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ABSTRACT

PROGRAMMING PROCESS, PATTERNS AND BEHAVIORS: INSIGHTS FROM
KEYSTROKE ANALYSIS OF CS1 STUDENTS

by

Raj Shrestha, Master of Science

Utah State University, 2022

Major Professor: John Edwards, Ph.D.
Department: Computer Science

CS1 courses are the introductory programming courses for many programmers. For
this reason, it is necessary for students to understand the concepts well. It is also crucial
for the instructors to address misconceptions of students and help them by understanding
their thought process. If we are able to identify struggling students early in the course,
then effective interventions can be taken by the instructors. Keystroke data collected from
students has become popular in computing education research. This type of data is quan-
titative, often of high temporal resolution, and it can be collected non-intrusively while the
student is in a natural setting working on their assignments. This research use Keystroke
data from CS1 students, analyzes them to predict struggling students, understand student
behaviors and thought processes on how they are formulating their solutions. Instructors
have very little insight into how students actually work on their programming assignments,
as code submissions are typically a summative assessment. Through interactive visualiza-
tion tools, statistical data-analysis and unsupervised learning we find evidence of keystroke
data being able to identify struggling students, understand student’s thought process and

behavior and detect plagiarism.
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The keystroke data is collected from students following university IRB protocol. We
investigate the existence of chronotypes through unsupervised learning that aligns with typ-
ical populations reported in the literature, and our results support correlations of certain
chronotypes to academic achievement. We also investigate pausing behavior of students,
pause-frequency of different lengths, the last action before pausing, and correlations with
exam scores. We find evidence that frequency of pauses of all lengths is negatively corre-
lated with exam score, and that pausing behavior can be an indicative factor of struggling
students. Additionally, we propose an interactive software tool (called Code-Process) with
a novel visualization that includes both static and dynamic views of the student’s pro-
gramming process. It offers instructors a view into how students actually write their code
and can have broad impacts on assessment, intervention, instructional design, and plagia-
rism detection. We also report results of an exploratory think-aloud study in which two

instructors offer thoughts as to the utility and potential of the tool.

(91 pages)



PUBLIC ABSTRACT

PROGRAMMING PROCESS, PATTERNS AND BEHAVIORS: INSIGHTS FROM
KEYSTROKE ANALYSIS OF CS1 STUDENTS
Raj Shrestha

With all the experiences and knowledge, I take programming as granted. But learning
to program is still difficult for a lot of introductory programming students. This is also one of
the major reasons for a high attrition rate in CS1 courses. If instructors were able to identify
struggling students then effective interventions can be taken to help them. This thesis is
a research done on programming process data that can be collected non-intrusively from
CS1 students when they are programming. The data and their findings can be leveraged in
understanding students’ thought process, detecting patterns and identifying behaviors that
could possibly help instructors to identify struggling students, help them and design better

courses.



To all CS1 students
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CHAPTER 1

Introduction

As a graduate student I often take programming for granted. But, every year on
average one third of students fail their introductory programming courses [1,2]. This is
one of the major reasons for the high attrition rate of computer science students from the
major. Effective teaching interventions from instructors can be of great help for students in
understanding the concepts and increasing the pass rates in CS1 classes. However, as many
as one quarter of the students still fail the courses after teaching interventions [3]. One of
the reasons for this is ineffective interventions that are given to all students, whether they
are struggling or not. If we are able to identify struggling students early in the course then
effective interventions can be taken by the instructors on the targeted students.

Computing Education Research (CER) is a field of research that is concerned with
learning and teaching computing. The researchers in this field seek ways to improve and
teach computing effectively. Researchers use different kinds of data and techniques to
learn about students’ thinking process and identifying struggling students. Analysis of
programming process data has become popular in this field in the last decade. Keystroke
data is a type of programming process data that is quantitative, often of high temporal
resolution, and it can be collected non-intrusively while the student is in a natural setting.
This type of data has different granular levels and includes all the activities of students,
such as submission, computation, edit and keystroke events. This data can be also used in
predicting course outcomes [4—6], describing student behaviors [7-9], generalizing findings
between two contexts to ensure that the results are generalizable [10], determine code
authorship [11] and detect plagiarism [12].

This thesis is based on three original peer-reviewed publications reporting a research
done on Keystroke data collected from CS1 students to predict struggling students, under-

stand student behaviors and gain insight into their thought process when they are formu-
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lating their solutions. Code submissions used by instructors to assess students are just a
summative assessment and give no further insights. Keystroke data can be leveraged to
visualize students’ programming process to gain further insights on the students thought
process. Chapter 2 discusses the use of Keystroke data to generate visualizations using a
software tool - CodeProcess Charts and also includes the results obtained from a think-
aloud study from two instructors on the usage and usability of the tool. Instructors find the
visualizations to be useful in understanding their students’ thought process and different
approaches used by them to solve a programming assignment.

Similarly, Chapter 3 gives some insights into pausing behaviors of students when they
are programming. The pausing patterns of students have correlations with academic perfor-
mance of students and the pausing behavior can help identify struggling students. The final
chapter is a research done on Circadian Rhythms of students. It investigates the existence
of chronotypes using unsupervised learning. The chronotypes we find align with those of
typical populations reported in the literature and our results support correlations of certain
chronotypes to academic achievement. We also find that procrastinating students are at
the risk and perform lower compared to other populations. The articles included in this

thesis are outlined below:

e Raj Shrestha, Juho Leinonen, Arto Hellas, Petri Thantola, and John Edwards. Code-
Process Charts: Visualizing the Process of Writing Code. Twenty-Fourth Australasian

Computing Education Conference (ACE). 2022.

e Raj Shrestha, Juho Leinonen, Albina Zavgorodniaia, Arto Hellas, and John Edwards.
Pausing While Programming: Insights From Keystroke Analysis. In ACM Interna-
tional Conference on Software Engineering (ICSE), Software Engineering Education

and Training (SEET) track. 2022.

e Albina Zavgorodniaia, Raj Shrestha, Juho Leinonen, Arto Hellas, and John Edwards.
Morning or Evening? An Examination of Circadian Rhythms of CS1 Students. ACM
International Conference on Software Engineering (ICSE), Joint Track on Software

Engineering Education and Training (JSEET). Madrid, Spain. 2021.



CHAPTER 2

CodeProcess Charts: Visualizing the Process of Writing Code

2.1 Introduction

One primary aim of introductory programming courses is to teach students how to
develop computer programs. However, if a student cannot attend classes, or if the instructor
does not write code in the classes, or if other means to see how programs are constructed
are not offered, students do not have the opportunity to observe the process of writing
code [13]. Similarly, instructors (and automated assessment systems) are often blind to
the students’ process of writing code, as they often use submissions of final code to assess
students’ abilities in writing code [14,15]. The problem is that the final code gives no hint
as to the process that a student took to write it. Two students, one of whom sailed through
development of the code, and another who may have struggled, may submit code that looks
very similar. This is especially true in introductory computer programming courses, where
the programming assignments can be relatively simple.

One research stream with the potential to alleviate this issue is the collection and use
of intermediate snapshot data from students’ computers as they write programs [16], one
example of which is keystroke data [17]. It has been suggested that keystroke-level data
may provide significantly more information on, e.g., what sorts of programs students try out
and what sorts of syntax errors students encounter when compared to submission data or
snapshots taken, e.g., when running or testing the program [18]. Most previous work on such
data has focused on analyzing compilations and predicting course outcomes [4-6,9,19-22],
understanding typing behaviors [11,23-27], studying how novices construct programs [28],
improving programming skill through code playback [29], etc. However, only little emphasis
has been invested into building and using (interactive) visualizations of how students write

programs.
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While prior work on visualizations of code changes has mostly focused on bigger pro-
gramming projects with relatively coarse change granularity [30,31], such work is less com-
mon in studying fine-grained changes, especially within the domain of seeking to understand
how novices write code. Thus, in this study, we use similar ideas to those used in visualizing
large software projects [32]. Moreover, we present an interactive visualization tool called
CodeProcess' that allows the user to peer into how a computer program is developed. While
the tool includes standard playback and file differencing functionality seen in some other
programming process visualization tools (c.f. [33,34]), the primary value of the tool comes
from a static chart that provides a summary of how a file was written at a glance. This
chart is the centerpiece of the interactive visualization and shows the user which parts of
the file were written when, as well as features like re-writing the same code, trouble spots,
pastes, and refactoring. We evaluated CodeProcess using a qualitative, exploratory think-
aloud study with external instructors, where we studied how instructors use the CodeProcess
chart and what sorts of insights they come up with from viewing the visualizations.

This article is organized as follows. We first discuss related work, outlining previously
proposed tools for analyzing the programming process. In Section 2.3, we present the Code-

Process tool. Section 2.4 presents the think-aloud study, and Section 2.5 gives conclusions.

2.2 Related Work

Software visualizations are used in both educational and professional context. Based
on Diehl, visualizations can focus either on the structure, behaviour, or evolution of soft-
ware [35]. In this study we talk about evolution of students’ code. Evolutional visualizations
are used for many purposes, including (professional) project management and understand-
ing developers [31]. As objectives in education and professional software development are
at least partially overlapping, we will provide examples from both.

The basis for visualizating the programming process is the possibility to collect data

from students who are programming, be it programming assignment submissions data or

The CodeProcess code is publicly available at two repositories: github.com/EdwardsLabUSU/
CodeProcess-API is pre-processing Python code and github.com/EdwardsLabUSU/CodeProcess-UI is
JavaScript Ul code.


github.com/EdwardsLabUSU/CodeProcess-API
github.com/EdwardsLabUSU/CodeProcess-API
github.com/EdwardsLabUSU/CodeProcess-UI
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more fine-grained data such as keystroke data [16]. The last decades have witnessed a
noticeable increase in collection and use of snapshot data from introductory programming

classrooms [16, 36-40].

2.2.1 Code and snapshot playback

Programming process visualization and analysis tools at times come with code and
snapshot playback functionality, which allows a view to how the software was developed.
As an example, the Student Coding and Observation Recording Engine (SCORE) [41]
provides a view that shows a diff-style navigation of code changes in a timestamped order
over the files in an edited project. The Programming Process Visualizer (PPV) [33] also
provides a source code view that allows replaying how the code under analysis was written.

While the previous two examples are desktop applications, browser-based analysis tools
also exist. For example, CodeBrowser [34] provides source code snapshot playback and nav-
igation functionality with the possibility of using a dual-view that highlights differences in
each subsequent snapshot. CodeBrowser also provides functionality for tagging the dis-
played data for future analysis, and uses an API for retrieving the visualized data which
in principle allows changing the server from where the shown data is retrieved from. Sim-
ilar recording playback functionality is also provided in CSQuiz [42] which is an online
programming environment that supports recording and replaying programming sessions.

In general, code and snapshot playback tools allow detailed analysis of the recorded
programming processes. For example, Toll [43] observed that only approximately 15% of
novice programmers time is spent writing code, while 40% of the time is spent reading
and navigating code, and, when comparing the behavior of high-performing and poorly
performing students, Heinonen et al. [34] observed that poorly performing students rarely
had a systematic approach to solving the programming problems. Such analyses can be

time-consuming for the researcher, however.

2.2.2 Structure of the code and state space

At a higher abstraction level, visualizations can use Abstract Syntax Trees (ASTs),
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e.g., by highlighting how (nested) AST blocks travel during the evolution of a software [44],
or in general by highlighting how the structure of the code changes over time. As a concrete
example of the latter, Helminen et al. [45] and Piech et al. [46] have both demonstrated how
state transition graphs illustrating the transitions between intermediate stages of solutions
can provide an overview to the different solution strategies in a single programming task.
The examples are in the context of visual block based programming languages where the
the number of different block structures (i.e., states) is quite limited.

In the context of traditional programming languages, Piech et al. [47] have also used
code snapshots at each compile and measured distance between snapshots using three met-
rics: bag of words, API calls, and AST change, though in the end, API calls were heavily
influential and AST changes were only somewhat influential. The end product was an
HMM-derived flow chart of how different groups of students developed their code, which

was then used as an effective predictor of exam score.

2.2.3 Code measures over time

Some of the tools plot various aggregate statistics over time. For example, SCORE [41],
PPV [33], Retina [48], and Clocklt [49] each provide an overview of the programming
process using either aggregate statistics (or pixel-based visualizations discussed in the next
section). These aggregate statistics include, for example, details on the number and type
of compilation errors, the time that the student has spent on the project, the size of the
project over time, and information on testing and running the projects. Some of the tools
such as Retina also provide the possibility for students to gain an insight of the processes
of other students, as well as hints on the errors to look out for and estimates on how long
the project will take to complete. The same approach can be used in a professional context
to foster awareness in software teams [50]. Many of these metrics used in education (e.g.,
code complexity [51]) are adopted from the generic software quality research.

There are tools that also focus specifically on building an overview of a project, as well
as tools that work on already-generated aggregate statistics. For example, SnapViz [52]

takes in tab-delimited data to build visualizations from students’ programming process;
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similarly, ArAl [53] takes in a file that contains the number of source code snapshots for each
student when working on a particular assignment as well as a file with course outcomes,
and then creates a set of aggregate variables from the data that could be of interest to
teachers and researchers. These tools, on the other hand, often have the problem that there
is either no way to move from the aggregate statistics to the source code, or moving from
the aggregate statistics to the source code can be cumbersome.

Plots of aggregate statistics and and other characteristics of a project over time are
often used together with playback or diff view tools. Programming Process Visualizer
(PPV) [33], mentioned earlier, is a good example of that. Interesting changes in time-plots

can be clicked to see the corresponding section in the playback view.

2.2.4 Combining location and time in pixel maps

Plotting code quality measures over time may help in identifying when something
interesting has happened in the code. To this end, C'VSscan [32] visualizations utilize pixel-
map representation where one dimension is time and the other is location in the code: the
horizontal axis is time in terms of commits and the vertical axis is the line number of the
file. Colors of pixels illustrate the age of the last change (at the given time and location), red
indicating that the line was changed at that time point. The approach makes it relatively
easy to identify interesting areas (as horizontal stripes) and the map is also used to navigate
in the linked code view.

As our proposed CodeProcess charts and CVSscan use similar ideas, we here discuss
the differences and motivations behind the differences. CVSscan is designed for the use
of the maintenance community: “the main activities a maintainer performs are related to
context recovery” [32]. Accordingly, C'VSscan processes change at a lower resolution in time
and space than our CodeProcess charts. The time resolution for C'VSscan is every commit
to a CVS code repository, whereas CodeProcess charts compute changes at every keystroke.
Showing changes at each commit is sufficient for the needs of software maintainers, who
are looking for general context of changes in large software projects with many contributors

and commits. Our purpose, however, is to visualize and understand how a single developer
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writes code, for which commit-level resolution is not sufficient. Regarding spatial resolution,
C'VSscan uses each pixel to represent a line, whereas we use pixels in CodeProcess charts to
represent a single character. Again, this relates to the goals of the visualizations: line-level
resolution is sufficient for a software maintainer to intuit the context in which a change is
made, but character-level changes are required to understand a student’s cognitive processes.

The interpretations and linked tools between CVSscan and CodeProcess also differ.
For example, C'VSscan has no playback option, while the playback option that is linked to
the CodeProcess chart is helpful not only in interpreting the chart (Sec. 2.4.5) but also in
interpreting the actions of the student (Sec. 2.4.3). Another motivational difference is why
users would zoom in to a portion of the chart. In the case of CVSscan, the maintainer is
interested in the function of the final code surrounding a change, whereas users of CodePro-
cess charts already understand the function of the final code (they designed the assignment,
after all) — they want to understand why the student made that particular change at that
time. Finally, CodeProcess charts could potentially be used for student feedback, for which

a keystroke-resolution chart and playback are fundamental features.

2.3 CodeProcess Chart and Software

CodeProcess is a software visualization tool that is designed to give the viewer an
immediate assessment of the general characteristics of the process used to develop a piece
of software. It features interactive controls for the user to analyze details of the process. It
is a web application developed using Python, D3 and React JS.

Given keystroke logs, we first preprocess them into a file that indexes the data. Any
keystroke log can be converted to our format provided it has the inserted/deleted code,
information about where in the code the change occured (either a single index into linearized
code or row/column pair), and a timestamp. The indexed data files are loaded in the
browser-based CodeProcess software. The software can be viewed and experimented with
at code-analysis-elabd.web.app. A short demonstration video is available at youtu.be/
ptawbgpiOHI. There are three main windows in the software tool: the CodeProcess chart,

the code playback window, and the final code window. See Figure 2.1.


code-analysis-e1a5d.web.app
youtu.be/ptawbgpi0HI
youtu.be/ptawbgpi0HI
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Fig. 2.1: CodeProcess software. The CodeProcess chart is on the left. The playback window
is on the top right and the final code window is on the bottom right.

2.3.1 CodeProcess chart

The CodeProcess chart is the centerpiece of the software tool. See Figure 2.2. The
CodeProcess chart is a 2D grid with keystroke event indices on the y axis and character
index of the final submission on the x axis. The x axis indexes into a linearization of the
final code. A grid cell at (z,y) is colored in if the character at index x is represented in the
snapshot at keystroke event y. The last row of the chart, after the final keystroke event,
will have every cell filled in because, by definition, it matches the final version of the code.
For example, see the solid green line in Figure 2.3a. This line is at event (i.e. keystroke)
1340 and the part of the text of the snapshot after that event is in the box outlined in
solid green. Following the solid green line are a series of events, or rows in the chart, where
the student types “go to next circle posi”. You can see how the number of characters that
match the final version of the code increase as we go down in the chart. The dashed blue
line is in the middle of the student’s typing. Then, at event 1372, at the tip of the triangle,
the student decided to delete the text and retype it after adding “set and”. Finally, at the
dotted red line the student has completed the correction and the section of code matches

what is in the final version. The triangle feature in the CodeProcess chart is an indication
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Fig. 2.2: Visualization of submissions 4, 5, 8, and 11. All but submission 5 were used in

the pilot study.
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# reset radius to original value
radius /= 4
turtle.penup()

yPos += radius
turtle.goto(xPos,yPos)

# reset radius to original value 1
radius /= 4 1
turtle.penup()

# go to next circle 1
yPos += radius 1

739 ¥ reset radius to ofibihal value
radius /= 4

turtle.penup()

# set and go to next circle position
yPos += radius
.turtle.goto(xPos,yPos)

. 1§ # Format results 1
120 msg = format(str.upper(name), "'s pay information") ""50")|
j 21 msg += "\n" 1

w22 msg tz format(TPay’y 17307 _ Ao oom=m====ai

23 # Format results

24 msg = format(str.upper(name) + "'s pay information", """ + str(totalWidth))
25 msg += "\n"

msg += format("Pay", """ + str(headerWidth))

Snapshots

1,000 1,200 1,400
Selection in Final Code

(b)

Fig. 2.3: a Zoomed in version of submission 5 (Figure 2.2b) at events 1307-1434 and includ-
ing characters 705-770. b Details on submission 4 (Figure 2.2a).
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Selection in Final Code

Fig. 2.4: Zoomed in view of submission 11. See Fig. 2.2d.
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Fig. 2.5: a Example of a student typing in code from another solution. b Example of what
might look like a student typing code from another solution but what, in this case, is a
capable student writing their code linearly.

that the student typed correct code then deleted it.

In Figure 2.3b we see details of submission 4. This student started out by linearly typing
in straightforward variable calculations (solid green box) followed by a series of append
operations to the string variable msg (dashed blue boxes). The student then went back and
modified many of the append statements (dotted red boxes). Submission 5 (Figure 2.2b)
has a similar structure — in that submission, the student wrote a series of statements and
then went back and interspersed comments between them. The chart features evenly spaced
“pillars” which is an indication that students wrote a number of lines of code and then went
back and wrote code between them. In our data this is most often the case when students
either write comments then write code under each comment (thin pillars) or when they
comment the code at the end (thick pillars). It does not occur when the student comments
as they go. Of course, as we saw in submission 4, pillars will appear if students do some
other periodic modification to multiple lines of code.

Figure 2.4 shows a zoomed in version of submission 11. The zoomed out version of
submission 11 (Figure 2.2d) looks like a solid block, indicating a large paste. Indeed, this is
the case, which indicates a plagiarized submission. If we zoom in (Figure 2.4) we see thin
vertical white lines. These lines indicate places where the student modified variable names

and comments to mask the plagiarism.
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Figure 2.5a shows an example of a student copying a solution by typing it in. In this
case the student may believe that typing the solution instead of copy-pasting it will make
the plagiarism less obvious, but the triangular shape of the chart makes it fairly clear what
is happening. The chart in Figure 2.5b is similar but isn’t completely linear. In this case
the student is a capable programmer writing a merge sort. They typed the test cases and
structural code first, accounting for the first block code written linearly, and then wrote the
recursive function.

From the CodeProcess chart the user can understand when the particular section of
the code was written, whether student used a top-down or bottom-up approach to formu-
late solution, whether they started with comments, differences between novice and expert
programming patterns, and identify plagiarized solutions. The plot is also interactive and

supports zoom, pan, and brush selection features.

2.3.2 Code playback

The playback window (Figure 2.1) can be used to play back the keystroke events of
a student to see how the student formulated their solution. The slider allows the user to
see the snapshot at a particular keystroke event (at the horizontal line shown in the chart
in Figure 2.1). The snapshot of the code can then be compared to the final code using a
highlight diff feature that highlights the code present in final code. The playback also has

a pause/play feature and speed control buttons.

2.3.3 Final code

The final code window (Fig 1) displays the submitted solution of a student. If we
highlight a particular section on the of the CodeProcess chart, it will highlight that section
on the final code. The user can compare the final code with the snapshot and see the

differences using the highlight feature.

2.4 Think-Aloud Study
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In this section, we provide the results of exploratory think-aloud sessions with two
instructors. We discuss the different use cases of the tool along with instructors’ thoughts

and their experience with the tool.

2.4.1 Context and data

We collected keystrokes in a CS1 course during Spring semester, 2021. The course
was taught online (because of COVID-19) at a mid-sized public university in the United
States. At the beginning of the semester students were given the opportunity to opt into
the study according to the university’s IRB protocol #11554, and this paper uses data only
from students who opted in. The course was identical for students who chose to participate
in the study and those who chose not to. 15 students volunteered for the study. Students
were required to install a plugin to the PyCharm IDE and acknowledge that their keystrokes
would be recorded. The plugin recorded keystrokes while students wrote their programming

assignments. A total of 81 submissions were collected.

2.4.2 Study details

CS1 instructors from two different public universities in the United States were re-
cruited to participate according to IRB #12110. We will use the pseudonyms Joseph and
Peter. Being an exploratory, qualitative study, we did not gather quantitative data, but
rather, sought to understand different approaches in how instructors might use and value
the tool. The two instructors were asked to participate in a single, one-hour think-aloud
session over Zoom that was recorded. At the beginning of each think-aloud session, the
researcher gave a brief description of the CodeProcess visualization software and the par-
ticipant watched a two-minute video tutorial on the usage and features of CodeProcess.
The video tutorial did not give any guidance on interpretation of the different features of
the CodeProcess chart. The instructors then interacted with data from three submissions:
4, 8, and 11 (see Figure 2.2). From approximately 15 candidate student submissions we
chose these three submissions because they appear to represent four important behaviors

in programming: linear code development (submission 4), returning to make changes to
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code developed linearly (submission 4), non-linear code development (submission 8), and
plagiarism (submission 11). In submission 4 the student was asked to compute net pay
given gross pay, tax rate, etc. The student wrote boilerplate code linearly, then wrote a
series of string appends, followed by going back and modifying many of the string appends.
In submission 8 the student wrote a fluky number program. The student bounced back
and forth in the code, writing different parts of the program in a seemingly random way.
Submission 11 was a text-based blackjack game. The student pasted most of the assign-
ment from elsewhere and then modified variable names, strings, and comments to mask
the plagiarism. Instructors were asked to think aloud as they interacted with the tool and
gained insights into students’ code development process.

The two instructors initially took different approaches to the tool. Peter started right
off with interpreting the CodeProcess chart and using playback as an auxiliary tool. Joseph
initially relied primarily on the playback and paid little attention to the chart. This ap-
proach was more intuitive, but it took him longer to gain insights into student behavior
because he had to watch the replay which, even when replayed at high speed, takes longer
than just glancing at the chart. Eventually the researcher encouraged Joseph to spend a
little time on the chart and within a few minutes he was able to link insights from the chart

to the replay.

2.4.3 Student process

The visualization was useful for the instructors to understand the student’s approach
toward implementing a solution. The “pillars” in the chart show what part of the final
code was completed first. Studying the patterns of these pillars can be useful to see if the
solution was developed using a top-down (submissions 4 and 5) or bottom-up approach
(submission 8), understand the student’s thinking process, and identify common solution
patterns. Instructors in our study were able to see if the student used linear (again, submis-
sions 4 and 5) or non-linear thinking (submission 8) in developing a solution. Instructors
also found it useful in showing when the student edited a particular section of code. After

looking at submission 4 (Figure 2.2a), Peter said, “It appears that, in general, code was



16

generated kind of top to bottom in a linear fashion. This is a pretty straightforward as-
signment. It didn’t require much nonlinear thinking”. Similarly, Joseph thought that the
student in submission 4 had a reasonably clear understanding of what needed to be done.
The student was working in a linear way as if they had planned out the solution on paper
before attempting the solution.

Instructors also identified that different submissions showed different approaches to
getting the solution. For submission 4 (Figure 2.2a) both Peter and Joseph agreed that the
student took the approach of just making the code to work and later tidying up the code in
a linear way. But for submission 8 (Figure 2.2c¢), Peter and Joseph had different insights.

Peter thought that the student was more deliberate in their approach:

Okay, so this looks like much less linear. Which is interesting, because the
nonlinear aspects of it showed up first. Maybe you can tell that the student is

thinking about the solution before writing the code.
Joseph, however, thought the student didn’t plan well:

They’re jumping around. Like they get going, like, “oh, yeah, I need to do this.”
And they go back and add that feature, like the loop counter...I feel like this
program probably took them twice as long to write this way than if they would
have thought it through on paper first...they probably would have got it right

at the first try instead of this iterative [approach].

It is remarkable that the two instructors viewed the same student’s approach with such a
difference of opinion. We suggest that the difference in opinion between the two instructors
is an important result that raises a number of questions: Was submission 8 effectively writ-
ten or not? Are students most successful when they program linearly or not? Why would
two instructors have such strong differences of opinion? We expect that instructors would
have very similar opinions of the quality of final code submissions, but the differences of
opinion regarding the process students took to write the code implies that we, as a commu-

nity, may need to seek better understanding of what best practices for code development
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process actually are. Until now we haven’t had readily available tools that can effectively
communicate how code evolves while a student completes an assignment. CodeProcess fills
this gap and allows the research community to explore and potentially quantify exactly how
students write their code. This is especially important because our anecdotal answers to
these questions are often influenced by our teaching methods. For example, Joseph, who
was concerned that the student in assignment 8 wrote code without a plan, teaches his

students to first make a plan:

The way I kind of teach my students...is, you know, sketch it out on paper a
few times...and then when you translate it into code...it logically should make
sense. Maybe you got a few syntax errors, but the overall structure is there for

you.

Whether this is actually the best approach could be explored using CodeProcess. Indeed,
both instructors agreed that the tool can be useful in distinguishing and characterizing their

students based on different patterns of programming skills.

2.4.4 Plagiarism detection

Detecting and proving plagiarism has always been a challenging problem. Plagiarism
detection methods like MOSS [54] flag submissions for a potential plagiarism based on
analysis of only the final code snapshot. Due to this, prior work has suggested looking at
the process instead of only the final submission to identify plagiarism [55]. CodeProcess
allows an instructor to see how a solution was created over a time and plagiarism, when
effected through pasting code or typing someone else’s code, is immediately detectable.
Understanding the context of plagiarism can also be helpful for instructors to identify the
weak areas of students. Instructors can then help students to strengthen these weak areas
and reduce plagiarism on future assignments. Submission 11 (Figure 2.2d) was plagiarized:
it can be seen from the CodeProcess chart that the student pasted a large portion of code

and then changed parts of the code to mask the plagiarism.? The instructors in our study

2We were surprised that a student would consent to a study collecting their keystrokes and then commit
an egregious act of plagiarism. The student may have relied on the statement in the informed consent
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(who were not the instructors of the course) were able to identify the plagiarized solution
easily by looking at the visualization. This was especially evident in Peter’s experience.
Peter accidentally caught a glimpse of the CodeProcess chart for submission 11 at the very
beginning of the think-aloud session — before he knew anything about the interpretation of
the chart. He then watched the training video and explored submissions 4 and 8. In the
middle of looking at submission 8 he remarked that the CodeProcess chart he had caught
a glimpse of at the beginning (submission 11) must have been a case of plagiarism. Later,

as he explored submission 11, he said,

Yeah it’s pretty obvious that this person copied this code from somewhere. And
it looks like they’re basically just changing variable names. Presumably to make
it look like it’s not copied. So I immediately flagged this from suspicion to just

outright cheating.

Two things are worth noting in this quote: first is that Peter recognized that the student was
changing variable names. The second is his use of “immediately.” We envision a tool that
shows the instructor a matrix of many CodeProcess charts at a time and hypothesize that
in seconds the instructor could pick out suspected cases of cheating. A machine learning
approach to detect cheating from the chart would be even better. Joseph was also able
to identify plagiarism on submission 11. He also discovered cosmetic changes made by the
student to mask the dishonesty. Both instructors agreed that the visualization tool can
be used to generate reports of students after each assignment across the spectrum of CS
classes to detect plagiarism and dishonesty. Rule-based heuristics, e.g., software that looks
for large pastes, could be used to help detect plagiarism. Using CodeProcess charts as a

confirmatory tool could allow the heuristics to have higher type I error rates.

2.4.5 Interpretability of the CodeProcess chart
In designing our study we were concerned that the CodeProcess chart might be difficult

to interpret, but the instructors in our study had no trouble with interpretation, especially

document indicating that the instructor of the course would not see their keystrokes or, more likely, they
may have simply forgotten that their keystrokes were being recorded.
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when given a playback and highlighting tools to explore with. Peter quickly caught on and
was able to identify features after only a few minutes. Joseph was initially more interested in
the playback tool, but after exploring the chart for a few minutes was also able to detect and
interpret features, including the “pillars” and plagiarism. By the end of their sessions, each
instructor made insightful suggestions as to improving the tool: Peter suggested a matrix
of charts for quick identification of suspected plagiarism, and Joseph suggested that we
include run events to see if students were trying to brute-force a solution. Both instructors

agreed that the tool was easily understandable and useful for CS classes.

2.4.6 Feedback to the student

Peter suggested that having students see a visualization and playback of their own
code writing “would encourage them to think more deeply about [their] problem solving
approach.” Joseph said that he would like to use the visualization in conferences with
his students, using it “as a tool I could sit down with and we could go back to their
recording...where we could watch how the work actually went, that probably be more honest
witness of their work than what they recall from doing it.” Peter also thought that the
CodeProcess chart would be useful to students, as “the students can also see what their

main chart for the solution would look like” as compared to the chart for an expert.

2.4.7 Other results

After a think-aloud session instructors gave us some suggestions and use cases of the
tool. Peter suggested that the tool can be useful in other fields too. He thinks the tool
can be useful in English classes to detect plagiarism and to understand how students are
formulating their essays. Peter also suggested the use of machine learning to flag students
automatically and group novice and expert programmers. He also thinks a report or a
summary after each submission can be useful for instructors to understand how their stu-
dents are performing in their course. Both instructors agreed that automatically flagging

suspected plagiarism would be useful.
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2.5 Conclusion

In this work, we presented CodeProcess which is a novel tool for visualizing the pro-
gramming process (example visualizations shown in Figure 2.2). The tool utilizes keystroke
data to show in which order different parts of the source code were developed. In addi-
tion, we conducted a pilot think-aloud study to evaluate whether computing instructors
can leverage the visualizations for pedagogical insights.

Our aim in developing the tool was to provide instructors with easy-to-understand
visualizations that tell something about the process a student took to arrive at their so-
lutions at a glance. We hypothesized that instructors could use the tool — for example —
to augment assessment; to determine whether students are solving a programming problem
in a top-down or a bottom-up manner; that the tool could be used to identify cases of
plagiarism; and that the visualization could also indicate whether a student is struggling.
Additionally, the tool could be used to visualize the programming process to the student
themselves for reflection, or show students their peers’ processes to allow students to see
other solution approaches and problems other students might have had when programming.
These analyses could be enhanced through first identifying specific cases — or stereotypical
cases — from the data using, say, machine learning methodologies.

The results of the think-aloud study suggest that instructors are able to understand
the visualizations and use the tool with little training. Both instructors interviewed in
the study could identify plagiarism and recognized top-down versus bottom-up approaches
taken by different students. Interestingly, the instructors interpreted one case differently.
In the bottom-up process shown in Figure 2.2c¢, one instructor considered that the student
is planning their solution, while the other hypothesized that the student did not plan well
which resulted in “jumping around”. This highlights that the tool could also be used to
help instructors explore which solution approaches result in the best outcomes. Lastly, we
suggest that the tool could also be used in the professional context for code reviews and

allow professional programmers to reflect on their process.
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CHAPTER 3

Pausing While Programming

3.1 Introduction

Pausing during work is a natural behaviour for a person which allows them to reflect on
their task, plan what they are going to do next, revise, or take a rest. Pauses, however, can
also be initiated by distraction and lead to hindering one’s working process. In this paper we
aim to study pauses that students take while doing programming projects in Introductory
Computer Programming (CS1). In a typical CS1 course instructors and graders look at the
final program a student has produced for assessment, but there is no indication from the
code as to how the student wrote it. It is possible that information on the number and
types of pauses students take could be mined to shed more light on processes that underlie
programming in CS1.

Since pauses can be products of various activities (e.g., thinking, disengaged), we inves-
tigate whether pause length may hold insights into these activities. Our study features four
types of pauses. Micro pauses (2-15 seconds) which may indicate the student is thinking
about the code on a low level or "locally” (e.g. syntax). Short pauses (15 seconds to 180
seconds) may indicate that the student is involved in a higher-level process such as planning
or revision. Mid pauses (3-10 minutes) may indicate that the student is disengaged or that
they are going to an outside resource for help (e.g. YouTube, Stack Overflow, or course
materials). Finally, long pauses (greater than 10 minutes) may indicate disengagement from
the task.

In this paper, we look at relative number of pauses over the course and correlate with
outcomes (exam score). That is, if a student takes more or fewer pauses relative to their to-
tal number of keystrokes, could it suggest their better or worse course performance? Many

pauses that are very small may indicate that the student is planning their typing carefully
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rather than writing without a clear direction and may have a positive correlation with per-
formance. Many medium-sized pauses may indicate the same thing, but the measurement
may be confounded by students who are easily distracted. Many long pauses may indicate
distraction.

The research questions we investigate in this paper are:

RQ1 Is there a correlation between the relative number of pauses a student takes and their performance

(exam score)?
RQ2 What groups of students exist when clustering on pausing behavior?

RQ3 What events initiate a pause and how does this correlate with the performance of the student?

We seek to answer these research questions using analysis of keystroke data collected
in two CS1 courses at different universities on different continents. The closest matches to
our work come from two different research streams. One of the research streams has studied
syntax errors and identified pauses or breaks when correcting such errors (e.g. [38,56-59]).
The other research stream has focused on the analysis of keystroke data, which has been
shown to be effective at gaining insights into student behavior [17,55,60] as well as predicting
student outcomes [22,24,61]. However, little work exists at the intersection of these research
streams, where our work lies. The novelty of our analysis is that we are looking less at typing
behavior and more at pausing behavior, which might indicate more or less of a student’s
cognitive processing, examining of external resources, or disengagement.

In this paper, we report on several findings: those students who pause more often gener-
ally show worse performance in the course; students who take more shorter pauses perform
better than students who take more longer pauses; mid pauses have the strongest nega-
tive correlation with exam scores; specific events that precede pauses have a more evident

correlation with performance and thus allow conjecture about the underlying processes.

3.2 Related Work
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3.2.1 Pausing behavior

In the research literature, pauses are prevalently discussed in relation to language
production — written or oral speech/narration [62-64], language translation [65] and editing
[66]. Relying on cognitive psychology, researchers associate pauses with cognitive processing
of various types [66]. For example, in writing, it is thought that pauses at higher-level text
units (e.g. between sentences) are likely to be conditioned by higher-level subprocesses,
such as planning and organization of the content, whereas pauses at lower-level units (e.g.
between and inside words) — by lower-level subprocesses, such as morphology encoding and
retrieval of items from one’s memory [67].

A pause is also considered to signify cognitive effort imposed by language production
mental processes [65,68]. Butterworth1980 hypothesised that the more cognitive opera-
tions are needed for output production, the more pauses arise. damian2009advance and
Revesz2017 argued that the length of a pause taken before a textual unit reflects the men-
tal effort made with respect to production of this forthcoming unit. Reflecting on pausing
in post-editing, OBrien2006 concluded that pausing patterns do, to an extent, indicate
cognitive processing. However, they are ultimately subject to individual differences.

Pausing has also gained attention in the medical training domain. Lee2020 studied
pauses and their relation to cognitive load. Students had to complete a medical game that
simulated emergency medicine under two conditions: pause-available and pause-unavailable.
In the study, pauses of two types were identified: reflection and relaxation. The first type
is argued to enhance task-related cognitive processes and therefore increase mental effort
(or cognitive load). The second type reflects the opposite process when the load lowers due
to the resting state.

That being said, pauses during problem-solving can signify not only ongoing mental
work but a suspension of it caused by various things. gould2014makes defines three types
of interruptions: those that are relevant to the task and reinforce processes in the working
memory, those that are relevant to the task and interrupt processes in the working memory,

and those that are not relevant to the task. The author states that how these interruptions
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affect the following resumption and productivity depends on ”contextual factors at the
moment of interruption”. borst2015makes also relate the length of interruption to the time

of subsequent resumption and number of possible errors in a task.

3.2.2 Pausing behavior in CER

Pausing behavior has been studied in Computing Education Research (CER) both
directly and indirectly in the context of computer programming. Similar to written lan-
guage, where pauses between and within sentences are likely conditioned by different sub-
processes [67], code writing has its own milestones and units of different level of complexity.
When considering the mental effort needed to write code, one stream of research has fo-
cused on identifying and discussing plans and schemas for programming [69,70]. It has
been suggested that programmers who know the solution to a problem write their solution
in a linear manner, while solving a new problem is done using means-ends analysis with the
use of existing related schemas [69,70]. Over time and through practice, accumulation and
evolution of schemas allow programmers to solve problems more fluently, and also to learn
to solve new problems with more ease [70, 71].

As discussed in Section 3.2.1, pauses can signify cognitive effort and are a natural
part of the learning process. In programming however, an additional contributor to pauses,
especially for novice programmers, are syntactic and semantic errors related to writing com-
puter programs with the chosen programming language. These errors may be highlighted
by the programming environment in use—similar to a word processing engine that shows
spelling errors—as programming environments often highlight errors in program code, but
they may be also visible through specific actions such as compiling the source code. These
errors have been discussed especially in the context of Java programming, where researchers
have studied the frequency of different types of errors [38,56-59] and the amount of time
that it takes to fix such errors [58,72]. Denny et al. [58] and Altamdri and Brown [57],
for example, have noticed that there are significant differences in the time that it takes to
fix specific errors, and that over time students learn to avoid specific errors [57]. At the

same time, the granularity of the data used in the analysis has an influence on the observed
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errors [59] — different data granularity will lead to different observed syntax errors. In prac-
tice, collecting typing data with timestamps can provide more insight into the programming
process over snapshot or submission data [18].

When considering syntax errors, pauses, and performance, the ability to fix syntax
errors between successive compilation events has been linked with students’ performance in
programming [4], although it is unclear what the underlying factors that contribute to the
observation are [73]. Including an estimate on the amount of time that individual students
spend on fixing specific errors can increase the predictive power of such models [5, 20],
highlighting the effect of time (or pause duration) on the learning process.

While the previous examples are specific to syntax errors and time, little effort has
been invested into looking into pauses in programming. Perhaps the closest prior work to
our work is that of Leppénen et al. [74] who studied students’ pausing behavior in two
courses, and identified that a larger quantity of short (1-2 second) pauses was positively
correlated with course outcomes, while a larger quantity of longer (over 1 minute) pauses
was negatively correlated with course outcomes. Our work builds on this by—in addition
to correlation analysis—looking at pausing behavior over different contexts and also by
investigating which characters precede pauses. Leppanen et al. hypothesized that one
explanation for the correlation between long pauses and poorer course outcomes could be
related to task switching between reading the course materials and solving the programming
problems, but noted also that the pauses from writing code could be construed as instances
of the student engaging in planning, reviewing, and translating the next ideas into code.
Another possible hypothesis is related to differences in cognitive flexibility, i.e. the ability to
fluently switch between two tasks; for example, Leinikka et al. [75] observed that students
with better cognitive flexibility are faster at solving programming errors, although they did
not observe links between cognitive flexibility and introductory programming course exam

outcomes.



26

3.2.3 Typing and performance in programming

In CER, a multitude of data sources has been used for identification of factors and be-
haviors that contribute to course outcomes [76] — clicker-data [77,78], programming process
snapshots [4-6,9, 20], background questionnaires and survey data [79-83], and so on, but
our focus is on keystroke data collected from programming environments [39, 84].

Keystroke data, or typing data, has been used, for example, for predicting academic
performance [22,24,61], for detecting emotional states such as stress [60,85], and for iden-
tifying possible plagiarism [55].

Much of the analyses of typing data that relate to students’ performance has focused
on between-character latencies, i.e. the time that it takes for the student to type two
subsequent characters. This analysis has often focused on small latencies, as pauses have
been considered as noise. For example, both Leinonen et al. [22] and Edwards et al. [24]
used 750 milliseconds as an upper boundary for the between-character latencies. In general,
these studies have found that faster typing correlates with previous programming experience
and performance in the ongoing programming course.

Not all characters are equally important, however. For example, Leinonen et al. [22]
identified differences in the time that moving from ‘i‘ to ‘4+* took for novices and more expe-
rienced students, while differences in some other character pairs were more subtle. Similarly,
Thomas et al. [61] noted that the use of control functionality (e.g. using control and C keys)
in general was slower than the use of e.g. alphanumeric keys, and the use of special keys
such as delete and space was also slower than alphanumeric keys. Acknowledging that some
of these latencies may be also influenced by the keyboard layout, they hypothesised that
some of the latencies may be influenced by the thought processes related to the ongoing
problem solving [61]. Our work builds on this prior work by examining which characters
precede pauses, i.e. whether all characters are equally important when analyzing pausing

behavior.

3.3 Methodology
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3.3.1 Context and data
Our study was conducted in two separate contexts for purposes of generalization of the

results.

University A

University A is a mid-sized public university in the Western United States. In a 2019
CS1 course, students used a custom, web-based Python IDE called Phanon [86] for their
programming projects. Phanon logged keystrokes and compile/run events. Five program-
ming projects, one per week, were assigned to the students during the study period. Each
project consisted of two parts: a text-based mathematical or logical problem, such as writ-
ing an interest calculator; and a turtle graphics-based portion requiring students to draw
a picture or animation, such as a snowman. A midterm exam was administered between
the fourth and fifth project. There were three sections of the course all taught by the
same instructor. Projects and instruction were the same for all three sections. In-person
instruction was conducted three times per week. At the beginning of the semester students
were given the opportunity to opt into the study according to our Institutional Review
Board protocol, and this paper uses data only from students who opted in. The course was
identical for students who chose to participate in the study and those who chose not to.

Gender information on participants was not collected, but in the course participants
were recruited from, 19% self-identified as women and 81% self-identified as men. No
information on previous programming experience, race or ethnicity was available for this

study.

University B

University B is a research-oriented university in Northern Europe. The data for this
study was collected from a 7-week introductory programming course in the Fall of 2016. The
introductory programming course is given in Java and it covers the basics of programming,
including procedural programming, object-oriented programming and functional program-

ming. During each week of the course, there was a 2-hour lecture that introduced the core
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Attribute University A University B
Instruction Lectures w/sections Lectures, sessions
Language (prog.) Python Java
Language (inst.) English Finnish
Participants 231 244

Prog. Environment Web-based Desktop

Table 3.1: Summary of contexts.

concepts of the week using live coding. The emphasis in live coding was in providing exam-
ples of how programming problems were solved with the concepts learned during the week,
and in helping to create a mental model of an abstraction of the internals of the computer
as programs are executed (introduction of variables, changing variable values, objects, call
stack in a line-by-line fashion). In addition to the lectures, 25 hours of weekly support was
available in reserved computer labs with teaching assistants and faculty.

The programming assignments in the course are completed using a desktop IDE accom-
panied with an automated assessment plugin [87] that provides students feedback as they
are working on the course assignments. Combined with an automatic assessment server, the
plugin also provides functionality for sending assignments for automatic assessment. In ad-
dition to the support and assessment, the plugin collects keystroke data from the students’
working process, which allows fine-grained plagiarism detection [55] and makes it possible
to provide more fine-grained feedback on students’ progress. Students can opt out of the
data collection if they wish to do so; the data collection was conducted according to the
ethical protocols of the university.

Out of the 244 students at University B included in the study, approximately 40% self-
identified as women and 60% as men. No information on previous programming experience
nor race or ethnicity was available for this study.

Similar to the University A, University B had a midterm exam in the course. For
the analyses conducted in this article, we focus on students’ performance in the midterm

examination. The contexts are summarized in Table 4.1.
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3.3.2 Event and pause categories

Keystroke data was collected in both contexts. In the analysis, every keystroke of a
student was categorized to an event. We consider eight event categories: (1) Alphanumeric
keystroke, (2) Delete keystroke, (3) Return keystroke, (4) Spacebar keystroke, (5) Special
character keystroke, (6) Tab keystroke, (7) Successful compile/run, and (8) Failed com-
pile/run. Since the US context uses Python, in this paper we will call a compile/run event
a "Run”. The reasoning behind these categories is that they represent different tasks of
the student: Alphanumeric events represent typing, Delete events indicate the student is
preparing to make a correction, Run events represent a completion point where the student
is ready to test the code, etc. The European context does not have information on tabs or
the status of run events, so analyses relating to the status of run events or tabs will only
use data from the US context.

For the analysis of pauses, we chose to use four types of pauses. While pausing analyses
in the context of programming have been exploratory [74], research in pausing in language
production varies in terms of pause thresholds. A lower bound of 1-2 seconds appears
to be the most common [88-90], and thus, we adopted a 2-second lower bound for our
study. Taking into account research on working (short-term) memory time capacity [91], a
meaningful upper bound is at 15 seconds — pauses between 2 and 15 seconds may reflect
thinking about the code on a low, "local” level, including thinking about the syntax, and
could be tied to working memory. We call these pauses micro pauses.

Short pauses may reflect higher-level processing like planning the following code seg-
ment, setting the next sub-goal, and revising code similar to the production stage of written
language or some kind of distraction. We chose 180 seconds to be the upper bound for short
pauses.

Mid pauses, up to 10 minutes, may reflect voluntary or problem-solving related breaks.
We hypothesise that students who have difficulties may consult learning materials or visit
other resources in search for help or for refreshing their memory. Such a continuous pause

would cause longer task resumption [92]. Finally, long pauses, greater than 10 minutes, are
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most likely to stand for task disengagement as noted by prior work [93]. We expect such
pauses to take place after finished code segments or compilation.

For simplicity, we also refer to pauses initiated by a certain event type using the name
of the event type. For example, a delete pause is a pause initiated by the student pressing
the delete key; the last event before a failed run pause is a failed run event. Pauses preceded
by other event types are named similarly.

Because of data availability, we use a single measure of outcome — exam score. In the
US context we use the score of a exam that falls just before the last project in the study.
In the European context, we use the exam score from the first out of three programming

exams. The first exam was organized on the third week of the seven-week course.

3.3.3 Statistical tests

We report p values of all statistical significance tests, of which there are 95. We follow
the American Statistical Association’s recommendations to use p values as one piece of
evidence of significance, to be used in context [94], though we do suggest p < 0.05/95 ~
0.0005 = 5e~* as a reasonable guideline for credible p values [95]. When considering the
claims in our work, we suggest taking into account the additional supports beyond single p-
values. For example, claiming that delete pauses are negatively correlated with exam score
is based on consistent negative correlation across pause types in both studied contexts. For
distribution comparisons we use the t-test (as the data appears normal) with Cohen’s d

effect sizes and for correlation we use the Pearson r statistic.

3.4 Results

3.4.1 Descriptive statistics

Table 3.2 shows descriptive statistics of our study and Figure 3.1 shows the distribution
of event types for each of the two contexts. Alphanumeric keystrokes are the most common
event, with space (spacebar) and special characters also being common. Run events and

the tab keystroke are less common. Both contexts use an editor that automatically indents
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events/ pauses/
Context Students student student

Python (US) 231 25186 £ 11243 2183 £+ 1009
Java (Europe) 244 54698 + 25538 6774 4+ 3189

Table 3.2: Descriptive statistics of the study.
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Fig. 3.1: Log-scale bar chart showing the total number of events for each type. a Number
of events in the US/Python context. b Number of events in the European/Java context.

the next line of code after a return key press, which likely contributes to the observed lack
of tab keystrokes.

A difference between the contexts is the relative frequency of run events — students
in the Java context run their code far more often than those in the Python context. This
is likely not due to the language, but the way the courses are organized. In the Python
context, students had one large assignment due each week, while Java students had tens of
smaller assignments due each week. We conjecture that the smaller assignments induced

the students to run/compile their code more often.

3.4.2 Frequency of pauses
We calculated a measure of pause frequency as 2t where p; is the number of pauses of
length [ and n is the total number of events. In the Python context, on average, student

pause frequency is 0.09 + 0.02, meaning, on average, students execute 11 events before
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pausing for two seconds or more. Most pauses are micro pauses, which have a frequency
of 0.07, followed by short, mid, and long pauses with frequencies of 0.02, 0.001, and 0.001,
respectively.

The Java context was somewhat different: on average, student pause frequency is
0.13 £+ 0.03, meaning, on average, students execute 8 events before pausing for two seconds
or more. Most pauses are micro pauses, which have a frequency of 0.09, followed by short,
mid, and long pauses with frequencies of 0.03, 0.002, and 0.001, respectively.

As might be expected, Figure 3.2 shows a negative correlation between pause frequency
and exam score, meaning students who are pausing more often are performing worse on the
exams. In the Python context, this correlation is consistent across micro (r = —0.30,p =
3.16e-6), short (r = —0.35,p = 5.57e-8), and mid (r = —0.38,p = 3.71e-9) pause lengths,
with a weaker correlation for long (r = —0.18,p = 0.0061) pauses. The Java context, in
contrast, has a weaker correlation for the micro pause (r = —0.11,p = 0.0654) than for the
short (r = —0.20,p = 0.0013), mid (r = —0.23,p = 0.0003), or long (r = —0.22, p = 0.0006)
pauses. In general, the correlations for the Python context are stronger than for the Java
context, although as seen in Figure 3.2, the Java context has a noticeable ceiling effect in
the exam.

Figure 3.3 shows correlations between the number of different type of pauses that
students take, i.e., whether students who are pausing for short amounts of time are also
taking longer pauses. All types of pauses are at least moderately correlated with all other
types of pauses (see Figure 3.4). Interestingly, the correlations weaken as the pause lengths
grow for the Python context, while the Java context shows a strong correlation for the

mid /long pause pair.

3.4.3 Student types

To characterize students, we represent each student using a vector that contains the
relative proportions of each pause type. For example, a student represented with a vector
[0.80,0.15,0.03,0.02] has 80% micro pauses, 15% short pauses, 3% mid pauses, and 2% long

pauses. Since the vector is a partition of unity, the feature vector has only three degrees of
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Pearson: -0.3011, 3.16e-06 Pearson: -0.3481, 5.57e-08 Pearson: -0.3757, 3.71e-09 Pearson: (-0.1801, 0.0061)
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Fig. 3.2: Frequency of the different type of pause correlated with exam score. Frequency is
calculated as number of pauses divided by total number of events.
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Fig. 3.3: Correlations of total pauses with each other per student. As expected, the number
of micro pauses a student takes has a strong positive correlation with the number of short
pauses. While there are still strong and medium correlations between shorter and longer
pauses, the correlations become weaker.
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Fig. 3.4: Similar to Fig. 3.3, this figure shows correlation coefficients for the different pause
lengths.

freedom, though, for clarity, we represent it here with all four coordinates.

To identify student types based on the vector representations, we use k-means clustering
to cluster students into student types. Using the elbow method (visually finding the ”elbow”
of a line chart of number of clusters against explained variance [96]) to identify a good
number of clusters, we chose k = 2 for interpretability, though, as we will see in Section 3.5.2,
the choice of k is not particularly important in this case.

We see in Table 4.2 and Figure 3.5 that one group of students in each context took
relatively more short, mid, and long pauses than the other group, although in the Java
context, the difference is less pronounced. We call the clusters the longer pause and shorter
pause groups, respectively. When examining the groups and exam scores, we observe that
the students in the shorter pause group had higher exam scores than those students who
took longer pauses. The distributions of pause frequencies are approximately normal and

t-tests suggest that there is a difference between short, mid, and long distributions.

3.4.4 Initiating pauses
In Figure 3.6 we see relative frequencies of event types by pause length. We define
relative frequency for an event type E as the percentage of pauses of a given length initiated

by an event of type E. For example, in Figure 3.6 we see that in the Python context,
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Centroid Average Average Average
Context Cluster Micro Short Mid Long ‘ Students keystrokes X 10* pauses X 10 exam
Python (US) shorter 0.81 0.17 0.010 0.0060 71% (164) 6+1 2.3+1.0 80.2 +11.3
Python (US) longer 0.75 0.23 0.016 0.0077 29% (67) 2 4 +1 21+1.1 76.2 £ 11.5
Java (Europe) shorter 0.79 0.20 0.01 0.01 57% (139) 5.2+ 2 6.2 +2.8 9.59 + 0.90
Java (Europe) longer 0.72 0.26 0.01 0.01 43% (105) 58+3 7.6 £ 9.35 4+ 0.88

Table 3.3: Statistics of the clusters for the two contexts, US and European. For the Cluster
column, ”shorter” means ”shorter pause” and similar with longer. A t-test for the two
distributions of exam scores yields (¢ = 2.2,p = 0.026,d = 0.35) in the US context and

(t=2.1,p=0.034,d = 0.28) in the European context.
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Fig. 3.5: Clustering. In the Python context, t-test statistics (¢,p) and effect sizes (d)

between the two distributions are: Micro (¢t = 1.5,p = 0.12,d = 0.23), Short (t = —6.9,p =
3.6e—11,d = —1.01), Mid (t = —6.4,p = 8.4e—10,d = —0.93), and Long (t = —3.2,p =
0.0014,d = —0.47). In the Java context, t-test statistics (¢,p) and effect sizes (d) between
the two distributions are: Micro (¢t = 1.7,p = 0.08,d = —0.22), Short (t = —10.8,p =
2.4e—22,d = —1.35), Mid (¢t = —9.3,p = 1.1le—17,d = —1.15), and Long (¢t = 2.1,p =

2.6e—9,d = —0.77).
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alphanumeric keystrokes initiate 27% of all micro pauses (2-15 seconds) and 15% of long
pauses (> 10 minutes) while accounting for 57% of all events, regardless of whether the
events initiated a pause or not. In the Java context, the distribution related to alphanumeric
events that start a pause is very similar. Roughly 29% of micro pauses and 18% of long
pauses are initiated by the events while they account for 28% of all events.

Certain types of events in both contexts decrease in frequency with increasing pause
length. Alphanumeric, return, space and special characters seem to follow this trend pre-
ceding to a greater extent shorter pauses.

In Table 3.4 we see that alphanumeric events initializing micro pauses have a positive
correlation with exam score, but that the correlation weakens until it is not detectable for
long pauses. Conversely, pausing after special characters is not necessarily correlated with
success. In fact, a weak negative correlation exists with special characters initializing micro
pauses.

In the Python context, the percentage of pauses preceded by the delete, return, and
space keystroke events remains roughly the same across pause lengths (Figure 3.6). The
return keystroke is unique among the three in that, despite being so infrequent in the data,
it precedes so many pauses (11-13%). This tendency does not repeat in case of delete and
space events.

In the Java context, the situation is different. Return and space events show steady
decline in percentages of preceding pauses. The longer the pause, the less common it is
for those event to precede it. The opposite applies to the delete events. This could be
accounted for differences in programming languages and their relations to students’ native
languages [27]. Even though the deleting behaviour differs across the contexts, correlation
of most delete pauses with exam scores remains negative in both cases.

Both successful and failed run attempts have disproportionate prominence among

events preceding pauses relative to their overall frequency.

3.5 Discussion
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length. 7 All” are all events, whether they precede a pause or not.

‘ Pause | Enter Alphanum Delete Special Space Tab (Success) run Fail run
length r p | r p | p | r p | r p | r p | r p | or p
Micro 0.27 le-5 0.28 le-5 -0.33 le-7 -0.23  4de-4 0.21 0.001 | 0.058 041 -0.17 0.015 -0.38 le-7
g Short 0.11 0.1 019 0,004 | -0.245 le-4 0.01 0.81 0.19 3e-3 | 0.062 042 -0.05 0.45 ~0.38  le-7
=] Mid 0.076 0.29 0.14 0.04 -0.13 0.05 0.13 0.07 0.14 0.08 0.22 0.23 | -0.007 0.91 -0.22  Be-4
;::' Long -0.022 0.80 0.005 0.95 -0.12 0.11 -0.03 0.74 0.037 0.73 0.13 0.57 0.067 0.32 -0.06 0.37
All 0.2687  3e-5 0.29 Se-6 —0.36 le-6 | -0.20 0.002 0.22 S5e-4 | 0.073 030 -0.13 0.04 -0.43  le-6
Micro 0.18 4e-3 0.31 0.0 —0.20 9e-4 | 018  3e-3 | -0.029 0.64 -0.034 058
N Short -0.012  0.84 0.21 5e-4 —-0.16 0.010 | 0.055 0.36 0.021 0.73 -0.024 069
H Mid -0.028 0.66 0.23 2e-4 -0.23 2e—4 0.023 0.72 0.034 0.60 0.079 0.19
| Long -0.012  0.86 0.033  0.62 0.067 0.28 —024 2e-4 0.014 0.86 0.070 0.25
All 0.082 0.18 0.23 le—4 —0.24 le—4 0.21 Se—4 0.12 0.042 -0.088 0.15

Table 3.4: Pearson r correlations with p values between a student’s tendency to initiate a
given length of pause with a given event type and exam score. ”All” indicates percentage
across all events (both those initiating pauses and not). We do not have data on tabs or
whether a run was successful or not in the Java context, so tab values are not included for
the Java context and the (Success) run column should be interpreted as a successful run
for the Python context and all runs for the Java context.
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3.5.1 Frequency of pauses

Before answering the first research question, Is there a correlation between the relative
number of pauses a student takes and their performance (exam score)?, we checked whether
our bucketing was sensible by performing a correlation test. As we can see from Figs. 3.3
and 3.4, there are correlations between all types of pauses which is not surprising since the
pauses lengths are on the time continuum. However, neighbouring types of pauses do not
show a very high degree of similarity, which justifies our choice. Moreover, micro and short
pauses, having the highest correlation coefficient, yield quite different correlation coefficients
in terms of relationships with exam scores (see Figure 3.2).

In general, we observe that students who pause more often perform more poorly on
exams (Figure 3.2), which is in line with the results observed by Leppénen et al. [74]. This
effect is not large, but it is consistent across pause types and contexts. We note that this
measurement is frequency of pauses, so it is normalized across students regardless of the
number of total events they execute. In this paper we do not make any claims regarding
what students were doing during their pauses, whether they were thinking, drawing on other
resources, or disengaged. But the correlations in our data indicate that regardless of pause
activity, pauses correlate negatively with exam score, at least in the aggregate. We note
that certain activities may not cause negative correlation with achievement, but it appears
that these activities are in the minority and are dominated by negative-effect activities.

Frequency of mid pauses (3-10 minutes) in both contexts have the strongest negative
correlation with exam score of all the pause types. Comparing to the long pause which does
not have an upper bound, it is clear that after at most 10-minutes long mid pause students
get back to typing. We conjecture that mid pause may be the most harmful because
it potentially can cause the longest resumption. If the activity taking place during the
pause is not related to the task, the pause may be treated as irrelevant interruption [97].
According to altmann2007timecourse and many others (for example, see [98-100]), the
length of interruption correlates with the time of task resumption and numbers of possible

eIrors.
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3.5.2 Student types

Our second research question is: What groups of students exist when clustering on
pausing behavior? We clustered students into two types, longer pause students and shorter
pause students. Shorter pause group tends to take proportionally more micro pauses,
whereas longer pause students take fewer micro but more of short, mid, and long pauses.
The shorter pause students appear to perform better in the exam in the both contexts.

In a sense, grouping students into clusters is arbitrary: Figure 3.2 shows that pauses of
all lengths are negatively correlated with exam score, indicating that the 4-dimensional fea-
ture vectors are not linearly independent, effectively making our clustering single-dimensional
and not particularly interesting regardless of choice of k. Nevertheless, the analysis reveals
one difference between the contexts that may be of interest: in Table 4.2, we see that more
events correspond to more pauses across the contexts. However, groups which produce more
events are not the same. In the US/Python context, the shorter pause group tends to type
and pause more, whereas in the European/Java context the opposite applies. Addition-
ally, proportions of pauses in the US/Python context remain roughly consistent across the
groups and equal to 0.09 and in the European/Java context similarly, being 0.12 and 0.13.
This observation could be due to a number of context-specific factors, such as the way how

each context uses programming assignments.

3.5.3 How pauses are initiated

Our third research question is: What events initiate a pause and how does this correlate
with the performance of the student? The first thing to note is that the distributions of
event types, for each of the four pause lengths, do not match the overall distribution of
events (Figure 3.6). This confirms, as one might expect, that, in general, students are not
pausing at arbitrary times, meaning that pauses are generally purposeful and not taken at

random times while typing.

Deletes and failed runs

There is some abruptness regarding what initiates a long pause. Long pauses, those
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of 10 minutes or more, may indicate that the student is disengaged from working on the
project [93]. One would expect the most natural way to take a break would be a successful
run. Yet, in the Python context, only 30% of long pauses are initiated as such. Another
intuitive, natural break would be a failed run, as the student might need a break or an
extended session of reviewing external materials after a failure. Yet failed runs account
for only 4% of long pauses. This means that 66% of long pauses are initiated with a
keystroke. The most common event for long pauses, the delete keystroke, initiates 25% of
the pauses. The Java context is similar, with 22% of long pauses initiated by delete. This
seems remarkable. A delete press often indicates an error and so, after the delete press,
the student needs to execute keystrokes to replace the incorrect code. At times, however,
students are taking a break instead of completing the correction. If this happens it could
indicate that the student may lack motivation, diligence, or the corrective know-how without
consulting external help. Other types of pauses were also rather often preceded by a delete
event (26-27%). From Table 3.4, we can see that the correlations of the exam score with
such pauses are negative. This may signify that deletes are used less often for removing
unneeded code (e.g., print statements or comments) and more often when students are
confused and do not know how to proceed. This same reasoning could be used to explain
the negative correlation of failed runs initiating pauses, i.e., that an extended pause after a
failed run indicates the student does not know how to fix the problem and has to take time
to either consult other materials or take a break. Indeed, the correlations of failed runs
with exam score closely mirror those of delete key presses.

One could suggest that the consistent negative correlations of delete and failed run
events initiating pauses with exam score simply reflect the overall correlation of these event
types with exam score. We note, however, that distributions of the two events are different
and they demonstrate different degree of involvement in a long pause initiation. While
deletes, constituting 20%/24% of all events and preceding 25%/22% of long pauses, failed
runs account for only 0.5% of all events but precede 4% of long pauses. Thereby, it is six

times more likely that failed run event will initiate a long pause than a delete keystroke. A
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plausible interpretation of this observation is that students are deliberately pausing after

failed runs, at least more often than after deletes.

Events decreasing in frequency with pause length

Alphanumeric keystrokes are what we might call "middle” events — they are the most
common while being somewhat less significant in terms of reflecting thinking processes. The
fact that the frequency of alphanumeric events preceding a pause decreases with increasing
pause length as much as it does (Figure 3.6) suggests that students are completing their
lower-level processing thoughts before taking longer breaks. Indeed, it appears that students
are deliberate in taking longer breaks rather than getting interrupted, as would be the case
if alphanumeric pauses were more common.

In Python, statements generally do not end with a special character as they do in
Java (e.g. semicolon for a single-line statement and closing brace for a block). So it is not
surprising that pauses initiated by special characters decrease in frequency with increasing
pause length in the Python context. What is surprising, however, is that the Java context
has a very similar phenomenon. We expected longer pauses to be frequently initiated by
special characters in the Java context, as ending a line with a semicolon seems like a natural
stopping point. We do not know why this is not the case, but we suspect that this is, again,
a consequence of the difference in instructional methods between the two contexts. The
Java students work on smaller projects and run more often, and so they may be more likely
to complete their thought or work session with a run event.

In Table 3.4 we see that, in both the Python and Java contexts, alphanumeric micro
pauses are positively correlated with exam score while special character micro pauses are
negatively correlated. As these two event types behave similarly in other respects, we discuss
a possible explanation for this difference. Roughly half of special characters require further
processing: an open parenthesis expects formal parameters for a function call; quotes expect
a string; an open bracket expects list /array indices; etc. It may be that a micro pause, which
may last as many as 15 seconds, indicates student hesitancy and lack of fluency with Python

or Java syntax. This lack of fluency with a fundamental aspect of programming may be
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why the student exam scores are lower. Problems with special characters being indicative of
struggling has been hypothesized also in previous work [22,24]. If special character pauses
do indicate an uncertainty with syntax then instructors may consider an increased focus on

syntax fluency for students initiating pauses with special characters.

Events constant across pause length

In the Python context, the percentage of pauses initiated by the return event remains
roughly the same across pause lengths (Figure 3.6). This makes sense in the context of
both shorter and longer pauses: pressing return requires short-term planning for the next
line, so its prevalence among micro and short pauses is logical; pressing return is also a
natural stopping point before taking a break, so it is frequent among mid and long pauses.
Being every 33rd event in the Python data and every 7Tth in Java data, return initiates
approximately 12% of any type pauses in the Python context and as much as 12-24% of
of any type pauses in the Java context. This seems to confirm the return keypress being a

natural stopping point.

Run events

Being rather rare in the typing data in both contexts, run events are notably evident
among events preceding pauses, especially short, mid and long. This is not unexpected:
it would be highly unusual for a run event to take fewer than two seconds, so the great
majority of run events would precede at least a micro pause. A large proportion of long
pauses are initiated by successful runs in the Python context and runs in the Java context.
It is instructive to consider why students would pause after a successful run. It is possible
that a student takes a pause to consult external resources (e.g., internet, textbook, another
person) regarding how to proceed with their program, but it seems more likely that the
student would have at least an idea of what to do next after a successful run. Therefore,
we suggest that the more likely scenario is that the student is instead disengaging from
working on their assignment. If this is the case, then we could possibly use the percentage

of successful run long pauses in the Python context as a lower bound for the number of
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long pauses in which students are disengaging. In our data, this indicates that students
are disengaging during at least 30% (roughly) of long pauses. We expect that this is a

conservative lower bound.

3.5.4 Threats to validity

Internal validity: As is natural in educational studies, our study comes with an
inherent self-selection bias. It is possible that the way the studied courses were organized
and the way the student population at both universities is formed influences the observed
outcomes. It is unclear, for example, whether similar results would be observed if the study
would have been conducted in the context of primary or secondary education, or in life-long
learning. When considering the outcome of the courses, we used exam score as a proxy
for performance, which can be affected by factors such as exam stress. In addition, the
European/Java context had a noticeable ceiling effect in the exam outcomes. It is possible
that this also influenced some of our findings and that lifting the ceiling effect would affect
the correlations.

External validity: We studied keystrokes in two contexts to increase the degree to
which our findings can be generalized to other contexts (see Section 3.3.1). The strength
of the correlations and the p values varied somewhat between the contexts and we cannot

state which context-specific factors contributed to the differences.

3.6 Conclusions

In this article, we presented an analysis of keystrokes with an eye toward understanding
pausing behavior of CS1 students and its implications on academic outcomes. In this section
we draw conclusions from our results in each of our three research questions.

RQ1 Is there a correlation between the relative number of pauses a student takes and
their performance (exam score)? We observe that negative correlations between pause fre-
quency and exam score exist as illustrated in Fig. 3.2. The most illustrative is the frequency
of mid pauses — those of length 3-10 minutes. We suggest that these pauses indicate that a

student may be distracted easily, but it could also indicate students who are spending time
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using external resources for help on their projects. Revesz2017 suggests, since keystroke logs
alone do not allow us to "make inferences about the specific cognitive processes that un-
derlie pausing behaviors”, that combining event logs with ”other techniques such as verbal
reports and eyetracking” could be helpful in obtaining more detailed information. Further
study could help us understand what these students are doing during pauses and what they
were working on when they paused. But in the meantime, the pause/exam score correlation
appears actionable. We suggest that a tool that allows practitioners to visualize students’
pausing behavior could be particularly useful. In addition, as previous studies that have
used keystroke data for predicting course outcomes have mainly focused on latencies smaller
than 750ms [22,24], future research should seek to combine such keystroke data with pausing
data and study whether these phenomena have the same underlying tacit factors.

RQ2 What groups of students exist when clustering on pausing behavior? We found
in a cluster analysis that students whose pausing behavior tended toward short pauses
performed better in general on exams. The cluster analysis primarily indicated a correlation
between typical pause length for a student and exam score. When considering the identified
student types in the light of CER studies that have identified student types such as the
tinkerers, stoppers, and movers [56,101], most of the students in the studied contexts could
be categorized as movers, despite the differences in their pausing behavior. As pausing is
linked with cognition and thought processes, and as writing code is linked with a multitude
of factors including understanding syntax and the given problem [102,103], further research
is needed to understand the lack of stopping and the differences in pausing.

RQ3 What events initiate a pause and how does this correlate with the performance of
the student? We have presented evidence that pauses do not occur randomly while a student
is programming — students tend to finish their thoughts and pause after a natural stopping
point. This observation is in line with the studies on student cognition and programming
and how students solve programming problems [69, 70], where students write constructs
informed by schemas that engage procedural memory. Fully 25% (Python) and 22% (Java)

of long pauses (>10 minutes) are initiated by delete events. We suggest that students who
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pause after delete are possibly less engaged (taking a break instead of writing the code to
replace the deleted characters) or they lack the knowledge to write a fix (consulting external
resources to learn how to fix the problem). This presents interesting questions for future
research, such as what percentage of delete pauses indicate a disengaged student. Beyond
identification of at-risk students, the negative correlations of special character and failed
compile pauses suggest possible pedagogical and material innovations to improve student
fluency after special characters and minimize the number of failed runs.

In addition to the directions for future research discussed above, there are additional
avenues for further research. As an example, while previous research in syntax errors has
noted that there are differences in the time that it takes to fix syntax errors [57,58], our study
highlights that pause durations are related to the pressed keys. Combining information on
present syntax errors (or the lack of them) with information on pauses could create more
in-depth understanding of students knowledge and actions — for example, pauses preceded
by a syntax error likely indicates different thought processes than pauses not preceded by
a syntax error. Similarly, looking at what syntactic construct was just typed or is being
typed could affect pausing behavior. While our definitions of pauses were based on related
literature (e.g., [74]), future work could explore alternative bins, including higher resolution
bins for the micro pause, which spans lengths from 2 to 15 seconds in the work reported in
this paper. Language specific differences should also be studied further — as an example,
we noted that in the European/Java context students took a micro pause on average after
8 keystrokes, while students in the US/Python context took a micro pause on average after
11 keystrokes. It would be meaningful to understand where this difference stems from. If it
is simply the language, then one possible implication is that the relative verbosity of Java
when compared to Python would not only require the students to type more, but also to
pause to think more. On the other hand, if it is a product of a contextual factor, then it
could be something that could be sought to disseminate to other contexts as well. Future
studies could also focus on differences between the beginning and end of the course to see

if programming behavior changes with experience.
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CHAPTER 4
Circadian Rhythms of CS1 Students

4.1 Introduction

Circadian rhythms — the cycles of our internal clock — influence our daily activity
and productivity. Achievements in academic studies [104], programming [105], and other
domains are affected by circadian rhythms. Chronotype, or diurnal preference, is a person’s
tendency toward activity at certain times of day and is thought to be a natural characteristic
of an individual [106].

Gaining an understanding of students’ internal clocks and time-management behaviors
has the potential to inform individualized recommendations for learning as well as targeted
interventions for helping those struggling with managing their time. With that goal, we
study introductory programming students from two contexts, one in the US and one in
Europe, with different geographical location leading to differences (e.g. available daylight).
In addition, the contexts have different teaching approaches and use different programming
languages. In both contexts, we collected timestamped keystroke data from students’ pro-
gramming process for the purposes of gaining a deeper understanding of students’ behavior.
Prior work in computing education has used keystroke data, for example, to predict stu-
dents’ success [17,22,24] and to identify students taking an exam [11,23]. Our overarching
objective is to study the students’ possible chronotypes and preferences, as evidenced by
students’ behavior inferred from the timestamped keystrokes, and look for connections of
these chronotypes and preferences with assessment outcomes.

In the context of software engineering education and computing education research,
there exist streams of research on students’ time management practices and self-regulation [74,
107,108]. Much of this has had a focus on behavior related to deadlines, including procras-

tination, and ways to increase the earliness of students’ work [108-110]. In general, these
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studies agree that starting early leads to better learning outcomes, but little focus has been
put on at what times students typically work and how these times contribute to students’
learning outcomes, despite some existing research on software developers’ working hours
and bugs introduced in code commits made at different times during the day [105,111] .

Our work offers three contributions. 1) We use unsupervised machine learning to
identify chronotypes among introductory computer programming (CS1) students and find
that these chronotypes match up remarkably well with chronotypes of general populations
reported in the literature. 2) We find strong linkages between chronotype and academic
outcomes, again, consistent with the literature. We also highlight circadian rhythms as a
viable, important, and relevant topic for both the computing education research community
as well as for computing educators.

This article is organized as follows. Next, in Section 4.2, we outline the theory and
related work upon which our article builds. Section 4.3 describes the contexts in which
the study took place and outlines the research questions and methodology. Results are
presented in Section 4.4, and discussed in Section 4.5. Finally, conclusion and potential

streams for future work are outlined in Section 4.6.

4.2 Background and Related Work

4.2.1 Circadian Rhythms and Chronotypes

A circadian rhythm is a cycle of internal oscillations in nearly all physiological activities
generated by the molecular circadian clock and has a period of approximately 24 hours
[112,113]. Chronotype is a person’s natural inclination toward activity at certain periods
of the day and depends on a circadian rhythm for synchronization [106]. Research suggests
that the circadian cycle is conditioned by a group of clock genes [114], which explains
individual differences. Nevertheless, it is not fixed and it does shift during an individual’s
lifetime.

People have to fit in daily activity according to their schedules taking into consideration

social constraints (e.g., typical work times, services work hours, etc.). That is, clock time
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preferences are more likely to match a chronotype when an individual has more flexibility
in activity organisation. Discrepancy between an individual’s chronotype and schedules
determined by social constraints causes a phenomenon called social jetlag [106, 115]. Tt
leads to accumulation of a ”sleep debt” with subsequent feelings of tiredness and drop in
cognitive abilities throughout a working week. Research [116,117] shows that sleep-wake
times of people whose weekday routine matches their chronotype do not change during
weekends contrary to the case of people whose timing inclination of natural activity contrast
with their weekday routine. Since both activity and sleep comply with chronotype in natural
conditions, there is a premise to consider weekends as a reflection of true chronotypes.

Most studies distinguish between two chronotypes: morning and evening. In recent
years a third type — intermediate has emerged (for example, in [118,119]). In 2019, Putilov
et al. [120] formed an argument that there are four chronotypes which can be distinguished
by varying times of sleepiness and alertness: morning, afternoon, napper and evening. The
morning type prefers to wake up early in the morning and is most alert from 9 a.m. to 11
a.m., after which the alertness curve gradually goes down. The napper type has two peaks
of activity — the first from 9 a.m. to 11 a.m., and the second from 3 p.m. to 10 p.m. The
afternoon type is alert from 11 a.m. to 6 p.m., gradually decreasing until 9 p.m. Finally,
the evening type, similarly to the napper type, has two peaks, although the first one is
less evident and falls into period of 11 a.m. to 2 p.m., while the second period of increased
alertness is from 6 p.m. until late night. We use Putilov’s et al. chronotype classification
in our study.

Relationships between chronotype and academic achievement of adolescents have been
discussed across countries (e.g., [118,121-124]). There exist consistent patterns of negative
correlation between “eveningness” and indicators of academic performance (e.g. GPA, exam
grades), whereas “morningness” is positively correlated with academic achievement. It is
possible that these correlations are at least partly due to the synchrony effect [125], where an
individual’s cognitive performance is optimal during certain times of day and suboptimal at

other times. That is, a student working during hours that are suboptimal for them because
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of socially driven schooltime hours [106,115] can lead to sub-par academic achievement.
Attention, working memory, and executive functions are affected by the synchrony

effect [126—128], as well as the ability to inhibit distractors and focus on a specific task [129].

Furthermore, the synchrony effect is more pronounced when tasks are more difficult [130,

131].

4.2.2 Chronotypes in Software Engineering

Recent research by Claes2018 examined software developers’ code contributions to a
large number of open source projects. The study showed that most (2/3) of the developers
followed typical working hours. A small cluster of developers tended to work outside the
regular daily schedule and also contributed on weekends. Although those who worked late
hours and weekends could be explained by the “evening” chronotype of the developers, an
alternative explanation is that, since the study used open source projects many of which
pay little or no salary to contributors, developers were working another job during normal
working hours. The times of code contributions have also been linked with occurrence of
bugs [105], providing potential evidence of sleep deprivation and inconsistency with indi-
vidual circadian rhythms.

Time management among students has received attention in computing education re-
search. Measuring time usage or time management, by itself, can be challenging as different
approaches for measuring time use (e.g. self-reported time, time logged from a learning
environment) may not correlate strongly [9]. It has been suggested that surveys used for
studying students’ learning behaviors such as the MSLQ [132] may measure what students
think they do instead of what they actually do [74], even though some of the metrics cor-
relate with course success [107]. Despite the difficulty in measuring time usage, it has been
shown that the amount of time that students spend on exercises tends to have an effect on
exercise scores, in general [9,133], and the way how students space their time when working
on assignments can contribute to course outcomes [74]. One of the concerns related to
students’ time management behavior is procrastination, i.e., students delaying the start of

working on course projects despite knowing that it might lead to worse outcomes. When
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studying student data over multiple years, edwards2009comparing observed that students
starting their project work late in general tend to earn poorer grades than those starting
early.

Researchers have shown various ways that can influence when students start their
work. These include procrastination interventions such as e-mail alerts [110], dashboards
or visualizations that illustrate how students are managing their time and may implicitly
set objectives on time management to students [108,134], and more generic course design
principles, such as offering practice tasks before larger projects, which are easier to start
and consequently led to course work being started earlier [135].

As shown, students’ use of time has received some attention from the computing ed-
ucation research domain, but time management has not been studied extensively from the
theory perspective [136], and, to our knowledge, there has been no work on student chrono-

types in the computing education research context.

4.3 Methodology

4.3.1 Context and Data

We collected keystroke data in two contexts. For simplicity we refer to the contexts
as US and Furopean. However, as we describe below, differences between the contexts
are more far-reaching than just the geographic location. Differences in the contexts are

summarized in Table 4.1.

Us

Keystroke data was collected during the first five weeks of a Python-based CS1 course
at a mid-sized public university in the US over the course of two semesters. The custom
IDE logged timestamped keystrokes from weekly programming projects. After the five
weeks students transitioned to a mainstream Python IDE that did not support keystroke
logging capability. 525 students participated in the study. There were three sections of

the course each semester, all taught by the same instructor except for one section in the
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first semester. All classes were held on Mondays, Wednesdays, and Fridays. Students were
required to attend a weekly recitation where students met in smaller groups with a Teaching
Assistant. During the five weeks there were five programming assignments (A1,A2,...,A5),
one due each Friday at midnight. Assignments could be turned in up to one day late for
a 25% penalty and each student could turn in one assignment up to two days late without
penalty. The assignments were a mix of standard text-based programming projects (e.g.
mortgage calculator) and turtle-based graphics projects (e.g. animate a dartboard game).
The projects were manually assessed and were each worth 100 points. After three weeks a
first midterm exam was administered with a second midterm exam given four weeks later.
The exams were administered on a computer in a testing center and included multiple choice
and true/false questions. Some simple fill in the blank questions were included, such as,

“what does the following code output to the screen?”

European

Keystroke data was collected for the duration of a 7-week Java-based CS1 course at
a large public research-first university in Finland. The course follows a pedagogy where
students work on tens of programming exercises each week, including exercises with multiple
graded steps realized through intermediate goals (or “subgoals” [137]). Exercises and course
materials were released weekly, and students had approximately one week to complete
the exercises for a particular week. The exercise handouts were embedded in the course
materials so that whenever a new topic was learned, students immediately saw programming
exercises that they could work on to internalize the topic.

Exercises were worked on in a custom desktop IDE that kept track of the exercise
that the student was working on and provided support for testing and submitting the
exercises. In addition, the IDE collected timestamped keystrokes, used for both detecting
plagiarism [23,55] and for course improvement and research purposes. The exercises were
automatically assessed and submitting work for grading after the deadline was not possible.

The course under study had one weekly lecture, held on Tuesdays, and walk-in labs,

which were open daily. In the walk-in labs, students were guided by the course teacher
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Table 4.1: Summary of contexts. Daylight is measured on January 1.

UsS Furopean
Daylight (hrs) 9 6
Language (prog.)  Python Java
Language (inst.) English Finnish
Participants 519 318
# keystrokes 11,185,716 20,081,066
Due dates flexible fixed
Projects 10 147
Exam Midterm  Midterm & Final

and course assistants. There were two exams, one in the middle of the course and one at
the end of the course. The exams were computer-based and contained programming tasks
similar to the ones that students had worked on during the course. Grading-wise, 70% of
the course score comes from completed exercises, and 30% from the exams.

For the analysis conducted in this article, we focus on students who attended at least
two weeks of the course. This is due to the university allowing sampling courses (for no

fee), and withdrawing with no repercussions.

4.3.2 Research Questions

Our research questions for this study are as follows.

RQ1 What chronotypes would be discovered from clustering keystroke data collected from two contexts?
RQ2 How do the typical working times of students relate to academic outcomes?

RQ3 How do contextual factors affect academic outcomes?

4.3.3 Metrics

We analyze distributions of keystroke timestamps. In order to identify student chrono-
types from the data we first assign a 4-dimensional feature vector to each student, where
the vector is the percentage of the student’s keystrokes that occurred in different ranges of
hours: [3-9, 9-15, 15-21, 21-3]. So a student with a feature vector of, say, [0.08, 0.1, 0.19,

0.63] types 63% of their keystrokes between 21:00 and 3:00, so they would likely be classified
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as having an evening or night chronotype. After computing feature vectors for each student
we used k-means clustering to identify student chronotypes. Each of the two contexts (US
and European) were clustered separately. We used the elbow method to decide k. Two
reasonable candidate values of k for the US context were 4 and 8, while for European, 3
and 5 were the best. We chose to use k = 4 in order to have a consistent value for both the
US and European contexts and because it allowed us to compare our results directly with
those of Putilov2019, who proposed four chronotypes. After identifying clusters of students,
we study distributions of course outcomes per identified chronotype, including assignment
scores, exam scores, hours before deadline, and number of keystrokes.

The hour ranges for the feature vector are chosen arbitrarily. As such, we must take
care to ensure that this particular selection doesn’t introduce bias into the analysis. Ideally
we would bin keystrokes into 24 one-hour bins, but clustering on 24-dimensional vectors
suffers from the curse of dimensionality. Instead, we bin student keystrokes twice more
using shifted hour ranges of [5-11, 11-17, 17-23, 23-5] and [7-13, 13-19, 19-1, 1-7]. We then
cluster students based on these feature vectors and compare the resulting clusters across the
three binning strategies. Similarity of distributions indicates robustness to binning strategy
whereas distributions that are not similar indicate a bias caused by the selected bins.

All programming project keystrokes during the study period in the US context were
used in our analyses. In the European context, when analyzing the hours before deadline,
we excluded keystrokes from weeks 4 and 7. During week 4 there were technical issues with
the assessment system and the weekly deadlines were prolonged, while in week 7 students
had two weeks for completing the assignments instead of the normal one week.

In our analysis we performed 16 statistical significance tests, 8 of them Kruskal-Wallis
H, 4 Mann-Whitney U, and 4 chi-squared. We report p-values of our statistical tests as one
component among others that together contribute to understanding of our results [94]. We

do not make threshold-based claims of statistical significance [138].

4.3.4 Ethics

Data from the United States was collected and analyzed under Utah State University
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Fig. 4.1: Comparison of keystroke distributions for each proposed chronotype across feature
vector definitions for the US dataset. Vector binning strategies are: First = [3-9, 9-15, 15-
21, 21-3]; Second = [5-11, 11-17, 17-23, 23-5]; Third = [7-13, 13-19, 19-1, 1-7].

IRB 9580. Data from the European context was collected and analyzed with student consent

according to the ethical protocols outlined by The Finnish National Board on Research

Integrity TENK!.
4.4 Results
4.4.1 Comparison of binning strategies

Fig. 4.1 shows keystroke distributions for each proposed chronotype across feature vec-

tor definitions for the US context. In the clustering labeled ”First” we described each

"https://tenk.fi/en/ethical-review /ethical-review-human-sciences
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Table 4.2: Statistics of the clusters for the two contexts, US and European. The four
Centroid columns indicate the 4D centroid discovered in k-means clustering. Students is
the number of students in each cluster. Keystrokes is the median number of keystrokes per
student. Homework average score is on project A5 (max of 100 points) for the US context
and on all homework programming assignments (max of 215 points) for the European
context. Fram average score is on the first midterm (max of 100 points) for the US context
and is a combined score on the two exams (max of 30 points combined) for the European
context. Hours before deadline is calculated by finding the median keystroke timestamp
for each week and averaged over all weeks. Standard deviations are included with the
homework/exam scores and hours before the deadline averages.

Centroid Avg score Hours

Context Cluster 3-9 9-15 15-21 21-3 Students Keystrokes Homework Exam before deadline
Us morning 0.03 0.70 0.19 0.08 24% (123) 21912 84 + 28 79 £ 12 35 + 32
European morning 0.02 0.67 0.27 0.04 11% (36) 58992 162 + 56 22+ 11 85 + 36
Us napper 0.06 0.39 0.43 0.12 40% (208) 25078 83 + 29 77+ 12 33 + 36
European napper 0.01 0.42 0.44 0.12 31% (98) 70949 172 £+ 47 24 +38 59 + 34
Us afternoon 0.01 0.12 0.76 0.11 21% (111) 18008 73+ 35 74+ 14 21 + 30
European afternoon 0.01 0.19 0.60 0.20 29% (91) 60427 165 + 48 25+9 46 + 38
USs evening 0.01 0.16 0.29 0.53 15% (77) 17970 70 + 36 71+ 15 14 + 29
European evening 0.03 0.15 0.35 0.46 29% (93) 53595 159 + 57 22 + 11 46 + 37

student with the four-dimensional vector used in the remainder of our analysis, with per-
centage of keystrokes occurring in each of four 6-hour time intervals starting at 3:00am.
The ”Second” clustering used time intervals starting at 5:00am and the ” Third” started at

7:00am.

4.4.2 Chronotypes learned from clustering

Our first research question is: What chronotypes would be discovered from clustering
keystroke data collected from two contexts? Related questions include whether the chrono-
types between the two contexts match each other and whether they match those found in
the literature.

Fig. 4.2 shows keystroke distributions for each of the four clusters for each of the
two contexts. It is notable how similar the four clusters are between the two contexts.
Considering the differences in context, including country, latitude (over 18 deg difference),
average daylight (roughly 3 hours), instructor, course structure, homework composition,
course pacing, and class time, the distributions are remarkably similar. Indeed, hours
remaining before due date and number of keystrokes (Fig. 4.3) show similar behaviors

across clusters even given the context differences.
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Due to distinctive differences between the discovered clusters and their high similarity
to the Putilov’s et al. [120] chronotypes, we assigned the same terms to the clusters (Fig. 4.2).
For the morning cluster, peak activity is from 10am to 3pm with activity trailing off into
the evening. The napper cluster has the widest range of active times. The afternoon cluster
has peak activity from 1pm to 5pm, but activity is also reasonably high from 10am to 1pm.

The evening cluster starts around 9am with peak activity from 8pm to 11pm.

4.4.3 Chronotype and relation to course outcomes

In this section we explore the following research question: How do the typical working
times of students relate to academic outcomes? In the following discussion, refer to Ta-
ble 4.3 for results of Kruskal-Wallis H significance testing between clusters. We first look
at correlations of chronotype with project and exam scores. In Fig. 4.3 (Projects) we see
a pronounced difference in median project score between the four chronotypes in the US
context but much less so in the European context, and indeed, there are strongly significant
differences in the US context and no statistically detectable differences in the European
context (Table 4.3). We see similar phenomena relating to exam scores in Fig. 4.3 (Ezams):
for the US context, strongly significant differences exist whereas the European context had
almost no difference, although the European context may have been influenced by the ceil-
ing effect in this case. For both project and exam scores in the US context, morning and
napper students performed better than afternoon and evening students.

We also considered the correlation between chronotype and how long before the due
date students work on their assignments (Hours remaining in Fig. 4.3). Both contexts
showed strongly significant differences, with students who work on their assignments in
the morning generally working earlier relative to the due date than students who work
in the evening and night time. Similarly, Fig. 4.3 (# keystrokes) shows the number of
keystrokes executed by students. Students in the evening chronotype typed fewer characters,
on average, than students in the other chronotypes. We discuss implications of these results

in Section 4.5.
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4.4.4 Differences in context

In this section we report results of the research question: How do contextual factors
affect academic outcomes? We first note from Table 4.2 that, while the centroids of the
clusters are remarkably similar between the US and European contexts, the distribution
of students among the clusters is different. The majority of US students have morning
and napper chronotypes, whereas most European students are afternoon and evening. A
number of factors could be causing this difference, including culture, demographic, and
hours of sunlight per day (Table 4.1). Further investigation is needed to understand the
cause of the differences in distribution.

One of the most notable differences between the US and the European contexts is the
time before the due date of the keystrokes. See Fig. 4.3 (Hours remaining). For two of the
US clusters, the median keystroke is actually later than the due date (note from Table 4.2
that the mean, however, is before the due date), while the median keystrokes for all four
clusters in the European context are well before the due date. From Table 4.2 we see that,
in every chronotype, students in the European context work on their projects at least 25
hours earlier, on average, than students in the US context, and European morning students
work fully 50 hours earlier on average. We propose two contextual differences contributing
to this effect. The first is the late-work policy. In the US context students could turn in
late work for reduced points. In the European context, late work was not accepted. The
second factor is project composition. It has been shown that when projects are broken into
multiple smaller pieces, students tend to start earlier [135]. Indeed, our results support
this conclusion: in the US context the projects are broken into two sub-projects, while
the European context has tens of sub-projects due each week. Considering the factors of
late-work policy and multiple, smaller projects, it isn’t surprising that a difference in time
before the due date exists between the contexts. What is perhaps surprising, however, is

the magnitude of the difference.

4.5 Discussion
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Table 4.3: Results of running a Kruskal-Wallis H significance test across clusters for different
outcomes.

US European
H P H P
Assignment scores 13.178  0.004 2.386 0.496
Exam 18.894 < 0.001 4.657 0.199
Hours remaining 58.162 < 0.001 35.667 < 0.001
# keystrokes 40.947 < 0.001 21.054 < 0.001

4.5.1 Robustness of clustering

In order to avoid the fragility of clustering in higher dimensions, we clustered four-
dimensional feature vectors into chronotypes. To mitigate the risk of biasing the clusters
by quantization strategy we clustered two additional times with different bins. Fig. 4.1,
which shows distributions of keystrokes for each proposed chronotype across feature vector

definitions, indicates that clusters of students are reasonably robust to binning strategy.

4.5.2 Robustness to external factors

Many factors beyond chronotype have the potential to influence how students use their
time, including other courses, jobs, family obligations, social engagements, and recreation.
The extent to which these external factors influence when students work on their program-
ming assignments and whether discovered clusters indeed represent students’ chronotypes
are two important questions. For example, we claim that students in our evening group are
of the evening chronotype, but one could claim that they are actually students with day
jobs and are thus constrained to complete their programming assignments in the evenings.

Looking separately at working days and weekends (Fig. 4.4) — two time periods that
generally have little in common with respect to jobs, class times, and other responsibilities
— we see that external factors have little effect on when students work on their assignments:
patterns of activity times remain reasonably constant. Using our previous example, evening
students tended to work on their assignments in the evening whether it was during the
week or on the weekend, suggesting that even though they may have the option to work

on homework in the morning during weekends, they still choose to do so in the evening, an
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Fig. 4.4: Keystroke distribution of the evening chronotype in the US split into weekday and
weekend keystrokes.

indication that times students work on their assignments are governed primarily by diurnal
preference.

To test the similarity of the weekday and weekend distributions in Fig. 4.4 we ran Mann-
Whitney U tests on the distributions for all chronotypes (only the evening chronotype is
shown in the figure) shifted by 7 hours to make the distributions unimodal. Because the
cyclic nature of the data could compromise the integrity of a rank-based test, we also ran
chi-squared tests using the 24 one-hour bins shown in the figures. Both tests for each of the
four chronotypes yielded p < 0.0001. However, all effect sizes (Cohen’s d for Mann-Whitney
U and Cramer’s V for chi-squared) were 0.2 or less, so, while behavior is different between

weekday and weekend, the difference is small.

4.5.3 General Insights

There is a common stereotype of computer programmers as being night owls. A striking
result of our data is that, at least among CS1 students, this stereotype does not hold up. The
majority of keystrokes in our study were done between 9am and 5pm (54%) and most of the
remaining keystrokes were executed between 5pm and 9pm (27%). Only 1% of keystrokes
occurred between midnight and 5:00am. Our results support prior work that has found

that the majority of programmers follow typical working hours [111]. Indeed, even among
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the few students in the evening chronotype, most keystrokes were logged before midnight.

Another important result is that, while context appeared to have a strong effect on
correlations between chronotype and outcomes, the chronotypes themselves found through
unsupervised learning were very similar between the two contexts. The fact that similar
chronotypes were found, both in terms of cluster centroids (Table 4.2) and keystroke dis-
tributions (Fig. 4.2) between two very different contexts is a strong support for chronotype

theory and its characterizations [120].

4.5.4 Effect on course outcomes

A result exhibited in both the US and European contexts is that morning and napper
students started working on weekly assignments much earlier than afternoon and evening
students and nappers typed more characters in working on their assignments. Our re-
sults also provide some support for correlations between chronotype and academic achieve-
ment [104]: in the US context the evening chronotype was associated with lower assignment
and exam scores when compared to the morning chronotype. However, the European con-
text didn’t show a difference. It is possible that the ceiling effect caused a lack of difference
in project and exam scores between chronotypes in the European context. It is also pos-
sible that the design of programming assignments in the European context, as discussed
in Section 4.4.4, could have affected academic outcomes across chronotypes, suggesting

investigation into assignments with smaller pieces and fixed due dates.

4.5.5 Synchrony with chronotype

Research has found that scheduling learning activities during students’ preferred work-
ing times increases academic achievement [123,124]. Our data shows afternoon and evening
students performing, in general, at a lower level. From the synchrony effect theory we
consider the possibility that the university class schedule forced these students to work at
suboptimal times, contributing to their sub-par behavior. To see if the imposed schedule
affected their natural working time we compare each chronotype’s keystroke distributions

split between weekdays and weekends (the weekday/weekend distributions for the evening
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chronotype in the US context are shown in Fig. 4.4), as students would be expected to be
more free to work according to their preferred schedule on weekends. As can be seen in the
figure, students behaved very similarly on the weekends as they did during the week. Be-
cause of the small effect size (0.2, as reported above in Section 4.5.2), which suggests that
students worked similar hours whether during the week or on weekends, it appears that

synchrony had only minimal effect on afternoon and evening student underachievement.

4.5.6 Limitations

We did not collect demographic or background information about study participants,
which means that students who work at jobs or have other classes may have affected our
chronotype distributions. However, the effect of these external factors appears to be minimal
(see Section 4.5.2). Furthermore, Putilov2019 indicated that there is a group of people that
doesn’t belong to any of the four clusters and these classification-defying subjects may have

diluted clarity of our clusters.

4.6 Conclusion

In this article, we analyzed evidence for the existence of chronotypes using keystroke
data collected from introductory programming students. To summarize, our research ques-
tions and their answers are as follows.

(RQ1) “What chronotypes would be discovered from clustering keystroke data collected
from two contexts?” We identified four chronotypes similar to those discussed in the lit-
erature [120]: morning, napper, afternoon, and evening. These clusters were identified in
both studied contexts, despite the differences in how the courses were organized and, e.g.,
the amount of available daylight. It also seems that these distributions are not significantly
influenced by flexible due dates or deadlines.

(RQ2) “How do the typical working times of students relate to academic outcomes?”
We observed noticeable differences in the exam scores and project scores within the US
context, where those active in the morning performed the best in the exam. No significant

differences in exam scores or project scores were observed in the European context, although



64

this could be partially influenced by a ceiling effect. In both contexts, the morning and
napper chronotypes tended to start working on their projects earlier than the afternoon
and evening chronotypes, and the napper chronotypes tended to type, in general, more
than the other chronotypes.

(RQ3) “How do contextual factors affect academic outcomes?” We observed differences
between the contexts in when the students started to work on their projects and noticed
that, in general, students in the FEuropean context tended to start their work earlier. We
hypothesized that this could be due to two factors; (1) using small exercises when starting
with a new topic, and (2) having a strict no-late submissions policy. While we acknowledge
that there are likely many other explanations for these observations, we posit that the way
how courses are organized can lead to a situation where students are more likely to follow
their diurnal preferences, i.e., work during times that are productive for them.

In this article we have inferred behavior from observed keystrokes and while our con-
clusions are in line with prior theoretical and empirical research, we cannot for certain say
whether our observations stem from students’ circadian rhythms and diurnal preferences,
or whether there are other factors at play. We do not know, for example, how many of the
students have part-time jobs and how their working hours are distributed over the week.
Regardless, we observe that the majority of the students tend to work during daylight hours,
contrary to some of the stereotypes posited about CS students. And, more importantly,
the chronotypes we discover and their correlations with academic outcomes align with prior
studies, suggesting that we, as computing education researchers and practitioners, should
take note and consider diurnal preference issues in course development and future research.

As a part of our future work, we are looking into the translation and use of a chrono-
type questionnaire (e.g. Caen Chronotype Questionnaire [139]) and studying whether the
chronotypes identified from keystroke data match those identified using a questionnaire.
As previous research suggests that working on optimal hours of day contribute towards

performance in complex tasks [130], we are also looking into the interplay of task difficulty,
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chronotype, observed behavior, and performance, within the domain of learning program-

ming.

4.7 Data Availability
Our human-centered study protocols prohibit us from making our keystroke data
publicly available. Our code, however, is available at http://doi.org/10.5281/zenodo.

4498457.


http://doi.org/10.5281/zenodo.4498457
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CHAPTER 5

Conclusion

In this thesis we have discussed how keystroke data can be useful in understanding
programming process, identifying patterns and looking into behaviors of CS1 students.
These insights can be valuable in predicting struggling students and working on targeted
interventions which can boost students’ confidence and knowledge to decrease the attrition
rates in computer science students.

Chapter 2 presents a work and a tool for visualizing the programming process. We have
shown that instructors can use this tool to augment their assessment, identify approaches
that students are using to work on their solution, identify cases of plagiarism and also
indicate whether a student is struggling on the assignment. It can be also used for pair-
programming and self-reflection among students. Further improvement and work on this
tool can make it fully autonomous to report students and their processes to instructors.

Chapter 3 presents a work to understand and analyze pausing patterns of CS1 students
and its implications on academic outcomes. We observe that the pauses a student takes
has a correlation with their performance (exam score). Similarly we also find populations
among student based on their pausing behaviors, shorter and longer pause group, and see
some correlation between typical pause lengths and exam scores. We also find evidence that
students are not pausing randomly. Students tend to pause after finishing their thoughts
and pause after a natural stopping point. We suggest the students pausing after pressing
delete key are possibly less engaged. Students pausing after special characters and failed
compiles suggest at risk students and further pedagogical and material innovations can be
used to improve student fluency and minimize the failed runs.

Chapter 4 presents a work on student behaviors and suggests the evidence of chrono-
types on introductory programming students. The clustering analysis discovered four dif-

ferent groups, morning, napper, afternoon, and evening, that are similar to the groups in



67

the literature. We also observed that there are noticeable differences in the exam scores
and project scores between these groups and we found that the students working in the
morning are usually performing better in the exam than other groups. Similarly, we also
find differences in student behavior based on the context and different type of assignments.
We found that the students tend to start their work earlier when using small exercises
when compared to large assignments. This information can be useful in designing courses

to reduce procrastination and increase academic outcomes.
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