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ABSTRACT 

 

 

Avian Species Distribution Models: 

 

Using Location Data to Inform Management Decisions 

 

 

by 

 

 

Marilyn E. Wright, Master of Science 

 

Utah State University, 2022 

 

 

Major Professor: Dr. Kimberly A. Sullivan  

Department: Biology 

 

 

We used species distribution models for avian focal species at different scales to 

inform applied management decisions. Focal species are often chosen for both their 

sensitivity to disturbance and their relationship to quality habitat, which is the case for 

both the northern goshawk (Accipiter gentilis) and white-headed woodpecker (Dryobates 

albolarvatus) used in this study. We conducted a statewide nest site selection model for 

northern goshawks in Utah using an analytical hierarchy process that we were then able 

to use in conjunction with the Forest Vegetation Simulator to predict changes to nesting 

habitat over the next 150 years in Utah under different climate scenarios. Based on 

consensus between all predictions, we identified potential refugia, especially in the Uinta-

Wasatch-Cache and Ashley National Forests, that remains intact as high suitability 

nesting habitat under all climate scenarios. For white-headed woodpeckers, we used a 

resource selection analysis to determine how white-headed woodpeckers responded to 

thinning and burning treatments, part of the ponderosa pine restoration program in the 
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Payette National Forest. White-headed woodpeckers displayed some positive associations 

with recent thinned and burned areas but also displayed wide variation in response to 

treatment type, canopy cover, and slope, suggesting that white-headed woodpeckers 

benefit from habitat heterogeneity across the landscape. Finally, we used a behaviorally 

segmented integrated step selection analysis to examine northern goshawk habitat 

selection across an annual cycle in northeastern Nevada, part of the interior Great Basin. 

The interior Great Basin represents a naturally patchy habitat. Goshawks consistently 

selected for higher canopy cover across both breeding and non-breeding behavioral states 

but showed variation in response to other landscape characteristics, suggesting, like 

white-headed woodpeckers, that goshawks may benefit from habitat heterogeneity and 

the ability to utilize different habitat types throughout the annual cycle. 

(163 pages) 
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PUBLIC ABSTRACT  

 

 

Avian Species Distribution Models: 

Using Location Data to Inform Management Decisions 

 

Marilyn E. Wright 

 

 

 

Both state and federal wildlife agencies strive to conserve and protect wildlife and 

their habitats as an important public resource. Applied management decisions often rely 

on being able to obtain data that can efficiently and effectively enhance the understanding 

of these systems for informing management actions. Wildlife managers often focus 

efforts on a small subset of species from an ecosystem, typically called focal species, who 

can serve as surrogates for understanding the health and function of the system. Models 

that consider how these focal species interact with the ecosystem are often used to better 

understand important aspects of their life history, ecology, and conservation needs.  

 

Birds are ideal candidates for use as focal species as they often are sensitive to 

disturbance, tied to a narrow subset of habitat characteristics for different parts of their 

life cycle success, and are often easy to monitor and study. The recent advent of 

advanced GPS and spatial technology allows managers the chance to consider birds and 

their relationship with their habitat on a deeper level by considering interactions at finer 

spatial scales. However, GPS and spatial technology as well as the methods to analyze 

the spatially explicit data have only recently been available for many avian species.  
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In this study, the Utah State University partners with the U.S. Forest Service in 

Utah, U.S. Forest Service Rocky Mountain Research Station, and the Nevada Department 

of Wildlife to analyze spatial data collected for northern goshawks (Accipiter gentilis) 

and white-headed woodpeckers (Dryobates albolarvatus). While the spatial data for this 

project was previously collected as part of other management objectives, the 

collaborations for this project make it possible to analyze this data with some of the latest 

methods in spatial and movement ecology. We used methods such as predictive modeling 

with the Forest Vegetation Simulator, resource selection analysis, and integrated step 

selection analysis to examine each of these species’ relationships with their habitat on a 

finer scale than previously considered and to help create management recommendations 

based on our findings.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 

In the United States, wildlife management is based on the premise that 

government wildlife agencies use scientific knowledge and expertise to conserve, restore, 

and maintain natural resources for the public (Clark et al. 2010). However, conservation 

biology and natural resource management are often a crisis discipline involving 

extremely difficult and complex processes, and thus decisions must be made with some 

tolerance for uncertainty (Burgman et al. 1993, Regan et al. 2002, Chase and Geupel 

2005, McCarthy and Possingham 2007). Since their seminal work in the late 1970s, 

Walter and Hilborn (1976) and Holling’s (1978) theory of adaptive management has 

gained traction as an essential tool for the conservation of biodiversity and management 

of resources under uncertainty (Wilhere 2002, Keith et al. 2011) Adaptive management 

relies on the systematic collection and application of reliable information to improve 

management over time (Holling 1978) and may be either passive in which policy changes 

are implemented when sufficient monitoring data become available to support the change 

or active in which management strategies are conducted as deliberate experimental 

treatments with monitoring as a key component for determining cause-and-effect 

relationships between different management actions and associated outcomes (Walters 

and Hilborn 1978, Wilhere 2002). In both instances, monitoring is a key component of 

adaptive management, and monitoring and management planning are developed 

concurrently (Walters 1997, Possingham et al. 2000). 
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While there are several approaches to monitoring, one of the most common 

practices is to choose a subset of species from a particular system of interest to serve as a 

focal species, using biological knowledge and careful analysis of monitoring data to 

guide management decisions (Gibbs et al. 1999, Chase and Geupel 2005). Focal species 

management can be useful in both passive and active adaptive management strategies, 

provided that focal species are chosen on the basis that developing conservation plans 

around their life history characteristics will confer benefits to other cooccurring species 

facing similar threats (Fleishman et al. 2000, Beazley and Cardinal 2004, Roberge and 

Angelstam 2004, Nicholson et al. 2013). Criteria for identifying ideal focal species 

focuses primarily on ecological processes that are generally associated with demographic 

parameters in the population biology framework (Henle et al. 2004) including: 1) area-

limited species with large area requirements and low population densities, 2) dispersal-

limited species with poor dispersal capabilities, or 3) species with low reproductive 

potential or fecundity (Lambeck 1997, Beazley and Cardinal 2004, Henle et al. 2004, 

Nicholson et al. 2013). Additionally, species may be chosen on the basis of status as 

indicators of environmental change such that characteristics of their life history and 

behavioral responses may be used as an index of measuring attributes that are expensive 

or unfeasible to measure for other species (Caro and O’Doherty 1999, Landres et al. 

1999, Chase and Geupel 2005). 

Given their sensitivity to change, focal species are often designated as species of 

“special concern” by local or national governments (Caro and O’Doherty 1999, Chase 

and Geupel 2005). This study deals with two species that have this type of designation: 

the northern goshawk (Accipiter gentilis) and the white-headed woodpecker (Dryobates 



3 
 

albolarvatus). The northern goshawk has been used as a management indicator species 

for the U.S. Forest Service throughout the west (Hoffman and Smith 2003, Boyce et al. 

2006) and has also been designated as a species of concern by the U.S. Fish and Wildlife 

Service (Squires and Kennedy 2006). Northern goshawks are an important top-tier avian 

predator (Graham 1999) that typically have a close association with a narrow set of 

habitat requirements, including mature stands of either conifers (Pinus spp., Abies spp., 

Pseudotsuga menziesii) or aspen (Populus tremuloides) with at least partially closed 

canopy cover for nesting (Reynolds 1983, Hall 1984, Reynolds et al. 1992, Graham 

1999). Northern goshawks are also sensitive to anthropogenic disturbances such as 

grazing, timber harvest, and the effects of climate change (Graham 1999). White-headed 

woodpeckers are similarly closely tied to habitat and sensitive to anthropogenic 

disturbance. They have been identified as a species at risk both locally and regionally 

(Garrett et al. 1996, Rich et al. 2004). They are endemic to dry conifer forests of the 

inland northwest (Garrett et al. 1996) and closely tied to mixed-severity fire regimes that 

create a mosaic of open- and closed-canopy with mature, large trees (Garrett et al. 1996, 

Wightman et al. 2010, Hollenbeck et al. 2011, Latif et al. 2015, 2020). As primary cavity 

nesters, they are also considered ecosystem engineers as they provide important nesting 

and roosting habitat for other species (Jones et al. 1994). Because both northern 

goshawks and white-headed woodpeckers are sensitive to changes within their habitat 

and occupy important roles in the species community assemblages, they are ideal 

candidates for monitoring the effects of management activities, both passively and 

actively.  
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One of the most effective ways to use monitoring data collected from species like 

the northern goshawk and white-headed woodpecker for informing management 

decisions is to construct species distribution models. Species distribution models (SDMs) 

use known locality data and information on environmental and habitat conditions to 

predict hypothetical distributions, often mapping habitat suitability for a species related to 

these variables (Loiselle et al. 2003, Franklin 2010, Sofaer et al. 2019). The conceptual 

underpinnings of SDMs are related to niche theory in which attempts are made to 

describe a species’ niche in terms of both environmental and geographical space (Colwell 

and Rangel 2009). The increasing availability of geospatial data along with advances in 

computing technology have allowed for a rapid expansion of analytical methods for 

calculating SDMs (Elith and Leathwick 2009, Sofaer et al. 2019), making it easy to 

facilitate model fit and visualization (Thuiller et al. 2009, Morisette et al. 2013, Kass et 

al. 2018). Additionally, SDMs provide flexibility for gaining inference from biased and 

sparsely sampled populations (Peterson et al. 2000, Loiselle et al. 2003, Phillips et al. 

2009, Sofaer et al. 2019), like the northern goshawk and white-headed woodpecker, and 

use of SDMs in conservation efforts has demonstrated successful outcomes in other cases 

(Guisan et al. 2013). 

The SDM approach has been used widely for both white-headed woodpeckers 

(Saab et al. 2007, 2009, Kozma 2009, Wightman et al. 2010, Hollenbeck et al. 2011, 

Kozma and Kroll 2012, Latif et al. 2015, 2020, Linden and Roloff 2015, Lorenz et al. 

2015, Kehoe 2017) and northern goshawks (Reynolds et al. 1982, 1992, 2006, Hayward 

and Escano 1989, Greenwald et al. 2005, Boyce et al. 2006, Carroll et al. 2006, Squires 

and Kennedy 2006), however, there remain many ways in which SDMs can be used to 
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further inform management decisions for these species. For SDMs to be effectively 

implemented into the decision process, it is important to consider the uncertainty in the 

modeling technique and the scale of all components of the SDM, including input data, 

output distribution predictions, and the scale at which the SDM will be used to inform 

management decisions (Seo et al. 2009, Porfirio et al. 2014, Sofaer et al. 2019) to avoid 

incorrect predictions and uses of SDM information that can lead to spatially flawed 

conservation planning (Smith and Catanzaro 1996, Seo et al. 2009). This study deals with 

multiple scales of SDMs and describes the ways in which SDMs may effectively inform 

management at different levels, relative to these scales. The following chapters include a 

broadscale SDM, an analytical hierarchy-based habitat suitability model of goshawk 

nesting habitat across the state of Utah that we then used to project effects under different 

climate change scenarios (Chapter 2), a finer-scale SDM, a second-order resource 

selection function of white-headed woodpecker space use in relation to harvest and 

prescribed burning treatments (Chapter 3), and a very-fine-scale SDM, step selection 

function of northern goshawks in the Interior Great Basin, a unique naturally fragmented 

habitat (Chapter 4). Finally, I conclude with a summary chapter on the results and their 

importance for informing management decisions, both passively and actively, for these 

species and for demonstrating the use of different scales of SDMs for focal species 

management at the appropriate level (Chapter 5).  
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CHAPTER II 

 

AN ANALYTICAL HEIRARCHY PROCESS-BASED HABITAT SUITABILITY 

MODEL FOR NESTING GOSHAWKS IN UTAH NATIONAL FORESTS: CURRENT 

CONDITIONS AND FUTURE CLIMATE SIMULATIONS WITH THE FOREST 

VEGETATION SIMULATOR 

 

INTRODUCTION 

 

Climate controls the distribution of ecosystems and species ranges globally, and 

global climate change is already having a significant impact on species and ecosystems, 

including shifts in species distributions, changes in timing of life-history events, 

decoupling of coevolved interactions, effects on population size and demographics, loss 

of habitat, and increased spread of disease and invasive species (Hannah et al. 2002a, b, 

2005, Stenseth et al. 2002, Van Putten 2002, Walther et al. 2002, Parmesan and Yohe 

2003, Parmesan 2006). Predictions of biological changes over the next century include 

large-scale biome shifts, with somewhere between one-seventh to one-third of North 

American ecosystems classified as highly vulnerable to these changes (Aber et al. 2001, 

Gonzalez et al. 2010). Large-scale biome shifts can have dramatic negative impacts on 

ecosystem structure and function at multiple scales, and feedbacks within these systems 

can stabilize biome shifts, making it very difficult to reverse the changes (Grimm et al. 

2013). Rapid biome shifting is predicted under a variety of climate scenarios and is likely 

to continue driving significant changes in plant and animal species composition 

(Mawdsley et al. 2009), creating a need for adaptive management strategies to help 
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ameliorate the potential adverse effects of climate change (Hannah et al. 2002a, Inkley et 

al. 2004, Da Fonseca et al. 2005, Parry et al. 2007, Mawdsley et al. 2009). 

Despite more than two decades of data produced from federally funded research 

programs that frames potential impacts of climate change on U.S. public lands, efforts to 

integrate climate change as a factor in planning and management strategies has been 

minimal (Hannah et al. 2002a, Littell et al. 2012). While awareness of the need to 

consider broadscale forest changes in relation to climate has increased following several 

high-profile reports on regional climate trends (Hayhoe et al. 2004, Mote et al. 2005, 

Knowles et al. 2006), forest management often still reflects approaches that are based on 

historical forest conditions as a means for quantifying forest health (Lackey 1998, 

Landres et al. 1999, Millar et al. 2007). Attempts to maintain and restore forest conditions 

that do not consider rapid environmental changes may leave forests ill-adapted to these 

conditions and vulnerable to undesirable outcomes (Millar et al. 2007). Additionally, the 

stressors created by climate change can have additive effects when interacting with other 

common stressors such as pollution, habitat fragmentation, land-use changes, invasive 

plants, animals, and pathogens, and altered fire regimes (Holmgren and Scheffer 2001, 

Zavaleta 2006, Millar et al. 2007).  

In order to create more effective management strategies for forests facing rapid 

environmental change, emphasis has been placed on creating practical strategies that 

integrate science and decision-making into a flexible management framework 

(Spittlehouse and Stewart 2003, Millar et al. 2007, Julius and West 2008, Mawdsley et al. 

2009, Littell et al. 2012, Grimm et al. 2013). The increasing uncertainty associated with 

environmental changes and ecosystem responses necessitates approaches that include 
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both short-term and long-term strategies that embrace flexibility, the capacity to reassess 

conditions frequently, and the ability to change course based on evolving conditions and 

needs (Hobbs et al. 2006, Millar et al. 2007). Current  mathematical models produced for 

environmental decision making rarely predict future conditions with enough accuracy or 

precision to be useful for managers (Pilkey and Pilkey-Jarvis 2007), and managers often 

struggle with a lack of financial and personnel resources to implement climate change 

mitigation strategies into current management plans. However, resource managers at the 

local administrative level often have a strong interest in understanding the effects of 

climate change on resources and are interested in adapting to changing systems (Littell et 

al. 2012). This is encouraging as much of the important work in climate change 

adaptation is likely to occur at finer scales in individual parks, forests, and reserves 

(Opdam and Wascher 2004, Mawdsley et al. 2009).  

Adaptive management, with its integration of climate change at fine scales 

necessitates addressing the challenges faced by different management agencies. One of 

the main challenges for effective implementation is the ability to create fine-scale models 

of climate impacts on wildlife distributions and vegetation communities that are easy to 

create and financially feasible to implement (Carroll 2005, Mawdsley et al. 2009, Littell 

et al. 2012). Mawdsley et al. (2009) outlined a framework of different climate change 

adaptation strategies for wildlife management and biodiversity conservation including 

familiar approaches such as direct sensitive species management and the use of 

monitoring data to facilitate adaptive planning. Both state and federal agencies have used 

these strategies as components of previous management planning, providing an 
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opportunity to transition these ideas in order to facilitate adaptation of ecosystems under 

climate change (Mawdsley et al. 2009).  

Some of the most useful indicators of environmental changes are raptors which 

generally inhabit large home ranges, occupy positions at the top of most food webs, and 

display trackable sensitivities to anthropogenic and environmental disturbances (Bildstein 

2001, Hoffman and Smith 2003). One species that has been used extensively for forest 

health monitoring in is the Northern Goshawk (hereafter ‘goshawk’) (Martin et al. 1998, 

Hoffman and Smith 2003). The largest Accipiter in North America, goshawks represent 

an important avian predator in forested ecosystems (Graham et al. 1999). While 

goshawks inhabit a wide variety of habitats across their range, they tend to nest within a 

subset of forest structural characteristics (Bosakowski 1999), including older-growth 

areas with at least partially closed canopy and open understory (Reynolds 1983, Hall 

1984, Squires and Ruggiero 1996, Bosakowski 1999). This pattern is especially prevalent 

in North American montane regions, where the association with high quality forest 

habitat has led to goshawks being used as a Management Indicator Species in US national 

forests to track management plan implementation (Martin et al. 1998). The wealth of 

monitoring data generated for this species along with their status as a species sensitive to 

environmental change (Graham et al. 1999) make goshawks an ideal candidate for using 

previously collected monitoring data to test the efficacy of implementing a model for 

fine-scale climate impacts.  

We used an Analytical Hierarchy Process (AHP) to create a habitat suitability 

model (HSM) for goshawks in Utah national forests. The AHP approach allowed us to 

use a decision-making framework combining quantitative and qualitative metrics to 
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determine the relative significance of our selected habitat variables. This approach allows 

for the analysis of large areas without the necessity of robust presence data (Perera et al. 

2012). We focused on nesting habitat as there is a great deal of information available on 

goshawk nesting habitat requirements as well as a monitoring history of goshawk nest 

locations in Utah national forests. HSMs are based on the identification of environmental 

factors influencing the spatial distribution and abundance of animals in a specific area. 

HSMs create a conceptual model relating environmental variables to the suitability of a 

location for a species (USFWS 1996, Burgman et al. 2001). For effective management 

and conservation, it is important to determine which combination of variables are 

strongly associated with the species’ success. Our HSM incorporates the Forest 

Vegetation Simulator (FVS), a U.S. Forest Service program that uses an individual tree, 

distance independent growth and yield model to predict changes to forest structure under 

a different growth and management scenarios. FVS is used by many forest biologists, and 

the program has a dedicated team that works to provide resources, workshops, training, 

and troubleshooting assistance for all facets of the program. This allowed us to predict 

how nesting habitat might change over the next 150 years and to identify important 

refugia by considering where the modeled present nesting distributions intersects with 

projected distributions (Fløjgaard et al. 2009, Keppel et al. 2012). 

 

STUDY AREA 

  

Our study area included national forests within the state of Utah including Ashley, 

Uinta-Wasatch-Cache, Fishlake, Dixie, and Manti-La Sal. Non-forested land within these 

boundaries were excluded from the study to include only habitat considered viable for 

goshawk nesting. Dominant forest types in Utah national forests include the following 
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species: quaking aspen (Populus tremuloides), Engelmann spruce (Picea engelmannii), 

Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta), and ponderosa 

pine (P. ponderosa). Additionally, other woodland species such as pinyons (P. edulis), 

juniper (Juniperus osteosperma and J. scopulorum), Gambel oak (Quercus gambelii), and 

bigtooth maple (Acer grandidentatum) are common across the state forested area.  

 

 
Figure 2.1 Utah national forests administrative boundaries, USA. Though the 

administrative boundaries for Ashley National Forest, Uinta-Wasatch-Cache National 

Forest, and Manti-La Sal National Forest extend outside of the state border into 

Wyoming and Colorado respectively, we still included these areas in our analysis as the 

management offices for these forests are based in Utah.  
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METHODS 

 

Identifying Factors Influencing Habitat Suitability  

We conducted a literature review of papers on goshawk field studies in the 

mountain states (Montana, Idaho, Wyoming, Colorado, Utah, Arizona, and New Mexico) 

(Hennessy 1978, Fischer 1986, Hayward and Escano 1989, Spencer 1995, Siders and 

Kennedy 1996, Squires and Ruggiero 1996, Patla 1997, Graham et al. 1999, Clough 

2000, Joy 2002, Marvel 2007, Zarnetske et al. 2007), the Pacific Northwest (Oregon, 

Washington, and northern California) (Reynolds et al. 1982, Moore and Henny 1983, 

Hall 1984, Finn 2000, Keane 2000, McGrath et al. 2003), and South Dakota (Black Hills 

area; (Erickson 1987), ranging in publication date from 1978 – 2007. From these papers, 

we chose eight variables to represent the main features of suitable habitat for goshawk 

nesting (forest type, canopy cover, stand age, canopy base height, basal area, slope, 

aspect, and elevation) as these variables were the most common explanatory variables for 

nesting site selection models. We compiled minima and maxima values for each of these 

variables from the selected literature and used geometric means to create threshold 

minima and maxima for each variable from the reported minima and maxima from 

previous experiments (sensu Zarnetske et al. 2007). Forest type was classified as a 

categorical variable where forest types including ‘conifers’ and/or ‘aspen’ were 

determined to be suitable for nesting.  

 

Analytical Hierarchy Process  

In the process of habitat evaluation, an important step is to determine the relative 

significance of each contributing variable. The Analytical Hierarchy Process (AHP) was 
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first developed by Saaty (1977) as a decision-making process combining quantitative and 

qualitative metrics to solve complex problems. AHP provides a unique approach to 

developing HSMs because it allows for the analysis of large regions without necessitating 

presence data for a species (Perera et al. 2012). AHP relies on creating a pairwise 

comparison matrix where each variable is weighted against every other variable by 

asking field experts to assign relative dominant values between one and nine (Table 2.1.; 

Saaty 1977). We recruited eight experts to complete the pairwise comparison survey 

including a graduate researcher, Intermountain Bird Observatory raptor researcher, Utah 

Division of Wildlife biologists, US Forest Service wildlife biologists and ecologists, and 

US Forest Service – Rocky Mountain Research Station researchers. Before scoring the 

variables, we provided experts with a detailed description of AHP protocols as well as 

examples of AHP matrices. Pairwise comparisons were completed by each expert 

individually and returned to us for processing. 
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Table 2.1 Scale of binary comparisons from Saaty (1977) 

Importance Definition Explanation 

1 Equal importance Both variables contribute equally  

3 Weak importance of 

one variable over 

another 

Experience and judgement slightly favor one 

variable over another 

5 Strong importance Experience and judgement strongly favor one 

variable over another 

7 Dominant 

importance 

One variable is strongly favored, and its 

dominance is demonstrated in practice 

9 Absolute 

importance 

One variable is completely favored over the other 

with the highest order of affirmation  

2, 4, 6, 8 Intermediate values  When compromise is needed between levels of 

importance 

  

All data analyses were conducted in R version 3.6.3 (R Core Team 2021). After 

eliciting responses from our team of experts, we used the packages ahp (v0.2.12; Glur 

2018) and ahpsurvey (v0.4.1; Cho 2019) to aggregate responses and calculate eigenvector 

values and consistency ratios for the variables. We adjusted for inconsistencies in 

individual pairwise comparisons using the Harker method to transform inconsistencies 

and replace them with more logical values (Harker 1987), running a total of ten iterations. 

We then compiled the transformed pairwise comparison matrices to calculate final 

eigenvector values for each variable. Eigenvector values represent the relative importance 

of each variable, based on the expert evaluation (Saaty 1977). Habitat variables receiving 
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higher eigenvector scores represent a greater perceived importance to goshawk nest site 

distribution, relative to variables with lower scores.  

 

Data Acquisition and Preparation for Modeling 

We downloaded raw raster and vector files for each of the selected variables. 

Forest type, canopy cover, and basal area were obtained from the USDA FSGeodatabase 

Clearinghouse (Reufenacht et al. 2008, Wilson et al. 2013, Coulston et al. 2016). The 

files for basal area were downloaded as separate tiles for specific tree species. They were 

fit the full study area extent and then summed together into a complete raster layer for 

total basal area of all tree species. Canopy base height was obtained from LANDFIRE 

(LANDFIRE 2008). Stand age was obtained from the USGS LandCarbon database 

(USGS LandCarbon 2014), and elevation was obtained as a Digital Elevation Model 

(DEM) from the Shuttle Radar Topography Mission EROS Archive download portal 

(EROS 2018) (Table 2.2). The DEM files were also downloaded as separate tiles and 

merged into one raster file. We derived slope and aspect from the DEM layer using the 

landsat package (v 1.1.0, Goslee 2011). 

We set each raster file to a standard resolution of 250 meters based on the 

constraint on input variables for basal area, canopy cover, and stand age measured at 250-

meter resolution. We used a standard projection (Albers Equal Area, GRS80 ellipsiod). 

We resampled all rasters using bilinear interpolation and matches them to the grid for 

forest type. We then cropped the rasters to the extent of the Utah national forest 

boundaries.  
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Table 2.2 Variables used to create a habitat suitability model for goshawk nesting sites in 

Utah national forests based on literature review and analytical hierarchy process (AHP). 

Description and range of each variable was determined through literature review. Source 

and resolution refer to the raw vector and raster files downloaded to create the habitat 

suitability model (HSM).  

Variable Description  Range Source Resolution 

Basal Area 

 

 

Total average basal area 

per ha 

 

20 - 52 m2/ha 

 
 

USDA 

 

 

250 m 

 

 
Canopy 

Cover 

Percent canopy cover 

 

 

45 - 88% 

 

 

USDA 

 

 

250 m 

 

 
Forest Type 

 

 

Dominant tree species 

 

 

Conifers, 

aspen, mixed 

USDA 

 

 

30 m 

 

 
Canopy 

Base 

Height 

Average height of 

lowest live branches 

 

 

10 - 20 m 

 

 

 

Landfire 

 

 

 

30 m 

 

 

 
Stand Age 

 

 

Average age of 

 stand in years 

77 - 227 yrs 

 

 

USGS 

 

 

250 m 

 

 
Elevation In meters from DEM 

 

1800 – 3000 m 

 

SRTM 

 

30 m 

 
Slope 

 

 

Derived from DEM  

as percent slope 

 

5 - 42% 

 

 

Derived 

from DEM 

30 m 

 

 
Aspect  

 

 

 

Derived from DEM  

as northness  

and eastness 

 

Values for N- 

and NE-facing 

slopes 

Derived 

from DEM 

 

 

30 m 
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Habitat Suitability Model 

After preparing the data files for modeling, we created Boolean raster files for 

each variable where cells falling in the established minima and maxima thresholds were 

coded as “1” and cells with values outside those thresholds were coded as “0”. Any cells 

with NA values were assumed to be in non-forested habitat and were automatically 

assigned a “0” value. We then multiplied each Boolean layer by the corresponding 

eigenvector scores calculated in the AHP process and added all weighted variable layers 

together to generate prediction raster files for each forest. We then calculated Jenks 

natural breaks (Jenks 1967) for all national forests within Utah based on the prediction 

raster files with AHP weights, setting four total breaks to categorize habitat into low 

suitability, medium suitability, and high suitability. We compared the percentage of 

habitat classifications across each forest. We verified the model with existing nest site 

location data for both Ashley National Forest and Fishlake National Forest.  

 

Forest Vegetation Simulator 

We used the Utah variant (DeRose et al. 2010) Forest Vegetation Simulator (FVS; 

Release date 06/30/2021) to simulate forest growth metrics. FVS predictions are based on 

input data collected from Forest Inventory and Analysis (FIA) plots throughout the state. 

We downloaded FIA vegetation data for the state of Utah from the FIA DataMart website 

(Forest Inventory and Analysis Database, n.d.) in the SQLite Database format and 

imported this data into FVS. For each forest in Utah, we completed two FVS base runs. 

The first base run included all stands for FIA measurement year 2009 to 2019 within each 

forest. We used a reporting interval of 150 years, starting in 2020 and projecting 
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simulated data out to 2170 with a report generated every 10 years. We selected the SVS 

table from the optional outputs, and then downloaded the FVS_Summary2 table once the 

run had completed. For the second base run, we kept the same selected stands and 

included an additional ten years in our time interval, running from 2020 to 2180, to 

account for a lag in reporting for pests and computed variables. We used the Event 

Monitor to add in a component to calculate percent canopy using the “Compute Stand 

Variables with SpMcDBH Fucntion” and set the upper limit for trees to include to 500 

inches diameter at breast height (DBH) to capture all classes of trees in the output. We 

selected the SVS and Fire and Mortality tables from the optional outputs and downloaded 

the FVS_Compute and FVS_PotFire tables once the run had been completed. Stands that 

had a starting stand age of zero were assumed to have no input data and were filtered out 

of the data set. We also filtered down the output to correspond with only the most recent 

FIA sampling protocol. 

To complete the FVS runs for altered climate scenarios, we first compiled a list of 

all Utah FIA forest stands used to generate data in our initial base runs. We submitted this 

list to the FVS help desk to obtain FVS-climate ready data. To copy the FVS base run 

structure, we used the tools available in FVS to download a compressed file for all the 

saved base runs, and we copied the structure of the base runs over to a new project for 

projecting forest characteristics under different relative concentration pathways (RCPs) to 

simulate forest succession under climate change. We used the Climate-FVS Extension 

(Crookston et al. 2010) to choose a climate scenario for each set of runs, and we 

completed three sets of FVS-climate runs based on ensembles for RCP45, RCP60, and 

RCP85. At the end of each set of climate runs, we downloaded the FVS_Summary2, 
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FVS_Compute, and FVS_PotFire tables, and extracted values for basal area, stand age, 

canopy base height, forest type, and percent canopy cover. 

 

Forecasted Habitat Suitability Model 

For both the base FVS and climate FVS runs, we selected data from the year 2150 

and created dataframes that included FVS values for percent canopy cover, basal area per 

acre, stand age, and forest type (Table 2.3). For each stand with FIA data, we attached 

each stand-level projection to the corresponding FIA location. To convert point-level 

projections to projected covariate rasters, we fit variograms to the data with the gstat 

package (Pebesma 2004, Gräler et al. 2016) and then used kriging over a grid fit to the 

extent of Utah national forests to spatially interpolate values for continuous variables 

across the space. For forest type (categorical variable), we created a matrix of proximity 

polygons to interpolate forest type based on nearest neighbor values. We used the same 

minima and maxima thresholds to create Boolean raster layers for each variable and then 

multiplied each layer by the corresponding eigenvector scores. We then used the same 

Jenks natural breaks calculated for the original HSM in order to calculate each projected 

climate model in order to facilitate comparison across each model. We compared the 

percentage of habitat classifications between forests and succession scenarios and 

quantified the area of high suitability habitat that is preserved in each succession 

scenario. 
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RESULTS 

 

Analytical Hierarchy Process 

Based on the equally weighted responses from eight field experts, our combined 

AHP matrix rated canopy cover as the most important variable for goshawk nesting 

habitat with a 25.5% raw weight. Aspect was the second highest contributor (13.5%) and 

elevation, slope, forest type, and basal area were all weighted around 11%. Stand age 

(8.3%) and canopy base height (7.7%) had the lowest raw weights. There was a 46.1% 

consensus rating among respondents.  

From individual responses, we identified four response matrices with a 

consistency ratio higher than the 10% acceptable threshold that we transformed through 

the Harker Method (Harker 1987). Final calculated weights for each variable retained the 

original order of importance from the raw value calculations (Table 2.3).  
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Table 2.3 Final variable weights for selected northern goshawk nest site characteristics in 

Utah national forests, USA. Variable weights were determined using the dominant 

eigenvector method from analytical hierarchy process surveys. Variables are listed in 

descending order of importance based on dominant eigenvector score.  

Variable  Weight 

Canopy Cover 0.1588 

Aspect  0.1187 

Slope 0.0973 

Elevation 0.0950 

Basal Area 0.0728 

Forest Type 0.0706 

Stand Age 0.0607 

Canopy Base Height 0.0526 

 

Habitat Suitability Model 

For all national forests within the state of Utah, the majority of forested habitat 

was classified as low suitability for goshawk nesting and only 22% of the total forest 

habitat was classified as highly suitable for goshawk nesting (Fig 2.2). Forests farther 

north in the state had the highest percentage of high suitability nesting habitat. The Jenks 

natural breaks optimization placed our bin values at 0, 0.217, 0.347, and 0.717. All values 

within the 0 to 0.217 range were interpreted as “low suitability”, values within the 0.217 

to 0.347 range were interpreted as “medium suitability”, and values within the 0.347 to 

0.717 range were interpreted as “high suitability” for goshawk nesting.  
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Our HSM performed better for national forests in the northern part of the state, 

with 77% of confirmed nest sites for Ashley National Forest falling in high suitability 

areas. Out of 302 total nests, 232 were in high suitability areas, 54 in medium suitability, 

and 16 in low suitability. For Fishlake National Forest, a forest in the southern part of 

Utah, 55% of confirmed nest sites were in high suitability areas. Out of 194 total nests, 

107 were located within high suitability, 39 in medium suitability, and 54 in low 

suitability.  
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Figure 2.2 Utah national forest habitat suitability model classifications for northern 

goshawk nesting based on analytical hierarchy process-weighted values and Jenks natural 

breaks. The highest proportion of national forest land is represented as low suitability 

habitat for goshawk nesting (44.48%; white), followed by medium suitability (33.81%; 

light green), and high suitability (21.71%; dark green).  
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Forecasted Habitat Suitability Models 

With increasing emissions, represented by higher level RCPs, Utah national 

forests are projected to have a greater degree of habitat homogenization. The amount of 

high suitability nesting habitat available to goshawks decreases with increasing emissions 

for most forests, though there is a slight increase in high suitability nesting habitat for the 

isolated eastern portion of Manti – La Sal National Forest under RCP60 (Fig 2.3). Across 

the base simulation and all RCPs, there are areas of preserved high suitability habitat that 

could serve as refugia, but for most forests, these areas are restricted patches that 

decrease in size with increasing emissions. The largest area of preserved high suitability 

nesting habitat is in the Uinta-Wasatch-Cache and Ashley National Forests. This area 

represents the only preserved high suitability habitat that maintains connectivity across 

the forested area.  
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Figure 2.3 Habitat suitability models for northern goshawk nesting habitat in Utah 

national forests under Forest Vegetation Simulator (FVS) succession simulations 

predicted to the year 2150. Simulations represented are (top left) the base run with no 

altered climate, (top right) succession under ensemble climate scenario representative 

concentration pathway (RCP) 45, (bottom left) succession under ensemble climate 

scenario RCP 60, and (bottom right) succession under ensemble climate scenario RCP 

85. For all FVS simulations, we excluded simulated management activity. The 

whitespace depicted in the top left figure reflects a lack of data for proper interpolation. 
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DISCUSSION 

The analytical hierarchy process-based habitat suitability model that we built in 

this study provides proof of concept for a habitat suitability model that is easy to 

implement, especially with limited financial and personnel resources. Additionally, this 

model integrated easily with the predictive simulations from the Forest Vegetation 

Simulator for different climate scenarios. By analyzing the full set of simulations, we can 

identify areas of high habitat quality that are preserved in all potential climate change 

scenarios. We were also able to demonstrate that Utah national forests are likely to 

undergo increasing homogenization, depending on the rate and severity of climate 

change. The homogenization of forests and other habitat can lead to the rapid loss of 

species biodiversity (Clavel et al. 2011, Nordberg and Schwarzkopf 2019). The areas 

identified as retaining high suitability are extremely important for focused management 

and conservation to ensure patches of suitable habitat for goshawk nesting in the Utah 

national forests of the future.  

Fine-scale models of climate impact on wildlife distributions and vegetative 

communities are likely to be the most useful for informing adaptive management 

planning at the level of individual national forests (Carroll 2005, Mawdsley et al. 2009, 

Littell et al. 2012). The analytical hierarchy process model was easy to adapt for Utah 

national forests at multiple scales as it did not require intensive monitoring data for model 

building at either the local or state level.  Additionally, while we did not include 

modeling of management activities in our Forest Vegetation Simulator runs, it is possible 

to consider different arrangements of management activities to predict their effect on 

habitat in a similar manner. Since managing in the face of uncertainty requires flexible 
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input with the capacity to adapt (Millar et al. 2007), it is likely that analytical hierarchy 

process models may be a useful tool for addressing variability in future climate and 

habitat conditions (Hobbs et al. 2006). Analytical hierarchy process-based habitat 

suitability models can be built for any species or community for which exists a good 

understanding of the most significant environmental conditions driving distributions of 

those species or communities (Imam and Tesfamichael 2013). Because lack of funding 

often presents a challenge to integrating and implementing climate change into 

management plans, the success of our analytical hierarchy process-based habitat 

suitability models suggests that effective models may be built without necessitating 

collecting new data sets (Littell et al. 2012, Imam and Tesfamichael 2013). Furthermore, 

national forests have a wealth of data related to species monitoring programs, and the 

analytical hierarchy process-based habitat suitability model provides a way to use this 

valuable data to continue informing management decisions and practices. Considering 

that species monitoring often focuses on sensitive or at-risk species (Noss 1999), this is a 

valuable opportunity to use existing data  

One of the most promising areas of this approach was the ease with which the 

analytical hierarchy process-based habitat suitability model was incorporated with Forest 

Vegetation Simulator to identify areas of potential refugia for goshawk nesting habitat 

under all potential climate scenarios. In the past, refugia have facilitated the persistence 

of diverse species under changing climates (Taberlet and Cheddadi 2002, Tzedakis et al. 

2002, Hampe and Petit 2005, Keppel et al. 2012), however, refugia can often be difficult 

to identify without complex data and analysis processes (Keppel et al. 2012). This 

approach relied on inferring areas of refugia based on mapping the areas of preserved 
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habitat suitability in all climate scenarios, an approach that necessitates minimal time and 

effort. Because climate change mitigation is unlikely at this point, management and 

policy has shifted its focus to minimizing the impacts of climate change and preserving 

biodiversity (Keppel et al. 2012). Maintaining refugia where climate change impacts are 

predicted to be less severe provides a flexible means to focus efforts on small areas that 

may have a large impact (Allan et al. 2005, Julius and West 2008). Because these areas 

are already identified as important for goshawk nesting in present conditions, additional 

conservation efforts focused on the refugia identified in this study are likely to represent 

an opportunity to adapt the goals and efforts of current monitoring programs for the 

species in Utah national forests into a flexible plan. Efforts to minimize additional 

stressors in these areas may help to give goshawks and other species the maximum 

flexibility to evolve and adapt to climate change over time (Lovejoy 2005, Robinson et 

al. 2005, Mitchell et al. 2007, Julius and West 2008).  

In addition to providing an important nesting refugia for northern goshawks, some 

of the most critical habitat identified in this study is likely to also benefit other species. 

Northern goshawks are a top-tier predator in forested systems, and thus may indicate 

some degree of forest health and ecosystem stability. Forests that can continue to support 

goshawk populations in the face of climate change are likely to support other important 

forest species as well (Beier and Drennan 1997, Squires and Kennedy 2006). The 

majority of habitat designated as an important refugia for goshawk nesting also fell 

within areas of Uinta-Wasatch-Cache and Ashley National Forests, representing sections 

of the Uinta Mountains. This area has been identified as an important habitat component 

of the regional corridor connecting the Greater Yellowstone Ecosystem and Northern 
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Rockies to the Uinta Mountains and Southern Rockies (Noss et al. 2001, USDA 2003) 

and has been the focus of conservation efforts for other sensitive species. The Uinta 

Mountains of northern Utah have been identified as a core area for Canada lynx (Lynx 

canadensis) (Bates and Jones 2007) and the rivers and watersheds in this area provide 

important habitat for native fish species like the Colorado River cutthroat trout 

(Oncorhynchus clarkii pleuriticus) (Kershner et al. 1997) and Bonneville cutthroat trout 

(Oncorhynchus clarki utah) (Hilderbrand and Kershner 2000, Budy et al. 2007). 

Additionally, bighorn sheep (Ovis canadensis) and Rocky Mountain elk (Cervus 

canadensis nelsoni) as well as many other mammal and bird species rely on these 

watersheds (Carter et al. 2020), thus our designation of this area as important habitat for 

goshawks only furthers the assertion that management policy should consider a more 

rigorous protection of this area to benefit multiple species.  

While this modeling approach shows considerable promise both for goshawks and 

other species with a rich monitoring background, there are some important considerations 

moving forward. Our conceptual models include many sources of error, both from input 

data and analysis methods that have not yet been evaluated. Additionally, prior studies 

have suggested the tendency for estimates from the Forest Vegetation Simulator to lack 

precision and accuracy (Canavan and Ramm 2000, Smith-Mateja and Ramm 2002, 

Tinkham et al. 2021), and, since our forecasted maps include point-level data interpolated 

to a landscape scale, it is likely that our maps suggest an over-simplification of future 

forest structure with the tendency to overestimate homogenization . While the broad 

context of our results is still important, we suggest that our results should not be used 

deterministically for setting management boundaries. 
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Our simulation models did not include any forest management activities. While 

this provides a good baseline for identifying important refugia, it is unrealistic to consider 

forest change without also considering the role of management activities (Spittlehouse 

and Stewart 2003, Julius and West 2008, Mawdsley et al. 2009). The Forest Vegetation 

Simulator has many capabilities for simulating traditional management practices such as 

harvesting, thinning, and prescribed burning (Crookston and Dixon 2005). To create a 

more integrated model, it would be beneficial to consider a variety of management 

actions and how they may impact the distribution of nesting habitat over time. The Forest 

Vegetation Simulator also has extensions for considering the effects of insect pest 

outbreaks (Crookston and Dixon 2005) and wildfire (Beukema et al. 2000, Reinhardt and 

Crookston 2003). The complex interactions between climate change, fire, and pests are 

likely to contribute to rapid ecosystem transitions (Grimm et al. 2013), so it is important 

to consider these risk factors as a critical component of adaptive management, especially 

for spatially limited refugia. Finally, we also recommend a closer examination of the 

effect of forest habitat homogenization on forest resilience and integrity in the Uinta 

Mountains. Forest Vegetation Simulator modeled variables suggested decreases in the 

species richness and forest structure composition with increasing emissions. Forest 

homogenization can weaken the relationship between species distribution and 

environmental gradients (Vellend et al. 2007), so it is possible that the relationships 

between habitat and nest site distribution may not hold through climate change, an 

important consideration that we were not able to address with this approach.  
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CHAPTER III 

 

 

WHITE-HEADED WOODPECKER (Dryobates albolarvatus) HABITAT SELECTION 

IN THE CONTEXT OF PONDEROSA PINE FOREST RESTORATION 

 

INTRODUCTION  

Prior to European settlement, the dry conifer forests of the Inland Northwest were 

comprised of fire-tolerant trees such as ponderosa pine (Pinus ponderosa) and low, 

patchy cover of associated fire-tolerant shrubs. These historic forests were characterized 

by mixed-severity fire regimes that created patches of high-severity fire interspersed 

within the mosaic of low- to moderate-severity fire patches, creating forests referred to as 

complex early seral forests (Schoennagel et al. 2004, Saab et al. 2005, Dellasala and 

Hanson 2015). Complex early seral forests exhibited low tree densities, simple forest 

structure, and minimal, sparsely distributed ground fuels (Harrod et al. 1999, Everett et 

al. 2000, Hessburg et al. 2005, 2007, Kozma and Kroll 2012, Latif et al. 2016), however 

they were comparable to old-growth forests in biodiversity, supporting a wide array of 

species whose evolutionary histories were often intimately entwined with these biological 

disturbances (Fontaine et al. 2009, Fontaine and Kennedy 2012). The introduction of 

anthropogenic fire suppression, historical timber harvest, and heavy livestock grazing has 

dramatically altered natural forest disturbance regimes (Hessburg et al. 1999, Everett et 

al. 2000, Wright and Agee 2004), leading to a drastic change in forest composition and 

structure (Harrod et al. 1999, Hessburg et al. 1999). Northwestern dry conifer forests 

today are characterized by higher stem densities, smaller and younger trees, and a greater 

abundance of shade tolerant species in the understory such as Douglas fir (Pseudotsuga 
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menziesii) and grand fir (Abies grandis) (Agee 1996, Hessburg and Agee 2003, Keeling 

et al. 2006). Additionally, these forests lack the complex heterogeneity created by mixed-

severity fire (Wightman et al. 2010, Latif et al. 2016). These changes in structure and 

composition have increased forest vulnerability to catastrophic wildfires, representing a 

serious ecological, environmental, and socioeconomic threat (Wu and Kim 2013).  

In order to reduce the risk of catastrophic wildfire and reestablish a full suite of 

ecological functions to western forests, an emphasis has been placed on landscape-scale 

management projects that aim to restore forest health and beneficial disturbance, reduce 

fuel loads, improve wildlife habitat, promote biodiversity of flora and fauna, and create 

sustainable industries  (Gundale et al. 2005, Saab et al. 2019). Treatments to achieve 

these goals typically include a combination of thinning and prescribed burning treatments 

intended to increase landscape heterogeneity (Swanson et al. 1994, Landres et al. 1999, 

Agee 2003, Hessburg et al. 2005, Hood et al. 2016). Previous efforts have been 

associated with changes in soil properties (Gundale et al. 2005), reduced tree density and 

canopy fuel load (Roccaforte et al. 2010), increased stand resistance to bark beetle 

outbreaks (Hood et al. 2016), and positive impacts on habitat for birds and other wildlife 

(Kotliar et al. 2002, Gaines et al. 2007, Kalies et al. 2010, Bagne and Purcell 2011, 

Fontaine and Kennedy 2012, Latif et al. 2020b, 2021). While these results suggest 

promising support for continued implementation of these treatments as a management 

tool, assessing the impact of these management efforts on wildlife communities and 

individual species remains a key challenge. 

One of the goals of dry conifer forest management is improvement of wildlife 

habitat. Understanding the ways in which thinning and burning treatments affect wildlife 
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is a critical element of understanding the full efficacy and effectiveness of this type of 

management (Germaine and Germaine 2002, Saab et al. 2019). For ponderosa pine 

forests in the interior northwest, one of the main focal species for assessing forest 

treatments is the white-headed woodpecker (Dryobates albolarvatus) (Hessburg et al. 

2005, Gaines et al. 2007, 2010, Mellen-McLean et al. 2013, Saab et al. 2019). White-

headed woodpeckers are regionally endemic to the dry conifer forests of inland North 

America (Garrett et al. 1996, Latif et al. 2015). Coevolution with these ecosystems has 

created a close association with heterogenous forests that are a mosaic of open- and 

closed-canopy with mature, large trees (Garrett et al. 1996, Wightman et al. 2010, 

Hollenbeck et al. 2011, Latif et al. 2015, 2020a). Additionally, white-headed 

woodpeckers rely, at least in part, on the seeds of large-coned pine, such as ponderosa 

pine and sugar pine, for a portion of their diet (Ligon 1973, Raphael and White 1984). 

Their limited distribution makes white-headed woodpeckers particularly vulnerable to 

environmental change, with reported broadscale habitat declines for the species (Wisdom 

et al. 2000, Saab et al. 2019).  As a result, white-headed woodpeckers have been 

designated as a species at risk both locally and regionally (Garrett et al. 1996, Rich et al. 

2004). In addition, white-headed woodpeckers are primary cavity nesters and thus are 

important ecosystem engineers as they create nesting and roosting locations for other 

species (Jones et al. 1994) and may have the ability to strongly influence forest species 

assemblages (Daily et al. 1993, Drever and Martin 2010, Kozma and Kroll 2012, Linden 

and Roloff 2015). 

While white-headed woodpeckers have been the focus of extensively evaluated 

habitat distribution in the context of ponderosa pine forest restoration, most studies have 
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focused on nest site selection and occupancy (Kozma 2009, Wightman et al. 2010, 

Hollenbeck et al. 2011, Kozma and Kroll 2012, Latif et al. 2015, 2020a, Linden and 

Roloff 2015). Information gained from these studies have helped to shape management 

recommendations for the species, encouraging the retention of large snags for nesting and 

foraging (Russell et al. 2007, Saab et al. 2007, 2009) and the creation of more open 

stands with a mosaic of open- and closed-canopy (Wightman et al. 2010, Hollenbeck et 

al. 2011, Kozma and Kroll 2012, Latif et al. 2015). While this has had a positive impact 

on white-headed woodpecker management with evidence suggesting the species is 

positively responding to treated stands (Kotliar et al. 2002, Gaines et al. 2007), there has 

been minimal effort to explore white-headed woodpecker habitat selection and space use 

independent of nesting. The advent of very high frequency (VHF) radiotelemetry 

technology small enough to be fitted to white-headed woodpeckers provides a unique 

opportunity to further examine the response of this species to forest treatments and can 

better inform management decisions aimed at species conservation (Guisan et al. 2013). 

To date, there have only been a few studies incorporating radiotelemetry technology with 

white-headed woodpeckers, and the focus of these studies has been to characterize 

foraging behavior (Lorenz et al. 2016, Kehoe 2017) or habitat selection in the context of 

a home range (Lorenz et al. 2015, Kehoe 2017). Consideration of habitat selection and 

space use in a broader sense may help to further describe the relationship between forest 

treatments and white-headed woodpecker habitat needs.  

In order to characterize white-headed woodpecker space use in the context of 

ponderosa pine forest restoration, we designed a study to explore white-headed 

woodpecker space use in response to ponderosa pine restoration treatments over a period 
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from 2014 to 2019. Our main objective was to characterize habitat selection for all 

woodpeckers in our study across the study area. Selection at this scale is described as 

second order selection or selection of home ranges within a larger species range (Johnson 

1980). While not all of the woodpeckers in our study could be described as maintaining a 

home range within the post-fledging season, we still have used second order selection as 

a means of characterizing the spatial extent of movement for birds in relation to the 

broader available habitat.  We were interested in whether woodpeckers demonstrated a 

preference or avoidance for harvesting and prescribed burning treatments classified either 

by treatment type or by the time elapsed since treatment. We also included habitat 

variables identified as important characteristics of nest-site selection from other studies to 

determine if space use choices were related to or independent of these variables.  

 

STUDY AREA 

Our study area included the Council (44°44’N, 116°26’W) and New Meadows 

(44°58’N, 116°17’W) districts of the Payette National Forest (Fig 3.1). The Payette 

National Forest is located in west-central Idaho, near the Idaho-Oregon border. The forest 

complex comprises 2.3 million acres (9300 km2) of federally managed land that ranges in 

elevation from 1100 to 2400 meters. The Payette contains a diverse mix of habitats 

including patches of dry desert grassland, dense forest, and grass and shrub communities. 

The majority of the forest at lower and mid-elevations (1000 – 2000 m) is dominated by 

ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii), with grand 

fir (Abies grandis) and western larch (Larix occidentalis) codominant at mid-elevations 

(1400 – 2000 m) and lodgepole pine (Pinus contorta), Engelmann spruce (Picea 
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engelmannii), and subalpine fir (Abies lasiocarpa) found at higher elevations (2000 – 

2500 m).  

 

(a)   (b)      

Figure 3.1 Location of the Payette National Forest in western Idaho, USA (a) and the 

White-headed Woodpecker locations recorded in the Weiser-Little Salmon Headwaters 

Collaborative Forest Landscape Restoration Program area with very high frequency 

(VHF) telemetry in the post-fledging seasons from 2014 to 2019 (b). 

 

METHODS 

 

Bird Location Data 

Between the years 2014 to 2019, 27 birds (F=12; M=15) were captured by USFS 

Rocky Mountain Research Station field crews. After active nests were identified through 

systematic search and broadcast surveys (Dudley and Saab 2003, Mellen-McLean et al. 

2013), adult birds were trapped at nest sites during the early nestling period. A pole-

mounted hoop net was placed over the cavity entrance after adult birds entered to feed 

nestlings, and the adult bird was captured upon exiting the cavity (Dudley and Saab 

2007). Only one adult was selected from each nesting pair, and different individuals were 
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selected between years to avoid pseudoreplication. To represent different treatment 

conditions, 15 birds were captured from nests in treated areas and 12 birds were captured 

from nests in non-treated areas. Selected birds were fitted with a 1.3g transmitter 

(Advanced Telemetry Systems, model A1065), according to the specifications outlined in 

Saab et al. (2013, 2014). Transmitters were approximately 2% of the average mass of the 

birds in the study and were attached to the dorsal side of the two central rectrices using 

cyanoacrylate glue and braided fishing line (Saab et al. 2013, 2014, Kehoe 2017). Birds 

were also fitted with a unique combination of colored leg bands and U.S. Fish and 

Wildlife Service aluminum leg bands to facilitate identification. All captures were 

approved under Montana State University Institutional Care and Use Committee Protocol 

number 2014-46, state of Idaho permit (# 950228), and USGS federal bird banding 

permit (# 22607).  

Radio-tagged birds were tracked in the post-fledging period (approximately July 

to September) two to three times per week. A standardized tracking protocol with a 

randomly selected order was used to distribute sampling across individuals and 

spatiotemporal stratum. Birds were tracked both visually and with Telonics receivers 

(Model TR-4K, 164-166 MHz) and H-antennas (164-166 MHz). Birds were located at 

least once per scheduled tracking day, and additional locations were obtained where time 

permitted. Successive locations were recorded at least 20 minutes apart to control for 

spatial autocorrelation (Seaman et al. 1999). The majority of locations represented birds 

engaged in foraging activity on a variety of substrates (Kehoe 2017).  
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Habitat Variables  

Habitat predictor variables were chosen based on previous nest-site selection and 

occupancy models (Wightman et al. 2010, Hollenbeck et al. 2011, Latif et al. 2015, 

2020a, Linden and Roloff 2015). All geospatial layers were obtained at a 30-meter 

resolution. We included elevation from a digital elevation model (DEM; part of the 

USGS 3D Elevation Program (3DEP)), slope, aspect (LANDFIRE 2008), and canopy 

cover (MRLC 2011, 2016) as continuous variables. We converted aspect to a categorical 

variable with the following designations: north (0° – 45°), northeast (45° – 90°), east (90° 

– 135°), southeast (135° – 180°), south (180° – 225°), southwest (225° – 270°), and west 

(270° – 360°). We also obtained a forest type layer categorized by dominant tree species 

(Ruefenacht 2008). For quantifying Weiser – Little Salmon Headwaters Collaborative 

Forest Landscape Restoration Program (CFLRP) treatment activities, we obtained 

management activity polygons from the Payette National Forest and cross-referenced 

these polygons with management codes from the Forest Service Activity Tracking 

System (FACTS) database to filter activities that were part of the Weiser – Little Salmon 

Headwaters CFLRP. Because harvesting of both small and large diameter trees often 

occurred simultaneously, we did not attempt to make distinctions between types of 

harvest and simply classified treatment within a space as no treatment (0), harvest (1), 

burn (2), or coinciding harvest and burn (3). Because there were no significant wildfires 

in our study area during our study period, we did not account for wildfire as a variable. 

All cells classified as “burn” reflect areas that were treated with low-intensity prescribed 

fire and intermittent slash pile burning.  We also used the treatment layer to derive a layer 

for time since harvest and time since burn. Because harvest and burning took place on 
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different temporal scales, we treated these variables as if they were independent, though 

it is important to consider that areas treated as part of the Weiser-Little Salmon 

Headwaters CFLRP were generally first harvested and subsequently burned.  

 

Table 3.1 Candidate variables used for development of resource selection models for 

white-headed woodpeckers in the post-fledging season (mid-July to September) from 

2014 to 2019, Payette National Forest, Idaho, USA. 

Variable Name Abbreviation Description 

Elevation Elev Pixel elevation from Digital Elevation Model 

Slope Slp Pixel slope as % rise over run 

Aspect 

 

 

Asp 

 

 

Categorical representation of slope orientation  

(N, NE, E, SE, S, SW, W, NW) 

Canopy Cover CC Percent canopy cover  

Forest Type 

 

FT 

 

Forest classification based on dominant tree 

species 

Treatment Type 

 

 

Trt 

 

 

Pixels for harvest and burn Weiser – Little 

Salmon Headwaters CFLRP treatments 

Time Since 

Harvest 

HTst 

 

 

Categorical representation of the number of years 

since harvest 

Time Since 

Burn 

 

BTst 

 

 

Categorical representation of the number of years  

since burn  
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Resource Selection Function  

All data cleaning and analyses were conducted in R v4.1.2 (R Core Team, 2021). 

We defined available area by calculating a minimum convex polygon (MCP) around the 

locations for each bird. To smooth our boundary for available habitat, we then buffered 

the individual MCPs by the longest recorded step length or distance between two 

consecutive points for birds in the study (5,054 m). The buffered MCPs created two core 

areas for all woodpeckers in all years that we defined as available habitat for 2nd order 

habitat selection (Johnson 1980). We sampled background points uniformly across the 

available habitat at six different levels (1000; 5000; 10,000; 50,000; 100,000; 500,000). 

Uniformity in sampling points is recommended as it provides a way to evaluate the 

integral numerically (Warton and Shepherd 2010, Aarts et al. 2012, Benson 2013, 

Fieberg et al. 2021, Street et al. 2021). Additionally, the different number of sampling 

points is recommended to ensure reaching stability in estimated parameters as habitat 

selection functions can be sensitive to both the defined area of availability and the 

number of background points chosen at that scale (Northrup et al. 2013, Gerber and 

Northrup 2020). To reduce issues with collinearity among predictor variables, we 

calculated correlations between all pairwise combinations of covariates. Because no 

correlation coefficients were >0.60, we did not omit any covariates based on this 

assumption (Dormann et al. 2013). We examined the variation in used and background 

points for each continuous variable using density plots and plotted the proportion of used 

and background points for each categorical variable to determine which categories should 

be collapsed into more meaningful categories. Based on density plots, we omitted 

elevation, aspect, and forest type from further analysis. We collapsed ‘Time Since 
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Harvest’ into two levels (0-6 years and 7+ years), and we also collapsed ‘Time Since 

Burn’ into two levels (0-4 years and 5+ years) (Fig 3.2).  

 

 
Figure 3.2 Density plots of proportion of background (available) and used points in each 

habitat condition for white-headed woodpecker telemetry locations in Payette National 

Forest, Idaho, USA. Density plots were used to determine which variables indicated 

selection or avoidance where used points suggested selection or avoidance of a particular 

variable relative to the availability of that variable. 

 

We used resource selection functions (RSF) (Manly et al. 2002) to assess the 

overall habitat preference of all woodpeckers in our study (n = 27) in the post-fledging 
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season (mid-July to September) at the study area level (2nd order RSF; (Johnson 1980)). 

Though our sample size is small, prior research on RSF implementation has suggested 

that the most biologically relevant effects can be estimated with only a few animals 

(Street et al. 2021). RSFs compared values of covariates at the GPS locations for all 

woodpeckers (used points given a value of 1) with values at the uniformly drawn 

background points across our defined available area (available points given a value of 0). 

We weighted the background points by 5000 to facilitate model fit (Fithian and Hastie 

2013).  
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Figure 3.3 Coefficient (β) values for the initial resource selection function model fit with 

different number of background points for white-headed woodpeckers in Payette National 

Forest, Idaho, USA. We have only shown coefficients for variables that were considered 

significant in the model. We reached stabilization in parameter estimates near 100,000 

background points.  

 

We used a generalized linear model (GLM), with a binomial distribution, to 

estimate the RSF parameters (Boyce et al. 2002). To control for the sensitivity of RSFs to 

the number of background points, we fit an initial model including all our selected 

covariates at the six different levels of background points to determine at which number 

of background points the parameter values stabilized (Northrup et al. 2013) and 
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determined 100,000 background points to be sufficient for parameter stability (Fig 3.3). 

We then fit a multivariate fixed-effects model with our selected covariates and conducted 

a backward-stepwise model selection procedure, removing all non-significant variables 

from the multivariate model until the effects of all remaining variables were significant 

(Hosmer and Leshow 2000). We fit our top fixed-effects model as a set of mixed-effects 

models, where individual and year were modeled as random intercepts and random slopes 

were fit for all covariates (Gillies et al. 2006). We used Aikaike’s Information Criterion 

with an adjustment for small sample size (AICc) to rank competing models (Boyce et al. 

2002, Burnham and Anderson 2004). We validated our top model internally with the 

pseudo-r2 calculation function for mixed effects models in the R package MuMin (Bartoń 

2022). We then completed a k-folds cross validation with five folds to determine how 

well the model could predict a subset of test data from each fold.  

 

RESULTS 

 

Bird Location Data 

 Relocations for individual birds ranged from 30 to 121, with a mixture of both 

visual and non-visual relocations for each bird. We used a total of 1505 relocations to 

conduct our RSF analysis, ignoring individual variation. Though this approach can 

weight models more heavily towards individuals with a greater number of observed 

locations, the distribution of relocations from our sampled birds was centered near the 

mean (x̄ = 56) and points were not heavily weighted in one spatial area, so we feel this is 

still a good representation of selection across sampled birds.  

 

 



67 
 

Resource Selection Function  

 White-headed woodpeckers in our study had a moderate selective preference for 

higher slopes and minimal selective preference for higher canopy cover. While there was 

high individual variation in response to treatment and time since treatment, overall, there 

was a selective preference for untreated areas relative to all treatment types and more 

recently harvested or burned areas relative to areas where disturbance had been >7 years 

since harvest or >5 years since burn (Fig 3.4).  
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Figure 3.4 The variation in individual selection coefficients estimated from the top 

resource selection function mixed effects model for male and female white-headed 

woodpeckers in the Payette National Forest, Idaho, USA (top) and the mean coefficient 

values for all woodpeckers with standard error (bottom). White-headed woodpeckers in 

our study generally avoided treated areas in the context of ponderosa pine forest 

restoration, but there was a large amount of individual variation in response to treatment 

types and time since treatment variables.  
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 Our top ranked model included slope, canopy cover, treatment, time since harvest, 

and time since burn with random intercepts for individual and year and random correlated 

coefficients for all covariates (Table 3.2). The majority of variance was explained by 

inclusion of the random effects in the model, with a marginal pseudo-r2 score of 0.11 and 

a conditional pseudo-r2 score of 0.54. Under k-folds cross validation, the mean AUC 

score was 0.902 (+/- 0.005). The greatest amount of variation in selection preference 

were for harvested and burned areas with the least amount of variation in selection 

preference for slope and canopy cover. At the population level, woodpeckers in our study 

had a selection preference for less slope and slightly higher canopy cover. They showed a 

population-level selection preference for untreated areas over all types of treatment, but 

also showed a positive selection preference for recently treated areas (<7 years since 

harvest and <5 years since burn) (Table 3.3).  
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Table 3.2 The top four models for 2nd order resource selection by white-headed 

woodpeckers in the Payette National Forest, Idaho, USA from 2014-2019. 

Model  

Log-

likelihood AICc ∆AICc Wi 

Slp + CC + Trt + HTst + BTst + 

(1|year) +  

-18360.65 

 

 

36811.3 

 

 

0 

 

 

0.671 

 

 
(1 + Slp + CC + Trt + HTst + BTst | id) 

 

   

  
   

Slp + CC + Trt + HTst + BTst +  -18362.36 36812.8 1.43 0.329 

(1 + Slp + CC + Trt + HTst + BTst | id) 

 

   

  
   

Slp + CC + Trt + HTst + BTst +  -18363.53 36887.2 75.86 0 

(1 + Slp + CC + Trt + HTst + BTst | 

year/id) 

 

   

  
   

Slp + CC + Trt + HTst + BTst -19465.44 38946.9 2135.55 0 

The log-likelihood, AICc value, difference in AICc between the model and the top model 

(∆AICc), and model weights (wi) are shown. Abbreviations are as follows: slope (SLP), 

canopy cover (CC), treatment type (Trt), time since harvest (HTst), time since burn 

(BTst), bird individual identification (id).  
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Table 3.3 Estimated model coefficients from fixed-effects in the top model for white-

headed woodpecker second-order resource selection function model, Payette National 

Forest, Idaho, USA from 2014-2019. 

Coefficient β SE P 

Intercept -6.81 1.36 0.00 

Slope -0.57 0.13 0.00 

Canopy Cover 0.02 0.01 0.00 

Harvest* -2.16 1.29 0.09 

Burn* -2.19 1.17 0.06 

Harvest + Burn -3.54 1.21 0.00 

7+ years since 

harvest -3.01 1.20 0.01 

5+ years since burn -2.11 0.71 0.00 

* No significant effect in the model 

 

DISCUSSION 

White-headed woodpeckers in the Payette National Forest displayed a great deal 

of variation in habitat selection preference in the post-fledging timeframe. Variation in 

selection preference is especially pronounced in the response to treatment types. While 

the grouped habitat selection preference was for untreated areas over any type of 

treatment, individual preferences suggested a range of selection and avoidance with 

several birds having a positive selection preference for harvested or burned areas. All 

woodpeckers in our study did avoid areas that had recently overlapping harvest and burn 

treatments, however, most of the woodpeckers in our study did demonstrate a selection 



72 
 

preference for recently harvested or recently burned areas, suggesting that recent 

treatments have benefits for the species in the post-fledging timeframe. 

The woodpeckers in our study were primarily engaged in foraging activities when 

locations were recorded. The habitat selection preference for recently harvested or burned 

areas suggests that there may have been more foraging opportunities for woodpeckers in 

these areas. This observation is consistent with previous research that has suggests 

thinning and burning treatments lead to increased snag decay and insect activity 

immediately following a treatment (Chambers and Mast 2005, Covert-Bratland et al. 

2007, Kalies et al. 2010).  Kalies et al. (2010) described a similar positive response 

among woodpeckers to thinning and burning treatments in Southwestern forests. White-

headed woodpeckers rely partially on invertebrates including ant (Hymenoptera), beetles 

(Coleoptera), and scale insects (Homoptera) (Raphael and White 1984, Garrett et al. 

1996). Attraction and infestation of different bark beetle and wood borer species to fire-

injured ponderosa pine has been well-documented (Peterson and Ryan 1986, Kelsey and 

Joseph 2003, Fettig et al. 2008, Costello et al. 2011, Davis et al. 2012, Powell et al. 2012, 

Negrón et al. 2016). Prescribed burning typically leads to variable mortality and fire 

injury within a stand (Negrón et al. 2016) thus promotes insect infestations, leading to 

potentially greater foraging opportunities for white-headed woodpeckers and other 

insectivores in recently burned stands (Farris et al. 2002, Shea et al. 2002, Farris and 

Zack 2005).  

Some of the variation in habitat selection preference that we observed may have 

been related to timing and differences in weather patterns between years. While white-

headed woodpeckers do rely on invertebrates for a large portion of their diet, they also 
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forage on pine seeds and sap (Ligon 1973, Garrett et al. 1996). As temperatures cool, 

insect activity and development decreases (Bale et al. 2002, Jaworski and Hilszczański 

2013), leaving fewer invertebrate food resources available to woodpeckers and other 

insectivores (Elchuk and Wiebe 2003, Gaylord et al. 2008, Kozma 2009). Cooler 

temperatures and less insect activity may cause white-headed woodpeckers to shift to 

pine crops for a more reliable source of food later in the year, a pattern that has been 

observed in both in Idaho and Washington (Ligon 1973, Raphael and White 1984, Lorenz 

et al. 2016).  If cone crops were a primary food source during the post-fledging period in 

our study area, then this may explain why woodpeckers in our study showed a habitat 

selection preference for untreated areas overall during this timeframe. It is important to 

note, however, that thinning and burning treatments will improve sources of cone crop 

for white-headed woodpeckers in the longer term (Tepley et al. 2020). Avoidance of 

treated areas is likely highly temporally variable. Additional studies considering space 

use during the excavating and breeding seasons may help elucidate patterns of foraging 

substrate shifts to better explain the temporal trends of foraging behavior and how these 

relate to habitat selection preferences throughout the year. Inclusion of additional 

predictor variables such as those derived through Tasseled Cap Transformations may also 

help to explain the variability in space use as it relates to foraging behavior and insect 

availability (Sharma 2000, Baig et al. 2014).  

The results of our study further emphasize the importance of habitat heterogeneity 

for white-headed woodpeckers. Though our results suggested avoidance of harvested and 

treated areas in the post-fledging period, previous studies have demonstrated the 

importance of these areas for nesting and occupancy (Russell et al. 2007, Saab et al. 
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2007, 2009, Wightman et al. 2010, Kozma and Kroll 2012, Latif et al. 2020a). White-

headed woodpeckers are weak primary excavators, and they rely on snags with moderate 

to advanced decay states to successfully excavate nesting cavities (Raphael and White 

1984, Milne and Hejl 1989, Garrett et al. 1996, Buchanan et al. 2003, Kozma 2009). 

Increasing snag density and decreasing live tree density has been tied to improving 

habitat for white-headed woodpeckers (Wightman et al. 2010, Hollenbeck et al. 2011, 

Kozma 2011), and our findings suggest some positive association with treatment and 

time since treatments, though variable among birds. The avoidance of treated areas 

relative to untreated areas suggests that white-headed woodpeckers rely on undisturbed 

forest patches to some degree, but positive selection for recently treated areas also 

emphasizes the dichotomy of selection preference for diverse habitat types.  

Our findings support continued management activities that promote heterogenous 

forest landscapes, similar to the mosaics of open- and closed-canopy forests common 

under historical mixed-severity fire regimes (Hessburg et al. 2005).  Varied space use 

between the nesting and post-fledging period for white-headed woodpeckers suggest that 

CFLRP treatments may provide important diversity in forest structural characteristics for 

a variety of ecological needs for this species. Further analysis of variation in space use 

may include functional response models to further elucidate which habitat variables are 

driving variation in selection preferences during the post-fledging period (Mysterud and 

Ims 1998, Bjørneraas et al. 2012, Street et al. 2016). 
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CHAPTER IV 

 

 

ANNUAL SPACE USE BY NORTHERN GOSHAWKS (Accipiter gentilis) IN 

NORTHEASTERN NEVADA: A CASE STUDY USING BEHAVIORALLY 

SEGMENTED INTEGRATED STEP SELECTION ANALYSIS 

 

INTRODUCTION  

Habitat loss and fragmentation are wildly regarded as the leading causes of 

biodiversity loss worldwide (Vitousek et al. 1997, Pereira et al. 2010, Rands et al. 2010, 

Newbold et al. 2015). While there is ongoing debate over the extent to which habitat loss 

and fragmentation are intertwined and the scale at which these forces may impact species 

richness (Fahrig 2003, 2013, Prugh et al. 2008, Thornton et al. 2011, Hanski 2015, 

Fletcher et al. 2018), anthropogenic disturbances have been identified as the main drivers 

altering the extent and spatial patterns of habitats (Barnosky et al. 2011, Halstead et al. 

2019). Habitat loss and fragmentation have been linked to negative impacts such as loss 

of genetic diversity, decreased population growth rate, abundance, and distribution, 

alterations to species interactions, reduced breeding, dispersal and foraging success, and 

reduced number of large-bodied specialist species (as reviewed in Fahrig 2003). In order 

to mitigate the impacts of habitat loss and fragmentation and conserve biodiversity, it is 

important to identify species that are the most vulnerable to these habitat loss (With and 

King 1999, Fahrig 2001, 2003) and to focus conservation efforts on understanding the 

amount of habitat required for conservation of species of concern as well as preservation 

and restoration of important areas for these species (Fahrig 2003). Critical habitat is vital 
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for long-term population viability as it supports a variety of demographic, environmental, 

and genetic traits unique to each species (Lande 1988, 1993, Hanski 2011). 

Much of our understanding of the ecological consequences of landscape change 

has come from research focusing on avian communities, especially forest-dwelling 

species (Donovan et al. 1995, Hawrot and Niemi 1996, Major et al. 2001, Watson et al. 

2004, Herse et al. 2018). Bird groups are diverse and found in nearly every habitat on the 

globe, however they tend to have specialized habitat requirements related to different 

aspects of their life history. They are generally easy to detect and monitor, typically 

positioned at higher trophic levels, and their population trends tend to mirror those of 

species from other groups. Some of the most useful indicators of environmental changes 

are raptors which generally display trackable sensitivities to anthropogenic and 

environmental disturbances (Bildstein 2001, Hoffman and Smith 2003). One species of 

interest for management and forest health monitoring in is the Northern Goshawk 

(hereafter ‘goshawk’) (Martin et al. 1998, Hoffman and Smith 2003). While goshawks 

inhabit a wide variety of habitats across their range, they tend to nest within a subset of 

forest structural characteristics (Bosakowski 1999), including older-growth areas with at 

least partially closed canopy and open understory (Reynolds 1983, Hall 1984, Squires 

and Ruggiero 1996, Bosakowski 1999). This association with a narrow set of habitat 

characteristics has led to the belief that goshawks may be particularly vulnerable to 

habitat loss and fragmentation, especially when exacerbated by risk factors such as 

wildfire, climate change, and invertebrate infestation (Graham 1999, Squires and 

Kennedy 2006).  
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The majority of prior research on goshawk habitat and ecology has been 

conducted in areas with contiguous, dense coniferous forests (Reynolds 1992, Penteriani 

2002, McGrath et al. 2003, Andersen et al. 2005, Byholm et al. 2020). The assertion that 

goshawks may be particularly vulnerable to habitat loss and fragmentation in these 

systems is consistent with research involving other avian forest species where 

reproductive success was positively correlated with percentage of forest cover, 

percentage of forest interior, and average patch size (Donovan et al. 1995, Robinson et al. 

1995). While species like the goshawk that are adapted to contiguous habitat may be 

particularly vulnerable to landscape change, evidence also suggests that the spatial 

configuration of habitat may be important for species occurrence, abundance, and 

richness beyond the effects of habitat amount (Andrén and Andren 1994, Haddad et al. 

2015, Hanski 2015, Pfeifer et al. 2017, Halstead et al. 2019).  

One way to further the understanding of how goshawks may be impacted by 

habitat loss and fragmentation is to consider how they interact with habitat that is 

different from previously studied contiguous forest habitat. Goshawks in the interior 

Great Basin offer the opportunity to study the species occurring in a naturally fragmented 

habitat (Hasselblad 2004, Fairhurst and Bechard 2005, Bechard et al. 2006, Miller et al. 

2013, Jeffress 2020). They are primarily restricted to nesting in late-succession aspen or 

conifer stands, often isolated in perennial drainages. These naturally fragmented patches 

are surrounded by large expanses of sagebrush steppe and sagebrush shrubland 

communities (Hasselblad 2004, Miller et al. 2013, Jeffress 2020), areas often thought to 

be low-quality for goshawks, especially during the breeding season. As forests 

throughout the west face increasing threats of habitat loss and fragmentation (Heilman et 
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al. 2002), understanding how goshawks interact with habitat within the interior Great 

Basin may provide insight into the adaptability of the species.  

In addition to understanding the unique dynamics of goshawk interactions with 

naturally fragmented habitat, it is also important to gain a better understanding of 

goshawk movement and space use. The movement ecology of goshawks, especially in 

wintering or non-breeding months, is poorly understood, in part due to a lack of robust 

data (Drennan and Beier 2003, Sonsthagen et al. 2006, Squires and Kennedy 2006). 

Additionally, understandings of space use and resource selection have relied heavily on 

classifying home ranges for goshawks, regardless of whether the pattern of locations 

suggested such behavior (Sonsthagen et al. 2006, Moser and Garton 2019, Blakey et al. 

2020) or considering only resident bird behavior in wintering months (Drennan and Beier 

2003). Studies of space use have also been frequently situated around nest sites 

(Greenwald et al. 2005, Carroll et al. 2006). This can be problematic for considering the 

full suite of movement ecology for the species, especially in months where they are not 

centrally tied to a nest location. When movement strategies and behavior were explored 

for goshawks, the definitions were often based on a simple arbitrary distance threshold 

instead of analyzing point patterns (Stephens 2001, Sonsthagen et al. 2006), and timing of 

behavioral state switching (i.e. breeding to non-breeding) was often assumed based on 

date cutoffs from the literature instead of considering the unique behavioral patterns of 

birds in the area (Underwood et al. 2006). space use of goshawks without the assumption 

of bounding them to either a nesting territory or a home range, allowing for a less biased 

approach to considerations of space use and resource selection. High-resolution tracking 

data allows us to consider goshawk movement and interaction with habitat across an 



94 
 

annual scale, allowing us to better explain the associations with habitat variables in this 

unique ecosystem.  

The objectives of our descriptive study of goshawks in northeastern Nevada were 

to characterize movement behavior and timing of state switching (i.e., breeding behavior 

to non-breeding behavior) to inform a step selection analysis for birds in a naturally 

fragmented landscape throughout the year. We hypothesized that goshawks in the interior 

Great Basin would display similar selection preferences for higher elevations, higher 

canopy cover, moderate slopes, and north to northwest aspects located in forested patches 

during the breeding season, similar to the findings for goshawks breeding in contiguous 

forest (Hayward and Escano 1989, Squires and Ruggiero 1996, Daw and DeStefano 

2001, Reich et al. 2004). Because water may be a limiting resource in the interior Great 

Basin, we also included distance to the nearest water source in our analysis and 

hypothesized that goshawks would have a positive selection preference for shorter 

distances to water during the nesting season. While there have been few previous studies 

for goshawks in winter months in North America (Titus et al. 1995, Pendleton et al. 1998, 

Stephens 2001, Drennan and Beier 2003), we hypothesized that, during the non-breeding 

season, goshawks in our study would select for lower elevations, lower slope, less canopy 

cover, south to southwest-facing aspects with less selection preference for forested areas 

over non-forested, consistent with results of wintering goshawks in other studies 

(Stephens 2001, Drennan and Beier 2003). We also hypothesized that distance to water 

would be less important in the winter months than in summer months in our study area as 

temperatures are cooler and snow is readily available.  
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STUDY AREA 

Our study area included initial capture locations for goshawks at monitored nest 

sites in the Pinon Range, Pequop Mountains and East Humboldt Range (sub-range of the 

Pequops), Jarbridge Mountains and Bruneau Range (sub-range of the Jarbridges), Bull 

Run Mountains, and Independence Mountains, all located in Elko County, Nevada and 

considered part of the Great Basin Region. Land management of these ranges is divided 

between the Nevada Department of Wildlife, Bureau of Land Management, and U.S. 

National Forest, and the ranges can be considered isolated island ranges with little to no 

connectivity to neighboring mountain ranges. The Great Basin region is characterized by 

a continental climate with cold winters and warm, often dry summers. Additionally, these 

areas are classified by their aridity, frequent summer droughts, and low annual 

precipitation (Comstock and Ehleringer 1992).  

Elevation in our study area ranges from 1700 to 3000 meters. Vegetation is 

comprised mostly of open sagebrush steppe and sagebrush shrubland habitat (Artemisia 

sp.) with highly fragmented and isolated stands of mixed conifer (Pinus albicaulis and 

Pinus flexilis) at >2500 meters and aspen (Populus tremuloides) found in lower-elevation 

perennial drainages (Bechard et al. 2006; Jeffress 2020). Other dominant species in these 

areas include grasses (Poa sp., Elymus sp., and Festuca sp.), rabbitbrushes (Ericameria 

nauseosus, Chrysothamnus viscidiflorus), bitterbrush (Purshia tridentata), and 

horsebrush (Tetradymia canescens). Some goshawk nesting stands also occur in pinyon-

juniper woodlands dominated by species such as single-leaf pinyon (Pinus monophylla), 

Utah juniper (Juniperus osteosperma), and Rocky Mountain juniper (Juniperus 

scopulorum). Plant communities, especially aspen stands, are particularly sensitive to 
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invasive cheatgrass (Bromus tectorum). Land use and management in these mountain 

ranges includes activities such as mining and exploration, cattle ranching, pinyon-juniper 

removal treatments, and outdoor recreation (hunting, camping, off-road vehicle use, etc.). 

Additional movements of goshawks in our study covered areas from southern Idaho to 

southern Nevada, which area still part of the larger Great Basin ecosystem but may 

represent slightly different vegetation community composition and dominant species. 

 

Figure 4.1 Northern goshawk initial trapping area, located in the interior Great Basin, 

northeastern Nevada, USA (a). Approximated locations of trapping sites are displayed as 

stars, though annual goshawk movements between the years 2017-2021 covered the state 

of Nevada (b).  
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METHODS  

 

 

Telemetry Data Collection  

The Nevada Department of Wildlife (NDOW) purchased three 22g Solar 

Argos/GPS PTT satellite backpack transmitters from Microwave Telemetry, Inc. and four 

20g Solar Argos/GPS PTT satellite backpack transmitters (Rainier-S20) from Wildlife 

Computers. All transmitters were pre-programmed to collect data including position, 

battery voltage, altitude, course heading, speed, and air temperature on two unique duty 

cycles, chosen to reflect approximate seasons for breeding and non-breeding. For the 

Microwave Telemetry, Inc. units, the first duty cycle collected data at midnight and 

hourly from 0700 – 1900 PST from April 1 to August 31(breeding and post-fledging 

stages). The second duty cycle collected data at midnight, 0800, 1000 – 1200, 1400, and 

1600 (non-breeding season). For Wildlife Computers units, the first duty cycle collected 

data at midnight and hourly from 0700 – 1900 PST from March 2 to October 31 

(breeding and post-fledging stages), and the second duty cycle collected data at midnight, 

0800, 1000 – 1200, 1400, and 1600 from November 1 to March 1 (non-breeding season). 

Less frequent collection of data during the non-breeding season was selected to account 

for reduced winter daylight hours that can lead to battery drain on solar-powered units 

(Jeffress 2020).  

Adult goshawks were targeted for trapping near active nest site when nestlings 

were aged at least 14 days. NDOW used a dho gaza net with a mounted robotic Great 

Horned Owl (Bubo virginianus) and owl callback playing as a lure (Bloom et al. 1992). 

Once captured, morphometric measurements including weight, wing, leg, and tail 

measurements were taken, and each bird was marked with a unique U.S. Geological 
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Survey aluminum leg band. Transmitters were fitted as a backpack unit with a Teflon 

ribbon harness (Humphrey and Avery 2014), and then the birds were released and 

observed for a short time to be sure that the transmitter was not impacting flight abilities. 

All trapping, sampling, and banding was conducted under Federal Bird Banding Permit 

24006.  

Data from all active satellite telemetry units was downloaded and reviewed 

weekly. Location data from the Microwave Telemetry units was downloaded from the 

Argos CLS America website and processed using the Microwave Telemetry, Inc. GPS 

parsing software available from the company website. Location data from the Wildlife 

Computers units was downloaded in .csv format from the Wildlife Computers Data 

Portal. To account for stress related to capture that may have impacted movements, we 

omitted location data from the first 24 hours. We also omitted the last day of recorded 

location data to account for any changes in behavior that may have occurred leading up to 

the death of the bird. We removed records that did not include GPS coordinates and 

duplicated records. We used X-Y plots of locations to determine if there were any 

obvious outlier locations for each bird, and these were also omitted from data analysis. 

All our data analysis was run in R version 4.1.2 (R Core Team 2021). 

 

Net Squared Displacement Movement Models 

We used the movement models described in Bunnefeld et al. (2011) to 

characterize movement strategies and timing of state switching for each bird. Bunnefeld 

et al. (2011) describes movement strategies for migration, dispersal, mixed migration, 

resident, and nomad. These movement models explain movement strategies as a function 

of net squared displacement (NSD). NSD represents the squared distance between the 
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current location in an individual’s track and the initial location recorded for that 

individual. Distances are squared to omit directional information, creating unbiased 

measurements of displacement from the origin of the GPS track. While NSD models have 

not been thoroughly evaluated at temporal and spatial scales less than a year, we still fit 

these models to our goshawk data to determine if NSD could be used to help elucidate 

movement strategy and state switching in our data (Bunnefeld et al. 2011, Papworth et al. 

2012).  

To compress our data, we used the adehabitatLT package (Calenge 2006). to 

resample locations to one daily record. We then used the migrateR package (Spitz 2019) 

to fit movement models to all goshawks. In order to achieve model convergence, we 

adjusted the initial values of starting paraments for delta and rho successively. migrateR 

also uses AIC adjusted with Arnold’s Rule (Arnold 2010) to rank models. We evaluated 

the best fit models to characterize the movement strategies of each goshawk and 

examined plots of the fitted data to determine time periods when state switching was 

likely to have occurred. We appended the location data with either state 1, corresponding 

to lower-value, clustered NSD (breeding season), or state 2, corresponding to higher-

value, less clustered NSD (non-breeding season). 

 

Habitat Covariates  

Habitat predictor variables were chosen based on previous nest site selection, 

space use, and wintering space use studies (Squires and Ruggiero 1996, Stephens 2001, 

Drennan and Beier 2003, Hasselblad 2004, Sonsthagen et al. 2006, Miller et al. 2013, 

Moser and Garton 2019). Because water may be a limiting resource in the interior Great 

Basin, especially during the months from June to September (Comstock and Ehleringer 
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1992) when goshawks are our area are typically nesting and fledging, we decided to also 

include distance to water as a habitat variable. Though water is not always cited as a 

significant variable for nest site selection, nest areas often include close proximity to 

streams (Hall 1984, Kennedy 1988, Reynolds 1992, Graham et al. 1997). suggesting that 

a water source may be an important feature, especially in the interior Great Basin and 

other areas where precipitation is limited. All geospatial layers were obtained at a 30-m 

resolution. We included elevation from a digital elevation model (DEM), slope, aspect 

(LANDFIRE 2008), and canopy cover (MRLC 2016) as continuous variables. We 

included the national land cover layer (MRLC 2019), which we reclassified into four 

categories: water, forest, shrub and grassland, and other. Finally, we obtained coordinates 

for known springs from the Springs Stewardship Institute of the Museum of Northern 

Arizona (Ledbetter et al. 2014) and the U.S. Geological Survey nation hydrography 

dataset for Nevada (U.S. Geological Survey 2022).  
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Table 4.1 Candidate variables used for development of individual state 1 and state 2 step 

selection models for northern goshawks satellite transmitter tagged in northeastern 

Nevada, USA between the years 2017 - 2021.  

Variable Abbreviation Source Description 

Elevation Elev Landfire Pixel elevation from Digital Elevation 

Model 

Slope Slp Landfire Pixel slope as % rise over run 

Aspect 

 

Asp 

 

Landfire Categorical representation of slope 

orientation  

(N, NE, E, SE, S, SW, W, NW) 

Canopy Cover CC MRLC Percent canopy cover 

Land Cover Land MRLC National land cover class categories 

Distance to 

Water 

Water SSI Distance to nearest water source (m) 

MRLC = Multi-Resolution Land Characteristics Consortium 

SSI = Spring Stewardship Institute of the Museum of Northern Arizona 

 

 

State-based Integrated Step Selection Analysis  

We used the amt package in R (Signer et al. 2019) to prepare our data. For each 

bird, we resampled GPS locations to a common interval of one hour with a tolerance of 

+/- 15 minutes. Resampling creates burst identifications to control for gaps in the data. 

For each observed step, we calculated 20 random steps, randomly sampled from the 

empirical distributions of the step lengths and turn angles (Fortin et al. 2005, Duchesne et 

al. 2010, Thurfjell et al. 2014, Avgar et al. 2016). We then extracted covariate values at 

the end of each step. To determine distance to water, we determine the distance in meters 

to the nearest spring and to the nearest water features in the USGS hydrography layer. 
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We then took the minimum of these two values. We omitted any steps where there were 

NA values for any covariates. 

We examined collinearity among predictor variables by calculating correlations 

between all pairwise combinations. Because no correlation coefficients were >0.60, we 

did not omit any covariates based on this assumption (Dormann et al. 2013). We 

examined the variation between used and random steps for each variable, and, based on 

proportion plots, we collapsed the categories for land cover into only two factor levels: 

forest and non-forest. We also centered and scaled all continuous variables.  

We split our data into state 1 and state 2 specific data for each bird (Thurfjell et al. 

2014) to account for movement and selection differences between breeding and non-

breeding. We fit an integrated step selection model, a variation of the Cox Proportional 

Hazard test, to each individual bird and for each behavioral state. In order to facilitate 

comparison across individuals, we fit only a full model with all predictor variables. We 

also included movement parameters (log of step length and cosine of turn angle) in our 

model in order to account for the interacting influences of habitat selection and 

movement (Rhodes et al. 2005, Avgar et al. 2013, 2015, 2016). Inclusion of movement 

parameters in the model results in less biased estimates of habitat selection (Forester et al. 

2009) by creating a mechanistic movement model (Potts et al. 2014, Avgar et al. 2016). 

After fitting the models, we updated the distributions for step length and turn angles for 

all models. We extracted estimated coefficient values and standard errors for each bird 

and state. We only considered coefficients that were significant in individual models for 

comparison across individuals. This method yields similar coefficient estimates to a 

mixed effects model but is less computationally intensive and a statistically simpler 
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approach (Fieberg 2018). We felt this was a good approach for data analysis in our study, 

especially since we are only able to draw inference for eight birds in state 1 (breeding) 

and seven birds in state 2 (non-breeding).  

 

RESULTS 

 

Net Squared Displacement Models 

Of the eight goshawks monitored, only four were monitored through at least one 

year. The lack of a full year of movement data in four birds led to poor NSD model fit 

and required adjusting starting parameters to achieve full model convergence for three of 

the four birds. For one bird (Jarbridge), full model convergence was not achieved, and 

only four out of the five NSD models were fit to the data (excluding the ‘mixed migrant’ 

model) (Table 4.2). Of the four goshawks with at least one year of data (n = 4), 75% were 

classified as ‘mixed migrants’ and one goshawk (Bruneau) was classified as a ‘resident.’ 

Of the four goshawks with less than one year of movement data, two were classified as 

‘migrant,’ one was classified as ‘disperser,’ and one was classified as a ‘mixed migrant’ 

(Table 4.2). The classifications of ‘migrant’ and ‘disperser’ could be due to the lack of 

data to represent a full annual cycle for these birds in which return to a common starting 

range was not recorded. Based on NSD plots, seven of the eight birds were classified as 

having at least one period in state 1 (breeding) and one period in state 2 (non-breeding) 

(Fig 4.2). The Bull Run-4 bird could only be classified into the state 1 behavioral pattern 

as this bird was only monitored for a total of 46 days.  
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Table 4.2 Net squared displacement behavioral pattern classifications of goshawks tagged 

in northern Nevada, USA between the years 2017-2021. 

Bird 

Identification 

Behavioral 

Classification 

Locations 

(n) 

Duration of Monitoring 

(days) 

East Humboldt mixed migrant 4218 514 

Pinon* migrant 1080 99 

Jarbridge disperser 812 142 

Bruneau resident 4839 444 

Pequop* mixed migrant 2716 223 

Bull Run-4 migrant 1119 46 

Bull Run-3 mixed migrant 2431 480 

Independence mixed migrant 740 108 

* Poor model fit to data, likely due to <1 year of monitoring observations; models fit with 

adjusted starting parameters 

** Mixed migrant model not supported by data  
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Figure 4.2 Plots of net squared displacement (NSD) over time for northern goshawks 

fitted with satellite telemetry devices in northeastern Nevada, USA. Red lines indicate the 

timing of behavioral state switching from breeding to non-breeding. Birds that were 

tracked for a short time-period and had poor NSD movement model fit are indicated by 

an asterisk next to the number of tracking days. The y-axis is not intended to be 

interpreted as it is an index value, but the point pattern suggests the behavioral state.  
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State-based Integrated Step Selection Analysis  

Goshawks in our study showed a stronger selection preference for selected 

environmental variables in the breeding season than in the non-breeding season. In the 

breeding season, goshawks had selection preferences for lower slopes, higher canopy 

cover, and forested habitat (Fig 4.3). Some birds had a selection preference for aspects 

corresponding to north- or north-east facing slopes. Though distance to water was not 

significant for most birds, two birds (Bruneau and Pequop) had very slight selection 

preferences for less distance to water, and one bird (Bull Run-3) had a very slight 

selection preference for more distance to water (Fig 4.4). 

In the non-breeding season, the only variable that was important for all birds was 

canopy cover, with all birds selecting for similar amounts of canopy comparative to 

breeding season (Fig 4.3). Elevation, slope, aspect, and forest were not significant in most 

individual models, though for birds that did have a selection preference for these 

variables, they favored lower elevations, lower slopes, and similar north- to northeast- 

aspects as compared to the breeding season. Two birds (Pinon and Jarbridge) did have a 

slight selection preference for areas that were farther from water (Fig 4.4).  
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Figure 4.3 Comparison of mean β coefficient values for environmental variables in state 1 

(breeding) and state 2 (non-breeding) for northern goshawks fitted with satellite telemetry 

in our descriptive study, tracked in northeastern Nevada, USA. Coefficient values for 

variables that were not significant in individual models were not considered in calculating 

mean values. Mean values were not calculated for variables that were significant for at 

least four birds in each behavioral state.  
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Figure 4.4 Comparison of β coefficients and standard errors for environmental variables 

in state 1 (breeding) and state 2 (non-breeding) for all combined northern goshawks, 

tracked in northeastern Nevada, USA. Coefficient values for variables that were not 

significant in the individual models for at least half of the birds are not reported.  

 

DISCUSSION 

Our study suggests that goshawks in the naturally fragmented habitat of the 

interior Great Basin select for habitat variables that have been identified in other studies 

such as lower slopes, higher canopy cover, and forested habitat (as reviewed by 
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Penteriani 2002), however, the individual variation and lack of strong patterns across all 

birds suggests that goshawks in this naturally fragmented area may have different 

adaptive strategies for coping with fragmentation. Most birds in our study were classified 

as mixed migrants, but the Bruneau bird was classified as a year-round resident. This 

pattern is consistent with previous studies of the species, both in North America and 

Europe (Squires and Ruggiero 1996, Stephens 2001, Underwood et al. 2006). Differences 

in timing of movement and behavioral state switching also suggest behavioral plasticity 

in relation to movement strategies. Additionally, step selection patterns suggested that 

birds in our study are less selective for particular habitat variables in the wintering or 

non-breeding months, suggesting that goshawks in the interior Great Basin are able to 

utilize a variety of different habitat types when not directly tied to a nest location.   

The similar finding between our study and studies of goshawks in areas with more 

contiguous forest suggest that goshawks do have selection preferences that hold even in a 

naturally fragmented habitat. In breeding seasons, goshawks in our study had a group 

selection preference for lower slopes, higher canopy cover, and forested habitat, and 

these variables have been identified as important variables for goshawk nest site selection 

in contiguous ponderosa pine- and lodgepole pine-dominated forests (as reviewed in 

Penteriani 2002). Though we did not explicitly consider nest site selection in this study, 

we suggest that our findings support these variables as potentially more impactful for 

nesting goshawks across their range relative to other variables such as elevation, aspect, 

and distance to water. The lack of significant findings for response to these variables in 

our study is consistent with the assertion that goshawks are a forest generalist capable of 

exploiting diverse habitat types (Reynolds 1992, 2004). In addition, goshawks in our 
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study showed consistent selection for higher canopy cover in the non-breeding months, 

consistent with studies of goshawks in other areas (Underwood et al. 2006). In winter 

months, goshawks in our study were able to use a wide variety of habitat and cover types 

and had no selection preference for forest, also consistent with previous studies (Kenward 

and Widén 1989, Hargis 1994, Underwood et al. 2006). Higher canopy cover across 

habitat and vegetative type has been associated with increased prey abundance and is 

important for providing protective cover and food sources for small mammals commonly 

taken as prey by goshawks (Chapman and Flux 1990, Underwood et al. 2006). Though 

we were unable to test this directly in our study, selection preference for higher canopy 

cover throughout the annual cycle in our area is likely closely related to the ability to 

forage successfully (Underwood et al. 2006).  

Previous studies have suggested that movement in raptors is largely driven by 

prey availability and/or interaction with conspecifics (Newton 1986, Underwood et al. 

2006). Additionally, Squires and Ruggiero (1995) suggest that local weather patterns may 

drive goshawk migration and movement. Consideration of these factors is an important 

next step in further analysis of goshawk movement in the interior Great Basin. Though 

weather was not cited as an important factor affecting the timing of migration for 

goshawks in Utah (Underwood et al. 2006), weather patterns have been closely linked to 

variation in reproduction in the interior Great Basin (Bangerter et al. 2021), and weather 

and climate effects have been linked to changes in avian migratory phenology for other 

species (as reviewed in Gordo 2007). Additionally, consideration of wintering space use 

between successive seasons may be an important factor. Goshawks in Alaska 

demonstrated wintering site fidelity (McGowan 1975), and wintering space use has been 
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linked to fidelity to the location that a goshawk or other raptor survived its first winter 

(Harmata and Stahlecker 1993, Tornberg and Colpaert 2001, Underwood et al. 2006). 

Additional years of space use data are critical for elucidating these patterns.  

Our findings suggest that goshawks in naturally fragmented habitats display a 

wide range of behavioral plasticity when interacting with their environment across the 

annual cycle, and this may suggest that goshawks throughout their range can adapt to a 

variety of disturbances if management considers certain key factors such as canopy cover 

and prey abundance. Goshawks in contiguous forest habitat evolved in close association 

with natural fire regimes that would have created an interspersion of vegetative structural 

stages, often not represented in forest landscapes today (Graham et al. 1997). The 

interaction of goshawks and habitat in the interior Great Basin with a lack of strong 

selection preference suggests that spatial configuration of habitat patches may be more 

important that maintaining undisturbed contiguous forest, consistent with the findings 

that the spatial configuration of habitat may be important for species occurrence, 

abundance, and richness beyond the effects of habitat amount (Andrén and Andren 1994, 

Haddad et al. 2015, Hanski 2015, Pfeifer et al. 2017, Halstead et al. 2019). Moving 

forward, continued studies of goshawks, especially in fragmented landscapes, may help 

inform the degree of disturbance and particular spatial configuration of landscape 

heterogeneity that may be critical for goshawks throughout their range (Reynolds 1992, 

Graham et al. 1997, Underwood et al. 2006). 
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                                                       CHAPTER V 

 

 

CONCLUSIONS 

 

Species distribution models (SDM) created for focal species at different spatial 

and temporal extents provide important insight into effective conservation and 

management planning, especially in the context of landscape-level changes (Porfirio et al. 

2014). The proceeding chapters explored the relationships between different scales of 

species distribution models for northern goshawks and white-headed woodpeckers in the 

context of different management-specific questions. In chapter two, I addressed the use of 

previously collected monitoring data for nesting goshawks in Utah national forests. We 

were able to create a nest site habitat model for forests in Utah that was easy to 

implement and integrated well with the predictive capabilities of the Forest Vegetation 

Simulator to examine the potential impacts of climate change on goshawk nesting habitat 

in Utah forests as well as identifying potential nesting habitat refugia for the species. This 

represents one of the first attempts to use spatially explicit data and nest site SDMs to 

attempt to identify areas of conservation interest for goshawks. In chapter two, I used 

resource selection analysis to characterize white-headed woodpecker space use in relation 

to ponderosa pine forest restoration efforts that included harvest and prescribed burns. I 

demonstrated that white-headed woodpeckers show a variety of selection preference for 

treated and untreated sites as well as sites with varying time since treatment, suggesting 

that white-headed woodpeckers are not negatively impacted by efforts to restore a diverse 

mosaic of habitat heterogeneity. In chapter four, I used finer-scale step selection analysis 

to examine the space use of goshawks in the interior Great Basin of Nevada, both in 
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breeding and non-breeding season. To my knowledge, this is the first attempt to segment 

goshawk GPS tracking data with a modelled behavioral state in order to examine space 

use and habitat selection across an annual cycle. Additionally, we were able to 

demonstrate that goshawk space use in a naturally fragmented habitat is highly variable, 

suggesting that goshawks have a high degree of behavioral and adaptive plasticity, 

potentially suggesting that the species may be more adaptable to disturbance in 

contiguous forest habitat than previously believed by some.  

 

MANGEMENT IMPLICATIONS 

The overall goal of this dissertation was to consider the use of SDMs at different 

scales and extents as an effective management tool. Chapter two provided important 

insight into how forests in Utah may change under different climate scenarios. Across all 

climate scenarios (and without the consideration of management activities), there was an 

important area in the Uinta-Wasatch-Cache and Ashley National Forests that was 

preserved as high-suitability nesting habitat. Planning and managing for the anticipated 

effects of climate change in public lands is an important step towards creating flexible 

and effective adaptive management (Jantarasami et al. 2010, Littell et al. 2012, Hagerman 

and Pelai 2018), however, lack of financial resources and personnel can be a huge barrier 

to effective integration of climate change mitigation plans and strategies (Littell et al. 

2012). Identification of refugia, where climate impacts are expected to be less severe, 

help to alleviate these difficulties by providing a minimum area of focus for conservation 

efforts (Julius and West 2008). If wildlife managers in Utah National Forests can focus 

on preservation of goshawk nesting within these refugia or at least reduce pressures from 

sources other than climate (i.e. timber harvest, grazing, and other habitat alteration), this 
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may provide enough protected high-quality nesting habitat to facilitate maximum 

flexibility for goshawks and associated wildlife to adapt and evolve responses to climate 

change (Lovejoy 2005, Robinson et al. 2005, Mitchell et al. 2007, Julius and West 2008). 

The second major management implications came from chapters three and four. 

For both white-headed woodpeckers in Payette National Forest and goshawks in the 

interior Great Basin, Nevada, there was not a strong selection preference for particular 

habitat characteristics, and there was variation in individual responses to treatment and 

seasonality. While it is important to consider other factors that may drive variation for 

these two species, it is also worth noting that both white-headed woodpeckers and 

goshawks have evolved in systems with natural disturbance, and variation in behavioral 

response may simply be a sign of plasticity and ability to adapt. For both species, our 

results suggest that they thrive in diverse habitats containing a mosaic of vegetation types 

and structural classes, a finding consistent with prior research (Reynolds 1992, Garrett et 

al. 1996, Graham et al. 1997, Wightman et al. 2010, Hollenbeck et al. 2011, Latif et al. 

2015, 2020). This finding suggests that continued management to increase forest 

heterogeneity is likely to be beneficial for both species.   
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APPENDIX 

 

CHAPTER II SUPPORTING MATERIALS  

 

 

A1. Current habitat suitability model for northern goshawks nesting in Ashley National 

Forest, Utah, USA. The forest is in the northeastern corner of the state (a) and the 

majority of high suitability habitat is distributed in the north and north-central sections of 

the forest (b).  
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A2. Current habitat suitability model for northern goshawks nesting in the Uinta – 

Wasatch – Cache National Forest, Utah, USA. The forest is in the north-central area of 

the state (a) and high suitability habitat is distributed throughout the forest (b). 
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A3. Current habitat suitability model for northern goshawks nesting in the Manti – La Sal 

National Forest, Utah, USA. The forest is split into two major sections. The original 

boundary of the Manti National Forest is in the central area of the state, and the original 

boundary of the La Sal National Forest is in the southeastern area of the state (a). The 

majority of high suitability habitat is located in the western section of the Manti area (b). 
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A4. Current habitat suitability model for northern goshawks nesting in the Fishlake 

National Forest, Utah, USA. The forest is in the south-central area of the state (a) and 

high suitability habitat is distributed throughout the forest (b). 

 

 



135 
 

 

A5. Current habitat suitability model for northern goshawks nesting in the Dixie National 

Forest, Utah, USA. The forest is in the southwest area of the state (a) and high suitability 

habitat is distributed throughout the forest (b). 
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