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ABSTRACT 

Hidden Mechanisms of Climate Impacts in Western Forests: 

Integrating Theory and Observation for Climate Adaptation 

 
by 

Sara J. Germain, Doctor of Philosophy 

Utah State University, 2022 

Major Professor: Dr. James A. Lutz 
Department: Wildland Resources 

Fire, insects, and disease are necessary components of forest ecosystems. Yet, 

climate change is intensifying these tree stressors and creating novel dynamics that 

threaten forest survival. This dissertation synthesized field observations with disturbance 

forecasts in western forests to identify 1) how conventional modeling methods 

underestimate forest loss with climate change, and 2) how facilitative relationships might 

be harnessed by managers to prevent forest loss.  

In Chapter II, I tested whether increasingly extreme weather with climate change 

increases Pacific yew extinction risk. I found that conventional modeling methods 

underestimated local extinction risk because trees were adapted to a range in average 

conditions, but had limited tolerance of extreme drought. 

In Chapter III, I predicted the future strength of a Pacific Northwest foundational 

forest community. I found that heterospecific competition is more sensitive to drought 

than conspecific competition on dry microsites, increasing the risk of competitive 
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exclusion and thereby weakening mechanisms of community stability.  

In Chapter IV, I examined observational evidence of the growth-differentiation 

balance hypothesis obtained through tree rings to measure tree resilience to over three 

centuries of fire exclusion, climate change, and compound drought-fire-insect 

disturbance. I identified legacy effects of fire suppression through decreased resistance 

and resilience of large Pinus in white fir-dominant areas. Woody species diversity, 

however, was able to counteract these effects. 

In Chapter V, I disentangled aboveground and belowground processes promoting 

tree resistance to natural enemies across regional differences in climatic and 

environmental conditions. I found that woody species diversity increased survival of 

large trees comprising 17 common western species, but only if the diversity of woody 

neighbors shared the same mycorrhizal network.  

I identified how biodiversity can increase forest resistance and resilience to 

disturbances, but also found climate change to be weakening the processes responsible 

for maintaining biodiversity. Managers must more actively preserve biodiversity to 

ensure forests are able to continue provisioning essential services, such as carbon storage, 

in the future. These four long-term studies of spatially explicit, cause-specific tree 

mortality provided mechanistic insights into forest assembly and change that will 

improve vegetation model accuracy and inform management of mature forests in western 

North America.  

(343 pages) 
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PUBLIC ABSTRACT 

Hidden Mechanisms of Climate Impacts in Western Forests: 

Integrating Theory and Observation for Climate Adaptation 

Sara J. Germain 

Fire, insects, and disease are necessary components of forest ecosystems. Yet, 

climate change is intensifying these tree stressors and creating new interactions that 

threaten forest survival. This dissertation combined field observations with statistical 

predictions of changing disturbances in western forests to identify 1) how conventional 

models may underestimate future forest loss, and 2) how positive relationships between 

trees may be exploited by managers to prevent forest loss.  

In Chapter II, I tested whether increasingly extreme weather with climate change 

increases Pacific yew extinction risk. I found that conventional modeling methods 

underestimated local extinction risk because trees were adapted to a range in average 

conditions, but had limited tolerance of extreme drought.  

In Chapter III, I predicted whether future climate change will alter the strength of 

competition between species (heterospecifics) versus within species (conspecifics). I 

found that heterospecific competition is more sensitive to drought than conspecific 

competition, leading to higher tree mortality during drought than is currently expected. 

In Chapter IV, I looked at sugar pine tree rings to measure how pines respond to 

three centuries of fire exclusion, drought, fire, and a bark beetle outbreak.  I found that 

fire suppression led to higher competitive stress, which decreased pines’ resilience to fire, 

and consequently, decreased pines’ survival during a subsequent bark beetle outbreak. 
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Woody species diversity, however, was able to increase pine survival following fire and 

bark beetles by allowing higher pine growth and defenses. 

In Chapter V, I tested whether beneficial relationships between trees and 

mutualistic fungi could help trees survive across regional differences in climate, 

environmental conditions, and disturbances. I found that woody species diversity 

increased large-diameter tree resistance to insects and disease, but only if those species 

shared a mycorrhizal network. Large trees comprising 17 common western species across 

three canonical forest types showed this pattern –– despite residing in different 

topographic positions and climatological contexts.  

I identified how biodiversity can increase forest resistance and resilience to 

disturbances, but also found climate change to be weakening the processes responsible 

for maintaining biodiversity. Managers must take a more active approach to cultivating 

and preserving forest tree biodiversity to ensure forests are able to continue provisioning 

essential services, such as carbon storage, in the future. These four long-term studies of 

spatially explicit, cause-specific tree mortality provided useful insights into tree survival 

and forest change that will improve vegetation model accuracy and inform management 

of mature forests in western North America.  
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CHAPTER I 

INTRODUCTION 

Climate Change and Carbon Storage 

Building forest resistance and resilience to climate impacts is a global priority 

(Holling 1973, Anderegg et al. 2020), not only to maintain ecosystem services for human 

use (Thom and Seidl 2016) but also to provide a key counterbalance to increasing 

atmospheric carbon and climate change (Adams et al. 2010, Grassi et al. 2017). Climate 

warming is instigating biomass declines (Breshears et al. 2005, Allen et al. 2010), 

migrations (Harsch et al. 2009, Lenoir and Svenning 2015), and compositional change 

(Gonzalez et al. 2010, Duque et al. 2015) in forest ecosystems across the planet. Many of 

these changes are projected to proceed with increased severity as global warming 

progresses (Easterling et al. 2000, Allen et al. 2015, Millar and Stephenson 2015), 

foreboding an incredible loss of carbon storage that is only likely to make climate change 

more severe (Cox et al. 2000, Adams et al. 2010, Pan et al. 2013). Unfortunately, models 

of forest-climate feedbacks greatly oversimplify forest dynamics – emphasizing growth 

rather than mortality, focusing on direct climate effects, and characterizing forests by 

coarse-grain functional type – and thereby tend to overestimate future carbon storage 

capacity (Purves and Pacala 2008, Allen et al. 2015, Fisher et al. 2018, Anderegg et al. 

2020). Investigating the direct and indirect pathways by which climate change is altering 

all aspects of forest demography can clarify the magnitude of climate impacts, benefitting 

earth science and ecology alike. 

Climate change can have positive or negative impacts in forests due to the 

contrasting responses of tree phenology and disturbance regimes. Warmer temperatures 
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can increase photosynthetic rates (Ford et al. 2016) and tree recruitment (Peterson and 

Peterson 2001), particularly in high-elevation or -latitude systems that are currently 

limited by cold temperatures. While increasing the period available to photosynthesize 

may portend greater productivity, there is an upper limit: temperatures too high can 

reduce tree growth and fecundity (Clark et al. 2021, Larysch et al. 2022). Perhaps more 

importantly, hotter drought and its indirect effects through interactions with fire, stand 

densities, and insects increases tree mortality, precluding growth and continued 

recruitment all together (McDowell et al. 2008, Anderegg et al. 2015). Moreover, 

compensatory tree recruitment is highly uncertain in a climate-change context 

(HilleRisLambers et al. 2015, Davis et al. 2019), often unable to keep pace with rapid 

declines (Millar and Stephenson 2015, Coop et al. 2020). Yet, large-scale vegetation 

models rarely consider the nonlinear responses of multiple demographic rates to changing 

climate (Fisher et al. 2018). In consideration of this area for further refinement, this 

dissertation examines growth, recruitment, mortality, and their net balance in western 

temperate forests. 

Temperate mixed-conifer forests of western North America (wNA) are a hotspot 

for carbon storage and forest-climate feedbacks. Though boreal forests store more soil 

carbon (Dixon et al. 1994), the highest aboveground biomass on earth is found in coastal 

temperate forests (Anderson-Teixeira et al. 2021). Mature forests of wNA have among 

the highest carbon stocks (Keith et al. 2009, Stephenson et al. 2014, Piponiot et al. 2022) 

and longest carbon residency times in the world (Lutz et al. 2021a, Birch et al. 2021). As 

such, wNA forest declines can have broadly reaching effects (Garcia et al. 2016, Swann 

et al. 2018) and pose a substantial threat to continued carbon storage, wildlife habitat, and 



3 

 

timber production alike. Unprecedented fire severity (Westerling et al. 2006, Coop et al. 

2020), bark beetle outbreaks (Raffa et al. 2008, Weed et al. 2013), and drought-induced 

tree mortality (Van Mantgem and Stephenson 2007, Williams et al. 2013) have even 

rendered some forests a larger and more sustained net carbon source than expected after 

historical disturbances (Kurz et al. 2008, Hicke et al. 2012). Conservation of these 

important carbon stores hinges not just upon an accurate understanding of the rapidly 

changing processes underlying their decline, but also identification of mechanisms 

responsible for building resistance to change and resilience (i.e., recovery) following 

disturbance (Holling 1973, Peterson et al. 1998). 

Mixed conifer forests of wNA may be particularly vulnerable to climate change 

due to their relatively low species richness and therefore a reduced insurance effect of 

biodiversity (Yachi and Loreau 1999, Jactel and Brockerhoff 2007). Compared with 

tropical forests, for instance, temperate coniferous forests contain tenfold fewer woody 

species (Lamanna et al. 2014). Individual species responses to changing climate are 

therefore more likely to represent a larger portion of the community and are unlikely to 

be tempered by redundant species (Loreau and de Mazancourt 2013). Moreover, 

individual species can have important controls on community-level forest dynamics 

(Dayton 1972, Uriarte et al. 2004), meaning their selective loss due to climate change can 

feedback to further reduce community diversity and stability (Ellison et al. 2005, 2019, 

Angelini et al. 2011). Yet, vegetation models tend to regard forests in terms of their 

functional type (e.g., coniferous vs. broadleaf) rather than using finer-grained 

characterizations of forest composition (Purves and Pacala 2008), preventing assessment 

of the unique vulnerability that may arise from low biodiversity in western forests. This 
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dissertation takes the opportunity to assess the extent to which western forest biodiversity 

– even in its limited state – may be able to protect forests from increasing threats of 

insects, disease, and competition during hotter droughts; and to identify how climate 

responses scale from individual species to the population and community levels. 

A substantial proportion of carbon fluxes and storage in western temperate forests 

can be attributed to large-diameter trees (Lutz et al. 2012, 2018, 2021b). Large trees tend 

to have lower ratios of leaf area to stem mass, so in contrast with smaller trees, carbon 

storage as biomass is prioritized over high rates of carbon fixation (i.e., low relative 

productivity sensu Piponiot et al. 2022). This observation is sometimes misinterpreted to 

mean that large trees do not sequester as much carbon as young trees; however, large 

trees dominate woody productivity and show higher absolute growth rates per individual 

tree than smaller counterparts (Stephenson et al. 2014, Piponiot et al. 2022). Large trees’ 

deep roots and creation of coarse woody debris, together with slow decomposition rates 

in temperate forests, promotes long-term storage in these pools and as recalcitrant soil 

carbon (Harmon and Hua 1991, Lal 2005, Zhou et al. 2006). Thus, preservation of large 

trees and allowing the transition of medium trees into the large-diameter cohort is central 

to maintaining carbon storage in living biomass, deadwood, and soil carbon pools, in 

addition to protecting the numerous ecosystem services provided by large trees (Lutz et 

al. 2018). 

Despite containing large-diameter trees, it is often observed that mature forests 

(>100 yrs) sequester less carbon than younger forests (see Harmon 2001 for full 

discussion). Mature forests often fix carbon at similar rates to younger forests (equivalent 

net primary production), but carbon losses due to decomposition of woody debris reduce 
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ecosystem-level sequestration rates (Anderson-Teixeira et al. 2021). While the rate of 

carbon accumulation may decelerate as stands age, it still remains positive and is 

sometimes comparably high as younger forests (Besnard et al. 2018, Anderson-Teixeira 

et al. 2021); this allows mature forests to remain a valuable carbon sink (Luyssaert et al. 

2008). More importantly, mature forest carbon stocks absolutely dwarf those of younger 

forests, especially in the temperate zone: the live and deadwood contributions of large 

diameter trees, uneven-aged stand structure, and long-lived soil organic carbon make 

mature forests the dominant source of carbon storage globally (Smithwick et al. 2002, 

Zhou et al. 2006, Anderson-Teixeira et al. 2021).  

Unfortunately, primary forests were largely eradicated from the North American 

landscape by the rapacious harvest practices of early European colonizers (Birdsey et al. 

2006, Pan et al. 2013). Younger forests, being more widely distributed and showing high 

carbon sequestration rates, have therefore become the focus of overly optimistic carbon 

offset programs (Canham 2021, Badgley et al. 2022). Yet, a large net carbon release is 

associated with converting old forests to young (either through anthropogenic or natural 

disturbance), making the creation of young forests for the sake of carbon sequestration a 

misguided choice (Harmon et al. 1990, Luyssaert et al. 2008). Moreover, high tree 

densities predispose young forests to more severe wildfire and outbreaks of insects or 

disease (Raffa et al. 2008, Rautiainen et al. 2011); this is particularly the case for fire-

suppressed forests (Hessburg et al. 2022), where the sustained future of second-growth 

carbon stores is highly uncertain (Anderegg et al. 2020, Coop et al. 2020). In contrast, 

mature forests are expected to maintain biomass accumulation and carbon storage for 

centuries (Luyssaert et al. 2008) if they can be protected from harvest and climate change 
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impacts (Lutz et al. 2009, Lindenmayer et al. 2012, Bennett et al. 2015). In 

acknowledgement of these points, this dissertation identifies pathways to conserve 

mature forests and large-diameter trees in an effort to inform climate change mitigation in 

forest management (Swanson and Franklin 1992, Kauppi et al. 2015).  

 
Forest Management:  A Circular Evolution 

For millennia prior to European colonization, indigenous peoples of North 

America practiced sophisticated land management that prioritized prescribed fire to 

maintain forest health; and the cultural and practical appreciation for large trees 

precluded widespread fatal harvest of mature forests (Vale 2013). When European 

colonizers instigated the mass genocide and relocation of indigenous peoples, they 

indirectly eliminated anthropogenic fire ignitions and reduced fire on the landscape as 

well. In contrast with indigenous land use, large trees became prime targets for harvest, 

and intensive clear-cutting converted much of the North American landscape to 

secondary forest (Pan et al. 2013). Due to the solitary focus on extraction, a healthy forest 

became defined as one with trees growing at their maximum capacity, protected from 

insects, disease, and wildfire in order to preserve later yields (Odum 1969, Kolb et al. 

1994). This perspective gave way to the ideology that old forests cease to accumulate 

carbon, a convenient justification to continue harvesting large trees. 

In recent decades, the consequences of this history of clearcutting followed by 

overstocking in fire-suppressed secondary forests (Rautiainen et al. 2011) have come to 

fruition: wildfires are more severe and burn with more homogeneous effects over larger 

contiguous areas than ever before (Hessburg et al. 2005, North et al. 2015, Abatzoglou et 

al. 2021). Waking from the dream that was the colonial paradigm, managers now 
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acknowledge that natural disturbances – including fire, insects, and disease – are essential 

elements of a healthy and resilient forest (Kolb et al. 1994, Raffa et al. 2009). This has 

given rise to the conventional paradigm of natural disturbance-based management 

(Drever et al. 2006), which is accompanied by a reemergence of traditional ecological 

knowledge (Turner and Spalding 2013) promoting fire use (van Wagtendonk 2007) and 

preservation of mature forests (Swanson and Franklin 1992). Unfortunately, the legacy 

effects of colonialization (namely, fire suppression) make the task of restoring forests 

more difficult (North et al. 2022). Moreover, the lingering misconception that a healthy 

forest is a young, dense, and rapidly growing one that must be protected from all 

disturbance processes is still persistent at even the highest levels of policy making 

(Luyssaert et al. 2008). 

As the effects of climate change compound with the extended consequences of 

historical forest mismanagement, managers are increasingly required to balance the 

conflicting objectives of preserving habitat and biodiversity, maximizing carbon storage 

to mitigate climate change, and continuing harvest to keep pace with the demands of a 

rapidly growing populous; all while reintroducing fire to the delicate tinderbox that is 

wNA. Extensive efforts are being made to increase forest resistance and resilience in the 

face of these compound stressors (Halpern 1988, Churchill et al. 2013, DeRose and Long 

2014, Hood et al. 2016, Bryant et al. 2019). However, a contradiction has arisen that 

requires further refinement of the new healthy forest paradigm as we enter the era of 

climate change: fire, insects, and disease are natural and necessary components of forest 

ecosystems that cannot be indefinitely suppressed; yet, climate change is intensifying 

these stressors, creating novel dynamics that threaten forest survival (Raffa et al. 2008, 
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Jactel et al. 2012, Weed et al. 2013, Lancaster et al. 2017). Given that eradication of these 

disturbances is not advisable nor tenable, the natural next step in forest resilience research 

is to identify equal and opposite mechanisms of facilitation that might be harnessed by 

managers to reduce the magnitude of forest loss (Simard and Austin 2010, Gorzelak et al. 

2015). In the absence of this more holistic perspective, even the best-intentioned 

silvicultural treatments may exacerbate climate change impacts (Suttle et al. 2007, Jactel 

et al. 2009, Clark et al. 2016). 

 
Data Summary 

This dissertation draws upon the Smithsonian Forest Global Earth Observatory 

(ForestGEO) network of permanent forest monitoring sites (Anderson-Teixeira et al. 

2015, Davies et al. 2021), which provides a holistic view of forest functioning by 

censusing all woody stems ≥1 cm in diameter, tracking demography over time, surveying 

physical and chemical soil properties, and investigating biotic drivers of tree mortality. 

The opportunity to investigate interactive and indirect climate effects in mature forests of 

wNA was provided by the long-term, spatially explicit sample of both fine-scale 

environmental heterogeneity within each site and regional-scale differences in edaphic 

factors and forest type between sites (Fig. 1.1). The large continuous spatial scale (>10 ha 

each), large tree sample size (~100,000 individuals), and annual sampling interval 

allowed investigation of interactions between the distantly located large-diameter trees 

and assessment of their endemic (i.e., low rate) mortality processes over time (Lutz 

2015).  

The Wind River Forest Dynamics Plot (WFDP) represents low-elevation mixed-

conifer forests of the Pacific Northwest, USA that have among the highest carbon 
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stocks in the world (Smithwick et al. 2002, Lutz et al. 2014). Recent work has shown 

these to contain 2 to 3 times more total carbon than other northern temperate forests and 

even more aboveground biomass than most tropical forests (Keith et al. 2009, Anderson-

Teixeira et al. 2021). The mild coastal climate allows trees to continue fixing carbon 

throughout the year (Emmingham and Waring 1977, Emmingham 1982), and infrequent 

fire return intervals (Shaw et al. 2004) allow trees to attain very large statures and old age 

(Waring and Franklin 1979). Despite the theoretical potential of these old forests to 

continue accumulating carbon, biomass is decreasing in the WFDP: the majority of 

biomass is stored in large trees, and these are recently experiencing higher mortality rates 

than expected (Lindenmayer et al. 2012, Piponiot et al. 2022).  

The Yosemite Forest Dynamics Plot (YFDP) represents mid-elevation mixed-

conifer forests of the Sierra Nevada, USA (Lutz et al. 2013). Fire is the greatest source 

of outward carbon flux in forests: the YFDP burned midway through the study, 

allowing the investigation of interacting climate-fire drivers of carbon sequestration and 

storage. Though historically exposed to frequent fire, fire suppression since 1900 

dramatically increased forest densities (Barth et al. 2015), and together with 

unprecedented global change-type drought (Adams et al. 2009, Millar and Stephenson 

2015, Belmecheri et al. 2016), resulting in higher severity fire than was historically 

observed (Scholl and Taylor 2010, Kane et al. 2015). Thus, while fire reintroduction 

began the important work of restoring the forest to pre-fire suppression densities, the 

unexpectedly high mortality rates of large-diameter trees in the five years post-fire 

compounded carbon losses and revealed unforeseen legacy effects of fire suppression 

(Stenzel et al. 2019). 
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The Utah Forest Dynamics Plot (UFDP) represents high-elevation forests of the 

interior west and Rocky Mountain regions, comprising microcosms of multiple forest 

types: aspen, spruce/fir, and five-needle pines in treeline ecotones (summarized by 

Furniss et al. 2017). The UFDP contains individuals belonging to the longest-lived 

gymnosperm species (Pinus longaeva) and angiosperm species (Cercocarpus ledifolius) 

on earth. The life history traits of these species, extremely slow decomposition rates due 

to cold temperatures, and infrequent fire return intervals (DeRose and Long 2012b, 

Halofsky et al. 2018) allow millennial-scale carbon storage in living biomass and 

deadwood pools (Lutz et al. 2021a, Birch et al. 2021). Being a temperature-limited forest, 

this provides the opportunity to examine possible positive climate impacts on growth and 

recruitment (Peterson and Peterson 2001) alongside possible negative climate impacts via 

increased prevalence of insects and disease (DeRose and Long 2012a).  

The research contained in this dissertation builds upon theoretical ecology (Herms 

and Mattson 1992, Chesson 2000, Barbosa et al. 2009, Das et al. 2013) and field 

observations at these three monitoring sites to 1) test the continued relevance of past 

paradigms in a climate-changed future, 2) elucidate previously unseen mechanisms of 

forest responses to changing climate, and 3) lay the foundation for a holistic future 

paradigm guiding forest management and climate change mitigation in forests. This work 

is organized by two overarching themes: Chapters II and III quantify and forecast the 

direct and indirect effects of climate change on tree mortality in mature western forests at 

the individual, population, and community levels of organization; and Chapters IV and V 

identify manageable pathways of facilitation among trees and their mutualists to increase 

forest resistance and resilience to climate-altered disturbances across centennial temporal 



11 

 

periods and regional spatial scales.  
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Figures 

Figure 1.1.  Locations in North America of the three Smithsonian Forest Global Earth 
Observatory field sites that were the focus of this dissertation: Wind River Forest 
Dynamics Plot (WFDP), Yosemite Forest Dynamics Plot (YFDP), and Utah Forest 
Dynamics Plot (UFDP). Plot sizes, average elevation above sea level, and climatic zoning 
described. Tree photos corresponding to each plot depict Pseudotsuga menziesii (WFDP), 
Pinus lambertiana (YFDP), and Pinus longaeva (UFDP). 
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CHAPTER II 

CLIMATE EXTREMES MAY BE MORE IMPORTANT THAN CLIMATE MEANS 

WHEN PREDICTING SPECIES RANGE SHIFTS1 

 
Abstract 

It is well known that temperatures across the globe are rising, but climatic 

conditions are becoming more variable as well. Forecasts of species range shifts, 

however, often focus on average climate changes while ignoring increasing climatic 

variability.  In particular, many species distribution models use space-for-time 

substitution, which focuses exclusively on the effect of average climate conditions on the 

target species across a geographic range and is blind to the possibility of range-wide 

population collapse with increasing drought frequency, drought severity, or climate 

effects on other co-occurring species. Relegated to assessments of broad demographic 

patterns that ignore underlying biological responses to increasing climatic variability, this 

prevalent method of distribution forecasting may systematically underpredict climate 

change impacts. We compare six models of survival and abundance of a subcanopy tree 

species, Taxus brevifolia, over 40 years of past climate change to disentangle multiple 

sources of uncertainty: model formulation, scale of climate effect, and level of biological 

organization. We show that drought extremes increased Taxus individual- and 

population-scale mortality across a wide geographic climate gradient, precluding 

detection of a monotonic relationship with average climate. Individual-scale climatic 

variability models derived from longitudinal data had the highest predictive accuracy 

                                                 
1 This chapter was published in Climatic Change on October 1, 2020, and should be cited as: Germain, S. 
J., and J. A. Lutz. 2020. Climate extremes may be more important than climate means when predicting 
species range shifts. Climatic Change, 163: 579-598. http://dx.doi.org/10.1007/s10584-020-02868-2  
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(82%), whereas mean climate models had the lowest accuracy (<65%). Our results 

highlight that conclusions drawn from forecasts of average warming alone likely 

underpredict climate change impacts by ignoring indicators of range-wide population 

declines for species sensitive to increasing climatic variability. 

 
Introduction 

Predicting species range shifts is a central aim of climate impacts research 

(Parmesan and Yohe 2003), both to identify conservation priorities (VanDerWal et al. 

2013, Urban 2015) and to inform coupled global climate models (Stark et al. 2016, Fisher 

et al. 2018). Changing forest distributions are a particularly large source of uncertainty 

when predicting future climate (Purves and Pacala 2008) due to the prominent role of 

forest biomes in regulating global carbon and hydrological cycles (Snyder et al. 2004, 

Adams et al. 2010), in tandem with the complex biotic and abiotic processes that govern 

forest dynamics (Franklin et al. 1987, 2002). Distribution forecasts in forests must 

therefore consider the suite of changes associated with global warming: gradually 

increasing average temperatures can allow species adaptation (Davis and Shaw 2001), for 

example, while extreme climate events (e.g., drought) can lead to rapid die-offs due to 

strains on traits that developed under historic ranges of variability (Breshears et al. 2005, 

McDowell et al. 2008, Allen et al. 2010, Chevin et al. 2013). Though climatic extremes 

are projected to grow in severity and frequency with continued climate change 

(Easterling et al. 2000, Field et al. 2012, Dai 2013), many species distribution models 

remain focused on average climate changes (e.g., Sitch et al. 2008).  

The confounding roles of non-climatic factors, including trophic interactions 

(Bentz et al. 2010, Wisz et al. 2013), tree neighborhoods (Larson et al. 2015, Ettinger and 
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HilleRisLambers 2017), and disturbance history (Lenoir et al. 2010, Wason and Dovčiak 

2017), are gaining attention in efforts to reduce uncertainty persistent in distribution 

forecasting (Thuiller 2004, Buisson et al. 2010). Likewise, recent research has 

demonstrated species responses to shifting climate patterns, not just average climate 

changes, associated with global warming (Parmesan et al. 2000, Knapp et al. 2008). 

Nonetheless, models of species distributional shifts tend to ignore these confounds and 

distinctions (Clark et al. 2011). In particular, the commonly used space-for-time 

substitution approaches (SFT) assume that species distributions are driven primarily by 

average climate changes (Elith and Leathwick 2009, Blois et al. 2013). However, species 

sensitive to climate extremes, such as increased annual drought compared to site averages 

(Easterling et al. 2000, Condit et al. 2004, Allen et al. 2010), are more vulnerable to 

increasing drought associated with climate change (Walther 2003, Dai 2013, Das et al. 

2013). These species are less able to escape the effects of climate change via migration 

because interannual variability exists across the entire range (Parmesan et al. 2000, 

Condit et al. 2004). Increasingly variable climate may therefore contribute to population 

declines and higher extinction risk (Lenoir and Svenning 2015), but remains unexplored 

by most distribution models (Clark et al. 2011, Fordham et al. 2012). 

The primary approach to distribution forecasting utilizes space-for-time 

substitution (e.g., climatic niche models, Dynamic Global Vegetation Models [DGVMs]). 

These models compare average climate conditions across a species’ range to make 

inferences about climate change-induced shifts in the future (Thuiller 2003). 

Contemporary relationships between species occurrences and average regional climate 

are extrapolated to predict future occurrences with climatological change over time. 
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Assumptions of SFT forecasts include: 1) species are in equilibrium with climatic and 

environmental factors; 2) phenotypic variability, evolutionary adaptation, biotic 

relationships, and disturbance regimes can be ignored (Franklin 2010); and 3) species 

will shift in tandem with the average climatic niche they currently occupy as it moves 

with changing climate.  

While SFT models can be highly predictive over centennial timescales (Hijmans 

and Graham 2006, Blois et al. 2013), their usefulness in predicting species responses to 

climate over the shorter, decadal time frames necessary for managers to develop climate-

adaptation strategies has been called into question (Franklin 2010, Brun et al. 2016). For 

instance, forest communities vary in their spatial patterns throughout geographic ranges, 

reflecting past community assembly processes (Freund et al. 2014, Birch et al. 2019), but 

SFT models are blind to population and community dynamics (Fordham et al. 2012, 

2013). Importantly, model assumptions may be violated in a climate-change context, as 

no-analogue climates (Williams and Jackson 2007), novel community assemblages 

(Suttle et al. 2007, Gilman et al. 2010), and altered disturbance regimes (Littell et al. 

2010, Franklin et al. 2016) can disrupt species-environment equilibria.  

An alternative approach is longitudinal modeling, which correlates climatic 

fluctuations over time with observed temporal population trends to forecast climate-

induced range shifts (Clark et al. 2011, Renwick et al. 2018). These models assume: 1) 

population responses to interannual climate can be extrapolated to long-term climate 

trends, and 2) phenotypic variability and evolutionary adaptation can be ignored. Unlike 

SFT, longitudinal models can operate across levels of biological organization to capture 

individual- and population-level responses to climate. Models able to consider climate 
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effects on individual organisms can disentangle the unique and perhaps contrasting 

responses of mortality, recruitment, and growth processes (Lutz et al. 2014, Wason and 

Dovčiak 2017) while controlling for variation in stand age or site productivity (Larson et 

al. 2008). Likewise, individualized information can increase the power of statistical tests 

due to replication being at the level of the individual and thus detect relationships that 

may not be apparent with population-level datasets (but see Tredennick et al. 2017). 

Despite these benefits, limited data and computational power often relegate longitudinal 

models to describing net demographic patterns at the population scale rather than 

underlying biological processes.  

Space-for-time and longitudinal models alike often recognize climate impacts as 

range shifts down a climate gradient (i.e. to cooler, wetter climates associated with higher 

elevations or latitudes; a “warming fingerprint”)(Parmesan and Yohe 2003). This pattern 

is identified via positive species responses (e.g., population increase) at the leading edge 

of species distributions (i.e. cooler, wetter locations in SFT models; cooler, wetter years 

in longitudinal models) and/or negative responses at the trailing edge (Gedir et al. 2015, 

Lenoir and Svenning 2015). When opposite trends are observed, including no 

distributional shifts or equal shifts up and down the climate gradient (Harsch et al. 2009, 

Chen et al. 2011, Rapacciuolo et al. 2014), it is concluded that species distributions are 

unlikely to shift with changing climate. Species’ ranges can shift dramatically, however, 

following die-offs associated with climate extremes (Thomas et al. 2004, VanDerWal et 

al. 2013). This is particularly evident in forests, where altered drought regimes reduce 

performance of trees adapted to cooler/wetter sites and those adapted to warmer/drier 

sites alike, even if mean annual climate stays constant (Walther 2003, Knapp et al. 2008, 
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Anderegg et al. 2013).  

We add to ongoing efforts to improve vegetation components of earth system 

models (Moorcroft 2006, Purves and Pacala 2008) by quantifying the potential for bias in 

forecasts utilizing climate means to estimate species range shifts. We develop a 

forecasting ensemble that synthesizes data from a Smithsonian Forest Global Earth 

Observatory site (ForestGEO; Anderson-Teixeira et al. 2015) and region-wide forest 

monitoring sites to decouple uncertainty associated with temporal scale of climate effect 

(relative or average climate differences) from uncertainty related to model formulation. 

The prediction ensemble: 1) compares predictions of longitudinal and SFT models to 

determine whether species’ responsiveness to climate extremes may preclude detection of 

an average climate effect using the subcanopy gymnosperm, Taxus brevifolia, as an 

example; and 2) assesses climate effects at the individual and population scales to 

characterize species responses in terms of biological processes and net demographic 

change. No model prediction ensemble of which we are aware has compared individual- 

and population-scale longitudinal models to SFT models, presenting the unique 

opportunity to also decouple uncertainty related to scale of biological organization from 

that related to scale of climate effect. We then critically examine the disparate ecological 

interpretations of each model to identify primary sources of uncertainty in forecasts of 

distributional change, thereby improving our ability to recognize climate change impacts 

and forecast future species distributions. 
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Methods 

Species and Site Data 

Pacific yew (Taxus brevifolia Nutt.) is a near-threatened tree species (Thomas 

2013) with considerable ecological, social, and economic value. Recent reports show that 

mortality rates for Taxus in southern Washington State, USA have increased three- to 

four-fold within the past eighty years (Franklin and DeBell 1988, Busing et al. 1995, 

Larson and Franklin 2010, Lutz et al. 2014). Shade-tolerant understory tree species like 

Taxus may be particularly sensitive to extreme drought, as these species are adapted to 

low light levels and low vapor deficits of the understory microclimate and espouse lower 

water-use efficiencies than drought-tolerant pioneer species (Harrington and Reukema 

1983, Lassoie et al. 1985). In the absence of acute disturbances, diminishing Taxus 

populations may therefore be an early indicator of broader forest responses to warming 

and drying climate trends (HilleRisLambers et al. 2015). 

We combined two long-term, spatially explicit datasets spanning 690 m elevation 

to examine Taxus populations within the Pseudotsuga-Tsuga (Douglas-fir/western 

hemlock) forest zone (Franklin and DeBell 1988) of the Pacific Northwest, USA (Table 

2.1; Fig. 2.1). In both datasets, all trees ≥5 cm diameter at breast height (DBH; 1.37 m) 

were mapped relative to neighboring trees and revisited at roughly 5-yr intervals to track 

individual survival and sapling recruitment. This protocol enabled the assessment of 

Taxus survival and population growth over time while accounting for competitive 

dynamics occurring in local tree neighborhoods. The Wind River Forest Dynamics Plot 

(WFDP)(Lutz et al. 2013) dataset included 23 years within 4 hectares of mature forest in 
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the T.T. Munger Research Natural Area in Washington State, USA. The Pacific 

Northwest Permanent Study Plot (PSP)(Acker et al. 1998) dataset comprised nineteen 1-

ha to 2-ha, mature forest stands containing at least two live Taxus stems in the year of 

establishment and spanning 24 to 35 years of study (Table 2.1). All twenty stands have 

temperate maritime climates (cool, wet winters; warm, dry summers) with a strong 

elevational gradient: higher elevations experience colder, longer winters and cooler, 

shorter summers compared to lower elevations (Table 2.1, Fig. A.6).  

For each stand, we developed population growth summaries: 1) annual population 

growth rate, calculated as the net change in abundance of Taxus stems ≥5 cm DBH over 

the study duration; and 2) local extinction time, defined as the number of years from the 

study end date until fewer than one Taxus tree ha-1 would be expected per the observed 

population growth rate.  

(1) L୨ ൌ P଴,୨  e
୰ౠ ୲   

This was found by solving for the time parameter (t) of a simple exponential 

growth model (Eq. 1) for each stand, j, where P0 is Taxus abundance ha-1 in the final 

study year, r is the observed population growth rate, and L is the local extinction 

threshold, which we set to 0.99 (less than one tree ha-1). 

 
Ensemble Structure 

Our prediction ensemble included six models representing one parametric and one 

non-parametric model each of: individual-level longitudinal, population-level 

longitudinal, and population-level SFT models (Table 2.1). We compared parametric and 

non-parametric formulations to distinguish between those constrained by distributional 
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and homoscedasticity assumptions (parametric) and those more powerful when 

underlying distributions are unknown (non-parametric). These six model forms have been 

commonly applied throughout the biogeography and ecology forecasting literature, 

allowing generalizability to prior research. The ensemble estimated three parameters 

related to Taxus demography: 1) individual mortality probability / instantaneous mortality 

probability (both individual-level longitudinal models); 2) population growth (one 

population-level longitudinal model); and 3) population abundance (both population-level 

spatial models, one population-level longitudinal model; see Model Formulations).  

All models counted trees that were present at study establishment and trees that 

recruited during the study period (including year of recruitment for longitudinal models). 

Individual- and population-level comparisons were only possible using longitudinal 

models, as SFT models are unable to consider the individual scale. The primary 

difference between individual and population models was that population-level models 

quantified abundance or net population growth (i.e. the balance of recruitment and 

survival), while individual-scale models quantified survival of individual trees. 

Comparison between the two model types identified how individual survival processes 

scale up to the population. Agreement between models would suggest that survival (not 

recruitment) was the predominant process governing population growth and abundance; 

this is often the case in systems with long-lived species (Silvertown et al. 1993).  

We validated models using 10-fold cross-validation following the methods of 

Cutler et al. (2007), which randomly selects 90% of the data for training at each of ten 

iterations, allowing all datapoints to be used once for training and once for testing. Using 

the out-of-sample predictions, we computed: 1) model accuracy (variance explained or 
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classification accuracy, where applicable); and 2) mean absolute deviance/mean ratios 

(MADMR)(Kolassa and Schütz 2007), which is mean absolute deviance divided by the 

mean observed response value. MADMR is an alternative to mean absolute percent error 

(MAPE) that is better suited to handling zeros while remaining scale-free, therefore 

allowing a direct comparison of error between models built using different units or 

response values. All statistical analyses were performed using the R version 4.0.2 

statistical software (R Core Team 2020). 

 
Model Parameters 

Climate 

We analyzed Taxus responses to changes in biologically meaningful measures of 

climate to address recent criticisms of the temperature-driven approach (Stephenson 

1998, VanDerWal et al. 2013). Interactions between temperature and precipitation can be 

important determinants of plant photosynthetic rates and survival (Daniels and Veblen 

2003). We therefore used climatic water balance models to calculate drought-related 

climate covariates of physiological importance to plants (Stephenson 1998, Lutz et al. 

2010): snowpack and climatic water deficit (Deficit). In this region, low snowpack has 

not historically been concomitant with high Deficit, and vice versa. In years when low 

snowpack and high Deficit happen to cooccur, tree mortality can be increased (Germain 

and Lutz 2022). Climatic water balance models were made for each site using monthly 

temperature and precipitation time series from the Parameter-elevation Regression on 

Independent Slopes Model (PRISM) data set (Daly et al. 2008) at an 800-m spatial 

resolution following the methods of Hostetler and Alder (2016) and McCabe and 
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Markstrom (2007). Climate values differed between stands but were the same for all trees 

within a stand.  

Longitudinal models captured climate extremes by using maximum modeled 

annual Deficit anomaly (maximum Deficit) and minimum modeled annual snowpack 

anomaly (minimum snowpack), which were chosen due to known effects of drought on 

tree physiology and survival (McDowell et al. 2008, Lian et al. 2020). These values were 

found by: 1) standardizing annual Deficit and snowpack relative to the long-term (1970 

to 2017), stand-level averages, thus controlling for different climate averages among sites 

and expressing climatic extremes relative to those averages, then 2) selecting the 

maximum Deficit anomaly and minimum snowpack anomaly within each time interval 

between measurement years per stand.  

Space-for-time models captured average climate differences between stands by 

using mean modeled annual Deficit and mean modeled annual snowpack over the study 

duration for each stand (Table 2.1). These values were standardized across all stands to 

generate climatic units that would be comparable with longitudinal models. We also ran 

SFT models with maximum Deficit anomaly and minimum snowpack anomaly observed 

during the study timeframe (calculated by the same methods as for longitudinal models) 

to ensure that standardization procedures did not change model inferences (no 

meaningful differences; Tables A.1, A.2). 

 
Abiotic and Biotic Covariates 

To isolate the effects of climate, all six models controlled for the effects of 

elevation (m) and biotic interactions among forest trees, and individual-level models 

additionally included log-transformed tree DBH to control for density-independent size 



35 

 

asymmetries in survival. Elevation was standardized across the range to express relative 

differences between stands; elevation was measured at the stand scale and was therefore 

considered to be the same for each tree within the same stand (i.e. for individual-level 

models). 

To control for prevailing biotic interactions, we calculated woody species richness 

(number of species) and the Hegyi crowding index (Eq. 2)(Hegyi 1974, Biging and 

Dobbertin 1995), which quantifies the potential for competitive interactions among trees. 

The Hegyi index, 𝐻, is the distance- and diameter-weighted sum of all tree neighbors, j, 

within a 10-m radius of focal tree, i. The 10-m radius for calculating the Hegyi index and 

species richness was chosen based on previously identified interaction distances in 

similar forests (Das et al. 2008, Lutz et al. 2014, Das et al. 2018). 

(2) 𝐻௜ ൌ ∑
஽஻ுೕ

൫ ଵା஽௜௦௧௔௡௖௘೔ೕ ൯ሺ ஽஻ு೔ ሻ
   

Separate Hegyi values were calculated for conspecific neighbors and 

heterospecific neighbors based on previous research indicating these have distinct effects 

(Lutz et al. 2014, Germain and Lutz 2022). For individual-level models, neighborhood 

covariates were standardized per stand to express relative differences between individuals 

within each stand over time, and to control for site-specific differences in productivity; 

for population-level longitudinal models, these were standardized across all stands to 

express relative differences between stands over time across the entire geographic range; 

for SFT models, we chose the maximum neighborhood covariate values observed per 

stand over the study timeframe, then standardized across all stands to express relative 

differences between stands (but not changing over time). 
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Model Formulations 

Individual-level Longitudinal Models 

We tested generalized linear mixed models (parametric) and Cox survival analysis 

(semi-parametric). For both models, the interaction between maximum Deficit and 

minimum snowpack was tested and retained if significant at α = 0.05. Though our 

analysis included stand-level (not individual-tree level) climate values, tree-specific 

Hegyi and richness parameters produced functional sample sizes equal to tree abundance 

per model (see sample sizes below). 

To model individual mortality probabilities, we created generalized linear mixed 

models (GLMM; Eq. 3; lme4 package; Bates et al. 2015): 

(3) 𝑝̂௜,௝ ൌ  ௘ 
ßబ,೔ శ ೉భ,೔,೟

ᇲ ൈഇభ శ ೉మ,ೕ,೟
ᇲ ൈഇమ శ ೉య,ೕൈഇయ శ ೉ర,೔,೟ൈഇర

ଵ ା ௘ 
ßబ,೔ శ ೉భ,೔,೟

ᇲ ൈഇభ శ ೉మ,ೕ,೟
ᇲ ൈഇమ శ ೉య,ೕൈഇయ శ ೉ర,೔,೟ൈഇర

  

where p̂ is a Bernoulli distributed random variable representing tree mortality probability 

for individual, i, at site, j, which is related (using the Logit link) to sets of tree 

neighborhood (𝑋ଵ
ᇱ) and climate covariates (𝑋ଶ

ᇱ ) at time, t, plus elevation (𝑋ଷ), and tree 

DBH (𝑋ସ); with corresponding vectors of coefficients (θ) describing the individual effects 

of each covariate on survival probability. We included tree-specific random effects to 

allow intercepts to vary for each individual (i.e. accounting for repeated measures over 

time; n = 1256). Validation metrics were calculated using a classification threshold of 

0.053, which was obtained by optimizing sensitivity and specificity of model predictions 

(Fig. A.1). 

To model individual mortality hazard (left-censored, meaning that non-zero 
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mortality hazard existed for a period before the study conception), we used a Cox 

analysis (Eq. 4; rms and simPH packages; Gandrud 2015, Harrell Jr. 2020): 

(4) 𝜆௜,௝,௧ ൌ 𝜆଴,௜,௧ 𝑒
  ௑భ,೔,೟

ᇲ ൈఏభ ା ௑మ,ೕ,೟
ᇲ ൈఏమା ଡ଼య,ೕ,೟ൈఏయ ା ଡ଼ర,೔,೟ൈఏర 

where instantaneous mortality probability (i.e. mortality hazard; 𝜆) for individual, i, at 

time, t, is a function of the linear combination of time-specific neighborhood, climate, 

elevation, and DBH covariates scaled by an unspecified baseline hazard function, 𝜆଴. 

Because Cox regression is a time-to-event model, we ensured that data availability did 

not bias this model by restricting the dataset to trees residing in the eleven stands with 

exactly six discrete time steps, between which the number of years spanned 4 to 6 (mode 

= 5; total timespan = 24 to 30 years). Generalized estimating equations were used to 

create robust standard errors and account for repeated measures of each tree over time (n 

= 888)(Therneau et al. 2013). Repeated measures were present because all time-series 

were combined into a single risk set to allow individual tree mortality hazard to be 

calculated in the context of all observed climate covariate values over time.  

 
Population-level Longitudinal Models 

We compared an autoregressive linear mixed model (AR1; parametric) with 

Random forests (non-parametric). To model population abundances (continuous 

variable), we built an autoregressive linear mixed model (Eq. 5; lme4 package; Bates et 

al. 2015): 

(5) 𝑦௝,௧ ൌ 𝑦௝,௧ିଵ ൅  𝑋ଵ,௝,௧
ᇱ ൈ 𝜃ଵ  ൅  𝑋ଶ,௝,௧

ᇱ ൈ 𝜃ଶ  ൅  Xଷ,௝ ൈ 𝜃ଷ 

where y is tree abundance per hectare within each forest stand, j, for year, t, modeled as a 
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function of tree abundance in the previous year (yt-1) plus tree neighborhood, climate, and 

elevation covariates (n = 20). The interaction between maximum Deficit and minimum 

snowpack was tested and retained if significant at α = 0.05. We allowed the intercept and 

slope of tree abundance in the previous year (yt-1) to vary randomly with tree stand to 

account for disparate initial population sizes at each stand, thus preventing dynamics at 

stands with the highest Taxus abundances from driving model outcomes. 

To model population growth (expressed categorically as increasing, stable, or 

decreasing), we used Random forests (randomForest and rfPermute packages; Liaw and 

Wiener 2002, Archer 2020). Random forests is a machine learning extension of 

Classification and Regression Trees (CART) that creates an ensemble of many 

classification trees (or regression trees, if response is continuous; n = 5000). The 

ensemble is created by: 1) bootstrap aggregation of data to create parallel trees, then 2) 

random permutation of predictor covariate placements at each tree node, where predictors 

at earlier tree nodes are assumed to have a stronger relationship with the response than 

predictors placed at later nodes. Interactions between covariates are captured implicitly 

by the branching structure of each tree. The predictive abilities of covariates are 

quantified by variable importance ranks, which are established on the basis of percent 

decrease in classification accuracy (or in regression, percent increase in mean squared 

error) when predictors are placed at earlier nodes along decision trees (i.e. modeled 

having stronger relationship with response variable). Total classification accuracy (or in 

regression, variance explained) by Random forests refers to the ensemble model. P-

values for covariates were attained by permuting the response variable 100 times to 

produce a null distribution of variable importance, against which the importance metric 
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generated by the original tree ensemble was compared and assessed at α = 0.05. 

 
Population-level Space-for-time Models 

We compared a simple linear model (parametric) with Random forests (non-

parametric). Because no time component was considered by these models, the response 

variable was maximum tree abundance per hectare that was observed over the study 

timeframe (though minimum and mean were tested and produced similar results).  

To model population abundances (continuous variable), we used a simple linear 

regression model (Eq. 6): 

(6) 𝑦௝ ൌ 𝑋ଵ,௝
ᇱ ൈ 𝜃ଵ  ൅  𝑋ଶ,௝

ᇱ ൈ 𝜃ଶ  ൅  Xଷ,௝ ൈ 𝜃ଷ 

where y is maximum tree abundance per hectare within each forest stand, j, over the 

study period modeled as a function of tree neighborhood, climate, and elevation 

covariates. The interaction between mean Deficit and mean snowpack was tested and 

retained if significant at α = 0.05 (stats package; R Core Team 2020).  

To model population abundances (continuous variable), we used Random forests 

(randomForest and rfPermute packages; Liaw and Wiener 2002, Archer 2020). Rather 

than building classification trees, we regressed Taxus maximum abundance at each site 

on the site-specific climatic, neighborhood, and elevation covariates (described in 

Population-level Longitudinal Models, above). Total variance and P-values were 

obtained as previously described. 

  



40 

 

Results 

Summary 

Climate 

Between 1977 and 2017, all sites showed increasing modeled annual Deficit, 

decreasing modeled annual snowpack, and high interannual variability for both (Fig. A.6; 

P < 0.05 for all sites’ climatic trends). These trends are projected to continue with warmer 

temperatures and more variable precipitation (Littell et al. 2010, Dalton et al. 2013). 

Climatic anomalies showed roughly similar trends as annual Deficit and snowpack, but 

statistical significance was equivocal among sites at α = 0.05 (increasing high Deficit 

anomaly: 5% sites; decreasing low snowpack anomaly: 25% sites). Overall, Deficit 

became higher on average, with higher extremes in the most recent decade, while 

snowpack became lower on average and with generally lower extremes (Fig. A.6). 

 
Tree Populations 

Average Taxus abundance declined overall (mean annual population growth rate 

= -0.09%, SD = 1.46%). The highest declines (-2.4% to -2.7% yr-1) were evident at the 

WFDP and Ohanapecosh River, Washington (Fig. 2.1, Table 2.1), where Taxus is 

projected to become locally extinct within 189 and 26 years, respectively. Taxus 

distributions did not show a clear warming fingerprint: stands at the leading edge of the 

mean climate gradient (i.e. higher elevations and latitudes) did not have higher population 

growth rates than those at the trailing edge (Tables 2.1, 2.3). However, two of the three 

highest elevation sites (>1000 m) showed positive population growth (Table 2.1), and 

individual tree survival was enhanced at higher elevations (Table 2.3).  
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Climate extremes (i.e. anomalies) were more important than climate means for 

predicting Taxus individual survival and population growth. Longitudinal models showed 

that climatic extremes had strong negative relationships with Taxus survival and 

population growth, which appear to have obscured a relationship with average climate 

that may otherwise have been evident in SFT models. Consequently, Taxus’ relationship 

with climate was only apparent in longitudinal models. The relative climate, individual-

scale Cox models had the highest predictive accuracy of the six models tested (81.8%; 

Table 2.2) and among the lowest error rates (MADMR = 0.08; Table 2.2).  

 
Ensemble Details 

Individual-level Longitudinal Models 

Individual-tree mortality probability (GLMM) and mortality hazard (Cox) were 

increased by low elevations, high conspecific and heterospecific neighbor density (Hegyi 

indices), high Deficit, and low snowpack (Table 2.3). Even after accounting for tree 

density and elevation (i.e. average climate) effects, high Deficit and low snowpack 

extremes increased mortality. In both models, an interaction between snowpack and 

Deficit showed that survival was highest when snowpack was high and Deficit was low 

(Figs. A.2, A.3), but that high snowpacks could not ameliorate Deficit effects after 

Deficit surpassed ~2.7 SD. Predictive accuracy was 14% higher for Cox models than 

GLMM (Table 2.2). Models showed similar significance and direction of effects for each 

variable, except for species richness (increased mortality probability but not hazard).  
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Population-level Longitudinal Models 

In agreement with individual-level models, the AR1 population model identified 

that small Taxus populations were related to higher maximum Deficit (Table 2.3). 

Though not significant at α = 0.05, Random forests reflected the pattern of Taxus 

population decline with moderately high Deficits (1-3 SD) and at lower elevations (<0 

SD; Fig. A.4). In contrast with individual-level models, small Taxus populations were 

related to low species richness and low heterospecific neighbor density. Random forests 

accuracy was comparable to that of individual-level GLMM at 70.6%. AR1 accuracy 

overall was highest (R2 = 99.5%; Table 2.2), but this came almost entirely from random 

effects (autoregression; conditional R2 = 99.0%) and predictive abilities of fixed effects 

was low (i.e. climate, neighborhood, and elevation covariates; marginal R2 = 1.8%). 

 
Population-level Space-for-time Models 

Average climate covariates were not predictive in either model. SLM and 

Random forests agreed that small Taxus populations were associated with low species 

richness and low conspecific neighbor density (Fig. A.5). Predictive accuracy was 6% 

higher for Random forests than SLM, but both SFT models had lower accuracy than 

longitudinal models (Table 2.2). 

 
Discussion 

Our study highlights the importance of ensemble forecasting by demonstrating 

how different models can lead to contradicting inferences: because Taxus was more 

sensitive to climate extremes than climate means, SFT models suggested stable Taxus 

demography, while longitudinal models predicted population declines with continued 
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climate change. Conclusions drawn from longitudinal models are most consistent with 

observed Taxus declines in recent decades (Table 2.1). These findings illustrate how 

sensitivity to climate extremes creates uncertainty in species distribution models relying 

on climate means by obscuring unidirectional shifts along a geographic climate gradient 

(Lenoir et al. 2010, Boisvert-Marsh et al. 2014). Considering the many 

oversimplifications and assumptions that are violated by SFT models in a climate change 

context (Williams and Jackson 2007, Franklin 2010, Fordham et al. 2013), longitudinal 

model predictions that account for climatic variability and allow explicit consideration of 

biological mechanisms are likely to be more useful for developing species conservation 

and climate change mitigation strategies (Iverson and McKenzie 2013).  

Though we used a temperate tree species as an example, climate extremes can 

induce population declines across taxa (George et al. 1992, Parmesan et al. 2000, Carey 

and Alexander 2003, Matthews and Marsh-Matthews 2003). Conclusions about SFT 

forecasting methods are thus generalizable to the extent that other species share 

vulnerabilities with Taxus, including thermo-sensitivity, low phenotypic plasticity, 

sessility, and dispersal limitation (Svenning et al. 2008, Bertrand et al. 2011, 

HilleRisLambers et al. 2015). For example, abundance declines are most often observed 

for non‐vagile and thermo‐sensitive animals (e.g., lizards and amphibians; Carey and 

Alexander 2003, Dubos et al. 2020), whereas distributions of highly motile animals (e.g., 

birds) often shift in accordance with a warming fingerprint (Lenoir and Svenning 2015). 

Likewise, species lacking the phenotypic plasticity required to rapidly respond to short-

term fluctuations can less effectively acclimate to climatic extremes (Agrawal 2001, 

Chevin et al. 2013). When these species are also sessile or dispersal-limited, populations 
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across the range are likelier to succumb to the negative effects of climate extremes 

(Coulson et al. 2001, Urban 2015).  

Observed tree species’ range shifts disproportionately fail to show a strong 

warming fingerprint, suggesting that these Taxus dynamics may represent other 

temperate tree species particularly well. For instance, the leading edges of a majority 

(79%) of terrestrial plant ranges have expanded with their changing climate envelope 

(Lenoir and Svenning 2015), while only half (52%) of treelines have done the same 

(Harsch et al. 2009, Zhu et al. 2012). Trees are often subject to lagged responses that are 

asynchronous with the rate of warming (Bertrand et al. 2011), likely due to species 

interactions (Suttle et al. 2007, Das et al. 2018), recruitment or dispersal limitations 

(HilleRisLambers et al. 2015), and disturbance legacies (Wason and Dovčiak 2017). We 

add to this body of work to show there is potential for widespread declines if species with 

these characteristics are also sensitive to climate extremes over regional scales. These 

factors together support the interpretation that tree range expansion is unlikely to keep 

pace with climate warming (Grabherr et al. 1995). It is therefore inappropriate to 

conclude that species ranges will remain stable with climate change based on SFT model 

outcomes incongruent with a warming fingerprint, as instead, we might expect range-

wide crashes due to increasingly variable climate patterns (Neumann et al. 2017). 

Synchronous responses across scales of biological organization support the 

interpretation that sensitivity to climate extremes may promote range-wide declines. 

Individual mortality processes were manifest as population declines at the stand scale, 

even after accounting for elevation gradients and biotic relationships. Recruitment of 

young trees was not sufficient to offset the increased mortality observed during periods of 
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drought (HilleRisLambers et al. 2015), highlighting the importance of mortality processes 

in driving demography of long-lived and/or recruitment-limited species, particularly in 

temperate forests (Silvertown et al. 1993, Lutz and Halpern 2006, Bertrand et al. 2011). 

Sensitivity to climate extremes suggests stronger local competition during drought (Clark 

et al. 2011, Das et al. 2011, Urban et al. 2012, Furniss et al. 2020), which was supported 

by increased individual mortality with high neighbor crowding (Hegyi indices; Table 

2.3). Sensitivity to Deficit could also suggest limited drought tolerance of established 

individuals (Voelker et al. 2018), resulting in physiological stress and concomitant 

vulnerability to forest pests (Mattson and Haack 1987, McDowell et al. 2008, Gaylord et 

al. 2013). In the absence of disturbances such as fire and pest epidemics that can 

accelerate forest decline (Bentz et al. 2010, Davis et al. 2019), these factors may together 

explain gradual declines that occur despite species being well-adapted to average 

climatological conditions (Bréda et al. 2006).  

Taxus decline predicted by our longitudinal models joins the growing body of 

work demonstrating negative impacts of increasing drought in forests globally (Breshears 

et al. 2005, Hutyra et al. 2005, Allen et al. 2010, Neumann et al. 2017). Though not as 

dramatic as rapid die-offs, gradually declining survival rates can substantially reduce 

carbon sequestration capacity across forested landscapes (Das et al. 2016). Moreover, 

increasingly frequent and severe drought in the future (Field et al. 2012, Dai 2013) may 

result in more rapid population crashes compared to the declines of recent decades (Zhu 

et al. 2012, Lenoir and Svenning 2015). By ignoring climatic variability and extreme 

events, reliance on SFT models likely contributes to the growing problem of 

underestimating habitat loss with changing climate (VanDerWal et al. 2013, Allen et al. 
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2015). 

Reliance on climate means in distribution models creates uncertainty that 

propagates to estimations of global ecosystem functionality with changing climate (Pan et 

al. 2013, Allen et al. 2015). In addition to anticipating future habitat for much of 

terrestrial biodiversity, accurately forecasting forest responses to climate change is 

necessary to obtaining realistic estimates of climate change itself due to strong regulation 

of global carbon and hydrological cycles by forests (IPCC 2019). Though some terrestrial 

components of coupled global climate models are rightly beginning to consider wildfire 

(Fisher et al. 2018), leading models continue to ignore the possibility of drought-induced 

population crashes (e.g., maximum stress mortality rate = 1%; Levis et al. 2004, Sitch et 

al. 2008). Nonetheless, forest loss due to increasing climatic variability may destabilize 

climate and associated habitat production at regional and global scales (Adams et al. 

2010, Stark et al. 2016). Such feedbacks have been noted for western temperate forests in 

particular (i.e. within the range of Taxus; Garcia et al. 2016, Swann et al. 2018), which 

tout some of the highest biomass carbon densities in the world (Smithwick et al. 2002, 

Keith et al. 2009, Lutz et al. 2018, Sillett et al. 2018). Climate extremes-associated Taxus 

decline support the interpretation that current carbon sinks could become carbon sources 

with increasingly variable climate (Cox et al. 2000).  

 
Conclusions 

Our study corroborates the growing understanding that SFT models built on 

climatic means cannot be relied upon to accurately forecast climate change effects in 

forests. SFT datasets may still be valuable tools, but individual-based, longitudinal data 

appear to be better suited to biogeographical forecasting amidst modern climate change. 
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It is increasingly important to supplement SFT datasets with a longitudinal component 

that reflects underlying biological mechanisms, whether that be observational or 

experimental (Lutz 2015). If this is not possible, SFT study results could be evaluated by 

explicitly testing whether climate means are indeed the best predictors of biological 

responses to changing climate. This could be done by comparing predictive accuracy 

between: 1) SFT models using differences in mean climate across the geographic range 

as a proxy for longitudinal climate change, and 2) SFT models using differences in 

variability metrics as the proxy, which may better reflect local climate extremes (e.g., 

coefficients of variance or derivatives). In either case, reliable forecasts of future species 

distributions require examination of species responses to average and relative climate 

changes.  
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Tables 

Table 2.1. Site details for the research natural areas (RNA) and experimental forest (EF) permanent study sites containing at least two 
live Taxus brevifolia stems. Timespan indicates the duration over which tree data were collected. Maximum Taxus ha-1 indicates the 
population abundance used as a response variable in space-for-time models; population growth (%) indicates annualized net change in 
Taxus abundance over the study timespan; and local extinction time extrapolates the observed population growth rate using an 
exponential growth model to determine the number of years until Taxus abundance would be fewer than one tree ha-1 following the 
last year of measurement (final year of timespan) given future climates comparable to historical climates. Overall, populations are 
gradually declining across the sampled range (mean growth rate = -0.9%, SD = 1.5%). 

Identity Location
Stand 
Age 
(yr) 

Plot 
Size 
(ha) 

Elevation 
(m) 

Aspect 
(deg) 

Slope 
(deg) 

Maximum 
Taxus ha-1 

(n) 

Population 
Growth  
(% yr-1) 

Local 
Extinction 
Time (yr) 

Study 
Timespan 

AB08 White River, WA 750 1 1050 300 11 2 2.5 - 1977-2006
AG05 Nisqually River, WA 650 1 950 260 9 54 0.5 - 1977-2009
AV02 Ohanapecosh River, WA 1000 1 850 125 0-6 2 -2.7 26 1977-2009 
RS01 H.J. Andrews EF, OR 460 1 510 225 35 26 -0.7 467 1977-2012 
RS02 H.J. Andrews EF, OR 460 1 520 315 20 33 -0.8 438 1978-2009 
RS03 H.J. Andrews EF, OR 460 1 950 225 10 70 1.2 - 1978-2009
RS23 H.J. Andrews EF, OR 450 1 1020 45 3-29 79 2.7 - 1978-2009
RS24 Hagan Creek, OR 90 1 610 350 24-31 4 0 - 1978-2011
RS27 H.J. Andrews EF, OR 450 1 790 180 3-9 78 0.2 - 1978-2011
RS28 H.J. Andrews EF, OR 459 1 1060 180 10 8 -0.9 232 1978-2011 
RS29 H.J. Andrews EF, OR 450 1 800 355 27-40 24 0 - 1978-2011
RS30 H.J. Andrews EF, OR 450 1 870 355 3 43 0.8 - 1978-2012
RS31 H.J. Andrews EF, OR 450 1 900 140 0-3 11 -1.8 134 1978-2012 
RS34 H.J. Andrews EF, OR 450 2 820 90-279 3-31 64 1.4 - 1979-2013
RS35 Hagan Creek, OR 130 2.1 460 180-360 19-45 7 1.6 - 1980-2009
RS37 Hagan Creek, OR 130 1 475 90-270 3-35 10 -1.8 128 1981-2009
RS38 H.J. Andrews EF, OR 450 2.4 500 varied varied 75 -0.6 721 1984-2012 
TA01 Ohanapecosh River, WA 250 1 670 270 3-9 14 -0.9 294 1987-2012 
TO04 Nisqually River, WA 750 1 640 flat 0 5 0 - 1990-2014

WFDP T.T. Munger RNA, WA 525 4 368 0-360 0-21 93 -2.4 189 1994-2017 
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Table 2.2. Results of 10-fold cross-validated model performance for generalized linear 
mixed model (GLMM; individual scale), Cox survival analysis (Cox; individual scale), 
1st order autoregressive linear mixed model (AR1; population scale), simple linear model 
(SLM; population scale), and Random forests (population scale). Accuracy is 
classification accuracy (GLMM, Random forestsa), concordance (Cox), or percent 
variance explained (i.e. R2; AR1 and Random forestsb). Two accuracy metrics are given 
for the AR1 model: marginal R2 (first number; related to fixed climate and competition 
effects) and conditional R2 (second number; related to random autoregressive effects). 
Mean Absolute Deviance/Mean Ratio (MADMR) is scaled by the units of each model’s 
response variable to allow direct comparison of error between models (lower numbers 
indicate less error). 

Model 

Validation 

MADMR 
Accuracy 

(%) 
Mortality 

(n) 
Survival  

(n) 
Sample Size 

(n) 

Longitudinal 
GLMM 1.84 67.8 314 942 1256 

Cox 0.08 81.8 250 638 888 

AR1 0.06 1.8 / 99.0 - - 20 

Random foresta 1.05 70.6 - - 20 
    

Space-for-Time 
SLM 0.66 53.0 - - 20 

Random forestb  0.48 59.0 - - 20 
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Table 2.3. Model coefficients for generalized linear mixed model (GLMM; individual scale), Cox survival analysis (Cox; individual 
scale), 1st order autoregressive linear mixed model (AR1; population scale), simple linear model (SLM; population scale), and 
Random forests (population scale). Coefficients for Random forestsa indicate mean decrease accuracy, and percent increase mean 
squared error for Random forestsb, for each variable. Species richness and Hegyi values were calculated within a 10-m radius of each 
tree; for population-scale models, maximum Hegyi and richness values were chosen to represent each stand. Deficit and snowpack 
values indicate climate extremes for longitudinal models (i.e. anomalously high Deficit or low snowpack observed within each 
timestep), and climate means over the entire study for space-for-time models. P-values are represented as follows: < 0.1°, < 0.05*,      
< 0.01**, and < 0.001***. Dashes indicate variable was not included in models. 

Model 

Covariates 

Elevation Diameter Species Richness 
Conspecific 

Hegyi 
Heterospecific 

Hegyi 
Deficit Snowpack Deficit*Snowpack 

Longitudinal 
GLMM -0.456*** 0.111 0.126* 0.287*** 0.148* 0.895*** -1.807*** 0.578** 
Cox -0.886*** 0.202 0.121 0.382*** 0.202* 0.518° -2.895*** 1.768*** 
AR1 0.626 - 1.438* 0.441° 0.871* -0.718** 0.181 - 
Random foresta 14.808° - 17.491° 11.256 10.706 4.558 -5.892 -

        

Space-for-Time 
SLM -0.986 - 25.769* 39.546* 10.318 -1.675 -5.831 - 

Random forestb -12.160 - 35.153** 51.614** 18.381° -2.123 0.470 -
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Figures 

Figure 2.1. Locations of Pacific Northwest permanent study sites (a) within North 
America (b), including those located within research natural areas (RNA) and 
experimental forest (EF). Study sites contained between one and six individual forest 
stands (Table 2.1), which were analyzed if least two live Taxus brevifolia stems were 
present in the stand, for a total of 20 stand locations. Orange shading indicates coastal 
Taxus brevifolia distributional range within the Pseudotsuga-Tsuga (Douglas-fir/western 
hemlock) forest zone. 
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CHAPTER III 

CLIMATE WARMING MAY WEAKEN STABILIZING MECHANISMS 

IN OLD FORESTS 2 

Abstract 

Plant competition may intensify with climate warming, but whether this will 

occur equally for conspecific and heterospecific competition remains unknown. 

Competitive shifts have the potential to instigate community change because the relative 

strengths of conspecific and heterospecific negative density dependence mediate the 

stabilizing mechanisms underpinning species coexistence. We examined a mature 

temperate forest to assess both direct and indirect climate effects at multiple scales: 

individual species, interspecies relationships, and community stability mechanisms. Our 

coupled approach 1) quantified tree mortality risk dependence on the interactive effects 

of competition, climatic water deficit, snowpack, and soil moisture for 28,913 trees over 

eight years (3,149 mortalities), then 2) used a climate-projection ensemble to forecast 

changes in conspecific and heterospecific competition from 2020 to 2100. We predict 

that projected climate warming will destabilize the foundational forest community by 

increasing the strength of heterospecific competition at a greater rate and to a greater 

degree than conspecific competition for four of five abundant tree species, particularly on 

dry microsites. Modeling showed that these findings were most pronounced after the year 

2038, at which point snowpacks were projected to be too small to ameliorate the effects 

of drought on competitive interactions. Our finding that heterospecific competition is 

2 This chapter was published in Ecological Monographs on January 27, 2022, and should be cited as: 
Germain, S. J., and J. A. Lutz. 2022. Climate warming may weaken stabilizing mechanisms in old forests. 
Ecological Monographs 92(2): e1508. https://doi.org/10.1002/ecm.1508  
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more sensitive than conspecific competition to climate warming may indicate impending 

loss of ecosystem functioning. We join the growing body of work showing a 

predominance of indirect drought effects, yet coupled climate models still fail to consider 

how changing community dynamics may impact forest cover and, in turn, disrupt forest–

climate carbon feedbacks. Ecosystems sharing characteristics with our example forest – 

those with low species richness and thus a limited biodiversity insurance effect – may be 

similarly vulnerable to climate-mediated destabilization. In such communities, increased 

heterospecific competition among even a small number of species can more easily 

destabilize communities without recourse from redundant species. This study of an 

overlooked but vital mechanism of community change can be adapted by researchers in a 

range of ecosystems to improve understanding of climate change consequences. 

Introduction 

The issue of stability in vegetation communities has been long debated 

(Broekman et al., 2019; Chesson, 2000; Connell & Slatyer, 1977), but what has been less 

investigated is whether the underlying mechanisms of stability are changing. Differing 

degrees of conspecific and heterospecific competitive responses during drought have the 

potential to alter community dynamics (Adler et al., 2006; Chesson & Huntly, 1997) and 

drive community change (Gilman et al., 2010; Lancaster et al., 2017). Theoretical studies 

have shown increasing drought due to climate change may either increase community 

stability by reducing dominant competitive relationships (Adler et al., 2006; Lloret et al., 

2012) or destabilize communities by increasing competitive exclusion of less-adapted 

species (Chesson & Huntly, 1997; Holt, 1985). Empirical studies of forests, however, 

have primarily focused on direct, physiological drought effects (Williams et al., 2013) 



64 

 

and drought-mediated disturbance processes (Furniss et al., 2020; Seidl et al., 2017). 

Here, we investigate the extent to which climate warming may create novel competitive 

relationships by using a spatially mapped, annually resolved time-series of mortality for 

28 913 forest trees (3 149 mortalities) overlaid on soil resource distribution maps. Our 

temporally and spatially explicit dataset allows the necessary testing of multi-way 

interactions to resolve theoretical contradictions and determine whether forest 

communities will be stabilized or destabilized by warmer climates. 

Global warming galvanizes forest change (Allen et al., 2010; Breshears et al., 

2005) through thermophilization of regional species pools (Chen et al., 2011) and 

intensified competition (Urban et al., 2012) during drought. In future climate scenarios, 

communities are likely to be stabilized if conspecific negative density dependence 

(CNDD) remains greater than heterospecific negative density dependence (HNDD)(Adler 

et al., 2006; Comita et al., 2010; Uriarte et al., 2004). Here, stability refers to the long-

term persistence of species in a community marked by resistance to competitive 

exclusion (Broekman et al., 2019; Chesson, 2000). Negative density dependence can 

stabilize coexistence by allowing rare species to invade resident neighborhoods when 

CNDD > HNDD (Hubbell et al. 2001, Uriarte et al. 2004; but see Stump and Comita 

2018). This is primarily moderated by competition for shared limiting resources (Tilman, 

1982) and natural enemies (Connell, 1971; Janzen, 1970). Conversely, CNDD < HNDD 

among adults (i.e., density-dependent mortality) can signify asymmetric heterospecific 

competition (Lutz et al., 2014), resulting in destabilization – i.e., exclusion of weaker 

competitors – particularly if equal rates of sapling recruitment do not follow adult 

mortality (Connell et al., 1984).  Importantly, it is likely that CNDD and HNDD vary 
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independently with climate, as climate variability alters competition intensity differently 

among species (Williams & Jackson, 2007). Empirical studies have largely ignored this 

possibility and have instead examined total competition (Klanderud, 2005) or pairwise 

species competition (see Levine et al., 2017). We directly address these research needs by 

forecasting how the relationship between tree survival and neighboring trees may be 

altered by changing climate in a mature, multi-species, and structurally heterogeneous 

forest community (Franklin et al., 2002).  

Modern coexistence theory often recognizes stabilizing processes as those giving 

any species a population growth advantage when rare (Chesson, 2000; Ellner et al., 

2019). This perspective canonically refers to recruitment (i.e., invasion growth rate). 

Coexistence research in forests has therefore focused largely on tree seedlings (e.g., 

Bachelot et al., 2015; Comita et al., 2010; Harms et al., 2000), as long-term coexistence 

may be stable given positive seedling recruitment. In mixed-conifer temperate forests, 

however, an exceedingly large proportion of seedlings perish before becoming 

reproductive (>99%; Lysgaard et al., 2020), providing little balance to increasing 

overstory mortality with warming climate (Breshears et al., 2005; Lindenmayer et al., 

2012). Mature tree (>50 yrs) mortality rapidly removes large amounts of reproductive 

biomass (Das et al., 2016; Stephenson et al., 2014) and can dramatically alter ecosystems 

over short timeframes (Silvertown et al., 1993; Swann et al., 2018). Moreover, 

compensatory tree recruitment amidst climate change is highly uncertain 

(HilleRisLambers et al., 2015; Kroiss & HilleRisLambers, 2015). It is consequently 

unknown when, or if, functions provided by mature trees in old forests will be restored in 

the novel climates and communities of the future (Walther, 2003; Williams & Jackson, 
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2007).  

To address these ecological concerns, we focus on community stability among 

mature cohorts of foundational tree species: the locally abundant and regionally common 

purveyors of ecosystem functioning (Dayton, 1972). Here, the stabilizing process giving 

species a population growth advantage when rare hinges upon the persistence of extant 

individuals capable of maintaining ecological function. Destabilization among 

foundational species, particularly those attaining large diameters (Lutz et al., 2018), can 

degrade ecosystem function by altering forest structure, removing reproducing 

individuals, and reducing biodiversity (Ellison et al., 2005, 2019). Yet, the stability of 

existing foundational communities has been broadly ignored by the many coexistence 

studies focused on recruitment and rarity (e.g., LaManna et al., 2017; Schreiber et al., 

2019). Identifying which species should be considered foundational can be difficult, 

particularly given the low species diversity and low functional redundancy in temperate 

forests (compared to tropical forests; Lamanna et al., 2014): the unique contributions of 

foundational species may be enigmatic amidst similarly critical functions provided 

throughout the community. Instead of single species, then, temperate forests may be 

particularly suited to an emerging paradigm recognizing that multiple species can act 

synergistically as a foundational community to stabilize ecosystem function (Angelini et 

al., 2011). Accordingly, our focus is not on forest community assembly in the theoretical 

sense, but on climate-related perturbations to existing forest communities that have 

tangible consequences over decadal to centennial timescales. By examining the stability 

of extant foundational communities, we investigate a previously ignored avenue by which 

climate change may disrupt the continuation of ecosystem functioning currently provided 
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by the mature cohort of trees. 

Community dynamics can contribute to structural, compositional, and functional 

change in forests because competitive exclusion is more likely when interactions among 

species become destabilized (CNDD < HNDD; Chesson, 2000; Hubbell et al., 2001; 

Johnson et al., 2012; Uriarte et al., 2004). The resulting changes in background mortality 

rates can reduce carbon sequestration and production within forested ecosystems (Das et 

al., 2016), even if long-term coexistence is projected to remain stable (i.e., due to 

compensatory recruitment over many centuries). Yet, many predictive models of forest 

change, such as Dynamic Global Vegetation Models within coupled global climate 

models (e.g., Lawrence et al., 2019), only consider physiological climate effects on 

individuals or populations (e.g., carbon starvation, reduced photosynthetic rates). Though 

some of these models are beginning to include disturbance effects (Fisher et al., 2018), 

simplified background mortality dynamics continue to ignore how changing climate may 

alter interactions between species and give rise to novel emergent properties within the 

broader forest community. Consequently, there remains substantial uncertainty in 

estimates of forest vulnerability to climate change, with a bias towards underestimation 

of forest loss (Allen et al., 2015; Germain & Lutz, 2020; Luo & Chen, 2013; VanDerWal 

et al., 2013) that propagates to the coupled global climate models relied upon for 

predictions of future climate change itself.  

Our objective was to reduce these uncertainties by creating comprehensive 

models of climate-mediated community change that assess both direct and indirect 

climate effects at multiple scales: individual species responses, interspecies relationships, 

and community dynamics. To do this, we used a coupled approach that combined Cox 
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survival analysis (Cox, 1972) with a community-level forecast ensemble derived from a 

temperate rainforest. Although we examine one example ecosystem here, the underlying 

modern coexistence framework facilitates generalization of our methodology across 

many plant, microbial, and animal ecosystems (e.g., Butler & Chesson, 1990; Ellner et 

al., 2019; Letten et al., 2021). We first quantified the magnitude of CNDD and HNDD 

responses to spatial and temporal variability for mature trees belonging of the dominant 

foundational community comprising four gymnosperm and one angiosperm tree species 

that together represent 90.4% of all woody stems in the forest. We then used a climate-

projection ensemble to forecast CNDD and HNDD of each species, and the community 

as a whole, through the end of the 21st century along existing spatial resource gradients.  

 
Materials and Methods 

Study Area 

The Wind River Forest Dynamics Plot (WFDP; plot center 45.819834°N 

121.957125°W) is a 27.2-ha permanent research site (of which, 25.6 ha analyzed here) 

located in the T.T. Munger Research Natural Area of the Gifford Pinchot National Forest 

in Washington State, USA (Fig. 3.1; see Lutz et al. 2013 for full description). The WFDP 

is in an approximately 525-year-old Pseudotsuga-Tsuga (Douglas-fir/western hemlock) 

forest (Franklin & DeBell, 1988) encompassing five of six vegetation associations from 

the Tsuga heterophylla Zone that span a moisture spectrum (e.g., from dry to moist: 

Pseudotsuga menziesii / Holodiscus discolor; Tsuga heterophylla / Rhododendron 

macrophyllum / Gaultheria shallon; Tsuga heterophylla / Polystichum munitum; Franklin 

& Dyrness, 1988). Disturbances are primarily local windthrow events and endemic bark 
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beetle activity (Germain & Lutz, 2021; Lutz et al., 2021). Soils in the WFDP are 

volcanically derived and consist of deep, well-drained Vitric Hapludands (Stabler Series; 

Shaw et al., 2004) with elevations ranging between 352.4 m and 384.5 m. Climate is 

characterized by cool moist winters and warm dry summers, with annual mean 

temperature of 9.3° C and 2,297 mm mean annual precipitation that falls primarily as rain 

during the winter months (i.e., November through March; 30-yr climate normals 1981-

2010; 800-m resolution; PRISM Climate Group, 2019). 

Dominant tree species in the WFDP are gymnosperms (in order of decreasing 

basal area): Tsuga heterophylla (Rafinesque) Sargent, Pseudotsuga menziesii (Mirbel) 

Franco, Thuja plicata Donn ex D. Don, Abies amabilis Douglas ex J. Forbes, and Taxus 

brevifolia Nuttall. Subdominant angiosperm trees and tall shrubs, similarly ordered, 

include: Acer circinatum Pursh, Cornus nuttallii Audubon, Corylus cornuta ssp. 

Californica (A. de Candolle) E. Murray, and Alnus rubra Bong (Tables 3.1, B.1). 

Nomenclature follows Flora of North America Editorial Committee (1993+)(Flora of 

North America Editorial Committee, 1993). Of these, we analyzed all tree species with n 

> 500, mortality n > 30, and quadrat frequency > 15%. These included two canopy-

emergent, moderately drought-tolerant gymnosperms (Pseudotsuga and Tsuga); two 

subcanopy, less drought-tolerant gymnosperms (Abies and Taxus); and one subcanopy, 

mesophilic to riparian, clonal angiosperm (Acer). 

 
Field Sampling 

The field methods for the WFDP are those of the Smithsonian ForestGEO 

network (Davies et al., 2021; Lutz, 2015). A 20-m reference grid was surveyed using 

total stations during the summer of 2010, with the original vegetation survey conducted 
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in 2010-2011. We identified, mapped, tagged, and measured diameter of all woody stems 

≥1.0 cm at breast height (DBH; 1.37 m). In these late-seral, light-limited forests, 

understory growth is very slow and even small trees (1–4 cm DBH) can be old and 

reproductive, albeit at low rates (Antos et al., 2005; Parish & Antos, 2006). The field 

methods prioritize high relative accuracy of short inter-tree distances for the purpose of 

quantifying competitive interactions (0-2 m distance: ~10 cm; > 2 m distance: 10-25 cm 

accuracy). In the summer of 2016, we conducted a full re-measurement of the WFDP 

wherein we re-measured DBH of each live stem. In early summer of each year from 2012 

to 2019, we revisited each tree to ascertain survival and conducted pathology exams of 

newly dead trees (Lutz, 2015), including identification of multiple factors associated with 

mortality, including fungal pathogen or bark beetle species when applicable (for full 

details, see Germain and Lutz [2021] their Appendix S1: Table S6).  

 
Site and Climatological Data 

Preliminary analyses tested which environmental components formed the primary 

axes of differential tree clustering and mortality (Table B.2, Figs. B.1, B.2). Elevation 

above maximum spring water table (water table; m) was chosen as our primary 

environmental covariate, calculated as the difference in elevation (generated from a 1-m2 

lidar surface model) between individual trees and the nearest point along a vernal stream 

(i.e., the maximum water table at soil surface). The water table was allowed to slope, as 

observed by the stream slope, to reflect the subsurface basalt layer on which the water 

table rests known to be present in the WFDP. Elevation above water table ranged 

between less than 0 (those areas that are wet for most of the year; hereafter, moist 

microsites) to 18.4 m (upland sites with dry conditions for at least part of the year; 
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hereafter, dry microsites; Table B.3).  

Climatic water balance models were built at an 800-m spatial resolution following 

the methods of Hostetler and Alder (2016) and McCabe and Markstrom (2007) using 

temperature and precipitation time series from the 30 arc second Parameter-elevation 

Regression on Independent Slopes Model (PRISM) data set (Daly et al., 2008) for the 

period spanning January 2011 to December 2019. Water balance models included 

continuous measures of monthly snowpack and climatic water deficit (Deficit; mm H20). 

Climatic water deficit incorporates seasonal hydrology, soil water-holding capacity, and 

energy inputs to quantify drought as felt by plants: it is the unmet water demand, 

calculated as the difference between potential transpiration (PET; how much plants 

would have transpired given optimal temperature and precipitation levels) and actual 

evapotranspiration (AET; how much plants were able to transpire given observed 

temperature and precipitation). The eight mortality years of our study (2012 to 2019) 

covered a range of Deficit / snowpack combinations, as Deficit and snowpack are not 

tightly correlated in this maritime climate compared to continental climates (Fig. 

B.3)(Lundquist et al., 2013). 

 
Demography 

We calculated vital rates using the 5-6 yr remeasurement period (2010/2011 to 

2016) to allow comparison among recruitment, growth, and mortality rates. First, we 

computed annually compounded radial growth rates (%) for live trees (Eq. 1; Lutz et al., 

2014) by comparing 2016 DBH measurements to those attained during plot establishment 

(5-yr span for west side of plot, 6-yr span for east side) or during the year of tree 

recruitment into the 1-cm DBH cohort (1- to 4-yr span):  
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(1)  𝑅𝑎𝑑𝑖𝑎𝑙 𝐺𝑟𝑜𝑤𝑡ℎ ൌ 100 ൈ ሾቀ஽஻ு್
஽஻ுೌ

ቁ
భ
೤ െ 1ሿ  

where DBHa is establishment (or recruitment, if not present at establishment) diameter, 

DBHb is 2016 diameter, and y indicates the number of years between measurements.  

Annual recruitment (Eq. 2; Lutz et al., 2014) and mortality (Eq. 3; Lutz & 

Halpern, 2006) rates between 2011 and 2016 were also calculated per species (Table 3.1):  

(2)  𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡 ൌ 100 ൈ ሾቀேబାேೝ
ேబ

ቁ
భ
೤ െ 1ሿ 

(3)   𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 ൌ 100 ൈ ሾ1 െ ቀேబିே೘
ேబ

ቁ
భ
೤ሿ 

where N0 is the initial population, Nr is the number of trees that recruited, Nm is the 

number of trees that died during the study period, and y is once again the time interval in 

years dictated by year of tree establishment (5-yr span for west side of plot, 6-yr span for 

east side) or recruitment into the 1-cm DBH cohort (1- to 4-yr span). 

 
Mortality model – Phase I: Parameterization 

Tree Neighborhoods 

To assess density-dependent mortality, we calculated the Hegyi competition index 

(Eq. 4; Biging & Dobbertin, 1995; Hegyi, 1974), a distance- and size-weighted sum of 

neighbors, j, for each focal tree, i: 

(4)      𝐻௜ ൌ  ∑
஽஻ுೕ

൫ ଵା஽௜௦௧௔௡௖௘೔ೕ ൯ሺ ஽஻ு೔ ሻ
   

The Hegyi index reflects a mechanistic understanding of tree relationships: it is diameter-

weighted in order to account for size-asymmetrical competitive outcomes among trees, 

which are well documented in forest studies (Das et al., 2018; Lutz et al., 2014); and 
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distance-weighted to allow diminishing interaction effects across space without 

prematurely eliminating the disproportionate effects of large-diameter trees (see 

Sensitivity Analyses).  We calculated Hegyi values separately for conspecific neighbors 

and heterospecific neighbors. We included all heterospecific neighbors rather than 

considering pairwise relationships between species due to potential interaction chains and 

feedbacks among multi-species competitive communities (Levine et al., 2017); we 

therefore sought to capture net heterospecific effects on each focal individual. See 

Appendix B: Section S1 for more Hegyi index specifications. 

There was strong collinearity between tree diameter and the Hegyi index, due in 

part to the clustering tendency of small trees (Lutz et al., 2014). Though clustering indeed 

causes elevated competitive stress, the objective of the study was to estimate how 

changing climate will alter existing competitive relationships (despite if competition is 

currently strong, as may be expected for small clusters of trees, or weak, as may be 

expected for well-spaced large-diameter trees). We chose to do this because trees are 

long-lived and recruitment is often slow (Clark et al., 1999; HilleRisLambers et al., 

2015), so the individuals being modeled are overwhelmingly the same individuals subject 

to oncoming climatic changes. To account for these effects and allow all trees (not just 

the smallest) to equally inform models, we standardized indices by species and diameter 

using the z-transformation (Eq. 5):  

(5)         𝑍௔௕௖ௗ ൌ
ுೌ್೎೏ିµಹ್೎೏

ఙಹ೎೏
  

where 𝐻௔௕௖ௗ is the observed Hegyi (conspecific or heterospecific denoted by b) for tree, 

a, belonging to the population of species, c, and diameter class, d; where µு್೎೏ is the 

population mean; and 𝜎ு೎೏ is the population standard deviation of the total neighborhood 
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index (i.e., not divided into conspecifics and heterospecifics) to ensure that the units of 

heterospecific and conspecific values remain comparable.  

This standardization 1) controls for the existing spatial arrangement of trees, 

which reflects centuries of recruitment and mortality dynamics, in order to isolate current 

drivers of mortality (Goreaud & Pélissier, 2003; Larson et al., 2015; Tuck et al., 2018); 2) 

prevents mortality dynamics of the much more numerous (and often clustered) small trees 

from driving model outcomes; 3) quantifies relative ecological effects of crowded 

neighborhoods. Without standardization, for instance, a Hegyi index value of H=2 might 

be extremely competitive for large trees but relatively non-competitive for small trees; 

and 4) allows a direct comparison of the magnitudes of conspecific and heterospecific 

Hegyi effects, which can be more clearly interpreted and generalized than the original 

distance- and size-weighted units of density.  

We focused on the magnitude and direction of neighborhood effects because the 

true values of CNDD and HNDD are notoriously difficult to quantify directly, especially 

in natural ecosystems (Detto et al., 2019 ; but see Sensitivity Analyses below and 

Considerations of Bias in Appendix B: Section S2). After standardization, values > 0 

indicate denser neighborhoods than would be expected for trees of a particular species 

and diameter class (that is to say, denser in terms of distance-adjusted relative basal area, 

not simply stem quantity) and values < 0 indicate sparser neighborhoods. Models 

therefore tested the following hypothesis: independent of diameter and species, trees with 

more crowded environments (than would be expected given the existing spatial structure 

of trees) have a higher mortality risk. This allows our results to be interpreted at the 

whole-forest scale. 
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Tree Mortality 

We created individual Cox survival models for each common tree species (n > 

500) that was present throughout the WFDP (20 m × 20 m quadrat frequency > 15%) 

with a sufficient number of mortality events (n > 30) and capable of attaining at least 10 

cm DBH. This resulted in models for five species: Abies amabilis, Pseudotsuga 

menziesii, Taxus brevifolia, Tsuga heterophylla, and Acer circinatum. Together, these 

species constituted 92.6% of total basal area and 90.4% of the stems in the WFDP at plot 

establishment (2011; Tables 3.1, B.1), which is representative of the Tsuga heterophylla–

Pseudotsuga menziesii zone (Fig. 3.1; Franklin & Dyrness, 1988). This assemblage 

comprises three taxonomic families (Pinaceae, Taxaceae, and Sapindaceae), spans a 

gradient of drought tolerance, and includes canopy dominant, co-dominant, and 

subcanopy species (Erickson et al., 2014; Franklin & Dyrness, 1988; Lassoie et al., 

1985). Trees were omitted that died of plausibly climate- and competition-independent 

causes (e.g., crushing; n = 1056).  

Cox models (Eq. 6; Therneau, 2015) calculate mortality hazard (i.e., risk) 𝜆 at 

time, t as a function of the exponentiated linear combination of tree neighborhood (𝑋ଵ
ᇱ) 

and climate covariates (𝑋ଶ
ᇱ ), with vectors of coefficients related to effects of 

neighborhood (θ1) and climate (θ2), all scaled by an unspecified baseline hazard function 

𝜆଴ሺ𝑡ሻ.  

 (6)       𝜆௧ ൌ 𝜆଴,௧ 𝑒ሺ௑భ,೟
ᇲ ൈఏభା௑మ,೟

ᇲ ൈఏమሻ 

Cox models are time-to-event survival analyses: hazard represents instantaneous 

mortality probability at time, t. Cox models are semi-parametric: the parametric 

component relates to the assumption of normally distributed residuals, and the non-
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parametric component requires no distributional assumptions for predictor and response 

(time-to-event) variables.  

Mortality models included main effects for six continuous variables: elevation 

above spring water table (i.e., soil moisture), total modeled Deficit from the growing 

season directly preceding mortality (March through October), maximum modeled 

snowpack from the non-growing season directly preceding mortality (November through 

February; total modeled snowpack also examined, with similar results), conspecific 

Hegyi and heterospecific Hegyi indices, and tree diameter (DBH) to control for density-

independent size asymmetries in survival. We included all two-, three-, and four-way 

interactions between Deficit, snow, soil moisture, and the two Hegyi indices (conspecific 

Hegyi / heterospecific Hegyi interaction not included). Our analysis featured unique 

climate values for eight mortality years (2012-2019), though climate interactions with 

tree-specific Hegyi and topographic parameters produced functional sample sizes equal to 

tree abundance per model (Table B.4).  

Cox model coefficients can be exponentiated to allow interpretation as hazard 

ratios (HR), or the change in hazard between time t and t + 1 for each unit increase in the 

predictor, where a HR = 1 would indicate no change, HR < 1 indicates the predictor 

reduces mortality hazard, and HR > 1 means the predictor increases the hazard. The HR 

for main effects in the interaction model (i.e., taking into consideration interactive 

effects) were calculated by Eq. 7: 

(7)         𝐻𝑅௜ ൌ 𝑒௡∗ሾß೔ ା ൫ß೔,ೖ௑ೖ൯ ା ൫ß೔,ೕ௑ೕ൯ ା ൫ß೔,ೕ,ೖ௑ೕ௑ೖ൯ሿ  

where ß௜,௝,௞ is the model coefficient estimate for the highest-order significant interaction 

involving predictor 1 (in this example, a 3rd order interaction), ß௜,௞ and ß௜,௝ are coefficient 
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estimates for all lower-order component interactions of the highest-order interaction 

containing predictor 1 (even if not significant), and ß௜ is the primary effect for predictor 

1; n is the number of unit changes of interest for hazard ratio interpretation (default = 1). 

For interpretation of main effects, all interacting factors were held at mean values (after 

centering, mean = 0 so interactions are eliminated). For interpretation of interactions, we 

permuted minimum (< 2 SD), mean, and maximum (> 2 SD) values of interacting factors 

to calculate HR related to all possible combinations of factors.  

Model performance was assessed using Wald tests (establishes overall model 

significance compared to a null model using robust scores to account for repeated 

measures) and predictive ability assessed via concordance values (Gönen & Heller, 

2005)(i.e., proportion of tree pairs for which the tree with higher modeled mortality risk 

died rather than its lower-risk counterpart).  Parameter model uncertainty was quantified 

using robust standard errors and a predictor error analysis (see Sensitivity Analyses, 

below). See Appendix B: Section S1 for accounting of variable transformations, 

treatment of repeated measures, and model assumptions. 

 
Mortality model – Phase II: Forecasts 

To interpret Cox regression results in the context of changing climate, we 

projected potential trends in Deficit- and snowpack-related mortality risk 80 years 

following study establishment (2020-2100). Projected Deficit and snowpack were 

modeled following the methods of Hostetler and Alder (2016) and McCabe and 

Markstrom (2007), using temperature and precipitation data from six NASA Earth 

Exchange U.S. Downscaled Climate Projections (NEX US-DCP30)(Thrasher et al., 

2013): CCSM4, GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-CC, 
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HadGEM2-ES. Data were obtained from Alder et al. (2013) at 800-m spatial resolution 

for Representative Concentration Pathway 8.5 (Meinshausen et al., 2011). NEX data 

were derived from General Circulation Models conducted under the Coupled Model 

Intercomparison Project Phase 5 (Taylor et al., 2012). Original climate data were from 

the NEX-DCP30 dataset, prepared by the Climate Analytics Group and NASA Ames 

Research Center using the NASA Earth Exchange, and distributed by the NASA Center 

for Climate Simulation (NCCS). Our selection of both climate and earth system models 

captures a range of sensitivities, with the selection weighted towards North American 

models due to the study site location. The six projections were averaged to create a mean 

climate model, upon which we used generalized least squares models (to account for the 

auto-regressive structure of time series data) to describe linear climate trends (Fig. 3.1). 

The six climate projections were used to create an ensemble of potential future 

annual mortality hazard ratios. We calculated future annual hazard using Eq. 7 for each of 

the five species where projected annual Deficit and snowpack values interacted with local 

edaphic and biotic elements as defined by coefficient estimates produced by study-

parameterized models (see Parameterization, above). Community-level hazard was 

calculated as a weighted average of the five species, where weights were the basal areas 

of each species relative to total woody stem basal area in the forest. Projection model 

uncertainty was quantified using this six-model projection ensemble (Fig. 3.1) and a 

climate scenario sensitivity analysis (see Sensitivity Analyses, below). All statistical 

analyses were performed using the ‘survival’ package in R version 3.4.3 statistical 

software(R development core team, 2019; Therneau, 2015). 
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Sensitivity Analyses 

Because the eight-year analysis period was relatively short compared to the 

projection time period, we conducted three sensitivity analyses to test whether our 

inferences remained robust to uncertainty in historical and future climate. The first 

analysis (SA1) assessed sensitivity of the parameterization model to uncertainty in 

historical climate data (i.e., uncertainty arising from the downscaling method, stochastic 

interannual variability, or measurement error). Using the 1981–2010 climate normals, we 

first calculated the SE of Deficit (10 mm H20) and snowpack (26 mm H20). Then we re-

parameterized models to reflect low, moderate, and high levels of uncertainty (±0.5, ±1, 

and ±1.5 standard error, respectively; 999 simulations each). Within each simulation, 

annual climate data were allowed to vary the amount of the uncertainty level from the 

observed value, where the decision to add or subtract SE was treated as a Bernoulli 

random trial (50% probability).  

The second analysis (SA2) assessed sensitivity of community forecasts to 

uncertainty in future climate scenarios. We created community forecasts using simulated 

climate scenarios that deviated moderately (Δ25%) to extremely (Δ100%) from the mean 

ensemble projection. All scenarios maintained the rate of increasing Deficit and 

decreasing snowpack demonstrated by the ensemble projection. The third analysis (SA3) 

assessed sensitivity of study conclusions to uncertainty arising from the sample sizes of 

mortality and climate datasets. We considered stepwise additions of annual data by 

performing all analyses with each of the following mortality and climate data ranges: 

2012 to 2017; 2012 to 2018; and 2012 to 2019. We then compared final conclusions 

among models built at each of the three timescales. 

Due to potential for bias in NDD estimations (Adler et al., 2018; Damgaard & 
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Weiner, 2017; Detto et al., 2019; Rinella et al., 2020; Teller et al., 2016; Tuck et al., 

2018), we conducted two further sensitivity analyses to assess error in the crowding index 

predictors. Sensitivity analysis four (SA4) compares three competition kernels to quantify 

sensitivity of study conclusions to the choice of NDD proxy. For all three kernels, we 

sum over neighboring trees (Adler et al., 2010; Uriarte et al., 2004) rather than using 

annuli (Teller et al., 2016), as trees are regularly shaped compared to shrub genet 

polygons, and centroid-to-centroid distances work well. It is still unknown to what extent 

flexible competition kernels (e.g., Teller et al. 2016) may be particularly subject to small 

sample size errors, overfitting, and reduced generalizability, so we instead compare three 

commonly used distance decay curves. All of these consider size asymmetries due to 

vastly differently sized trees in our forest (1- to 200-cm DBH). We compare geometric 

distance decay (Eq. 4) with exponential (Eq. 8) and gaussian (Eq. 9) decay functions, all 

calculated to a maximum 50-m radius for neighbors, j, per focal tree, i. All metrics were 

standardized by species and diameter to meet objectives described above. 

(8)      𝐸௜ ൌ  ∑
஽஻ுೕ

ሺ஽஻ு೔ ሻ ሺ ௘
భ శ ವ೔ೞ೟ೌ೙೎೐೔ೕ  ሻ

   

(9)      𝐺௜ ൌ  ∑
஽஻ுೕ

ሺ ஽஻ு೔ ሻ ൫ ଵ ା ஽௜௦௧௔௡௖௘೔ೕ ൯
మ   

Sensitivity analysis five (SA5) creates a simulated null model of random mortality 

to test robustness of NDD estimates (and their interactions) when using the preferred 

NDD proxy. Though similar to random labelling methods used in point pattern analysis, 

(Goreaud & Pélissier, 2003; Wiegand & Moloney, 2004), we are able to retain the 

strengths of our dynamic, annual tree mortality assessment by conducting this test on the 

full dataset rather than a static point pattern (Detto et al., 2019). Mortality was assigned 

randomly to trees in equal proportion to the observed total mortality rate per species; 
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then, parameterization models were re-run using observed predictor values (i.e., DBH, 

climate, topography, chosen competition kernel) and simulated mortality. We completed 

999 of these simulations to create a simulation envelope representing a null model of 

random mortality where null model coefficients are centered on zero, assuming no effect, 

and envelope width quantifies uncertainty for each parameter. Coefficients generated by 

the null and empirical models were compared to assess whether observed NDD could be 

distinguished from randomness (i.e., whether detected NDD was in fact the result of 

stochastic processes). NDD estimates are considered robust when competition parameters 

fall outside the simulation envelope.  

Results 

We found evidence for climate-mediated forest change at all three levels of 

organization: population declines for 17 of 26 forest species, increasing density-

dependent mortality, and forecasts of HNDD exceeding CNDD after snowpacks become 

rare mid-century, though this was moderated by local topography. Our finding that 

HNDD is more sensitive than CNDD to climate warming for a majority of common 

species indicates that climate change may weaken stabilization mechanisms and expedite 

forest change. 

Cox analysis showed that direct and interactive effects of the six biotic and abiotic 

factors considered were highly predictive (mean 67.3% concordance; Table B.4) of 

individual-tree instantaneous mortality probability (i.e., risk). Most covariates formed at 

least one 2-way, 3-way, or 4-way interaction (Table B.4), so we held interacting variables 

at mean values to describe individual effects below (Table B.5). Hereafter, we use the 

term “denser” neighborhoods synonymously with higher Hegyi index (i.e., higher 
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distance-adjusted relative basal area of neighboring trees), where negative density 

dependence is indicated by higher mortality risk in denser neighborhoods than would be 

expected given the existing spatial pattern of trees. 

 
Individual Species Responses 

Our eight years of annual mortality covered a large range of mortality rates and 

causes expected for old temperate forests (Table B.6, Figs. B.4, B.5)(Busing & Fujimori, 

2002; A. J. Das et al., 2016). From 2011 to 2019, populations declined for all eight 

gymnosperms and nine of 18 angiosperms (Table 3.1). Taxus declined the most, 

exhibiting little recruitment while sustaining a 2.7% mortality rate yr-1. Recruitment and 

growth of surviving trees offset biomass reductions due to mortality losses for only three 

of 26 species (i.e., increased basal area despite loss of stems; Table B.1). Smaller-

diameter trees (< 10 cm DBH) had higher mortality rates than larger trees (2.2% yr-1 vs 

1.3% yr-1; 82% total mortality; Fig. B.4).   

After accounting for interactions, density-independent, direct effects of Deficit 

and snowpack were negligible (<1% change) for all species. Dry microsites increased 

density-independent mortality risk of the understory species, Abies: +5.1% and Acer: 

+2.5% per mm H2O. In contrast, dry microsites decreased density-independent risk of the 

pioneering species, Pseudotsuga: -0.06% and Tsuga: -1.1% per mm H2O (Tables B.4, 

B.5); dry microsites also decreased density-independent mortality risk of understory 

species, Taxus -3.0% per mm H2O, likely reflecting greater fungal pathogen pressure on 

Taxus at moist sites (Fig. B.5). 
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Interspecies Relationships 

When holding water balance parameters constant at average values (assuming 

average competitive interactions for water), denser conspecific neighborhoods increased 

mortality risk for Abies: +64.5%, Tsuga: +52.4%, and Acer: +1.9% per SD increase 

Hegyi, and decreased risk for Pseudotsuga: -27.7%, and Taxus: -49.1% per SD (Tables 

B.4, B.5). Denser heterospecific neighborhoods primarily increased risk (Abies: +38.8%; 

Acer: +15.2%; Tsuga: +26.6% per SD), though decreased Pseudotsuga risk -5% per SD.  

Microsite effects on biotic interactions were evident for all species except Taxus, 

with heterospecific interactions generally more site-dependent for gymnosperms, and 

conspecific interactions more site-dependent for the angiosperm, Acer (Fig. 3.2). Given 

the observed climate, denser heterospecific neighborhoods produced precipitously 

increasing mortality risk for Abies and Tsuga on dry sites compared with moist sites (HR 

> 2); for Pseudotsuga, denser heterospecific neighborhoods increased mortality risk on 

moist microsites, but were often facilitative on dry sites. Conspecific neighbors were 

facilitative on moist and dry microsites for Pseudotsuga, and often facilitative for Acer 

across microsites as well.  

 
Community Stability 

We found that 1) conspecific and heterospecific interactions do not respond 

equally to climate; and consequently, 2) stabilization mechanisms within the existing tree 

community are unlikely to be favored by climate change. Throughout the coming 

century, the strength of stabilizing mechanisms (i.e., the difference between mortality 

hazard ratios produced by conspecific and heterospecific neighborhoods; CNDD − 

HNDD) was forecasted to decrease or remain low for all species when averaged across 
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all microsites (Fig. B.6). On dry sites specifically, four of five species did not satisfy the 

stabilization condition of CNDD > HNDD (Fig. 3.2). This was not compensated for by 

the fifth species, resulting in net community CNDD < HNDD and suggesting 

destabilization on dry sites (Fig. 3.3). That is, our data more closely align with the 

outcome that stabilization cannot happen because both 𝛼𝛼11 > 𝛼𝛼12 AND 𝛼𝛼22 > 𝛼𝛼21 

are false (Box 1).  

The most dramatic shifts in NDD occurred at approximately decade 2040, when 

snow offset was projected to become negative (Fig. B.7). Variations in the strength of 

interactions between climate variables, soil moisture, and the two Hegyi indices produced 

different rates and directions of change for CNDD relative to HNDD, with generally 

greater HNDD sensitivity to increasing Deficit and decreasing snowpack (Figs. 3.2, 3.3). 

Abies and Tsuga were forecasted to destabilize (Fig. 3.2) at dry sites but not moist sites. 

Acer stability became higher on moist sites but remained unstable at dry sites; for 

Pseudotsuga, stability became neutral on dry sites but remained unstable at moist sites. 

Taxus remained unstable and did not interact with climate (no change over time). 

Community-level trends showed decreasing stability on dry sites but not moist sites, with 

positive stability on moist microsites slowing the rate of forecasted instability when 

aggregated across all microsites (Fig. 3.3; Table B.1).  

 
Climate projections 

The ensemble of six International Panel on Climate Change (IPCC) climate 

projections showed modeled Deficit increasing and snowpack decreasing over time (Fig. 

3.1, Appendix B: Section S2). Deficit increased 1.2 mm H2O yr-1 on average (R2 = 0.61, 

P < 0.001) and snowpack decreased 2.9 mm H2O yr-1 on average (R2 = 0.42, P < 0.001). 
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All six models predicted more years during which there will be zero winter snowpack 

(mean 4 years decade-1 after 2040) compared to historical snowpack (no years with zero 

snowpack before 2010), resulting in an “offset” < 0 where offset is the difference 

between Deficit and snowpack quantity per year (Fig. B.7). Although snowpack was able 

to positively offset Deficit historically, projections indicate that offset will become 

negative approximately after the year 2038; at this point, annual water surpluses provided 

by large snowpacks are expected to reduce to the point of net annual deficit. With snow 

offset negative, the ability of snowpacks to reduce the effect of Deficit was nullified in 

models and dramatic mortality risk increases were observed (Fig. 3.2). Projection model 

uncertainty primarily arose from disagreement between models regarding the exact years 

of highs and lows (giving the impression of wide ensemble envelopes; Fig. B.6), though 

all models agreed that Deficit is growing and snowpack is shrinking (Fig. 3.1; Fig. B.7). 

The mean models used here for inference therefore represent a conservative estimate of 

annual climate change, with the highest confidence pertaining to decadal to centennial 

trends. 

 
Sensitivity Analyses 

Models exhibited low sensitivity to input uncertainties, suggesting that inferences 

were robust despite the relatively limited eight-year parameterization period. SA1 

showed that models were not greatly affected by historical climate uncertainty, though 

several species-specific parameter sensitivities were identified (e.g., direct effects of 

CNDD for Pseudotsuga; Fig. B.8). Point estimates for these variables could perhaps be 

refined through additional study. Deficit and snowpack were not sensitive, likely because 

both had relatively small effect sizes. SA2 complimented our climate projection results 
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by identifying how much future climate would have to differ from mean climate 

projections for our inferences to change. SA2 showed that inferences of stability–climate 

change relationships were robust to feasible future climate variability (Fig. B.9). For four 

of five species, climate thresholds necessary for CNDD < HNDD were extreme (100% 

more snowpack; 95% less Deficit) and well outside confidence bounds for future climate 

(Fig. 3.1).  

The ranges of annual Deficit and snowpack captured by our eight-year study 

exceeded mean climate differences estimated by the projection ensemble (Table B.3; 

Appendix B: Section S2). Stability–climate change conclusions remained consistent 

across a range of annual climate and mortality sample sizes. SA3 showed that smaller 

samples contributed to larger NDD effect sizes, with relatively modest point estimates 

shown by the largest dataset reported here (Fig. B.10). SA1 and SA2 run at each of the 

three sample sizes indicated reduced model sensitivity with increasing sample size, with 

the largest sample size converging on low model sensitivity (Figs. B.8, B.10). The 

magnitude of climate-mediated NDD was most uncertain on moist microsites (most 

dependent upon sample size), while dry microsites consistently showed large reductions 

to community stability (>2 HNDD : 1 CNDD). We therefore expect that additional years 

of study would produce mortality risk estimates no less extreme than those described here 

(Fig. B.10). Though point estimates varied, models built on each of sample sizes agreed 

on conclusions emphasized here: 1) CNDD and HNDD do not respond equally to 

climate; and 2) stabilization mechanisms within the existing tree community are unlikely 

to be favored by climate change. 

SA4 found that model conclusions were sensitive to the functional form of 
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competition metrics (Fig. B.11), yet the three metrics produced very similar model fitness 

(Wald test P-values < 0.001; mean concordance Δ2.4%; Table B.7). This underscores the 

importance of a well-supported a priori and mechanistic understanding when choosing 

competition kernel form, as model fitness alone is not always the best judge. Importantly, 

only weak HNDD was detected for four of the five species when using the exponential 

function, resulting in inflated community-level CNDD (compared to the other metrics) 

across moist and dry microsites alike; this supports recent criticisms that erroneous NDD 

underestimation can be severe for heterospecific effects, and suggests that the exponential 

function may be particularly subject to such biases. Large neighbor effects rapidly 

approached zero when exponential decay was assumed, compared to slightly longer 

interaction distances with a gaussian kernel, and the longest distances shown by a 

geometric kernel (Fig. B.12). Biased NDD estimates may result from the inability of the 

exponential function to capture asymmetric competitive effects of large-diameter trees 

(Lutz et al., 2013, 2014, 2018); for example, it is extremely unlikely that a 100-cm tree 

has no effect on a 10-cm tree at 5-m distance, because crown spread (and thus, 

competition for light) is typically much larger than 5 m (Ishii & Wilson, 2001). 

Geometric decay allowed for the strongest large-diameter tree effects, though may 

overestimate competition at greater distances; this supports the conventional practice to 

set maximum interaction radii of 10-, 15-, or 20-m (depending on forest type) when using 

a geometric decay function, or as done here, to use a radius informed directly by prior 

research (Lutz et al. 2014). We report results from the 10-m Hegyi due to the known 

importance of large-diameter competitors in this region, and to facilitate generalizability 

to the wealth of forest ecology and silviculture literature utilizing a similar function (e.g., 
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Uriarte et al. 2004, Das 2012, Slack et al. 2017, Maher et al. 2018). 

Density dependence estimates using the 10-m Hegyi were well distinguished from 

the simulated null model of random mortality and were therefore unlikely to be the result 

of erroneous pattern detection. Broad simulation envelopes for Pseudotsuga were 

corroborated by our original Wald Test P-values > 0.05 for the direct effects, but not 

interactive effects, of competition shown by SA5 (Table B.4, Fig. B.13). Simulation 

envelopes were generally narrow for interaction parameters, reflecting low uncertainty 

but small effect sizes; nonetheless, many interactions were still detectible from 

randomness, lending credence to their perceived significance (i.e., small P-values derived 

from Wald Tests). Indeed, there was high agreement between Wald Tests and simulation 

envelopes, as virtually all parameters that were considered to be significant predictors of 

mortality by Cox models were also distinguishable from random mortality. Agreement 

between these tests indicates it is extremely unlikely that our findings of NDD are 

spurious. 

Discussion 

Climate change may fundamentally alter community coexistence dynamics 

because conspecific and heterospecific relationships do not respond equally to warming 

climate (Fig. 3.2). Our forecasts show that density-dependent mortality associated with 

heterospecifics (HNDD) will become more likely than density-dependent mortality 

associated with conspecifics (CNDD) for most species, and for the community as a 

whole, before the end of the 21st century (Figs. 3.2, 3.3). The shift from primarily CNDD 

to HNDD among extant individuals appears to be driven by increasing drought frequency 

and severity (i.e., increased Deficit and decreased snowpack) predicted by the climate 
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projection ensemble. This finding is in line with our hypotheses: density-dependent 

dynamics are not as strongly determined by successional processes in late-seral forests, 

being at more of an equilibrium (Franklin et al., 2002; Lutz et al., 2014), so variability in 

NDD is more likely to correspond closely to seasonal and interannual climate fluctuations 

(Condit et al., 2004). We build upon previously described studies of direct drought effects 

and stronger total competition and suggest that indirect, density-dependent drought 

effects and subsequent climate-altered community dynamics may contribute 

meaningfully to forest change (Allen et al., 2010; Breshears et al., 2005). 

Climate change and associated impacts are often forecasted to become more 

extreme over time (Easterling et al., 2000). We found that stabilization mechanisms were 

favored under warmer conditions projected in the near term (2010–2040), as many 

species had similar strengths of CNDD and HNDD (Figs. 3.2, 3.3). However, predictions 

of extremely low snowpack values limited this effect in the long term (2040–2100): the 

risk of exclusion (CNDD < HNDD) increased precipitously by mid-century when annual 

snowpacks reached low value thresholds (snowpack offset < 0; Fig. B.3; Reyer et al., 

2015). High snowpacks in the winter reduce continued competition for water during late 

fall and early spring months following a severe summer drought (Peterson & Peterson, 

2001) and therefore preclude trees from reaching physiological thresholds of drought-

induced mortality (McDowell et al., 2008). As years with low snowpack become more 

common due to climate change, increasingly severe and frequent summer drought (Dai, 

2013) may become an unmitigated driver of instability. Our finding that HNDD will 

exceed CNDD at only dry microsites (Fig. 3.2) for three of the four species illustrates that 

spatial heterogeneity of soil moisture niches (Chesson, 2000) may maintain community 
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stability at landscape scales (Fig. 3.4; Adler et al., 2010; Chesson, 2000; Clark & 

McLachlan, 2003): though we may expect disproportionate persistence of drought-

tolerant species like Pseudotsuga on dry sites, for example, this will likely be met by 

foundational community stability on moister sites where CNDD > HNDD. 

Stabilization signifies the presence of niche differences, or differences in the most 

limiting factors, between species (Adler et al., 2010; Chesson, 2000). Hence, changes in 

the strength of community stability suggest underlying changes in species’ most limiting 

factors as warming temperatures shift the range of environmental variability further from 

historical conditions. Given historically abundant water resources, for example, nitrogen 

availability may be most limiting for one species, while insect herbivores most limiting 

for another, and these differences stabilize communities by causing species to limit 

themselves more than heterospecifics (Broekman et al., 2019; Chesson, 2000). With 

climate change, however, limiting factors of the five species tested here appeared to 

converge on the singularly most limiting resource of water, producing elevated density-

dependent mortality during drought on dry sites where water availability dropped most 

dramatically. Our forecasts suggest that the once stabilizing effect of climatic variability 

(Adler et al., 2006; Chesson & Huntly, 1997) may become weakened as climate change 

brings novel – and increasingly extreme – ranges of drought variability (Germain & Lutz, 

2020). This interpretation is in line with predictions that species will migrate to follow 

their moving climatic niche to track cooler/moister sites as climate change brings 

warmer/dryer conditions (Chen et al., 2011; Root et al., 2003). Stability trends reported 

here are therefore likely to be more extreme at the hotter, drier bounds of species’ ranges 

where water is most limiting (e.g., southern latitudes, lower elevations; Jump et al., 
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2006), or in younger forests (Luo & Chen, 2013) where competitive interactions can be 

very strong (Franklin & Dyrness, 1988).  

Climate-induced destabilization is likely to be most pronounced in ecosystems 

that have low species richness and thus a limited insurance effect of biodiversity 

(McCann, 2000; Yachi & Loreau, 1999). With fewer interacting species, each species 

represents a greater proportion of the inequality underlying the community-level 

stabilization condition (Eqn. 12). Consequently, synchronous climate responses and 

increased competition among even a small number of species can more easily destabilize 

the community by shifting the product of species-level inequalities (Eqn. 13) without 

recourse from redundant species (Loreau & de Mazancourt, 2013). Though our example 

ecosystem is located in western North America, low species richness is a characteristic 

that is shared by boreal forests, temperate forests, and woodlands across the globe 

(Lamanna et al., 2014). Indeed, we are already observing climate-induced dieback in 

many of these other forests (Allen et al., 2010; Baltzer et al., 2014). Even in non-forested 

ecosystems, communities lacking adequate biodiversity are uniquely vulnerable to 

climate perturbations (e.g., Duffy et al., 2016; Pires et al., 2018). Our findings support the 

interpretation that ecosystem functionality may be reduced in low-richness systems as a 

consequence of climate-mediated destabilization (de Bello et al., 2021).  

It is necessary to point out that we did not test all requirements for stable 

coexistence here, namely the effects that individual species may have on their conspecific 

and heterospecific neighbors (i.e., a measurement of fitness differences; see Broekman et 

al., 2019). We therefore cannot draw decisive conclusions about whether coexistence will 

remain stable under future climate regimes. Because stabilization is a necessary condition 
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of stable coexistence, however, our findings of weakened stabilization suggest that 

climate change may likewise reduce the likelihood of stable coexistence within the 

foundational tree community on dry sites (Chesson 2000, Broekman et al. 2019): there 

can be no stable coexistence in a fundamentally destabilized community. Yet, stable 

coexistence canonically refers to long-term persistence of multiple competing species, so 

recruitment and growth must be considered in addition to the climate-regulated density-

dependent mortality assessed here. We found no evidence that recruitment and growth 

were sufficient to compensate for increasing mortality in the foundational community 

during the study period (Tables 3.1, B.1); at best, the observed recruitment and growth 

rates indicate an incredibly long lag time between overstory mortality and replacement of 

these stems by growth of younger or smaller stems. Indeed, recruitment of seedlings and 

saplings into the cohort of large, old trees can take a long time in temperate mixed-

conifer forests, often spanning multiple centuries for this forest type (Antos et al., 2005; 

Parish & Antos, 2006). Over these time scales, coexistence may be stabilized by 

recruitment and changing forest spatial patterns despite the destabilization trend shown 

here.  

Nevertheless, shorter-term destabilization and elevated mortality of large trees 

portends a temporary loss of ecosystem functionality, particularly of reduced carbon 

sequestration (Keith et al., 2009; Lutz et al., 2021), that has the potential to trigger 

cascading climate feedbacks and preclude long-term community stability altogether 

(Garcia et al., 2016; Swann et al., 2018). Without stabilizing mechanisms, competitive 

exclusion is expected to proceed rapidly if fitness differences are large (Adler et al., 

2010); prior research in this forest type indicates large fitness differences by way of 
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strong asymmetric competition (Lutz et al., 2014), particularly among the species 

comprising the foundational community (e.g., Tsuga). Changing patterns of CNDD and 

HNDD thereby have the potential to reduce biodiversity (Angelini et al., 2011; Ellison et 

al., 2019; Wright, 2002) and lead to novel community assemblages (Hobbs et al., 2009; 

Millar & Stephenson, 2015; Williams & Jackson, 2007), particularly if recruitment is also 

low as reported here (Bertrand et al., 2011; Grabherr et al., 1995; Kroiss & 

HilleRisLambers, 2015). These findings highlight a growing predominance of indirect 

drought effects, yet currently, no coupled climate models consider how changing forest 

community dynamics may impact forest cover and, in turn, disrupt forest–climate 

feedbacks. Coupled models’ focus on direct drought effects (i.e., trees’ physiological 

responses) at the population scale are therefore likely to overestimate the stability of 

some forested ecosystems, and potentially, the related stability of the global climate 

system (Cox et al., 2000; Germain & Lutz, 2020). Climate and vegetation models alike 

will benefit from further refinement of modeled relationships between forest community 

dynamics and climate variability. 

Observed patterns of density-dependent mortality reflect the net effects of positive 

and negative interactions within the broader forest community. These include not only 

the plant species, but plant enemies and mutualists as well (Cobb et al., 2010; Holt, 1985; 

Vandermeer, 1990). Even multispecies models that explicitly compute the interactions 

among multiple plant species are unable to fully account for these multitudinous trophic 

interactions (e.g., Saavedra et al., 2017). For informing management decisions, then, the 

most comprehensive way to predict forest changes is to examine net effects which 

represent the observed products of many complex ecosystem interactions. We found net 
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negative heterospecific effects with climate warming, suggesting that any underlying 

positive interactions (e.g., shared mycorrhizal networks; Bennett et al., 2017) were unable 

to completely offset increasingly negative interactions among the tree species. 

Silvicultural interventions that cultivate enhanced facilitation among heterospecifics 

(Germain & Lutz, 2021; Jactel & Brockerhoff, 2007) may be able to counteract negative 

interactions and conserve forest community stability. 

Given the recent wave of literature showing bias in coexistence studies, it has 

become increasingly important to transparently show how biases have been prevented in 

NDD analyses. Collectively, the following have been identified as potential sources of 

bias in NDD research: temporal heterogeneity (i.e., dynamic data)(Damgaard, 2019; 

Damgaard & Weiner, 2017), spatial heterogeneity (Rinella et al., 2020), influence of past 

ecological processes (Tuck et al., 2018), and predictor errors (Detto et al., 2019). Recent 

critiques have taken aim at analyses that are not comprehensive in nature, as few if any 

papers have addressed all of these sources of bias simultaneously. We present the first 

study of mature tree mortality for which all of these objections have been addressed to 

the maximum extent possible with an empirical approach: our longitudinal dataset 

captures temporal climate heterogeneity characteristic of the region; we quantify how 

NDD differs along the primary axis of spatial heterogeneity (soil water); we control for 

existing tree spatial patterns (i.e., those arising from past ecological processes) by 

standardizing the crowding index by species and diameter; and finally, we present 

sensitivity analyses for four types of error and examine only abundant species to avoid 

overestimation of NDD by error-prone proxies (see Considerations of Bias in Appendix 

B: Section S2 for a full discussion of our considerations). 
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Conclusions 

The forecasted increase of HNDD with continuing climate change is likely to 

have a destabilizing effect that results in local species exclusion in existing old forests, 

especially on dry sites. Moreover, none of the examined species showed compensatory 

rates of recruitment, foreshadowing changes to ecosystem functioning that are unlikely to 

be recovered by novel species assemblages (as yet unknown) for many centuries. Efforts 

to preserve environments most likely to favor continued stable coexistence of existing 

foundational assemblages (here, moist sites) will be critical to protecting ecological 

functioning and biodiversity amidst global change (Ellison et al., 2019).  

We present a methodological framework for addressing how climate change can 

alter coexistence mechanisms, which has the capacity to 1) inform climate-adaptation 

research in plant communities globally, and 2) improve global climate models to refine 

predictions of future climate change. Projections show a first indication of community 

instability in forests, the magnitude of which will require refinement of climate models 

and climate–mortality interactions. Nonetheless, these empirically informed risk forecasts 

show that future community dynamics can be predicted when models simultaneously 

consider temporal climate variability, spatial niche heterogeneity, and demographic 

processes at the local scale (Chesson & Huntly, 1997; Levine et al., 2017). We 

demonstrate that the leading stabilization mechanism underpinning stable coexistence is 

strongly linked to climate, where growing HNDD relative to CNDD portends reduced 

stability in the future. Because interspecies relationships can override individual species 

responses to climate (Suttle et al., 2007), it is imperative that future research consider 

climate change impacts on community dynamics. 
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Box 1. Stabilization conditions for the five-species model 

 
Under the two-species Lotka–Volterra model, the condition for stabilization is that total 
community-level CNDD > HNDD:  
ሺ10ሻ 𝛼𝛼11 𝛼𝛼22 > 𝛼𝛼12 𝛼𝛼21 
 
where the underlying species-level inequalities are shown by:  
ሺ11aሻ 𝛼𝛼11 > 𝛼𝛼12 

ሺ11bሻ 𝛼𝛼22 > 𝛼𝛼21 
 
As summarized by Broekman et al. (2019), satisfying either one of these species-level 
inequalities is a sufficient but not necessary condition for stabilization. That is, stabilization can 
be present even if one of the underlying inequalities is not satisfied, provided the other inequality 
compensates to satisfy the community-level stabilization condition:  

stabilization can happen if either  𝛼𝛼11 > 𝛼𝛼12   AND/OR   𝛼𝛼22 > 𝛼𝛼21   are true 
 
However, if neither species-level condition is satisfied, then the product of the two conditions 
produces the opposite of the community-level stabilization condition, indicating a lack of 
community-level stabilization:  

stabilization cannot happen if both  𝛼𝛼11 > 𝛼𝛼12   AND  𝛼𝛼22 > 𝛼𝛼21   are false 
 

In our five-species model, we test whether effects of conspecifics are more negative than effects 
of heterospecifics for the five-species community, altering the stabilization condition to state: 
ሺ12ሻ 𝛼con  > 𝛼het 
 
We combine all heterospecific effects, effectively treating them as the second species that 
represents the net effects of many directly and indirectly interacting species (sensu Comita et al. 
2010; Johnson et al. 2012), because the sum of pairwise heterospecific interactions is not 
sufficient to capture true heterospecific effects in multispecies communities (Levine 2017, 
Barabas et al. 2016). Though there are limitations to this methodology (e.g., it does not allow 
definitive conclusions for any two-species subset; Broekmann et al. 2019), this approach was 
sufficient to achieve our objective of assessing survival consequences of net effects arising from 
interactions among all community members. 
 
Thus, the underlying species-level conditions for stabilization are shown by: 
ሺ13aሻ 𝛼𝛼11  > 𝛼𝛼1,het 
ሺ13bሻ 𝛼𝛼22  > 𝛼𝛼2,het 
ሺ13cሻ 𝛼𝛼33  > 𝛼𝛼3,het 
ሺ13dሻ 𝛼𝛼44  > 𝛼𝛼4,het 
ሺ13eሻ 𝛼𝛼55  > 𝛼𝛼5,het 
 
We expect stabilization if the product of these five inequalities meets the community-level 
stabilization condition (Eqn. 10), even if any n number of species-level responses are themselves 
unsatisfied (Eqn. 13). Conversely, we expect destabilization if the product of these five 
inequalities does not meet the community-level stabilization condition, particularly if the majority 
or all species-level responses indicate CNDD < HNDD.  
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Tables 

Table 3.1. Demographic rates of all woody species reaching 1 cm diameter at breast height in the Wind River Forest Dynamics Plot 
between 2011 and 2016 (the remeasurement census interval). Frequency indicates the proportion of 20 m × 20 m quadrats (out of 640) 
occupied by at least one live stem in 2016. All vital rates refer to the 2011 to 2016 period. Of these, we analyzed: Abies amabilis, Acer 
circinatum, Pseudotsuga menziesii, Taxus brevifolia, and Tsuga heterophylla. 

Frequency 
(%) 

Growth 
(%) 

Stems (n) Recruitment Mortality 

Gymnosperms Family 2011 2016 
Trees 

(n) 
Rate 

(% yr-1) 
Trees 

(n) 
Rate 

(% yr-1) 
Abies amabilis Pinaceae 84.4 2.50 4504 4496 345 1.49 350 1.60 
Abies grandis Pinaceae 7.5 1.46 68 59 1 0.29 10 3.13 
Abies procera Pinaceae 1.9 0.21 14 13 0 0.00 1 1.47 
Pinus monticola Pinaceae 0.6 -0.08 6 5 1 3.13 2 7.79 
Pseudotsuga menziesii Pinaceae 47.2 0.16 573 546 0 0.00 27 0.96 
Taxus brevifolia Taxaceae 81.9 0.14 2113 1843 1 0.01 271 2.71 
Thuja plicata Cupressaceae 16.9 0.56 200 194 1 0.10 7 0.71 
Tsuga heterophylla Pinaceae 100.0 1.70 10001 9809 365 0.72 553 1.13 
All Gymnosperms 100.00 0.83 17479 16965 714 0.80 1221 1.44 

Angiosperms 
Acer circinatum Sapindaceae 97.8 1.32 11480 10365 259 0.45 1362 2.49 
Acer glabrum Sapindaceae 0.2 0.71 1 1 0 - 0 0 
Alnus rubra Betulaceae 0.9 2.12 9 8 0 - 1 2.33 
Amelanchier alnifolia Rosaceae 0.8 0.12 9 8 1 2.13 2 4.90 
Corylus cornuta Betulaceae 16.4 3.13 650 667 104 3.01 86 2.80 
Cornus nuttallii Cornaceae 17.5 0.68 178 150 3 0.33 31 3.75 
Frangula purshiana Rhamnaceae 0.2 1.30 1 1 0 - 0 0 
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Table 3.1. Continued. 

Frequency 
(%) 

Growth 
(%) 

Stems (n) Recruitment Mortality 

Angiosperms Family 2011 2016 
Trees 

(n) 
Rate 

(% yr-1) 
Trees 

(n) 
Rate 

(% yr-1) 
Gaultheria 

shallon Ericaceae 1.1 2.2 14 13 3 3.96 4 6.51 
Holodiscus 

discolor Rosaceae 1.7 2.85 27 26 3 2.13 4 3.16 
Lonicera ciliosa Caprifoliaceae 0.2 2.02 1 1 0 - 0 0 
Menziesia 

ferruginea Ericaceae 1.1 -1.24 20 18 0 - 2 2.09 
Oemleria 

cerasiformis Rosaceae 0.2 3.13 2 2 0 - 0 0.00 
Rhododendron 

macrophyllum Ericaceae 3.0 3.35 477 472 42 1.70 47 2.05 
Rosa gymnocarpa Rosaceae 0.2 6.99 1 1 0 - 0 0 
Rubus spectabilis Rosaceae 0.2 3.28 1 3 2 24.57 0 0 
Vaccinium 

ovalifolium Ericaceae 4.5 2.10 66 76 17 4.69 5 1.56 
Vaccinium 

parvifolium Ericaceae 52.0 1.70 1312 1314 179 2.59 167 2.69 
All Angiosperms 100.00 2.10 14249 13126 613 0.85 1711 2.53 
All Species 100.00 1.70 31728 30091 1327 0.82 2932 1.92 
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Figures 

Figure 3.1. Geographic and climatic setting. (a) Location of the Wind River Forest 
Dynamics Plot (WFDP), with green shading depicting the Tsuga heterophylla – 
Pseudotsuga menziesii forest zone. (b) LiDAR-derived topographic map (3-m contour 
lines) of WFDP. (c) Modeled total annual Deficit and (d) modeled maximum annual 
snowpack in the WFDP, with generalized least squares regressions conducted on mean 
climate models created from six climate projections (colored lines) to show trends (95% 
confidence envelope in grey). Dotted rectangles indicate the period of demographic 
sampling.  
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Figure 3.2. Parameter Uncertainty. Forecasted hazard ratios (i.e., risk) for mortality 
produced by conspecific and heterospecific neighborhoods at dry and moist microsites. 
Curves of forecasted hazard ratios represent risk calculated from the mean climate model. 
Shaded portions indicate ± 1 standard error. Dotted horizontal line indicates a hazard 
ratio = 1, at which there is no effect on mortality risk. Hazard ratio > 1 indicates mortality 
is increased; hazard ratio < 1 indicates mortality is decreased; mortality risk doubles at 
hazard ratio = 2, above which mortality is precipitously increased (see Tsuga and Abies, 
dry sites). Dotted rectangles capture the period of demographic sampling. Flat curves 
indicate that the Hegyi index had no significant interactions with snowpack or Deficit, 
meaning the effect of neighborhood was not projected to change over time. 
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Figure 3.3. Forecasted strength of stabilizing mechanisms (i.e., the difference between 
mortality hazard ratios produced by conspecific and heterospecific neighborhoods) at the 
community level, either averaged across all microsites (red curve) or stratified by soil 
moisture levels (black and orange curves). Community-level hazard ratios represent the 
relative basal area-weighted average of species-specific hazard forecasts of dominant tree 
species: Abies amabilis, Pseudotsuga menziesii, Taxus brevifolia, Tsuga heterophylla, 
and Acer circinatum. Curves of forecasted hazard ratios represent risk calculated from the 
mean climate model. Horizontal dotted lines represent no difference between conspecific 
and heterospecific effects on mortality risk. Differences greater than 0 indicate higher net 
mortality risk increase from conspecific neighborhoods; differences less than 0 indicate 
higher net mortality risk increase from heterospecific neighborhoods. Dotted rectangles 
capture the period of demographic sampling. 
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Figure 3.4. Climate refugia in the Wind River Forest Dynamics Plot. The blue polygon 
represents moist areas (elevation above maximum spring water table < 0 m). The orange 
polygon represents dry areas (elevation above maximum spring water table > 15 m). 
Moist areas acted as climate refugia by maintaining sufficient soil water to temper the 
effects of increasing drought; this ameliorated competition, increased tree survival, and 
ultimately led moist areas to demonstrate stronger future community stability than dry 
areas (Figure 3.3). Contour lines: 3-m. 
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CHAPTER IV 

STAND DIVERSITY INCREASES PINE RESISTANCE AND RESILIENCE TO 

COMPOUND DISTURBANCE3 

Abstract 

Drought, fire, and insects are increasing mortality of pine species throughout the 

northern temperate zone as climate change progresses. The synergistic effects among 

these factors make compound disturbances uniquely damaging, especially in forests with 

a history of fire exclusion. Study of the mechanisms promoting pine resistance and 

resilience provides actionable information to maintain these important carbon stores. We 

examined annual demography of large-diameter Pinus lambertiana in a canonical mixed-

species forest in California, USA to characterize how the centennial-scale balance of 

growth and defense relate to bark beetle susceptibility in the presence of reintroduced fire 

and drought. Dendroecological analysis of growth rates and defensive resin ducts allowed 

us to quantify spatially explicit mechanisms of associational resistance (AR) and 

associational susceptibility (AS) over five years of drought-fire-beetle disturbances: AR 

and AS occur when stand characteristics, like structure and composition, either increase 

or decrease tree survival, respectively. In the historical era of frequent, mixed-severity 

fire (pre-1900), bark beetle-resistant and -susceptible trees showed similar growth and 

defenses as measured by axial resin duct traits. During the era of fire exclusion (1900-

2013), however, susceptible trees demonstrated growth-defense tradeoffs, where growth 

was sacrificed to maintain defenses; and following fire re-entry in 2013, both growth and 

defense declined precipitously, leading to fatal bark beetle attack for susceptible trees. 

3 This chapter was submitted to Global Change Biology on August 1, 2022. 



116 

 

Spatial analysis showed that monodominant crowding by shade-tolerant competitors 

contributed to the long-term stress that prevented susceptible trees from recuperating 

defenses quickly following fire re-entry. Yet, trees in species-rich communities had 

higher growth rates pre-fire, promoting resilience of growth and defenses following fire 

that helped trees resist bark beetle attack and reduced attack rates overall. This 

associational resistance outweighed associational susceptibility effects (+8.6% vs. -6.4% 

change in individual tree survival odds), ultimately allowing a majority of large pines to 

survive the compound disturbance (58%). Given the phylogenetically conserved nature of 

growth and physical defense responses in the genus Pinus, these findings will inform 

conservation of pine across the northern temperate region. Our results demonstrate how 

tree diversity can increase forest resistance and resilience to climate-amplified 

disturbances. Management that increases diversity, therefore, can be expected to increase 

forest carbon storage.   

Introduction 

Compound disturbances involving fire, drought, and bark beetle epidemics are 

becoming more pervasive due to climate change, contributing to widespread forest 

decline in recent years (Van Mantgem et al. 2009, Jenkins et al. 2014, Millar and 

Stephenson 2015). The possibility that tree survival may be enhanced by species diversity 

is attractive to land managers seeking to promote forest health and maintain carbon stores 

in the midst of these disturbances (Roberts and Gilliam 1995, Hooper et al. 2005). 

Associational resistance (AR; Barbosa et al. 2009) refers to the observation that trees 

growing in species-rich stands are often less susceptible to host-specific mortality agents, 

such as bark beetles (Huber and Borden 2001, Jactel and Brockerhoff 2007, Himanen et 
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al. 2010). Historically, however, there has been considerably greater focus on how tree 

neighbors increase mortality risk through bark beetle attraction, fire effects, or 

competition (i.e., associational susceptibility; AS; Tilman 1982, Churchill et al. 2013, 

Furniss et al. 2022). A focus on AS instead of AR can have important management 

implications: AS would suggest that thinning decreases competition and subsequent bark 

beetle attack (Feeney et al. 1998, D’Amato et al. 2013), whereas AR would suggest that 

thinning may be ineffective, and instead, increasing diversity is necessary for bark beetle 

resistance (Germain and Lutz 2021a). Because of the potential consequences of these 

different approaches, it is important to understand the relative importance of AS and AR. 

Associational resistance can emerge through many mechanisms (Jactel et al. 

2021). Forest species diversity can reduce host-specific insect attack rates by masking the 

visual and chemical cues relied upon by insect to find preferred hosts (plant apparency 

hypothesis; Castagneyrol et al. 2013). Reduced insect attack is also observed in diverse 

stands due to reduced host frequency (resource concentration hypothesis; Kareiva 1983) 

and accumulation of insect natural enemies (enemies hypothesis; Russell 1989). Forest 

diversity can also influence insect success rates by moderating resource abundances via 

competitive and mycorrhizal interactions, therefore mediating the tree growth and 

defense capacities necessary to combat insect attack (Bennett et al. 2005, Slack et al. 

2017). Moreover, active bark beetle attack itself can induce defenses (DeRose et al. 

2017), creating a possible indirect effect of forest diversity on tree survival as well. 

Because trees’ ability to defend can be compromised by water stress during drought 

(Gaylord et al. 2013, Stephenson et al. 2019), pathways of associational resistance that 

prevent bark beetle attack may be increasingly important as drought severity and 
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frequency increase due to climate change (Dai 2013). However, studies decoupling attack 

vs. success mechanisms of associational resistance are rare and have not been adequately 

explored in fire-excluded forests where bark beetle outbreaks are uniquely damaging. 

Susceptibility to bark beetles depends, ultimately, on trees’ ability to defend. The 

primary line of conifer defense against bark beetles is oleoresin (i.e., resin), which creates 

a physical barrier to entry and contains terpenoids that are toxic to insects and microbes 

(Phillips and Croteau 1999, Raffa 2014). Resin is crucial for combatting attack by bark 

beetles and their fungal symbionts (Ferrenberg et al. 2014, DeRose et al. 2017), and can 

also prevent pathogen invasion following physical damage (e.g., post-fire; Bonello et al. 

2006, Hood et al. 2015). The genus, Pinus, constitutively produces large amounts of resin 

stored throughout a network of resin ducts in the primary and secondary xylem (Wu and 

Hu 1997) and can also be induced to produce resin systemically upon bark beetle attack 

(Lombardero et al. 2000). This abundance of defense capacity likely reflects Pinus’ 

coevolution with herbivorous insects, such as Dendroctonus and Ips bark beetles, two of 

the most destructive insect genera worldwide (Raffa et al. 2008, Mason et al. 2019); and 

fire, as many Pinus genera grow in drier, fire-prone forests (Kolb et al. 2007). As such, 

Pinus is at the crux of drought, fire, and insect compound disturbances and has been 

consequently declining across the northern temperate region (Lutz et al. 2009, Haynes et 

al. 2014, García de la Serrana et al. 2015, Sangüesa-Barreda et al. 2015, Li et al. 2020). 

Identifying pathways that protect large-diameter Pinus from future outbreaks will provide 

actionable information to maintain these important carbon stores (Lindenmayer et al. 

2012, Stephenson et al. 2014).  
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The growth-differentiation balance (GDB) hypothesis posits that the antagonistic 

demands of growth and defense for plant metabolites, particularly amidst limited 

resources, manifests as a negative relationship between growth and defense (Herms and 

Mattson 1992, Züst and Agrawal 2017). Though many aspects of plant growth and 

defense are phylogenetically conserved (Wu and Hu 1997, Six et al. 2021), factors such 

as forest community composition, drought, and fire can regulate resource availability 

that, consequently, alters defense expression (Hood et al. 2015, Slack et al. 2017). When 

environmental conditions are favorable, growth tends to receive resource priority over 

defense (Herms and Mattson 1992). For example, added nitrogen can decrease 

constitutive resin flow by promoting growth, reflecting that constitutive resin production 

depends on the carbohydrate pool size remaining after growth is maximized (Warren et 

al. 1999, Lombardero et al. 2000). The same pattern, however, is not evident for induced 

resin flow, suggesting that growth and induced defenses may be similarly prioritized 

when defense needs are high (Lerdau et al. 1994, Lombardero et al. 2000). The complex 

relationships between GDB and environmental conditions – in addition to the differing 

responses of constitutive and induced defenses – has led to equivocal empirical evidence 

for GDB in the field (Reid and Watson 1966, Kane and Kolb 2010, Ferrenberg et al. 

2014, Slack et al. 2017).  

Field observations indicate that moderate stress can promote resin production 

(Hood et al. 2015, Anderegg et al. 2015), while severe stress can reduce both growth and 

resin production (Lombardero et al. 2000, Gaylord et al. 2013). Likewise, diverse 

neighborhoods may have less prominent facilitative effects during drought years due to 

increased competition for water and water-soluble nutrients (Urban et al. 2012, 
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Castagneyrol et al. 2018), and this may be most evident for trees suffering from fire 

damage (Ryan 2000, Varner et al. 2009). On the other hand, fire-suppressed forests suffer 

from increased stress due to high densities (i.e., stronger competition; van Mantgem et al. 

2004, Barth et al. 2015), leaving open the possibility that fire re-entry releases trees from 

stress, promoting growth and inducing defenses regardless of diversity levels (Feeney et 

al. 1998). Determinations of whether, and over what time frame, diversity is able to 

mediate tree responses to compound disturbances can inform management endeavoring to 

promote forest resilience to fire, drought, and bark beetle disturbances. 

We examine the direct and indirect effects of fire, climate, and bark beetles in a 

previously fire-suppressed forest to identify 1) mechanisms governing associational 

resistance and susceptibility, and 2) conditions regulating the relative dominance of these 

opposing processes over the span of a compound disturbance. We address these questions 

by studying the mechanisms and spatiotemporal variability of growth-defense trade-offs 

in Yosemite National Park, CA, USA. We investigated how two potential mechanisms of 

associational resistance and susceptibility, growth and axial resin duct production, depend 

on forest diversity and density for Pinus lambertiana Douglas, an iconic gymnosperm 

residing in historically fire-prone montane forests of the Sierra Nevada. We then 

identified environmental thresholds governing emergence of growth-defense trade-offs 

by assessing growth and defense over variability in forest structure, climate, and 

disturbances. Finally, we assessed whether growth or defense benefits to Pinus growing 

in diverse communities, if they exist, translate into enhanced survival.  
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Materials and Methods 

Study Area and Data Characterization 

Study Area 

The study area was the Yosemite Forest Dynamics Plot (YFDP), located in 

Yosemite National Park, California, USA (Lutz et al. 2012, 2013). The YFDP is part of 

the Smithsonian ForestGEO network (Anderson-Teixeira et al. 2015, Davies et al. 2021), 

with every tree ≥1 cm diameter at breast height (DBH) mapped and identified. Since 

2011, the YFDP has served as a natural experiment for compound disturbances by 

tracking growth and survival of 34,458 trees within a 25.6-ha contiguous area exposed to 

overlapping fire, drought, and bark beetle disturbances. The fire regime at the YFDP 

prior to Euro-American settlement was one of low- to moderate-severity fires occurring 

at a mean fire return interval of 30 years in the YFDP (Barth et al. 2015). This return 

interval was longer than characteristic for this vegetation type (12 years; Scholl and 

Taylor 2010), most likely because of its generally north-facing aspect. The last fire to 

burn through the YFDP prior to the onset of fire exclusion was in the year 1900 (Barth et 

al. 2015).  

The YFDP is located in the Abies concolor / Pinus lambertiana vegetation zone 

of the central Sierra Nevada, where the distribution and abundance of woody vegetation 

is jointly determined by climate and fire (Lutz et al. 2010, van Wagtendonk et al. 2020). 

Common tree species include the gymnosperms Abies lowiana (Gordon) A. Murray 

(previously Abies concolor (Gordon & Glendinning) Hildebrand; shade tolerant, 

subdominant), Calocedrus decurrens (Torrey) Florin (shade tolerant, co- to 

subdominant), and Pinus lambertiana Douglas (shade intolerant, dominant); and 
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subdominant angiosperms Cornus nuttallii Audubon and Quercus kelloggii Newberry. 

Prominent shrubs include Arctostaphylos patula Greene, Ceanothus cordulatus Kellogg, 

Ceanothus integerrimus Hooker & Arnott, Ceanothus parvifolius Trelease, Chrysolepis 

sempervirens (Kellogg) Hjelmquist, Corylus cornuta ssp. californica (A. de Candolle) E. 

Murray, and Prunus emarginata (Douglas) Eaton. Nomenclature follows Flora of North 

America Editorial Committee (1993+)(Flora of North America Editorial Committee 

1993). 

The YFDP experienced severe drought spanning 2012 to 2015: In spring of 2015, 

the snow water equivalent was at 5% of its historical average, a level that has not been 

observed for over 3000 years (Belmecheri et al. 2016, Furniss et al. 2020). Coinciding 

with drought, the YFDP burned in September 2013 in a management-ignited backfire set 

to control the spread of the Rim Fire (Lutz et al. 2017). The satellite-derived fire severity 

within the YFDP showed mostly a mixture of low- to moderate-severity (Blomdahl et al. 

2019) generally characteristic of fires in Yosemite since 1975 (van Wagtendonk and Lutz 

2007). Within the YFDP, fire severity was generally indistinguishable from the majority 

of the Rim Fire footprint within Yosemite (Kane et al. 2015), but much less severe than 

the high-severity effects on the adjacent Stanislaus National Forest (Lydersen et al. 

2014). Surface fuel consumption, including consumption of duff mounds near larger-

diameter trees was approximately 90% (Cansler et al. 2019), but completely unburned 

surface area in patches ≥1 m2 was 5% (Blomdahl et al. 2019). Elevated bark beetle 

activity coincided with fire and drought (Raffa et al. 2008), and reached incipient-

epidemic levels in the YFDP between the years 2014-2016 (Furniss et al. 2020, 2022).  
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Trees were measured for diameter in 2009-2010, 2014, and 2019. We revisited 

each tree annually from 2011 to 2019 (Lutz 2015) and conducted pathology exams of 

newly dead trees (i.e., no live foliage), including identification of the multiple factors 

associated with mortality (species recorded if a biotic agent) and documentation of 

additional factors affecting mortality (e.g., crushing; Germain and Lutz 2021a, their 

Appendix S1). Our immediate post-fire pathology exams in May 2014 measured direct 

fire effects (crown and bole scorch, fire mortality), and subsequent pathology exams from 

2015 to 2019 captured delayed fire- and bark beetle-related mortality. 

 
Sampling Design 

We randomly selected 80 bark beetle-resistant and 80 beetle-susceptible Pinus 

trees that were ≥80 cm DBH in 2019 from which to sample annual growth and defense. 

Selected trees met all the following criteria: resistant trees were those still alive in the 

summer of 2019; susceptible trees were those that were alive in 2014 (immediately post-

fire) but that died due to bark beetles (Dendroctonus ponderosae Hopkins and/or 

Dendroctonus valens LeConte) between 2015 and 2019; though these trees may have 

endured fire damage, annual surveys in the five years following fire indicated these trees 

survived the fire and that bark beetles were the most proximate cause of mortality. Of 

resistant trees, 19% showed evidence of bark beetle attack during the 5 years post-fire 

(pitching, bark beetle frass, entry and exit holes, bark beetles). Trees were not sampled 

from rocky ridges or riparian draws to avoid possibly confounding effects of unique 

water status, nutrients, and altered fire intensity in these areas (North et al. 2009, van 

Wagtendonk et al. 2020). Topographical strata were determined by calculating 50-m2 

topographic position index (TPI; Fig. 4.1), then defining ridges as >80th percentile (2.2 
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TPI) and draws as < 20th percentile (-2.3 TPI). We verified that this stratification 

controlled for prevailing edaphic controls on tree neighborhoods through additional soil 

and topographic tests (Appendix C: Section S1). 

An increment borer was used to extract one, 5.15-mm wide × 30-cm long core 

from each sampled tree, approximately 1 m above the soil surface. Cores were visually 

inspected upon sampling and trees were re-sampled if initial cores were too rotten to 

identify rings. Increment borers were cleaned with steel wool and disinfected with a 

diluted Lysol solution between each tree to prevent disease transmission. At the time of 

coring, we remeasured tree DBH and fire injury (proportion of basal circumference 

scorched, maximum scorch height) for consistency. Cores were dried, mounted, and 

sanded progressively from 220 grit to 30 microns using standard dendrochronological 

techniques (Speer 2010). Mounted cores were scanned as high-resolution images (3000 

dpi). 

 
Climate 

We obtained monthly drought time series from the TerraClimate dataset via 

Google Earth Engine at a 4-km spatial resolution (Abatzoglou et al. 2018). Monthly 

TerraClimate spanned the years 1958 to 2019 and included snow water equivalent 

(SWE), climatic water deficit (deficit), and the Palmer Drought Severity Index (PDSI). 

We also tested monthly climate time series from the Parameter-elevation Regression on 

Independent Slopes Model (PRISM) data set (Daly et al. 2008) at a 4-km spatial 

resolution with grid cell interpolation. Monthly PRISM climate spanned the years 1895 to 

2019 and included precipitation, temperature (minimum, maximum, and mean), and 
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vapor pressure deficit (VPD; minimum and maximum). See Appendix C: Section S1 for 

details on each of these variables.  

Two preliminary analyses compared cumulative metrics of drought (SWE, deficit, 

PDSI, VPD) with precipitation and temperature to determine which parameter best 

predicted tree growth, defense, and survival. We examined total SWE; maximum 

monthly deficit of the current and previous year (separately); minimum and mean 

monthly PDSI for each growth year (October of previous year to September of current 

year); and minimum, mean, and maximum temperature, precipitation, and VPD. For 

PRISM variables, we first conducted univariate sliding window analyses (SWA) to detect 

the time period over which annual tree growth and resin duct area were most strongly 

affected by monthly climate variables within the 1895 to 2019 climate data period 

(climwin; Bailey and Pol 2016). We then performed a multivariate moving correlation 

function analysis (CFA; treeclim; Zang and Biondi 2015) for growth and resin duct area 

relationships with the aggregate climate parameters chosen by SWA; this examined how 

associations between climate and growth/defense changed over time and determined 

which parameters were most relevant to the study time frame. All analyses were 

performed in R statistical software [version 4.1.2] (R development core team 2019). 

 
Growth 

Of the originally sampled 160 trees, 30 cores could not be crossdated due to 

severe stem rot (final live n = 80, dead n = 50). Ring boundaries were assigned and radial 

growth measured to ±0.001 mm accuracy using Cybis’ CooRecorder and CDendro 

software [version 9.6] (Larsson and Larsson 2017). All cores were visually crossdated 

before being evaluated for possible errors using the package dplR [version 1.7.2] (Bunn 
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2008). The final year of live tree growth was the year of sampling (2019). Live trees were 

used to crossdate dead trees and determine their final year of growth. Dead trees 

produced terminal growth rings between 0 and 3 years preceding evidence of death 

observed in the field, which was deduced from annual mortality surveys (Germain and 

Lutz 2021a, their Appendix S1).  

We compared our master chronology (robust biweight mean of live and dead trees 

built on pre-whitened ring widths; Germain and Lutz 2021b, 2021c) with five Pinus 

chronologies and one Calocedrus decurrens (Torrey) Florin chronology to verify 

crossdating accuracy (all pre-whitened; Table C.1). We then interactively detrended our 

master chronology to find the best detrending method (chosen: 2/3 smoothing spline) 

using the package dplR [version 1.7.2] (Bunn 2008). Our detrended and pre-whitened 

chronology had a Pearson’s intercorrelation of 0.57 (i.e., COFECHA or overall 

correlation; n = 130) and the average correlation between series (RBAR) was 0.33. The 

expressed population signal (EPS) was 0.96, static to noise ratio (SNR) was 24.4, mean 

first-order autocorrelation of raw ring widths across all series was 0.73, first-order 

autocorrelation of the detrended and pre-whitened master chronology was -0.09, and 

mean sensitivity was 0.17 (but see Bunn et al. 2013). Ring width was converted to basal 

area increment (BAI; mm2 yr-1) to control for temporal variability in tree diameter. Likely 

because of the mature stature of the trees, combined with the fact that our coring depth 

did not hit pith, we observed no age-related growth trends, and therefore did not further 

detrend growth data for analysis.  
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Defense 

To assess defense, we identified and measured annual resin ducts in core images 

using the ellipse tool in ImageJ software [version 1.53e] (Rasband 2012). We delineated 

a 350-px-wide area down the center of each core within which to measure resin ducts to 

control for slightly different core widths. We cross-verified resin duct measurements 

twice for consistency and accuracy and calculated seven metrics of resin duct production: 

duct number per annual ring (no. yr-1 and no. ring mm2), duct area per annual ring (mm2 

yr-1 and mm2 ring mm-2), and average area per duct (mm2 and mm2 ring mm2; Hood and 

Sala 2015).  

Growth-defense trade-offs were assessed over the whole chronology (years 1591–

2019) using linear mixed models predicting duct production (total annual area, total 

annual density, and annual average duct size) as a function of interacting BAI and tree 

survival, where tree individuals were included as random effects to account for repeated 

measurements. Growth and defense were standardized to reflect high and low values 

relative to the average for each tree. We also investigated the effect of drought by 

including the three-way interaction between drought, BAI, and survival. Climate data 

limited this analysis to the years 1959–2019. To ensure that model results were not biased 

by data availability post-fire, we tested all 5 and 10-year aggregations during exclusion 

and historical periods to determine whether any period matched the pattern observed 

following re-entry. We also tested bole scorch to disentangle the effects of fire and 

drought. We tested multiple measurements of drought based on SWA and CFA 

preliminary analyses: summer maximum temperature (May-August), winter minimum 

temperature (November-February), total annual SWE, maximum monthly deficit in the 

current or the previous year, and minimum or mean monthly PDSI. Welch’s T-tests were 
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performed on unstandardized, mean values for growth and defense (see Results: Growth 

and Defense) to compare live and dead trees for descriptive statistics. 

 
Tree Neighborhoods 

We calculated live density and basal area of each individual tree species present 

in the stand. Shrubs, heterospecifics, and neighbors were each categorized collectively. 

We examined the effect of neighbor size by including the density and basal area of large 

(DBH ≥ 60 cm), medium (10 cm ≤ DBH ≤ 30 cm), small (1 cm ≤ DBH < 10 cm), and all 

neighbors (DBH ≥ 1 cm). Additionally, we calculated density and basal area of large and 

small individuals of each of the gymnosperm tree species. We measured the nearest 

distance to a susceptible Pinus and resistant Pinus, the proportion of neighboring Pinus 

that were killed by bark beetles, and basal area of bark beetle-killed Pinus in the 

neighborhood. Finally, we characterized species and structural diversity using the number 

of different woody species (richness) and the standard deviation of tree DBH within each 

neighborhood (i.e., old-growth index; Spies et al. 1991). We used a mirrored edge 

correction to account for edge effects. 

Each of these density, basal area, distance, and diversity metrics were calculated 

at 5, 10, 20, and 30-m radii from focal trees, where focal trees were the 130 cored Pinus. 

We conducted two preliminary analyses using Random forests to determine 1) the 

optimal radial distance within which to quantify neighborhoods, and 2) which of the 

neighborhood variables were most predictive of Pinus survival. Final combinations of 

neighborhood variables were chosen through classification accuracy and AIC 

comparisons of GLM models. We verified that final neighborhood variables were not 

collinear through additional tests (Appendix C: Section S1). Welch’s T-tests were 
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performed to compare live and dead trees for descriptive statistics (Neighborhoods, 

below).  

 
Management-oriented Models 

We built generalized linear models (GLM) based on pre-fire and post-fire data to 

inform management taking place either before or after fire re-entry. These prioritized 

landscape-level management, assumed that data related to tree growth and defense were 

unavailable, and omitted climate as it is not a directly manageable parameter. Remaining 

neighborhood-related covariates were selected using Random Forests importance 

rankings, model AIC, and model accuracy (assessed through 10-fold cross validation). 

Two- and three-way interactions among chosen variables were tested. Preliminary 

variable importance tests showed that the old-growth index was moderately important for 

Pinus survival, but the effect was highly non-linear (intermediate levels associated with 

increased survival). Thus, this measure of structural diversity was omitted from linear 

models. 

The resulting pre-fire model assessed survival of cored Pinus as a function of 

neighboring species richness (30-m), small living Abies density (1 cm ≤ DBH < 10 cm; 

10-m), and large living Pinus density (DBH ≥ 60 cm; 10-m). The post-fire model 

assessed the largest Pinus survival as a function of neighboring species richness (30-m), 

medium living Abies density (10 cm ≤ DBH ≤ 30 cm; 10-m), large living Pinus density 

(DBH ≥ 60 cm; 10-m), bark beetle-killed Pinus basal area (10-m), and bole scorch height 

as a proxy for fire severity. 
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Mechanism-oriented Models 

We built a multilevel moderated mediation structural equation model (SEM) that 

tested the serially mediated mechanisms by which forest composition and structure 

directly and indirectly altered bark beetle success rates (i.e., tree survival) across 

heterogeneous drought and fire disturbances. As an extension of linear regression, SEM 

allows greater flexibility to examine interactions between variables through moderation 

and mediation. Much like interactions in simple linear models, moderators alter the 

direction or strength of a relationship between two variables. Conversely, mediators 

characterize the mechanism by which an indirect effect occurs between two variables. 

Serial mediation refers to an indirect effect that is mediated by two or more variables, and 

moderated mediation happens when an indirect relationship is also moderated. The 

multilevel structure reflects within-tree variability sampled by growth, defense, and 

drought over time, while between-tree variability was sampled by tree neighborhoods and 

fire damage. All mediated relationships were cross-level interactions.  

We built the SEM iteratively to assess interaction sensitivities. The first model 

included no moderation, assessing only the mediation effects of biotic variables on tree 

survival (i.e., average mediation effects across all fire and drought levels). We then added 

single moderators, testing the individual moderation effect of fire damage and drought. 

At this step, we tested multiple measurements of drought based on preliminary analyses: 

summer maximum temperature (May-August), winter minimum temperature (November-

February), total annual SWE, maximum monthly deficit in the current or the previous 

year, and minimum or mean monthly PDSI.  

Preliminary tests showed that close-range (≤10 m) bark beetle dispersal from 

beetle-killed conspecifics nullified the effect of close-range competition from large live 
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conspecifics on Pinus mortality (see results for Management-oriented Models, below). 

Our mechanistic model therefore considered competition in terms of Abies densities and 

allowed the Pinus effect to be defined by bark beetle-killed basal area. The final SEM 

predicted bark beetle success rates (indicated by tree survival) as a function of 1) the 

direct effects of biotic factors in the five years following fire: 30-m post-fire woody 

species richness, 10-m post-fire Abies density, 10-m post-fire basal area of bark beetle-

killed Pinus (proxy for beetle attack rates), BAI (growth), and resin duct area (defense); 

2) the indirect effects of single and serial mediation processes among these five factors, 

and 3) the moderation of each direct and indirect effect by drought (i.e., maximum 

monthly deficit) and fire damage (bole scorch). Variables were standardized across all 

trees using the z-score transformation. Analyses were performed using the semEff 

package [version 0.6.0] (Murphy 2021) with standard bootstrapping (1000 samples) and 

cross-verified using the piecewiseSEM package [version 2.1.2] (Lefcheck 2016).  

Results 

Direct mortality from the Rim Fire reduced total stand density by 72.4% (1402.8 

stems ha-1 in 2013 to 387.4 stems ha-1 in 2014), and delayed fire effects over the 5 years 

post-fire further decreased density by 28.4% (277.4 stems ha-1 in 2019). The stand density 

in 2019 was still more than double the estimated historical density (i.e., pre-1900; 

historical = 109.5–114.1 stems ha-1 ; Barth et al. 2015 their Table B.1). However, 

including delayed effects, the fire returned large Pinus and small Abies densities to 

historical levels: Pinus ≥100 cm DBH dropped from 13.4 stems ha-1 to 7.2 stems ha-1 

(historical = 6.9–8.0 stems ha-1) and Abies ≤10 cm DBH dropped from 612.2 stems ha-1 to 

14.3 stems ha-1 (historical = 9.4–14.3 stems ha-1). Of the Pinus with DBH >80 cm (the 
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coring cohort), 1.8% died pre-fire; 1.8% were killed during the fire; and 42.3% were 

killed in the 5 years post-fire. 

 
Climate 

Maximum monthly deficit and, secondarily, total winter SWE emerged as the 

strongest correlates of tree growth, defense, and survival. Hereafter, the p subscript 

denotes a month in the previous year, and a c subscript denotes a month in the current 

year. On average over the series (SWA), drought metrics predicted resistant and 

susceptible tree annual growth better than did temperature or precipitation alone. Both 

resistant and susceptible trees’ growth was reduced by higher maximum deficit (Octoberp 

– Junec). Resistant trees’ growth decreased with higher spring SWE (Febc – Aprc), while 

susceptible trees’ growth decreased with higher summer deficit (Junc – Sepc). Both 

groups’ growth was increased by higher spring PDSI (Live: Decp – Aprc; Dead: Febc – 

Junc). Resistant trees’ duct area was increased by higher minimum VPD in spring and 

summer (Novp – Aprc and Junc – Octc), and with warmer summer temperatures (Junc – 

Octc). Susceptible trees’ duct area was increased by higher spring deficit (Decp – Aprc).  

The CFA found that resistant and susceptible tree growth responded similarly to 

fluctuations in deficit, SWE, and PDSI over time; this was true for raw values and those 

standardized to reflect the average per tree (used here: standardized; Fig. C.1). Although 

the SWA showed that resistant trees’ duct area did not correlate well with drought 

metrics over the series on average, the CFA showed that higher duct production was 

observed mid-century during high SWE (Fig. C.2). We chose deficit to use in statistical 

models because this correlated well with the most factors (resistant and susceptible tree 

growth, susceptible tree defense). Because SWA showed the period of deficit aggregation 
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to differ between resistant and susceptible trees, and between growth and defense, we 

used the maximum monthly deficit unconstrained by season for statistical models (which 

tended to fall in early- to mid-summer). 

 
Growth and Defense 

Growth differed the most between groups during the most recent fire-suppressed 

century: trees that ultimately died from bark beetles following the 2013 Rim Fire and 

concomitant drought were the trees that responded poorly to fire suppression following 

the 1900 fire (less growth; Fig. 4.2). Susceptible trees showed massive growth declines 

following the Rim Fire. On average over the series, susceptible trees had 17% smaller 

median ring width and 8% smaller BAI compared to resistant trees (Fig. 4.2). Within-

series growth variability was similar for both groups (Table 4.1), but there was greater 

inter-series variability for susceptible trees than resistant trees (Fig. C.3). Cores contained 

between 69 and 427 rings. Susceptible trees had greater variance in ring number (SD = 

76.5 vs 53.9 rings, respectively), generally having more numerous, smaller rings. At the 

time of sampling, tree DBH ranged from 80.1 to 170.6 cm, meaning the 30-cm long cores 

sampled between 18% and 37% of total tree diameter. There were no detectable 

differences in DBH between resistant and susceptible groups at the time of sampling. 

Both resistant and susceptible trees increased duct density, with parallel increases 

in total duct area, during the era of fire exclusion (1900–2013; Fig. 4.3). Resistant trees 

showed slightly more resin ducts than susceptible trees, but density converged in the past 

three decades. Susceptible trees’ ducts tended to be larger than those of resistant trees, but 

this difference also converged. Differences in duct density and size struck a balance such 

that resistant and susceptible trees produced similar total annual duct area. Because 
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susceptible trees had lower annual growth but equal duct area as resistant trees in the 

years following the Rim Fire (2014–2019), susceptible trees showed higher relative 

annual duct area (P = 0.007) and relative area per duct (P < 0.001). These relative metrics 

were driven by differences in ring width, yet our goal was to model the separate effects of 

disturbance and stand structure on growth and defense. We therefore included annual 

duct area (the best synthesis of duct density and size) and growth separately in statistical 

models. 

Historically and during the period of fire exclusion, all trees demonstrated annual 

growth-defense tradeoffs by producing more ducts, larger ducts, and greater total duct 

area during years with the least relative amount of growth (Fig. 4.4). However, this was 

only true pre-fire: following fire re-entry, bark beetle-susceptible trees showed a positive 

relationship between growth and defense. This was primarily driven by low growth and 

low defenses occurring in the same years, and intermediate levels occurring in the same 

years; there were no post-fire years of high growth and high defenses. Many bark beetle-

susceptible trees produced no growth nor defenses in the one to two years post-fire and 

preceding mortality. Susceptible trees produced less duct area with severe fire damage; 

resistant trees produced higher defenses independent of fire damage. Differences between 

resistant and susceptible trees’ growth-defense trade-offs were not observed over any 

other aggregation of time prior to re-entry, including during years with comparable 

drought levels to the re-entry period (Fig. C.4). Over the long-term, resistant trees 

maintained high growth rates and duct production, while susceptible trees sacrificed 

growth to maintain defenses at levels equal to resistant trees (Fig. 4.2).  
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Tree Neighborhoods 

Close-range basal area of bark beetle-killed Pinus (10 m) was associated with 

subsequent Pinus mortality, while basal area of live Pinus at a close range was not (Fig. 

C.5). Within a 10-m radius, lower densities of small-diameter Abies (1 cm ≤ DBH < 10 

cm), large-diameter Pinus (DBH ≥ 60 cm), and lower total basal area and density (DBH 

≥ 1 cm) during the pre-fire period were associated with Pinus post-fire survival; 

moreover, though large-diameter Pinus density decreased with fire at the stand scale, 

little change was observed at the 10-m scale (Fig. C.6). Within a 30-m radius, 

neighborhood species richness was higher for resistant trees pre- and post-fire; along with 

higher Cornus and shrub pre-fire density (Fig. C.7; high variability). Structural diversity 

(old-growth index) did not differ between resistant and susceptible trees during the fire 

exclusion nor post-fire periods (Fig. C.7). Richness was not correlated with total density, 

large Pinus density, large Pinus BA, nor Abies density, but was associated with slightly 

higher small Abies density (Appendix C: Section S1). 

 
Management-oriented Models 

The pre-fire model had moderate accuracy (correctly classified = 62.3%; 

sensitivity = 62.0%; specificity = 62.5%). The best pre-fire management action to 

mitigate large-diameter Pinus mortality following fire re-entry was to preserve large-

scale species richness (30-m) and reduce nearby small Abies density (10-m). For every 

reduction of 10 small Abies within 10-m of the largest Pinus, this increased Pinus 

survival odds by 28%. At the stand scale, our models indicate the largest Pinus post-fire 

survival would have increased by 27.4% if small Abies density had been reduced by half 

(306 trees ha-1). Reducing small Abies to historical densities (median 12 trees ha-1) did not 
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further influence Pinus survival. Richness at the 30-m scale increased Pinus survival 

odds on average (8.5% per additional species), while large neighboring conspecifics (10-

m) decreased survival odds on average (1047% per tree). However, an interaction showed 

that increasing richness ameliorated negative conspecific effects: having five or more 

woody species within 30 meters completely offset the effect of having between 1 and 7 

large neighboring Pinus within 10 m (Fig. C.8).  

The post-fire model had high accuracy (correctly classified = 86.9%; sensitivity = 

86%; specificity = 87.5%). The best post-fire management action to mitigate large-

diameter Pinus mortality following fire re-entry was to prevent aggregated bark beetle 

activity in high-density Pinus areas (reduce bark beetle-killed BA) and reduce nearby 

medium Abies density (10-m). This was true for all levels of bole scorch (no 

interactions). The largest Pinus were more likely to die with higher bole scorch (24% 

lower survival odds per vertical meter). Pinus survival odds decreased by 1037% per m2 

of bark beetle-killed BA within a 10-m radius, and decreased by 47% for each medium 

Abies stem within a 10-m radius. After accounting for the effects of shared enemies (bark 

beetle-killed BA), greater densities of large-diameter Pinus within a 10-m radius 

increased survival odds on average (99% per tree). Richness within a 30-m radius also 

increased survival odds on average (31% per additional species). An interaction showed 

that having one to seven additional woody species within 30 m aided the largest Pinus 

survival when one or more other large Pinus was nearby (Fig. C.8). Richness was unable 

to modify bark beetle effects (no interaction with beetle-killed BA or distance to nearest 

beetle-killed Pinus). 
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Mechanism-oriented Models 

SEM predicted tree survival with very high accuracy (94.6% specificity, 94.0% 

sensitivity, 94.6% total accuracy). As expected, indirect effects outweighed direct effects 

of tree neighborhoods on Pinus survival (Fig. 4.5, Tables C.4, C.5). On average, 

associational resistance (i.e., total richness effects) increased survival by 8.6%, while 

associational susceptibility (i.e., Abies total density effects) decreased survival by 6.4%. 

Trees that grew faster survived, regardless of duct area produced. The highest bark beetle 

attack rates were near fire-damaged trees in low-diversity, high Abies density 

neighborhoods (bad for survival). The most growth was during non-drought years in trees 

with low bark beetle attack, few Abies neighbors, and high diversity neighborhoods (good 

for survival). The highest defenses were in trees with low fire damage, low bark beetle 

attack, few Abies neighbors, and high diversity neighborhoods (no effect on survival).  

Fire strengthened the ability of diverse neighborhoods to reduce bark beetle 

attack, leading to increased growth and survival for burned trees when diversity was high. 

Conversely, fire damage led to greater bark beetle attack, less growth, and lower survival 

when trees were in monodominant neighborhoods. Drought and Abies density decreased 

growth directly. Drought and higher Abies density also increased bark beetle attack rate, 

indirectly reducing growth and survival. Higher diversity decreased bark beetle attack, 

indirectly increasing growth (except during drought) and survival. 

 Duct area was not predictive of tree survival, but varied as a function of drought, 

fire, bark beetle attack, and neighborhoods. Abies density increased bark beetle attack, 

which increased defenses (only during drought). For trees without fire damage, diversity 

increased bark beetle attack, indirectly increasing defenses (only during drought). For 

trees with fire damage, diversity decreased bark beetle attack, indirectly decreasing 
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defenses (especially during drought). See Appendix C: Section S1, Fig. C.9 for more 

details on SEM structure and underlying hypotheses. 

Discussion 

Climate change is causing more frequent and extreme drought (Dai 2013), more 

frequent and severe wildfire (Westerling et al. 2006), and greater fecundity and success 

of bark beetles (Bentz et al. 2010). The synergistic effects among these factors make 

compound disturbances uniquely damaging to forests (McDowell et al. 2011, Anderegg 

et al. 2015, Furniss et al. 2020), especially in those with a history of fire exclusion 

(Stephens et al. 2018). One of the most dominant genera to occupy northern temperate 

forests, Pinus, has been at the center of these disturbance-mediated declines (Yan et al. 

2005, Klos et al. 2009, Van Mantgem et al. 2009, Pandit et al. 2020).  

We add to previous work of tree mortality during compound disturbances (van 

Mantgem et al. 2013, Van Mantgem et al. 2018) by identifying multiple interacting 

mechanisms responsible for Pinus susceptibility to bark beetle attack and, ultimately, 

beetle success. Less than 2% of large-diameter pines died due to fire alone, whereas 

nearly half of large pines were killed by bark beetles following fire. Mechanisms 

pertaining to survival during this post-fire phase are therefore the most important targets 

of management action. We show that associational susceptibility was characterized as 

excessive crowding by shade-tolerant competitors due to fire exclusion, which likely 

contributed to long-term stress preventing trees from recuperating defenses quickly 

following fire re-entry and drought damage (e.g., cavitation; Sevanto et al. 2014). In other 

words, the dramatic decline in growth and defense in susceptible trees following fire 

could indicate carbon starvation following fire damage and drought (Sevanto et al. 2014), 
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as pre-fire reserves appear to have been lower for susceptible trees than resistant trees 

(i.e., lower growth rates). This stress culminated in succumbence to bark beetle kill 

within five years post-fire. As we expected, however, competitive costs were offset by 

benefits of increased vigor and reduced bark beetle attack when crowding comprised a 

more diverse assemblage of species, providing evidence for associational resistance. 

Moreover, AR total effects were larger than AS effects, resulting in survival of a slim 

majority of Pinus during the outbreak. Associational resistance was even maintained for 

burned trees during drought, contrasting with previous findings focused on AS alone 

(Castagneyrol et al. 2018, Stephenson et al. 2019) and providing hope for conservation of 

large-diameter Pinus in vulnerable temperate forests (Lutz et al. 2018). 

These findings join the growing body of work showing that 1) species interactions 

have the potential to counteract negative climate change effects (Suttle et al. 2007), and, 

as such, 2) community-level climate responses may hold the key to more 

comprehensively predicting, mitigating, and adapting to the climate crisis (Germain and 

Lutz 2021a, 2022). Without accounting for these indirect and interactive effects, models 

are unlikely to fully anticipate climate change impacts in forests (Allen et al. 2015, Clark 

et al. 2021, Germain and Lutz 2022). In particular, models reliant on simplistic depictions 

of delayed fire effects likely overpredict survival of large-diameter trees (Furniss et al. 

2019), leading to a concurrent overprediction of carbon storage capacity in mature forests 

(Stephenson et al. 2014, Piponiot et al. 2022). The first step to addressing these 

weaknesses is to integrate models capable of more ecological complexity into projections 

of future disturbance regimes under climate change (Hessburg et al. 2005, Kasischke et 

al. 2013). Our SEM results contrasted with simple linear models that suggested richness 
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did not ameliorate the effects of bark beetles and competition following fire re-entry. This 

discrepancy arose because linear models are only capable of considering moderation 

interactions and are unable to quantify indirect effects (i.e., mediation) that SEM revealed 

to be important. Taken together, models show that diversity did not moderate the 

direction or strength of the relationship between bark beetle attack and survival following 

fire; higher attack rates always decreased survival odds. Yet, diversity decreased bark 

beetle attack rates themselves, which in turn, improved survival. The ability of complex 

models like SEM to quantify these indirect mechanisms will be especially useful to 

managers and ecologists alike when forecasting the future of community interactions and 

forest disturbances. 

Managers are increasingly reliant on wildland fire use over large areas in an 

attempt to restore historic conditions (van Wagtendonk 2007), but it is clear that first re-

entry fire does not erase the legacy effects of fire exclusion (Becker and Lutz 2016, Lutz 

et al. 2020). In many cases, fire reintroduction can elevate bark beetle attack, even after 

initial thinning (Youngblood et al. 2009, Stark et al. 2013, Steel et al. 2021). Although 

the Rim Fire returned small Abies densities to historic levels, for example, the long-term 

stress caused by these competitors during the century of fire exclusion reduced Pinus’ 

resilience to bark beetles post-fire (Van Mantgem et al. 2018). Instead, mechanical 

thinning pre-fire can promote resilience to compound stressors in fire-suppressed forests 

by decreasing fire severity and increasing resistance to drought and bark beetles (Agee 

and Skinner 2005, Fettig et al. 2007, Hood et al. 2016). Whether and how quickly trees 

can reverse declining trajectories and resist bark beetles following thinning depends on 

the forest type in question and is still largely unexplored (Harrington and Reukema 1983, 
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Hood et al. 2016, Zald et al. 2022). For Sierra Nevada mixed-conifer forests, our pre-fire 

management models quantified thresholds for thinning small-diameter Abies and 

identified less vigorous large-diameter Pinus as sources of aggregated bark beetle attack. 

Yet, our findings join others in urging discretion when thinning forests in order to 

maintain pathways of associational resistance that promote tree vigor and defenses: 

composition, not just density, should be considered (Baleshta et al. 2005, Germain and 

Lutz 2021a).  

Associational resistance operated along two distinct pathways: decreased bark 

beetle attack and decreased bark beetle success. For individual trees, bark beetle attack 

rates depend on patch-scale beetle population density, which is directly proportional to 

the basal area of nearby large-diameter trees killed by bark beetles: higher basal area 

reflects more available phloem area and thus a greater number of emerging bark beetles 

(Cole and Amman 1969, Amman 1972). Bark beetles proceed to attack nearby living 

hosts after emerging from killed trees, resulting in spatially aggregated beetle activity 

(Furniss et al. 2020, Howe et al. 2022). We found that diversity at a larger spatial scale 

than conspecific clustering (30-m vs. 10-m) prevented this aggregated attack activity 

(e.g., due to host apparency, resource concentration, or natural enemies). For trees that 

were attacked, survival then depended on vigor, which was also aided in diverse 

communities. Bark beetles may have chosen not to attack nearby healthy trees based on 

olfactory cues suggesting strong defenses (Wallin and Raffa 2000), but evidence from 

field observations indicates that many resistant trees were attacked and survived. 

Enhanced vigor in diverse communities therefore appears to have also decreased bark 

beetle success. Higher richness was not correlated with more productive sites, nor with 
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reduced stem density; and moreover, the benefit of diversity emerged at the community 

level. It is therefore unlikely that rich communities reflect differences in local abiotic 

conditions. These factors together support the interpretation that, during the era of fire 

exclusion, diverse communities provided greater resource access through a mechanism 

independent of competitive interactions or site productivity, such as shared mycorrhizal 

networks (Germain and Lutz 2021a), that promoted long-term tree vigor and sustained 

defenses post-fire. 

Evidence for whether bark beetles target fast- or slow-growing trees is equivocal 

and appears to depend on species (Ferrenberg et al. 2014), diameter (Buonanduci et al. 

2020), and beetle populations (Boone et al. 2011, Howe et al. 2022). The prevailing 

paradigm is that slow growth can be an indicator of long-term stress that makes trees 

more susceptible to bark beetles (Hard 1985, Franklin et al. 1987, Nesmith et al. 2015, 

Cailleret et al. 2017). Yet, bark beetles may target fast-growing, healthy trees because 

these represent greater nutritive value (Huberty and Denno 2004). This latter hypothesis 

would also support the GDB prediction that slower-growing trees are better defended 

(Herms and Mattson 1992). Indeed, recent work has indicated that faster-growing trees 

can be more susceptible to bark beetle-kill (Six et al. 2021), particularly when beetle 

populations reach incipient levels (Boone et al. 2011, de la Mata et al. 2017, Howe et al. 

2022) or during drought (Stephenson et al. 2019). Our findings support the decline spiral 

hypothesis (Manion 1981), however, which is surprising because we would expect bark 

beetles to attack and kill healthy trees during the coinciding drought and incipient beetle 

outbreak observed during the study. This is among the first studies to delineate how 
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associational resistance can prevail even amidst higher risk levels inherent to compound 

disturbances. 

Theory predicts there should be a strong relationship between growth and defense, 

and that tradeoffs should occur when resources are limited (Züst and Agrawal 2017). The 

trees examined here were exposed to multiple, synergizing stressors: increased tree 

densities due to a century of fire suppression (Barth et al. 2015), physical damage 

following fire re-entry, water stress from extreme drought (Williams et al. 2013), and 

incipient-epidemic bark beetle attack (Furniss et al. 2020). Though both resistant and 

susceptible trees showed some evidence of annual G-D trade-offs during the historical 

and fire exclusion eras, only resistant trees showed sustained growth and defenses over 

the long term and following fire re-entry. Moreover, we show that these responses arose 

not just from the genetic lottery (e.g., Six et al. 2018), but specifically because trees were 

growing in species-rich communities. The effect of biotic elements on growth and 

defense, both in terms of other trees and bark beetle attack rates, could help explain why 

evidence for G-D trade-offs is sometimes elusive in observational studies. 

The presence of sustained duct production through G-D trade-offs pre-fire did not 

translate to reduced susceptibility during compound disturbance, leading to the 

conclusion that physiological defense characteristics cannot necessarily be used to 

anticipate tree resistance to bark beetles. Susceptible and resistant trees produced 

virtually equivalent resin duct size, density, and annual area over the two centuries prior 

to mortality. Indeed, resin duct density and area even increased over the past 200 years: it 

is unlikely that increasing CO2 concentrations are associated with these trends, though 

rising temperatures may be important (Kilpeläinen et al. 2007). Though the exact 
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mechanisms explaining increasing duct area were not identified here, we found that pre-

fire defenses were less important to survival than was pre-fire growth. Examination of 

resin ducts prior to compound disturbance would have erroneously concluded that 

susceptible and resistant trees were equally likely to survive bark beetle attack, when in 

fact, long-term stress precluded the resilience of tree defenses following first re-entry fire. 

More accurate predictions of tree survival during compound disturbances might be 

captured through simultaneous assessments of tree vigor and chemical defenses, such as 

terpene concentrations (Delorme and Lieutier 1990), resin flow (Warren et al. 1999), and 

volatile cues (Gray et al. 2015). Chemical defenses are allocated independently from 

physical defenses (Mason et al. 2019) and may therefore better reflect tree stress (e.g., 

Hood and Sala 2015; but see Reichardt et al. 1991). Though resin ducts may be 

associated with tree survival in some cases (Kane and Kolb 2010, Ferrenberg et al. 2014, 

Hood and Sala 2015, Slack et al. 2021), we found the strength of this relationship is 

conditioned on the combined effects of disturbance history, forest structure and 

composition, and the presence of synergizing stressors. 

Conclusions 

We show that the interactive effects of drought, fire, competition, and bark beetles 

together were responsible for unexpectedly large volumes of biomass loss through 

delayed mortality of the largest pines in the five years following first fire re-entry. 

Growth and defense declines in susceptible trees immediately post-fire were not entirely 

explained by higher fire damage: though more severely burned trees had higher mortality 

probability on average, burned trees maintained growth, defense, and survival in species-

rich neighborhoods. Likewise, post-fire growth and defense declines were not explained 
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by drought alone, as similar declines were not observed during pre-fire periods of severe 

drought; and competitive stress did not coincide with high bark beetle kill pre-fire. It was 

only the combined, interactive effects of simultaneous fire damage, water stress, and a 

history of competition that together governed susceptibility to bark beetles.  

Complementing the wealth of literature identifying associational resistance in 

other forest types, ours is the first study to show tree diversity can reduce insect attack in 

a fire-excluded forest during compound disturbance. In fact, associational resistance 

effects outweighed associational susceptibility, ultimately protecting the majority of 

large-diameter Pinus that may have otherwise been targeted by bark beetles post-fire. We 

highlight that the indirect mechanisms of associational resistance predominated: richness 

did not directly increase tree survival, but indirectly did so by increasing tree vigor pre-

fire and reducing bark beetle attack post-fire. Future research can build upon these 

findings to evaluate the balance of AR and AS in different forest types. Given the 

phylogenetically conserved nature of growth and defense responses in the genus Pinus, 

particularly those that reside in drier, low-elevation forests, these findings will inform 

conservation of pine across the temperate region. Building forest resilience to compound 

disturbances hinges on both conserving biodiversity and reducing competitor densities 

before fire to promote the multiple complementary pathways promoting tree survival. 
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Tables 

Table 4.1. Summary of growth and defense metrics obtained from dead and live tree 
cores. Anomalies are the z-score of relative duct area per ring, per tree. Basal area 
increment and annual duct area were used for growth and defense metrics in statistical 
models. 

  
Live   Dead 

Min Median Max SD  Min Median Max SD 

Core Sample (yrs) 1709 1874 2019 53.9  1591 1848 2019 76.5 

Diameter at Breast Height (cm) 80.1 111.0 171.0 23.0  84.6 121.1 154.6 19.3 

Ring Width (mm) 0.10 1.79 9.17 0.69  0.42 1.47 7.10 0.67 

Basal Area Increment (mm2) 1.3 47.4 348.7 17.2  1.4 40.6 191.2 15.5 

Duct Density (n yr-1) 0 1 14 1.4  0 1 10 1.3 

Duct Size (mm2 n-1) 0.004 0.260 0.100 0.008  0.005 0.290 0.210 0.010 

Duct Area (mm2 yr-1) 0 0.039 0.306 0.040  0 0.034 0.339 0.040 

Relative Duct Density (n ring-mm-2) 0 0.26 5.24 0.33  0 0.25 32.16 0.45 

Relative Duct Size (mm2 n-1 ring-mm-2) 0.0005 0.0047 0.0710 0.0028  0.0005 0.0064 0.2388 0.0047 

Relative Duct Area (mm2 ring-mm-2) 0 0.0068 0.1540 0.0093  0 0.0073 0.9550 0.0135 
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Figures 

Figure 4.1. Map of the Yosemite Forest Dynamics Plot from which Pinus lambertiana 
was sampled, where a low topographic position index (TPI) represents concavity and 
high TPI represents convexity. Pinus was not sampled from ridges (>80th percentile; 2.2 
TPI) or draws (< 20th percentile; -2.3 TPI). Lines represent 5-m contours. 
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Figure 4.2. Pinus lambertiana ring width chronologies for live and dead trees (A) and the 
difference between z-scores of live and dead tree basal area increment (BAI; B), where 
each was standardized by BAI during their respective historical period (pre-1900). 
Curves falling above zero in B indicate higher than average BAI in live compared with 
dead trees. Live and dead tree growth was similar during the pre-1900 period when 
historic frequent fire regime was still intact (mean fire return interval 30 years). The last 
large fire in 1900 marked the beginning of fire suppression efforts. During this post-1900 
era of fire suppression, trees that would ultimately die from bark beetles following the 
2013 Rim Fire grew more slowly than trees that would survive, indicating less resilience 
to the structural and compositional changes resulting from fire suppression. Curves begin 
at 1765, after which sampling depth was ≥10 individuals per live and dead category. 
Mean fire return intervals derived from Barth et al. (2015). 95% confidence intervals are 
shown in grey. 
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Figure 4.3. Pinus lambertiana annual resin duct density (A), area per duct (B), and 
annual relative resin duct area (C) with 95% confidence intervals shown in grey. Duct 
density has been increasing over the past 260 years for live and dead trees alike. Duct 
area (not shown) follows the same trajectory as duct density. Relative duct area was 
similar between dead and live trees during the pre-1900 period when historic frequent fire 
regime was still intact (mean fire return interval 30 years). During the post-1900 era of 
fire suppression (mean fire return interval 65 years), trees that would ultimately die from 
bark beetles following the 2013 Rim Fire sacrificed growth in order to sustain resin duct 
production, resulting in a higher duct area:ring width ratio (C). At the time of tree death 
following the Rim Fire, live and dead trees did not differ in duct density, area, or area per 
duct; they only differed in relative duct area due to the smaller ring sizes of dead trees. 
Curves begin at 1765, after which sampling depth was ≥10 individuals per live and dead 
category. 
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Figure 4.4. Annual growth-defense relationships for bark beetle-susceptible trees (A) and 
resistant trees (B). Growth and defense were standardized relative to the mean of each 
tree. Trees that resisted bark beetles demonstrated growth-defense trade-offs following 
fire re-entry: basal area increment (BAI) was negatively correlated with duct area, 
whereas susceptible trees showed positive growth-defense relationships counter to the 
growth-differentiation balance hypothesis. Over no aggregation of time during fire 
exclusion – including comparably droughty years – did growth-defense relationships 
become as extremely positive as those observed for bark beetle-susceptible trees 
following fire re-entry (Fig C.4). This effect was driven by years with simultaneously low 
or intermediate growth and defense. No years of both high growth and high defense were 
observed for susceptible trees following fire. Shaded regions indicate 95% confidence 
intervals. 
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Figure 4.5. Results from the multilevel moderated mediation structural equation model 
testing the mechanisms underpinning bark beetle attack/success and tree 
constitutive/induced defenses in a compound disturbance environment. Paths represent 
hypothesized causal relationships. Bark beetle success rate is measured as Pinus survival 
or mortality due to bark beetles. Bark beetle attack rate is approximated by total bark 
beetle-killed Pinus BA within a 10-m radius. Density is Abies concolor within 10-m 
radius, and diversity is species richness within a 30-m radius. Dashed lines connecting 
two factors indicate a covariance. Dashed lines connecting a factor to a path (i.e., drought 
and fire effects) indicate a moderation interaction. Drought and fire moderated paths 
independently from one another, though this is not depicted in the figure for aesthetic 
parsimony. Within-tree variability (level 1) was sampled by growth, defense, and drought 
over time; between-tree variability (level 2) was sampled by all other factors. Thus, all 
mediated (i.e., indirect) relationships are represented as cross-level interactions. 
Transparent arrows indicate a non-significant effect. To calculate the total moderation 
effect, direct effects of moderators are also shown for each variable (bold if significant, 
but even non-significant values needed for calculations of a significant interaction term). 
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CHAPTER V 

SHARED FRIENDS COUNTERBALANCE SHARED ENEMIES IN OLD FORESTS4 

Abstract 

Mycorrhizal mutualisms are nearly ubiquitous across plant communities. Yet, it is 

still unknown whether facilitation among plants arises primarily from these mycorrhizal 

networks or from physical and ecological attributes of plants themselves. Here, we tested 

the relative contributions of mycorrhizae and plants to both positive and negative biotic 

interactions to determine whether plant-soil feedbacks with mycorrhizae neutralize 

competition and enemies within multitrophic forest community networks. We used 

Bayesian hierarchical generalized linear modeling to examine mycorrhizal guild- and 

mortality cause-specific woody plant survival compiled from a spatially and temporally 

explicit dataset comprising 101,096 woody plants from three mixed-conifer forests across 

western North America. We found positive plant-soil feedbacks for large-diameter trees: 

species-rich woody plant communities indirectly promoted large tree survival when 

connected via mycorrhizal networks. Shared mycorrhizae primarily counterbalanced 

apparent competition mediated by tree enemies (e.g., bark beetles, soil pathogens) rather 

than diffuse competition between plants. We did not find the same survival benefits for 

small trees or shrubs. Our findings suggest that lower large-diameter tree mortality 

susceptibility in species-rich temperate forests resulted from greater access to shared 

mycorrhizal networks. The interrelated importance of above-ground and below-ground 

biodiversity to large tree survival may be critical for counteracting increasing pathogen, 

                                                 
4 This chapter was published in Ecology on July 26, 2021, and should be cited as: Germain, S. J., and J. A. 
Lutz. 2021. Shared friends counterbalance shared enemies in old forests. Ecology, 102(11): e03495. 
https://doi.org/10.1002/ecy.3495  
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bark beetle, and density threats.  

Introduction 

Mycorrhizal mutualisms between trees and fungi form the primary pathways for 

nutrient acquisition and are therefore central to facilitation dynamics in forests (Simard et 

al. 1997, Smith and Read 2008). Despite known benefits of mycorrhizae, positive 

outcomes of interactions among trees are often credited to the trees themselves rather 

than to plant-soil feedbacks with fungal mutualists (Brooker et al. 2008). Enhanced 

survival of trees growing in more species-rich forest stands (Jactel and Brockerhoff 

2007), for instance, has been attributed to proportionally lower host abundances (Kareiva 

1983), non-host pheromones (Huber and Borden 2001), and novel tree silhouettes 

(Mayfield and Brownie 2013). Yet, forests support diverse mycorrhizal networks as well 

(Jones et al. 1997, Twieg et al. 2007, Beiler et al. 2010, Lang et al. 2011, Karst et al. 

2014), which promote tree survival by bolstering nutrient uptake (Baxter and Dighton 

2001, Köhler et al. 2018) and defenses (Bennett et al. 2005, Wehner et al. 2010). Here, 

we decouple the effects of above-ground and below-ground biotic interactions to explore 

the possibility that species-rich forests indirectly promote tree survival through shared 

mycorrhizal networks. 

Ecological research has long sought to model the complexity of diffuse 

interactions in multi-species communities (Holt 1977). Diffuse interactions capture the 

indirect effects of many interacting individuals or species in a community, which can 

overwhelm direct effects observed in pairwise interactions alone (Vandermeer 1990, 

Levine et al. 2017). Diffuse trophic interactions arise when interacting individuals belong 

to different trophic levels (e.g., primary producers, consumers, decomposers). Two trees 
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may appear to be competing, for example, but the negative effect actually derives from 

trophic interactions between individual trees and a shared herbivore (apparent 

competition; Janzen 1970, Connell 1971, Cobb et al. 2010, Chaneton et al. 2010). In 

contrast, trees may appear to be facilitating one another, but the positive outcome is 

actually an indirect effect arising from attraction of a shared mutualist, such as pollinators 

or mycorrhizal fungi (apparent facilitation; Johnson et al. 2003, Sargent and Ackerly 

2008).  

Indirect positive interactions that connect plant communities above-ground with 

mycorrhizal fungi communities below-ground are a primary source of positive plant-soil 

feedbacks (+PSF; Bennett et al. 2017). Some mature trees, for instance, indirectly 

facilitate seedling establishment through accumulation of shared mycorrhizal fungi near 

the parent tree (Teste and Simard 2008, Liang et al. 2015, Johnson et al. 2018). The 

extent to which +PSF occur among mature trees themselves remains largely unexplored; 

instead, it is often assumed that diffuse interactions among many individual trees produce 

apparent facilitation through non-trophic suppression of a strong competitor, such as a 

large neighboring tree (diffuse competition; Peterson and Squiers 1995, Levine 1999, 

Lutz et al. 2014). These interactions, however, are confounded with mycorrhizal effects 

due to the close spatial correlation between mycorrhizal fungi assemblages and plant 

assemblages (Hausmann and Hawkes 2009, Lang et al. 2011, Karst et al. 2014). To 

accurately parse the relative contributions of different taxonomic groups in large 

community networks, it is first necessary to disentangle the effects of above- and below-

ground communities. 

Mycorrhizae form the crux of multitrophic interactions in forests by linking 
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above-ground and below-ground communities. Mycorrhizae enhance nutrient uptake 

(Baxter and Dighton 2001, Köhler et al. 2018); transfer nutrients directly between plants 

(Francis and Read 1984, Simard et al. 1997); regulate genetic expression to systemically 

bolster constitutive defenses (Liu et al. 2007, Kanekar et al. 2018); prime defenses to 

allow more rapid induced-defense responses (Jung et al. 2012, Pastor et al. 2013); 

facilitate inter-plant communication to quickly mount defense responses if an enemy is 

detected in the network (Gorzelak et al. 2015); and can directly compete with pathogenic 

microbes to protect plants from attack (Marx 1972). Importantly, different fungi can 

confer unique defense capabilities (Wehner et al. 2010, Roger et al. 2013, Lewandowski 

et al. 2013), meaning plants colonized by a diversity of fungal networks may be better 

defended against a wider array of enemies (van der Heijden 2001, Wehner et al. 2010). 

Nonetheless, survival consequences of shared mycorrhizal networks have not been 

adequately described for mature trees. For long-lived woody forest plants, survival is the 

vital rate most directly associated with sustained ecological functioning (Silvertown et al. 

1993), as mature tree mortality (>50 yrs) rapidly removes large amounts of reproductive 

biomass (Stephenson et al. 2014, Das et al. 2016) and can dramatically alter ecosystems 

over short timeframes (Lutz et al. 2018, Swann et al. 2018). We therefore tested whether 

mycorrhizal benefits were able to change survival outcomes amidst competition and 

apparent competition in the above-ground plant community (Bennett et al. 2005, Teste 

and Simard 2008, Gehring and Bennett 2009, Liang et al. 2015).  

We synthesized existing gradients of above-ground woody plant richness with 

spatial patterns of mycorrhizal guilds to investigate facilitation mechanisms in mature 

forests. To do this, we combined conventional forest mensuration techniques quantifying 
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plant crowding with long-term monitoring techniques tracking individual plant fates 

through time (Hegyi 1974, Lutz 2015). Plant crowding is most commonly utilized as a 

singularly competitive metric (e.g., Biging and Dobbertin 1995), but here we test the 

possibility that crowding also provides access to nearby mycorrhizal networks (Beiler et 

al. 2010). Notably, woody plants are expected to have access to survival benefits 

provided by surrounding mycorrhizal networks only to the extent that neighboring plants 

are members of the same mycorrhizal guild (Martin et al. 2016): arbuscular mycorrhizal 

(AM), ectomycorrhizal (EM), or ericoid mycorrhizal (ErM; Fig. 5.1). Plants tend to form 

mycorrhizae with multiple fungal species, and fungi are likewise often able to colonize a 

multitude of plant species, within each of these guilds (Molina and Trappe 1982, Moeller 

and Neubert 2015). Some mycorrhizas are specialized, however, such that neighboring 

plants of the same guild are not guaranteed to share mycorrhizal networks (van der Linde 

et al. 2018); and conversely, some plants form dual associations that allow connection 

with both neighboring AM and EM species (Malloch and Malloch 1981, Neville et al. 

2002). We therefore tested mycorrhizal guild affiliation of woody species for which this 

may be uncertain: (1) ErM fungi have been shown to form EM with non-Ericaceous 

species (Vrålstad 2004), so we tested whether Ericaceous species should be categorized 

as ErM or EM; and (2) for dual-hosting species able to form both EM and AM (either 

simultaneously or ontogenetically stratified), we tested whether these should be 

categorized as EM, AM, or a separate guild altogether (both-forming; AM/EM; see 

Appendix D for an extended discussion of study assumptions and limitations). 

Our objective was to develop an improved framework for investigating diffuse 

multitrophic interactions by elucidating the role of mycorrhizal networks in observed 
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facilitation dynamics among plants. Our temporally and spatially variant dataset provided 

the opportunity to identify the forest structural and compositional conditions that promote 

+PSF and neutralize negative forest interactions. We found evidence of +PSF for large 

trees across all three forest types. Increasing above-ground richness reduced negative 

effects of only the mycorrhizal guild-sharing neighbors, suggesting that below-ground 

mycorrhizal networks were able to counteract diffuse interactions among these trees and 

their enemies. Mycorrhizae primarily reduced apparent competition (i.e. mortality 

mediated by indirect interactions between trees and shared enemies) rather than direct 

competition between plants, suggesting that shared mycorrhizae reduced large-diameter 

tree susceptibility to shared enemies. Our finding of +PSF in mature forests indicates that 

mutualisms and facilitation may be key counterbalances to increasingly negative trophic 

interactions threatening western forests (Stachowicz 2001, Bastolla et al. 2009, Huxham 

et al. 2010, Van Nuland et al. 2017). 

Materials and Methods 

Data Acquisition 

 We assessed woody plant survival patterns in three spatially and temporally 

explicit forest dynamics plots spanning the western USA: Wind River, WA (WFDP; Lutz 

et al. 2014; 27.2 ha; 352–384 m elevation; 45.82° N, 121.95° W; n = 35,531), Yosemite, 

CA (YFDP; Lutz et al. 2012; 25.6 ha; 1774–1911 m elevation; 37.77° N, 119.82° W; n = 

38,104), and Cedar Breaks, UT (UFDP; Furniss et al. 2017; 13.2 ha; 3039–3169 m 

elevation; 37.66° N, 112.85° W; n = 27,461). These three sites represent three distinct 

climatic zones in western North America: the WFDP has a temperate maritime climate 
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(warm, dry summers and cool, wet winters) where most precipitation falls as winter rain; 

the YFDP climate is Mediterranean (hot, dry summers and cold, wet winters) where most 

precipitation falls as winter snow; and the UFDP has a subalpine continental climate 

(cool, wet summers and cold, wet winters) where most precipitation falls as winter snow, 

with additional monsoonal rains during the short growing season. 

All woody stems ≥ 1 cm diameter at breast height (DBH; 1.37 m) were identified 

to species, mapped, and DBH measured (Anderson-Teixeira et al. 2015). Newly recruited 

stems were recorded and mapped on an annual basis after reaching 1 cm DBH. Woody 

species included both trees and shrubs: we defined trees as species with singular boles 

that do not regenerate vegetatively, while shrubs were defined as multi-stemmed species 

that are capable of vegetative regeneration (e.g., resprouting, root suckering; Table D.1). 

From these definitions, all trees were wind-pollinated gymnosperms, while shrubs 

included gymnosperms and angiosperms that tended to be shorter-statured than tree 

species. Each group captured a range of plant statures: there was variability in maximum 

DBH potential for shrubs (e.g., Vaccinium vs. Populus) as well as trees (e.g., Taxus vs. P. 

lambertiana). We therefore utilized species-specific DBH percentiles in analyses 

described below (Table 5.1). 

To measure trophic interactions between forest plants and their enemies, we 

revisited each stem annually and conducted pathology exams for newly dead stems to 

assess survival since 2010, 2011, and 2015 respectively per plot, through 2020 (further 

details in Appendix D: Section S1; Table D.3; Figs. D.6, D.7). Survival assessments took 

place during the same month in each plot to control for seasonal phenological differences 

(YFDP: May; WFDP: June; UFDP: July). Individuals were considered dead if no live 
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foliage, buds, or photosynthetic stems were evident; we then exposed phloem and 

sapwood of the stem and roots, which allowed detailed identification of mortality factors 

to species (e.g., Dendroctonus ponderosae). The YFDP burned in the 2013 Rim Fire, so 

we considered only pre-fire mortalities and post-fire mortalities that were not directly 

caused by the fire.  

Because most mycorrhizal fungi are generalists in these forests (Molina and 

Trappe 1982, Birch et al. 2021a), we assessed diffuse trophic interactions between forest 

plants and mycorrhizal fungi at the guild-level (AM, EM, ErM, or both AM/EM). 

Mycorrhizal guilds were designated at the smallest taxonomic unit described in the 

literature (23% of plant species were designated at the family level; 67% at genus level; 

10% at species level; Table D.1). Guild designations were confirmed with the MycoDB 

(Chaudhary et al. 2016) and FungalRoot databases (Soudzilovskaia et al. 2020; see also 

Sensitivity Analyses).  

 
Quantifying Diffuse Interactions 

We represented the effects of diffuse plant-plant interactions using the crowding 

and species richness of mycorrhizal guild-specific above-ground plant neighborhoods. 

Individuals were counted as neighbors that were rooted within a 20-m radius of the focal 

individual, which envelopes previously identified interaction distances for mycorrhizal 

networks and competition among trees (Das et al. 2008, Beiler et al. 2010, Johnson et al. 

2018). We used a distance-diminished, diameter-weighted crowding index to quantify the 

effective density of neighbors, j, for focal individual, i. In other words, the crowding 

index collapses information about the density, spatial pattern, and relative diameters of 

neighboring woody plants into a single, quantitative measurement of the plant 
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neighborhood. The geometric distance decay function assumes decreasing interaction 

effects with decreasing proximity to neighbors (Das et al. 2008). The diameter-weighting 

procedure reflects the observation that larger trees are often hubs of mycorrhizal 

connectivity (Beiler et al. 2010), but are also strong competitors (Lutz et al. 2013, 2014) 

and enemy attractants (Barbosa et al. 2009, de la Mata et al. 2017).  

(1)      𝐶௜ ൌ  ∑
஽஻ுೕ

ଵ ା ஽௜௦௧௔௡௖௘೔ೕ
   

 
 
Correlations between plant survival and crowding capture the net effects of many 

diffuse interactions occurring among members of the community, which include both 

positive and negative interactions. Crowding indices can be leveraged to identify 

thresholds at which forest neighborhoods have a net positive effect on individual 

survival, particularly when refined to include information about neighborhood 

composition and mycorrhizal affiliation. To do this, we calculated crowding separately 

for conspecific neighbors, heterospecific guild-sharing neighbors (HGS), and 

heterospecific guild-disparate neighbors (HGD); crowding was then allowed to interact 

with species richness of HGS and HGD neighbors in survival models (see Modeling 

Approach).  

Differences in observed crowding across species and diameters reflect vestiges of 

processes past (dispersal, recruitment, and pre-study mortality events), particularly in 

late-seral forests (Lutz et al. 2014, Furniss et al. 2017, 2020); it was therefore necessary 

to decouple these from the recent spatially explicit survival processes of interest. We 

controlled for the existing spatial structure of trees to isolate a posteriori survival 

(Goreaud and Pélissier 2003, Larson et al. 2015) by centering the crowding index on the 
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mean per species and diameter (Germain and Lutz 2020). After centering, values > 0 

indicate more crowded neighborhoods than would be expected for trees of a particular 

species and diameter and values < 0 indicate less crowded neighborhoods. Standardizing 

by species and diameter (described above) allows crowding effects to be assessed at the 

plot level without being overly sensitive to the responses of single species (see Modelling 

Approach, below). Models therefore tested whether plants with more crowded 

environments had higher mortality risk than would be expected given the existing spatial 

structure for stems of that particular species and diameter.  

 
Modelling Approach 

Because plant survival tends to depend on plant size, statistical tests were 

performed separately for trees and shrubs belonging to each diameter class (small or 

large; Table 5.1). Large was defined as individuals having DBH ≥ 90th percentile per 

species, and small was defined as individuals having DBH ≤ 10th percentile per species. 

We tested a range of percentiles: both 5th – 95th and 15th – 85th options produced results 

with the same interpretation as the 10th – 90th. Here, we utilize the 10th – 90th for 

parsimony (allowed larger sample size that 5th – 95th, but reflects the large-small 

dichotomy better than 15th – 85th).  We performed all analyses for all diameters combined 

as well during preliminary phases of the study: the strongly divergent responses of large 

and small individuals nullified each other’s effects in these combined models. The 

resulting interpretation was misleading, so we do not report findings from these 

combined models. 

Individuals with the following characteristics were included in crowding/richness 

calculations but omitted from survival analyses to preserve interpretability of prevailing 
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PSF dynamics: 1) those that died of mechanical crushing or direct fire damage (n = 

28,589); 2) species with fewer than two individuals per plot (n =10); and 3) individuals 

recruited in the final year of study (n = 4878). Trees located at plot perimeters (0 to 20 m 

inside edge) were omitted to prevent edge effects (n = 9994). Therefore, we analyzed 

survival for 57% of the 101,096 individuals utilized for crowding calculations (WFDP n 

= 29,417; YFDP n = 8,178; UFDP n = 20,030), which comprised 73% of the forests’ total 

basal area (Table 5.1). 

We used a Bayesian hierarchical generalized linear model to estimate the effects 

of above-ground crowding and below-ground mycorrhizal network access on individual 

survival over the course of the study (perfect observation of survival was assumed). We 

modeled survival probability, S, of individual, i, in plot, j, as a Bernoulli random variable 

with probability, p, related to a linear combination of covariates using a logit link (Eq. 2). 

The annual resolution of sampling provided the opportunity to accurately assess mortality 

causes, though analyses were conducted on final survival outcomes at the study end (i.e. 

no repeated observations). Linear effects varied randomly by plot (random intercept; n = 

3) to 1) account for differing study timeframes among plots (WFDP: 2010–2020, YFDP: 

2011–2020, UFDP: 2015–2020); and 2) facilitate model generalizability to mixed-conifer 

temperate forests across western North America.  

(2)        𝑆௜௝  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 ሺ𝑝௜௝ሻ 
         𝑙𝑜𝑔𝑖𝑡ሺ𝑝௜௝ሻ ൌ  𝛽଴௝  ൅   𝛽ଵ ∗ 𝐶𝐶௜   ൅   𝛽ଶ ∗ 𝐻𝑆𝐶௜   ൅   𝛽ଷ ∗ 𝐻𝐷𝐶௜  ൅   𝛽ସ ∗ 𝐻𝑆𝑅௜  

                                              ൅  𝛽ହ ∗ 𝐻𝐷𝑅௜   ൅  𝛽଺ ∗ 𝐻𝑆𝐶௜ ∗ 𝐻𝑆𝑅௜   ൅  𝛽଻ ∗ 𝐻𝐷𝐶௜ ∗ 𝐻𝐷𝑅௜  
 
 
Fixed effects variables were the three crowding indices: conspecific, 

heterospecific guild-sharing, and heterospecific guild-disparate neighbor crowding 
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(notated CC, HSC, and HDC, respectively); heterospecific guild-sharing and 

heterospecific guild-disparate species richness (notated HSR and HDR, respectively); and 

interactions between richness and crowding for both heterospecific neighborhood 

parameters. We tested the interaction between crowding indices and neighborhood 

richness to determine whether the composition of above-ground neighbors, not just their 

relative densities and spatial structure, modified the effect of mycorrhizal network access. 

Because conspecific crowding is monospecific, we did not test its interaction with 

richness.  

Positive relationships between crowding and survival indicate a net facilitative 

effect, while negative relationships indicate a net harmful effect. Harmful effects were 

further delineated as competition or apparent competition through assessment of the 

causes of mortality established during pathology exams. If facilitation mechanisms were 

primarily mediated by above-ground plant attributes (e.g., diffuse plant competition, 

crown form), then we expect increasing plant richness to ameliorate negative interactions 

among both guild-sharing and guild-disparate neighbors (Fig. 5.1). On the other hand, we 

expect increasing plant richness to reduce negative effects of only the guild-sharing 

neighbors if facilitation primarily arose through +PSF. Thus, positive interactions 

between HSC and HSR, in the absence of positive interactions between HDC and HDR, 

would indicate that diverse above-ground communities indirectly promoted plant survival 

via mycorrhizal networks.  

Models contained diffuse normal priors for all covariates, where random plot 

intercepts were drawn from a shared normal distribution (Eq. 3). Priors were normally 

distributed to allow the possibility of both negative and positive effects within a logistic 
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model framework (i.e. with a logit link). We chose to keep priors diffuse because there is 

currently no study in temperate mixed-conifer forests comparing mycorrhizal guild-level 

neighborhood effects from which we could have attained justifiable informed priors 

(particularly for the interaction terms of interest). Of prior studies investigating guild-

specific survival, the forest types were dissimilar; saplings rather than mature trees were 

studied; and/or differences in analytical approach minimized availability of useful 

information (e.g., spatial point patterns of recruitment in hardwood forests; Johnson et al. 

2018). Consequently, informed priors would have had to be derived from only 

tangentially related datasets examining conspecific vs. heterospecific interactions in 

similar forest types (e.g., Slack et al. 2017), which risk biasing models because 

mycorrhizal guilds were not designated and too few species were considered. Diffuse 

priors allowed our large dataset to objectively inform model outcomes, and conversely, 

our use of a large, data-rich census minimizes sensitivity to priors (Depaoli et al. 2017, 

Thorson and Cope 2017).  

(3)     𝛽଴௝  ~ 𝑁𝑜𝑟𝑚𝑎𝑙 ሺ µ ~ 𝑁𝑜𝑟𝑚𝑎𝑙 ሺ0, 1ሻ , 𝜎 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ሺ0, 1ሻ ሻ 
     ሾ 𝛽ଵ: 𝛽଻ ሿ   ~ 𝑁𝑜𝑟𝑚𝑎𝑙 ሺ0, 0.33ሻ 
 
 
Models were built using five chains of 20,000 iterations: the first 3,000 iterations 

of each chain were discarded as burn-in and no thinning was conducted, resulting in 

51,000 posterior samples of each parameter. We assessed convergence of chains through 

𝑅෠ values, where 𝑅෠ ≤ 1.1 indicates acceptable convergence, and visual inspections of trace 

plots. We assessed model accuracy using mean parameter estimates to predict survival, 

which was then compared to observed survival to calculate classification accuracy 

(sensitivity and specificity: percent of observations correctly classified as live or dead, 
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respectively, when using the optimal survival probability threshold for classification) and 

Area Under the ROC Curve (AUC; measures model performance of live/dead 

classification across all classification thresholds, where AUC = 1 indicates perfect 

classification). Analyses were performed using JAGS v. 4.3.0 (Plummer 2003) called 

from R v. 3.6.0 (R development core team 2019) with package jagsUI v. 1.5.1 (Kellner 

2016). 

 
Sensitivity Analyses 

Our model selection process was founded on two sensitivity analyses that together 

addressed the following uncertainties: (1) do ErM- and both AM/EM-forming species 

share mycorrhizae with other EM and/or AM species? (2) do mycorrhizal and 

competitive interactions differ as a function of which woody species and diameters are 

analyzed? (3) do complex or simplified density metrics (i.e. distance- and diameter-

weighed density vs. raw density) better capture these interactions? (4) at what distances 

are interactions most evident?  

Sensitivity Analysis one (SA1) addressed all four uncertainties by investigating 

the sensitivity of model accuracy (measured by area under curve [AUC] and deviance 

information criterion [DIC]) to factorial combinations of mycorrhizal guild designation, 

woody plant diameter, neighborhood radius, and density metric. Combinations were 

tested for all-species, tree-specific, and shrub-specific models (n = 288 models). We 

permuted mycorrhizal guild designations for ErM- and both AM/EM-forming species, 

where ErM species were considered (1) guild-sharing for both ErM and EM 

heterospecifics, or (2) guild-sharing amidst other ErM species only; and AM/EM species 

were considered (1) guild-sharing for both AM and EM heterospecifics, or (2) guild-
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sharing amidst other AM/EM species only. Tests were performed for either the smallest 

individuals (DBH ≤ 10th percentile), the largest individuals (DBH ≥ 90th percentile), or all 

diameters combined. We tested neighborhood radii at 5-, 10,-, 15-, and 20-m away from 

focal individuals. The neighborhood density metric at each radius was either simple 

density (number of stems; more parsimonious) or distance- and diameter-adjusted density 

(i.e. crowding; more biologically representative; Eq. 1). We then conducted a more 

refined Sensitivity Analysis two (SA2) that targeted Uncertainties 2–4 by investigating 

the sensitivity of parameter estimates to woody plant diameter, neighborhood radius, and 

density metric. We chose guild designations indicated by SA1 to be most predictive, then 

permuted diameter, neighborhood radius, and density metric as described for SA1. We 

calculated sensitivity of model parameters’ posterior distributions to neighborhood radii 

of 5-, 10,-, 15-, and 20-m. This test was performed for all-species, tree-specific, and 

shrub-specific models (n = 72 models).  

Sensitivity Analysis one found higher predictive accuracy for the tree-specific 

models, and lower accuracy for shrub-specific models, compared to models combining 

both functional types. Crowding generated higher accuracy (AUC) than density for all-

species and trees models, but density was more predictive for shrubs. After controlling 

for species and diameter, however, differences in AUC were negligible (mean Δ AUC as 

a function of density metric = 0.3 percentage points). Model DIC was more sensitive to 

permutations in neighborhood radius and density metric than was AUC (mean Δ DIC as a 

function of density metric = 22). In all-species, tree, and shrub models alike, the 20-m 

neighborhood radius yielded the lowest DIC scores (Table D.2). After controlling for 

species, diameter, and neighborhood radius, DIC was often minimized (Δ DIC > 10) by 
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designating ErM and both AM/EM forming species separate, independent guilds (as 

opposed to designating ErM as EM, or both AM/EM-forming species as either EM or 

AM). Sensitivity Analysis two found greater parameter sensitivity to neighborhood 

distances than density metric. Regardless of density metric chosen, point estimates and 

credible intervals were very similar; however, the more complex crowding metric tended 

to produce tighter credible intervals (higher confidence in point estimates). 

Results 

Based on findings of two sensitivity analyses (Table D.2, Fig. D.4), final models 

had the following qualities: (1) plant species forming ericoid mycorrhizae and those 

forming both AM/EM were considered distinct guilds and were not assumed to share 

mycorrhizae with other EM and/or AM species; (2) mycorrhizal and competitive 

interactions differed substantially depending both on species and diameter, so we report 

results from small and large shrubs and trees separately; (3) complex and simplified 

density metrics performed similarly in terms of AUC, but we chose the more complex 

distance-diminished, diameter-weighted crowding index (Eq. 1) as it substantially 

reduced DIC and posterior distribution credible intervals, particularly for tree models; (4) 

plant–plant interaction distances were 20-m, which minimized DIC.  

 
Quantifying Diffuse Interactions 

Annual woody plant survival rates were highest in Cedar Breaks, UT (99.6%), 

intermediate in Wind River, WA (98.6%), and lowest in Yosemite, CA (95.4%; Table 

5.1). Small-diameter annual survival was 1% and 5.5% lower than large-diameter annual 

survival in Wind River and Yosemite, respectively, but roughly equal in Cedar Breaks. 
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Above-ground neighborhood species richness, particularly of guild-sharing neighbors, 

generally increased shrub and tree survival (Fig. D.3). Higher conspecific crowding 

increased large shrub survival and decreased small tree survival. Shrub and small tree 

mortality was dominated by suppression (i.e. competition for light from larger trees). 

Large tree mortality was dominated by native bark beetles in Cedar Breaks and Yosemite, 

and native fungal pathogens/saprophytes in Wind River (Table D.3, Fig. 5.2; see also 

Lutz et al. 2021, their Fig. 7). 

As predicted, we found positive interactions between HSC–HSR and an absence 

of positive interactions between HDC–HDR (Fig. 5.3): together these indicate that 

diverse above-ground communities indirectly promoted plant survival via mycorrhizal 

networks. Crowded neighborhoods increased tree survival when HSR was high, but 

reduced tree survival when HSR was low (Fig. 5.3). We found the opposite interaction for 

crowded guild-disparate neighborhoods (low HDC), which increased tree survival only 

when HDR was low. The presence of facilitation among only the guild-sharing species 

supports our hypothesis of +PSF in more species-rich neighborhoods. Beneficial 

mycorrhizal effects were driven primarily by large EM tree species, while negative 

interactions between guild-disparate crowding and richness were driven primarily by 

large AM tree species (Fig. D.5). It is worth noting that large AM tree sample size (n = 

245) and mortality n were small (n = 19) compared to large EM trees (n = 3801; mortality 

n = 357) and may be subject to higher type II error. No +PSF were detected for shrubs or 

small trees. 

 
Model Performance 

Tree models were good classifiers (large tree AUC = 0.72; small tree AUC = 
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0.90) and the shrub models were moderate (large shrub AUC = 0.67; small shrub AUC = 

0.94; Table D.2). Likewise, correct classification of dead individuals was higher for trees 

(large tree specificity = 0.67; small tree specificity = 0.79) than shrubs (large shrub 

specificity = 0.64; small shrub specificity = 0.63). For all models, Markov chains 

converged and trace plots indicated well-sampled posterior distributions for all 

parameters.  

Discussion  

Early work on facilitation largely overlooked the role of plant-soil feedbacks 

involving mycorrhizae and instead assumed facilitation arose primarily from direct plant-

plant interactions (summarized by Callaway 1995). Despite its simplicity, this body of 

work was pivotal during an era of ecological study that was otherwise focused on 

competitive interactions (Tilman 1982, Brooker et al. 2008). Though there have since 

been substantial gains in the understanding of mycorrhizal networks in forests (Simard et 

al. 2012), the significance of how mycorrhizae mediate plant–enemy relationships is only 

recently coming into focus (Bennett et al. 2005). Beyond the conventional understanding 

that mycorrhizae mediate plant competitive relationships by controlling nutrient 

acquisition (Teste and Simard 2008), our findings suggest that mycorrhizae can also 

reduce large trees’ susceptibility to native enemies (Franklin et al. 1987, Das et al. 2011; 

Fig. 5.2). The prominence of +PSF for these trees indicates that positive interactions 

among forest plants cannot be solely attributed to physical or chemical attributes of trees 

themselves (e.g., crown form or chemical volatiles; summarized by Barbosa et al. 2009). 

Though the strength of +PSF may differ along gradients of environmental variability 

(e.g., Lodge 1989, Benning and Moeller 2021), large tree dynamics converged across 
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different site-level topographic positions (captured by large plot sizes) and regional-scale 

climatological contexts (captured by the three distinct sampling areas). Findings from 

these temperate mixed-conifer forests join the growing body of evidence demonstrating 

the interconnected importance of above-ground and below-ground biodiversity to tree 

survival (Clark and McLachlan 2003, Teste et al. 2017, Schuldt et al. 2018).  

Large-diameter trees rarely die of competition alone, but instead succumb to 

interactive processes of enemy attack, climatic stress, physical damage, and competition 

(Fig. 5.2, Table D.3; Franklin et al. 1987, McDowell et al. 2011, Larson et al. 2015). 

Thus, conspecific crowding-dependent mortality prevailed for small trees (CNDD; 

Chesson 2000, Chen et al. 2018), while heterospecific crowding-dependent mortality 

prevailed for large trees in low-richness neighborhoods (HNDD; Larson et al. 2015). 

Informed by our in-depth pathology exams, this HNDD primarily reflected the activity of 

biotic enemies (Fig. 5.2). Unlike in many tropical forests (e.g., Janzen 1970), native 

fungal pathogens and saprophytes found in temperate mixed-conifer forests tend to be 

generalists (host family- to division-specific), while the insect herbivores are often more 

specialized (host species- to genus-specific). As such, heterospecific neighborhoods – not 

just conspecific – are important sources of accumulated shared enemies (Uriarte et al. 

2004, Riihimäki et al. 2005, Jactel and Brockerhoff 2007).  

Large trees’ shift from negative to positive HDD given sufficiently high guild-

sharing species diversity (see also Teste and Simard 2008, Liang et al. 2015) supports the 

interpretation that mycorrhizae counteracted negative plant-soil feedbacks being operated 

by generalist pathogenic fungi, such as Armillaria ostoyae (Romagnesi) Herink (Table 

D.3, Fig. D.7; Marx 1972, Baleshta et al. 2005). Yet, the notable prominence of +PSF for 
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large-diameter EM trees presents the additional possibility that mycorrhizae counteracted 

genus-specialized bark beetles as well (e.g., Scolytus ventralis on Abies spp.; Figs. D.2, 

D.5, D.6; Pineda et al. 2010, Raffa 2014, Kanekar et al. 2018). Benefits of above-ground 

woody plant diversity (Kareiva 1983, Huber and Borden 2001, Yamamura 2002, Jactel 

and Brockerhoff 2007, Mayfield and Brownie 2013) likely synergize with benefits of 

below-ground mycorrhizal diversity (Baxter and Dighton 2001, Wehner et al. 2010, 

Köhler et al. 2018) to vastly increase pest resistance of large trees growing in species-

rich, mycorrhizae-connected communities (Fig. 5.3). This complex balancing act between 

tree density, plant-soil feedbacks, and enemies could help explain contradictions in the 

literature regarding the directionality of density dependence (or lack thereof) among 

large-diameter trees in temperate forests (Das et al. 2008, Larson et al. 2015, Lintz et al. 

2016, Furniss et al. 2020, Jiang et al. 2020).   

Decoupling above-ground and below-ground facilitation quantifies the relative 

importance of mechanisms governing enemy attack vs. predisposing factors contributing 

to enemy success. Above-ground tree richness can reduce enemy attack rates by 

obfuscating host detection via non-host pheromones (Huber and Borden 2001) and novel 

tree silhouettes (Mayfield and Brownie 2013). If above-ground richness had been the 

dominant mechanism of facilitation, however, both guild-disparate and guild-sharing 

plant richness would be expected to counteract negative crowding effects (Fig. 5.3). 

Though some below-ground mycorrhizal networks can also reduce enemy attack rates by 

suppressing pathogenic soil microbes (Marx 1972, Wehner et al. 2010), mycorrhizae are 

more broadly recognized for reducing enemy success rates (Gehring and Bennett 2009, 

Pineda et al. 2010; but see Roger et al. 2013). Access to shared mycorrhizal networks can 
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reduce trees’ susceptibility to enemies post-attack, both indirectly by reducing the net 

effects of competition (Baxter and Dighton 2001, Teste and Simard 2008, Bastolla et al. 

2009, Köhler et al. 2018) and directly by enhancing plant defenses (van der Heijden 

2001, Wehner et al. 2010, Kanekar et al. 2018). The strong mycorrhizal effect shown 

here indicates that mycorrhizae-mediated defense pathways may be critical for reducing 

large-diameter tree susceptibility to native enemies in temperate mixed-conifer forests.  

Distinct responses of large and small trees suggest the presence of ontogenetic 

differences in the importance of +PSF. Large-diameter trees tend to grow in 

neighborhoods with lower diversity and density than smaller trees (Lutz et al. 2014, Das 

et al. 2018) due to a history of size-asymmetric competition (Lutz et al. 2014, Das et al. 

2018) and persistence through antecedent disturbances (Furniss et al. 2020). In support of 

this interpretation, we found that small trees succumbed to competitive exclusion in 

crowded, monodominant guild-sharing neighborhoods (e.g., those near large trees); but 

inversely, crowding by a species-rich consortium of guild-sharing neighbors increased 

large tree survival (Fig. 5.3). These results together suggest that +PSF for large trees is 

built upon –PSF for small trees. Indeed, larger trees show a higher degree of mycorrhizal 

connectivity than their smaller neighbors and are the primary mediators of resource 

transfer in forests (Beiler et al. 2010). In turn, we found that a more diverse assemblage 

of neighbors provided large trees with greater benefit, perhaps due to a concomitantly 

wider array of fungal partners providing multiple pest-defense capabilities (Jones et al. 

1997, van der Heijden and Horton 2009, Wehner et al. 2010; but see Moeller and Neubert 

2015). Studies of old forests increasingly show that large trees are key components of 

mycorrhizal networks that become more beneficial and efficient through ontogenetic 
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time.  

The benefits of plant-soil feedbacks likely change over the course of forest 

succession as well (Horton et al. 2005). In contrast with dynamics evident in the largest, 

oldest trees only present in late-seral stages, we found no +PSF in forest patches 

recapitulating early-seral habitats (e.g., dense patches of shrubs and small-diameter trees; 

Hubbell et al. 1999, Franklin et al. 2002, Halpern and Lutz 2013). Instead, above-ground 

facilitation was more important here: small tree survival was increased by neighborhood 

richness (both HSR and HDR), while shrub survival was increased by conspecific 

crowding (conspecific positive density dependence). Despite sharing successional 

similarities, small tree and shrub dynamics represent two fundamentally different 

processes due to divergent below-ground life history traits. Shrubs are multi-stemmed 

species capable of vegetative regeneration, making crowding by conspecifics often 

synonymous with crowding by interconnected ramets of the same genetic individual. 

Beyond mycorrhizae, then, common root systems and habitat filtering offset shrubs’ 

competitive effects by facilitating nutrient transfer between stems (Das et al. 2018), while 

differences in physical traits of heterospecifics (i.e. fitness differences) offset competition 

among small trees (Chesson 2000, Carroll et al. 2011). The distinct differences between 

shrub, small-tree, and large-tree facilitation dynamics portend a parallel temporal gradient 

of PSF effects throughout forest development: mycorrhizae may be less beneficial for 

survival in highly competitive, early stages dominated by shrubs and/or saplings, but 

become very beneficial in the less competitive, later stages containing large trees and 

complex mortality dynamics (Twieg et al. 2007, Larson et al. 2015). 

The prevalence of generalist mycorrhizal mutualisms in temperate mixed-conifer 
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forests indicates that many of the plants tested here had the capacity to form multiple 

mycorrhizas if presented with the opportunity (Kropp and Trappe 1982, Molina and 

Trappe 1982, Vrålstad 2004, Horton et al. 2005, Gorzelak et al. 2015). However, some 

mycorrhizas are more specialized (Molina and Horton 2015, van der Linde et al. 2018, 

Birch et al. 2021a). The absent mycorrhizal effect for shrubs, for example, may reflect a 

higher degree of ErM specificity that precludes shrubs’ access to additional benefits 

gained through multiple mycorrhizas. Contrarily, the mycorrhizal effect shown for large-

diameter EM trees indicates that these individuals were able to access advantages in 

diverse guild-sharing neighborhoods; in the absence of a similar effect in diverse guild-

disparate neighborhoods, the most plausible mechanism by which this may occur is 

through formation of multiple facilitative mycorrhizas. Prior studies have shown that the 

majority of EM species sampled from Cedar Breaks fungal communities (54.4%) 

occurred on more than one tree species and were capable of forming interspecific 

mycorrhizal networks (Birch et al. 2021a). Likewise, mycorrhizal connectivity among 

distantly related heterospecific trees is well-described in Douglas-fir forests like Wind 

River (Simard et al. 1997, Birch et al. 2021b). The evidence shown here constitutes a first 

approximation of multitrophic plant–enemy–mutualist dynamics in western forests, a 

basis for which future studies may conduct direct sampling of mycorrhizae and plant 

defensive chemistry to illuminate the complex relationship between plant diversity, 

fungal diversity, and plant mortality susceptibility. 

Conclusions 

Our long-term study of spatially explicit, cause-specific forest plant mortality 

provided the opportunity to bridge above-ground and below-ground communities, 
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revealing that mycorrhizal networking can counterbalance apparent competition in 

forests. Importantly, the large permanent monitoring plot sizes enabled detection of large-

diameter tree dynamics that are often undetectable over smaller sampling areas (Lutz 

2015). Our finding that large trees of multiple species converged on similar facilitation 

dynamics – despite residing in distinct topographic positions, forest types, and 

climatological contexts – suggests a degree of significance not previously acknowledged 

by PSF research. Given the disproportionate ecological importance of large-diameter 

trees (Lutz et al. 2018), it is increasingly important that forest diversity is conserved to 

maintain mycorrhizal benefits as a countervailing force to rising rates of enemy attack 

(McDowell et al. 2011). Further study of +PSF mechanisms will offer pathways for 

adaptive management and conservation in temperate mixed-conifer forests.  
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Tables 

Table 5.1. Demographics of woody stems considered as the response variable in survival analyses. Relative basal area is relative to 
total basal area across the three plots. Trace basal area (t) was < 0.1 m2 (total) or < 0.01% (relative). Annual survival applies to only 
the stems analyzed (all, small, and large diameters separately). Study periods were nine, ten, and six years, respectively, for Wind 
River, Yosemite, and Cedar Breaks. There were 3424, 3080, and 487 total mortalities in Wind River, Yosemite, and Cedar Breaks, 
respectively. Total DBH is the mean percentile for small and large diameter bins. Growth form and mycorrhizal guild of each species 
in Table D.1. 

Family Species

All Diameters Small Diameter Large Diameter 

Stems 
(n) 

Basal 
Area 
(m2) 

Basal 
Area  
(%) 

Survival 
Rate 
(yr-1) 

Stems 
(n) 

Survival 
Rate 
(yr-1) 

P10 
DBH 
(cm) 

Stems 
(n) 

Survival 
Rate 
(yr-1) 

P90 
DBH 
(cm) 

Cedar Breaks 
Adoxaceae Sambucus racemosa 3 t t 0.0% 0 - - 0 - - 
Cupressaceae Juniperus communis 161 t t 99.2% 43 98.4% 1.1 18 100.0% 2.3 
Cupressaceae Juniperus scopulorum 3 0.1 t 100.0% 0 - - 0 - - 
Grossulariaceae Ribes cereum 67 t t 97.9% 14 100.0% 1.0 8 95.3% 1.5 
Pinaceae Abies bifolia 14639 141.5 3.49% 99.6% 1525 99.7% 1.3 1476 99.2% 18.1 
Pinaceae Abies concolor 10 0.4 0.01% 100.0% 0 - - 0 - - 
Pinaceae Picea engelmannii 1053 23.0 0.57% 99.9% 115 99.9% 1.5 106 100.0% 28.6 
Pinaceae Picea pungens 424 29.7 0.73% 99.9% 43 100.0% 2.0 43 100.0% 50.3 
Pinaceae Pinus edulis 7 0.0 t 100.0% 0 - - 0 - - 
Pinaceae Pinus flexilis 761 38.0 0.94% 99.9% 82 99.8% 1.6 77 99.8% 43.8 
Pinaceae Pinus longaeva 697 85.9 2.12% 99.9% 72 100.0% 2.4 70 100.0% 65.0 

Pinaceae 
Pseudotsuga menziesii    

ssp. glauca 
27 1.8 0.04% 99.4% 4 100.0% 2.0 3 93.5% 53.1 

Rosaceae Cercocarpus ledifolius 9 t t 100.0% 0 - - 0 - - 
Salicaceae Populus tremuloides 2169 72.5 1.79% 99.2% 223 98.5% 1.4 217 99.7% 31.4 

Total:   20030 393.0 9.68% 99.6% 2121 99.6% 1.6 2018 99.4% 32.7 
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Table 5.1. Continued. 

Family Species

All Diameters Small Diameter Large Diameter 

Stems 
(n) 

Basal 
Area 
(m2) 

Basal 
Area  
(%) 

Survival 
Rate 
(yr-1) 

Stems 
(n) 

Survival 
Rate 
(yr-1) 

P10 
DBH 
(cm) 

Stems 
(n) 

Survival 
Rate 
(yr-1) 

P90 
DBH 
(cm) 

Wind River 
Betulaceae Alnus rubra 9 0.2 0.01% 98.7% 0 - - 0 - - 

Betulaceae 
Corylus cornuta  

ssp. californica 
775 0.3 0.01% 98.3% 93 98.1% 1.1 79 99.1% 3.4 

Cornaceae Cornus nuttallii 170 0.9 0.02% 97.3% 17 94.3% 3.2 17 99.3% 12.0 
Cupressaceae Thuja plicata 190 95.7 2.36% 99.4% 20 95.3% 10.3 19 100.0% 127.0 
Ericaceae Gaultheria shallon 17 t t 95.3% 3 88.5% 1.0 3 100.0% 1.4 
Ericaceae Menziesia ferruginea 16 t t 96.9% 2 100.0% 1.1 2 92.6% 1.6 
Ericaceae Rhododendron macrophyllum 268 0.1 t 98.7% 31 99.3% 1.3 27 99.1% 3.8 
Ericaceae Vaccinium ovalifolium 90 t t 98.7% 15 99.2% 1.1 12 98.0% 1.6 
Ericaceae Vaccinium parvifolium 1367 0.2 0.01% 98.7% 143 97.9% 1.0 150 98.4% 1.8 
Pinaceae Abies amabilis 4147 49.8 1.23% 98.8% 422 99.1% 1.6 417 98.0% 16.7 
Pinaceae Abies grandis 69 7.8 0.19% 97.9% 7 94.0% 2.3 7 100.0% 60.1 
Pinaceae Abies procera 16 6.7 0.17% 99.3% 2 100.0% 30.5 2 100.0% 97.0 
Pinaceae Pinus monticola 7 3.2 0.08% 91.0% 0 - - 0 - - 

Pinaceae 
Pseudotsuga menziesii       

ssp. menziesii 
499 430.8 10.61% 99.3% 50 99.3% 68.0 50 99.8% 134.5 

Pinaceae Tsuga heterophylla 9313 815.8 20.10% 99.1% 939 98.2% 1.8 935 99.3% 64.8 
Rosaceae Amelanchier alnifolia 7 t t 94.0% 0 - - 0 - - 
Rosaceae Holodiscus discolor 25 t t 95.2% 3 95.6% 1.5 3 0.0% 3.7 
Rosaceae Rubus spectabilis 4 t t 100.0% 0 - - 2 100.0% 1.4 
Sapindaceae Acer circinatum 10580 14.3 0.35% 98.3% 1136 96.8% 1.4 1081 98.3% 6.4 
Taxaceae Taxus brevifolia 1848 39.7 0.98% 97.9% 187 95.3% 5.9 185 98.8% 24.3 

Total:   29417 1465.6 36.11% 98.6% 3070 97.7% 8.3 2991 98.7% 35.0 
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Table 5.1. Continued. 

Family Species

All Diameters Small Diameter Large Diameter 

Stems 
(n) 

Basal 
Area 
(m2) 

Basal 
Area  
(%) 

Survival 
Rate 
(yr-1) 

Stems 
(n) 

Survival 
Rate 
(yr-1) 

P10 
DBH 
(cm) 

Stems 
(n) 

Survival 
Rate 
(yr-1) 

P90 
DBH 
(cm) 

Yosemite 

Adoxaceae 
Sambucus nigra  

ssp. caerulea 
13 t t 98.3% 2 93.3% 1.1 2 100.0% 1.8 

Betulaceae 
Corylus cornuta  

ssp. californica 
144 t t 99.8% 15 100.0% 1.1 16 98.7% 2.4 

Cornaceae Cornus nuttallii 555 1.7 0.04% 98.8% 64 98.7% 1.5 56 99.1% 11.1 
Cornaceae Cornus sericea 152 0.1 t 99.8% 20 100.0% 1.3 21 99.5% 2.9 
Cupressaceae Calocedrus decurrens 408 72.1 1.78% 99.0% 42 95.7% 6.4 41 100.0% 84.6 
Ericaceae Arctostaphylos patula 81 t t 99.8% 9 100.0% 1.6 11 99.1% 3.6 
Ericaceae Rhododendron occidentale 6 t t 98.2% 2 100.0% 1.2 0 - -
Fagaceae Chrysolepis sempervirens 32 t t 100.0% 4 100.0% 1.2 4 100.0% 2.6 
Fagaceae Quercus kelloggii 651 12.1 0.30% 99.5% 66 99.7% 1.4 67 99.2% 27.5 
Pinaceae Abies concolor 4714 476.5 11.74% 93.7% 485 88.7% 4.3 472 97.6% 57.5 
Pinaceae Abies magnifica 2 0.3 0.01% 100.0% 2 100.0% 42.3 2 100.0% 42.3 
Pinaceae Pinus lambertiana 1377 547.7 13.49% 93.6% 140 84.2% 4.6 141 94.5% 126.2 

Pinaceae 
Pseudotsuga menziesii       

ssp. menziesii 
3 0.9 0.02% 96.0% 0 - - 0 - - 

Rhamnaceae Ceanothus cordulatus 2 t t 93.3% 0 - - 0 - - 
Rhamnaceae Ceanothus integerrimus 6 t t 100.0% 2 100.0% 1.3 0 - -
Rhamnaceae Ceanothus parvifolius 2 t t 100.0% 0 - - 0 - - 
Rhamnaceae Frangula californica 3 t t 100.0% 0 - - 0 - - 
Rosaceae Prunus emarginata 27 t t 98.4% 6 98.2% 1.4 3 100.0% 2.8 

Total:   8178 1111.4 27.38% 95.4% 859 92.1% 5.1 836 97.6% 30.4 
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Figures 

Figure 5.1. Hypothetical forest communities that differ by tree species and mycorrhizal 
guild: ectomycorrhizal (EM) or arbuscular mycorrhizal (AM). We test these hypotheses: 
A) monodominant neighborhoods share mycorrhizal guild but likely have strong
competition; B) species-rich, guild-disparate neighborhoods likely have weaker
competition, but limited access to benefits of mycorrhizal network; C) species-rich,
guild-sharing neighborhoods likely have weaker competition and access to benefits of
mycorrhizal network. We expect that survival will be highest in neighborhood C.
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Figure 5.2. Factors associated with mortality of small (A) and large (B) trees that died at 
each of three forest dynamics plots (small = DBH ≤ 10th percentile; large = DBH ≥ 90th 
percentile per species). Pathology exams were performed for newly dead individuals on 
an annual basis and multiple factors associated with mortality recorded (cumulative 
mortality > 100%; Table D.3). Biotic enemies included: fungal pathogens (parasitic fungi 
attacking live cambium and phloem cells), fungal saprophytes (decay fungi attacking 
dead xylem cells), insects (primarily bark beetles), animals (woodpeckers, large 
ungulates), mistletoe plant parasites, and suppression (i.e. light competition from 
neighboring trees). Predisposing factors (fire and mechanical damage, suppression, 
mistletoe) were not necessarily the most proximate causes of death but were recorded to 
provide further context for mortality. Trees for which fire or mechanical damage were the 
primary cause of mortality were omitted from analyses, so here, these processes represent 
predisposing factors only. For species-level mortality causes, see Fig. D.1. 
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Figure 5.3. Interaction between heterospecific guild-sharing species richness and 
heterospecific guild-sharing crowding in a 20-m radius of large-diameter trees (A), and 
the interaction between heterospecific guild-disparate species richness and heterospecific 
guild-disparate crowding in a 20-m radius of large trees (B). Overlapping lines indicate 
no difference between study sites (when dots, dashes, and lines overlap), but a present 
difference between high and low richness levels at all sites. Survival probabilities were 
assessed at the end of each study timeframe per plot (not annualized; WFDP: 2010–2020, 
YFDP: 2011–2020, UFDP: 2015–2020). Low heterospecific richness was the lowest 
observed number of different species within any large-diameter tree neighborhood (here, 
HSRmin = 0; HDRmin = 0), and vice versa for high richness (HSRmax = 6, HDRmax = 10). 
Heterospecific crowding was centered by diameter and species, so high and low cate-
gories reflect the relative effect of crowding. Low crowding was the smallest observed 
value within any large-diameter tree neighborhood, which after centering represented the 
lowest crowding that would be expected for any large-diameter tree species (here, HSCmin 
= -37; HDCmin = -31), and vice versa for high crowding (HSCmax = 117, HDCmax = 105). 
We held all other parameters at mean observed values so only the values for parameters 
of interest were permuted to create interaction slopes; this included using mean 
HDC/HDR when assessing the effect of guild-sharing interactions, and vice versa when 
assessing guild-disparate interactions. Survival probabilities were calculated using these 
observed values and the mean of posterior distributions for all coefficients in large-
diameter tree models following Eq. 2. Compared to monodominant neighborhoods (HSR 
and HDR = 0; red lines), increased species richness (blue lines) reduced the negative 
effects of crowding by guild-sharing neighbors (A) but increased the negative effects of 
crowding by guild-disparate neighbors (B). Though only linear effects were detected 
here, extremely high or low levels of crowding would likely produce nonlinear effects. 
Asterix (*) indicates a significant interaction (95% credible intervals do not include zero). 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The Role of Longitudinal Research  

The Smithsonian ForestGEO network is uniquely poised to identify major biotic 

and abiotic drivers of forest species distributions and coexistence (LaManna et al. 2017, 

Davies et al. 2021). The nature of the ForestGEO design – a network of large, single plots 

representative of key forest types across the planet – requires that analyses of any single 

plot are centered at the scale of individual trees, patches, and at most, the forest stand. An 

annual resolution of sampling can yield great insights into the mechanisms controlling 

tree individual and community dynamics and, thus, future forest change (Lutz 2015, 

Germain and Lutz 2021a, 2022). Yet, landscape-scale processes (e.g., disturbance 

heterogeneity and migration) and evolutionary processes (e.g., acclimation and 

adaptation) are likely to interact in unforeseen ways with the decadal dynamics observed 

within stands (Aitken et al. 2008, Alberto et al. 2013, Lenoir and Svenning 2015). For 

this reason, pairing ForestGEO sites with additional sample plots (Germain and Lutz 

2020, Furniss et al. 2022), dendrochronological methods (Anderson‐Teixeira et al. 2022, 

Germain and Lutz Submitted), or genetic sampling (Bishop et al. 2019) can increase the 

power of ForestGEO studies to anticipate the effects of changing climate in the world’s 

forests.  

Migration and adaptation operate over much longer timescales than the rapid pace 

of environmental change facing western forests today (Bréda et al. 2006, Harsch et al. 

2009, Bertrand et al. 2011, Zhu et al. 2011, Alberto et al. 2013). If the earth system was 

not currently so precarious, such long time scales for forest recovery following currently 
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observed declines may not be alarming (e.g., Clark 1998). Given that anthropogenic 

activities have brought many elements of the earth system to the brink of destabilization 

(Steffen et al. 2015), however, we cannot afford to wait centuries for forests to recover: 

reduced carbon storage and sequestration in forests now can stimulate positive feedbacks 

with the climate system to trigger irrecoverable change (Adams et al. 2010, Pachauri et 

al. 2015, Swann et al. 2018). The annual to decadal dynamics that were the focus of this 

dissertation aim to answer pressing questions in ecology at the timescales relevant to 

mitigating forest loss and preventing further climate destabilization. 

Oversimplifying Climate Impacts Underestimates Forest Loss 

The first section of this dissertation (Chapters II and III) examined the direct and 

indirect effects of climate change in forests of the Pacific Northwest, USA. These forests 

are globally distinguished for their carbon storage capabilities (Smithwick et al. 2002, 

Anderson-Teixeira et al. 2021) and their continued conservation is therefore critical to 

maintaining regional climate stability (Garcia et al. 2016, Swann et al. 2018). Climate is 

becoming hotter, drier, and more variable in this region, leading to more severe summer 

drought and snowpack declines (Germain and Lutz 2020, 2022). I found that, in the 

absence of fire, extreme weather events and indirect climate effects emergent at the 

community level dominate PNW forest responses to climate (Germain and Lutz 2020, 

2022). Specifically, climate change may be weakening the mechanisms responsible for 

maintaining biodiversity (Germain and Lutz 2022): fitness differences (e.g., Voelker et 

al. 2018, Kulmatiski et al. 2020) led to stronger interspecific competition on dry, water-

limited sites, resulting in stronger community stability and coexistence of a broader 

variety of species at wetter sites, but monodominance of only the most drought-tolerant 
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species on dry sites (Germain and Lutz 2022). This type of compositional shift, known as 

thermophilization, is being observed in forests across the planet (Duque et al. 2015). I am 

the first to show how altered community dynamics – not just population- and species-

level responses – are responsible for these climate-instigated compositional shifts. 

Moreover, I found that tree migration may be challenged and local extinction favored by 

increasing climatic variability at even the typically cooler, moister sites, reducing 

thermophilization and thus the adaptive potential of forests (Germain and Lutz 2020). 

Such responses are broadly ignored in large-scale models of forest change, contributing 

to the ongoing problem of carbon storage overestimation (Allen et al. 2015, Germain and 

Lutz 2020).  

The mechanisms underpinning direct climate effects on tree growth and mortality 

are perhaps more straightforward to scale from individual trees to landscapes than are 

complex indirect effects. For instance, warmer temperatures and CO2 fertilization can 

alter growth rates (Battipaglia et al. 2020, Clark et al. 2021, Larysch et al. 2022) and 

many of these responses have been quantified for individual species (particularly 

commercially valuable trees; e.g., Hood and Sala 2015). Likewise, drought-induced tree 

mortality can be predicted as a greater probability for hydraulic failure (especially for 

species with anisohydric water use behavior) and carbon starvation (especially for species 

with isohydric water use behavior; McDowell et al. 2008, Sevanto et al. 2014). Simplistic 

growth and mortality responses such as these are commonly scaled to larger extents (e.g., 

Allen and Breshears 1998, Williams et al. 2013). Yet, because these forms of drought 

stress can make trees more vulnerable to biotic enemies (McDowell et al. 2011, 

Anderegg et al. 2015) and wildfire (van Mantgem et al. 2013), it is difficult to disentangle 
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the direct and indirect effects of climate in forests (but see Bentz et al. 2010, Chu et al. 

2019). Consequently, large vegetation models appear to have concluded it too 

cumbersome to parse direct drought-induced mortality and growth declines from those 

mediated by insects, wildfire, disease, and competitive exclusion (Fisher et al. 2018, 

Anderegg et al. 2020).  

Though indirect effects may be more complicated to model, I found that these 

vastly outweighed direct climate effects (Germain and Lutz 2022). Moreover, the 

different scales of climate effects undermine interchangeability or combination of these 

responses: growth rate fluctuations, hydraulic failure, and carbon starvation occur at the 

scale of individual trees; while insect activity, wildfire, and competitive interactions 

occur at the scale of forest communities. Moreover, spatially explicit feedbacks between 

these levels of organization (Slack et al. 2017, Furniss et al. 2022) render the omission of 

either scale a potential source of bias. Of course, it is unnecessary and perhaps 

counterproductive to include the maximum level of complexity in vegetation models 

(Astrup et al. 2008, Tredennick et al. 2017).  My recommendations for the ongoing 

efforts to improve vegetation components of earth system models (Moorcroft 2006, 

Purves and Pacala 2008) are to 1) develop more robust predictions of population collapse 

by including severe weather and drought extremes in input climate datasets (i.e., rather 

than mean trends alone; Parmesan et al. 2000, Germain and Lutz 2020); and 2) integrate a 

more comprehensive suite of forest mortality mechanisms to include drought responses 

of prominent natural enemies (Bentz et al. 2010), competition (Young et al. 2017), and 

fire (Fisher et al. 2018, Abatzoglou et al. 2021); and 3) allow forest cover and species 

composition to vary as a function of these additions (Duque et al. 2015, Germain and 
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Lutz 2022).  

Biodiversity in Western Forests: Small Yet Mighty 

Findings from the second section of this dissertation (Chapters IV and V) join the 

growing body of evidence demonstrating the interconnected importance of aboveground 

and belowground biodiversity to tree survival (e.g., Schuldt et al. 2018). Temperate 

coniferous forests may have fewer woody species than their tropical counterparts (Turner 

2004, Lamanna et al. 2014), but I found that even small increments of increased woody 

species diversity provided protection against natural enemies, drought, and competition 

(Germain and Lutz 2021b, Submitted). These findings add to the known benefits of 

biodiversity (Hansen et al. 1991, Jactel and Brockerhoff 2007, Schuldt et al. 2018) by 

showing that higher woody species richness can not only decrease pathogen and bark 

beetle attack rates (Jactel and Brockerhoff 2007, Germain and Lutz 2021b, Submitted), 

but also increase trees’ ability to resist bark beetles following attack (Germain and Lutz 

Submitted). These mechanisms underly a positive relationship between diversity and 

carbon stocks (e.g., Steur et al. 2022). Despite diversity benefits, I also found that climate 

change may be weakening the mechanisms responsible for maintaining forest 

biodiversity (Germain and Lutz 2022), making it essential that managers take more active 

measures to conserve biodiversity in forests (Hylander et al. 2021).  

An emerging theme of this work is that forest biodiversity is important in western 

temperate forests, despite and due perhaps to lower functional redundancy and therefore 

greater individual impact of each species compared with diverse tropical forests (Ellison 

et al. 2019). Unfortunately, great expanses of land have been converted to commercially 

valuable tree monocultures for timber production (Brown et al. 2018, Franklin and 
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Donato 2020). Not only are these stands more vulnerable to bark beetles and disease 

(Jactel and Brockerhoff 2007, Jactel et al. 2009), but my work also suggests that 

correspondingly reduced plant-soil feedbacks (Karst et al. 2014, Teste et al. 2017) and 

elevated competitive stress (Pretzsch et al. 2013, Chen et al. 2018) in these forests may 

predispose trees to mortality following drought and fire with continued climate change 

(Germain and Lutz Submitted). These findings support efforts to increase production tree 

diversity and conserve native forests (Schroth et al. 2002, Felton et al. 2010, Waring et al. 

2020), both of which being necessary to maintain carbon storage while increasing forest 

resilience to climate change.   

The insurance effect of biodiversity sits opposing to foundational species theory: 

the former states species rich communities maintain ecosystem functioning amidst stress, 

recuperating the functions lost by any one sensitive species (Yachi and Loreau 1999, 

Hooper et al. 2005, Loreau and de Mazancourt 2013); whereas the latter states that 

individual species may make contributions to ecosystem functioning that are 

disproportionate to their own abundances, the loss of which cannot be recovered by other 

species (Dayton 1972, Stachowicz 2001, Ellison et al. 2005). In fact, biodiversity and 

foundational species create feedbacks to maintain one another: biodiversity can help 

protect individual species that may be considered foundational (Baxter and Dighton 2001, 

Germain and Lutz 2021a, Submitted), and in turn, foundational species often cultivate 

community-level biodiversity (Angelini et al. 2011, Baiser et al. 2013, Ellison et al. 

2019). For instance, foundation species may be identified in forests following at 

obligately facilitative model of succession (Connell and Slatyer 1977) where the presence 

of the subsequently more diverse forest community is precluded upon presence of a 
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single pioneering facilitator (e.g., Chapin et al. 1994, Baumeister and Callaway 2006). I 

build upon this concept to add that, in mature western forests with vast structural 

heterogeneity (Franklin et al. 2002), cohorts of large-diameter trees may behave as the 

foundational assemblage by providing functions disproportionate to their abundances 

(Lutz et al. 2013, 2018, Germain and Lutz 2022). 

Representing the intersection between these themes, others have acknowledged 

that multiple species may act as a foundational assemblage (Angelini et al. 2011). In 

species-depauperate forests, biodiversity benefits therefore begin to converge with 

foundational assemblage benefits: an assemblage may behave as foundational (i.e., 

dominant providers of ecosystem functioning), and when that assemblage contains 

multiple species, the benefits of biodiversity become yet another function being 

provisioned. Though I found that diversity benefits existed even with a relatively few 

number of species (Germain and Lutz 2021b, Submitted), these benefits are more 

precariously situated because there is a limited insurance effect being provided by 

additional, redundant species (Peterson et al. 1998). Preserving what biodiversity does 

exist in these forests and correctly identifying the foundational assemblage, not 

necessarily limited to be an individual species, can help managers prioritize areas for 

conservation and restore forests following disturbance (Hansen et al. 1991). 

Harnessing Facilitation Mechanisms to Offset Climate Impacts 

This dissertation focused on how resistance and resilience scales from the 

individual tree and stand (Chapters III and IV) to landscape and regional scales (Chapters 

II and V). I found that individual tree resistance was marked by the ability to avoid or 

tolerate disturbance (e.g., reduced mortality from bark beetles and disease; Germain and 
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Lutz 2021b), and resilience was the ability to regain vigor following disturbance (e.g., 

defense recovery following fire; Germain and Lutz Submitted). At the stand scale, higher 

competition and apparent competition between trees resulted in reduced stand-level 

resilience to changing climate (i.e., increased competitive exclusion indicating impending 

compositional shifts; Germain and Lutz 2022). At the landscape scale, I found that low 

individual- and stand-level resistance to extreme drought (i.e., higher mortality and 

population declines) resulted in reduced landscape-scale resilience of the species, Taxus 

(i.e., inability to migrate with a changing climatic niche; Germain and Lutz 2020). 

Finally, synthesizing the net effects identified by each of these studies, I found that large 

trees comprising 17 common species from three forest types across the western region 

showed increased resistance to biotic disturbances and drought when patch-level diversity 

favored positive plant-soil feedbacks (Germain and Lutz 2021b). 

Study of mature forests offers the perspective that endemic insects, disease, and 

wildfire are necessary elements of healthy, carbon-dense forests (Franklin et al. 2002, 

Kolb et al. 2007). My dissertation work expands upon this understanding to show how 

the future of carbon storage in western forests is not only predicated upon how fast trees 

are growing and dying (e.g., Hegyi 1974); but also upon how trees interact with each 

other (Germain and Lutz 2022), with their enemies and mutualists (Germain and Lutz 

2021b), and how these synergistic effects are moderated by climate and fire (Germain 

and Lutz Submitted) to together govern tree survival. Contemporary management has 

begun to recognize the importance of these processes (Swanson and Franklin 1992, 

Churchill et al. 2013), but a cohesive, operationalized framework for maintaining forest 
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resilience to myriad climate change impacts has yet to fully materialize (Drever et al. 

2006, Fettig et al. 2007, North et al. 2022).  

More and more, it is appearing that climate change favors antagonistic 

relationships (Raffa et al. 2008, Weed et al. 2013, Abatzoglou et al. 2021) while 

weakening mutualistic relationships (Clark et al. 2011, Eklöf et al. 2012). My research 

suggests that managers would benefit forests by actively harnessing the aspects of 

ecological complexity that bolster mechanisms of facilitation (Simard and Austi 2010, 

Germain and Lutz 2021b) and offset increasingly stressful aspects of climate change 

(Bastolla et al. 2009). The two leading ways I found to do this is to 1) conserve woody 

species biodiversity (Hansen et al. 1991, Germain and Lutz Submitted) and 2) promote 

positive plant-soil feedbacks that enhance tree defenses to natural enemies (Germain and 

Lutz 2021b, Forero et al. 2021). Because the historical mechanisms supporting 

biodiversity may be weakening (Germain and Lutz 2022), failing to enact management to 

maintain these positive counterbalances may allow unmitigated climate change to 

instigate population collapse (Urban et al. 2012, Germain and Lutz 2020) and type 

conversion (Millar and Stephenson 2015, Davis et al. 2019, Coop et al. 2020). 

Conclusions 

“When generalizing these findings to other mature forests, we highlight the 

importance of delineating the most limiting factor for large trees in that forest (e.g., fire, 

drought, beetles). Although these factors often co-occur (Franklin et al. 1987), identifying 

the most foundational and threatening factor can help put our findings into context. For 

instance, reducing tree density and removing ladder fuels is critically important in fire-

suppressed Ponderosa pine forests that are otherwise susceptible to uncharacteristic 
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crown fires (D’Amato et al. 2013). In pinyon woodlands, where drought is increasingly 

limiting (greater incidents of embolism and hydraulic failure; Adams et al. 2009), 

thinning can reduce competition for water to increase forest health (D’Amato et al. 2013).  

For mature forests that do not reside at these ends of the fire- and drought severity 

spectrums, such as those analyzed here, the next most limiting factors for large trees are 

biotic enemies (Bentz et al. 2010). Our results advise some prudence before reducing tree 

densities in these forests, as losing friends may unwittingly correspond with deleterious 

side effects. We show that forest composition, not just density, is essential to consider in 

order to maintain positive counterbalances for the large trees: if woody plant species 

richness was low, density also needed to be low for large trees to survive. Yet, the 

greatest survival effects for large trees were in denser, networked communities with high 

species richness. If the management objective is to increase forest resilience to bark 

beetles and pathogens, many of which are becoming more virulent with climate changes, 

then we must first ask: are neighboring trees acting primarily as enemies themselves, 

needing to be removed, or are they friendly purveyors of mycorrhizal networking critical 

to retaining resilience? 

[This dissertation] demonstrates a promising–– and actionable––mechanism by 

which… mutualisms may act as a key counterbalance to increasing threats in western 

forests… large trees of 17 common western coniferous species converged on similar 

facilitation dynamics across the decadal sampling period ––despite residing in distinct 

topographic positions, forest types, and climatological contexts. The significance of these 

facilitation mechanisms deserves continued study to offer pathways for adaptive 

management and conservation.  
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Going forward, future research would benefit management the most by 

developing a process-based approach for addressing these complex issues in different 

forest types. To begin, we propose a greater effort to adapt the silvicultural paradigm to 

include not just how to remove negative dynamics, but also how to retain and even 

bolster positive dynamics in forests. There is a growing need for research and 

management action that considers existing facilitation mechanisms as tools to conserve 

forests amidst rapid environmental change. Continued discovery of big trees’ fungal 

friends will help managers to protect old-growth forests and maintain the many 

ecosystem services provided by these trees and their symbionts. ForestGEO sites are vital 

conservation resources uniquely poised to serve this need, providing longitudinal datasets 

capable of disentangling multitrophic facilitation dynamics in forests across the globe.” 

(Germain and Lutz 2021b) 5 
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APPENDIX A 

SUPPLEMENTARY MATERIAL FOR CHAPTER II:  

CLIMATE EXTREMES MAY BE MORE IMPORTANT THAN CLIMATE MEANS 

WHEN PREDICTING SPECIES RANGE SHIFTS 

Table A.1. Results of 10-fold cross-validated model performance for the two space-for-
time models using climate extremes (maximum Deficit anomaly and minimum snowpack 
anomaly observed during the study timeframe) rather than means per site. There was little 
difference in model outcomes compared to those using climate means (Table 2.2), likely 
because the space-for-time approach aggregates the climate value (whether mean or 
min/max) over the whole study timespan, thus washing out variability that can be 
captured by longitudinal models. Both the simple linear model (SLM) and Random 
forests were population-level models. Accuracy is percent variance explained (i.e. R2). 
Mean Absolute Deviance/Mean Ratio (MADMR) is scaled by the units of each model’s 
response variable to allow direct comparison of error between models (lower numbers 
indicate less error). 

Model 

Validation 

MADMR 
Accuracy

(%) 
Mortality 

(n) 
Survival  

(n) 
Sample 
Size (n) 

SLM 0.64 63.6 - - 20
Random forestb  0.51 56.0 - - 20 



Table A.2. Model coefficients for the two space-for-time models using climate extremes (maximum Deficit anomaly and minimum 
snowpack anomaly observed during the study timeframe) rather than means per site. There was little difference in model outcomes 
compared to those using climate means (Table 2.2), likely because the space-for-time approach aggregates the climate value (whether 
mean or min/max) over the whole study timespan, thus washing out variability that can be captured by longitudinal models. Both the 
simple linear model (SLM) and Random forests were population-level models. Coefficients for Random forests indicate percent 
increase mean squared error for each variable. Species richness and Hegyi values were calculated within a 10-m radius of each tree. P-
values are represented as follows: < 0.1°, < 0.05*, < 0.01**, and < 0.001***. Dashes indicate variable was tested but not included in 
models. 

Model 
Covariates 

Elevation Diameter 
Species

Richness 
Conspecific 

Hegyi 
Heterospecific 

Hegyi 
Maximum 

Deficit 
Minimum
Snowpack 

Deficit*Snowpack

SLM  3.666 - 23.518* 37.145* 9.827 6.881° -7.002 -
Random 
forestb   

-12.051 - 32.099** 49.744** 18.268° 2.972 -5.206 -
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Figure A.1. The classification threshold for generalized linear mixed models (individual-
level longitudinal) was obtained by optimizing model specificity (true negative rate) and 
sensitivity (true positive rate). This threshold was used during cross-validation to 
determine how accurately the model predicted out-of-sample mortality, where mortality 
probabilities above 0.053 were classified as “dead” and those below were classified as 
“live”. 
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Figure A.2. The interaction between modeled maximum Deficit and modeled minimum 
snowpack observed in the generalized linear mixed model (individual-level longitudinal). 
Above the classification threshold, 0.053, indicates increased mortality probability, and 
below the threshold indicates decreased mortality probability. Mortality probability was 
minimized when Deficit anomaly was low and snowpack anomaly was high; however, 
high snowpacks could not offset the increased mortality effect of Deficit when Deficit 
anomaly was above 2.8 standard deviations (SD). Mortality probability was always above 
the threshold (classifying trees as dead) when snowpack anomaly was low, regardless of 
Deficit values.  
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Figure A.3. The interaction between modeled maximum Deficit and modeled minimum 
snowpack observed in the Cox model (individual-level longitudinal). Above zero 
indicates increased mortality hazard (i.e. instantaneous mortality probability), and below 
zero indicates decreased mortality hazard. In agreement with the generalized linear mixed 
models (GLMM; Fig. D2), mortality hazard was low when Deficit anomaly was low and 
snowpack anomaly was high; likewise, high snowpacks could not offset the increased 
mortality effect of Deficit when Deficit anomaly was above 2.7 standard deviations (SD). 
In contrast to the GLMM, mortality hazard was also decreased when snowpack was low 
and Deficit was high. 
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Figure A.4. Partial dependence plots showing the marginal (i.e. individual) effects of 
each covariate included in longitudinal Random forests (population-level). The response 
variable, Taxus population growth, was expressed categorically as increasing, stable, or 
decreasing. Response values greater than zero indicate population increase is more 
probable, and values less than zero indicate population decrease is more probable. P-
values for covariates were obtained by permuting the response variable 100 times to 
produce a null distribution of variable importance, against which the importance metric 
generated by the original tree ensemble was compared. The model indicates that 
probability of Taxus populations growth is expected to increase as species richness 
increases. Though not significant at α = 0.05, Random forests reflected the pattern of 
Taxus population decline with moderately high Deficits (1-3 SD) and at low elevations 
(<0 SD). 
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Figure A.5. Partial dependence plots showing the marginal (i.e. individual) effects of 
each covariate included in space-for-time Random forests (population-level). Response 
values represent the predicted Taxus population abundance as a continuous variable. P-
values for covariates were obtained by permuting the response variable 100 times to 
produce a null distribution of variable importance, against which the importance metric 
generated by the original tree ensemble was compared. The model indicates that Taxus 
abundance is expected to increase as species richness and conspecific neighbor density 
also increase. Climate covariates bore no relationship with Taxus abundance. 
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Figure A.6. Modeled annual climatic water Deficit (A) and modeled annual snowpack 
(B) at each of the twenty sites between 1977 and 2017; with Deficit anomalies (C) and 
snowpack anomalies (D) analyzed by longitudinal models. Climatic water balance 
models were made for each site using monthly temperature and precipitation time series 
from the Parameter-elevation Regression on Independent Slopes Model data set at an 
800-m spatial resolution. Anomalies were calculated as the highest (Deficit) or lowest 
(snowpack) annual value within each time interval between measurement years (4-6 yrs) 
and expressed as standard deviations from long-term averages per site (1970 to 2017; 
dotted horizontal line); site-level anomalies represent the period of data in Table 2.1. 
Solid lines indicate modeled Deficit and snowpack; dashed lines show simple linear 
regression trends over the 40-yr study timespan; increasing Deficit and decreasing 
snowpack trends demonstrated by regression lines were significant at α = 0.05 for all 
sites. 
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APPENDIX B 

SUPPLEMENTARY MATERIAL FOR CHAPTER III: 

CLIMATE WARMING MAY WEAKEN STABILIZING MECHANISMS 

IN OLD FORESTS 

 
SECTION S1: SUPPLEMENTAL METHODS 

Site and Climatological Data 

Preliminary analyses tested which environmental components formed the primary 

axes of differential tree clustering and mortality: we tested elevation above maximum 

spring water table (water table; m), soil nitrogen (mg kg-1), soil phosphorus (mg kg-1), 

and total exchangeable bases (TEB; cmol kg-1). We assessed 1) linear models showing 

the relationship between environmental components and each Hegyi index to test for 

differential tree clustering along soil resource gradients; 2) Cox models showing the 

relationship between environmental components and tree mortality hazard; and 3) Cox 

models that included all components to control for the possibility of ecological sorting 

along all four soil resource gradients. This final analysis was not parsimonious (too many 

variables for the number of mortality events) and appeared to be overfit, so results are not 

be reported here.  

Water table was the most important environmental component structuring tree 

spatial patterns (Table B.2) and was thus chosen as our primary environmental variable. 

This is likely because the ranges of variability in N and TEB were fairly small compared 

to water table differences at our study site (Table B.3); additionally, N, P, and TEB 

distributions were more heterogeneous across the landscape than changes in water table 
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(Fig. B.2). By including water table in the final analysis, we control for the effects of 

ecological sorting along the existing moisture gradient (i.e. the primary axis governing 

spatial autocorrelation) to isolate NDD effects. 

 
Mortality model – Phase I: Parameterization 

In computing the Hegyi index, trees were included as neighbors that were rooted 

within a fixed radius of 10 m from the focal tree, based on previously identified 

interaction distances (Das et al., 2011a; Lutz et al., 2014). We used a mirrored edge 

correction where the perimeter of the plot (0 to 10 m inside edge) was mirrored (0 to 10 

m outside edge) to allow calculation of Hegyi for trees growing within 10 m of the plot 

edge. We revised the Hegyi index by specifying distances between edges of the tree 

(face-face) rather than distances between tree centers (pith-pith). This revision accounts 

for closely growing trees with fused stems (those with pith-pith distances > 0 and face-

face distances ≤ 0), allowing us to distinguish between trees that were growing closely 

and are fused, thus providing direct evidence of shared cambium and resources, and those 

that were growing closely but not visibly fused above ground, thus experiencing 

potentially strong competitive interactions.  

DBH was log-transformed to adjust right-skewed distributions; and water table, 

Deficit, and snowpack were each centered by subtracting the mean to reduce collinearity 

while retaining coefficient interpretability in original units (Dalal & Zickar, 2012). After 

variable transformations, predictor variables were roughly normal (verified by visual 

assessment of histograms and quantile-quantile normality plots); while the Cox model’s 

non-parametric component does not have explicit distributional assumptions for 

covariates, this aided our ability to interpret predictor effects in terms of minimum and 
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maximum values. Generalized estimating equations were used (i.e. cluster variance; 

Therneau et al., 2013)) to create robust estimate of standard errors and account for 

repeated measures between years for each individual tree. Repeated measures were 

present because the entire time series was treated as a single risk set (rather than each 

year separately) to deal with climate covariates that differed year-to-year but not tree-to-

tree within a given year; this allowed individual tree mortality risk to be calculated in the 

context of all observed climate covariate values.  

The hazard ratio compares hazard between two points in time; as such, one of the 

fundamental assumptions of the standard Cox proportional hazards model is that HR (i.e. 

predictor effects) remain constant over time, where the change in hazard is assumed to be 

the same for t0 to t1 vs. for t1 to t2, and so on. This assumption allows for consistent 

interpretation of predictor effects throughout the duration of the study. When models 

have non-proportional hazards, this means predictor effects changed throughout the study 

(i.e. hazard was reduced, increased, or fluctuated from year to year); in this case, an 

extension of the Cox model must be used to allow for time-varying coefficients 

(Therneau et al., 2013). Here, we used this extension and therefore employed a Cox 

model with time-varying coefficients rather than the more basic proportional hazards 

model. Deficit and snowpack often interacted in models, which is to say that the effect of 

Deficit changed over time with differing levels of snowpack and vice versa, thus 

constituting a time-dependent effect. We defined the time-varying coefficients for each of 

these terms (Deficit and snowpack) by the Deficit / snow interaction coefficient; this 

approach allowed us to make inferences about the time-dependent effects of Deficit and 

snowpack in terms of their effects on each other rather than with some unspecified 
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constituent of time. No other variables showed evidence of time-dependence.  

 
Mortality model – Phase II: Forecasts 

We created mortality risk forecasts that are robust to climate model uncertainty by 

considering six different IPCC climate projections to estimate future snowpack and 

Deficit. We chose to use Representative Concentration Pathway (RCP) 8.5 climate 

scenarios for all projections because temperature and precipitation uncertainty stems 

primarily from process error rather than scenario error (i.e. difference between RCP 

scenarios; Hawkins & Sutton, 2009, 2011). The six climate projections agreed on long-

term climate trends, but process uncertainty was evident in disagreement between annual 

Deficit and snowpack quantities. Thus, the six climate projections produced widely 

ranging annual ensemble estimates of future mortality risk for species with the greatest 

climate sensitivities (e.g., Abies). The unique components of each model contribute to 

annual disagreement: the HadGEM2-CC model is lacking the chemistry component 

present in the HadGEM2-ES model (Bellouin et al., 2011; Collins et al., 2011); the 

GFDL-ESM2M model uses Modular Ocean Model Version 4.1 with vertical pressure 

layers, while the GFDL-ESM2G model employs Generalized Ocean Layer Dynamics 

with a bulk mixed layer and interior isopycnal layers, with the result that the ESM2G 

better represents climate changes relating to the North Pacific ocean (Dunne et al., 2012, 

2013); and all four of these consider the carbon cycle, which is absent from the 

uncoupled climate models GFDL-CM3 and CCSM4 (Donner et al., 2011; Gent et al., 

2011). Mortality risk estimates produced from models more comprehensive (HadGEM2-

ES) or specific to the Pacific Northwest region (GFDL-ESM2G) may therefore yield 

better predictions than our conservatively averaged ensemble.  
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SECTION S2: SUPPLEMENTAL DISCUSSION 

Considerations of Bias 

A recent insurgence of literature has emerged showing bias when detecting 

mechanisms of coexistence; namely, when quantifying density dependence. It is therefore 

necessary that studies such as ours, which aim to draw inferences from density-dependent 

interactions, carefully consider the pitfalls described by these publications. In the 

following sections, we address four prominent studies related to four primary 

considerations necessary of NDD research: temporal heterogeneity (Damgaard & Weiner, 

2017), spatial heterogeneity (Rinella et al., 2020), influence of past ecological processes 

(Tuck et al., 2018), and proxy errors (Detto et al., 2019). 

 
Temporal Heterogeneity 

Damgaard and Weiner (2017) (also Damgaard, 2019) discuss the importance of 

dynamic ecological data. They show how using static “spatial variation to study 

processes of community ecology may lead to erroneous conclusions”, and more 

poignantly, contend that “inferences about processes…from static data are weak.” Our 

study design hinges on this understanding, and to our knowledge, ours is the longest 

study in the world of annualized tree survival across a contiguous spatial extent large 

enough to capture microsite heterogeneity (>4 ha). Our data are dynamic and, moreover, 

the statistical approach features a dynamic time-to-event model rather than a static model 

of tree mortality, such as GLM (without repeated measures) or univariate point-pattern 

analysis. 

  



241 

 

Spatial Heterogeneity 

Rinella et al. (2020) note that “model failures owe at least partly to heterogeneity 

in unmodeled factors (e.g., nutrients, soil pathogens).” We agree, and carefully 

considered the possibility for spatial heterogeneity in soil characteristics: our preliminary 

analysis of ecological sorting showed that soil moisture heterogeneity predicted tree 

mortality better than soil nutrients. We therefore allowed NDD effects to be flexible 

along a gradient of existing soil water variability, and show vastly different results 

between microsites that reinforce Rinella et al. (2020) findings. Conversely, the 

heterogeneous activity of mortality agents (e.g., soil pathogens) were not modeled 

individually due to the underlying relationship between such heterogeneity and the 

structure/composition of tree neighborhoods themselves (Barbosa et al., 2009; Franklin et 

al., 1987; Hansen & Goheen, 2000; Jactel & Brockerhoff, 2007); we preferred to let the 

data inform the extent to which tree neighborhoods moderated this mortality.  

 
Past Processes 

Tuck et al. (2018) study of an annual plant community makes the assertion that 

“poor predictive ability is likely to be general in plant communities due to ‘the ghost of 

competition present’ that confines species to parts of the environment in which they 

compete best”. This may be especially true for long-lived trees and underlies our 

reasoning for 1) examining NDD along spatiotemporal gradients of soil water, and 2) 

standardizing the crowding index. For mature trees in old forests, density-dependent (and 

-independent) interactions occur for over many centuries; it is thus necessary to decouple 

a priori mechanisms of dispersal and recruitment from a posteriori mortality that is 

presently observable. Allowing NDD to vary along a gradient of water availability 



242 

 

captures how interactions differ along a primary axis of differentiation, rather than being 

biased by dynamics occurring primarily within preferred microsites. Importantly, 

standardizing our density metric expresses NDD relative to what would be expected for a 

tree of a given diameter and species, thus controlling for current spatial patterns and 

diameter distributions of trees (the “ghost of competition”) and isolating drivers of recent 

mortality.  

 
Predictor Error 

Detto et al. (2019) discuss three sources of predictor error that can result in NDD 

bias: measurement error, incorrect scale, and incorrect metric/functional form. Due to 

high relative accuracy of our spatially explicit dataset, our annual survival censuses (not a 

sub-sample; repeated measures), and that our neighborhood metric was generated through 

direct measurements of trees rather than allometric equations, we assume asymptotically 

zero measurement error. Likewise, our choice of scale was informed directly by previous 

research of interaction distances at our study site (Lutz et al., 2014), plus corroborating 

findings in other western temperate forests (Das et al., 2008; Larson et al., 2015). 

Sensitivity Analysis four therefore quantified functional form uncertainty of the NDD 

metric, and Sensitivity Analysis five tested whether this metric could be used to 

distinguish random from density-dependent mortality.  

Detto et al. (2019) state that incorrect metric/functional form error “can only be 

resolved by mechanistic understanding of the effects of conspecifics, in particular the 

nature and the range of the interaction”. Our final choice of metric is well-informed by 

mechanistic understanding, as we opted for a biologically and ecologically grounded 

metric of neighborhood crowding among mature trees that is substantiated by regional 
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literature (Biging & Dobbertin, 1995; Das et al., 2011b; Hegyi, 1974). The distance- and 

diameter-weighted metric like the Hegyi index reflects the understanding that large and 

small trees experience competition from neighborhoods of the same density very 

differently; importantly, this metric captures the disproportionately suppressive effects of 

large-diameter trees better than other commonly used competition kernels (Fig. B.12). 

Indeed, this is incredibly similar to the distance- and diameter-weighted metric used by 

Uriarte et al. (2004), which dictated a maximum interaction radius of 15-m (compared to 

our 10-m threshold). Our approach differs primarily by using an alternative to Uriarte’s 

species-specific scaler: we standardize crowding effects by both species and diameter 

class (given the large range of diameters observed), and do so after calculating initial 

crowding values, rather than within the computation itself.  

Detto et al. (2019) discuss how spuriously large CNDD effects, particularly for 

rare species, can arise because “[NDD] underestimation is more severe for abundant 

species and for heterospecific effects”. To remain conservative in our conclusions, we 

only considered abundant species; we did not compare the fates of rare and abundant 

species, and we did not attempt to link NDD with abundance or diversity. Furthermore, 

by pooling all heterospecifics together, we avoid sensitivities of individual heterospecific 

effects while capturing the net effects of multi-way interactions that occur in diverse 

communities (Levine et al., 2017). Detto et al. (2019) also propose that “[underestimation 

of HNDD] can explain why many studies observed… heterospecific effects to be 

disproportionally smaller than conspecific effects”. In contrast to this prediction, we 

observed very similar degrees of current heterospecific and conspecific effects, with 

differences between the two arising primarily as functions of microsite and annual 
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climate. Finally, Detto et al. (2019) explain that error-prone proxies are “common to all 

situations where the independent and response variables cannot be measured in the exact 

same location or time”, specifically warning of experimental designs dependent upon 

subsampling. In contrast, our study is a census (i.e. not a subsample) of precisely mapped 

neighborhood positions, where the timing of mortality (at a finer temporal resolution than 

past studies) is observed in the same time and location as the measured predictors. 

 
Ecological Interpretations of NDD Patterns 

Across all microsites, density-dependent interactions during drought were 

stronger drivers of tree mortality than density-independent drought effects, and moreover, 

larger sources of interspecific variability. It is important to note that density dependence 

(i.e. crowding effects) does not refer exclusively to competition: the density and identities 

of surrounding trees can mediate survival by mechanisms independent of competition, or 

interacting with competition (Barbosa et al., 2009; Franklin et al., 1987), and thus still be 

density-dependent. For example, insect attack rates often depend on tree density (Bentz et 

al., 2010) and tree species composition (Jactel & Brockerhoff, 2007), and strong 

competition for water can reduce tree defenses against insect pests (Huberty & Denno, 

2004). Even of processes often assumed to be density-independent, like windthrow, the 

close connection with root-rotting pathogens (e.g., Phellinus weirii)(Holah et al., 1997) 

can render these processes indirectly density-dependent in many cases as well (for full 

discussion, see Furniss et al., 2020). Of course, some mortality processes are truly 

stochastic and density-independent, such as lightning strikes, but none were observed in 

this dataset. The prevalence of indirect drought effects, operating through multitrophic 

density-dependent processes, demonstrates a need for models that incorporate multi-way 
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interactions among climate, topography, and community biota to comprehensively 

anticipate the effects of climate change. 
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SUPPLEMENTAL TABLES AND FIGURES 

Table B.1. Demographic rates per species in terms of basal area at the Wind River Forest Dynamics Plot (25.6 ha). Trace (< 0.01% m2

ha-1) indicated by t. All vital rates refer to the 2011 to 2016 time period.  
Basal area (m2 ha-1) 

Recruitment Mortality 

Gymnosperms Family 2011 2016 Trees 
Rate 
(%) Trees  

Rate 
(%) 

Abies amabilis Pinaceae 57.04 54.74 0.07 0.025 5.22 1.90 
Abies grandis Pinaceae 7.88 7.52 t t 0.59 1.54 
Abies procera Pinaceae 5.08 4.82 0 0 0.28 1.13 
Pinus monticola Pinaceae 3.24 1.19 t t 2.00 17.48 
Pseudotsuga menziesii Pinaceae 492.11 475.93 0 0 21.46 0.89 
Taxus brevifolia Taxaceae 44.05 39.77 t t 4.71 2.24 
Thuja plicata Cupressaceae 99.49 102.49 t t 0.05 0.01 
Tsuga heterophylla Pinaceae 874.99 868.15 0.07 0.002 39.07 0.91 
All Gymnosperms 1583.88 1554.61 0.14 0.002 73.38 0.94 
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Table B.1. Continued. 
Basal area (m2 ha-1) 

Recruitment Mortality 

Angiosperms Family 2011 2016 Trees 
Rate 
(%) Trees  

Rate 
(%) 

Acer circinatum Sapindaceae 14.55 14.51 0.03 0.041 1.38 1.97 
Acer glabrum Sapindaceae t t 0 0 0 0 
Alnus rubra Betulaceae 0.21 0.23 0 0 t t 
Amelanchier alnifolia Rosaceae 0.01 0.01 t t t t 
Corylus cornuta ssp. californica Betulaceae 0.26 0.31 0.02 1.493 0.03 2.42 
Cornus nuttallii Cornaceae 0.94 0.86 t t 0.12 2.69 
Frangula purshiana Rhamnaceae t t 0 0 0 0 
Gaultheria shallon Ericaceae t t t t t t 
Holodiscus discolor Rosaceae 0.01 0.01 t t t t 
Lonicera ciliosa Caprifoliaceae t t 0 0 0 0 
Menziesia ferruginea Ericaceae t t 0 0 t t 
Oemleria cerasiformis Rosaceae t t 0 0 0 0 
Rhododendron macrophyllum Ericaceae 0.22 0.26 t t 0.02 1.89 
Rosa gymnocarpa Rosaceae t t 0 0 0 0 
Rubus leucodermis Rosaceae t 0 0 0 t t 
Rubus spectabilis Rosaceae t t t t 0 0 
Vaccinium ovalifolium Ericaceae 0.01 0.01 t t t t 
Vaccinium parvifolium Ericaceae 0.19 0.21 0.02 2.022 0.03 3.38 
All Angiosperms 16.4 16.41 0.07 0.085 1.58 2.01 
All Species 1600.28 1571.02 0.21 0.003 74.96 0.95 
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Table B.2. Multivariate linear relationships between conspecific and heterospecific 
Hegyi indices and the soil resources tested in preliminary analyses of ecological sorting 
in the Wind River Forest Dynamics Plot. N, P, and TEB were log-transformed to meet 
distributional assumptions and elevation above the water table was centered about the 
mean. 

Table B.3. Data ranges for competition (Hegyi), species richness (number of species), 
climatic water balance, and topography for analyzed trees in the Wind River Forest 
Dynamics Plot. Hegyi indices and richness were calculated within a 10-m radius of focal 
trees. Only trees with Hegyi indices ± 4 SD were considered for analyses. Species 
richness, nitrogen, phosphorus, and total exchangeable bases were assessed in 
preliminary analyses but not retained in final models. 

Minimum Mean Maximum Units 
Hegyi (conspecific) -1.8 0 5.2 SD 
Hegyi (heterospecific) -2.3 0 9.4 SD 
Richness 1 5 11 # species 
Deficit 97 163 261 mm H2O 
Snowpack 43 227 495 mm H2O 
Elevation above maximum       

spring water table 
-1.1 5.3 18.4 m 

Nitrogen 0.55 1.14 2.5 mg kg-1 
Phosphorus 1.2 7.8 26.13 mg kg-1 
Total exchangeable bases 0.26 1 6.68 cmol kg-1 

Estimate 
Std. 

Error 
t value P value 

Conspecific Hegyi 
Elevation above water table -0.032 0.001 -29.676 < 0.001
Nitrogen -0.0002 0.008 -0.030 0.98 
Phosphorus -0.017 0.008 -2.174 0.03 
Total exchangeable bases -0.021 0.007 -3.143 0.002 

Heterospecific Hegyi 
Elevation above water table -0.012 0.001 -10.540 < 0.001
Nitrogen -0.0003 0.008 -0.040 0.97 
Phosphorus 0.008 0.008 1.085 0.28 
Total exchangeable bases 0.011 0.007 1.558 0.12 
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Table B.4. The ß coefficients produced by Cox mortality models for all tree species with n > 500, mortality n > 30, and quadrat 
frequency > 15%: Abies amabilis, Pseudotsuga menziesii, Taxus brevifolia, Tsuga heterophylla, and Acer circinatum. Asterisks 
represent corresponding p-values < 0.05 (*), < 0.01 (**), and < 0.0001 (***). Exponentiate coefficients to attain hazard ratios. DBH = 
Diameter at breast height; Deficit = total annual modeled climatic water deficit; snow = maximum annual modeled snowpack; 
watertable = elevation above maximum spring water table; Hegyi.con = conspecific Hegyi; Hegyi.het = heterospecific Hegyi; Hegyi 
indices were calculated within a 10-m radius of focal trees. Trace (t) = <|0.001|. 

Abies Pseudotsuga Taxus Tsuga Acer 
DBH + 0.285*** - 0.065 - 0.638*** - 0.338*** - 0.589***
Deficit - 0.005*** - 0.005* - 0.008*** - 0.005*** - 0.005***
Hegyi.het + 0.328*** - 0.038 + 0.109 + 0.242*** + 0.142***
snow + 0.001*** + 0.002* + t + 0.002*** + t
watertable + 0.05** - 0.004 - 0.03 - 0.011 + 0.024***
Hegyi.con + 0.498*** - 0.325 - 0.675* + 0.421*** + 0.033
Deficit:Hegyi.het - 0.001 - 0.001 + t - 0.001 - t
Deficit:snow + t*** + t + t + t*** + t***
Deficit:watertable - 0.001** - t + t - t + t
Hegyi.het:snow - t + 0.002 + t - t + t
Hegyi.het:watertable + 0.021 - 0.021 + 0.022 - 0.009 + 0.01
snow:watertable - t - t + t + t + t
Deficit:Hegyi.con + t + t - 0.001 + t - t
snow:Hegyi.con - t + 0.002 + 0.001 - 0.001 + 0.001
watertable:Hegyi.con + 0.047 - 0.016 - 0.085 + 0.01 + 0.023
Deficit:Hegyi.het:snow - t + t + t - t - t
Deficit:Hegyi.het:watertable + t + t - t - t - t
Deficit:snow:watertable - t + t + t* + t - t
Hegyi.het:snow:watertable - t + t* + t - t + t
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Table B.4. Continued. 

Abies Pseudotsuga Taxus Tsuga Acer 
Deficit:snow:Hegyi.con + t + t* + t - t + t
Deficit:watertable:Hegyi.con - t + 0.001 - 0.001 - t - t
snow:watertable:Hegyi.con + t - t - t + t + t*
Deficit:Hegyi.het:snow:watertable - t* + t - t - t* - t
Deficit:snow:watertable:Hegyi.con - t - t - t - t - t

Mortality n 474 38 336 664 1637 
Survival n 4333 528 1672 9391 9840 
Concordance 66.7% 62.3% 69.7% 70.3% 67.3% 
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Table B.5. Cox model results for mortality hazard ratio (HR), i.e. the change in 
instantaneous mortality probability over time. HR indicates individual effects while 
holding all interacting variables (if any; identified by Table B.3) constant at mean values. 
All reported HR are significant at α = 0.05 level. Deficit = total annual modeled climatic 
water deficit; snow = maximum annual modeled snowpack; watertable = elevation above 
maximum spring water table; Hegyi.con = conspecific Hegyi; Hegyi.het = heterospecific 
Hegyi. Hegyi indices were calculated within a 10-m radius of focal trees. 

Species Predictor Mean Hazard 
Abies amabilis watertable 5.06% 
Abies amabilis Deficit -0.54%
Abies amabilis snow 0.15%
Abies amabilis Hegyi.het 38.78% 
Abies amabilis Hegyi.con 64.46% 
Pseudotsuga menziesii watertable -0.06%
Pseudotsuga menziesii Deficit -0.48%
Pseudotsuga menziesii snow 0.22%
Pseudotsuga menziesii Hegyi.het -4.97%
Pseudotsuga menziesii Hegyi.con -27.72%
Taxus brevifolia watertable -2.99%
Taxus brevifolia Deficit -0.84%
Taxus brevifolia snow 0.02%
Taxus brevifolia Hegyi.con -49.11%
Tsuga heterophylla watertable -1.11%
Tsuga heterophylla Deficit -0.53%
Tsuga heterophylla snow 0.16%
Tsuga heterophylla Hegyi.het 26.63% 
Tsuga heterophylla Hegyi.con 52.35% 
Acer circinatum watertable 2.46% 
Acer circinatum Deficit -0.54%
Acer circinatum snow 0.02%
Acer circinatum Hegyi.het 15.22% 
Acer circinatum Hegyi.con 1.87% 
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Table B.6. Factors affecting death were recorded for newly dead trees during annual 
surveys in the Wind River Forest Dynamics Plot. Multiple factors may be recorded. 
Insect pest and fungal pathogen species were identified when possible (the majority of 
cases). No fire-related or lightning mortalities were observed between 2012 and 2019. 

Factor Affecting Death 
Drought stress 
Suppression 
Animal damage (specify animal if possible) 
Mistletoe 
White pine blister rust 
Rot (specify if possible) 
Canker 
Other disease (specify) 
Unknown disease 
Anthropogenic mortality (specify) 
Tree not found two years in a row. Assumed dead. 
Bark beetles (specify if possible) 
Defoliating insect (specify if possible) 
Other insect (specify) 
Uprooted by falling tree or tree parts 
Uprooted (note cause) 
Broken stem by falling tree or tree parts (entire or partial crown loss) 
Broken stem (entire or partial crown loss) (note cause) 
Crown damage (stripped, broken branches, etc) 
Crushed by falling tree or tree parts 
Crushed (note cause) 
Lightning 
Other physical cause (specify) 
Tree physically removed from plot (landslide) 
Crown Scorch 
Crown Combustion 
Bole/stem Scorch 
Bole/stem Combustion 
Cambial Heating 
Burned through at base (due to duff consumption) 
Other Fire (see comments) 
Fire induced mechanical failure. 
Complete Consumption 
Unknown 
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Table B.7. Sensitivity Analysis 4 compared three competition kernels to quantify 
sensitivity of model fitness to the choice of NDD proxy: A) geometric decay (Hegyi 
index), B) exponential decay, and C) gaussian decay, all measured using a 50-m 
maximum radius. The chosen metric follows geometric decay capped at a 10-m radius. 
Fitness was roughly equivalent among the three functional forms and final metric chosen. 

Exponential Gaussian Geometric Chosen 
Abies 63.4% 66.7% 68.5%  66.7% 
Pseudotsuga 62.8% 61.9% 71.0%  62.3% 
Taxus 69.5% 70.0% 72.9%  69.7% 
Tsuga 68.0% 69.4% 71.7%  70.3% 
Acer 67.3% 67.5% 70.9%  67.5% 
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Figure B.1. Spatial distributions of the 10 species with >500 individual stems within the 
Wind River Forest Dynamics Plot. Contour lines: 3-m 
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Figure B.2. Patchy soil resource distributions for nitrogen (N), phosphorus (P), and total 
exchangeable bases (TEB) within the Wind River Forest Dynamics Plot. These resources 
were considered in preliminary analyses but not retained in final models. 

Figure B.3. Linear relationship between maximum annual winter snowpack (November 
through February) and total annual summer Deficit (March through October) in the Wind 
River Forest Dynamics Plot between 2012 and 2019. Linear relationship was not 
significant at α = 0.05 (P = 0.43, R2 = 0.11). Snowpack melt times are variable due to 
relatively warmer winter and early spring temperatures compared to continental climates.  
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Figure B.4. Annual mortality rates by diameter class between 2012 and 2019 in the Wind 
River Forest Dynamics Plot for: Abies amabilis, Pseudotsuga menziesii, Taxus brevifolia, 
Tsuga heterophylla, and Acer circinatum. Boxplots reflect 25th to 75th quartiles, where 
whiskers span the full data range (excluding outliers, represented by dots); horizontal 
lines indicate the median. Diameter classes (small, medium, large, and very large) were 
defined by each species’ diameter quartiles (0.25, 0.50, 0.75, 1.00). Diameter cut-offs 
(cm) for these quartiles are as follows: Abies (2.6, 4.5, 7.8, 8.5, 86.0); Pseudotsuga
(86.2,102.7, 101.7, 118.6, 184.0); Taxus (8.2, 12.3, 14.0, 17.4, 70.5); Tsuga (3.7, 10.0,
21.4, 28.9, 133.0); Acer (2.0, 3.2, 3.6, 4.7, 16.5).
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Figure B.5. Factors associated with mortality between 2012 and 2019 in the Wind River 
Forest Dynamics Plot for: Abies amabilis, Pseudotsuga menziesii, Taxus brevifolia, 
Tsuga heterophylla, and Acer circinatum. “Fungal” mortality was evidenced by fruiting 
body identification and/or wood rot characteristics. “Insect” mortality refers to bark 
beetles for gymnosperms and foliar herbivores for angiosperms. “Mechanical” mortality 
refers either to physical crushing by adjacent trees or windthrow. “Mammal” mortality 
refers either to foliar herbivory (often the case for angiosperms) or physical damage from 
elk rubbing and scraping. “Other” mortality factors include lightning, mistletoe, or 
anthropogenic mortality. Many stems had multiple factors associated with mortality, 
hence >100% cumulative mortality for some species All other mortality not shown 
(<100%) had unknown mortality factors (i.e. no evidence of fungal, insect, mechincal, 
mammal, or other damage was observable in the field). 
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Figure B.6. Forecasted strength of stabilizing mechanisms (i.e., the difference between 
mortality hazard ratios produced by conspecific and heterospecific neighborhoods) at the 
species level at the average microsite. Curves of mean forecasted hazard ratios represent 
differences in the model mean, and ensemble curves are unique per each of six climate 
projections (CCSM4, GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-CC, 
HadGEM2-ES). The horizontal dotted line represents no difference between conspecific 
and heterospecific effects on mortality risk. Differences greater than 0 indicate higher net 
mortality risk increase from conspecific neighborhoods; differences less than 0 indicate 
higher net mortality risk increase from heterospecific neighborhoods. Dotted rectangles 
capture the period of demographic sampling. Flat curves indicate that the Hegyi index 
had no significant interactions with snowpack or Deficit, meaning the effect of 
neighborhood was not projected to change over time. 
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Figure B.7. Snow offset (difference between maximum snowpack and total Deficit) with 
generalized least squares regressions conducted on mean climate models created from six 
climate projections (colored lines) to show trends (95% confidence envelope in grey). 
Dotted rectangle encapsulates observations within the study period. Snow offset < 0 
(modeled to occur near year 2038) indicates annual water surpluses provided by large 
snowpacks are no longer present, resulting in net annual deficit. 



 

 

Figure B.8. Sensitivity Analysis 1 tested how three levels of historic climate uncertainty, ±0.5, ±1, and ±1.5 standard error (SE), 
altered parameter estimates (parameters listed on Y axis). Reported point estimates are represented by triangles (P-value < 0.05) or 
circles (P-value ≥ 0.05).  Box plots indicate the 25th and 75th quartiles, and whiskers indicate ± 1.5*IQR (interquartile range; 75th - 
25th quartiles), for the 999 simulation models run at each uncertainty level. The vertical dotted line represents a hazard ratio of one, 
meaning no relationship between the predictor and mortality hazard (i.e. risk). 
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Figure B.9. Sensitivity Analysis 2 tested forecasted the strength of stabilizing 
mechanisms under six future climate scenarios: extremely dry (95% less snowpack, 
100% more Deficit) , very dry (50% less snowpack, 50% more Deficit), moderately dry 
(25% less snowpack, 25% more Deficit), extremely wet (100% more snowpack, 95% less 
Deficit), very wet (50% more snowpack, 50% less Deficit), and moderately wet (25% 
more snowpack, 25% less Deficit).  The horizontal dotted line represents no difference 
between conspecific and heterospecific effects on mortality risk. Differences greater than 
0 indicate higher net mortality risk increase from conspecific neighborhoods; differences 
less than 0 indicate higher net mortality risk increase from heterospecific neighborhoods. 
Dotted rectangles capture the period of demographic sampling. Flat curves indicate that 
the Hegyi index had no significant interactions with snowpack or Deficit, meaning the 
effect of neighborhood was not projected to change over time.
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Figure B.10. Sensitivity Analysis 3 tested how sample size uncertainty relates to final 
conclusions drawn by the study, where panel A) 6-yr timespan; B) 7-yr timespan; and C) 
the reported 2012 to 2019 8-yr timespan. Curves indicate the forecasted strength of 
stability mechanisms (i.e. the difference between mortality hazard ratios produced by 
conspecific and heterospecific neighborhoods) at the community level, either averaged 
across all microsites (red curves) or stratified by soil moisture levels (black and orange 
curves). Community-level hazard ratios represent the relative basal area-weighted 
average of species-specific hazard forecasts of dominant tree species: Abies amabilis, 
Pseudotsuga menziesii, Taxus brevifolia, Tsuga heterophylla, and Acer circinatum. 
Curves of forecasted hazard ratios represent risk calculated from the mean climate model. 
Horizontal dotted lines represent no difference between conspecific and heterospecific 
effects on mortality risk. Differences greater than 0 indicate higher net mortality risk 
increase from conspecific neighborhoods; differences less than 0 indicate higher net 
mortality risk increase from heterospecific neighborhoods. Dotted rectangles capture the 
period of demographic sampling.  
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Figure B.11. Sensitivity Analysis 4 compared three competition kernels to quantify 
sensitivity of study conclusions to the choice of NDD proxy: A) exponential decay, B) 
gaussian decay, and C) geometric decay (Hegyi index), all measured using a 50-m 
maximum radius. Curves indicate the forecasted strength of stability mechanisms (i.e. the 
difference between mortality hazard ratios produced by conspecific and heterospecific 
neighborhoods), either averaged across all microsites (red curves) or stratified by soil 
moisture levels (black and orange curves). Community-level hazard ratios represent the 
relative basal area-weighted average of species-specific hazard forecasts of dominant tree 
species: Abies amabilis, Pseudotsuga menziesii, Taxus brevifolia, Tsuga heterophylla, 
and Acer circinatum. Curves of forecasted hazard ratios represent risk calculated from the 
mean climate model. Horizontal dotted lines represent no difference between conspecific 
and heterospecific effects on mortality risk. Differences greater than 0 indicate higher net 
mortality risk increase from conspecific neighborhoods; differences less than 0 indicate 
higher net mortality risk increase from heterospecific neighborhoods. Dotted rectangles 
capture the period of demographic sampling.  
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Figure B.12. Sensitivity Analysis 4 compared three distance decay functions to quantify 
sensitivity of study conclusions to the choice of NDD proxy: geometric (Hegyi index), 
exponential, and gaussian decay of tree-tree interactions. Holding focal tree diameter at 
10 cm at breast height (1.37 m; DBH), curves indicate tree interaction strength (i.e. the 
competition index) given a neighbor with DBH=1, 10, and 100 respectively per panel.  
The three competition kernels described similar relationships when neighbors were 
smaller (1) or when tree diameters were similar (10); however, competition from large-
diameter neighbors (100) rapidly approached zero using the exponential decay function, 
compared to longer effective distances with a gaussian function, and the longest distances 
shown by geometric decay. Though somewhat better than the exponential, the gaussian 
kernel likewise does not fully capture the suppressive effects of large-diameter trees at 
close (<10 m) distances. The Hegyi index best reflects our mechanistic understanding of 
tree interactions in forests where large-diameter trees are present.



267 

Figure B.13. Sensitivity Analysis 5 compared model estimates to a simulated null model of random mortality. Simulation envelopes 
(SE; box plots) indicate the 25th and 75th quartiles, and whiskers indicate ± 1.5*IQR (interquartile range; 75th - 25th quartiles) for 
999 simulations. The vertical line represents a hazard ratio of one, meaning no relationship between the predictor and mortality 
hazard. Point estimates inside SE are not well distinguished randomness (circles), while points outside SE indicate robust inferences; 
even point estimates very near to one can be considered robust, with weak effects, when outside simulation envelopes (triangles). 
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APPENDIX C 

SUPPLEMENTARY MATERIAL FOR CHAPTER IV: 

STAND DIVERSITY INCREASES PINE RESISTANCE AND RESILIENCE TO 

COMPOUND DISTURBANCE 

SECTION S1: METHODS 

Neighborhoods 

We conducted multivariate multiple regression to test whether neighborhood 

effects were confounded with underlying variability in site conditions. Neighborhood 

variables were 30-m species richness and 10-m Abies density, as identified by 

preliminary tests for management and mechanistic models. Edaphic variables included 

topographic position (relative concavity or convexity of the site; used to stratify initial 

sampling), slope, aspect, soil nitrogen (NH4 mg kg-1), soil phosphorus (mg kg-1), total 

exchangeable bases (cmolc kg-1), and effective cation exchange capacity (cmolc kg-1; 

Tamjidi and Lutz 2020). Soil nutrients and slope were standardized using a z-score 

transformation; aspect was standardized using an offset cosine transformation to set 

northeast aspects at 1 and southwest aspects at -1; and the topographic position index was 

not standardized as this is already a relative metric. We then verified the predominant 

topographic controls had no effect on SEM conclusions by running the SEM with the 

residuals of richness and its topographic correlates. Separately, we also tested the 

correlation between species richness and neighborhood density metrics used in models. 

Higher Abies densities were found on sites with slightly more nitrogen, while the 

highest richness was on slightly steeper slopes. Using the residuals of richness and slope, 
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there were no meaningful differences in SEM model output. Species richness at 30-m 

was not correlated with 10-m total density (p = 0.2), Abies density (p = 0.9), large Pinus 

density (p = 0.2), or large Pinus living basal area (p = 0.1). Small Abies density was 

slightly higher when richness was higher (p < 0.001; +0.6 small Abies per additional 

species richness, maximum 7.8 more small Abies). Given that higher species richness was 

not associated with more favorable sites (more nutrients, more concave, or more 

northeasterly), and vice versa for Abies densities, we conclude that the effects of 

neighborhoods on tree survival are not the result of underlying edaphic gradients. 

Furthermore, the lack of relationship between richness and community densities suggests 

that richness effects were not the product of reduced competitive stress.  

Climate 

Snow water equivalent (SWE) and climatic water deficit (Deficit) were extracted 

from TerraClimate, which calculated these metrics using a modified Thornthwaite-

Mather climatic water-balance model and extractable soil water storage capacity data. 

Deficit represents the difference between potential and actual evapotranspiration, or the 

unmet water demand during the growing season. We also extracted TerraClimate’s 

Palmer Drought Severity Index (PDSI), which is a standardized metric incorporating 

temperature and a physical water balance model to estimate relative dryness. The 

PRISM-calculated vapor pressure deficit (VPD) was calculated from based on observed 

precipitation and temperature. VPD measures the pressure difference between air water 

content and hypothetical air water content at saturation for a given temperature. As VPD 

increases, plant transpiration rates increase until a maximum threshold is reached 

(Grossiord et al. 2020), at which point plants may close stomata at the risk of carbon 
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starvation, or may continue photosynthesis at the risk of hydraulic failure (i.e., isohydric 

or anisohydric water use, respectively; Voelker et al. 2018). Winter drought is 

characterized by low SWE, while summer drought is characterized by high Deficit, high 

VPD, and annual drought captured by low PDSI. 

We compared the associations between tree growth/defense (raw and 

standardized) and each of these metrics, temperature, and precipitation by using a sliding 

window analyses (SWA) on the live and dead chronologies. SWA uses linear regression 

and the Akaike information criterion (AIC) optimization to compare a base model to 

univariate models of each climate parameter, which are aggregated over all possible 

monthly intervals in the year prior to the month of growth sampling (set here to October, 

representing the end of the growing season). The growth base model was a first-order 

autoregressive model of BAI, and the defense base model assessed annual resin duct area 

as a function of annual BAI. Base models were then compared to climate models built 

across aggregation intervals of variable window width. For instance, precipitation could 

be aggregated over one month, multiple months, or up to one full year prior to observed 

annual tree growth. For each of these intervals, we tested the minimum, mean, and 

maximum (and sum, for precipitation) of the climate parameter.  

We then performed a multivariate moving correlation function analysis (CFA) on 

the live and dead chronologies for the climate aggregations identified by SWA. Standard 

bootstrapping was used to calculate significance and confidence intervals. The moving 

window tested correlations with climate over 9-yr time intervals, which is the mean 

return interval for strong El Niño–Southern Oscillation events (ENSO; Enfield and Cid 

1991). Static intervals were shifted consecutively by one from the first window (1896–
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1904) to the last (2011–2019). This analysis identified decadal patterns in climate 

responses between dead and surviving trees to provide historical context to our 

subsequent models spanning shorter time intervals. That is, climate variables may have 

strong correlations during some decades (CFA) or over the whole series (SWA), but not 

necessarily during the study timeframe here (2010–2019). Therefore, we used the CFA to 

test SWA aggregations against a priori aggregations derived from the literature (e.g., 

maximum summer deficit, total winter SWE, mean annual PDSI). 

Mechanism-oriented Models 

We performed piecewise SEM (i.e., confirmatory path analysis), which uses local 

estimation of each linear regression (i.e., path) rather than global estimation of all paths 

simultaneously (Lefcheck 2016). This allowed for the fitting of a wide range of variable 

distributions, including our binomial survival response and multilevel data structure. The 

hypotheses underlying each path and moderation (Fig. C.9) are described below: 

Stage 1 – Direct effects on survival 

Overall, we expect direct effects of tree neighborhoods on Pinus survival (α1, β1) 

to be less predictive than indirect effects. We expect tree survival (i.e., low beetle success 

rate) to depend on tree growth (δ1) and defense (ε1), which are in turn governed by direct 

and indirect biotic and abiotic factors (see single and serial mediation, below). The direct 

effects of beetle attack on tree survival represent mass attacks that overwhelm and thus 

circumvent tree defensive capacity (γ2). Negative covariance between growth and defense 

indicates a growth-defense trade-off. In the presence of such an observation, we expect 

that tree survival would be benefited by defense and harmed by growth. In the absence of 
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a growth-defense trade-off, however, we expect that tree survival would simultaneously 

benefit from defense and growth. We expect the relationships between tree 

growth/defense and survival to be moderated by drought and fire damage (δ1, ε1): these 

two stressors may increase the relative importance of factors not considered by the model 

(e.g., hydraulic conductivity), thus weakening the relationship between tree defense and 

survival.  

 
Stage 2 - Single mediation of survival: neighborhood effect on survival mediated by tree 
growth & defense 
 

We expect tree neighborhoods to have direct effects on tree growth and defense: 

if there is lower competitive stress due to lower density of neighbors, Pinus will have 

higher photosynthetic rates to support increased growth (β2) and constitutive defenses 

(β3). We expect the relationships between neighborhoods and tree growth/defense to be 

moderated by drought and fire damage (α2, β2, α3, β3): these two stressors may strengthen 

competitive interactions and weaken the facilitative effects of diversity, reducing growth 

and defenses as a result. 

 
Stage 3 - Serial mediation of survival: neighborhood effect on survival mediated by tree 
growth & defense, which is itself mediated by bark beetle attack rates 
 

We expect that tree neighborhood indirect effects on tree growth and defense are 

mediated by beetle attack rates: if there are fewer beetles attacking due to higher tree 

diversity (α4), Pinus will be able to invest more carbon in growth (γ2), as less will be 

required for defense (γ3). We may expect the opposite to be true for density: if there are 

more beetles attacking due to vulnerability arising from competitive stress (β4), Pinus 

will be induced to allocate carbon to defense (γ3) rather than growth (γ2). We expect the 
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relationships between neighborhoods and beetle attack rates to be moderated by drought 

and fire damage (α4, β4): these two stressors may induce Pinus to emit an altered volatile 

chemical profile that increases beetles’ detection probabilities (Jenkins et al. 2014), 

weakening the relationship between neighborhoods and beetle attack. Likewise, we 

expect the relationships between beetle attack rates and tree growth/defense to be 

moderated by drought and fire damage (γ2, γ3): these two stressors may further induce 

Pinus to invest in defenses (Hood et al. 2015), strengthening the relationship between 

beetle attack rates and defense relative to growth.  
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TABLES AND FIGURES 

Table C.1. Pearson’s correlations between the Pinus lambertiana chronology developed here (YFDP-PILA; Germain and Lutz 2021a, 
2021b), three Pinus chronologies from Yosemite National Park (King and Graumlich 2002a, 2002b, 2002c), two Pinus chronologies 
from in the Sierra Nevada region (White 2002, Bigelow et al. 2014), and one Calocedrus decurrens chronology from the same study 
location (YFDP-CADE; Barth et al. 2014). Correlations were performed using a robust biweight mean and pre-whitened chronologies. 
Tuolumne Grove is <1 km northeast of the YFDP, with slightly lower elevation and wetter habitat. The Merced Grove is ~4 km south-
southwest of the YFDP, with slightly lower elevation and wetter habitat. Hodgdon Meadows is ~5 km northwest of the YFDP, with 
lower elevation and drier habitat. Plumos County is ~260 km north-northwest of the YFDP in northern coastal California. Felkner 
Ridge is ~310 km northwest of the YFDP in the northern Sierra Nevada mountains. 

YFDP-
PILA 

YFDP-
CADE 

Tuolumne Merced Hodgdon Plumos Felkner 

YFDP-PILA 0.67 0.35 0.7 0.42 0.47 0.28 
YFDP-CADE -0.09 0.05 0.24 0.21 0.04 
Tuolumne  0.58 0.34 0.48 0.26 
Merced  0.46 0.5 0.32 
Hodgdon  0.66 0.27 
Plumos  0.34 
Felkner 
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Table C.2. Results from the univariate sliding window analysis to determine the optimal monthly interval over which to aggregate 
each climate variable for growth. Growth was standardized per tree to reflect relative variability. 

Response Status Climate Variable Method 
Window 

Open 
Window 

Close 
Base 

Coefficient 
Base     

P-value
Climate 

Coefficient 
Climate  
P-value

Adjusted  
R2 

AIC Group 

G
ro

w
th

 

L
iv

e 

SWE max Feb Apr 0.243 0.058 -0.002 0.006 0.13 69.84 A

Deficit max Oct (prev) May 0.225 0.078 -0.007 0.008 0.12 70.46 A

PDSI min Dec (prev) Apr 0.210 0.100 0.060 0.010 0.11 70.81 A

SWE sum Feb Feb 0.236 0.067 -0.002 0.011 0.11 71.05 A

SWE min Feb Feb 0.236 0.067 -0.002 0.011 0.11 71.05 A

SWE mean Feb Feb 0.236 0.067 -0.002 0.011 0.11 71.05 A

PDSI max Oct (prev) Jan 0.198 0.123 0.049 0.018 0.10 71.92 B

PDSI sum Oct (prev) Jan 0.196 0.130 0.012 0.031 0.08 72.91 B

PDSI mean Oct (prev) Jan 0.196 0.130 0.048 0.031 0.08 72.91 B

Deficit min Nov (prev) Dec (prev) 0.202 0.119 -0.039 0.031 0.08 72.94 B 

Deficit sum Oct (prev) Oct (prev) 0.200 0.124 -0.004 0.044 0.07 73.59 B 

Deficit mean Oct (prev) Oct (prev) 0.200 0.124 -0.004 0.044 0.07 73.59 B 

Temperature (min) min May Sep 0.355 < 0.001 0.068 < 0.001 0.22 121.59 C 

Temperature (min) mean May May 0.357 < 0.001 0.067 < 0.001 0.21 121.88 C 

Temperature (min) max May May 0.357 < 0.001 0.067 < 0.001 0.21 121.88 C 

Temperature (mean) mean Dec (prev) May 0.383 < 0.001 0.116 < 0.001 0.21 122.21 C 

Temperature (mean) min May Oct 0.344 < 0.001 0.068 0.002 0.20 123.92 D 

Precipitation sum Oct (prev) Dec (prev) 0.390 < 0.001 0.001 0.003 0.19 125.01 D 

Precipitation mean Oct (prev) Dec (prev) 0.390 < 0.001 0.002 0.003 0.19 125.01 D 

Temperature (mean) max May May 0.365 < 0.001 0.053 0.003 0.19 125.36 D 

Temperature (max) mean Dec (prev) May 0.388 < 0.001 0.094 0.005 0.19 126.13 E 

Temperature (max) min May Oct 0.357 < 0.001 0.049 0.008 0.18 126.97 E 

Precipitation max Oct (prev) Nov (prev) 0.381 < 0.001 0.001 0.009 0.18 127.31 E 

VPD (max) mean Jun Jul 0.369 < 0.001 -0.039 0.009 0.18 127.33 E 

VPD (max) max Oct (prev) Jun 0.382 < 0.001 -0.029 0.019 0.17 128.66 F 

Temperature (max) max May May 0.374 < 0.001 0.035 0.023 0.17 128.96 F 

Precipitation min Oct (prev) Oct (prev) 0.386 < 0.001 0.002 0.028 0.17 129.30 F 

VPD (max) min Jun Sep 0.388 < 0.001 -0.026 0.037 0.16 129.83 F 

VPD (min) min May May 0.375 < 0.001 0.074 0.052 0.16 130.42 NA 

VPD (min) mean May May 0.375 < 0.001 0.074 0.052 0.16 130.42 NA 

VPD (min) max May May 0.375 < 0.001 0.074 0.052 0.16 130.42 NA 
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Table C.2. Continued. 

Response Status Climate Variable Method 
Window 

Open 
Window 

Close 
Base 

Coefficient 
Base     

P-value
Climate 

Coefficient 
Climate  
P-value

Adjusted  
R2 

AIC Group 

G
ro

w
th

 

D
ea

d
 

Deficit max Oct (prev) Jun 0.958 < 0.001 -0.008 0.004 0.71 88.39 A 

PDSI max Feb Jun 0.974 < 0.001 0.065 0.004 0.71 88.45 A

Deficit sum Jun Sep 0.934 < 0.001 -0.003 0.005 0.70 89.04 A

Deficit mean Jun Sep 0.934 < 0.001 -0.011 0.005 0.70 89.04 A

PDSI sum Apr Apr 0.967 < 0.001 0.062 0.006 0.70 89.38 A

PDSI min Apr Apr 0.967 < 0.001 0.062 0.006 0.70 89.38 A

PDSI mean Apr Apr 0.967 < 0.001 0.062 0.006 0.70 89.38 A

Deficit min Jul Jul 0.924 < 0.001 -0.008 0.008 0.70 89.91 A

Temperature (max) mean Jun Sep 0.745 < 0.001 -0.180 < 0.001 0.47 126.58 B 

Temperature (mean) min Jun Sep 0.700 < 0.001 -0.109 < 0.001 0.47 127.27 B 

VPD (max) mean Jun Sep 0.745 < 0.001 -0.087 < 0.001 0.47 127.94 B 

VPD (min) max Oct (prev) Jun 0.631 < 0.001 -0.119 < 0.001 0.46 128.80 C 

Temperature (max) min Jun Sep 0.734 < 0.001 -0.088 < 0.001 0.46 129.49 C 

Temperature (mean) mean Jun Sep 0.695 < 0.001 -0.148 < 0.001 0.45 131.05 D 

VPD (max) min Jun Sep 0.725 < 0.001 -0.049 < 0.001 0.45 131.34 D 

VPD (max) max Oct (prev) Jun 0.713 < 0.001 -0.048 < 0.001 0.45 131.61 D 

Temperature (mean) max Jun Jun 0.696 < 0.001 -0.081 < 0.001 0.45 132.77 D 

Temperature (min) min Jun Sep 0.680 < 0.001 -0.086 < 0.001 0.44 133.37 E 

Temperature (max) max Jun Jun 0.724 < 0.001 -0.067 < 0.001 0.44 133.71 E 

VPD (min) min Feb Feb 0.705 < 0.001 -0.232 < 0.001 0.44 133.96 E 

VPD (min) mean Feb Feb 0.705 < 0.001 -0.232 < 0.001 0.44 133.96 E 

Precipitation sum Oct (prev) Sep 0.803 < 0.001 < 0.001 < 0.001 0.44 134.61 E 

Precipitation mean Oct (prev) Sep 0.803 < 0.001 0.005 < 0.001 0.44 134.61 E 

Temperature (min) max Oct (prev) Jun 0.678 < 0.001 -0.072 0.002 0.43 135.78 F 

Temperature (min) mean Jun Jun 0.681 < 0.001 -0.070 0.002 0.43 135.90 F 

Precipitation max Oct (prev) Nov (prev) 0.758 < 0.001 0.001 0.008 0.42 138.89 G 

Precipitation min Dec (prev) Mar 0.772 < 0.001 0.002 0.016 0.41 140.09 G 

SWE sum Oct Oct 0.910 NA 0.071 NA 0.67 95.43 NA 

SWE min Oct Oct 0.910 NA 0.071 NA 0.67 95.43 NA 

SWE mean Oct Oct 0.910 NA 0.071 NA 0.67 95.43 NA 

SWE max Oct Oct 0.910 NA 0.071 NA 0.67 95.43 NA 



Table C.3. Results from the univariate sliding window analysis to determine the optimal monthly interval over which to aggregate 
each climate variable for resin duct area. Duct area was standardized per tree to reflect relative variability. 

Response Status Climate Variable Method 
Window 

Open 
Window 

Close 
Base 

Coefficient 
Base     

P-value
Climate 

Coefficient 
Climate  
P-value

Adjusted  
R2 

AIC Group 

D
ef

en
se

 

L
iv

e 

VPD (min) mean Jun Oct 0.116 < 0.001 0.078 < 0.001 0.35 -109.60 A 
Temperature (min) mean Jun Oct 0.110 0.001 0.068 < 0.001 0.31 -102.87 B 
VPD (min) max Nov (prev) Apr 0.124 < 0.001 0.110 < 0.001 0.30 -101.06 B 
Temperature (min) min Jul Sep 0.111 0.001 0.046 < 0.001 0.28 -97.73 C 
VPD (min) min Jul Sep 0.115 < 0.001 0.058 < 0.001 0.27 -95.64 D 
Temperature (min) max Sep Oct 0.111 0.001 0.043 < 0.001 0.26 -94.11 D 
Temperature (mean) mean Jun Sep 0.122 < 0.001 0.074 < 0.001 0.25 -91.90 E 
Temperature (mean) max Jul Aug 0.118 < 0.001 0.055 < 0.001 0.21 -86.38 F 
Temperature (mean) min Jun Sep 0.145 < 0.001 0.039 < 0.001 0.19 -82.50 G 
VPD (max) min Jan Jan 0.128 < 0.001 0.024 0.004 0.15 -76.74 H 
VPD (max) mean Jan Jan 0.128 < 0.001 0.024 0.004 0.15 -76.74 H 
VPD (max) max Jan Jan 0.128 < 0.001 0.024 0.004 0.15 -76.74 H 
Precipitation min Oct (prev) Nov (prev) 0.149 < 0.001 -0.001 0.023 0.12 -73.34 I 
Temperature (max) mean Jun Sep 0.136 < 0.001 0.037 0.038 0.12 -72.50 I 
Temperature (max) min Jun Sep 0.147 < 0.001 0.019 0.042 0.12 -72.28 I 
PDSI sum Nov (prev) Nov (prev) 0.111 0.020 -0.018 0.020 0.11 -50.53 J 
PDSI min Nov (prev) Nov (prev) 0.111 0.020 -0.018 0.020 0.11 -50.53 J 
PDSI mean Nov (prev) Nov (prev) 0.111 0.020 -0.018 0.020 0.11 -50.53 J 
PDSI max Nov (prev) Nov (prev) 0.111 0.020 -0.018 0.020 0.11 -50.53 J 
Deficit mean Jul Sep 0.080 0.083 0.003 0.027 0.10 -49.96 J 
Deficit sum Jul Sep 0.080 0.083 0.001 0.027 0.10 -49.96 J 
Temperature (max) max Dec (prev) Dec (prev) 0.143 < 0.001 -0.013 0.071 0.11 -71.40 NA 
Precipitation max Mar Sep 0.137 < 0.001 < 0.001 0.138 0.10 -70.31 NA 
Precipitation sum May Oct 0.136 < 0.001 < 0.001 0.175 0.10 -69.94 NA 
Precipitation mean May Oct 0.136 < 0.001 0.002 0.175 0.10 -69.94 NA 
Deficit min Jan Jan 0.099 0.037 0.009 0.052 0.08 -48.75 NA 
Deficit max Jan Jan 0.099 0.037 0.009 0.052 0.08 -48.75 NA 
SWE sum Jan Jan 0.077 0.101 -0.001 0.132 0.06 -47.15 NA 
SWE min Jan Jan 0.077 0.101 -0.001 0.132 0.06 -47.15 NA 
SWE mean Jan Jan 0.077 0.101 -0.001 0.132 0.06 -47.15 NA 
SWE max Jan Jan 0.077 0.101 -0.001 0.132 0.06 -47.15 NA 
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Table C.3. Continued. 

Response Status Climate Variable Method 
Window 

Open 
Window 

Close 
Base 

Coefficient 
Base     

P-value
Climate 

Coefficient 
Climate  
P-value

Adjusted  
R2 

AIC Group 

D
ef

en
se

 

D
ea

d
 

Deficit sum Dec (prev) Apr 0.374 < 0.001 0.005 0.001 0.67 1.10 A 

Deficit mean Dec (prev) Apr 0.374 < 0.001 0.023 0.001 0.67 1.10 A 

Deficit max Dec (prev) Apr 0.371 < 0.001 0.006 0.002 0.66 2.63 A 

PDSI max Nov (prev) Apr 0.353 < 0.001 -0.033 0.003 0.65 3.25 B 

PDSI min Apr Aug 0.354 < 0.001 -0.032 0.004 0.65 3.79 B

Deficit min Mar Sep 0.348 < 0.001 0.017 0.005 0.65 4.00 B

PDSI sum Apr Sep 0.354 < 0.001 -0.005 0.005 0.65 4.18 B

PDSI mean Apr Sep 0.354 < 0.001 -0.030 0.005 0.65 4.18 B

VPD (min) max Oct (prev) May 0.218 < 0.001 0.115 < 0.001 0.25 22.43 C 

VPD (min) mean Aug Oct 0.231 < 0.001 0.100 < 0.001 0.23 26.00 D 

VPD (min) min Oct (prev) Oct (prev) 0.212 < 0.001 0.098 < 0.001 0.22 28.12 E 

Temperature (min) mean May Oct 0.227 < 0.001 0.081 < 0.001 0.19 32.49 F 

Temperature (min) min Jul Sep 0.208 < 0.001 0.054 < 0.001 0.19 32.94 F 

Temperature (mean) mean Jan Oct 0.219 < 0.001 0.114 < 0.001 0.18 33.52 F 

Temperature (min) max Sep Oct 0.204 < 0.001 0.051 < 0.001 0.18 34.37 F 

VPD (max) min Jan Feb 0.179 < 0.001 0.056 0.002 0.16 37.23 G 

VPD (max) mean Jan Apr 0.197 < 0.001 0.068 0.002 0.16 37.43 G 

Temperature (mean) min Aug Sep 0.191 < 0.001 0.049 0.002 0.15 37.96 G 

Temperature (mean) max Sep Oct 0.189 < 0.001 0.046 0.004 0.15 38.91 G 

VPD (max) max Oct (prev) May 0.187 < 0.001 0.028 0.004 0.14 39.12 G 

Temperature (max) mean Jan Sep 0.194 < 0.001 0.080 0.011 0.13 40.83 H 

Precipitation max Jan Feb 0.174 < 0.001 < 0.001 0.018 0.13 41.70 H 

Temperature (max) max Oct (prev) May 0.185 < 0.001 0.032 0.021 0.12 41.98 H 

Precipitation min Oct (prev) Feb 0.174 < 0.001 -0.002 0.023 0.12 42.14 H 

Precipitation sum Jan Apr 0.175 < 0.001 < 0.001 0.024 0.12 42.26 H 

Precipitation mean Jan Apr 0.175 < 0.001 -0.001 0.024 0.12 42.26 H

Temperature (max) min Jun Sep 0.202 < 0.001 0.032 0.043 0.11 43.26 I 

SWE min Mar Apr 0.363 < 0.001 -0.022 0.102 0.62 9.59 NA 

SWE sum Apr Apr 0.361 < 0.001 -0.003 0.103 0.62 9.61 NA 

SWE mean Apr Apr 0.361 < 0.001 -0.003 0.103 0.62 9.61 NA 

SWE max Apr Apr 0.361 < 0.001 -0.003 0.103 0.62 9.61 NA 
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Table C.4. Serial mediation model coefficients (logit of mortality odds ratio) and change 
in mortality odds for the effects of each predictor on Pinus survival. Indirect effects were 
those mediated by a third and/or fourth variable, summarized by Mediation. Richness is 
number of species within a 30-m radius. Abies density is number of Abies within a 10-m 
radius. Beetle attack was measured as the basal area of bark beetle-killed Pinus within a 
10-m radius. Asterisk (*) indicates statistical significance at α = 0.05.

Coefficient 
Mortality 

Odds 
R

ic
hn

es
s 

Totals: 
Total Effects -0.0860 * -8.2%
Total Direct -0.0090
Total Indirect -0.0760

Mediation: 
Beetles -0.0003
Growth -0.0544
Defense -0.0015
Beetles + Growth -0.0188 * -1.9%
Beetles + Defense -0.0011

A
bi

es
 D

en
si

ty
 

Totals: 
Total Effects 0.0640 * +6.6%
Total Direct 0.0100 
Total Indirect 0.0540 

Mediation: 
Beetles 0.0004
Growth 0.0252
Defense 0.0034
Beetles + Growth 0.0235 * +2.4%
Beetles + Defense 0.0013 

B
ee

tl
e 

A
tt

ac
k 

Totals: 

Total Effects 0.1260 * +13.4%

Total Direct 0.0020 

Total Indirect 0.1240 * +13.2%
Mediation: 

Growth 0.1170 * +12.4%

Defense 0.0066
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Table C.5. Moderated mediation model coefficients for the effects of each predictor on 
each response variable in a serial mediation. Growth is basal area increment; defense is 
annual duct area; richness is number of species within a 30-m radius; Abies is number of 
Abies within a 10-m radius; attack is basal area of beetle-killed Pinus within a 10-m 
radius; fire is bole scorch height; deficit is maximum monthly climatic water deficit. Fire 
and deficit were moderators (interaction effect), whereas attack, growth, and defense 
were mediators (indirect pathways connecting richness, density, and tree survival). 
Asterisk (*) indicates statistical significance at α = 0.05. 

Response Effect Type Predictor Coefficient 

S
u

rv
iv

al
 

D
IR

E
C

T
 

deficit   -0.045
Abies        -0.008
richness       0.009
fire        -0.018
growth:deficit     0.011
deficit:defense     -0.027
deficit:Abies     -0.045
deficit:richness    0.039
deficit:attack      -0.028
growth:fire      -0.009
defense:fire    -0.016
Abies:fire -0.001
richness:fire      -0.015
attack:fire   -0.021
growth       -0.232*
defense       -0.047
attack       -0.013

IN
D

IR
E

C
T

  

deficit         0.016* 
Abies        0.032* 
richness       -0.043*
fire        0.004
deficit:Abies     -0.013*
deficit:richness    0.01
deficit:attack      -0.025*
Abies:fire 0.012
richness:fire      -0.019
attack:fire   0.009
attack       0.075*
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Table C.5. Continued. 
Response Effect Type Predictor Coefficient 

S
u

rv
iv

al
 

T
O

T
A

L
  

deficit         -0.029
Abies        0.024
richness       -0.034
fire        -0.014
growth:deficit     0.011
deficit:defense     -0.027
deficit:Abies     -0.045*
deficit:richness    0.049
deficit:attack      -0.053
growth:fire      -0.009
defense:fire    -0.016
Abies:fire 0.01
richness:fire      -0.035
attack:fire   -0.011
growth       -0.232*
defense       -0.047
attack       0.062*

MEDIATORS 
growth 0.05 
defense 0.007 
attack    -0.003

G
ro

w
th

 

D
IR

E
C

T
 

deficit         -0.067*
Abies        -0.072
richness       0.132
fire        0.011
deficit:richness    -0.033
deficit:attack      0.09*
Abies:fire -0.039
richness:fire      0.044
attack:fire   -0.053
Abies:deficit     0.056*
attack       -0.3*

IN
D

IR
E

C
T

  

deficit         -0.026* 
Abies        -0.046*
richness       0.055*
fire        0.01 
deficit:Abies     -0.003
Abies:fire -0.006
richness:fire      0.032*
richness:deficit    -0.001

T
O

T
A

L
  

deficit         -0.092*
Abies        -0.118*
richness       0.187*
fire        0.02 
deficit:Abies     -0.003
deficit:richness    -0.033
deficit:attack      0.09*
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Table C.5. Continued. 
Response Effect Type Predictor Coefficient 

G
ro

w
th

 

T
O

T
A

L
  

Abies:fire -0.045
richness:fire      0.076
attack:fire   -0.053
Abies:deficit     0.056*
richness:deficit    -0.001
attack       -0.3*

MEDIATORS attack    0.015 

D
ef

en
se

 

D
IR

E
C

T
 

deficit         0.099* 
Abies        -0.122*
richness       0.026
fire        -0.17*
deficit:richness    -0.043
deficit:attack      0.084*
Abies:fire -0.027
richness:fire      0.052
attack:fire   0.062*
Abies:deficit     0.012
attack       -0.121*

IN
D

IR
E

C
T

  

deficit         -0.01*
Abies        -0.019*
richness       0.022*
fire        0.004
deficit:Abies     -0.001
Abies:fire -0.002
richness:fire      0.013*
richness:deficit    0 

T
O

T
A

L
  

deficit         0.089* 
Abies        -0.141*
richness       0.048
fire        -0.166*
deficit:Abies     -0.001
deficit:richness    -0.043
deficit:attack      0.084*
Abies:fire -0.029
richness:fire      0.065
attack:fire   0.062*
Abies:deficit     0.012
richness:deficit    0 
attack       -0.121*

MEDIATORS attack    0.006

B
ee

tl
e 

A
tt

ac
k

 

D
IR

E
C

T
 

deficit         0.086* 
Abies        0.153* 
richness       -0.183*
fire        -0.032
deficit:Abies     0.009
Abies:fire 0.019
richness:fire      -0.105*
richness:deficit    0.004
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Figure C.1. Correlation between climate parameters and growth of live (A) or dead (B) 
trees, where values above zero indicate a positive relationship and below zero indicates a 
negative relationship. Variables represent mean total winter SWE Novp – Aprc; mean 
deficit Junc – Julc; and mean annual PDSI. Dots indicate statistical significance.  
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Figure C.2. Correlation between climate parameters and duct area of live (A) or dead (B) 
trees, where values above zero indicate a positive relationship and below zero indicates a 
negative relationship. Variables represent mean total winter SWE Novp – Aprc; mean 
deficit Junc – Julc; and mean annual PDSI. Dots indicate statistical significance. Dead 
trees’ duct area was more sensitive to climate, with generally higher duct area during 
drought (higher deficit, lower PDSI). 
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Figure C.3. Intraspecific variability of radial growth for live and dead trees. Dead trees 
differed more from each other than live trees differed from each other, especially during 
the fire-frequent historical period. BAI showed the same curves. 
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Figure C.4. Balance of growth and defense during subsets of the period of fire exclusion. 
At no time did growth-defense relationships become as extremely positive as those 
observed for beetle-susceptible trees following fire re-entry. Growth-defense models 
involving the interaction between time period, growth, and survival showed considerable 
noise (conditional and marginal R2 both 1.7%). Nonetheless, growth-period-survival 
interactions were highly significant predictors of duct area, showing that positive growth-
defense relationships were only prevalent for susceptible trees during the post-fire period 
(P < 0.001). Pre-fire models including drought also had low accuracy (conditional R2 = 
0.7%; marginal R2 = 3.7%; not shown), and all G-D relationships were neutral. Post-fire 
models incorporating fire damage were the most accurate (conditional R2 = 14.7%; 
marginal R2 = 24.3%; not shown), but fire did not explain variability in growth-defense 
relationships between resistant and susceptible trees; in fact, susceptible trees with low 
fire damage showed even more extremely positive G-D relationships, while fire damage 
did not change resistant trees’ G-D responses.  
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Figure C.5. Nearest distance to neighboring large-diameter live Pinus or bark beetle-
killed Pinus (A) and total Pinus basal area within a 10-m radius (B) for trees that either 
died or survived beetle attack following fire re-entry in 2013. Surviving trees had further 
distances from both live and dead Pinus. Total Pinus basal area was similar for dead and 
surviving trees, but surviving trees had a smaller neighboring basal area of beetle-killed 
Pinus following fire. Basal area of beetle-kill within 10-m is a representation of the 
number of beetles emerging from those trees, as larger areas indicate more phloem 
available for successful beetle reproduction. Surviving trees were therefore exposed to 
smaller local populations of bark beetles emerging from killed trees.
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Figure C.6. Negative neighborhood characteristics within a 10-m radius of live and dead trees during the time periods: exclusion (no 
fires; 1900-2013), and re-entry (following first re-entry fire; 2014-2019). Trees that would eventually be killed by bark beetles 
following first re-entry fire had higher neighborhood basal area pre-fire (A), higher neighborhood density pre- and post-fire (B), 
higher large-diameter live Pinus density pre-fire (C), and higher small-diameter live Abies density pre- and post-fire (D) than those 
that survived. Total neighborhood metrics include all woody stems with DBH ≥ 1 cm. Large-diameter Pinus had DBH ≥ 60 cm, and 
small-diameter Abies had 1 cm ≤ DBH < 10 cm. The 10-m radius was chosen through preliminary Random forests tests.  
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Figure C.7. Positive neighborhood characteristics within a 30-m radius of live and dead trees during the time periods: exclusion (no 
fires; 1900-2013), and re-entry (following first re-entry fire; 2014-2019). Trees that would eventually be killed by bark beetles 
following first re-entry fire had lower neighborhood richness pre- and post-fire (A), lower shrub neighborhood density pre-fire (B), 
and lower Cornus density pre-fire (C) than those that survived. The two groups did not differ in structural diversity (B; i.e., the 
standard deviation of all neighbors’ DBH). Richness was the number of woody species, including both trees and shrubs. 
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Figure C.8. Interaction between large neighboring Pinus density within 10 m and 
neighborhood richness within 30 m in pre-fire (A) and post-fire (B) management-oriented 
models. Before fire re-entry, large neighboring conspecifics were associated with 
increased survival of the largest Pinus when high richness was present (≥5 species). After 
fire re-entry, the opposite was true: large neighboring conspecifics were associated with 
increased survival only when low to moderate richness was present (≤ 7 species). 
Horizontal dotted lines represent the classification threshold that optimized model 
sensitivity and specificity, above which trees were classified as dead. Before fire re-entry, 
large neighboring conspecifics were associated with increased survival of the largest 
Pinus when high richness was present (≥5 species). After fire re-entry, large neighboring 
conspecifics were associated with increased survival only when low to moderate richness 
was present (≤ 7 species). This opposing interaction catalyzed by fire likely represents the 
different effects of large conspecific neighbors and species richness pre- and post-fire. 
Richness pre-fire ranged from 2 to 8 species, perhaps indicating increased suppression of 
the harmful Abies neighbors. After fire, however, richness ranged from 2 to 13 species, 
likely representing an influx of strongly competitive fire-responding species that were not 
present prior to the fire. Meanwhile, large conspecific neighbors were likely strong 
competitors pre-fire, but not strong accumulators of bark beetles (low bark beetle activity 
pre-fire). In this case, increasing richness could offset competitive effects. Post-fire, large 
conspecifics became sources of insipient-epidemic level bark beetle activity. An explicit 
bark beetle term in the post-fire model accounted for this elevated accumulator effect. 
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Figure C.9. Multilevel moderated mediation structural equation model testing the 
mechanisms underpinning beetle attack/success and tree constitutive/induced defenses in 
a compound disturbance environment. Paths represent hypothesized causal relationships. 
Beetle success rate is measured as Pinus survival or mortality due to bark beetles. Beetle 
attack rate is approximated by total beetle-killed Pinus BA within a 10-m radius. Density 
is Abies concolor within 10-m radius, and diversity is species richness within a 30-m 
radius. Dashed lines connecting two factors indicate a covariance. Dashed lines 
connecting a factor to a path (i.e., drought and fire effects) indicate a moderation 
interaction. Drought and fire moderated paths independently from one another, though 
this is not depicted in the figure for aesthetic parsimony. Within-tree variability (level 1) 
was sampled by growth, defense, and drought over time; between-tree variability (level 
2) was sampled by all other factors. Thus, all mediated (i.e., indirect) relationships are 
represented as cross-level interactions. 
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APPENDIX D 

SUPPLEMENTARY MATERIAL FOR CHAPTER V:                                        

SHARED FRIENDS COUNTERBALANCE SHARED ENEMIES                                   

IN OLD FORESTS 

 
SUPPLEMENTAL METHODS 

Pathology exam methodology was adapted and expanded from tree pathology 

protocols developed by the USGS (sensu Das et al. 2016) and the Pacific Northwest 

Permanent Sample Plot Program (sensu Lutz and Halpern 2006). Mortality data and 

categories are compatible with the categories used by the USGS and the Pacific 

Northwest Permanent Sample Plot networks (Appendix D: Section S1). During each 

annual census, we revisited every stem ≥1 cm DBH present in the three forest dynamics 

plots to assess survival or mortality. Upon approach to each tree, we conducted an initial, 

visual inspection of the crown and stem for evidence of possible mortality causes and 

predisposing stress factors, including: top dieback (often signifying drought stress or root 

fungi); flattened top (often signifying light competition from taller trees); mechanical 

damage (e.g., stem breakage, broken top, crushing, frost damage, uprooting, stripped bark 

or branches); fire damage (e.g., cat face, bole scorch, fire callus); fungal fruiting bodies 

or mycelia (identified to species; e.g., brown felt blight); cankers or galls (e.g., spruce 

gall adelgids); witch’s brooms, mistletoe, or broom rust; bark sloughing (if in treetops, 

we inspected with binoculars to identify exposed beetle galleries, if present); animal 

damage or herbivory (e.g., woodpecker, elk, porcupine); leaf chlorosis, necrosis, or 

malformations (particularly on deciduous trees); dead leaf retention (particularly on 

conifers: presence of dead, reddened needles post-mortem indicate rapid death, often by 
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bark beetles, while no needles may indicate a slower death, often by fungal pathogens); 

pitch tubes; insect entry and exit holes or frass; and any other physical abnormalities or 

pertinent environmental context (e.g., growing on nurse log or in a stream). All 

observations from initial inspections were documented for both live and dead trees (Table 

D.3; also in field exam sheet found on Page 9 of Supporting Information for Furniss et al. 

2020).  

If no photosynthetic tissues were observed during the initial inspection (e.g., live 

leaves, active photosynthetic bark on some angiosperms), we declared mortality and 

initiated a detailed pathology exam. First, we removed a window of bark near breast 

height with a hatchet to examine sapwood and phloem condition for staining, rotten 

wood, mycelia, and beetle activity (bark beetles, engravers, ambrosia beetles, or wood 

borers). If entry/exit holes, frass, or pitch tubes were observed on the tree exterior, these 

sections were targeted for bark removal. If beetles were found, we identified them to 

species in the field or made collections for future identification; if only galleries were 

present, these were identified to bark beetle species based on the configuration of 

maternal and larval galleries (Fig. D.6). Second, we removed a window of bark at the 

base of the tree at or just below the soil surface to assess roots and the root collar for 

staining, rotten wood, mycelia, and other insect activity (e.g., carpenter ants). For 

example, the most common fungal pathogen, Armillaria ostoyae (Romagnesi) Herink 

(i.e. parasitic fungi attacking live cambium and phloem cells) was identified by presence 

of a thick, odiferous mycelial fan and/or rhizomorphs (Fig. D.7). Multiple windows were 

often removed from 0 to 2 meters above ground level in the search for evidence of 

multiple mortality factors. For dead trees that had recently experienced fire, removal of 
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bark along the entire tree root collar allowed assessment of the proportion of cambium 

killed by fire. 

We noted the condition of the roots and stem (intact, partially ruptured, or fully 

disconnected) and measured the post-mortality dimensional properties of the tree 

(diameter, height, top diameter, percent of tree crown remaining, percent of tree height 

remaining, and any lean). We also noted the proportion of a fallen tree that was supported 

above the ground or resting directly on the ground. If the tree was uprooted or the stem 

broken, we dug into the exposed wood to look for saprophytic fungal activity (i.e. decay 

fungi attacking dead xylem cells; Fig. D.7). If rotten wood was present, the causal fungal 

agent was identified to species when possible based on rot characteristics (white vs. 

brown rot; stringy or spongy vs. cubical or crumbly; delamination or pitting), rot location 

(sapwood or heartwood; upper or lower stem; roots or root crown), other identifying 

characteristics (e.g., manganese deposits), and fruiting bodies when present. Whether the 

rot was the cause of breakage or invaded the wood post-mortem was determined in-situ. 

For example, the most common root rot, Phellinus weirii (Murr.) Gilb., was identified in 

uprooted trees with delaminated root sapwood that, when advanced, was stringy and 

whiteish in color without black manganese deposits.  

Evidence provided by the initial inspection and the detailed pathology exam were 

consulted to determine mortality cause(s) and predisposing factors. Observations 

recorded in previous years were used to assist in final determinations. Trees often had 

more than one mortality cause (sensu Franklin et al. 1987), which were listed in order of 

estimated temporal importance (e.g., if Armillaria and bark beetles both present, 

Armillaria likely invaded first). Mortality factors – particularly when caused by biotic 
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agents – were considered distinct from predisposing factors (e.g., bole scorch; Table 

D.3). In the present study, we analyzed mortalities that involved at least one biotic agent, 

omitting those that died of mechanical crushing or direct fire damage alone (suppression 

by other trees was considered a biotic agent, here). 

Because our protocols aim to minimize destructive sampling, there is likely some 

underreporting of certain agents – particularly root-feeding insects, saprophytic rot in 

snags (not uprooted or broken), or beetle activity in treetops that was not accompanied by 

sloughing bark and could therefore not be identified through binoculars (i.e. mortality 

caused by some Ips spp.). The mortality events analyzed here, however, showed 

pronounced evidence for at least one biotic mortality factor with high confidence (1% 

mortalities with undetected or unknown cause). 

The annual sampling for mortality allows for correlation with climate evens and 

also can resolve mortality agents that can also invade trees after death. As noted in Lutz 

(2015),  

“For example, bark beetles (family Curculionidae, subfamily Scolytinae), an 

important disturbance agent in forests of western North America, both cause tree 

mortality and infest trees that have died from other causes. Although some 

species predominantly attack living trees (e.g. Dendroctonous ponderosae 

[Furniss and Carolin 1977]), some attack both living and newly dead trees (e.g., 

Dendroctonous pseudotsugae and Scolytus ventralis [Furniss and Carolin 

1977]). The difference between a post-mortality bark beetle infestation and a 

bark beetle-caused mortality can be readily determined early in the season 

following mortality, but the timing of the creation of the beetle galleries will be 

obscured after two years. Similarly, common pathogenic fungi such as 

Armillaria spp. are facultative necrotrophs (Baumgartner et al. 2011). They 

colonize living tissue, but continue to spread following the death of the host. 



297 

 

With rates of spread from 0.7 to 1.3 m yr-1 (Peet et al. 1996), an infection that is 

not severe enough to contribute materially to tree mortality could be 

misinterpreted as a factor associated with death if observed five years after tree 

death.” 

 
SUPPLEMENTAL DISCUSSION 

Dual Colonization 

Plants able to form both AM and EM connections pose a unique challenge in 

research using mycorrhizal guilds as a proxy for underlying network connections. For 

example, we anticipated that the dual-hosting nature of Populus tremuloides Michaux 

(the primary dual-colonized species in our dataset; Cedar Breaks) may render different 

survival effects than EM-only species, and our sensitivity analyses confirmed that it was 

inappropriate to consider Populus EM or AM alone. Some studies have found what 

appear to be ontogenetic shifts, with AM more common in Populus seedlings and EM 

more common in mature adults (Malloch and Malloch 1981, Brundrett et al. 1990, Paul 

and Clark 1996). If ontogenetic shifts were occurring in Cedar Breaks, AM connections 

on Populus are unlikely to have been a prevailing dynamic in our dataset. Prior research 

has shown that the majority of Populus stems at Cedar Breaks belong to several clones 

rather than being a product of individual sexual reproduction events (Bishop et al. 2019). 

The genets and their ramets are quite old, and it is thus likely that most of the stems have 

transitioned to EM-dominance (Malloch and Malloch 1981). More recently, however, 

Populus has been shown to be simultaneously dual-colonized, with AM and EM stratified 

vertically in the soil profile and along moisture gradients (Lodge 1989, Neville et al. 

2002). This form of connection may allow Populus to colonize both AM and EM 
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neighbors, potentially transferring resources between these two otherwise distinct 

networks. If this were instead the case in Cedar Breaks, our consideration of Populus as a 

separate dual-hosting guild would lead to a more conservative estimate of plant-soil 

feedbacks, as it is categorized a guild-disparate neighbor of AM and EM shrubs and trees 

alike. Though dual-hosting species present challenges that may be clarified through direct 

sampling of mycorrhizae, we addressed this limitation to the extent allowed by our 

dataset with the sensitivity analyses and conservative presentation of results. 

 
AM vs. EM in Large Trees 

Positive mycorrhizal effects were most evident for large EM trees. This finding 

supports prior study showing size-asymmetric facilitation (i.e. small trees clustered near 

large-diameter trees) among EM, but not AM, tree species (Johnson et al. 2018). AM 

trees tolerated high levels of guild-disparate crowding as long as richness remained low, 

while richness of guild-sharing neighbors maximized EM tree survival even at high 

crowding levels. As opposed to some forests where recruitment and mortality can be 

more balanced, particularly in tropical regions, that is not the case in our three mixed-

conifer temperate forests. For example, Thuja plicata (WFDP AM species) has 

exceptionally low mortality, but is recruitment-limited; Thuja dynamics contribute 

substantially to our large-diameter AM tree sample. Consequently, it is important to note 

that low mortality of large-diameter AM trees, combined with lower frequency of AM 

trees as a whole, likely decrease our ability to detect mycorrhizal effects if they do exist. 

Likewise, detrimental effects of guild-disparate richness to AM survival (Fig. D.5) could 

simply reflect forest spatial patterns, as large, rare AM trees tend to be surrounded by 

guild-disparate heterospecifics (i.e. large-diameter Pinaceae) as a simple function of 
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frequency asymmetry.  

 
Phylogenetic Similarity 

We cannot rule out the possibility that our analysis captured differences between 

guild-sharing and guild-disparate neighborhoods stemming from other phylogenetically 

conserved traits that are confounded with mycorrhizal guild (Kunstler et al. 2012, 

Lebrija-Trejos et al. 2014). However, more closely related individuals often experience 

stronger competition (Lebrija-Trejos et al. 2014, Chen et al. 2018), meaning we should 

expect that crowding by more phylogenetically similar species would reduce survival, not 

increase it. Regardless, functional similarity among more distantly related plants, not 

phylogenetic similarity, is a stronger driver of plant-plant interactions in these forests 

(Kunstler et al. 2012): the three western forests tested here do not show strong 

phylogenetic clustering, neither in terms of habitat specificity (Erickson et al. 2014, 

Furniss et al. 2017, Das et al. 2018) nor density dependence (Furniss et al. 2020, Wills et 

al. 2021). For example, the closely related Abies bifolia and Pinus longaeva (both EM) 

have less niche overlap than the more distantly related Abies bifolia and Populus 

tremuloides (EM and AM, respectively; Furniss et al. 2017). Conversely, the very 

phylogenetically dissimilar Acer circinatum and Taxus brevifolia are both AM and share 

a similar mesic understory niche. These factors support our interpretation that the 

simplest explanation for survival benefits shown here is through shared mycorrhizae 

rather than unmeasured traits of phylogenetic relatedness.  
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SUPPLEMENTAL TABLES AND FIGURES 

Table D.1. All stems present in Wind River, WA (WFDP), Yosemite, CA (YFDP), and Cedar Breaks, UT (UFDP) were included in 
crowding calculations. Trees were defined as species with singular stems that do not rely on vegetative regeneration; shrubs were 
defined as multi-stemmed species and/or those capable of vegetative regeneration. Mycorrhizal guilds included arbuscular 
mycorrhizal (AM), ectomycorrhizal (EM), ericoid mycorrhizal (ErM), and species capable of forming both AM and EM (AM/EM). 
Trace basal area (t) was < 0.1 m2. Mycorrhizal guild designated at the plant family level unless otherwise specified (where * 
represents genus level; † represents species level). See Appendix D: Section S2 for guild citations. 

Family Genus Species Guild Plot 
Individuals 

(n) 
Basal Area 

(m2) 
Guild Citation 

Tree 
Cupressaceae Calocedrus decurrens AM YFDP 1661 126.0 1

Cupressaceae Juniperus scopulorum AM UFDP 3 0.1 1

Cupressaceae Thuja plicata AM WFDP 238 130.4 1

Pinaceae Abies amabilis EM WFDP 5186 61.0 1,2

Pinaceae Abies bifolia EM UFDP 20384 195.6 1,2

Pinaceae Abies concolor EM YFDP, UFDP 25276 835.2 1,2

Pinaceae Abies grandis EM WFDP 74 8.5 1,2

Pinaceae Abies magnifica EM YFDP 9 0.7 1,2

Pinaceae Abies procera EM WFDP 16 6.7 1,2

Pinaceae Picea engelmannii EM* UFDP 1330 28.2 1,2

Pinaceae Picea pungens EM* UFDP 430 29.7 1,2

Pinaceae Pinus edulis EM* UFDP 8 t 1,2

Pinaceae Pinus flexilis EM* UFDP 1039 49.4 1,2

Pinaceae Pinus lambertiana EM† YFDP 4942 774.0 1,2

Pinaceae Pinus longaeva EM* UFDP 784 93.6 1,2

Pinaceae Pinus monticola EM* WFDP 8 3.9 1,2

Pinaceae Pinus ponderosa EM† YFDP, UFDP 3 0.4 1,2

Pinaceae Pseudotsuga menziesii ssp. glauca EM† UFDP 34 2.0 1,2

Pinaceae Pseudotsuga menziesii ssp. menziesii EM† YFDP, WFDP 626 t 1,2

Pinaceae Tsuga heterophylla EM WFDP 11212 965.2 1,2

Taxaceae Taxus brevifolia AM* WFDP 2183 46.3 3,4
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Table D.1. Continued. 

Family Genus Species Guild Plot 
Individuals 

(n) 
Basal Area 

(m2) 
Guild Citation 

Shrub 
Adoxaceae Sambucus nigra ssp. caerulea AM* YFDP 46 t 4,5

Adoxaceae Sambucus racemosa AM* UFDP 3 t 4,5

Betulaceae Alnus rubra AM/EM† WFDP 10 0.2 3,6,7

Betulaceae Corylus cornuta ssp. californica EM* YFDP, WFDP 1193 0.4 3,4

Cornaceae Cornus nuttallii AM* YFDP, WFDP 3340 8.5 3,4

Cornaceae Cornus sericea AM* YFDP 279 0.1 3,4

Cupressaceae Juniperus communis AM UFDP 187 t 1

Ericaceae Arctostaphylos patula ErM* YFDP 85 0.1 3

Ericaceae Gaultheria shallon ErM* WFDP 18 t 3,8

Ericaceae Menziesia ferruginea ErM WFDP 20 t 3

Ericaceae Rhododendron macrophyllum ErM* WFDP 543 0.3 3,4

Ericaceae Rhododendron occidentale ErM* YFDP 7 t 3,4

Ericaceae Vaccinium ovalifolium ErM* WFDP 101 t 3,4

Ericaceae Vaccinium parvifolium ErM* WFDP 1692 0.3 3,4

Fagaceae Chrysolepis sempervirens EM* YFDP 36 t 1,3

Fagaceae Quercus kelloggii EM* YFDP 2157 30.9 1,3

Grossulariaceae Ribes cereum AM* UFDP 90 t 4

Grossulariaceae Ribes montigenum AM* UFDP 1 t 4

Grossulariaceae Ribes nevadense AM* YFDP 1 t 4

Rhamnaceae Ceanothus cordulatus AM* YFDP 2 t 3,9

Rhamnaceae Ceanothus integerrimus AM* YFDP 15 t 3,9

Rhamnaceae Ceanothus parvifolius AM* YFDP 3 t 3,9

Rhamnaceae Frangula californica AM* YFDP 19 t 3,10

Rhamnaceae Frangula purshiana AM* WFDP 1 t 3,10
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Table D.1. Continued. 

Family Genus Species Guild Plot 
Individuals 

(n) 
Basal Area 

(m2) 
Guild Citation 

Shrub 
Rosaceae Amelanchier alnifolia AM* WFDP, UFDP 12 t 8,10–12

Rosaceae Cercocarpus ledifolius AM/EM* UFDP 9 t 2,3,12

Rosaceae Holodiscus discolor AM* WFDP 31 t 2,12

Rosaceae Oemleria cerasiformis AM WFDP 2 t 1,4

Rosaceae Prunus emarginata AM* YFDP 117 t 1,4,10

Rosaceae Rosa gymnocarpa AM* WFDP 1 t 1,4,10

Rosaceae Rubus leucodermis AM* WFDP 1 t 1,4,10

Rosaceae Rubus spectabilis AM* WFDP 5 t 1,4,10

Salicaceae Populus tremuloides AM/EM† UFDP 3143 101.6 4,8,13

Salicaceae Salix scouleriana AM/EM* YFDP 14 t 3,4

Sapindaceae Acer circinatum AM* WFDP 12465 16.7 1

Sapindaceae Acer glabrum AM* WFDP 1 t 1

Total: 101,096 4059 
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Table D.2. Model validation results of Sensitivity Analysis 1 (area under curve, AUC; 
deviance information criterion, DIC). Models were built using factorial combinations of 
mycorrhizal guild designation, woody plant diameter, neighborhood radius, and density 
metric. Higher AUC and lower DIC indicate superior models. 

Species DBH Radius Guild Designations Crowding Density 
AUC DIC AUC DIC

A
ll

 

L
ar

ge
 

5 

ErM + AM/EM + AM + EM 69.2% 3963.1 68.9% 3969.4 
ErM + AM + EM 69.3% 3961.9 68.9% 3968.5 

AM/EM + AM + EM 69.1% 3965.9 68.8% 3973.0 
AM + EM 69.2% 3964.6 68.8% 3972.2 

10
 

ErM + AM/EM + AM + EM 69.7% 3814.6 69.0% 3837.6 
ErM + AM + EM 69.7% 3817.2 69.0% 3837.2 

AM/EM + AM + EM 69.2% 3820.1 68.8% 3839.9 
AM + EM 69.1% 3821.1 68.9% 3837.7 

15
 

ErM + AM/EM + AM + EM 69.4% 3682.7 68.3% 3706.7 
ErM + AM + EM 69.2% 3687.8 68.4% 3708.7 

AM/EM + AM + EM 69.0% 3685.7 68.2% 3704.6 
AM + EM 69.0% 3687.9 68.2% 3705.1 

20
 

ErM + AM/EM + AM + EM 69.2% 3565.7 68.0% 3583.8 
ErM + AM + EM 69.2% 3567.0 68.1% 3583.8 

AM/EM + AM + EM 68.9% 3567.2 68.3% 3577.3 
AM + EM 68.9% 3568.1 68.2% 3580.0 

S
m

al
l 

5 

ErM + AM/EM + AM + EM 80.2% 5282.0 79.4% 5319.3 
ErM + AM + EM 79.8% 5288.5 79.0% 5330.7 

AM/EM + AM + EM 80.4% 5278.8 79.7% 5313.3 
AM + EM 80.0% 5287.5 79.3% 5327.6 

10
 

ErM + AM/EM + AM + EM 79.5% 5024.1 78.4% 5064.9 
ErM + AM + EM 79.3% 5026.4 78.2% 5066.5 

AM/EM + AM + EM 79.6% 5026.3 78.6% 5064.8 
AM + EM 79.3% 5034.5 78.3% 5073.7 

15
 

ErM + AM/EM + AM + EM 79.8% 4748.8 78.9% 4789.8 
ErM + AM + EM 79.6% 4749.1 78.8% 4783.7 

AM/EM + AM + EM 79.9% 4754.6 79.1% 4794.6 
AM + EM 79.6% 4763.3 78.9% 4796.8 

20
 

ErM + AM/EM + AM + EM 80.2% 4502.5 79.3% 4547.6 
ErM + AM + EM 79.9% 4509.9 79.2% 4543.5 

AM/EM + AM + EM 80.3% 4504.0 79.5% 4550.0 
AM + EM 80.0% 4519.7 79.2% 4554.0 

T
re

e 

L
ar

ge
 

5 

ErM + AM/EM + AM + EM 72.3% 2542.7 72.1% 2544.5 
ErM + AM + EM 72.6% 2539.8 72.2% 2541.0 

AM/EM + AM + EM 72.3% 2542.8 72.1% 2544.5 
AM + EM 72.6% 2539.6 72.2% 2540.9 

10
 

ErM + AM/EM + AM + EM 72.2% 2436.4 72.3% 2444.5 
ErM + AM + EM 72.5% 2432.6 72.4% 2439.5 

AM/EM + AM + EM 72.2% 2436.4 72.3% 2444.8 
AM + EM 72.5% 2432.5 72.4% 2439.7 

15
 

ErM + AM/EM + AM + EM 72.3% 2356.8 72.2% 2362.1 
ErM + AM + EM 72.8% 2350.1 72.6% 2355.3 

AM/EM + AM + EM 72.3% 2357.0 72.2% 2362.2 
AM + EM 72.8% 2350.4 72.6% 2355.4 

20
 

ErM + AM/EM + AM + EM 72.1% 2268.9 72.3% 2272.3 
ErM + AM + EM 72.2% 2267.1 72.2% 2272.9 

AM/EM + AM + EM 72.1% 2268.9 72.3% 2272.3 
AM + EM 72.2% 2267.2 72.2% 2273.4 



306 

Table D.2. Continued. 

Species DBH Radius Guild Designations Crowding Density 
AUC DIC AUC DIC

T
re

e 

S
m

al
l 

5 

ErM + AM/EM + AM + EM 89.2% 2800.2 88.0% 2870.3 
ErM + AM + EM 89.1% 2802.0 88.0% 2873.6 

AM/EM + AM + EM 89.2% 2800.3 88.0% 2870.4 
AM + EM 89.1% 2802.1 88.0% 2873.5 

10
 

ErM + AM/EM + AM + EM 89.4% 2576.1 87.6% 2665.7 
ErM + AM + EM 89.4% 2576.9 87.6% 2665.4 

AM/EM + AM + EM 89.4% 2575.9 87.6% 2665.6 
AM + EM 89.4% 2576.7 87.6% 2665.4 

15
 

ErM + AM/EM + AM + EM 89.5% 2451.0 87.9% 2538.3 
ErM + AM + EM 89.4% 2455.1 87.8% 2541.1 

AM/EM + AM + EM 89.5% 2450.7 87.9% 2538.0 
AM + EM 89.4% 2455.4 87.8% 2541.1 

20
 

ErM + AM/EM + AM + EM 89.9% 2288.3 88.3% 2380.1 
ErM + AM + EM 89.9% 2292.6 88.3% 2380.6 

AM/EM + AM + EM 89.9% 2288.3 88.3% 2380.4 
AM + EM 89.9% 2292.5 88.3% 2380.6 

S
h

ru
b

 

L
ar

ge
 

5 

ErM + AM/EM + AM + EM 66.6% 1367.2 67.2% 1360.9 
ErM + AM + EM 66.4% 1367.3 67.1% 1361.7 

AM/EM + AM + EM 66.6% 1365.5 66.9% 1359.8 
AM + EM 66.6% 1365.1 67.0% 1360.5 

10
 

ErM + AM/EM + AM + EM 66.0% 1335.7 67.7% 1326.7 
ErM + AM + EM 65.9% 1337.4 67.1% 1330.7 

AM/EM + AM + EM 66.1% 1337.8 67.5% 1327.2 
AM + EM 65.9% 1338.2 67.3% 1330.6 

15
 

ErM + AM/EM + AM + EM 66.6% 1281.0 67.7% 1274.5 
ErM + AM + EM 66.1% 1283.6 67.5% 1276.2 

AM/EM + AM + EM 66.0% 1284.2 67.3% 1275.6 
AM + EM 65.8% 1285.4 67.2% 1279.2 

20
 

ErM + AM/EM + AM + EM 66.8% 1250.5 67.0% 1249.5 
ErM + AM + EM 66.7% 1250.9 66.5% 1251.1 

AM/EM + AM + EM 66.8% 1251.8 67.0% 1249.2 
AM + EM 66.2% 1252.2 67.1% 1249.8 

S
m

al
l 

5 

ErM + AM/EM + AM + EM 63.2% 2026.5 61.7% 2027.4 
ErM + AM + EM 62.9% 2024.4 61.4% 2028.6 

AM/EM + AM + EM 64.5% 2022.0 63.3% 2015.8 
AM + EM 63.9% 2024.5 63.1% 2025.5 

10
 

ErM + AM/EM + AM + EM 64.5% 1979.6 64.2% 1975.7 
ErM + AM + EM 64.4% 1976.4 63.9% 1981.1 

AM/EM + AM + EM 64.0% 1980.2 65.2% 1961.8 
AM + EM 63.7% 1980.7 63.8% 1979.4 

15
 

ErM + AM/EM + AM + EM 64.6% 1884.4 64.7% 1877.7 
ErM + AM + EM 63.3% 1883.8 63.4% 1885.9 

AM/EM + AM + EM 63.2% 1884.8 64.4% 1871.6 
AM + EM 63.0% 1888.5 62.6% 1887.9 

20
 

ErM + AM/EM + AM + EM 64.5% 1821.1 65.8% 1806.2 
ErM + AM + EM 63.5% 1821.2 64.2% 1819.9 

AM/EM + AM + EM 63.8% 1824.2 65.5% 1802.6 
AM + EM 63.4% 1830.0 64.1% 1824.8 
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Table D.3. Biotic enemies and predisposing stressors recorded upon woody plant mortality. Pathology exams were performed for 
individuals that died on an annual basis, and multiple factors associated with mortality recorded. Predisposing factors were not 
considered the most proximate causes of death, but were recorded to provide further context for mortality. Fungal pathogens primarily 
attack live or active cells (cambium, phloem, active xylem); saprophytes attack inactive cells (dead cells, inactive xylem). Primary 
hosts were determined by sampled mortality events. For species-level mortality causes, see Fig. D.1. Asterix (*) indicates an exotic 
enemy (mortality n = 1). 

Biotic Enemies Primary Hosts 

Fungal Pathogens 
Armillaria ostoyae division generalist (gymnosperms + angiosperms) 
Cronartium ribicola* subsection specialist (Strobus pines) 
Cytospora chrysosperma species specialist (Populus tremuloides) 
Grosmannia wageneri class generalist (gymnosperms) 
Encoelia pruinosa species specialist (Populus tremuloides) 
Phellinus weirii class generalist (gymnosperms) 
Blue stain fungi (Ceratocystis spp., Ophiostoma spp.) family generalist (Pinaceae) 
Brown felt blight (Neopeckia coulteri, Herpotrichia juniperi) class generalist (gymnosperms) 
Unidentified canker species specialist (Acer circinatum) 

Fungal Saprophytes 
Echinodontium tinctorium family generalist (Pinaceae) 
Fomitopsis pinicola class generalist (gymnosperms) 
Ganoderma applanatum division generalist (gymnosperms + angiosperms) 
Heterobasidian annosum class generalist (gymnosperms) 
Onnia tomentosa family generalist (Pinaceae) 
Phaeolus schweinitzii family generalist (Pinaceae) 
Peniophora polygonia species specialist (Populus tremuloides) 
Phellinus pini family generalist (Pinaceae) 
Phellinus tremulae species specialist (Populus tremuloides) 
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Table D.3. Continued. 

Biotic Enemies Primary Hosts 

Insects 
Dendroctonus brevicomis species specialist (Pinus ponderosa) 
Dendroctonus ponderosae genus specialist (Pinus spp.) 
Dendroctonus pseudotsugae species specialist (Pseudotsuga menziesii) 
Dendroctonus rufipennis species specialist (Picea engelmannii) 
Dendroctonus valens species*diameter specialist (large Pinus lambertiana) 
Dryocoetes confusus species specialist (Abies bifolia) 
Ips paraconfusus species*diameter specialist (small Pinus lambertiana) 
Ips pini genus specialist (Pinus spp.) 
Pityokteines spp. family generalist (Pinaceae) 
Phloeosinus spp. family generalist (Cupressaceae) 
Pseudopityophthorus pubipennis species specialist (Quercus kelloggii) 
Scolytus subscaber genus*diameter specialist (small Abies spp.) 
Scolytus tsugae species specialist (Tsuga heterophylla) 
Scolytus ventralis genus specialist (Abies spp.) 
Boring beetles (Buprestidae, Cerambicydae) division generalist (gymnosperms + angiosperms) 
Carpenter ants class generalist (gymnosperms) 
Termites class generalist (gymnosperms) 

Animals 
Deer division generalist (gymnosperms + angiosperms) 
Elk division generalist (gymnosperms + angiosperms) 
Sapsucker division generalist (gymnosperms + angiosperms) 
Woodpecker division generalist (gymnosperms + angiosperms) 
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Table D.3. Continued. 

Biotic Enemies Primary Hosts 

Mistletoe 
Arceuthobium spp. class generalist (gymnosperms) 
Phoradendron spp. division generalist (gymnosperms + angiosperms) 

Predisposing Stressors 

Fire 
Cambial heating 
Crown combustion 
Crown scorch 
Stem combustion 
Stem scorch 

Mechanical 
Crushing 
Windthrow 
Crown damage 
Stem breakage 

Suppression 
Flat crown 
Irregular or non-vertical growth 
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Figure D.1. Factors associated with mortality of all shrubs (A) and trees (B) across the 
three forest sites. Species names are four-letter codes sensu USDA nomenclature. 
Pathology exams were performed for newly dead individuals on an annual basis and 
multiple factors associated with mortality recorded (i.e. cumulative mortality > 100%; 
Table D.3). Predisposing factors were not considered the most proximate causes of death, 
but were recorded to provide further context for mortality. Species for which fire damage 
or crushing were the primary cause of mortality were omitted from analyses, so here, 
these processes represent predisposing factors only. Abies procera (ABPR) and 
Arctostaphylos patula (ARPA) mortality was rare and of unknown origin. For the 
mycorrhizal affiliations of each species, see Table D.1. 
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Figure D.2. Factors associated with mortality of all trees and shrubs (A) and of only 
large-diameter trees (B) categorized by mycorrhizal guild. Pathology exams were 
performed for newly dead individuals on an annual basis and multiple factors associated 
with mortality recorded (i.e. cumulative mortality > 100%; Table D.3). Predisposing 
factors were not considered the most proximate causes of death, but were recorded to 
provide further context for mortality. Species for which fire damage or crushing were the 
primary cause of mortality were omitted from analyses, so here, these processes represent 
predisposing factors only. 
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Figure D.3. Odds ratios for tree and shrub survival produced by final, chosen Bayesian 
hierarchical generalized linear models. Odds ratios >1 indicate increased survival, and 
ratios <1 indicate decreased survival. Small individuals were those with DBH ≤ 10th 
percentile per species, and large individuals had DBH ≥ 90th percentile per species. Points 
indicate the mean parameter estimate, and error bars capture the 95% credible intervals of 
each posterior distribution generated through a Gibbs sampler using Markov Chain 
Monte Carlo methods. Parameters have no detectible effect when 95% credible intervals 
overlap zero (hollow points). 
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Figure D.4. Sensitivity Analysis 2 of modeled odds ratios to neighborhood radius 
produced by Bayesian hierarchical generalized linear survival models. Neighborhood 
distances included 5-, 10-, 15-, and 20-m radii. Odds ratios >1 indicate increased 
survival, and ratios <1 indicate decreased survival. Small individuals were those with 
DBH ≤ 10th percentile per species, and large individuals had DBH ≥ 90th percentile per 
species. Points indicate the mean parameter estimate, and error bars capture the 95% 
credible intervals of each posterior distribution generated through a Gibbs sampler using 
Markov Chain Monte Carlo methods. Parameters have no detectible effect when 95% 
credible intervals overlap zero (hollow points). Mycorrhizal interactions (guild-sharing 
crowding and richness interactions) were detectible for large-diameter trees at all radii, as 
were conspecific effects for small trees and large shrubs (negative and positive, 
respectively). 
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Figure D.5. Interactions between heterospecific guild-sharing crowding and richness (A 
and C) and interactions between heterospecific guild-sharing crowding and richness (B 
and D) within a 20-m radius of ectomycorrhizal (A and B) or arbuscular mycorrhizal (C 
and D) large-diameter trees. Overlapping lines in C indicate no difference in results 
between study sites (dots, dashes, and lines overlap) nor richness levels (red and blue 
overlap); overlapping lines in A and D indicate no difference in results between study 
sites, but a present difference between high and low richness levels. Survival probabilities 
were assessed at the end of each study timeframe per plot (i.e. not annualized; WFDP: 
2010–2020, YFDP: 2011–2020, UFDP: 2015–2020). Low heterospecific richness was the 
lowest observed number of different species within any large-diameter tree neighborhood 
(here, HSRmin = 0; HDRmin = 0), and vice versa for high richness (HSRmax = 6, HDRmax = 
10). Heterospecific crowding was centered by diameter and species, so high and low 
categories reflect the relative effect of crowding. That is, low crowding was the lowest 
observed value within any large-diameter tree neighborhood, which after centering 
represented the lowest crowding that would be expected for any large-diameter tree 
species (here, HSCmin = -37; HDCmin = -31), and vice versa for high crowding (HSCmax = 
117, HDCmax = 105). We held all other parameters at mean observed values (0 for all 
after centering) so only the values for the parameters of interest were permuted to create 
interaction slopes; this included using mean HDC/HDR when assessing the effect of 
guild-sharing interactions, and vice versa when assessing guild-disparate interactions.  
Survival probabilities were calculated using these parameter values and the mean of 
posterior distributions for all coefficients in either EM- or AM-specific large-diameter 
tree models following Eq. 2.  The positive interactions between guild-sharing crowding 
and richness observed for large-diameter trees (AM and EM combined; Fig. 5.2) appears 
to be driven by ectomycorrhizal species responses (A), while negative interactions 
between guild-disparate crowding and richness are driven by arbuscular mycorrhizal 
species (D). Asterix (*) indicates a significant interaction, i.e. 95% credible intervals for 
parameter estimates do not include zero. 
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Figure D.6. Examples of beetle galleries identified during pathology exams: Scolytus 
ventralis on Abies concolor in YFDP (A), Dendroctonus pseudotsugae on Pseudotsuga 
menziesii ssp. menziesii in WFDP (B), Ips paraconfusus on Pinus lambertiana in YFDP 
(C), Dryocoetes confusus on Abies bifolia in UFDP (D), Pityokteines minutus on Abies 
bifolia in UFDP (often forming a disease complex with Armillaria ostoyae; E). Windows 
of bark were removed near 1.4 m height (B) to uncover galleries and/or live beetles. 
Calipers were used to distinguish between galleries of similar shapes but distinct sizes (D, 
E). Photo credits: Sara Germain (A, C–E), Tucker Furniss (B). 
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Figure D.7. Examples of fungal mortality agents identified during pathology exams: 
Encoelia pruinosa on exterior stem of Populus tremuloides in UFDP (A), Armillaria 
ostoyae on root collar under bark of Abies concolor in YFDP (B), Phellinus pini on 
exposed sapwood and heartwood of fallen Pseudotsuga menziesii ssp. menziesii in WFDP 
(C).  Photo credits: Sara Germain (A–C).



317 

SECTION S1: PATHOLOGY EXAM DATA SHEETS 

Version 3.3 2021/03/16 James A. Lutz; james.lutz@usu.edu 



318 

Wind River Forest Dynamics Plot Mortality Data Sheet 
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