjei, Doctor of Philosophy

Utah State University, 2022

Major Professor: John R. Stevens, Ph.D.
Department: Mathematics and Statistics

The concept of missing data is present in almost every field of research. It constitutes considerable

challenges in statistical analyses and interpretation of results and can weaken the ability to make

valid statistical conclusions. The challenges associated with missing data can stem from the extent of

data that are missing, the type of missingness present (whether Missing at Random (MAR), Missing

Completely at Random (MCAR) or Missing Not at Random (MNAR)), as well as knowing the

appropriate method to choose to effectively deal with the missingness in the analysis. The overall aim

of this dissertation is to provide insight into missing data across different fields of study and address

some of the above mentioned challenges of missing data through simulation studies and application to

real datasets. This dissertation is in multi-paper format. The first paper of this dissertation addresses

the dropout phenomenon in single-cell RNA (scRNA) sequencing through a comparative analyses of

some existing scRNA sequencing techniques. Dropouts are technically considered missing data but

are represented as zeros in scRNA sequencing. This can be very problematic when conducting any

scRNA analyses as they are not easily identifiable from the true biological zeros and can introduce

bias. The second paper of this work focuses on using simulation studies to assess whether it will

be appropriate to address the issue of non-detects in data using a traditional substitution approach,

imputation, or a non-imputation based approach. In an attempt to address this, these methods

were compared at varying magnitudes of non-detects based on their Type 1 error and power effects.

The final paper of this dissertation presents an efficient strategy to address the issue of imbalance in

data at any degree (whether moderate or highly imbalanced). The primary technique employed to



iv

create this efficient strategy is combining random under-sampling with different weighting strategies

for imbalanced data.

(95 pages)



v

Public Abstract

Statistical Challenges and Methods for Missing and Imbalanced Data

Rose Adjei

Missing data remains a prevalent issue in every area of research. The impact of missing data, if not

carefully handled, can be detrimental to any statistical analysis. Some statistical challenges associ-

ated with missing data include, loss of information, reduced statistical power and non-generalizability

of findings in a study. It is therefore crucial that researchers pay close and particular attention when

dealing with missing data. This multi-paper dissertation provides insight into missing data across

different fields of study and addresses some of the above mentioned challenges of missing data

through simulation studies and application to real datasets. The first paper of this dissertation

addresses the dropout phenomenon in single-cell RNA (scRNA) sequencing through a comparative

analyses of some existing scRNA sequencing techniques. The second paper of this work focuses on

using simulation studies to assess whether it is appropriate to address the issue of non-detects in

data using a traditional substitution approach, imputation, or a non-imputation based approach.

The final paper of this dissertation presents an efficient strategy to address the issue of imbalance in

data at any degree (whether moderate or highly imbalanced) by combining random undersampling

with different weighting strategies. We conclude generally, based on findings from this dissertation

that, missingness is not always lack of information but interestingness that needs to investigated.
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CHAPTER 1

OVERVIEW OF MISSING DATA

1.1 Introduction

Missing data is a common statistical phenomenon that is encountered in almost every field

of research and can affect making valid statistical conclusions. Missing data (also missing values)

refer to those data values that are not stored for the variable in an observation of interest.

A lot of factors can contribute to missingness in data which include:

• Dropouts

• Survey non-responses

• Technical problems (low or no capture efficiency)

• Data entry mistakes

• Improper data collection by the researcher

• Natural phenomenon (e.g. disaster, rain, death, etc.)

Missing data if not properly handled can pose a number of problems. First of all, having missing

values in your data can lead to unbalanced data. Second, it can result in biased estimates being

produced. Third, it can lead to a reduction in statistical power, the probability of rejecting the null

hypothesis when, in fact, it is false. These issues in effect will produce misleading results and affect

the efficiency of the study (Kang, 2013).
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1.2 Types of Missing Data

Understanding the nature of missingness is key in the analysis of missing data. When the

researcher gets to know why the data values are missing and why they matter, it will be helpful in

deciding on the approach to take when handling the missing data. The problems associated with

missing data and the solution to these problems may differ depending on the type of missing data

being dealt with. We will consider three major mechanisms of missing data based on the relationship

between the observed variables and the (unobserved) missing data.

• Missing Completely At Random (MCAR): The probability of missingness is unrelated

to the process under study and occurs entirely at random. This means that missing data

is completely independent of observable variables and unobservable parameters of interest.

MCAR data is regarded as a random sample of the target/full population which is an unre-

alistically strong assumption. In reality, MCAR data are rare and analysis performed on this

kind of missing data produces unbiased results (Gebregziabher, 2019).

• Missing At Random (MAR): The probability of missingness depends only on the observed

variables but not on the unobserved (missing) values. With this mechanism, the missing data

has a relationship with other variables in the dataset. Due to this dependency, the MAR data

is not a random sample of the full population. MAR data can induce bias in the estimation

of parameters depending on the method that is used for analysis. MAR is more common

and realistic as compared to MCAR. This missing data mechanism is said to be ignorable,

which basically means that there is no need to model the missing data mechanism as part

of the estimation process. Ignorability is not an inherent characteristic of MAR instead it

depends on the analytic model being used (using correct model on the observed, missing data

mechanism is not needed) (Gebregziabher, 2019).

• Missing Not At Random (MNAR): This mechanism is also called nonignorable nonre-

sponse/missing. This is neither MCAR nor MAR. The pattern of missingness depends on

both observed and unobserved data. The pattern of missingness is related to other variables

in the dataset, but in addition, the values of the missing data are not random. Probability of

missingness varies for reasons that are unknown to us. (Unobserved measurements influence

the process governing missingness, in addition to influences coming from observed measure-

ments and/or covariates). MNAR assumptions cannot fully (empirically) be verified from data.
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Valid inferences require joint modelling of the response and the missing data mechanism hence

rendering most standard methods of analyses invalid (Gebregziabher, 2019).

Knowing these distinctions are important because the validity of an analysis will depend on the

missing data mechanism.

1.3 Missing Data Techniques

Missing data may or may not be problematic depending on whether your conclusions gets

affected or not. Missing data being problematic (i.e leading to invalid results and conclusions)

may not be outrightly seen and can only be justified after careful analysis of your missing dataset

using appropriate techniques (D. Hess, 2020). When handling missing data, there are three main

approaches that are taken:

• Omission - samples with invalid data or missing values are excluded from further analysis.

• Imputation - assigning values to the missing data.

• Full analysis - directly applying methods that are unaffected by missing values.

1.3.1 Missing data methods that throw away data (Omission)

To basically resolve the problem of missing data, most people tend to rely on methods that

throw away or omit data in order to simply avoid having to deal with missingness in data. Throwing

away data leads to reduced sample size which can further produce estimates with large standard

errors and result in distorted inferences about the sample population (Gelman and Hill, 2006). The

sample observations that remain may not be a true representation of the population.

Complete case analysis/listwise deletion is where an entire record/case/unit is excluded

from the dataset if any single value is missing before performing further analysis. This is by far the

most common method when handling missing data (Kang, 2013). This method only uses cases that

have complete data. Therefore, complete case analysis has the potential to introduce bias into the

estimates and lead to invalid inferences. However, depending on the type of missingness present in

the data the problem of biasedness may be avoided. Listwise deletion may be a reasonable (optimal)

strategy for the researcher to consider, provided that the sample data is large enough (where power

is not a problem) and the assumption of MCAR is satisfied. Even if the MCAR assumption is met,

complete case analysis can be immensely inefficient if the sample data is not large enough (power
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issues arising) (Gebregziabher, 2019). Researchers using listwise deletion may have to deal with the

problem of losing large amounts of data especially where there are a high number of missing cases.

Pairwise deletion / available-case analysis is another simple approach of handling miss-

ing data by throwing away data. Unlike listwise deletion, pairwise deletion enables researchers to

use as much of data as possible. This method does not include a particular variable when it has a

missing value, but it can still use the case when analyzing other variables with non-missing values

(Support, 2020). A researcher simply excludes a variable or set of variables from the analysis be-

cause of their missing-data rates (sometimes called “complete-variables analyses”). This means that

pairwise deletion allows you to use more of the data and perform different statistical analyses using

different subsets of the data (Solution, 2020).

A much simpler way to think of how pairwise deletion works is to think of correlation matrix.

A correlation measures the strength of the relationship between two variables. For each pair of vari-

ables for which data is available, the correlation coefficient will take that data into account. Thus,

pairwise deletion maximizes all data available by an analysis by analysis basis (Solution, 2020). Even

though this method has the ability to preserve more information, the populations of each analysis

would be different and possibly non-comparable (Salgado et al., 2016). Hence researchers may have

challenges with drawing inferences to the total sample (Solution, 2020). Pairwise deletion is known

to work well with datasets that satisfy MCAR or MAR assumptions thereby producing less biased

results (Kang, 2013). Different sample sizes are considered under pairwise deletion which may be

problematic as the results obtained will not generalize to the entire original population.

Weighting is another data omission method that can be considered. As seen with complete

case analysis, excluding cases with missing data can distort the representativeness of the sample

and produce biased estimates. Weighting is therefore a method carried out to compensate for the

missingness (nonresponse), restore the representativeness of sample, and reduce the bias in estimates

produced (Raghunathan, 2004a) & (Gelman and Hill, 2006).

Under this procedure, a model is built to predict the non-response of the variables with

missing data using the other variables with complete data. The weights assigned are the inverse of

the probability of response and are mostly used in regression models, e.g., weighted logistic regression

models. The inverse of predicted probabilities of response from this model could then be used as

survey weights to make the complete-case sample representative (along the dimensions measured

by the other predictors) of the full sample (Gelman and Hill, 2006). Results produced may be
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unbiased if the data satisfy the MAR assumption where the observed data are a random sample in

the weighting class (Gebregziabher, 2019).

Weighting becomes more complicated when there is more than one variable with missing data

(Gelman and Hill, 2006). Again, weighting may not be the best option and may lead to biased results

if the respondents differ significantly from the non-respondents in the class(Gebregziabher, 2019).

Lastly, there is the potential that standard errors will become erratic if predicted probabilities are

close to 0 or 1.

1.3.2 Missing data approaches that retain all data / assign values to missing data

(Imputation)

Marginal mean imputation is a fast and simple fix to handling missing data. This method

replaces the missing value by the mean of the observed values for that variable (Van Buuren, 2018).

This could be problematic as the distribution of the variable imputed can be distorted severely.

Again, mean imputation can lead to discrepancies in summary statistics which include underesti-

mation of variance since it keeps the sample size at its full value and distortion of the relationship

between variables by pulling the estimates of the correlation towards zero (Gelman and Hill, 2006).

Using mean imputation tends to introduce bias in the estimate of the mean if the data is not MCAR.

Hence this method should probably be used as a quick fix when there is just a very small number

of missing values (Van Buuren, 2018). The more the missing data the larger the underestimation of

the variance which may artificially lead to very small p-values and increase the possibility of type I

errors (Grace-Martin, 2020a).

Last Observation Carried Forward (LOCF) takes previous observed value as a replace-

ment for missing data. When multiple values are missing in succession, this procedure searches for

the last observed value to use as a replacement for the missing values (Van Buuren, 2018). The
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missing value is replaced by the last observation from the same subject. LOCF is a highly popular

imputation method used in longitudinal studies / time series analysis / clinical trials in which the

subjects are repeatedly measured over a series of time-points (Kang, 2013).

LOCF assumes that outcomes do not change over time when a subject becomes missing and

that a single data point can be used to estimate the distribution of potential values. Hence LOCF

may be appropriate to use in situations where measured variables are fixed and are known not to

change over time (Shoop, 2015) or in cases where we are certain of what the missing values should

be (Van Buuren, 2018). These underlying assumptions are occasionally justifiable and hence the use

of LOCF can be problematic when these assumptions are not met (Shoop, 2015).

One advantage of LOCF is that it is convenient since it generates a complete dataset. Also,

this method is easy to understand and communicate between statisticians and clinicians or between

a sponsor and the researcher or non-statisticians (Kang, 2013). LOCF is sometimes traditionally

viewed as preferred method in clinical trials as it is considered conservative (one that would lead

to underestimation of the true treatment effect) and less prone to selection (Van Buuren, 2018). It

must be noted that under certain restrictive assumptions LOCF can produce unbiased estimates of

treatment effect. On the other hand, LOCF produces biased estimates of the treatment effect and

underestimates the variability of the estimated result unless the above mentioned assumptions are

met (Kang, 2013). Now, LOCF can result in biased estimates even under MCAR.

It is therefore recommended that LOCF needs to be followed by a proper statistical analysis

method that can distinguish between the real and imputed data. However, this is typically not

done. The Panel on Handling Missing Data in Clinical Trials recommends that LOCF should not

be used as the primary approach for handling missing data unless the assumptions that underlie it

are scientifically justified (National Research Council 2010, 77) (Van Buuren, 2018).

Zero Imputation is one of the simplest and most intuitive ways of compensating for missing

values in a dataset. This method is carried out by replacing missing values with zeros. Even though

Zero imputation may come off as a simple and efficient technique which retains the full dataset, it

has the tendency to artificially create erroneous relationships between variables thereby leading to

high estimation errors (Shi, 2007).

Regression Imputation incorporates the knowledge of other variables with the idea of

producing smarter imputations. The first step in this procedure involves building a model from the

observed data. Predictions for the incomplete cases are then calculated under the fitted model, and
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serve as replacements for the missing data. The imputed values correspond to the most likely values

under the model (Van Buuren, 2018). There are a number of advantages associated with using

regression imputation. First of all, unlike the listwise or pairwise deletion, regression imputation

retains a great deal of data and avoids significantly altering the standard deviation or the shape of

the distribution (Kang, 2013). Regression imputation yields unbiased estimates of the means under

MCAR, just like mean imputation, and of the regression weights of the imputation model if the

explanatory variables are complete. Moreover, the regression weights are unbiased under MAR if

the factors that influence the missingness are part of the regression model (Van Buuren, 2018).

On the other hand, imputing predicted values has an effect on the correlation. One may be

led to believe that we’re to do a good job by preserving the relations between the variables. In reality

however, regression imputation artificially strengthens the relations in the data. Correlations are

biased upwards, and the variability of the imputed data is systematically underestimated, making

the imputations too good to be true. Regression imputation is a recipe for false positive and spurious

relations. In view of these pitfalls, it is recommended that regression imputation should be used

when more than 10% of the data is missing and when the data contains highly correlated variables

(Lodder, 2013).

KNN is a non-parametric algorithm that is used to replace missing values in a dataset. This

method is sometimes referred to as the “Nearest Neighbor Imputation”. KNN can be used for data

that are continuous, discrete, ordinal, and categorical which makes it particularly useful for dealing

with all kind of missing data (MAR, MCAR, MNAR). The KNN is an algorithm that is useful for

matching a point with its closest k neighbors in a multi-dimensional space. When using KNN for

missing values, it is assumed that a point value can be approximated by the values of the points

that are closest to it, based on other observed variables (Obadiah, 2017). Usually KNN algorithm

uses the Euclidean distance as a distance metric to identify neighbouring points (Malarvizhi and

Thanamani, 2012). The KNN algorithm identifies different groups (’K’ samples) in the dataset that

are similar to each other and use these ‘K’ samples to estimate the value of the missing data points.

Each sample’s missing values are imputed using the mean value of the ‘K’-neighbors found in the

dataset (Vidhya, 2020).

When using KNN algorithm to impute, it is important to carefully select K. The K in the

KNN algorithm is a user defined constant which represents the number of neighbors to be specified.

Choosing a very low K can increase the influence of noise and make the results less generalizable. On
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the other hand, a very high K will tend to blur local effects which are exactly what we are looking

for. It is recommended that an odd K is selected for binary classes to avoid ties. The KNN algorithm

automatically normalizes the data when both numeric and categorical variable are provided. This

allows every attribute/variable the same influence in identifying neighbors when computing certain

type of distances like the Euclidean one.

KNN is very easy to implement and simple to understand as only two parameters are required

to implement (the value of K and the distance function). Again, KNN algorithm requires no train-

ing before making predictions, hence new data can be added seamlessly which will not impact the

accuracy of the algorithm. However, this imputation method may not be always appropriate as it

does not work well with large datasets. The cost of calculating the distance between the new point

and each existing point is huge which degrades the performance of the algorithm. Also, it does not

work well with high dimensional data because with large number of dimensions, it becomes difficult

for the algorithm to calculate the distance in each dimension. Lastly, KNN is very sensitive to noisy

data and outliers (Kumar, 2019).

The above imputation techniques (mean imputation, LOCF, zero imputation, regression im-

putation, and KNN) on the whole are classified as single imputation methods. This is because

these methods generate a single estimate for the missing value. All single imputation methods

underestimate standard errors (Grace-Martin, 2020b).

Multiple imputation as the name suggests is a simulation-based technique for handling

missing data that creates multiple versions of imputed data. This method is a more advanced tech-

nique compared to the other imputation methods mentioned above. Multiple imputation creates

several complete versions of the data by replacing the missing values by plausible data values. These

plausible values are drawn from a distribution specifically modeled for each missing entry. The

imputed datasets created (say size m) are identical for the observed data entries, but differ in the

imputed values. The next step is to estimate the parameters of interest from each imputed dataset.

This is typically done by applying the analytic method that we would have used had the data been

complete. The results will differ because their input data differ. It is important to realize that these

differences are caused only because of the uncertainty about what value to impute. The last step

is to pool the m parameter estimates into one estimate, and to estimate its variance (Van Buuren,

2018). Standard errors are calculated using Rubin’s (1987) formula that combines variability within

and between data sets (Allison, 2012a) Under the appropriate conditions, the pooled estimates are



9

unbiased and have the correct statistical properties and hence are used as the final imputed values

to complete the dataset (Van Buuren, 2018).

Over the last decade, multiple imputation has rapidly become one of the most widely-used

methods for handling missing data. However, one of the big uncertainties about the practice of

multiple imputation is how many imputed data sets (m) are needed to get good results. A simplified

rule of thumb that is mostly applied is that the number of imputations should be similar to the per-

centage of cases that are incomplete. So if 27% of the cases in your data set have missing data on one

or more variables in your model, you should generate about 30 imputed data sets. With large data

sets and many variables in the imputation model, this can become burdensome as getting more data

sets will require more computing time (Allison, 2012a). Multiple imputation can be used with any

kind of data and model with conventional software. When the data is MAR, multiple imputation

can lead to consistent, asymptotically efficient, and asymptotically normal estimates (Soley-Bori,

2013). It is possible to do multiple imputation when data are missing not at random (MNAR), but

to do that, you first need to specify a model for the missing data mechanism—that is, a model of

how missingness depends on both observed and unobserved quantities (Allison, 2014).

One of the benefits of multiple imputation is that in addition to restoring the natural vari-

ability of the missing values, it incorporates the uncertainty due to the missing data, which results

in a valid statistical inference (Roy, 2019). Another reason to use multiple imputation is that it

separates the solution of the missing data problem from the solution of the complete-data problem.

The missing-data problem is solved first, the complete-data problem next. Though these phases

are not completely independent, the answer to the scientifically interesting question is not obscured

anymore by the missing data. The ability to separate the two phases simplifies statistical modeling,

and hence contributes to a better insight into the phenomenon of scientific study (Van Buuren,

2018).

Multiple imputation on the other hand, can be challenging to implement given the different

steps one has to go through to arrive at the final imputation. The validity of the multiple imputa-

tion results will be questionable if there is an incompatibility between the imputation model and the

analysis model, or if the imputation model is less general than the analysis model (Raghunathan,

2004b). Lastly, multiple imputation is computationally intensive and involves approximations. Some

algorithms need to be run repeatedly in order to yield adequate results, and the required run length

increases when more data are missing (Sterne et al., 2009).
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1.3.3 Full Analysis methods

There are methods which take full account of all information available, without the distortion

resulting from using imputed values as if they were actually observed. The full analysis methods are

direct methods unaffected by, and robust to, missing values. These methods are sometimes referred

to as likelihood based functions since it employs the likelihood function in its analysis of data. Full

analysis methods are more advanced and modern. The Maximum Likelihood (ML) approach of

estimating missing data is sometimes referred to as “Full Information Maximum Likelihood(FIML)”,

“direct maximum likelihood” or “raw maximum likelihood” (Newsom, 2020). The underlying assump-

tions that needs to be met before using ML is that the data should be missing at random (MAR)

and should follow a multivariate normal distribution (Statistics, 2020). Under maximum likelihood

estimation, the full, incomplete dataset is analyzed without imputing data (Grace-Martin, 2020c).

In carrying out ML estimation, the value of some population parameter is estimated by de-

termining the value that maximizes the likelihood function (actually the log of this function) based

on the sample data that is available (Statistics, 2020). Rather than imputing the data values, this

method uses each case available data to compute maximum likelihood estimates. The maximum

likelihood estimate of a parameter is the value of the parameter that is most likely to have resulted

in the observed data. When data are missing, we can factor the likelihood function. The likelihood is

computed separately for those cases with complete data on some variables and those with complete

data on all variables. These two likelihoods are then maximized together to find the estimates. That

is, the missing data may be estimated by using the conditional distribution of the other variables

(Kang, 2013). This method gives unbiased parameter estimates and standard errors.

One advantage of ML estimation is that it does not require the careful selection of variables

used to impute values that multiple imputation requires. It is, however, limited to linear mod-

els (Grace-Martin, 2020c). Under the identified assumptions above being satisfied, ML produces

estimates that are consistent, asymptotically efficient and asymptotically normal (Allison, 2012b).

Expectation-Maximization (EM) is a type of the maximum likelihood method that can

be used to create a new data set, in which all missing values are imputed with values estimated by

the maximum likelihood methods (Roy, 2019). The essential idea behind the EM algorithm is to

calculate the maximum likelihood estimates for the incomplete data problem by using the complete

data likelihood instead of the observed likelihood because the observed likelihood might be compli-

cated or numerically infeasible to maximize (Unknown, 2020).
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Under the Expectation-Maximization algorithm, there are two main steps involved: Expectation-

step (E-step) and Maximization-step (M-step). This method begins with the Expectation-step (E-

step) where the observed data is augmented with manufactured data so as to create a complete

likelihood that is computationally more tractable. We then replace, at each iteration, the incom-

plete data, which are in the sufficient statistics for the parameters in the complete data likelihood,

by their conditional expectation given the observed data and the current parameter estimates (Un-

known, 2020). It must be noted that the parameter estimates are used to create a regression equation

to predict the missing data. The maximization step uses those equations to fill in the missing data.

The expectation step is then repeated with the new parameters, where the new regression equations

are determined to “fill in” the missing data (Roy, 2019). The new parameter estimates are obtained

from these replaced sufficient statistics as though they had come from the complete sample (Roy,

2019). Alternating E- and M-steps, the sequence of estimates often converges to the MLEs under

very general conditions (Unknown, 2020).

Expectation maximization is applicable whenever the data are missing completely at random

(MCAR) or missing at random (MAR), but unsuitable when the data are not missing at random

(Moss, 2016). Aside missing data, the EM Algorithm can be used for the latent variables (i.e vari-

ables that are not directly observable and are actually inferred from the values of the other observed

variables) in order to predict their values with the condition that the general form of probability

distribution governing those latent variables is known to us (Bhadauria, 2019). It is always guaran-

teed under this algorithm that likelihood will increase with each iteration (Bhadauria, 2019).

The EM algorithm can be slow to convergence. It works best when you only have a small

percentage of missing data and the dimensionality of the data isn’t too big. The higher the dimen-

sionality, the slower the E-step; for data with larger dimensionality, you may find the E-step runs

extremely slow as the procedure approaches a local maximum (Glen, 2015). Again, the EM algo-

rithm cannot be used to obtain direct estimates of linear model parameters. Although the imputed

values are optimal statistical estimates of the missing observations, they lack the residual variability

present in the hypothetically complete data set; the imputed values fall directly on a regression line

and are thus imputed without a random error component (Enders, 2001).

The Expectation-Maximization algorithm forms the basis of many unsupervised clustering

algorithms in the field of machine learning (Bhadauria, 2019). It is applicable in the estimation of

Gaussian Mixture Models (GMM) (Glen, 2015). A mixture model is a model comprised of an un-
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specified combination of multiple probability distribution functions. The Gaussian Mixture Model,

or GMM for short, is a mixture model that uses a combination of Gaussian (Normal) probability

distributions and requires the estimation of the mean and standard deviation parameters for each.

The EM algorithm is therefore an appropriate approach to use to estimate the parameters of the

distributions (Brownlee, 2020c). The EM algorithm is also frequently employed to estimate model

parameters for imputation in scRNA seq methods such as scImpute, scRNA-seq complementation

(SCC), Zero-Inflated Factor Analysis (ZIFA). [(Hu et al., 2020), (Harel et al., 2014)]

1.4 Motivating Example for Missing Data Imputation: Single-Cell RNA Data

Single-Cell RNA sequencing (scRNA-seq) is becoming an increasingly popular method in the

fields of Cellular Biology and Bioinformatics and across a large number of other biological disciplines

including Genomics, Developmental Biology, Neurology, Oncology, and Immunology. scRNA-seq is

a high throughput analysis that enables researchers to understand at the single-cell level what genes

are expressed, in what quantities, and how the gene expression levels differ across thousands of

cells within a heterogeneous sample(s) (Company, 2020). Single-cell RNA sequencing (scRNA-seq)

technology provides an effective way to study cell heterogeneity, discover new cell types, and under-

stand cell development at single-cell resolution. More specifically, scRNA sequencing is a method

for measuring the transcriptome-wide gene expression in single cells (van Djik et al., 2018).

One major challenge associated with the analysis of the scRNA-seq data is that the scRNA-

seq data is characterized by a high percentage of missing values. This is mainly as a result of low

capture efficiency and stochastic gene expression (Yang et al., 2018). From the roughly 100,000

to about 300,000 mRNAs present in a cell, only 10% - 40% are captured using current scRNA-

seq protocols (van Djik et al., 2018). For example, in a mouse embryo cell, the missing rate can

reach nearly 30%, even after noise reduction (Yang et al., 2018). Single-cell RNA-seq (scRNA-seq)

data usually contain many zero expression values. This is different from the typical structure for a

missing dataset in a lot of studies which mostly contain blanks for missingness. The zeros that are

biologically driven (such as genes that do not express RNA at the time of measurement) are referred

to as the true zeros, whilst those that are technically driven (such as genes that express RNA, but

not at a sufficient level to be detected by sequencing technology) are referred to as dropout zeros.

These dropout zeros are designated as the missing data values in scRNA-seq data (Yang et al.,

2018). This means that not all observed zeros are considered missing data values in scRNA-seq

data. The dropouts increase the cell-to-cell variability, leading to signal influence on every gene, and
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obscuration of gene-gene relationship detection thereby affecting downstream analyses (Chen et al.,

2019).

Given the high level of missingness associated with scRNA seq data, there is the need to

carefully address the missingness so as to avoid the key statistical problems that come with missing

data as outlined above. With the high fraction of the missing data values present in scRNA seq

data, omission methods such as pairwise deletion and complete case analysis discussed previously

may not be appropriate techniques to use when handling scRNA data. The direct deletion of the

missing data can result in a loss of valuable information and affect the downstream analyses of the

data (Yang et al., 2018). Due to technical limitations and biological factors, scRNA-seq data are

noisier and more complex. The high variability of scRNA-seq data raises computational challenges

in data analysis. To effectively handle the high variability of scRNA-seq data, attention should be

paid to choosing appropriately analytical approaches (Chen et al., 2019).

Several technologies have been developed in recent years which attempt to address the chal-

lenge of sparsity in scRNA-seq data. Imputation is a common and useful approach that is employed

to handle the issue of missingness in scRNA-seq data. However, one challenge when imputing expres-

sion values is to distinguish true zeros from missing values (dropout zeros) (Andrews and Hemberg,

2018a). Many of the scRNA-seq imputation methods such as SAVER (Huang et al., 2018a), scIm-

pute (Li and Li, 2018), and DrImpute (Kwak et al., 2017) use models of the expected gene expression

distribution to distinguish true biological zeros from zeros originating from technical noise. Alter-

natively, some scRNA-seq imputation methods like MAGIC (van Dijk et al., 2017) perform data

smoothing to reduce noise present in observed values by using information from neighboring data

points (Andrews and Hemberg, 2018a). The above mentioned scRNA-seq data analysis methods

have their pros and cons which are briefly discussed below based on their mechanisms.

SAVER (Single-cell Analyses Via Expression Recovery) (Huang et al., 2018a) is an expression-

recovery method for denoising single-cell RNA sequencing data by borrowing information across

genes and cells to provide accurate expression estimates for all genes. SAVER assumes that the

count of each gene in each cell follows a Poisson-Gamma mixture, also known as a negative binomial

model. Instead of specifying the Gamma prior, we estimate the prior parameters in an empirical

Bayes-like approach with a Poisson Lasso regression using the expression of other genes as predic-

tors. Once the prior parameters are estimated, SAVER outputs the posterior distribution of the true

expression, which quantifies estimation uncertainty, and the posterior mean is used as the SAVER
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recovered expression value (Huang et al., 2018b).

SAVER takes advantage of gene-to-gene relationships to recover the true expression level of

each gene in each cell, removing technical variation while retaining biological variation across cells.

This method is able to accurately recover the gene expression distribution, which is important for

identifying rare cell types, identifying highly variable genes (Huang et al., 2018b). However, SAVER

may lead to expression changes of the genes unaffected by dropouts introducing new bias and pos-

sibly eliminating meaningful biological variation (Li and Li, 2018). SAVER tends to treat all zero

expressions as missing values. This is inappropriate since some of them may reflect true biological

non-expression and be a result of gene expression stochasticity (Li and Li, 2018). Finally, because

SAVER relies on Markov Chain Monte Carlo algorithms to infer parameters, it is computationally

intensive and might not be suitable for large datasets (Li et al., 2019).

MAGIC (Markov Affinity-based Graph Imputation of Cells) (van Dijk et al., 2017) is a

method for imputing missing values restoring structure of large biological datasets (van Dijk et al.,

2017). MAGIC leverages the large sample sizes in scRNA-seq (many thousands of cells) to share

information across similar cells, via data diffusion, to denoise the cell count matrix and fill in miss-

ing transcripts (van Dijk and Gigante, 2019). MAGIC imputes likely gene expression in each cell,

revealing the underlying biological structure. It uses signal-processing principles similar to those

used to clarify blurry and grainy images (Van Dijk et al., 2018).

MAGIC is effective at recovering gene-gene relationships and additional structures (Van Dijk

et al., 2018). This imputation method is able to impute complex and non-linear shapes of interac-

tions(van Dijk et al., 2017). Despite these advantages, MAGIC can lead to over-smoothing and may

remove natural cell-to-cell stochasticity in gene expression shown to lead to biologically meaningful

variations in gene expression. This is because the imputation is based on information shared across

similar cells (Huang et al., 2018b). Lastly, MAGIC tends to treat all zero expressions as missing

values. This is inappropriate since some of them may reflect true biological non-expression and be

a result of gene expression stochasticity (Li and Li, 2018).

DrImpute is an ensemble method based on consensus clustering method. It performs clus-

tering many times and conducts imputation by the average value of similar cells. More specifically,

under the drImpute algorithm, the cell-cell distance matrix is computed using Spearman and Pear-

son correlations, followed by the cell-wise clustering based upon the distance matrix over a range of

expected number of clusters k (k ranging from 10 to 15 by default). Each combination of distance
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metric (Spearman or Pearson) and k, the clustering results, are used to impute dropout entries.

Then the averaged estimation over all combinations are taken as the final imputed values (Gong

et al., 2018).

DrImpute can effectively separate the dropout zeros from true zeros. Also, DrImpute can sig-

nificantly improve the performance of existing tools like PCA and t-SNE in visualizing scRNA-seq

data by imputing dropout events (Gong et al., 2018). One of the limitations of DrImpute is that

considers only cell-level correlation leaving out gene-level correlation (Gong et al., 2018).

ScImpute (Li and Li, 2018) is developed to accurately and robustly impute the dropout

values in scRNA-seq data. It simultaneously determines which values are affected by dropout events

in data and perform imputation only on dropout entries. scImpute also detects outlier cells and

excludes them from imputation (Li and Li, 2018). Just like MAGIC, scImpute directly estimates

the true expression levels by relying on pooling the data for each gene across similar cells (Huang

et al., 2018b). ScImpute models log-normalized expression values as a mixture of gamma-distributed

dropouts and normally-distributed true observations (Andrews and Hemberg, 2018a).

ScImpute can impute the dropout values without introducing new biases through using the

information from the same genes unlikely affected by dropouts in other similar cells. Also, scIm-

pute is able to effectively separate the dropout zeros from true zeros (Chen et al., 2019). ScImpute

enhances the clustering of cell subpopulations and improves the accuracy of differential expression

analysis (Chen et al., 2019). However, scImpute can lead to over-smoothing and may remove natu-

ral cell-to-cell stochasticity in gene expression shown to lead to biologically meaningful variations in

gene expression. This is because the imputation is based on information shared across similar cells

(Huang et al., 2018b).

Looking at the scRNA-seq tools discussed(SAVER, MAGIC, DrImpute, scImpute), it is ev-

ident their algorithms employ the basic imputation techniques in handling missing data discussed

previously. DrImpute uses the mean imputation technique by averaging the expression values from

similar cells. MAGIC and ScImpute have embedded the nearest neighbor algorithm (KNN) by

imputing missing expression values by sharing information across similar cells. SAVER uses some

element of regression imputation in its algorithm by Poisson Lasso regression using the expression

of other genes as predictors.

1.5 Below-limit-of-detection

Data sets containing values below the limit of detection (LOD) are known as ‘censored data
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sets’ (Barescut et al., 2011). The problem of censored data, in which the observed value of some

variable is partially known, is related to the problem of missing data, where the observed value

of some variable is unknown. Missing data due to limit of detection is a common obstacle in

epidemiological and biomedical research (Harel et al., 2014). The Limit of detection or LOD is the

lowest true value that can be measured (detected) with statistical significance by means of a given

analytical procedure. This analytical threshold, LOD, is practically determined on the basis of noise

level using a given measurement procedure (ScienceDirect, 2020). This measured quantity value

should be distinguishable from background noise or the absence of that quantity (blank value) with

some stated level of confidence (generally 99%) (Harel et al., 2014). Mostly observations that fall

below the LOD are not reported and are thus creating missingness in data for further data analysis.

This incomplete setup might cause bias, inefficiency and in most cases will make the analyses more

complex (Harel et al., 2014).

It is very necessary to decide how values that fall below the limit of detection should be

treated as they can affect statistical analyses to some extent. The most common technique used

when handling below the limit of detection cases is the Complete Case Analysis (CCA), where

observations that fall below the limit are simply eliminated. Another popular method is single

imputation where every value below the LOD is replaced by a constant such as LOD/2 or LOD/
√
2

(Harel et al., 2014) or substituting with a value between zero and LOD value. In other instances,

values below the LOD are treated as zeros (Barescut et al., 2011). More complex methodology

like Maximum Likelihood (ML), Bayesian analysis, and Multiple Imputation have become more

prominent in recent years to account for below the limit of detection cases (Harel et al., 2014).

Though CCA, single imputation, and the other substitution methods mentioned are easy to

employ, the resultant non-censored (complete) data set will have certain limitations and deficiencies

when it comes to subsequent data analysis and interpretation. With CCA, subsequent analysis

commonly results in biased estimation, while analysis using single imputation will result in impaired

estimates of variances and covariances (Harel et al., 2014). Substituting with zero will bias the

estimates low and using LOD as substitutes could bias the results high (Morton and Lion, 2016).

CCA and substitution methods may be appropriate to use when there is a very low percentage of the

dataset falling below the limit of detection (Barescut et al., 2011). The United States Environmental

Protection Agency (EPA) Unified Guidance suggests that the substitution method can be acceptable

when only a small portion of the data set (10-15 percent) consists of below the limit of detection
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(ITRC, 2013).

Bayesian and ML methods can provide unbiased and more efficient estimation but are often

dependent on strong assumptions and are more difficult to apply in practice (Harel et al., 2014).

Multiple imputation (MI) methods yield valid and robust parameter estimates and explicit imputed

values for variables that can be analyzed as outcomes or predictors. The distribution-based MI

method is a valid and feasible approach to analyze bivariate data with values below LOD, especially

when explicit values for the non-detections are needed (Chen et al., 2011).

A variety of survival analysis methods have also been proposed for handling values below the

LOD depending on the purpose of analysis. The non-parametric Kaplan-Meier method, MLE, and

robust Regression on Ordered Statistics (ROS) can be used to estimate the summary statistics for

censored data. For group comparisons in censored data, methods like Generalized Wilcoxon test

and censored regression (with 0/1 indicator) will be appropriate. Lastly, when performing a linear

regression on a censored dataset, logistic regression or proportional hazard (Cox) regression can be

used (Barescut et al., 2011).

It must be noted that data below the LOD are informative, for instance, in chemical analysis,

as they indicate that the analyte (component of interest in a sample) has a concentration between

0 and LOD, and simply excluding such values from analyses may substantially bias results (Chen

et al., 2011). It is therefore necessary to handle below the limit of detection cases carefully.

1.6 Zero-inflated vs Missing data

We are often quick to leave out values that are zeros or missing (NA) when analyzing data

because we think they “lack information”. However, these data points could be critical pieces of

information when analyzing a research problem such that the "lack" of information is actually

information. Sometimes zero in a dataset may mean “nothing” or a situation where the outcome of

interest does not occur but is not unknown (missing). Data can be missing for a number of reasons

but understanding why it is missing or zero can be critical in learning more and making better

decisions (Ivanecky, 2020). It is therefore important as a researcher to understand the origin of the

dataset to know why there are zeros or missingness (NAs). You should only replace missing values

by zero if you have good reason to believe that the actual values, were they known, would be zero.

In any other circumstance, this will not be appropriate and will lead to biased results (Schechter,

2016).

Zero-inflated data is very common in a wide variety of disciplines including Biostatistics,
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Bioinformatics, Psychology, Environmental sciences, etc. Zero-inflated data refers to count data

that contain excessive number of zeros. These excessive zeros are usually too large that the data do

not readily fit standard distributions (e.g. normal, Poisson, binomial, negative-binomial, and beta)

(Zuur et al., 2009). Two kinds of zeros are thought to exist in a zero-inflated dataset, “true zeros” and

“excess zeros”(zero counts greater than what is expected by the distribution used to model the data)

(Gebregziabher, 2019). In lay terms, true zeros occur where there could have been an event, but

there was none whilst excess zeros refer to those zeros where there could not be any event (Wayne,

2011).

In a classic example of zero-inflated data (Statistical Consulting Group, 2020), suppose state

wildlife biologists want to model how many fish are being caught by fishermen at a state park.

Visitors are asked whether or not they have a camper, how many people were in the group, were

there children in the group, and how many fish were caught. Some visitors do not fish, but there is

no data on whether a person fished or not. Some visitors who did fish did not catch any fish so there

are excess zeros in the data because of the people that did not fish (Statistical Consulting Group,

2020). With this example there is an excess zero problem of not knowing whether a person fished

or not.

Generally, since the excess zero problem will always be present at some point when analyzing

zero-inflated data, it will be necessary that the researcher carefully understand what kind of zero

is present. It will be therefore be helpful if methods are developed to help researchers distinguish

straight away true zeros from excess zeros given any zero-inflated dataset (a possible topic for future

work). Identifying the source of zeros will be key in order to select the most appropriate statistical

model. scRNA data is a typical example of data with excessive number of zeros (zero-inflation).

Such data consist of true zeros and dropout zeros (missing), as well as the potential for data below

the LOD. Due to the excess zero problem, a number of methods have been developed in recent years

to detect true zeros from dropout zeros under scRNA technology (see section 1.4) .

1.7 Dissertation Format

This is a three-paper dissertation. The format of this dissertation will include an introduction

or overview (the current chapter), followed by three main chapters and a summary chapter or

conclusion. The introductory chapter discusses an overview of missing data, which is the central

theme of this dissertation, including relevant background and conceptual framework. The three

main chapters that follow the overview or introductory chapter will be standalone papers that will
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be submitted to various publication outlets. Each of the three papers will have an abstract, a

literature review, methodology, results and future work sections.

The paper in Chapter 2 addresses the dropout phenomenon in single-cell RNA (scRNA)

sequencing through a comparative analyses of some existing scRNA sequencing techniques. In

Chapter 3, the paper considers a simulation study to assess whether it will be appropriate to address

the issue of non-detects in data using a traditional substitution approach, imputation, or a non-

imputation based approach. Lastly, the paper in Chapter 4 presents an efficient strategy to address

the issue of imbalance in data at any degree (whether moderate or highly imbalanced).

A discussion section was added that directly discusses the implications and interpretations

of the chapter findings as well as identifies limitations of the study. The final chapter, which is the

conclusion, links the findings of all three papers into a coherent research contribution in the field of

data analysis with missing data.



CHAPTER 2

COMPARATIVE ANALYSIS OF STATISTICAL METHODS FOR SINGLE-CELL RNA

SEQUENCING

Abstract

The dropout phenomenon in single-cell RNA sequencing (scRNA-seq) data has provoked
a lot of controversial questions to be asked amongst researchers in fields utilizing this
kind of data. The dropout zeros, designated as the missing values, are mostly not dis-
tinguishable from the true zeros (i.e., zeros arising from biological factors) and can bias
the results of downstream analyses in scRNA sequencing. The question: "whether im-
putation is a necessary step in scRNA-seq analysis?" remains unresolved as there are
different schools of thought on how to handle dropouts in scRNA. To answer this, a sim-
ulation study was conducted evaluating the average Type I error rate and power from
four popular scRNA-seq imputation methods (MAGIC, SAVER, DrImpute, and scIm-
pute) combined with three differential test methods (DESingle, MAST, and Seurat). A
case of no imputation before differential expression testing was also considered. MAGIC
was found to consistently outperform all the other methods (including no imputation
scenario) when combined with all the differential testing methods, yielding the lowest
Type I error and highest power across 100 simulation runs. It was therefore concluded
that imputation is a crucial step in scRNA-seq analysis.

2.1 Introduction

Single-cell RNA sequencing (scRNA-seq) is a high throughput analysis that enables re-

searchers to understand the gene expression within a single cell, in what quantities the genes are

expressed, and how they differ across thousands of cells within a heterogeneous sample, e.g., early

embryo development (Company, 2020). Single-cell RNA data are mostly characterized by a high

percentage of missing values (or zeros) due to technical limitations and stochastic gene expression.

This could pose a major problem as the missing data can introduce bias and affect downstream

analyses. According to van Djik et al. (2018), from the roughly 100,000 to about 300,000 mRNAs

present in a cell, only 10% - 40% are usually captured using current scRNA-seq protocols. Following

this statistic, scRNA data can contain as high as 90% zeros. This high proportion of zero read counts

that are expressed by many genes in scRNA data has therefore become another major concern for
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discussion. The zeros present in a scRNA dataset may be biological or technically driven as dis-

cussed in section 1.4. A major challenge mostly encountered when dealing with these zeros is that

they are not easily distinguishable without biological knowledge or spike-in control. The biological

or true zeros are seen to carry meaningful information about cell states while the technical zeros or

dropouts represent missing values artificially introduced during the generation of scRNA-seq data

(Jiang et al., 2022).

The sparse nature of scRNA data has raised a lot of computational and interpretability con-

cerns. According to He et al. (2021), the zero inflation can introduce bias in differential expression

test analysis and pose challenges in detecting differentially expressed (DE) genes. Jiang et al. (2022)

added that the dropouts (missing values) can impede the full and accurate interpretation of cell

states and the differences between them. This has given rise to varied opinions on how the dropout

situation should be handled in the scRNA-seq field. There is a proposal by Qiu (2020) to embrace

dropouts as useful information rather than treating them as a problem to be fixed. To do this,

they generated a dropout pattern by binarizing the single-cell RNA-seq count data (i.e. turning

all non-zero observations into one), and based on the dropout pattern used a co-occurrence cluster-

ing algorithm to identify cell populations. Qiu (2020) recommended that recognizing the utility of

dropouts would provide an alternative direction for developing computational algorithms for single-

cell RNA-seq analysis.

Several imputation methods have also been developed over the years, to address the issue

of missingness (dropouts) in single-cell data. However, a paper by Andrews and Hemberg (2018b)

argued that imputation of scRNA data can introduce circularity that can generate false-positive

results and that SAVER was the least likely to generate false or irreproducible results and thus

should be favoured over alternatives if imputation is necessary. This raises an important question:

Is imputation a necessary step in single-cell data analyses?

Another tough question that comes up when performing any single-cell data analysis is "which

technique is best for analysing scRNA data?". This question is often asked as researchers are faced

with a number of methods to choose from and also as every method has it own pros and cons. This

can be with regards to performing an imputation, testing for differential expression, or even visu-

alizing scRNA data in an analysis. Many researchers have attempted to do a comparative analysis

on which single-cell technique (e.g., imputation technique, differential test method) is best. This

however remains controversial, as more advanced imputation techniques are being developed. Some



22

studies have assessed the reliability of some scRNA-seq methods based on metrics such as False Dis-

covery Rate (FDR), receiver operating characteristic (ROC) curve, and the number of differentially

expressed genes detected. For instance, a study by Jaakkola et al. (2016), measured reproducibility

by comparing the precision and recall of the detection of all DE genes between the full data set

and its subsets. Another study by Ganna et al. (2014) focused on the reproducibility of methods in

terms of rediscovery rate (RDR).

In this chapter, the strength of some popular imputation and differential testing methods

were assessed through simulation study. This will help answer the two key questions raised above.

In detail, the imputation methods were combined with the differential test methods, and their per-

formances were assessed based on Type I Error rate (False Positive Rate) and power. To further

address the controversial issue of whether imputation is a necessary step, a case of performing dif-

ferential testing without imputing scRNA data was considered. The various method combinations

were evaluated based on their ability to recover the true expression of ERCC spike-ins in scRNA

data, which is the "ground truth". ERCC spike-ins are a set of external RNA controls that enable

performance assessment of a variety of technology platforms used for gene expression experiments

(Technologies, 2012). This study to a large extent would save researchers the time when performing

any differential test analysis with these selected methods. This is because the study will provide

them a better insight and guidance into choosing the most appropriate technique combination to

use to obtain preferably unbiased results.

2.2 Methodology

2.2.1 Motivating scRNA Data

A real data, mouse Embryonic Stem Cell (mESC) single-cell RNA-seq data with ERCC spike-

ins by Buettner et al. (2015), was used in this study to simulate data to evaluate the performance

of scRNA sequencing methods. This data is publicly available in the scRNAseq R package under

Bioconductor. The Buettner mESC data count matrix consists of 38,293 genes (rows) and 288 cells

(columns) with ERCC spike-ins (i.e, 92 bacteria genes spiked in at known concentrations). Counts

of ERCC spike-ins are made up of 92 rows and 288 columns. The 288 cells are made up of 3 cell-cycle

fractions (G1, S, and G2M phase) with 96 cells per cell phase.
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2.2.2 Methods

Although there are several imputation and differential test methods specifically designed for

scRNA-seq data, this study will only focus on a few of the popular methods. Four imputation meth-

ods: MAGIC (Markov Affinity-based Graph Imputation of Cells) (van Dijk et al., 2017), DrImpute

(Kwak et al., 2017), scImpute (Li and Li, 2018), and SAVER (Single-cell Analyses Via Expression

Recovery) (Huang et al., 2018c) were combined with three differential expression (DE) test methods:

DESingle (Miao et al., 2018), MAST (Model-based Analysis of Single-cell Transcriptomics (Finak

et al., 2015), and SEURAT (Satija et al., 2015).

The scRNA-seq imputation techniques mentioned in this paper have been discussed in section

1.4, highlighting their pros and cons, as well as how their imputation algorithms work on scRNA-seq

data. The differential test method, MAST, fits two-part, generalized linear models that are specially

adapted for zero-inflated single cell gene expression data and tests differential expression between

groups based on likelihood ratio testing (Finak et al., 2015). DESingle, on the other hand, uses

the Zero-Inflated Negative Binomial model (ZINB) to detect differentially expressed genes and can

discriminate between real and true zeros (Miao et al., 2018). By default, Seurat performs differential

expression based on the non-parameteric Wilcoxon rank sum test. It also supports other differential

tests such as DESeq2 and MAST and can be used to pre-filter genes or cells before performing any

analysis (Satija et al., 2015).

Each imputation method was applied to either the raw mESC read count matrix or log-

transformed form as appropriate or intended by the authors. All the imputation methods except for

DrImpute required a log-transformed matrix per documentation. The workflow for each simulation

analysis in this study was highly dependent on the DE test method under consideration. MAST

expects that a log-transformed approximately scale-normalized data is provided for DE testing (Mc-

David, 2022). On the contrary, Seurat and DESingle expect a raw read count matrix. To use the

raw read count matrix in Seurat, the raw data must first be converted to a Seurat object using

the CreateSeuratObject function under the Seurat package. To test for DE with Seurat on the raw

imputed and non-imputed data, data pre-processing steps like filtering genes with low expression,

normalization, and log transformation were carried out using functions in the Seurat package. By

default, Seurat implements a global-scaling normalization method “LogNormalize” that normalizes

the gene expression measurements for each cell by the total expression, multiplies this by a scale

factor (10,000 by default), and log-transforms the result Drou et al. (2022). Normalization and
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log-transformation of the raw imputed and non-imputed data in Seurat was done using the Normal-

izeData function and differential testing with Seurat was done with the FindMarkers function.

All imputed and non-imputed data were log-normalised before getting passed to MAST us-

ing the scran package by Lun et al. (2016). Differential testing of expression levels between cell

phases (G1, S, G2M) was performed using the LRTest function in the MAST package. DESingle

automatically performs data pre-processing steps like normalization and filtering out genes with low

expression when testing for DE so there was no need to perform these steps prior. The only data

pre-processing step that was done before passing the imputed or non-imputed data to DESingle was

filtering out low quality cells using the scran package by Lun et al. (2016). Differential testing was

then carried out using the DESingle function. Imputed data from DrImpute was unlogged before

getting passed to DESingle for testing. This is because DESingle expects the input data to be on a

raw unnormalized scale.

Unlike MAST and Seurat, DESingle integrates parallel computing functionality with the

BiocParallel package under Bioconductor. Due to the high dimensionality of the simulated data,

parallelization was enabled under DESingle before testing. The run times for MAST and Seurat

were therefore shorter than DESingle. Parallel computing is highly recommended for SAVER and

scImpute in order to reduce computation time and avoid running into memory issues, as these im-

putation methods are computationally intensive. All parallel computing was done in this paper by

setting the number of cores to 16. Unless stated otherwise all imputation methods were run with

default parameters (see Table 2.1).

Table 2.1: Summary of scRNA-seq Imputation methods

Method Input Model Simulation
Parameter Reference

MAGIC Raw count – knn = 10 (van Dijk et al.,
2017)

ScImpute Raw Count Gamma-Normal mix-
ture

drop.thre =0.5
Kcluster = 3 (Li and Li, 2018)

SAVER Raw Count Poisson-Gamma Mix-
ture

size-factor = 1 (Huang et al.,
2018c)

DrImpute log2(Raw Count+1) ZINB ks = 10:15 (Kwak et al., 2017)

2.2.3 Simulation

ERCC spike-ins were used to simulate the scRNA-seq data in this study because they are

synthetic RNA molecules with known concentrations, which can be manipulated to serve as a ground
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Table 2.2: Summary of Differential Test methods
Method Input Model Test Reference
DeSingle Raw count ZINB Likelihood Ratio

Test
(Miao et al., 2018)

MAST log2(Raw Count+1) Generalized linear
hurdle model

Likelihood Ratio
Test

(Finak et al., 2015)

Seurat log2(Raw Count+1) – Wilcoxon Rank
Sum Test (Satija et al., 2015)

truth for the performance evaluation of the various methods discussed. To ensure that results

obtained after a single run of analysis were not just by chance, simulations were run multiple times

(i.e 100 simulation runs). In the end, the accuracy of the methods were evaluated based on the

average Type I error and average power across the 100 simulation runs. The Buettner mESC data

were analysed in two ways as detailed below.

2.2.4 Ground Truth Simulation

For the Type I error estimation case, the read count data for the 92 ERCC spike-ins were

first permuted (within spike-in gene) to simulate no differential expression between the cell phases.

The expression values of the first 92 genes in the original Buettner mESC count matrix were then

replaced with the permuted ERCC spike-ins. All necessary data pre-processing steps were carried

out on simulated data, and imputed data were passed on to MAST, Seurat, and DESingle to test

for differential expression (DE). The false discovery rate (FDR) was controlled at a 0.05 level with

the Type I error rate estimated by the percent of the 92 spike-ins that were called significant after

FDR correction.

To evaluate performance based on the power, the first 92 gene expression in the original

Buettner mESC data were replaced by the permuted 92 ERCC spike-ins, as dicussed above. After,

each cell phase (G1, S, G2M) for the first 92 "spike-in" genes in the matrix, was multiplied by

the factors (5, 8, 10) respectively. The multiplication was to introduce differential expression at

specific magnitudes (fold changes). All necessary data pre-processing steps were then carried out,

with imputed data passed on to the DE methods. The FDR was controlled at 0.05 and the power

was computed as the percent of 92 spike-ins found to be significant.

Using these as ground truths, the power and Type I error that each method combination contributed

were estimated.
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2.2.5 Data Pre-processing

Single-cell RNA data tend to be very noisy due to the prevalence of dropouts and other

technical factors. As a result, the quality of scRNA data is typically poor. It is therefore not

advisable to use raw scRNA data for analysis without accounting for the noise. This can pose

computational challenges and result in biased downstream analyses. In view of this, the data pre-

processing steps Quality Control (QC) and Normalization were carried out on the simulated data

before testing for differential expression.

Quality control to remove low quality cells was done using the scran (Lun et al., 2016) package

from Bioconductor. Low quality cells in scRNA-seq data need to be removed to ensure that technical

effects do not distort downstream analysis results.

One measure of low quality are cells with relatively small library sizes (i.e., total sum of counts

across all features (genes)). High proportions of spike-in RNA is also indicative of low quality cells

since the quantity of spike-in RNA added to each cell is expected to be constant. This means that

the proportion would increase upon loss of endogenous RNA in low-quality cells (Lun et al., 2016).

The perCellQCMetrics and quickPerCellQC functions were used to filter out low quality cells in the

simulated mESC data. Genes that were expressed in less than 10 cells were removed from simulated

data. About 271 cells remained after basic quality control (94 G1, 81 S, and 96 G2M cells).

Normalization is another necessary step that helps to remove the influence of technical effects

in the underlying counts, while preserving true biological variation (Hafemeister and Satija, 2019).

The normalized expression values were log-transformed, except for when testing imputed or non-

imputed data with DESingle because it expected raw unnormalized counts. The advantage of log-

transformation is to prevent a few large observations from being extremely influential, and make the

transformed values continuous, allowing for greater flexibility for modeling (Li and Li, 2018).

Due to the high dimensionality of the mESC simulated data and the number of simulations

to be performed, simulations were parallelized and run through the high performance computing

platform at the University of Utah. This reduced the computational time which could have taken

months on a standard laptop (which requires large pools of memory) to about 10 days on the

high performance computing platform. Simulated data were imputed after quality control, before

differential expression was tested between pairs of the cell phases (G1, S, and G2M). The other

data pre-processing steps (i.e., normalization and log-transformation) were done unique to the input

requirements of the various imputation and DE methods (as shown in Tables 2.1 and 2.2).
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2.3 Results and Discussion

Figure 2.1 summarizes the average Type I error rate estimation results across a 100 simulation

runs focusing on the the first 92 "spike-in" genes as the ground truth. Here, MAGIC systematically

had the lowest Type I error rate when combined with any of the DE methods (DESingle, MAST or

Seurat). On the other hand, DrImpute consistently lost control over the Type I error across all the

DE methods but had a relatively lower false positive rate with MAST. The performances of SAVER,

scImpute, and no imputation were similar, yielding a controlled Type I error rate with MAST and

Seurat, but a higher Type I error rate with DESingle.
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Fig. 2.1: Average Type I error across 100 simulations for the G1 vs S, G1 vs G2 and G2 vs S
comparisons. Data were slightly jittered for visualization convenience.

The power estimation results in Figure 2.2, revealed that MAGIC consistently outperformed

all the other imputation methods and the non-imputation method, yielding the highest power con-

sistently across all the cell phase comparisons for each DE method. DrImpute performed better with

DESingle and MAST than with Seurat. The resulting power estimates for Seurat when combined

with all the imputation methods, as well as no imputation, were very poor compared to DESingle
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and MAST. SAVER combined with Seurat failed to detect any significant differences between the

gene expression for the cell phases even though the differences existed. Recall that the cell phases

(G1, S and G2M) were multiplied by the factors (5, 8, 10) respectively, hence the expected power

should reflect these magnitude differences. The magnitude difference is expected to be higher for

the G1 vs G2 comparison, followed by G1 vs S, and G2 vs S having the lowest difference. MAGIC

matched the true profile (relative expected magnitude difference) across all the three DE methods.

DrImpute performed quite well with DESingle AND MAST but failed to capture the true profile

of the magnitude difference when combined with Seurat. The result for DrImpute paired with Seu-

rat looked very different from the other methods. The power results for SAVER, scImpute and

No imputation were generally below a 50%, with an interesting profile representing the magnitude

difference for the cell comparisons under DESingle.
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Fig. 2.2: Average Power across 100 simulations for the G1 vs S, G1 vs G2, and G2 vs S comparisons.
Data were slightly jittered for visualization convenience.

The interesting findings from the power plots in Figure 2.2 spurred a further investigation

to assess the accuracy of the imputation methods, as well as the no imputation scenario. The log
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fold change estimated after each of the different imputation methods were visualized to get a better

insight into how biased the produced estimates for the differences in gene expression were. The

dashed lines in Figures 2.3A, B, and C represent the true magnitude of differential expression be-

tween the cell phases. From Figure 2.3, MAGIC systematically overestimated the true magnitude of

differential expression across all the cell comparisons. MAGIC consistently yielded a lower variabil-

ity as compared to DrImpute, scImpute, SAVER and no imputation. The estimation of bias were

pretty close to the truth for DrImpute, scImpute, SAVER and no imputation (see Figures 2.3A and

2.3C). The bias results for DrImpute, scImpute, SAVER and no imputation looked comparable. All

the methods seemed to overestimate smaller magnitude differences, which is shown in the G2 vs S

comparison in Figure 2.3B.
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Fig. 2.3: The estimated log fold change (LFC) after different imputation methods and a no im-
putation case. The estimated log fold change values shown are on a log base 2 scale, and dashed
horizontal reference lines indicate the true LFC for each comparison.
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The conclusion reached in this study was that the best method for both imputation and

differential testing varied due to different reasons. Though MAGIC had a poor bias estimation of

the magnitude difference, it detected all ground truth simulated by yielding the lowest Type I error

rate and highest power consistently across all DE methods. Hence, if a researcher is only interested

in getting fairly higher power and lower false positive (i.e., finding whether genes are differentially

expressed or not), MAGIC paired with DESingle or MAST would be recommended. This also means

that the estimated log-fold change values from MAGIC cannot be fully trusted for any further anal-

ysis due to the possible overestimation (biasedness) of estimates. However, if interested in less

biased estimates (rather than detection of DE genes), DrImpute would be recommended as it was

the next best imputation method to yield a fairly higher power with DESingle and MAST. Judging

from the results shown in Figures 2.1 and 2.2, SAVER appears to be very conservative (i.e., lower

Type I error rate and fairly a lower power) and was not the best-performing as projected by some

papers in literature (Andrews and Hemberg, 2018b). Results from performing differential testing

without imputation generally proved that imputation is indeed a vital step in performing scRNA

downstream analyses since the estimated power results without imputation were lower than that of

the imputation methods used in this study.

2.4 Limitations and Future Work

A possible future consideration for this study is to investigate why the various imputation

methods failed to detect smaller magnitude differences when combined with the DE methods. For

instance, MAGIC was good at detecting larger magnitude differences but at smaller differences the

power dropped. For example, the G2 vs S comparison had low power generally in Figure 2.2, and

Figure 2.3B showed higher bias as well.

According to (Sun et al., 2019), Dimensionality Reduction (DR) is an indispensable analytic

component for many areas of single cell RNA sequencing (scRNAseq) data analysis. This study

proposed that proper DR can allow for effective noise removal and result in an effective downstream

analyses. An extended comparative analysis could therefore be carried out extending this study,

to include scRNA dimensionality reduction methods like principal component analysis (PCA), a

popular technique, and t-distributed stochastic neighbor embedding (t-SNE), and how well these

techniques help to improve the Type I error rate and power evaluated.

Finally, more advanced imputation methods like scRecover (Miao et al., 2019) and DCA

(Eraslan et al., 2019), and differential testing techniques like Monocle (Trapnell et al., 2014) and
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SCDE (Kharchenko et al., 2014) could be explored. For instance, it has been reported that scRe-

cover when combined with other imputation methods like scImpute, SAVER, and MAGIC, not only

detects dropout and real zeros at higher accuracy, but also improves the downstream clustering and

visualization results (Miao et al., 2019). ScRecover would therefore be a technique worth adding

to a future extension of this study and the various combinations of it with MAGIC, scImpute, and

SAVER explored.
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CHAPTER 3

HANDLING NON-DETECTS WITH IMPUTATION IN A NESTED DESIGN: A SIMULATION

STUDY

Abstract

In this paper, a simulation study was conducted to assess whether it is ideal to address the
issue of non-detects in data using a traditional substitution approach for non-detects, impu-
tation, or a non-imputation based approach. Simulated data used were simple nested designs
motivated by a real-life data in a study of bumble bee activity in a commercial cherry or-
chard by Kuivila et al. (2021). The simulated data were generated at different thresholds
or censoring levels and at different effect sizes. For each simulated data, seven popular ex-
isting techniques to handle non-detects were applied: (i) Zero substitution, (ii) Substitution
with half Limit of Detection (LOD/2), (iii) Substitution with LOD/

√
2, (iv) Multiple Impu-

tation (MI), (v) Regression on Order Statistics (ROS) (Imputation approach), and (vi) Max-
imum Likelihood Estimation (MLE) (likelihood estimation approach) and (vii) Kaplan-Meier
(KM). Multiple Imputation (MI) was not applicable as the design of the simulated data vi-
olated the assumption of having a multivariate distribution. By comparative analysis of the
simulated data, substituting with LOD/2 seemed appropriate for the design simulated, as it
outperformed the other techniques (i.e ROS, MLE, KM, LOD/

√
2, and zero substitution) by

yielding a lower Type I error, lower bias, and a better power across increasing effect sizes.

3.1 Introduction

Missing data due to non-detects is a common obstacle in epidemiological and biomedical

research (Harel et al., 2014). Other disciplines such as Ecology, Pharmacology, Environmental Sci-

ence, and so on, are faced with the issue of non-detects too. A non-detect is an analytical sample

where the concentration is deemed to be lower than could be detected using the method employed

by a laboratory (Ctech.com, 1994 - 2022). More specifically, non-detects are potential low-level

concentrations of organic or inorganic chemicals known only to be somewhere between zero and the

laboratory’s detection or reporting limits. Non-detects are sometimes referred to as left-censored

data or below detection limits. Having a high level of non-detects in a dataset can be problematic

as it can complicate the computations of descriptive statistics, differences among groups, correlation

coefficients, and regression equations (Helsel, 2006). This in effect can lead to bias and affect drawing

valid conclusions about the data. Non-detects are similar to dropouts in single-cell data as discussed

in Chapter 2.
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Mostly, observations that fall below the limit of detection are not reported and can create

missingness in data, thus necessitating further data analysis. Unlike scRNA sequencing which rep-

resents its missing information (dropouts) as zeros, non-detects which are a form of missing data

are mostly represented as “nd” in a dataset. Considering the adverse effects non-detects can pose to

statistical analysis, it is very crucial that researchers understand how to properly handle non-detects

and carefully select the right technique to avoid any false interpretations.

There are a number of recommended techniques for managing non-detects in data. The most

commonly used method for non-detects is to substitute values for non-detects (i.e, using a fraction

of the detection limit, a value between zero and the detection limit value, or simply replacing non-

detects with zeros). More complex methodology like Maximum Likelihood (ML), Bayesian analysis,

and Multiple Imputation have become more prominent in recent years to account for below the limit

of detection cases (non-detects). A variety of survival analysis methods have also been proposed

to handle values below the Limit of Detection (LOD) depending on the purpose of analysis. For

instance, the non-parametric Kaplan-Meier method and robust Regression on Ordered Statistics

(ROS) can be used to estimate summary statistics for censored data.

Despite considerable research in recent years on handling non-detects, regulatory agencies

have published no comprehensive guidance on the recommended approach to use in a particular

situation (ITRC, 2013). Some existing methods in handling non-detects or censored data include

non-parametric tests (such as Kruskal-Wallis test and Wilcoxon rank-sum), omission of non-detects,

substitution (for instance, using LOD or Zero), Multiple Imputation, survival analysis methods (such

as Kaplan-Meier (KM) method, Maximum Likelihood Estimation (MLE), and Regression on Order

Statistics (ROS). The worst practice when dealing with non-detects is to omit or delete them (Helsel,

2006). This method is not recommended because omitting non-detects from a statistical analysis

can bias outcomes and prevent the statistical tests from detecting real differences (thus decreasing

the statistical power of the method) (ITRC, 2013).

In Farnham et al. (2002), the procedures for handling censored data depend on the technical

application involved. The study went on to say that the best method to use generally depends on the

amount of data below the detection limit, the size of the dataset, and the probability distribution

of the measurements. When the number of “< LOD” observations is small, replacing them with a

constant (e.g., LOD/2, 0 etc.) is generally satisfactory. Distributional methods such as the marginal

maximum likelihood estimation or more robust techniques are often required when a large number
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of “< LOD” observations are present (ITRC, 2013). The United States Environmental Protection

Agency (EPA) Unified Guidance suggests that the substitution method can be acceptable when only

a small portion of the data set (10-15 percent) consists of below the limit of detection (ITRC, 2013).

According to Helsel (2006), substituting values for non-detects should be used rarely and

generally be considered unacceptable in scientific research. The justification the paper made was

that, two decades of research has shown that this fabrication of values produces poor estimates of

statistics, and commonly obscures patterns and trends in the data. Also, papers using substitution

may conclude that significant differences, correlations, and regression relationships do not exist,

when in fact they do. Another paper by Shoari and Dubé (2018) arguably states that, substituting

non-detects with constants such as 0, LOD/2 etc. can deliberately diminish data representative-

ness and statistical results may be incorrectly interpreted because the uncertain measurements (i.e.,

non-detects) are treated as actually observed values. Some studies also claim that the MLE method

is considered the “gold standard” method for dealing with non-detects, provided the data are well

described by a lognormal distribution (Ganser and Hewett, 2010). In light of all these assertions,

this paper seeks to clearly illustrate whether or not it is ideal to use an imputation method rather

than simply substituting non-detects with constants during statistical analysis. In addition to this

comparative analysis, non-imputation methods like Maximum Likelihood Estimation (MLE) and

Kaplan-Meier (KM), are also considered in handling non-detects in this study. Some methods

specifically designed for the imputation of scRNA data (as discussed in Chapter 2) will be applied to

a simulated censored data (data with non-detects) and the results will be compared to some existing

imputation techniques designed expressly for censored data. In subsequent analyses, variations of

limit of detection and effect sizes (increasing from low to high) were considered to evaluate how well

each non-detect method performed at different non-detect percentages using the Type I error rate

and the power as metrics.

3.2 Methodology

3.2.1 Data

Synthetic data simulated from a real data were used for all analyses in this study. Real data

were used as the basis for simulating data so as to get realistic distributional characteristics and mir-

ror approximate real-world results. The real data used were from the study “Field-Level Exposure

of Bumble Bees to Fungicides Applied to a Commercial Cherry Orchard” by Kuivila et al. (2021).
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Their study evaluated bumble bee exposure to fungicides by quantifying concentrations of boscalid

and pyraclostrobin in nectar and pollen collected by colonies of Bombus huntii Greene, 1860 (Hunt

bumble bee) deployed in a commercial cherry (Prunus avium L.) orchard. The concentrations of

boscalid in nectar varied by bee colony with significantly higher concentrations detected in colonies

in the treated block (sprayed) than in the control block (unsprayed). In light of this, the data design

for this simulation study is a simple nested design with treatment as the fixed factor and Group (bee

colony) as the random factor nested within treatment. All non-detects in the Kuivila et al. (2021)

study were accounted for using substitution with half Limit of Detection (LOD/2). Was the paper

justified to use LOD/2 substitution for their study design?

3.2.2 Simulation Setup

In the Kuivila et al. (2021) study, there were about 59 nectar samples of ≤ 0.25ml from

13 bee colonies (7 Control colonies and 6 Treated colonies) which were analyzed over the 12 days

of their experiment. Pyraclostrobin levels were detectable in only 2 of 13 nectar samples from the

control block and in 8 of 46 samples from the treated block (roughly 83% non-detects). On the other

hand, boscalid levels were detectable in 38 of 59 nectar samples with about 36% non-detects. For

the purpose of this study, one type of fungicide concentration (i.e boscalid concentration) from the

Cherry Orchard nectar data was used to simulate data based on distributional characteristics. The

simulated data were generated using a Gamma distribution which best defines the distribution fit

of the log boscalid concentrations in the observed nectar data since the concentrations were heavily

right-skewed in the original study by Kuivila et al. (2021). The sample size for the simulated data

were 100 nectar samples (boscalid concentrations in nectar) with 13 bee colonies (6 Treated colonies

vs 7 Control colonies). The number of replicates within each group (bee colony) varied from 2 to

22 similar to what is shown in the original study. For instance, looking at the original data, the

colonies from the control had a higher replication frequency than that of the treated colonies.

To simulate the non-detects in the data, the range of values (0.375, 0.5, 0.75, 1.125, 1.5, 2, 2.5)

were considered as LODs (thresholds) to create varying censoring levels for analyses. The evaluation

metrics, Type I error and power, were used to assess the strength of the non-detect methods after

the methods were applied to the simulated data. At each censoring level, data simulation was run

1,000 times for reproducibility purposes. The Type I error and power results obtained were then

averaged across the 1,000 simulation runs and the methods were compared. The null hypothesis
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under consideration was that the mean boscalid concentration from the treated colonies are not

different from the control colonies. This null hypothesis was introduced into the simulated data by

shuffling the data within the bee colonies to break any existing relationships between them. For the

Type I error scenario, any significant result detected after hypothesis testing was deemed a false

positive.

The power was assessed by adding in some magnitude of treatment effect (i.e., effect size)

at increasing levels to the permuted data. The effect sizes added were 0.01, 0.1, 0.5, 0.75, 1 and

3. The original Kuivila et al. (2021) study used a two-sample linear rank test with Peto-Peto test

to test for differences in exposure to boscalid between groups of bee colonies. The method they

used is similar to a Wilcoxon rank sum test for two sample comparisons based on censored data

but it did not account for the nesting feature which was present in their study design. A nested

ANOVA was therefore used in this study, which accounts for nesting in the simulated data while

testing for hypothesis in the Type I error and power scenarios. The data design for this simulation

study was a simple nested design with treatment as the fixed factor and Group (bee colony) as the

random factor nested within treatment. Given that simulated data were highly right-skewed and

ANOVA assumes a normal distribution, transformation of data was necessary. Log transformation

was therefore done after non-detect methods were applied to simulated data. The simulated data

from the gamma distribution represent log-scale boscalid concentrations, and a log transformation

of those data was still necessary to achieve approximate normality.

The results of the Type I error and power were quantified and visualized across the different

non-detect methods. A lower average Type I error and a higher average power indicated a closer

step to detecting the ground truth. To further justify what the best method was in this study, the

magnitude of fold change (treatment effect estimate) was also computed and visualized across the

different degrees of censoring. The fold change was computed as the differences in mean estimates.

This was to help assess potential bias introduced by the various non-detect methods, their variability

levels and also justify the power effect plots.

3.2.3 Methods

Non-detects can be considered a Missing Not at Random (MNAR) (see section 1.2) phe-

nomenon so it is essential that one chooses the appropriate technique carefully in order to avoid

any false interpretations. Even though there are a number of existing techniques, methods that are

commonly used to handle non-detects in data were selected for this study. The methods used in this
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paper are summarized in this section and listed in Table 3.2.3.

Method

Abbreviation Name References

Half_LOD Substitution with half

Limit of Detection (LOD/2) (ITRC, 2013)

Sqrt_LOD Substitution with LOD/
√
2 (ITRC, 2013)

Zero_sub Zero substitution (ITRC, 2013)

ROS Regression on Order Statistics (ITRC, 2013), (Helsel, 2005)

KM Kaplan-Meier (ITRC, 2013)

MLE Maximum Likelihood Estimation (ITRC, 2013), (Helsel, 2005)

Substitution Methods

Substitution is the most simplistic procedure when it comes to handling non-detects in data.

Non-detects are usually replaced with values such as LOD, LOD/2, LOD/
√
2 or zero. This method

is easy and requires little statistical knowledge. Several studies in past years have raised concerns

about using substitution methods. For instance, Helsel (2010) argues that substitution can intro-

duce a pattern that is alien to the pattern of the original data. Another study states that, simple

substitution is OK only if few non-detects exist and only if the limit is so low relative to most

measurements that it really does not make a statistical difference whether substitution is done with

a zero, with half of the reporting limit, or with the reporting limit itself (Thomas, 2006).

The US Environmental Protection Agency (USEPA) has recommended substitution of one-

half the detection limit when censoring percentages are below 15%. They added that, however, if

simple substitution of values below the detection limit is proposed when more than 15% of the values

are reported as not detected, nonparametric methods should be considered or a test of proportions

should be used to analyze the data (USEPA, 1998). These recommendations by USEPA were not

strongly backed by any published paper so it remains debatable. The direction of this paper con-

siders how substitution methods compared to other methods in hypothesis testing at all levels of

censoring not just at a low degree of censoring as stated by USEPA. LOD/2, LOD/
√
2 and 0 were

used as substitution methods in this study.
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Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation is a fully parametric method which assumes that data are

normally or lognormally distributed. It should be noted that MLE is not an imputation method for

non-detects; instead, it estimates summary statistics (mean and standard deviation) for the full data

accounting for the non-detects or censored values (ITRC, 2013). MLE solves a “likelihood equation”

to find the mean and standard deviation values that are most likely to have produced both nondetect

and detected data (Helsel, 2005). Application of MLE assumes that non-detects are distributed in

a manner similar to the detected values. Hence MLE will perform poorly and produce misleading

results if a well-fitted or closely matching distribution cannot be found to model the underlying

population (ITRC, 2013). According to Helsel (2010), a few departures may be tolerated provided

that the data distribution is not too far away from that assumed by the MLE.

It is therefore very crucial that the assumed distribution is accurate, as MLE may not be

robust to any misspecification of data distribution. Again, MLE is most generally applicable to

larger data sets (n > 50) with high detection frequencies (limited to up to 80% censoring) (ITRC,

2013). However, if the data follow a known distribution, MLE may work well for small data sets

(n < 50) because it is using correct distributional information (Helsel, 2010). Using the NADA

package in R with cenmle function, MLE was used to analyze the left-censored data in this simu-

lated study. The distribution assumed when using the cenmle function was a lognormal which is

very similar to the distribution of the simulated data that follows a gamma distribution. To perform

hypothesis testing, the estimated mean from MLE is used to code the nested ANOVA manually in R.

Regression on Order Statistics (ROS)

Regression on order statistics (ROS) is a simple imputation method that fills in nondetect

data on the basis of a probability plot of detects (Helsel, 2005). This method calculates a linear

regression line in order to estimate values for the non-detects (ITRC, 2013). Using the ros function

in NADA package in R, this analysis was performed. The output from the ros function included the

imputed data which were used for the nested ANOVA in R using the aov function. During the data

imputation with ROS, the method could not handle data with non-detect percentage greater than

80%, which is reflected in the Type I error and power plots in this study.
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Kaplan-Meier (KM)

Kaplan-Meier (KM) is a non-parametric method so it does not require an assumption re-

garding the underlying distribution of the data. Just like MLE, Kaplan-Meier does not impute

non-detects in data, instead, it estimates a cumulative probability distribution function to calculate

summary statistics like means and variances. When applied as an intermediate step to calculate

parametric statistics, Kaplan-Meier assumes that all data values come from a single underlying

(non-negative) statistical population. In particular, contaminants are assumed to be present in

non-detects at some low level not readily quantified by the analytical method. Kaplan-Meier can ac-

commodate multiple reporting limits and is routinely used with data sets having 50 - 70% detection

frequency. One weakness of Kaplan-Meier is that it cannot rank censored data points with reporting

limits above the highest detected concentration (ITRC, 2013). In light of this, the thresholds were

carefully selected not to exceed the highest detected boscalid concentration. The cenfit function

under the NADA package in R, was helpful in using KM to handle non-detects in the simulated

data.

3.3 Results and Discussion

In real-world data with control treatments, there is the possibility that the non-detect rate

would become confounded with treatments as the effect size increased, with higher non-detect rates

anticipated in the control group. Figure 3.1 shows that there is an inverse relationship between the

average non-detect percentage and the effect sizes. As the effect size increased the average non-detect

percentage dropped. However, as the limit of detection increased, the average non-detect percentage

increased, which is indicative of a positive association.

In comparison of the measures of performance based on the Type I error and power plots

shown in Figures 3.2 and 3.3, KM and MLE generally did not perform well as the other methods

used in these simulations. They lost control of the Type I error and yielded a lower power compared

to the substitution methods and ROS. More specifically, KM lost control of the Type I error after

reaching 2.5 LOD which corresponds to an average non-detect of about 70%, looking at Figure 3.1

(because the Type 1 error rate is considered when the effect size is 0). The KM results confirm what

has been discussed in literature (see 3.2.3).

Following various publications and literature on non-detect methods, the substitution meth-

ods (LOD/2, LOD/
√
2 and zero substitution) did not perform as poorly as expected, they out-
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Fig. 3.1: Visualization of average non-detects at varying effect sizes across 1000 simulation runs per
limit of detection

performed the "choice" techniques KM and MLE. The substitution methods and ROS had a good

control of the Type I error. However, there were some interesting dynamics in the power plots. At

lower effect sizes (0.01, 0.1, 0.25), the average power was very poor across the increasing levels of

LODs. However, as the effect sizes got relatively higher, the average power significantly improved.

At effect size 3, the average power plateaued around an average power of 1 for the substitution

methods and ROS. At effect sizes 0.5, 0.75, and 1, the average power showed a drastic decline as

the LODs increased.

These interesting patterns from the power warranted a further investigation. The "Bias"

plots in Figures 3.4 and 3.5 were then generated to support the investigation. The bias plots

were constructed from the estimated fold changes obtained from the different non-detect methods.

Two thresholds were selected: 0.375 (lowest) and 2.5 (highest). For these two thresholds, the es-

timated fold changes for the effect sizes (0.01, 0.5, 0.75, 1) were visualized since they had some

thought-provoking patterns occurring in the power plots. Zero substitution had the highest vari-

ability compared to all of the other methods (see Figures 3.4 and 3.5. Again, the zero substitution

method overestimated the treatment effect at relatively high effect sizes 0.5, 0.75 and 1 (falls above

the dashed line in Figure 3.4) and underestimated (falls below dashed line) the treatment effect at

low threshold with relatively higher effect sizes, more prominently in Figures 3.4 C and D. This
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Fig. 3.2: Comparison of Type I Error Rate by method for handling non-detects and Limit of Detec-
tion level. Method name abbreviations are summarized in Table 3.2.3.

means that zero substitution in this study, tend to bias high at a high LOD and bias low at a lower

LOD, for relatively higher effect sizes. A lot of outliers were detected with zero substitution for the

low threshold bias plot in Figure 3.4.

Looking at Figure 3.4, at a low threshold of 0.375, the substitution methods (LOD/2,

LOD/
√
2 and zero substitution) were more variable compared to ROS, KM and MLE. In gen-

eral, ROS had the lowest variability but it underestimated the treatment effect as the effect size got

higher for both low and high thresholds. Even though KM and MLE resulted in a lower variability

with a better estimation of the treatment effect across all the bias plots, they will not be considered

as ideal techniques for this simulation study since they could not control for the average Type I

error. At a high threshold of 2.5, substitution by LOD/2 or LOD/
√
2 had a similar performance

with very low variability and few outliers. These two techniques performed the best generally for the

bias estimation, However, taking into account little departures that occurred in the bias estimation

plots, substitution by LOD/2 performed better relatively.

Judging from the power, Type I error, and bias plots, substitution by LOD/2 emerged the

best overall followed by substitution by LOD/
√
2 and then ROS. Even though zero substitution had

a good control of the Type I error and relatively better power, it lost control of the bias which makes

the results obtained from this method quite questionable and unreliable proven by literature. From
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Bias Estimation for Low Threshold = 0.375
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Fig. 3.4: Comparison of non-detect methods’ variability across effect sizes for low threshold = 0.375.
Treatment effect estimates from each of the methods considered are shown, from each of 1,000
simulations. The true treatment effect size is shown with a horizontal dashed reference line. Method
name abbreviations are summarized in Table 3.2.3.

Bias Estimation for High Threshold = 2.5
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Fig. 3.5: Comparison of non-detect methods’ variability across effect sizes for high threshold =
2.5. Treatment effect estimates from each of the methods considered are shown, from each of 1,000
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name abbreviations are summarized in Table 3.2.3.
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this study, the power significantly improved across all methods at an average non-detect rate below

70% (i.e at effect size 3). This could imply that all the methods considered for this simulation study

cannot handle extreme non-detect percentages ( greater than 70%). In conclusion, the results of this

simulation study justified that substitution with LOD/2 was appropriate for this type of design.

3.4 Limitations and Future Work

Multiple imputation (MI) methods yield valid and robust parameter estimates and explicit

imputed values for variables that can be analyzed as outcomes or predictors (Chen et al., 2011).

It is therefore deemed as the "gold standard" technique by most researchers to handle non-detects.

Multiple Imputation, however, failed to work with the design of the simulated data in this study be-

cause there were not enough predictors in the data to be used to build a model for the imputation as

required. Even though, scRNA imputation techniques were being considered as part of the analysis

in this study, there were not enough samples (groups) to be considered to apply these techniques to.

Due to the above, the results obtained from this study are not generalizable to other designs but

are limited to the specific nested design that was used in this study. Another key limitation in this

study is that the nested design used did not account for bee colony effect.

A possible future direction is to explore more complex designs. No repeated measures struc-

ture was accounted for in this simulation study, primarily for the sake for simplicity because in

the original study there were many colonies with single measurement times reported and several

measurement times were sparsely repeated. Rather than attempting to model this kind of complex

repeated measures structure, this initial analysis and simulation focused on the simple nested de-

sign. Subsequent study can be done to account for repeated measures structure. In addition, the

simple nested design used in this study can be improved to contain more predictors so that Multiple

Imputation can be implemented and assessed with the other non-detect methods mentioned in this

study.

An extension of this study, could comprise of simulating each dataframe to contain multiple

censoring levels instead of having a single censoring per dataframe as done in this study. This can

help evaluate how well substitution, imputation or non-imputation methods for non-detects are able

to handle multiple censoring in data.

The simulation study in this paper can be further explored by introducing bee colony effect

into the nested design since the nested design used in this study did not account for bee colony

effect. Preliminary work is currently being done on this subject to extend this study for publication.
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Lastly, the Type I error and Power scenarios for this simulation study can further be assessed by

simulating data at varying sample sizes (e.g., 50, 100, 200, 500, etc.). This would be potential to

assess how well these non-detect methods perform on data of any magnitude (large or small).



CHAPTER 4

A RESAMPLING STRATEGY TO EFFICIENTLY HANDLE IMBALANCED DATA

Abstract

Imbalanced data is an enigma that is inherent in a lot of real-world datasets such as med-
ical diagnosis, fraud detection, etc. Particularly in the field of machine learning and data
mining, classification of imbalanced data is a challenging task. This is because a signifi-
cant number of standard classifiers assume a balanced class distribution which results in
prediction bias towards the majority class. The ultimate challenge associated with imbal-
anced classification is to increase the sensitivity of a classifier towards the minority class.
Diverse solutions have been proposed over the years to address this challenge. Prominent
amongst them is the use of random undersampling to balance class distribution. As sim-
ple as this technique may seem, random undersampling presents two inherent challenges:
1. How much to sample from the majority class? and 2. How to compensate for in-
formation lost through sampling from the majority class? These fundamental questions
are addressed in this paper by devising a strategy aimed at resolving these issues whilst
improving prediction performance towards the minority class. The proposed strategy
combined random undersampling with different weighting schemes using standard ma-
chine learning classifiers like random forest and logistic regression to predict the minority
class at different degree of imbalance. This paper also focuses on choosing an optimal
percentage to sample from the majority class based on the degree of class imbalance (class
distribution) by evaluating different probability values. The different weighting schemes
used were 1) Inverse of Number of Samples(INS) (Singh, 2020), 2) Inverse of Square
Root of Number of Samples (ISNS) (Singh, 2020), 3) Inverse of Downsampling factor
(IDS), and 4) Upweighting of Downsampled Class (UDS) (GoogleDevelopers, 2021). A
case of no weighting was considered as a baseline strategy. The ultimate strategy was
selected based on a simulation study, evaluating popular performance metrics like F1-
Score, AUCPR, AUC, and precision. The effectiveness of the proposed strategy was
then evaluated through application on real datasets. The strategy proposed to deal with
a moderate imbalanced classification was random undersampling with a downsampling
probability at 0.43 using random forest classifier and a UDS weighting scheme. In a mild
imbalanced classification, multiple weighting methods (INS, ISNS, UDS) as well as no
weighting approach were found to be effective at an optimal probability of about 0.45 in
the proposed strategy. The recommended strategy for extreme balance classification did
not yield high performance metrics in its application to a real dataset (Credit card) as
compared to the mild and moderate imbalance scenarios and as such was inconclusive.

4.1 Introduction

One major consequence of missing data is imbalanced data. In the world of machine learning

and data mining, imbalanced data is one of the fundamental problems associated with classification
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tasks. Technically speaking, an imbalanced dataset is any dataset that is characterized by uneven

class distribution. The imbalanced data phenomenon is apparent in several real-life domains such

as fraud detection, disease diagnosis, natural disaster, etc. This has therefore attracted a significant

amount of attention from academia, industry, and government (Hasanin and Khoshgoftaar, 2018).

Typically, in imbalanced data, there are a large amount of observations or data for one class

(referred to as the majority or negative class) and much fewer observations or limited data represen-

tation for one or the other classes (referred to as the minority, rare, or positive classes). The most

common assumption, if the scope of data is not clearly stated in literature, is that imbalanced data

is innately a binary (two-class) classification (Phung, 2020). This is not always true as imbalanced

data may occur in every classification problem, including a multi-class (more than 2 classes) classi-

fication.

The degree or ratio of imbalance present in data is mainly gauged by the class ratio. For

example, considering a binary classification problem, a ratio of 10:1 would mean that for every 1

example in one class, there are 10 examples in the other class. Orriols-Puig et al. (2009) defines the

imbalance ratio (IR) as the ratio of the number of instances of the majority class to the number

of instances of the minority class that are sampled to the system. According to GoogleDevelopers

(2021), knowing the proportion of the minority can reveal the degree of imbalance in a data. They

summarized the degree of imbalance into three levels: Mild, Moderate, and Extreme which is shown

in Table 4.1 below. It should be noted that the minority class is not always rare in its own right (i.e.,

Fig. 4.1: Imbalanced Data Levels

absolute rarity) but could just be of a lower proportion relative to the majority class (He and Garcia,

2009). Having absolute rarity in the proportion of the minority class means that regardless of how

much data is increased, the minority class samples cannot increase. This leads to severe imbalance

(rare instances imbalance). On the other hand, if the minority class remains outnumbered regardless

of data increase, then a relative imbalance arises (Phung, 2020).
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Another important aspect to understand when dealing with imbalanced classification is the

domain of the problem, whether intrinsic or extrinsic. An intrinsic imbalance occurs when differences

in classes is due to the nature of the dataspace, e.g. fraud detection, disease diagnosis, etc., whereas

extrinsic imbalance is not directly related to the nature of the dataspace but is based on variable

factors such as time, data collection, and storage (He and Garcia, 2009). Understanding the nature

as well as the degree of imbalance is therefore very crucial, as they have significant consequences

and can pose challenges to imbalanced data classification.

A dominant majority of traditional machine learning algorithms were designed based on the

assumption of a balanced class distribution or equal misclassification costs (He and Garcia, 2009).

So when there is class imbalance, the machine learning classifier tends to be more biased towards

the majority class, causing bad classification of the minority class. This can lead to a deceptively

high accuracy metric. In certain cases such as disease diagnosis studies, where the occurrence of

false negatives is relatively costlier than false positives, a learner’s prediction bias in favor of the

majority class could have adverse consequences. For instance, if the minority class indicates a dis-

ease is present, then having a false negative, which means misclassifying patients as not having the

disease when the disease is present, can be a serious error (Leevy et al., 2018). Brownlee (2020a)

emphasized that a slight imbalance is often not a concern, and the problem can often be treated like

a normal classification predictive modeling problem. However, a severe imbalance of the classes can

be challenging to model and may require the use of specialized techniques. Some practitioners seem

to disagree with the fact that the performance degradation in the machine learning algorithms to

classify an imbalanced data problem should be mainly attributed to the class ratio (Batista et al.,

2004).

The ultimate challenge yet to be resolved is being able to accurately classify the minority

class to a large extent, especially in a severe imbalance case. The most obvious solution is to collect

more data until the classes are balanced out. This approach can be expensive in terms of cost and

time and may not always be feasible as the minority class may be rare (Hasanin and Khoshgoftaar,

2018). Considering the gravity of the imbalanced data problem, a number of solutions have been

proposed over the years to deal with this issue. These proposals can be divided into three categories:

the algorithm level, the data level, and the hybrid level. Data level approaches consist of resampling

the training data in order to decrease the effect caused by the imbalance. The most popular resam-

pling techniques used are random undersampling (Prusa et al., 2015), random oversampling with
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replacement (Kotsiantis et al., 2006), and generating synthetic samples using Synthetic Minority

Oversampling Technique (SMOTE) (Chawla et al., 2002). The algorithm solutions deal with either

modifying existing classification algorithms such as decision trees (Truică and Leordeanu, 2017),

random forests (del Río et al., 2014a), gradient boosting (Blagus and Lusa, 2017), etc., in order to

adapt them to the imbalanced data or proposing specific strategies (Mahani and Ali, 2019). Hybrid

level approaches like cost-sensitive learning combines the two previous options trying to minimize

the misclassification costs, which are higher for the instances of the minority class (Hasanin and

Khoshgoftaar, 2018).

The aim of this paper is to present an efficient strategy to handle any degree of imbalance

based on the combination of random undersampling with different weighting schemes to minimize

prediction bias towards the majority class using standard machine learning classifiers like random

forest and logistic regression. The proposed strategy was implemented in three settings, considering

a case of mild, moderate, and extreme imbalance. This study was first of all developed on a simu-

lated data and the classifiers results evaluated based on aggregate performance metrics like F1-score,

AUC, Precision-Recall AUC (AUCPR), and precision.

The best strategy was determined based on evaluating the different weighting strategies com-

bined with the undersampled data to see which yields the best prediction across the aggregate

performance metrics under extreme imbalance and relative imbalance. In addition, a case of no

weighting was also considered as a baseline against the different weighting schemes. This will help

assess whether simple random undersampling without weighting was enough to control prediction

bias and further investigate whether class distribution does not affect a classifier’s performance as

asserted by some studies. The performance of the selected classifiers, random forest and logistic

regression, was also checked in the process. The effectiveness of the winning strategy was evaluated

through its application on real data with mild, moderate, and extreme imbalance. To make this

study more intuitive, a binary classification problem was considered.

Another important area addressed in this paper is the optimal percentage to sample from the

majority class in order to reduce the predictive modelling bias, given a relative imbalanced (i.e, mild

and moderate) or extreme imbalanced data. Several attempts have been made by some research

publications to address this issue directly or indirectly. Nonetheless, how much to sample from

the majority class for random undersampling in order to improve prediction of the minority class

remains a mystery and a difficult task. The work in Hasanin and Khoshgoftaar (2018) indirectly
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attempted this by investigating good ratios for undersampling big data without discarding too much

of the majority class. Their work, however, was not conclusive about a particular ratio, instead they

concluded that if the number of minority class labels was too low, increasing the minority class per-

centages from 0.1% to 1.0% can give a fair boost in the performance with regards to random forest,

yet still retain a reasonable amount of information in relation to the original dataset. This paper

focuses on choosing an optimal downsampling percentage based on the degree of class imbalance

(class distribution) and also attempts to minimize information loss through weighting.

4.2 Methodology

This section briefly discusses resampling techniques, the different weighting schemes, perfor-

mance metrics, datasets, classification methods, simulation set-up, and evaluation strategy employed

for the various analyses.

4.2.1 Resampling Techniques

Resampling is a widely adopted technique that is used to address the issue of imbalance in

data. The goal of sampling methods is to create a dataset that has a relatively balanced class dis-

tribution, so that traditional classifiers are better able to capture the decision boundary between

the majority and the minority classes (Hoens and Chawla, 2013). Random undersampling (Prusa

et al., 2015) involves randomly removing samples from the majority class until the majority and

minority classes are balanced out. This does not necessarily mean achieving an exact 50:50 class

distribution, but getting to a distribution that the classifier can handle. One major advantage of

random undersampling is that it is simple to implement and less time consuming. Again, there

are no artificially-created data points added to data. Hence, there is no chance of falsifying the

data samples. This technique, however, has the risk of potentially losing important information for

analysis due to the random removal of samples from the majority class (Phung, 2020).

To overcome this limitation of random undersampling, more sophisicated undersampling tech-

niques have been developed. Popular of these include Condensed Nearest Neighbor Rule (CNN)

(Thai-Nghe et al., 2010), Near Miss Undersampling (Mqadi et al., 2021) and Tomek Links method

(Brownlee, 2020e).

Random oversampling, on the other hand, involves creating multiple duplicated data points

by boostrap sampling of the minority class until the classes are balanced out. This can increase

the training data size as well as computational time. Duplicating the minority class might make
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the model more prone to over-fitting.(Phung, 2020). Synthetic Minority Oversampling Technique

(SMOTE) (Chawla et al., 2002) which combines oversampling and undersampling, oversamples the

minority class by creating “synthetic” examples rather than by oversampling with replacement.

SMOTE was not used in this study because of the falsification of data points for the minority class

that will not be a true representative of the actual population and can result in biased predictions.

In addition, oversampling was avoided due to the possible increase in training time.

Random undersampling was used as the baseline technique in the proposed strategy for this

study because it does not involve heavy alteration of the data through data falsification. Again,

a study by Weiss et al. (2007) revealed that undersampling does not only address the imbalanced

problem but also makes processing more feasible when data are too big to handle.

4.2.2 Weighting and Downsampling

The strategy adopted in this study to combat the possible loss of useful information is to

weight the majority and minority classes after random undersampling to preserve the feature of the

original population and ensure the classification model used is still calibrated. This can potentially

help to reduce bias in the predictive modelling process. Most machine learning algorithms do not

take into account the skewed distribution of the classes and as such tend to produce biased results

in favor of the majority class. The training algorithm can, however, be modified through weighting

of the classes to influence the classification of the classes during the training phase. It is usually

expected that the minority class is assigned a higher class weight than the majority class in order

to penalize the misclassification made by the minority class (Kamaldeep, 2020).

In this paper, four different weighting schemes were evaluated which deal with upweighting

and downweighting the minority class appropriately to capture the distribution of data and also

account for possible loss of information (i.e., reduce loss of information in the majority class).

Two fundamental questions considered in order to implement the proposed strategy (i.e,

random undersampling with weighting) succesfully were:

• What weighting technique will be the most representative of the true population in order to

reduce prediction bias?

• What will be an optimal proportion to downsample the majority class by?
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Four simple weighting schemes were considered to account for the contribution of the classes to

the overall loss. The weighting schemes explored were Inverse of Number of Samples (INS) (Singh,

2020), Inverse of Square Root of Number of Samples (ISNS) (Singh, 2020), Inverse of Downsampling

factor (IDS), and Upweighting of Downsampled Class (UDS) (GoogleDevelopers, 2021). ISNS, IDS,

and ISNS weighting schemes assign a higher weight to the minority class as expected. On the other

hand, UDS assigns a higher weight to the majority with the goal of minimizing information loss in

that class. The weighting schemes used have been grouped based on the parameters they use: class

sample size and downsampling probability.

Weighting Schemes based on sample size

• Inverse of Number of Samples (INS) weights the samples as the inverse of the class

frequency for the class they belong to.

Wn,c =
1

Number of samples in class c

• Inverse of Square Root of Number of Samples (ISNS) weights the samples as the

inverse of the Square Root of the class frequency for the class they belong to.

Wn,c =
1√

Number of samples in class c

Weighting Schemes based on downsampling probability

• Upweighting of Downsampled Class (UDS) was a technique proposed by (GoogleDevel-

opers, 2021) as an effective way of handling imbalanced data. This strategy suggests weighting

the downsampled class (majority class) using the same the factor by which it was downsam-

pled by. For instance, if the majority class was downsampled by a factor of 20, the same value

of 20 should be used to weight the majority class. In this paper, a modified version of the

upweighting proposed was used by inverting the downsampling probability and a weight of 1

assigned to the minority class since the entire sample for the minority class was used to train

the model.

Wmajority =
1

downsampling probability

Wminority = 1
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• Inverse of Downsampling factor (IDS) weights the majority class with the inverse of

the downsampling probability multiplied by 100%. This approach downweights the majority

class. The minority class is assigned a weight of 1 just like the UDS weighting scheme. This

is a new scheme to assess whether downweighting the majority class by the downsampling

probability is powerful enough to penalize the misclassfication towards the minority in the

training algorithm.

Wmajority =
1

downsampling probability ∗ 100%

Wminority = 1

4.2.3 Classification Models

Random forest (Breiman, 2001) and logistic regression were used as classifiers for this study.

All classifier parameter values were used in their default state without tuning. For instance, the

default probability threshold of 0.5 was used for logistic regression whilst the default ntree value of

500 was used in random forest classification.

• Random Forest Classifier

Generally speaking, ensemble methods have been researched to demonstrate good behavior

when confronted with imbalanced data (Galar et al., 2011), and it is believed that using one

of them as a basis for comparison should not bias the results regarding the minority class (del

Río et al., 2014b). Random forest which is a well-known decision tree ensemble method, has

proven to be no exception to this claim in several studies. An extensive study by (Fernández-

Delgado et al., 2014) which compared the application of about 179 classifiers arising from 17

families to real-world classification problems concluded that random forest is most likely to be

the best classifier. It is also believed that combining random sub-sampling with random forest

may overcome the imbalance problem (Hasanin and Khoshgoftaar, 2018). This makes random

forest a classifier worth considering for this study.

• Logistic Regression Classifier

Logistic regression is a well established classification algorithm which remains a reference

benchmark in many domains like consumer credit risk, due to the regulatory requirement of
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interpretability (Li et al., 2022). In spite of this, several studies have found logistic regres-

sion not to support imbalanced data directly but instead requires modification to its training

algorithm in order to take into account the imbalanced distribution (Brownlee, 2020b). One

way this study seeks to address this issue is to evaluate the performance of a logistic regres-

sion model on a randomly undersampled dataset with different class weights schemes. This

study considers whether this will make it comparable in performance to using a random forest

classifier.

4.2.4 Datasets

The data used in this study for analysis were both synthetic and real-world data. To simplify

the analysis of study results, all datasets contain only two classes (i.e., binary). Features of the

simulated and real data have been summarized in Tables ?? and ?? below.

• Simulated Data

The twoClassSim function from the caret package in R (Kuhn, 2008) was mainly used to

simulate data at varying class imbalances (i.e., mild, moderate, and extreme imbalance). A

total of 2000 observations with a 75:25 data partition were simulated under each case of class

imbalance except for extreme imbalance which had 25,000 observations with an 80:20 data

partition (i.e., 8000 observations in training set and 2000 observations in test set). Additionally,

important variables were added by setting the linearVars argument in the twoClassSim function

to 10 for mild and moderate imbalance and for extreme imbalance set linearVars to 14. The

dimension of simulated data were 2000 observations by 16 variables for the mild and moderate

imbalance and 25,000 observations with 20 variables for the extreme imbalance. The target

variable was made of up two classes: Class 1 (majority) and Class 2 (minority) with Class 2

being the class of interest in this study.

By default, the twoClassSim function generates a balanced class distribution of about 50:50.

The intercept argument in the twoClassSim function was therefore used to control the overall

level of class imbalance. To simulate the different degrees of imbalance, the intercept was set

to -7 for mild imbalance which yielded a minority class proportion of about 36%. Moderate

imbalance was introduced with an intercept of -15, yielding a minority class proportion of

about 10% and then extreme imbalance was simulated with an intercept of -25 resulting in

approximately 1.7% minority class proportion.
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• Real Data

After conducting a simulation study, the effectiveness of the recommended strategy in real-life

with the problem of class imbalance was assessed. Three real-world datasets were selected,

each representing the degree of class imbalance that was simulated in the study. In choosing

the real data, the distributional characteristics were considered so that they were comparable

to the simulated data in this study. The descriptions of all the real data are as follows:

– The first real dataset is a credit card fraud detection dataset from Kaggle (Yadav, 2020).

This dataset contains about 25,000 observations and 18 variables. The target variable

is defined as 0 when a transaction is fraud and 1 when a transaction is not fraud. The

class distribution is about 422 observations (1.7%) for fraud transactions (minority class)

and about 24712 observations (98.3%) for no fraud (majority class). This shows that the

credit card dataset is heavily imbalanced with a class ratio of about 60:1.

– The imbalanced binary thyroid gland data is the next real dataset that was considered

in this study. This dataset is available under the Imbalance package in R. The thyroid

data contains 215 observations with 6 variables. The target variable is made up of two

classes: positive as hyperthyroidism, negative as non hyperthyroidism. There are about

35 observations in the minority (positive) class corresponding to about 16%. Hence the

thyroid data can classified as being moderately imbalanced.

– The third real dataset is a breast cancer database obtained from the University of Wis-

consin Hospitals, Madison from Dr. William H. Wolberg (Wolberg and Mangasarian,

1990). This dataset is available in the UCI Machine Learning repository. This dataset

is also accessible through the imbalance package in R (Cordn et al., 2018). The original

Wisconsin breast cancer data in the UCI respository contains 10 variables and about 699

observations. The target variable has two possible classes -- benign (2) and malignant

(4). Out of the 699 observations, there are 16 missing values. The class distribution for

the target variable was relatively imbalanced with benign having 458 observations (65.5%)

and malignant with 241 observations (34.5%). The Wisconsin data used for this study

is accessed through the Imbalance package in R which omits the missing values. Hence,

the data used had 683 observations with 10 variables with 444 negative observations and

239 positive observations. The class ratio for the Wisconsin data shows a mild imbalance

closer to a 9:5.
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The class distributions for the real data may not be exact as the simulated data but are

comparable as they fall within the same type of class imbalance.

Table 4.2.4 summarizes all simulated and real datasets that were used in this study.

Simulated Data Real Data
Total Pct Total Pct
Sample Num of Minority Sample Num of Minority
Size Variables Class Size Variables Class Name

Mild 2000 16 0.363 683 10 0.35 Wisconsin
Moderate 2000 16 0.103 215 6 0.16 Thyroid
Extreme 25,000 20 0.016 25,134 20 0.017 Credit Card

4.2.5 Simulation Setup

Random undersampling was performed on the training data using the ROSE (Random Over-

Sampling Examples) R package (Lunardon et al., 2014) which uses a bootstrap-based technique

which aids the task of binary classification in the presence of rare classes. The ovun.sample function

was used to implement the undersampling by specifying the method as "under". The probability

to downsample from the majority class was specified as a sequence of twenty probabilities ranging

from 0.45 to 1 for the mild imbalance training data, 0.15 to 1 for the moderate imbalance, and 0.05

to 1 for the extreme imbalance data.

The minimum downsampling probability specified was dependent on the degree of imbalance

and sample size in the minority class. The minimum probability specified could not be unreasonably

smaller than the actual proportion of minority class examples in the original population. Hence the

downsampling probability, p, in the ovun.sample function was tuned until a reasonable downsampling

probability was obtained for each degree of imbalance. Each class imbalance was evaluated separately

across the four different weighting schemes using logistic regression and random forest classifiers to

predict the minority class.

4.2.6 Evaluation Strategy

Choosing the right evaluation metric is also another challenge in imbalanced data classification

as most standard evaluation metrics assume a balanced class distribution. According to Brownlee

(2021), a classifier is only as good as the metric used to evaluate it. He emphasizes that one is likely

to choose a poor model or be misled by the expected performance of a model, if the wrong metric

is chosen to evaluate a model. Accuracy is a widely acknowledged evaluation metric to assess a
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classifier’s performance. However, in the presence of imbalanced data, accuracy can be misleading.

There are a ton of other evaluation metrics for classification and there are a number of varied

views on which metrics are ideal for imbalanced data. In lieu of accuracy, F1-score, precision,

AUC, and precision-Recall AUC (AUCPR) were considered as alternative metrics to assess model

performance in this study. These performance metrics were selected because they are popular metrics

for imbalanced classification. In addition to this, these metrics put some focus on the minority class,

which is the class of interest in this study.

Precision summarizes the fraction of examples assigned the positive class that belong to the positive

class. A high precision value is said to be indicative of a low false positive rate.

precision =
TruePositives

TruePositives+ FalsePositives
(4.1)

F1-score, also known as F-measure, is a popular metric for imbalanced classification. This is because

unlike the Accuracy metric which works best if false positives and false negatives have similar cost,

F1-score is useful when the cost of false positives and false negatives are very different. The F1-score

is defined as the weighted average of precision and Recall. Recall summarizes how well the positive

class was predicted and is the same calculation as sensitivity (Joshi, 2016).

F1-score =
(2 ∗ precision ∗Recall)

(precision+Recall)
(4.2)

Another commonly used measure of classification performance is the Area under the Receiver Oper-

ating Characteristics (ROC) curve (AUC). AUC is a single score calculated from the ROC plot to

assess a model’s predictive ability. The ROC curve is a diagnostic plot for summarizing the behavior

of a model by calculating the false positive rate (x-axis) and true positive rate (y-axis) for a set of

predictions by the model under different thresholds. A no skill classifier will have an AUC score

of 0.5, whereas a perfect classifier will have a score of 1.0 (Brownlee, 2021). Although AUC is a

preferred metric over Accuracy in an imbalanced classification, it has its own drawbacks. Brownlee

(2020d) pointed out that for imbalanced classification with a severe skew and few examples of the

minority class, the AUC score can be misleading. This is because a small number of correct or

incorrect predictions can result in a large change in the AUC score. Regardless of this, the AUC

score was analysed across the different class imbalance to assess its impact on model performance

in this study.
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Area under the Precision-Recall (PR) Curve (AUCPR) is considered an alternative to AUC

in imbalanced classification. The PR curve is very similar to the ROC curve but replaces the False

Positive Rate by precision. The focus of the PR curve on the minority class makes it an effective

diagnostic for imbalanced binary classification models. The AUCPR score is therefore recommended

for highly skewed domains to have a better view of model performance (Brownlee, 2020d). Unlike

AUC which uses a baseline of 0.5 to evaluate a classifier’s performance, with AUCPR the baseline is

the fraction of positives (relative to the total number of examples) (Brownlee, 2020d). This means

that the baseline for AUCPR could be lower than 0.5 depending on the class distribution.

A higher value for all selected performance metrics is preferred in this study. The following

steps were taken to evaluate the results from the random forest and logistic regression models in the

simulation study.

• Perform random undersampling on simulated training data (mild, moderate, or extreme im-

balance) using sequence of twenty downsampling probabilities on the majority (negative) class.

• Fit random forest and logistic regression model on undersampled simulated train data using

all default parameters.

• Apply different weighting schemes to classifiers in model fitting. A case of no weighting is

considered to fit model for prediction.

• Predict the class of interest (minority class) using fitted model on simulated test data.

• Run simulations 1000 times to ensure results are reproducible, and average performance metrics

across 1000 simulation runs.

The averaged results obtained for the performance metrics were generated across the sequence of

twenty downsampling probabilities. The classifier with the best prediction results (i.e., higher per-

formance metrics on average) was then applied to real data using the corresponding downsampling

probability and weighting scheme. The above steps were then repeated at a single simulation run

for the real dataset. All simulations were run through the high performance computing platform at

the University of Utah. The run time was much faster for logistic regression compared to random

forest. The maximum run time for logistic regression was about six hours whilst the maximum run

time for random forest was approximately fourteen hours.
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4.3 Results and Discussion

Simulated data results

Results for logistic regression were not reported in this paper as random forest significantly outper-

formed it. Logistic regression generally yielded lower evaluation metrics across the different levels

of class imbalance.

The overall performance of random forest was however noticeably high across all degrees of

imbalance. The results in Figure 4.2 clearly show that IDS weighting is not appropriate for relative

imbalanced data using the random forest classifier. The IDS scheme with random forest consistently

yielded average F1-scores right around 0.5 and precision values below 0.5 across all downsampling

probabilities as shown in Figures4.2A and 4.2D. This could be indicative of poor prediction of the

minority class. The average AUCPR and AUC scores were also significantly lower compared to using

the other weighting schemes and even a no weighting approach.The trade-off between F1-score and

precision is again noticed between the downsampling probabilities 0.45 to about 0.5 (see 4.2A and

4.2D). The performance of not weighting the classes in the random forest model was impressively

similar to the performance of the other weighting schemes (INS and ISNS). This can be seen at

a downsampling probability of 0.45 in Figure4.2 which appears to be the optimal for the relative

imbalance scenario. Considering this, multiple weighting methods (i.e., INS, ISNS, No weighting)

could be considered when dealing with mild imbalance in order to achieve better classification.

From Figures 4.3A and 4.3D, IDS weighting with random forest yielded very poor F1 and

precision values across downsampling probabilities, 0.375 to 1. IDS weighting showed generally high

performance across all evaluation metrics at a downsampling probability of 0.15. The performance of

random forest with weighting schemes INS, ISNS and noweighting (Nowgt) looks quite comparable

in Figures 4.3A, 4.3B, and 4.3C. UDS weighting with random forest has the highest AUCPR and

precision across a significant range of the downsampling probabilities (see Figures 4.3C and 4.3D).

Comparing Figures 4.3A to 4.3D, there appear to be a trade-off between the Average precision

and F1-score for the UDS weighting scheme. Figure 4.3 shows that optimality in random forest

performance can be achieved at a downsampling probability of about 0.43 using the UDS weighting

scheme. This yields an average F1-score and precision close to a 0.7 and an average AUCPR of 0.9

which is significantly greater than the baseline of 0.1 minority class rate.

With extreme imbalance, IDS weighting scheme with a downsampling probability of 0.05

was found to be the most ideal technique combination to achieve optimal classification results using
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random forest. From Figures 4.4A and 4.4D, the average F1-scores and precision using IDS weighting

scheme is significantly high (close to 0.75) at a 0.05 downsampling probability. However, there is

a drastic decline in F1-scores and precision beyond the 0.05 probability mark which is shown by

the dashed reference line. AUC and AUCPR values are significantly high (close to 1) using IDS

and a 0.05 downsampling probability. There is a trade-off between F1-score and precision at 0.05

probability when using UDS weighting scheme (see Figures 4.4A and 4.4D). Again, there is a similar

prediction performance amongst no weighting, INS, and ISNS weighting schemes as shown in 4.4.
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Fig. 4.2: Average Performance metrics across different weighting schemes using random forest clas-
sifier on mildly imbalance simulated data

Concluding from Figures 4.2, 4.3, and 4.4, UDS weighting with a downsampling probability

of 0.43 yielded more optimal results in the moderate imbalance situation. On the other hand, for ex-

treme imbalance, IDS weighting with 0.05 downsampling probability was selected. The performance

metric values obtained when IDS weighting scheme was applied to mild and moderate imbalance

were much lower. Hence it can be inferred that IDS is not an ideal weighting strategy to use when

dealing with relative imbalance in data. Multiple weighting techniques (such as no weighting, INS,

ISNS and even UDS) with downsampling probability of 0.45 can be considered when dealing with

mild imbalance in order to achieve optimal results.

Real data results

Table 4.1 summarizes the results of the real data after the application of selected weighting

techniques with random forest at specific downsampling probability in the simulation study. Each
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Fig. 4.3: Average Performance metrics across different weighting schemes using random forest clas-
sifier on moderately imbalanced simulated data
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real dataset is supposed to have similar distributional characteristics as the simulated data in order

for the recommended strategy to be effective and applicable.

The strategy recommended for extreme imbalance (i.e., downsampling with 0.05 and weight-

ing with the inverse of Downsampling factor (IDS) strategy in a random forest model) exhibited not

so high performance metrics like the mild and moderate imbalance cases when applied to the credit

card data (see last row of Table 4.1). All evaluation metrics except for AUC had significantly low

results. This confirms literature that AUC is a misleading metric to rely on in extreme imbalance

classification. Given the heavy imbalance in data, the high AUC could mean that the classifier

detected more true negatives than false negatives, hence making it unreliable. We can however

assess the effectiveness of the extreme imbalance strategy used based on the AUCPR. Comparing

the AUCPR value (0.191) for credit card data to the baseline (minority rate) of 0.017, the AUCPR

is quite high which is an improvement (see Table 4.1).

On the other hand, the results for Wisconsin breast cancer dataset classification in Table 4.1

confirmed that random undersampling with a downsampling probability of 0.45 and INS weighting

scheme in a random forest model is an effective strategy to predict relative imbalance data when

faced with a similar class distribution of about 3:2. The precision and F1-score were significantly

high (greater than 90%). Similar results were obtained when ISNS or no weighting was used. This

means that using INS, ISNS, or no weighting can help to correctly classify the minority class (malig-

nant cases) to a large extent. The proposed strategy for moderate imbalance data (i.e UDS

with a 0.43 downsampling probability in a random forest model) was highly effective when applied to

the real Thyroid data. A perfect precision score (i.e., 1) was achieved. This means that none of the

minority class samples were incorrectly which of main interest in this study. The other performance;

F1-score, AUC, and AUCPR were also significantly high (see second row in Table 4.1).

Table 4.1: Summary of Real Data Classification Results
Degree Weighting Downsampling

Data of Imbalance Scheme Probability Precision F1-Score AUC AUCPR
Wisconsin Mild INS 0.45 0.952 0.975 0.994 0.988
Thyroid Moderate UDS 0.43 1.0 0.857 1.0 1.0
Credit Card Extreme IDS 0.05 0.345 0.291 0.743 0.191

4.4 Limitations and Future Work

The performance of the proposed strategy to address extreme imbalance classification in this
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study should be further investigated by tuning the hyperparameters in the random forest model to

see how well it can improve extreme imbalance classification.

An extension of this study should explore an optimal probability threshold that needs to be

set for extreme or relative imbalance that can help improve the performance of logistic regression

across the different weighting techniques and downsampling probability. This is because the default

probability (0.5) used may not accurately reflect the class imbalance even though class weights were

assigned in the logistic regression model.

Lastly, a comparative analysis can be done to compare popular heuristic techniques of random

undersampling like Condensed Nearest Neighbor Rule (CNN) (Thai-Nghe et al., 2010), Near Miss

Undersampling (Mqadi et al., 2021) and Tomek Links method (Brownlee, 2020e) to the basic random

undersampling by incorporating the different weighting schemes mentioned in this study (i.e., IDS,

UDS, ISNS, INS) into an ensemble classifier like random forest or gradient boosting at different

degrees of class imbalance.
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CHAPTER 5

CONCLUSION

Missing data remains a major challenge that researchers need to deal with in almost every

field. The impact of missing data, if not carefully handled, can be detrimental to any statistical

analysis. Overlooking missing data can result in loss of information, bias the estimation of study

parameters, reduce statistical power, and affect generalizability of findings. It is established in this

dissertation that the choice of analysis depends on the type of data used in a study. It is therefore

crucial that researchers pay close and particular attention when dealing with missing data.

This dissertation generally addresses statistical challenges presented by different missing data

examples in different research domains. Possible solutions to effectively handle some of these chal-

lenges were also discussed in this through simulation studies and application to real datasets. The

challenges posed by missing data were recognized to be associated mainly with the type of missing-

ness as well as the degree of data missingness. The ultimate challenge that seems to run through

this dissertation was to know the appropriate technique to select to deal with the missing data phe-

nomenon. The different missing data scenarios considered are the dropout issue in single-cell RNA

sequencing analysis, non-detects (otherwise referred to as below detection limit), and imbalanced

data, which is an effect of missing data. These missing data examples are organized as stand-alone

papers which are captured in Chapters 2, 3, and 4, respectively.

The first paper in Chapter 2 was a comparative study analysing popular imputation and dif-

ferential test methods in single-cell RNA (scRNA) sequencing. Dropout zeros, which are designated

as the missing values in single-cell RNA (scRNA) data, are usually difficult to distinguish from the

true zeros (zeros arising from biological factors). This leads to biased downstream analysis results in

scRNA sequencing. In an attempt to find a technique that will be best for scRNA data analysis, a

simulation study was conducted evaluating the average Type I error rate and power from four popu-

lar scRNA sequencing imputation methods (MAGIC, SAVER, DrImpute, and scImpute) combined

with three differential expression (DE) test methods (DESingle, MAST, and Seurat). Additionally,

the ongoing controversy of whether imputation is a necessary step in scRNA sequencing analysis

was addressed by considering a case of not imputing the scRNA data.

Based on the results of the study, there was no clear winner. Instead, the best method was
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selected based on varied reasons. First, MAGIC paired with DESingle or MAST was found to

be appropriate if a researcher was primarily interested in knowing whether genes are differentially

expressed or not (i.e, obtaining a fairly higher power and lower false positive). Though MAGIC

had a poor bias estimation of the magnitude difference, it did the best job at detecting the ground

truth simulated by yielding the lowest Type I error rate and highest power consistently across all

DE methods. On the other hand, if a researcher is primarily interested in less biased estimates,

DrImpute would be an ideal imputation method to consider. This is because DrImpute was the

next best imputation method to yield a fairly higher power with DESingle and MAST. Imputation

was found to be a crucial step in scRNA analysis as the estimated power results obtained from

not imputing scRNA data were much lower than that of using imputation methods in the simu-

lation study. An extensive analysis can be conducted as a follow-up to this study, incorporating

dimensionality reduction techniques as well as more advanced imputation and differential testing

methods. One important finding in this study was that the various imputation methods failed to

detect smaller magnitude differences when combined with the differential methods. An additional

study will therefore be required to investigate this interesting relationship.

The second paper of this dissertation (Chapter 3) investigates how to handle non-detects

through simulation studies. More specifically, the paper considers whether it will be appropriate

to address the issue of non-detects using a traditional substitution approach, imputation, or a non-

imputation based approach in a simple nested design. Seven existing non-detect techniques namely,

Zero substitution, Substitution with half Limit of Detection (LOD/2), Substitution with LOD/
√
2,

Multiple Imputation (MI), Regression on Order Statistics (ROS) (Imputation approach), Maximum

Likelihood Estimation (MLE), and Kaplan-Meier (KM) were applied to simulated data at varied

censoring levels (thresholds) and effect sizes. The performance of each non-detect method was then

evaluated based on the average Type I error rate and the power.

This study strongly demonstrated that substitution with LOD/2 was an appropriate tech-

nique for a nested design but this raises further fundamental questions about the structure of the

nested design used and also the complexity of the design. The study design was a simple nested

design consisting of 100 observations with Treatment (Treated or Control) as a fixed factor and bee

colony (Group) as a Random factor nested within Treatment. The simulated data used in this study

assumed a no colony effect. To comprehend the impacts of the findings brought out in this study, a

follow-up study can be conducted, introducing colony effect into the nested design.
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Again, the simple nature of this study design was not applicable to a Multiple Imputation

(MI) as it expects a multivariate distribution. Because of this, more complex designs, like repeated

measures design, could be investigated to assess how these non-detect methods compare to MI at

varying censoring levels and effect sizes. The sample size for the simulated data could be varied as

an extended version of this study. This will help researchers to understand how well these non-detect

methods perform at any magnitude of data (large or small). Furthermore, multiple censoring levels

could be analysed. It must be noted that the findings from this study are only applicable when

working with designs similar to what was used in this study. Zero substitution, which is a common

technique to handle non-detects, was found to produce highly biased estimates, and so will not be

recommended. A technique which effectively accounts for zero-inflation (e.g., Zero-Inflated Poisson

regression) may be considered if a researcher wants to use zero substitution to deal with non-detects.

Overall, the power significantly improved across all the non-detect methods at an average non-detect

rate below 70%. This may imply that at extreme non-detect levels (beyond 70%) these non-detect

method may not produce the best results.

Some research works that use resampling techniques in imbalanced learning focus on using

specific algorithms, paying little attention to the optimality of how much to sample and the need to

compensate for the cost of sampling. These are two key areas that are addressed in the third paper

(Chapter 4) in this dissertation. A major problem that persists in imbalanced classification is the

prediction bias of a classifier towards the majority class. This is because most standard classifiers

were designed to handle balanced class distribution. An efficient strategy was therefore presented to

mitigate the prediction bias problem by combining random undersampling with weighting of stan-

dard classifiers like random forest and logistic regression. Four different weighting schemes were

used: Inverse of Number of Samples(INS), Inverse of Square Root of Number of Samples (ISNS),

(Inverse of Downsampling factor (IDS), and Upweighting of Downsampled Class (UDS). A case of

no weighting was also considered.

By comparative analysis of simulated data (considering relative and extreme imbalance), it

was shown that using random forest as a classifier outperformed using logistic regression based on

the aggregate results of the evaluation metrics used in this study (i.e., F1-score, precision, AUC,

and Precision-Recall AUC (AUCPR)). The proposed strategy was unique to the degree of imbalance

(whether extreme or relative). When dealing with relative imbalance, the recommended strategy was

to randomly undersample data with a downsampling probability of about 0.45 using the Inverse of
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Number of Samples(INS) weighting scheme and random forest classifier. The results obtained when

this strategy was applied to a real dataset of a similar distributional characteristic were impressively

high. The precision, AUCPR, and F1-score were significantly high, indicating an almost perfect

classification of the minority class (above 0.9). The strategy that best fits extreme imbalanced clas-

sification was, however, inconclusive in this study. The strategy that was recommended (using a

downsampling probability of 0.43 and UDS weighting scheme) based on the extreme imbalance sim-

ulation yielded poor results when it was applied to a real dataset with a more severe imbalance. The

obvious question to here is whether the severity of imbalance in the simulated dataset representative

of the real dataset. Another relevant question is whether the sample size could be a contributing

factor to performance results. These questions would be worth exploring in in a follow-up study

so that an appropriate strategy could be recommended to researchers to possibly address extreme

imbalance classification.

The hyperparameters for the classifiers in this study were used in their default setting. A

future consideration will be to analyse how tuning a classifier’s hyperparameters can improve predic-

tion of minority class in an imbalanced classification. Over the years, variants of undersampling have

been developed. Prominent of these include Condensed Nearest Neighbor Rule (CNN) (Thai-Nghe

et al., 2010), Near Miss Undersampling (Mqadi et al., 2021), and Tomek Links method (Brownlee,

2020e). A comparative analysis could be done comparing these techniques to the random undersam-

pling strategy proposed in this study. Lastly, research could be conducted to investigate whether

data partitioning matters in imbalanced classification. Taken together, the results from this study

emphasize that random undersampling combined with weighting of classes (upweighting minority

class) in an imbalanced classification is a useful tool to increase sensitivity of a classifier towards the

minority class.
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