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ABSTRACT 

Implications of Malthus-Boserup Ratcheting for Interpreting the Archaeological Record 

by 

Gideon F. Maughan, Master of Science 

Utah State University, 2022 

Major Professor: Dr. Jacob Freeman 
Department: Sociology, Social Work, and Anthropology 

 An exponential-like pattern of population growth has been documented across 

North America, but variations of this pattern at the regional level have yet to be widely 

explored. The field of archaeology presently lacks a theory that explains the diversity of 

long-term population-growth trajectories that human societies might exhibit. I propose 

the use of an established Mathus-Boserup population ratcheting model to explore the 

variations in population-growth trajectories. The Malthus-Boserup ratcheting model 

describes population wide responses to demographic pressure through changes in 

behavior or strategy that increase regional demographic saturation. To model Malthus-

Boserup ratcheting, I generate simulated bi-logistic curves. I then run exponential 

regressions on the curves to develop expectations for comparing exponential regressions 

with bilogistic regressions taken on Summed Probability Distributions from radiocarbon 

datasets. Using these expectations, I hypothesize that the size of changes in demographic 

saturation result in regional differences in exponential growth rate. I use radiocarbon 

datasets from four regions in North America. I perform a cluster analysis on each 

summed probability distribution to determine how many waves of growth to include in 
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each multilogistic regression. Using R, I generate both exponential and multilogistic 

regressions for each dataset. I then use the Bayesian Information Criterion to compare 

data loss associated with each model and discuss the implications of each model’s 

parameters and their meanings in the archaeological record. Using the Malthus-Boserup 

model to describe the radiocarbon record is more informationally conservative than the 

exponential model, both in terms of data description and interpretation. 

 (101 pages) 
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PUBLIC ABSTRACT 

Implications of Malthus-Boserup Ratcheting for Interpreting 

 the Archaeological Record 

Gideon F. Maughan 

 

 Prehistoric populations across North America seem to grow exponentially, with 

some variation between regions. Archaeologists have explored the differences somewhat, 

but have not explained the differences or the sustained growth with any reference to what 

may be going on under the surface in a way that is relevant to all regions. I propose that 

environmental limits on population are shaped by what populations eat and how they 

acquire food, and that when populations are large enough to feel the scarcity in their 

environment, they change their way of life in a way that increases those limits. The 

model I propose is well-established, and is called the Malthus-Boserup ratcheting model. 

I mathematically describe the Malthus-Boserup ratcheting model using a fixed population 

growth rate and an array of changes in environmental limit, both in the amount of change 

and rate of change (or how quickly my imaginary populations change their way of life). I 

then simplify my descriptions of these curves using exponential curves, as archaeologists 

might simplify real population growth curves in much the same way. I compare the 

models with their exponential descriptions to form expectations for what the values in 

exponential curves might mean regarding the archaeological record. Despite having set a 

constant population growth rate, the exponential curves grow at different rates, depending 

primarily on the amount of change in environmental population limits. I hypothesize that 

a list of regions assembled in order of largest to smallest change in population limits 
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should match a list of the same regions assembled in order of exponential growth rate. I 

use tools in R statistical software to describe the population growth curves in four regions 

using both exponential curves and summed logistic curves. I then arrange the list of 

regions according to both the growth rate of the exponential curves and the change in the 

limits found in the logistic curves. The lists do not match, which suggests that, for a 

variety of reasons, the exponential curves do not adequately describe the underlying 

Malthus-Boserup ratcheting process. I then compare the models using the Bayesian 

Information Criterion. Bayesian Information Criterion is an indicator that increases with 

both the unexplained variation in the dependent variable and the number of explanatory 

variables used. In this sense, when comparing models describing the same data, lower 

values suggest either that information retained outweighs a model’s complexity, or a 

model’s simplicity outweighs the amount of information lost. In all four cases, the 

information retained in the Malthus-Boserup ratcheting model outweighs the model’s 

complexity. Furthermore, the summed logistic models have parameters that researchers 

can interpret beyond simple rates of change. 
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CHAPTER 1 INTRODUCTION 

Building sustainable societies requires protecting the earth's biophysical systems 

from degradation (Biermann et al., 2012; Catton, 1987; Cohen, 1995; Fedoroff and 

Cohen, 1999; Hardin, 1968; Rockström et al., 2017). The most critical process that 

impacts such systems is the long-term growth of human populations (Catton, 1987; Dietz 

et al., 2003). Yet, we still lack a theory that explains the diversity of long-term population 

growth trajectories that human societies exhibit. In part, this is a data issue: Most studies 

focus on global population data over the last 500 years or a few select regions with good 

data (Cohen, 1995; Kelly et al., 2013; Lucarini et al., 2020; Meyer and Ausubel, 1999; 

Palmisano et al., 2018; Pardo-Gordó et al., 2019; Riede, 2009). However, through the 

recent development of large data sets useful for estimating paleo population attributes 

(e.g., Martindale et al., 2016), archaeologists now have the opportunity to both catalog 

the diversity of growth trajectories that human societies have followed over the last 

12,000 years and develop explanations for this underlying diversity (Bird et al., 2020; 

Chaput et al., 2015; Chaput and Gajewski, 2016; Freeman et al., 2018a, 2018b; Johnson 

and Brook, 2011; Peros et al., 2010; Robinson et al., 2019; Shennan et al., 2013; Zahid et 

al., 2016).  

Specifically, in this thesis, I ask: Do hunter-gatherers experience the same long-

term trajectories of population growth and growth rates regardless of ecological 

context? To help answer this question, I present an iterative model of logistic population 

growth in which the carrying capacity of an area changes over time as a function of 

resource substitution (Freeman et al., 2021; Meyer et al., 1999). I then evaluate the 

predictions of the model using radiocarbon records to compare the growth trajectories of 
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hunter-gatherers in western N. America, and I end with a discussion of the potential and 

limitations of radiocarbon records for understanding the diversity (or homogeneity) of 

human population growth throughout the Holocene. 

The basic conclusion of my thesis is that while the radiocarbon record may take 

the appearance of exponential growth, multilogistic curves may be more appropriate than 

exponential curves in describing and exploring demographic change. The exponential 

model assumes unchecked growth, ignoring population limitations imposed by human-

environment interactions. While the exponential model is more parsimonious, 

interpreting its parameters is complicated. The coefficient for left or right translation is 

presented as a mathematical convenience, and has no explicit connection to demographic 

theory. The Malthus-Boserup ratcheting model provides a theory-based approach to 

understanding demographic curves. Mathematical models produced with Malthus-

Boserup ratcheting in mind use parameters that relate to demographically relevant 

theoretical entities such as population growth, saturation level, time of inflection, nominal 

growth rate, and initial population. Finally, the degree to which summed logistic curves 

conserve data in its description outweighs model complexity to a greater extent than 

exponential curves’ parsimony outweighs their data loss. Fitting multilogistic models to 

archaeological records provides a method for estimating levels of population pressure in 

archaeological contexts, and such models provide hypotheses for explaining patterns of 

social and technological change in relationship to changes in macro-demography. 
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CHAPTER 2 THEORY AND HYPOTHESES 

The inspiration for my thesis is a well-documented pattern, where almost all 

radiocarbon records from western N. America display long-term exponential increases 

over the last 12,000 years (Bird et al., 2020; Freeman et al., 2018a, 2021). It is common, 

thus, to fit null exponential models to these records. However, it is not clear why fitting 

an exponential model is appropriate or how one might interpret differences in such 

models across cases. In my thesis, I propose that the apparent long-term exponential 

increase in radiocarbon records may result from multiple regimes of density-dependent 

population growth. My main goal here is to describe a bi-logistic model that formalizes 

this proposal and then plot the results of the ratchet model of population growth. By 

conducting simulations, I both explore the complexity of interpreting the fit an 

exponential model fit to data generated by the bi-logistic process and how the long-term 

growth trajectories and rates of hunter-gatherer populations might vary based on 

ecological context.  The ratchet model might provide a descriptive explanation for why 

areas may display shifts between different regimes of population growth. 

This model was first developed by Meyer and Ausubel (1999) and adapted to 

hunter-gatherers by Freeman et al. (Freeman et al., 2021). The model combines three 

assumptions from Malthusian theory on population growth and Boserupian theory on 

agricultural intensification. Figure 3.1 summarizes the theories of Malthus and Boserup 
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Malthus argued that 
populations grow geometrically (red curve) under ideal circumstances until each 
additional person reduces resources available to the average person (black vertical line 
and black dotted line). After this point, Malthus argued, populations enter a zone of 
pressure where the lack of available resources impacts the population’s quality of life 
until the mortality rate matches the birth rate. The result is a population resting at 
saturation (blue solid line). Boserup argued that as populations grow, quality of life 
decreases. When quality of life falls below a culturally accepted threshold, people adopt 
resource intensification strategies and quality of life improves. The Malthus-Boserup 
ratcheting model combines Malthusian population dynamics with Boserupian 
intensification. Under ideal conditions, populations experience exponential-like growth. 
Labor inputs have decreasing marginal returns. Quality of life decreases in the zone of 
population pressure as the population approaches saturation. When quality of life 
decreases below some culturally acceptable threshold, the society adopts a new resource 
intensification strategy. This intensification results in a change in saturation level (blue 
dashed curve) and a new population growth curve (green curve). In this way, the 
population ratchets itself up with an increasing saturation level. 
 

(1) Populations unconstrained by competition grow exponentially:  

𝑝(𝑡) = 𝛽𝑒   
(2.1) 

where 𝛽 is the initial population size;  𝑟 is the maximum growth rate of the population; 

Figure 2.1 Malthus, Boserup, and Malthus-Boserup Ratcheting 
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and 𝑡 is time. 

(2) Increases in food production, at best, grow linearly over the long-term, and, 

thus, competition for resources eventually limits population growth. These first two 

assumptions are Malthusian principles (Malthus, 2003), and the logistic model is the 

classic function that captures both principles. 

(3) A zone of population pressure exists in any Malthusian system between a 

culturally defined level of well-being and the Malthusian equilibrium where fertility and 

mortality are balanced (Wood 1998, 2020). Well-being is best thought of here as an 

expected flow of resources determined by cultural and ecological constraints. In this zone 

of population pressure, the fragility of the demographic system sends signals (individuals 

have trouble meeting their expected flow of resources over some time interval). In turn, 

the signals create an environment that favors the substitution of one modal social and 

technological strategy for another with a higher carrying capacity (Freeman et al., 2021; 

Wood, 1998, 2020). This may occur through a process of innovation or may just entail 

the reorganization of existing knowledge sets, rules, and time allocated to resources 

already used, or this process may not occur at all, in which case a population system 

would enter a `Malthusian Trap.’ 

For example, on a small scale, a person visiting a resource patch may find that, as 

a result of demographic pressure, this resource patch is not as fruitful as usual and either 

gathers fewer resources for the day, moves to another patch, gathers for longer, or 

attempts to increase the productivity of the patch through landscape modification (e.g., 

diverting a stream). Any of these strategies may represent a deviation from this person’s 

usual gathering activities. The change in strategy increases the saturation level of the 
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patch, scaled by the number of people adopting the new strategy. The number of people 

adopting the new strategy can grow quickly—for example, everyone visiting a resource 

patch finds that they must gather for longer or visit a different resource patch—or slowly. 

The reasons why people might adopt a strategy more slowly are somewhat varied. For 

example, new strategies may be relatively inaccessible—the availability of suitable 

resources for inclusion or substitution in a diet may be lower in sparse environments—or 

undesirable—the new strategy includes consuming less desirable food, such as foods the 

society deems “gross,” “dirty,” or even “sacred,” or foods that require a greater input in 

time and effort, such as foods that require digging an irrigation channel. Whatever the 

rate, the proportion of individuals participating in the new strategy grows, and with it, the 

population saturation level grows until the saturation level equilibrates at the maximum 

level achievable given the new strategy. 

To capture the assumptions above with a descriptive growth model, I rely on a 

simple modification to the logistic function used by Meyer and Ausubel (1999) and 

Freeman et al. (2021). Formally,  

 

�̇� = 𝑝𝑟 1 −
𝑝

𝑘(𝑡)
 

 
(2.2) 

 

where 𝑝 is population size at time 𝑡; 𝑟 is the maximum growth rate; and 𝑘(𝑡) is the 

variable carrying capacity of an environment—what we will call population saturation 

from here on—that depends on the modal social and technological strategies of a 

population at time 𝑡. Here 𝑟 is a constant, regardless of technological differences, 

reflecting the results of (Zahid et al., 2016) that human populations may have a constant, 
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biologically limited rate of growth. The key idea in equation  

(2.2) is that population saturation changes as a function of the modal subsistence strategy 

at time 𝑡. This means that changes in social and technological organization affect growth 

processes by changing 𝑘. As noted above, this change in 𝑘 might occur due to 

innovations, adopting new strategies via diffusion, or through a simple process of 

substitution. The most likely process, in our view, among hunter-gatherers is resource 

substitution. 

For example, ethnographic data illustrate the positive effect of net primary 

productivity on human population densities (Binford, 2002; Freeman et al., 2020; 

Tallavaara et al., 2018). However, the effect is quite small compared to differences 

between societies primarily dependent upon agriculture and those dependent upon 

hunting and gathering. The mean population density of hunter-gatherer societies is about 

300 percent lower than the mean population density of agricultural societies at the same 

level of NPP (Freeman et al., 2020: Figure 4). It takes an increase in NPP of about 1000 

grams per square meter per year for the mean hunter-gatherer population density to 

increase 300 percent (an equivalent in geographic space of moving from Bozeman, 

Montana to Huston, Texas in North America). 

I do not suspect that the reader will find anything controversial about the 

relationship between more reliance on resources with a higher energy density per unit 

area and higher population saturation values among human societies. Any objection, I 

suspect, would come from the assumption that the substitution of one set of resources for 

another occurs in response to instabilities in a production system caused by entering a 

zone of population pressure. Understanding why this may or may not occur requires 
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building dynamic models that include individual decision making and system level 

components (see e.g. Freeman et al., 2019; Puleston et al., 2014 for beginning 

frameworks). The strength of the descriptive model here is that we can evaluate whether 

the population growth trajectories of prehistoric regions are consistent with a population 

ratchet assumption in which 𝑘 increases sequentially through time following periods of 

population pressure or not.  

Descriptively, we can write the change in 𝑘 as a logistic function: 

�̇� = 𝛼(𝑘 − 𝑘 ) ∗ 1 − (𝑘 − 𝑘 )/𝑘  
 
 

(2.3) 

Where 𝛼 is the maximum rate at which agents substitute one modal strategy for another, 

and 𝑘  is the interval between 𝑘  and 𝑘 . For example, if 𝑘 = 0.75 and 𝑘 = 1, then 

𝑘 + 𝑘 = 𝑘 = 1.75.  

We define 𝑡  as the time at which a growing population reaches demographic 

pressure, thus we can write the solution to equation (2.3) as   

    𝑘(𝑡) = 𝑘 +  
 

(2.4) 

 

where 𝑡 is time. 

Finally, we define 𝑝  as the initial population density of a given area and write the 

solution to equation (2.2) as   

   𝑝(𝑡) =
( )

/𝑘( )

 
 

(2.5) 

 

We can generalize equation 𝑝(𝑡) =
( )

/ ( )
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(2.5) for more than two 𝑘 if needed; however, two 𝑘 are sufficient to illustrate the general 

dynamics. The power of this simple, bilogistic model is that I can systematically analyze 

how changes in the adoption of a new technology and the relative change in population 

saturation impact trajectories of long-term population growth in terms of the shape of a 

growth curve and the mean rate of change experienced in a given area. 

Note here that the above model attempts to describe population growth as process 

driven by changes in competition, technology, and social organization. I assume that 

external processes, like climate change, that might impact 𝑘 in the real world are 

effectively constant in this model. This is not to say that climate change is unimportant; 

just that to develop a theoretical understanding of the different shapes and long-term 

growth rates that human populations might exhibit, it is useful to simplify and first 

understand the dynamics of this model free of climate perturbations to 𝑘. Future research 

can easily add climate parameters to perturb 𝑘, positively or negatively, if this first 

approach helps clarify the problem. 

Model Insights and Hypotheses 

In this section, I run simulations to explore how changing the parameters of the 

above model affects the shape of the long-term population growth curve of human 

societies. Using equation 𝑝(𝑡) =
( )

/ ( )

 

 

(2.5), I calculate a demographic curve for a fixed saturation level (𝑘 = 0.75, 𝑘𝑔 = 0, 

𝑟 = 0.2) and find the earliest instance where the population is at least 50% saturation. 
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This is the time at which the modeled population begins experiencing the kind of 

feedback from the environment that signals demographic pressure as outlined above. I 

use this value (𝑡 = 17.01) as an estimate for the 𝑡  parameter in equation 𝑘(𝑡) = 𝑘 +

 

 

(2.4)—representing in the model the earliest behavioral response to environmental 

feedback. To numerically and visually illustrate the bilogistic model’s dynamics, I 

generate datasets for four values of 𝛼 and four values of 𝑘  (sixteen data sets) using 

equation 𝑘(𝑡) = 𝑘 +  

 

(2.4), representing four rates of adoption and four maximum amounts of change in 

population saturation level respectively, as well as the demographic response to these 

changes.  

I run exponential regressions on each of these sixteen data sets, and plot the 

demographic curve and exponential regression in a plot matrix in order to visualize how 

differences in the amount of change in saturation level and differences in the rate of 

adoption of a new strategy impact both the shape of the demographic curve and growth 

rate of an exponential regression fit to a bilogistic curve. As noted above, I fit the 

exponential model to understand of how an underlying population process that displays 

multiple K might impact the interpretation of a logistic model fit to such simulated data.  

I used the exponential function 

𝑓(𝑡) = 𝑒( )  
 
 



11 
 

(2.6) 

where t is time. The point of this exercise is to assess how the slope of an exponential 

regression, a simple descriptive model often used by archaeologists to describe real world 

radiocarbon trends, might vary as a function of the rate of adopting new technologies and 

the change in population saturation of an environment as described by the bilogistic 

model. 

 

 

The plot illustrates how differences in values 𝛼 and 𝑘 change the shape 

of the simulated bilogistic curves (red curves). The blue curves illustrate exponential 

models statistically fit to the underlying bilogistic growth curves. This allows us to 

Figure 2.2 Exponential curve fit to bilogistic growth model for four values 𝛼 and 

four values 𝑘 .  
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observe how estimated growth rates from exponential models might vary in terms of 

estimated fit and parameters when fit to data that result from multiple waves of density 

dependent population growth. 

By looking at the plot matrix (Figure 2.2), I see that the differences in 𝑘  have a 

more profound effect on the exponential growth rate than do differences in the rate at 

which the new strategy is adopted. That is, if a new modal form of social and 

technological organization increases population saturation by 400%, then the estimated 

exponential growth rate of that curve is faster than when 𝑘 increases by 300, 200, or 

100%. Differences in the rate at which a new strategy is adopted do appear, however, to 

have an influence on the apparent slope of the demographic curve, particularly from the 

time at which the new behavior is adopted to the time at which the curve reconciles with 

the second phase of growth. This, in turn, affects both the horizontal translation—left or 

right shift, which would describe the portion of the exponential curve that best fits the 

population curve—and exponential growth rate of the fitted curve. This raises the 

question of whether values of 𝛼 within reasonable ranges of 𝛼 and 𝑘  can produce 

sufficient results as to render uncertain claims as to whether ranked differences in 

exponential growth rate arise from differences in the rate of adoption of a new strategy or 

differences in the amount of change in saturation level. 

To assess the impact of rate of adoption, I plotted a heat map of the growth rates 

of exponential regressions on modeled bilogistic curves for 64 values of 𝛼 ranging from 

0.01 to 5 and 64 values of 𝑘  ranging from 0.1 to 5. 
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This heatmap shows how 𝛼 (increasing 

from left to right on the x axis) and 𝑘  (increasing from bottom to top along the y axis) 

affect the growth rate of exponential curves regressed on population growth given a 

logistic upward shift in saturation level. Each pixel is colored according to the value of 

the exponential growth rate observed at each pair of 𝛼 and 𝑘 . Higher exponential 

growth rates appear in yellow, while lower rates appear in blue, and median rates 

appear in purple. Note the general trend from blue through purple to yellow with 

increasing 𝑘 , with a somewhat more rapid change for a band of lower 𝛼 values. 

From the heatmap, it appears that (1) as expected, increases in kg increase the 

growth rate of the exponential curve fit to the bilogistic model. (2) The growth rate 

Figure 2.3 A heatmap of exponential curves  
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Figure 2.4 Change in growth rate (y axis) by change in 𝛼 (x axis) at 𝑘 = 1.  

increases sharply as 𝛼 increases from 0.01 to 0.05, and decreases with increasing 𝛼 

thereafter. This is particularly relevant to higher values of 𝑘 , but still notable at low 𝑘  

values. 

To visualize the effect this narrow band of 𝛼 values may potentially have on 

growth rates reported by exponential regression and to better understand the nature of this 

effect, I plotted a cross-section of growth rates for 64 𝛼 values between 0 and 1.5 where 

𝑘 = 1. 

 

This graph 

represents a cross-section of the heatmap in Figure 2.3, truncated at 𝛼 = 1.5. With 

increasing 𝛼, the exponential growth rate changes with logarithmic-like growth, followed 

by an exponential decrease.  

Figure 2.4 offers a finer-grained understanding of the range of 𝛼 values on 

estimated growth rates in the bilogistic model. In Figure 2.5, I plotted nine more curves 

with exponential regressions for one value of 𝑘 : three from near the spike, three from 
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the sharply decreasing portion of the curve, and three from the mostly flat portion of the 

curve. For a better understanding of the range and nature of the effects of 𝛼 on the 

translation coefficients and growth rates of exponential regressions, I modeled an 

exponential curve fit to the demographic curve resulting from several 𝛼 values as above, 

but for a single 𝑘  value, plotting the results on a single chart. 

 

Figure 2.5 Exponential curves fit to bilogistic growth model for nine values 𝛼 and one 

value 𝑘 , 80 time steps 

Right away, I could see that the curves generated in the lower ranges of alpha fail 

to reach equilibrium within the 80 time-steps. The result is somewhat complicated. First, 

the late end point of the curve I am feeding to the exponential regression is lower, and the 

regression is blind to whether the curve has truncated early or reached 𝑘. 

Counterintuitively, the rate of exponential growth increases rather than decreases 

as the later end of the exponential curve shifts downward with the demographic curve. 

This is because the points over the interior portion of the exponential curve are lower and 

lack the upper elbow, so the exponential curve is deeper. To capture the decrease in rise 
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over run slope with the increased belly depth, the exponential regression requires a higher 

growth rate with greater horizontal shift to the right. To know how this effect is driven by 

whether and how long the demographic curve equilibrates, I generated the two previous 

plots, this time with 320 time-steps rather than 80 (Figures 2.6 and 2.7). 

 

Figure 2.6 Change in growth rate by change in 𝛼, 320 time steps 

 

Figure 2.7 Exponential curves fit to bilogistic growth model for nine values 𝛼 and one 

value 𝑘 , 320 time steps. 
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At the greater timescale, the simulated demographic curves reach equilibrium and 

the anomalous reversal at lower alpha values disappears, but the increase with decreasing 

𝛼 values remains. From this, we can deduce that if the data truncate before the curve 

reaches saturation, a regression will be blind to whether the latest value in the data 

represent a lower 𝑘  value or an incomplete curve. Second—and predictably—the latest 

portion of the exponential curve must shift downward to capture non-growth data 

following a period of growth, such as a population resting at saturation, a population 

collapse, or edge effects from calibration.  

One problem we face in the archaeological record is the radiocarbon curves for 

any pair of regions will have different histories and may be in different phases of 

demographic growth. Even in the same phase of growth, they may be at different 

proximity to equilibrium. This would make an interpretation of the differences in growth 

coefficients estimated via exponential regression challenging.  

When comparing two demographic curves using naïvely fit exponential 

regressions, the rate of adoption and the amount of change in demographic saturation 

level interact, and it could be difficult to assess and interpret this interaction in real world 

terms. The amount of right or left shift indicated by the translation coefficient of the 

exponential regression could serve as a useful clue as to how quickly a society adopts 

new strategies. However, the translation coefficient receives little or no treatment in 

archaeological literature, and its presence in exponential regressions seems more 

grounded in measures of goodness-of-fit than in reference to theoretical concepts relevant 

to demography. Furthermore, the presence, timing, and rate of depopulation events, the 

question of whether or not data truncate before a population reaches equilibrium, and 
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whether the data capture radiocarbon evidence of a population resting at equilibrium all 

complicate the interpretability of an exponential curve. 

Importantly, the amount of change in the exponential growth rate arising from 

differential rates of adoption of the new strategy appear also to be secondary to the 

amount of change in the exponential growth rate arising from differential amounts of 

growth; holding the rate of adoption constant, the general pattern holds true that increased 

population saturation levels increase the exponentially regressed growth rate of the 

demographic curve despite a constant intrinsic growth rate. Unfortunately, holding 

constant the rate of change in saturation level would require a knowledge of the 

relationship between multi-logistic curves and the radiocarbon curve—the relationship I 

explore in this paper.  

Hypotheses for archaeological radiocarbon.  

(1) It is relative changes in population saturation that matter, not absolute 

changes. The more that technological and social organization change population 

saturation any region, the faster an exponential growth rate will appear. In the 

radiocarbon record, large relative changes in 𝑘 would take the appearance of steep 

growth despite a constant intrinsic rate of population growth.  

(2) It is possible that the decisions made when fitting an exponential model to the 

radiocarbon curve might affect the numeric value of the exponential growth rate. For 

example, where a researcher trims an SPD to mitigate the effects of calibration may result 

in a deeper or more shallow curve, depending on where in a logistic growth curve the 

data truncates. 
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CHAPTER 3 DATA AND METHODS 

I ran exponential and multilogistic regression models on radiocarbon records from 

four regions where hunter-gatherer populations persisted throughout the Holocene in N. 

America. For each region, I assembled SPDs from calibrated radiocarbon dates. I 

predicted that the regions with larger relative differences in 𝑘 parameters (𝑘 ) would 

have higher long-term growth rates, as estimated by exponential and multilogistic 

regression. I then placed the regions in rank-order based on these growth rates. If an 

exponential regression adequately describes the multi-stage logistic growth processes 

encapsulated in the Malthus-Boserup ratcheting model, a rank-ordering of regions based 

on exponential growth rates should match the rank-ordered list of regions based on 𝑘 .  

Alternatively, the descriptions provided by multilogistic and exponential 

regressions could be fundamentally incompatible. Finally, I explore information loss 

associated with both regression models using the Bayesian Information Criterion for 

small sample size (BIC). I use BIC for two reasons: first, as a second-order calculation, it 

is more reliable than Akaike Information Criterion; second, it penalizes models for using 

more parameters, taking into account sample size effects on the residual sum of 

squares—where Akaike Information Criterion with correction for small sample size 

(AICc) penalizes parameters by a factor of 2, BIC penalizes parameters by a factor of 

𝑙𝑜𝑔(𝑛), resulting in more parsimonious selection. 

Methods 

Because anthropogenic radiocarbon represents the material remains of human 

activity, I assumed that changes in anthropogenic radiocarbon deposits over time 
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represent relative changes in intensity of human habitation (Berry, 1981; Chaput et al., 

2015; French et al., 2021; Rick, 1987; Williams, 2012). Under this assumption, and 

because radiocarbon can be used for dating materials as old as approximately 50,000 

years (Walker, 2005), radiocarbon should serve as a reasonable proxy for demographic 

data.  

The use of radiocarbon as a proxy for demographic data is not without 

complications, however; namely, sampling error (Armit et al., 2013; Williams, 2012), 

calibration effects (Williams, 2012), taphonomic bias (Bluhm and Surovell, 2019; 

Surovell et al., 2009; Surovell and Brantingham, 2007; Williams, 2012), and the 

likelihood that the production of anthropogenic carbon deposits scale sub linearly with 

population among prehistoric people in much the same way as contemporary energy 

consumption/population relationships (Freeman et al., 2018b). The last of these potential 

complications means that an adjustment may be necessary if I were attempting to produce 

actual, rather than relative, measures of demographic change.  

My aim in this study is to test the correspondence of exponential growth models, 

that have very little theoretical underpinning, and multilogistic models that operationalize 

Malthusian and Boserupian processes underlying demographic changes that may exist in 

radiocarbon curves. I have left this complication untreated, and suggest that rather than 

representing changes in demographic saturation itself, 𝑘  values identified in this study 

represent changes in the level of waste that people can generate because of changes in 

demographic saturation. Essentially, for this study, 𝑘 is to demographic saturation level 

as radiocarbon is to population.  

I gathered radiocarbon data for North America from published sources and 
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databases (Bird et al., 2020). To ensure the quality of my data, I took the following steps: 

1) I removed dates with duplicated lab numbers. 2) In cases where the data agreed and 

represented a true duplicate, I only removed one, and in cases where the data disagreed, I 

opted to remove all radiocarbon dates with that lab number, rather than arbitrarily 

selecting one and potentially increasing sampling error. 3) I removed records missing 

date, standard deviation, or complete site number. 4) I removed dates for which the listed 

material indicated geological or paleontological origins, aggregated samples, or for which 

the listed material was “unknown,” or left blank, as it is unclear whether these materials 

are archaeological, geological, paleontological, or aggregated. 5) I removed dates without 

both latitude and longitude, as geographic location is relevant in this study. 

I assigned each date a sampling unit number based on its geographical location 

within a 5-degree grid that covers the US and Canada (obtained from Bird et al., 2020). I 

selected two units with coastal areas and two with only inland areas: Texas (including 

coastal plains and inland), Pacific Northwest, Southwest Wyoming, and Nevada (Figure 

3.1). 
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Figure 3.1 Sampling units selected for this study 

To ensure that undersampling does not affect my results, I checked that the 

sample size was reasonable given the time depth of my study and mean laboratory error 

for each unit (Michczyńska and Pazdur, 2004). This required no complicated steps—the 

time depth of this study is less than 14,000 years, and the mean uncertainty for each unit 

is less than 115 years, so a 200-date minimum is adequate (see Michczyńska and Pazdur, 

2004). Additionally, the least-populated unit contains 915 dates, which exceeds 

Michczyńska and Pazdur’s (2004) recommended minimum, as well as Williams’ (2012) 

recommended minimum of 200-500. 

Because the proportion of environmental radiocarbon fluctuates (Bronk Ramsey, 

2008), understanding the probability distribution of radiocarbon dating requires 

calibration of raw radiocarbon dates. I calibrated the dates to the intcal20 (Reimer et al., 

2020) calibration curve using the “calibrate” function from the rcarbon package in R 
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(Bronk Ramsey, 2008; Crema and Bevan, 2021). The output of the calibrate function is 

the probability distribution of each record.  

Summing the probability distributions of these records can produce spikes and 

troughs resulting from intersite variability in sample size within each region (sample 

bias). If sample size correlates with population within a region, any thinning of dates 

artificially decreases the calculated probability of finding anthropogenic radiocarbon at 

sampling units within that region during periods of more clustered habitation, which 

potentially decreases our relative measure of population (Bevan and Crema, 2021). 

Similarly, weighting probabilities based on apparent population at sampling units within 

a region underestimates population at periods of higher dispersion (Bevan and Crema, 

2021). For these reasons, I have chosen to leave sample bias untreated, neither trimming 

nor binning radiocarbon data. 

I generated non-normalized SPDs using the spd function with a running mean of 

250 years. To control for edge effects, I generated SPDs for the date range from 12000 to 

0 BP, and truncated my study at 550 BP. For this study, I assumed that the number of 

records overlapping a given year truly represent the relative likelihood of finding 

anthropogenic carbon materials dating to that year, but I acknowledge that noise in the 

radiocarbon curve may be more representative of atmospheric carbon than changes in 

demography. Accordingly, I focused on statistical descriptions of the long-term changes 

in radiocarbon records rather than interpreting short-term “wiggles.” 

Taphonomic bias is the erasure of materials from their sedimentary context 

through natural processes. The longer archaeological materials remain exposed to 

destructive natural processes, the greater their erasure from the archaeological record. As 
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a result, younger materials, including radiocarbon, may be more highly represented than 

older materials (Bluhm and Surovell, 2019; Surovell et al., 2009; Surovell and 

Brantingham, 2007). This means that an SPD will naturally have a higher slope than the 

actual frequency of material deposition over time (but see Freeman et al., 2018b). Bluhm 

and Surovell (2019) demonstrate that the effects of taphonomic bias are approximately 

the same globally. To me, this suggests that applying Bluhm and Surovell’s (2019) global 

taphonomic correction to each dataset would change the slopes, but not rank order of 

regressions taken on those slopes. Further, Bluhm and Surovell (2019) recommend 

against using the global taphonomic correction on data later than about 2000 BP—the tail 

end of the data herein analyzed. For these reasons, I have opted to acknowledge that the 

slopes are all similarly affected by taphonomic bias, but have left the data uncorrected. 

Regressions are a statistical method for finding the best-fit values for parameters 

of mathematical models. Exponential models, and by extension an exponential 

regressions, are often used to describe the growth of SPDs in the archaeological literature  

(Bird et al., 2020; Broughton and Weitzel, 2018; Brown, 2015; Freeman et al., 2021; 

Shennan et al., 2013; Timpson et al., 2014). Similarly, a logistic regression finds the best-

fit values for parameters in a logistic model. A logistic model is appropriate for data 

where the growth initially appears exponential, but the rate of growth decreases as the 

measured variables approach some upper boundary, as would be apparent in a plot of 

saturation levels with an increase. A multilogistic regression finds the best-fit values for 

parameters in a model that mathematically combines multiple logistic expressions, as 

would be apparent in a plot of saturation levels with multiple changes. I performed this 

analysis using exponential and multilogistic regressions without detrending or linearizing 



25 
 
the data. 

I ran exponential regressions using R function “nls” from the “stats” package, and 

stored the translation coefficient and exponential growth rates in a data frame. For this 

study, statistically distinct growth rates would be ideal. To determine whether the slopes 

and exponential growth rates were statistically distinct, I checked the reported growth 

rate against the range of growth rates that would describe 95% of the data. Obtaining the 

correct confidence interval was slightly more complex than I had anticipated. First, 

confidence intervals for regression coefficients rely on standard error (SE). Because the 

sample size is in the denominator in the SE calculation, the sample size of ~12,000 years 

drives down the standard error. The standard deviation of each point does not face this 

same challenge. Second, given the somewhat fine-grained nature of SPDs, each wiggle is 

represented in the data as a year-to-year run. As a result, I suspect that groups of 

neighboring points differ from the model more similarly than more distant points, 

producing positive autocorrelation in the residuals. Autocorrelated residuals artificially 

shrink confidence intervals (Kutner, 2005). To avoid working with artificially small 

confidence intervals, I obtained the confidence envelopes for regression coefficients by 

first running the modelTest function—which can be used to produce a point-by-point 

confidence envelope—from the rcarbon package, with 1000 iterations. I then extracted 

the confidence envelopes and ran an exponential regression to succinctly describe them. 
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Figure 3.2 SPD for Nevada (Unit 17) plotted over confidence envelope for exponential 

regression 

I could find no consensus on the best or most valid way of deciding the number of 

logistic curves to include, as applying multi-logistic waveform analysis to demographic 

growth curves is relatively unexplored. Freeman et al. (2021) reason that radiocarbon 

time series with more than one demographic saturation should “display structural breaks 

in their means, independent of time, that indicate multiple levels of population 

saturation.” They test this by checking for clustering in the relationship between the 

summed probability of radiocarbon ages and SPD ‘per capita’ growth rate.  

I calculated the SPD ‘per capita’ growth rate as 

𝑔 = 𝑙𝑜𝑔(𝑝 /𝑝 )  
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(3.1) 

and tested the relationship between PrDens and gi for clustering using the Hopkins.index 

function in the comato package in R, which returns the Hopkins index. The Hopkins 

index is calculated by creating a dataset by uniformly sampling random points from the 

dataset being tested and dividing the sum of distances between points in the resultant 

dataset by the aggregated sums of distances between points in each dataset (original and 

sample; Han et al., 2012)). If there are no meaningful clusters, the real data should be 

uniformly distributed, and the distances of both datasets should be similar, resulting in a 

Hopkins index around 0.5 (Han et al., 2012). The more tightly clustered the real data, the 

greater the effect of the sum of distances of the artificial data in both the numerator and 

denominator, resulting in a Hopkins Index closer to 1 (Han et al., 2012).  

Because the Hopkins Index relies on randomization, it is possible—however 

unlikely—that any single Hopkins test would report a high likelihood of clustering where 

there is no clustering, or a low likelihood of clustering where clustering exists. To 

improve the likelihood that the Hopkins index appropriately discriminates the presence or 

absence of clusters, and in the interest of reproducibility, I set the seed of R’s random 

number generator to 2173043 and ran the Hopkins test 25 times, reporting the mean and 

95% confidence interval to get an idea of the degree of clustering in the relationship 

between probability density and growth rate (Table 3.1). The Hopkins Indices for all 

datasets in this study were greater than 0.9. I interpret this to mean that the data have two 

or more distinct clusters. 

Table 3.1 Hopkins Indices report degree of clustering, ranging from 0.5 (no clustering) to 
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< 1 

 𝐻𝑜𝑝𝑘𝑖𝑛𝑠𝐼𝑛𝑑𝑒𝑥 

Texas 0.9431 (0.9341 – 0.9522) 

Nevada 0.9989 (0.9986 – 0.9991) 

Wyoming 0.9994 (0.9993 – 0.9995) 

PNW 0.9989 (0.9979 – 0.9999) 

 

Knowing the number of clusters is important because each cluster potentially 

represents a unique population saturation level (Freeman et al. 2021). A seemingly 

straightforward method for estimating the number of unique saturation levels to include 

in a regression analysis would be to count changes in material culture for each region. 

However, because of the apparent randomness in SPDs, this method could result in 

overfitting: some changes in saturation may not alter the parameters of a regression in a 

meaningful way; a regression with fewer parameters may not, in these cases, result in a 

loss of the model’s descriptive abilities. Simply put, some changes in material culture 

may signal a lateral change or no change in saturation level. I would need a test to see 

which of these changes in material culture changed the saturation level, and which did 

not. The focus of this paper, however is not to test whether changes in material culture 

correspond with potential demographic inflections in radiocarbon curves. 

I simply count the number of clusters that may be influencing the Hopkins Index. 

There are many methods for counting clusters, and data scientists have yet to agree on 
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what would be the best method. For each dataset, I plotted each point’s growth rate by its 

probability density to develop an intuitive expectation for the number of clusters. All 

datasets appeared to have between two and four clusters. I then used the pamk function 

from the fpc package in R to estimate the number of clusters more concretely in each 

dataset, restricting the search to between two and four clusters. I used fviz_cluster from 

the package factoextra to both visualize clusters and assign a numeric cluster name to 

each point in the data set. I then plotted each radiocarbon curve, coloring points based on 

the cluster into which the pamk function had assigned them. 

 

Figure 3.3 Cluster Plot with ellipsoids for 

Texas (Unit 2) 

 

 

Figure 3.4 SPD for Texas (Unit 2), 

colored by cluster 

Inspecting these plots, pamk detected two clusters in two datasets and more than 

two clusters in two datasets. In the Texas data, two clusters described growth, while a 

third described downward slopes on “wiggles (Figure 3.4).” For this analysis, I dismissed 

these downward slopes on “wiggles” as spuriously clustered, and regressed the data on a 

bilogistic curve. In the PNW dataset, there were three distinct clusters (Figures 3.5 and 
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3.6). I have provided the plots for all regions in Appendix A. 

 

Figure 3.5 Cluster Plot with ellipsoids for 

PNW (Unit 43) 

 

Figure 3.6 SPD for PNW (Unit 43), 

colored by cluster 

The drm function in the R package drc was created for dose-response modeling, a 

necessary step for describing dose-response relationships in dose-response analyses in the 

field of toxicology. As with other regression functions, drm allows end-users to specify 

models, but the package includes functions that specifies models and finds appropriate 

starting values for parameters in the regression. Among the functions for specifying 

models and finding appropriate starting values are L.4 and L.3. The former refers to the 

standard logistic curve of the form 

 𝑌 = 𝑑 +  

 

 
(3.2) 

where 𝑘 is the upper asymptote, 𝑑 is the lower asymptote, 𝛼 is the intrinsic growth rate, 𝑡 

is time and 𝑡  represents the time at the curve’s inflection. The latter function forces the 

lower asymptote, c, to zero, leaving the model with 3 parameters. For the first portion of 

each multilogistic curve, I ran drm with L.4 on the subset of the data from the earliest to 
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1000 years following the latest appearance of data in what substantially appears to be the 

first cluster. On interior clusters, I began the subset of data 1000 years earlier than the 

earliest apparent break in the cluster and ended it 1000 years later than the next apparent 

break in clusters (relevant in this study only to Unit 43), subtracted the effects of earlier 

prediction curves, and ran drm with L.3. For the latest clusters, I similarly began the 

subset of data 1000 years earlier than the apparent final break in clusters and ended it at 

zero, and then subtracted the summed effects of earlier prediction curves (Meyer et al, 

1999).  

The drm function accepts a parameter specifying the user-preferred method for 

robust estimation. Available robust estimation methods include ‘mean’ (the default 

method, which is non-robust), ‘median,’ least median of squares (‘lms’), and least 

trimmed squares (‘lts’). Through experimentation, I found that the goodness of fit of 

regressions taken on each subset of data might be affected differently from other subsets 

depending on the rho function used. For example, subset 1 might achieve the best fit with 

the ‘median’ method of estimation, while subset 2 of the same SPD might achieve best fit 

with the ‘lms’ method. I ran the drm function 4 times for each subset, once for each 

method of estimation, and then assembled each permutation of summed models 

representing each SPD in its entirety, leaving the lower asymptote unsolved.  

 I left the lower asymptote unsolved because there is no function in R for 

calculating a single BIC on three separate drc objects, so I would need to run the summed 

model through the nls function to generate an nls object. To avoid nls altering the d 

parameter as discovered through drm, I specified the parameter’s starting value, as well 

as its upper and lower bounds, in nls with the value discovered using drm. I then 
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extracted the BIC for each nls object representing each permutation of estimation 

methods and kept the model arising from the permutation with the least information loss. 

Because BIC relies on the number of 𝛽 parameters reported by the nls object, the BIC 

value reported for the nls object is too low by 𝑙𝑜𝑔(𝑛) ∗ 3 for each cluster. To remedy 

this, I add to the reported BIC value 𝑙𝑜𝑔(𝑛) ∗ 3𝑥 where 𝑥 represents the number of 

clusters. 

Table 3.2 Best fit estimation used for each wave 

Best Fit Permutation of Estimation Methods 

 1st Wave 2nd Wave 3rd Wave 

Unit 2 (Texas) “lms” “mean” NA 

Unit 17 (Nevada) “lms” “lts” NA 

Unit 30 (Wyoming) “lts” “mean” NA 

Unit 43 (PNW) “mean” “lts” “mean” 

I then extracted the upper asymptotes from each regression taken on each subset 

of data, subtracted the lower asymptote if present, and calculated 𝑘  as the relative 

change in 𝑘 for that SPD. Specifically, 

 𝑘 = (∑ 𝑘 )/(𝑘|1 − 𝑑). 

 

 
(3.3) 

 

Lastly, I compared the information loss associated with each model for the four selected 

regions by running the BIC function in R on the exponential models. Bilogistic and 

multilogistic models describe curves in segments, each segment alone being more 
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complex than the standard exponential model. BIC is appropriate for this study because it 

measures information loss with a penalty for model complexity. Unlike AICc, however, 

BIC accounts for the effect sample size has on RSS by scaling the penalty with the 

natural log of the sample size 
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CHAPTER 4 EMPIRICAL RESULTS 

I set out to explore the correspondence of population growth described by 

exponential curves and the processes of demographic change arising from Malthus-

Boserup ratcheting processes that may generate differences in long-term growth rates of 

SPDs. The assumption I have tested is simple: if the exponential curve adequately 

describes demographic change arising from Malthus-Boserup ratcheting, then the growth 

rate of an exponential regression taken on SPDs should be higher with higher relative 

changes in saturation level, and lower with lower relative changes in saturation level. To 

test this, I took exponential regressions on SPDs, ranked the SPDs from highest to lowest 

of each of these coefficients, and compared these rank-ordered SPDs to SPDs ranked by 

relative change in saturation level as calculated from multiple logistic regressions. If the 

rank orders from the regressions match the rank order from the waveform analysis, 

relative changes in saturation predict growth rates.  

Table 4.1 shows the exponential growth rate as extracted from each exponential 

regression, along with the exponential growth rates from exponential regressions taken on 

the high and low boundaries of the confidence envelopes. 

Table 4.1 Exponential growth rates with the growth rates of upper and lower bounds of 

confidence envelope 

 𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒 
Texas (Unit 2) 0.000296 

(0.000258-0.000359) 
Nevada (Unit 17) 0.000565 

(0.000523-0.000632) 
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Wyoming (Unit 30) 0.000395 
(0.000371-0.000443) 

PNW (Unit 43) 0.000446 
(0.000413-0.000504) 

The confidence envelopes for Wyoming and the Pacific Northwest overlap, but 

the reported exponential growth rate for each of the four units falls within its own 

confidence envelope and no other. To me, this would suggest the possibility that the true 

exponential growth rates for Wyoming and the Pacific Northwest may have the same 

long-term growth rates. Table 4.2 shows the rank order of growth rates estimated via 

exponential regression. 

Table 4.2 Rank order of regions based on exponential growth 

Predicted order by exponential growth 
(Highest to Lowest) 
Nevada 
PNW 
Wyoming 
Texas 

 

Table 4.3 shows the results of the multilogistic regressions. Note that the upper 

asymptote of the first logistic curve subtracts the lower asymptote. I have left this 

unsimplified so as to avoid confusion surrounding the calculation of relative growth in 

saturation. 

Table 4.3 Multilogistic regression results. 

Summed Logistic Curves 
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Texas (Unit 2) 0.1324

1 + 𝑒 . ( )

+
0.3685

1 + 𝑒 . ∗( )
+ 0.0023 

Nevada (Unit 17) 0.5952

1 + 𝑒 . ( )

+
0.1836

1 + 𝑒 . ( )
+ 0.0099 

Wyoming (Unit 30) 0.2090

1 + 𝑒 . ( )

+
0.8202

1 + 𝑒 . ( )
+ 0.0144 

PNW (Unit 43) 0.1436

1 + 𝑒 . ( )

+
0.1308

1 + 𝑒 . ( )

+
0.3572

1 + 𝑒 . ( )
+ 0.0090 

 

 The numerator in the first logistic curve represents the initial upper asymptote—

the mathematical equivalent of the saturation level from 11450 BP to the change in 

saturation. In other words, using the earlier strategy in Nevada could only support a 

population capable of producing enough anthropogenic radiocarbon that with 

contemporary archaeological methods, we would only detect a maximum probability 

density of 0.5952 (the numerator in the first term). People would begin feeling the effects 

of demographic pressure at about 0.2976 (half the numerator in the first term), and the 

change in strategy increased the saturation level by about 31% (the second numerator 

divided by the first numerator).  
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 It is important to note that while the first logistic wave of this equation would 

indicate that the zone of demographic pressure should start at around 508 cal BP, the 

value nearest to 50% of this early saturation in the SPD appears at 1888 cal BP. I found 

this value by looking up the date associated with the minimum absolute value of the 

difference between PrDens and 0.2976. This would suggest that the regression produced 

low estimates at the later end of the first subset of data. The correction for this 

underestimation appears in the second logistic wave, where the inflection appears at 1904 

cal BP, earlier than both the previous inflection point and the looked-up value of 1888. 

This would suggest one of the following possibilities: 1) we are not seeing Malthus-

Boserup ratcheting in Nevada; 2) I set the upper limit on the number of clusters too low; 

3) noise in the radiocarbon data resulted in inaccurate cluster detection; or 4) the change 

in strategy only provided partial relief from the effects of demographic pressure. 

Table (4.4) shows the relative growth in saturation as calculated from the 

multilogistic regressions. 

Table 4.4 Relative change in saturation level as calculated from multilogistic regression 

 𝑘 ( ) 
(∑ 𝑘 )

(𝑘 − 𝑑)
 

𝑘  
𝑘

(𝑘 − 𝑑)
 

 

𝑘  
𝑘

(∑ 𝑘 ) − 𝑑
 

Texas 2.785 2.785 NA 
Nevada 0.308 0.308 NA 
Wyoming 3.925 3.925 NA 
PNW 3.398 0.911 1.302 

Table 4.5 shows the observed order of regions as ranked by relative growth in saturation 

level. 
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Table 4.5 Regions rank ordered by relative growth in saturation 

Observed order by total 
relative growth in saturation 
(Highest to Lowest) 

Observed order by relative 
growth in saturation, first 𝑘  
(Highest to Lowest) 

Observed order by relative 
growth in saturation, last 
𝑘  (Highest to Lowest) 

Wyoming Wyoming Wyoming 
PNW Texas Texas 
Texas PNW PNW 
Nevada Nevada Nevada 

 The order of regions ranked by relative growth does not match the order of 

regions ranked by exponential growth rate. This means that differences in growth rate do 

not vary as I would suspect based on changes in population saturation noted in Chapter 2. 

 Finally, Table 4.6 shows a side-by-side comparison of calculated BIC for each 

model. The amount of information conserved in the multilogistic model justifies its use, 

despite the heavier penalty for complexity imposed by the BIC calculation. A BIC 

difference between 0 and 2 is interpreted as providing “weak” evidence in favor of the  

model with the lower BIC value. A difference between 2 and 6 provides “positive” 

evidence; between 6 and 10, “strong” evidence, and greater than 10 provides “very 

strong” evidence (Raftery, 1995). In all cases, differences in BIC provide “very strong” 

support for use of the multilogistic model over the exponential.  

Table 4.6 BIC values for exponential and multilogistic regressions, and the difference in 

BIC values 

BIC 
 Exponential Multilogistic ∆𝐵𝐼𝐶 
Texas -48542 -51216 2674 
Nevada -38024 -43682 5658 
Wyoming -3857 -8962 5105 
PNW -46716 -54900 8184 
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CHAPTER 5 DISCUSSION AND CONCLUSION 

Discussion 

 In this thesis, I have attempted to make progress on answering the following 

question: Do hunter-gatherers experience the same long-term trajectories of population 

growth and growth rates regardless of ecological context? Answering this question is 

difficult. One approach is to use archaeological radiocarbon, construct summed 

probability distributions, and then statistically fit a population growth model to summed 

probability distributions. There are several sets of challenges associated with this 

approach. One set may be called bias challenges: Archaeologists face sample bias and 

taphonomic bias in the collection of radiocarbon ages and calibration biases when 

calibrating ages. A second set of challenges, I call modeling challenges, receive less 

attention. Modeling challenges refer to the process of choosing an appropriate population 

growth model to fit to SPDs and interpreting the coefficients of the model. This has been, 

in part, the focus of my thesis. In order to compare population growth rates across 

regions, all else equal, we must choose an appropriate model and understand how to 

interpret the model’s parameters. To gain insight into this, I explored two different 

population growth models in this thesis: The exponential and a summed multilogistic 

model.  

 The exponential model is most commonly used in N. America to describe the 

growth of radiocarbon records, SPDs in particular. However, it is not clear why humans 

would be the only animal that experiences exponential-like growth rather than density 

dependent growth. One possibility is that humans can innovate and, in an emergent way, 

increase their carrying capacity. To capture this possibility, I proposed a bi-logistic model 
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of population growth to operationalize the so called Malthus-Boserup Ratchet theory of 

human population expansion (Wood, 1998). I ran simulations of the bilogistic model to 

better understand the model’s behavior and to understand the kind of biases that might 

arise if one fit an exponential model to a population that was actually undergoing 

multiple components of density dependent growth. This exercise was technical, but very 

important. If we are to compare the growth rates of populations across regions using 

models, we must understand the underlying behavior of the models in order to interpret 

their parameters. This simulation exercise taught me that if populations are growing 

according to some complex set of density dependent processes, then it is very difficult, if 

not impossible to compare the parameters of an exponential model across regions. 

Multiple factors, including the magnitude of change in carrying capacity and rates of 

innovation, may drive variation in estimated growth rates from an exponential model. 

 I, thus, concluded that it might be better to fit multilogistic models to SPDs than 

the exponential. In the empirical portion of my thesis, I explored whether rank ordering 

SPDs by growth rate from exponential regressions predicted the order of SPDs ranked by 

relative changes in population saturation level calculated from multilogistic regression. If 

the observed pattern of demographic change across N. America was ultimately the same 

from region to region, it might have been reasonable to suspect that the rank orders 

derived from exponential and multilogistic regressions would match, given the models 

under which I developed my predictions. However, from the multilogistic regression, we 

see that the timing and relative size of changes in saturation tell the story of a unique 

demographic history within each region. This interpretive data is neither encapsulated in 

the exponential growth rate nor the exponential translation coefficient. 
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 Ultimately, I argue that fitting multilogistic models gives us potentially more 

information and the ability to generate hypotheses about other aspects of the 

archaeological record across regions. For example, along the NW Coast of North 

America, we observe a population growth component from approximately 8000 to 4000 

cal BP. If this growth component is useful, we should be able to use it to predict other 

changes in archaeological records. In particular, we would expect evidence in faunal 

records of more use of high ranked resources at the beginning of the growth component 

8000 to 6000 cal BP and a shift to lower ranked faunal resources 5999 to 4000 cal BP as 

population pressure began to bite on foragers by decreasing the encounter rates of larger 

game. Similarly, the multilogistic model would suggest a shift back toward higher ranked 

resources after 4000 cal BP as a new growth component began. 

 Although the multilogistic models are based on a logically coherent theory (the 

Malthus-Boserup Ratchet), there are obviously still all the bias challenges associated with 

using these models to describe radiocarbon curves. Here are several that arose during my 

study: 

(1) Autocorrelated Residuals: I found autocorrelation in the residuals of both the 

exponential and logistic models. This makes sense, given that SPDs represent a trend in 

radiocarbon deposition over an interval of time. Put simply, this means that as the 

radiocarbon curve departs from the model toward local peaks and valleys, it does so at a 

measurable slope (though perhaps with some error), and we can predict this departure at 

time 𝑡 using the error at 𝑡 − 1. This violates the assumption that observations are 

independent of one another. Procedures for remedying this violation are aimed at de-

trending the data, but our aim is to describe the trend, not the data’s most likely 
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relationship to time as a predictor (as there is none). One possible remedy may be to 

include a lag term in the model so that error at 𝑡 − 1 is included in both exponential and 

logistic models.  

(2) The BIC estimation relies on the assumption that residuals are not 

autocorrelated, and much of the magnitude of the ΔBIC values may reflect the degree of 

autocorrelation in the residuals more than the appropriateness of the models themselves. 

On the other hand, autocorrelation in the residuals can be interpreted as a reflection of the 

degree to which a model is mis-specified. My application of BIC in this case is debatable, 

as would be AIC or AICc. What is important is the recognition that an exponential model 

violates the assumption of density dependence in population growth, and that in the 

archaeological discipline, we need to begin addressing modeling challenges. 

(3) I have assumed (following Freeman 2021) that the correct number of logistic 

models to include correlates directly with the number of clusters observed in a plot of 

growth rates against probability. While the rationale makes sense, I think we need to 

explore this more in noisy data. In a “perfect” single logistic curve, the growth rate would 

increase from zero with population until the inflection point, where it would peak, and 

then decrease back to zero as the population stabilized at saturation. Adding a second 

logistic curve, we should have two such peaks. The problem we encounter in noisy data 

is that the point-to-point growth rate between any three points does not necessarily follow 

the same rule. Unsmoothed SPDs have many peaks and valleys, and the points between 

these peaks and valleys may follow their own line or curve at annual intervals, and we 

may observe as many peaks in the slope-population relationship as there are peak-valley 

pairs. The next problem we encounter with this method is that it the cluster detection 
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algorithm may be clustering based on nothing more than similarity in probability. We 

saw in the Texas unit that negative slopes were detected as distinct clusters despite the 

actual steepness of these slopes varying as widely as positive slopes. Further, while I 

have assumed that the points identified as belonging to a cluster may fall anywhere in 

time (following Freeman, 2021), PNW, Wyoming, and Nevada all seem to have 

clustering that divides the vertical distribution of probabilities somewhat evenly. This is 

particularly evident in Wyoming, where the late part of the SPD dips below the 

probability identified as a break in clusters. To address this third concern, it may be 

sensible to nonparametrically smooth SPDs, and then look for what would appear to be 

significant humps or peaks in the second difference. 

Conclusion 

 Relative changes in an environment’s population saturation level resulting from a 

population’s response to demographic pressure may result in exponential-like curves 

observed in the radiocarbon record. Unfortunately, the exponential growth rate also 

varies according to decisions made in preparing the data for analysis as well as variations 

in demographic history. This renders exponential growth rates difficult to compare 

between regions. The Malthus-Boserup Ratcheting Model provides some potential 

context by which we can begin to understand and explain regional differences in patterns 

of demographic growth. My test of the implications of Malthus-Boserup Ratcheting for 

exponential regressions provides support for the use of multiple logistic 

regressions in understanding the demographic histories underlying the shape of SPD 

curves. Moving forward, applying population-ratchet like models can aid in 

understanding the demographic and socioecological context of cultural changes—a 
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crucial understanding in the pursuit of the study of the lifeways of past peoples. 
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APPENDIX I: SPDS WITH EXPONENTIAL REGRESSIONS 

 

Figure AI.1 Exponential regressions for Texas (Unit 2) SPD and confidence envelope 
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Figure AI.2 Exponential regressions for Nevada (Unit 17) SPD and confidence envelope 
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Figure AI.3 Exponential regressions for Wyoming (Unit 30) SPD and confidence 

envelope 
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Figure AI.4 Exponential regressions for PNW (Unit 43) SPD and confidence envelope 
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APPENDIX II: CLUSTER ANALYSES 

 

 Note cluster 2’s (green) similarity in 
absolute magnitude to cluster 1 (red). The primary difference between cluster 1 and 
cluster 2 appears to be sign (positive or negative) associated with growth rate. 

Figure AII.1 Cluster analysis for Texas (Unit 2) 
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Cluster 2 (blue) appears 

primarily to represent negative slopes within cluster 1 (black) region, so I treated this 

SPD as if only 2 clusters had been detected. Because clusters lack a clean delineation, 

selecting subset boundaries for this unit was somewhat subjective, so I picked a date 

representing the boundary for what appeared to be a large run (5630 calBP) 

Figure AII.2 SPD for Texas (Unit 2) colored by cluster 
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Figure AII.3 Cluster analysis for Nevada (Unit 17)—Clusters appear to be somewhat 

cleanly delineated 
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Figure AII.4 SPD for Nevada (Unit 17) colored by cluster 
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Figure AII.5 Cluster analysis for Wyoming (Unit 30)—Clusters appear to be somewhat 
cleanly delineated 
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Figure AII.6 SPD for Wyoming (Unit 30) colored by cluster 
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Figure AII.7 Cluster analysis for PNW (Unit 43)  
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Figure AII.8 SPD for PNW (Unit 43) colored by cluster 
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APPENDIX III: MULTILOGISTIC CURVES WITH CONFIDENCE ENVELOPES 

 

 

Figure AIII.1 Bilogistic curve with confidence envelope fit to Texas (Unit 2) 
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Figure AIII.2 Bilogistic curve with confidence envelope fit to Nevada (Unit 17) 
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Figure AIII.3 Bilogistic curve with confidence envelope fit to Wyoming (Unit 30) 
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Figure AIII.4 Multilogistic curve with confidence envelope fit to PNW (Unit 43) 
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APPENDIX IV: R CODE 

library(foreach) 

library(rcarbon) 

library(drc) 

currentPath <- "F:/" 

SPDFolder <- paste(currentPath, 

                   "SPD/", 

                   sep = "") 

pdfOutputs <- paste(currentPath, 

                    "PDF/", 

                    sep = "") 

csvOutputs <- paste(currentPath, 

                    "csvOutputs/", 

                    sep = "") 

 

if(!dir.exists(SPDFolder)){ 

  dir.create(SPDFolder) 

} 

 

if(!dir.exists(pdfOutputs)){ 

  dir.create(pdfOutputs) 

} 

 

if(!dir.exists(csvOutputs)){ 

  dir.create(csvOutputs) 

} 
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#set a time range 

timeRange <- c(11450,550) 

 

boxLookup <- c(2,17,30,43) 

boxLookup <- cbind(boxLookup, c("Texas", "Nevada", "Wyoming", "Pacific 
Northwest")) 

increment <- 3000 

 

#get data from current folder 

RawData <- read.csv(paste(currentPath, 

                          "RawData(Scrubbed).csv", 

                          sep = "")) 

 

#### 2. Make Directory for all sample units with more than 200 lab numbers ------- 

Directory <- plyr::count(RawData, 

                         vars = "Sbox") 

names(Directory) <- c("Sbox", 

                      "n") 

Directory<-Directory[!(Directory$n<200),] 

Directory <- Directory[Directory$Sbox %in% c(2, 

                                             17, 

                                             30, 

                                             43),] 

 

#write.csv(Directory,paste(currentPath,"Directory_Sbox.csv",sep = ""),row.names = 
FALSE) 

 

#### 3. Calibrate each sampling unit recursively -------- 
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#Sometimes r treats values within a dataframe in a way you cannot use. The lines ensure 
our calibration will work. 

RawData$Age <- as.numeric(as.character(RawData$Age)) 

RawData <- RawData[!is.na(RawData$Age),] 

RawData$Sd <- as.numeric(as.character(RawData$Sd)) 

RawData <- RawData[!(is.na(RawData$Sd)),] 

RawData <- RawData[RawData$Sd > 0,] 

RawData$LabID <- as.character(RawData$LabID) 

 

##Turn each sampling unit into an element of a list.  

SboxList <- vector("list", length(Directory$Sbox)) 

names(SboxList) <- Directory$Sbox 

SboxList <- split(RawData[which(RawData$Sbox %in% Directory$Sbox),], 

                  f = RawData[which(RawData$Sbox %in% Directory$Sbox),]$Sbox) 

remove(RawData) 

remove(Directory) 

 

 

 

#For each sampling unit (sbox),  

foreach(i = 1:length(SboxList)) %do% { 

  Sbox <- data.frame(SboxList[[i]]) 

   

  #calibrate dates 

  cptcal1 <- calibrate(x = Sbox$Age,  errors = Sbox$Sd, normalised = F) 

   

  #and generate SPDs using the exponential model 

  SPD <- modelTest(cptcal1, 

                   errors = Sbox$Sd, 
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                   nsim = 1000, 

                   bins = NA, 

                   runm = 250, 

                   timeRange = timeRange, 

                   model = "exponential", 

                   normalised = F, 

                   raw = T, 

                   edgeSize = -550, 

                   ncores = 6, 

                   verbose = T, 

                   predgrid = predGrid)$result 

   

  #Exploring things like slope is easier with negative calBP values 

  SPD$calBP <- -abs(SPD$calBP) 

  SPD$Sbox <- data.frame(SboxList[[i]])$Sbox[1] 

   

  #Save the SPD 

  write.csv(SPD, file = paste(SPDFolder, "Box_", SPD$Sbox[1], 
"_SPD_and_envelope_(edgesize550).csv", sep = ""), row.names = F) 

   

  #Plot each SPD at each given value to its own file 

  pdf(file = paste(pdfOutputs, 

                   SPD$Sbox[1], 

                   "_exp_plot(edgesize550).pdf", 

                   sep = ""), 

      height = 8.5, 

      width = 11, 

      title = paste("SPD Sample Unit ", 

                    SPD$Sbox[1], 



70 

                    sep = "")) 

  plot(SPD$PrDens~SPD$calBP, 

       type = "lines", 

       main = paste("SPD Sample Unit ", 

                    SPD$Sbox[1], 

                    sep = ""), 

       xlab = "CalBP", 

       ylab = "Probability Density") 

  polygon(c(SPD$calBP, rev(SPD$calBP)), 

          c(SPD$lo, rev(SPD$hi)), 

          col = "grey", 

          lty = 0) 

  lines(SPD$PrDens~SPD$calBP, 

        type = "lines") 

  abline(h = flat, col = "blue") 

  dev.off() 

   

  #Print a line for each completed samping unit (optional) 

  cat(paste("\nExtraction for Sampling Unit ", 

            data.frame(SboxList[[i]])$Sbox[1], 

            " (", 

            i, 

            "/", 

            length(unique(SboxList)), 

            ")", 

            "complete\n\n")) 

} 
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#get slope data. I originally wrote this code intending to explore timescale 

#sensitivity of exponential slopes; I have left the code 

 

SPDList <- list.files(path = SPDFolder, 

                      pattern = ".*[0-9]_SPD_and_envelope_.edge.*.csv") 

 

slopeDataFileNames <- gsub("_and_envelope", "_slope_data", SPDList) 

pdfFileNames <- gsub("_and_envelope", "nlsRegression", SPDList) 

pdfFileNames <- gsub(".csv", ".pdf", pdfFileNames) 

 

#assign files a complete location 

SPDList <- paste(SPDFolder, SPDList, sep = "") 

slopeDataFileNames <- paste(csvOutputs, slopeDataFileNames, sep = "") 

pdfFileNames <- paste(pdfOutputs, pdfFileNames, sep = "") 

 

 

for(i in 1:length(SPDList)) { 

  if(i == 1) {rm(list = c("slopeData", "SD1"))} 

   

  #load the spd  

  SPD <- read.csv(SPDList[i]) 

   

  #working in years relative to present (1950) is easier to interpret than 

  #absolute years before present; specifically, we want positive slopes to 

  #represent growth 

  SPD$calBP <- -abs(SPD$calBP) 

   

   

  #change the late value of the time range to the time of maximum population 
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  # timeRange <- c(-12000, min(-250,SPD$calBP[SPD$PrDens == max(SPD$PrDens)])) 

  # SPD <- SPD[SPD$calBP < timeRange[2],] 

   

  j <- 1 

  while(j < length(SPD[,1])){ 

     

    cat(paste("\n", j)) 

     

    #calBP includes numbers that are too high for exp() to handle, so we scale 

    #it down. Note that the resulting slope must be rescaled. 

    currentNLS <- nls(PrDens ~ exp(a + (calBP / 1000) * b), 

                      data = SPD[(j:length(SPD$calBP)),], 

                      start = list(a = 0.5, b = 0.5), 

                      nls.control(maxiter = 2048)) 

    NLSAicc <- AICcmodavg::AICc(currentNLS) 

    NLSBIC <- BIC(currentNLS) 

    currentNLSHigh <- nls(hi ~ exp(a + (calBP / 1000) * b), 

                          data = SPD[(j:length(SPD$calBP)),], 

                          start = list(a = 0.5, b = 0.5), 

                          nls.control(maxiter = 2048)) 

    currentNLSLow <- nls(lo ~ exp(a + (calBP / 1000) * b), 

                         data = SPD[(j:length(SPD$calBP)),], 

                         start = list(a = 0.5, b = 0.5), 

                         nls.control(maxiter = 2048)) 

     

    SD1 <- cbind(sampleUnit = SPD$Sbox[i], 

                 unitName = boxLookup[boxLookup[,1] %in% SPD$Sbox[i],2], 

                 timeBegin = -SPD[j,1], 
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                 timeEnd = -timeRange[2], 

                 nlsTransl = (currentNLS$m$getPars()[1]), 

                 nlsLowTransl = (currentNLSLow$m$getPars()[1]), 

                 nlsHighTransl = (currentNLSHigh$m$getPars()[1]), 

                 nlsTransf = (currentNLS$m$getPars()[2]), 

                 nlsLowTransf = (currentNLSLow$m$getPars()[2]), 

                 nlsHighTransf = (currentNLSHigh$m$getPars()[2]), 

                 AICc = NLSAicc, 

                 BIC = NLSBIC) 

    ifelse(!exists("slopeData"), 

           slopeData <- SD1, 

           slopeData <- rbind(slopeData, 

                              SD1)) 

    slopeData <- as.data.frame(slopeData) 

    j <- j+increment 

  } 

   

  if(!exists("slopeData1")) { 

     

    slopeData1 <- slopeData 

     

  }  else { 

     

    slopeData1 <- rbind(slopeData1, slopeData) 

     

  } 

   

  #  return(as.list(slopeData)) 

  write.csv(slopeData, slopeDataFileNames[i], row.names = F) 
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  pdf(file = pdfFileNames[i],height = 8.5, width = 11) 

   

  plot(SPD$PrDens~SPD$calBP, 

       type = "lines", 

       xlab = "calBP", 

       ylab = "Probability Density", 

       main = paste("Unit ", 

                    slopeData$sampleUnit[1], 

                    # " h", 

                    # slopeData$h[1], 

                    " Exponential Regression", 

                    sep = ""), 

       sub = paste(max(abs(SPD$calBP)), 

                   " - ", 

                   min(abs(SPD$calBP)), 

                   sep = "")) 

  polygon(c(SPD$calBP, rev(SPD$calBP)), 

          c(SPD$lo, rev(SPD$hi)), 

          col = "grey", 

          lty = 0) 

  lines(SPD$PrDens~SPD$calBP, 

        type = "lines") 

  curve(exp(as.numeric(slopeData[1,5])+as.numeric(slopeData[1,8])*x/1000), col = 
"blue", add = T, from = min(SPD$calBP), to = max(SPD$calBP)) 

  curve(exp(as.numeric(slopeData[1,6])+as.numeric(slopeData[1,9])*x/1000), col = 
"red", add = T, from = min(SPD$calBP), to = max(SPD$calBP)) 

  curve(exp(as.numeric(slopeData[1,7])+as.numeric(slopeData[1,10])*x/1000), col = 
"red", add = T, from = min(SPD$calBP), to = max(SPD$calBP)) 
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  dev.off() 

  png(file = imageFileNames[i],height = 8.5, width = 11, units = "in", res = 300) 

  plot(SPD$PrDens~SPD$calBP, 

       type = "lines", 

       xlab = "calBP", 

       ylab = "Probability Density", 

       main = paste("Unit ", 

                    slopeData$sampleUnit[1], 

                    # " h", 

                    # slopeData$h[1], 

                    " Exponential Regression", 

                    sep = ""), 

       sub = paste(max(abs(SPD$calBP)), 

                   " - ", 

                   min(abs(SPD$calBP)), 

                   sep = "")) 

  polygon(c(SPD$calBP, rev(SPD$calBP)), 

          c(SPD$lo, rev(SPD$hi)), 

          col = "grey", 

          lty = 0) 

  lines(SPD$PrDens~SPD$calBP, 

        type = "lines") 

  curve(exp(as.numeric(slopeData[1,5])+as.numeric(slopeData[1,8])*x/1000), col = 
"blue", add = T, from = min(SPD$calBP), to = max(SPD$calBP)) 

  curve(exp(as.numeric(slopeData[1,6])+as.numeric(slopeData[1,9])*x/1000), col = 
"red", add = T, from = min(SPD$calBP), to = max(SPD$calBP)) 

  curve(exp(as.numeric(slopeData[1,7])+as.numeric(slopeData[1,10])*x/1000), col = 
"red", add = T, from = min(SPD$calBP), to = max(SPD$calBP)) 

  dev.off() 
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  rm("slopeData") 

   

} 

BICexp <- slopeData1[which(slopeData1$timeBegin == 11450),c(1,ncol(slopeData1))] 

write.csv(BICexp, paste(csvOutputs, "BICexp.csv", sep = ""), row.names = F) 

 

fileNumbers <- gsub("\\D", "", SPDList) 

fileNumbers <- gsub("550", "", fileNumbers) 

 

buildModel <- function(clusterCount, x_axis, y_axis, starter=NA) { 

   

  formulae <- c(paste("(limit", 1:clusterCount, "/(1+exp(-1*slope", 1:clusterCount, 
"*(xmid_",1:clusterCount,"-",x_axis,"))))", sep = "")) 

  formulae <- gsub("limit1", "(limit1 - d)", formulae) 

  formulae <- append(formulae, "d") 

   

  if(!missing(starter)) { 

     

    for(i in 1:length(starter[,1])){ 

      formulae <- gsub(starter[i,1], starter[i,2], formulae) 

    } 

     

     

  } 

   

  model <<- as.formula(paste(y_axis,"~", paste(formulae, collapse = "+"))) 

   

} 
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clusterCounts <- c(2,2,2,3) 

robust <- c("mean", "median", "lms", "lts") 

modelList <- list() 

predGrid <- list() 

paramList <- list() 

robustList <- matrix(nrow = 4, ncol = 3) 

BICdf <- matrix(nrow = 4, ncol = 2) 

# i <- 2 

for(i in 1:4) { 

   

  robust1 <- expand.grid(1:4, 1:4) 

   

  if(i == 4) { 

     

    robust1 <- expand.grid(1:4, 1:4, 1:4) 

     

  } 

   

  #load SPD 

  SPD <- read.csv(clusterFiles[i]) 

  clusterFiles[i] 

  firstXmid <- c(-1937, -5630, -1664, -5321)[i]  

  secondXmid <- -1713 

   

  #Interpreting regression values is simpler if the regression is run on negative 

  #calBP values. I've used the negative absolute value just in case I forget and 

  #run this line twice; this way I don't inadvertently flip the sign back to 

  #positive. 

  for(j in 1:nrow(robust1)){ 
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    if(j == 1) { 

       

      methodSelection <- numeric(length = nrow(robust1)) 

       

    } 

     

    SPD$calBP <- -abs(SPD$calBP) 

    SPD1 <- SPD[1:which(SPD$calBP == (firstXmid+1000)),] 

    # plot(SPD1$PrDens~SPD1$calBP, type = "lines") 

    drm1 <- drm(PrDens~calBP, fct = L.4(names = c("slope1", "d", "limit1", "xmid_1")), 
data = SPD1, robust = robust[robust1[j,1]], lowerl = c(-Inf, 0, 0, -Inf)) 

    drmPred1 <- data.frame(calBP = SPD$calBP) 

    coeffCount <- 1:length(names(drm1$coefficients)) 

    eval(parse(text = 
paste("drmPred1$\"",gsub(":.*","",names(drm1$coefficients[coeffCount])),"\" <- 
(drm1$coefficients[", coeffCount, "])", sep = ""))) 

    drmPred1$PrDens <- predict(drm1, drmPred1) 

     

    SPD1 <- SPD[which(SPD$calBP == (firstXmid-1000)):ifelse(clusterCounts[i] > 2, 
which(SPD$calBP == (secondXmid + 1000)), length(SPD$calBP)),] 

    drm1Effects <- drmPred1[which(drmPred$calBP %in% SPD1$calBP),] 

    SPD1$PrDens <- (SPD1$PrDens - drm1Effects$PrDens) 

    drm2 <- drm(PrDens~calBP, fct = L.3(names = c("slope2", "limit2", "xmid_2")), data 
= SPD1, robust = robust[robust1[j,2]], lowerl = c(-Inf, 0, -Inf)) 

    drmPred2 <- data.frame(calBP = SPD$calBP) 

    coeffCount <- 1:length(names(drm2$coefficients)) 

     

    eval(parse(text = 
paste("drmPred2$\"",gsub(":.*","",names(drm2$coefficients[coeffCount])),"\" <- 
(drm2$coefficients[", coeffCount, "])", sep = ""))) 
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    drmPred2$PrDens <- predict(drm2, drmPred2) 

     

    if(clusterCounts[i] > 2){ 

       

      SPD1 <- SPD[which(SPD$calBP == (secondXmid-1000)):length(SPD$calBP),] 

      drm1Effects <- drmPred1[which(drmPred1$calBP %in% SPD1$calBP),] 

      drm2Effects <- drmPred2[which(drmPred2$calBP %in% SPD1$calBP),] 

      SPD1$PrDens <- (SPD1$PrDens - (drm1Effects$PrDens + drm2Effects$PrDens)) 

       

      drm3 <- drm(PrDens~calBP, fct = L.3(names = c("slope3", "limit3", "xmid_3")), data 
= SPD1, robust = robust[robust1[j,3]], lowerl = c(-Inf, 0, -Inf)) 

      drmPred3 <- data.frame(calBP = SPD$calBP) 

      drmPred3 <- data.frame(calBP = SPD$calBP) 

      coeffCount <- 1:length(names(drm3$coefficients)) 

       

      eval(parse(text = 
paste("drmPred3$\"",gsub(":.*","",names(drm3$coefficients[coeffCount])),"\" <- 
(drm3$coefficients[", coeffCount, "])", sep = ""))) 

      drmPred3$PrDens <- predict(drm3, drmPred3) 

       

    } 

     

    #We want the AICc for the summed drc objects. To do this, I build the summed 

    #model and run an NLS, forcing the lower asymptote to the value regressed with 

    #drm 

     

    FromTo <- 1:clusterCounts[i] 

     

    # startBuilder <- c("starter <- c(", 

    #                   paste("limit", FromTo, " = unname(drm", FromTo, 
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"$coefficients[which(names(drm", FromTo,"$coefficients)==\"d:(Intercept)\")]),", sep = 
""), 

    #                   paste("xmid_", FromTo, " = unname(drm", FromTo, 
"$coefficients[which(names(drm", FromTo,"$coefficients)==\"e:(Intercept)\")]),", sep = 
""), 

    #                   paste("slope", FromTo, " = unname(drm", FromTo, 
"$coefficients[which(names(drm", FromTo,"$coefficients)==\"b:(Intercept)\")]),", sep = 
""), 

    #                   ")") 

    startBuilder <- c("starter <- c(", 

                      paste("drm", FromTo, "$coefficients," , sep = ""),  

                      ")") 

    startBuilder[(length(startBuilder)-1)] <- gsub(",$", "", 
startBuilder[(length(startBuilder)-1)]) 

    eval(parse(text = startBuilder)) 

    names(starter) <- gsub(":.*", "", names(starter)) 

    starter <- starter[-which(names(starter) == "d")] 

    starter1 <- data.frame(names = names(starter), value = unname(starter)) 

     

    model <- buildModel(clusterCounts[i], "calBP", "PrDens", starter = starter1) 

    # model 

     

    nlsFinal <- nls(model, data = SPD, start = list(d = unname(drm1$coefficients[2])), 
upper = list(d = unname(drm1$coefficients[2])), lower = list(d = 
unname(drm1$coefficients[2])), algorithm = "port") 

    plot(SPD$PrDens~SPD$calBP, type = "lines") + 

      lines(nlsFinal$m$fitted()~SPD$calBP, col = "blue") 

    # plot(nlsFinal$m$fitted()~SPD$calBP, col = "blue", type = "lines") 

     

    cat(paste("\n\n",robust1[j,1], robust1[j,2], ifelse(ncol(robust1) == 3, robust1[j,3], ""), " 
BIC: ",(BIC(nlsFinal)+(log(nrow(SPD))*3*clusterCounts[i])), sep = "")) 
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    methodSelection[j] <- (BIC(nlsFinal) + (log(nrow(SPD))*3*clusterCounts[i])) 

     

    if(j == nrow(robust1)){ 

       

      SPD1 <- SPD[1:which(SPD$calBP == (firstXmid+1000)),] 

      plot(SPD1$PrDens~SPD1$calBP, xlim = c(-12000,0), ylim = c(0, 
max(SPD$PrDens)), type = "lines", col = "black") 

      # plot(SPD1$PrDens~SPD1$calBP, type = "lines") 

      # drm1 <- drm(PrDens~calBP, fct = L.4(), data = SPD1, robust = 
robust[robust1[which(methodSelection == min(methodSelection)),1]]) 

      drm1 <- drm(PrDens~calBP, fct = L.4(names = c("slope1", "d", "limit1", "xmid_1")), 
data = SPD1, robust = robust[robust1[which(methodSelection == 
min(methodSelection)),1]], lowerl = c(-Inf, 0, 0, -Inf)) 

       

      drmPred1 <- data.frame(calBP = SPD$calBP) 

      # drmPred1$b <- drm1$coefficients[1] 

      # drmPred1$c <- drm1$coefficients[2] 

      # drmPred1$d <- drm1$coefficients[3] 

      # drmPred1$e <- drm1$coefficients[4] 

      coeffCount <- 1:length(names(drm1$coefficients)) 

      eval(parse(text = 
paste("drmPred1$\"",gsub(":.*","",names(drm1$coefficients[coeffCount])),"\" <- 
(drm1$coefficients[", coeffCount, "])", sep = ""))) 

      drmPred1$PrDens <- predict(drm1, drmPred1) 

       

      SPD1 <- SPD[which(SPD$calBP == (firstXmid-1000)):ifelse(clusterCounts[i] > 2, 
which(SPD$calBP == (secondXmid + 1000)), length(SPD$calBP)),] 

      drm1Effects <- drmPred1[which(drmPred$calBP %in% SPD1$calBP),] 

      SPD1$PrDens <- (SPD1$PrDens - drm1Effects$PrDens) 

      lines(SPD1$PrDens~SPD1$calBP, xlim = c(-12000,0), ylim = c(0, 
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max(SPD$PrDens)), type = "lines", col = "blue") 

       

      # drm2 <- drm(PrDens~calBP, fct = L.3(), data = SPD1, robust = 
robust[robust1[which(methodSelection == min(methodSelection)),2]]) 

      drm2 <- drm(PrDens~calBP, fct = L.3(names = c("slope2", "limit2", "xmid_2")), data 
= SPD1, robust = robust[robust1[which(methodSelection == min(methodSelection)),2]], 
lowerl = c(-Inf, 0, -Inf)) 

      drmPred2 <- data.frame(calBP = SPD$calBP) 

      coeffCount <- 1:length(names(drm2$coefficients)) 

      eval(parse(text = 
paste("drmPred2$\"",gsub(":.*","",names(drm2$coefficients[coeffCount])),"\" <- 
(drm2$coefficients[", coeffCount, "])", sep = ""))) 

       

      # drmPred2$b <- drm2$coefficients[1] 

      # drmPred2$d <- drm2$coefficients[2] 

      # drmPred2$e <- drm2$coefficients[3] 

      drmPred2$PrDens <- predict(drm2, drmPred2) 

       

      if(clusterCounts[i] > 2){ 

         

        SPD1 <- SPD[which(SPD$calBP == (secondXmid-1000)):length(SPD$calBP),] 

        drm1Effects <- drmPred1[which(drmPred1$calBP %in% SPD1$calBP),] 

        drm2Effects <- drmPred2[which(drmPred2$calBP %in% SPD1$calBP),] 

        SPD1$PrDens <- (SPD1$PrDens - (drm1Effects$PrDens + drm2Effects$PrDens)) 

        lines(SPD1$PrDens~SPD1$calBP, xlim = c(-12000,0), ylim = c(0, 
max(SPD$PrDens)), type = "lines", col = "orange") 

         

        drm3 <- drm(PrDens~calBP, fct = L.3(names = c("slope3", "limit3", "xmid_3")), 
data = SPD1, robust = robust[robust1[which(methodSelection == 
min(methodSelection)),3]], lowerl = c(-Inf, 0, -Inf)) 

        drmPred3 <- data.frame(calBP = SPD$calBP) 
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        coeffCount <- 1:length(names(drm3$coefficients)) 

        eval(parse(text = 
paste("drmPred3$\"",gsub(":.*","",names(drm3$coefficients[coeffCount])),"\" <- 
(drm3$coefficients[", coeffCount, "])", sep = ""))) 

        # drmPred3$b <- drm3$coefficients[1] 

        # drmPred3$d <- drm3$coefficients[2] 

        # drmPred3$e <- drm3$coefficients[3] 

        drmPred3$PrDens <- predict(drm3, drmPred3) 

        # plot(SPD1$PrDens~SPD1$calBP, xlim = c(-12000,0), ylim = c(0, 
max(SPD$PrDens)), type = "lines", col = "orange") 

        lines(drmPred1$PrDens~drmPred1$calBP, col = "black") 

        lines(drmPred2$PrDens~drmPred2$calBP, col = "blue") 

        lines(drmPred3$PrDens~drmPred3$calBP, col = "orange") 

      } 

       

      FromTo <- 1:clusterCounts[i] 

       

      startBuilder <- c("starter <- c(", 

                        paste("drm", FromTo, "$coefficients," , sep = ""),  

                        ")") 

      startBuilder[(length(startBuilder)-1)] <- gsub(",$", "", 
startBuilder[(length(startBuilder)-1)]) 

      eval(parse(text = startBuilder)) 

      names(starter) <- gsub(":.*", "", names(starter)) 

      unchangedStarter <- starter 

      starter2 <- starter[which(names(starter) == "d")] 

      starter <- starter[-which(names(starter) == "d")] 

      starter1 <- data.frame(names = names(starter), value = unname(starter)) 

      model <- buildModel(clusterCounts[i], "calBP", "PrDens", starter = starter1) 

      # model 
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      nlsFinal <- nls(model, data = SPD, start = starter2, upper = (starter2), lower = 
(starter2), algorithm = "port") 

      plot(SPD$PrDens~SPD$calBP, type = "lines") + 

        lines(nlsFinal$m$fitted()~SPD$calBP, col = "blue") 

      modelList[[i]] <- nlsFinal 

      paramList[[i]] <- unchangedStarter 

       

      predGrid[[i]] <- data.frame(calBP = abs(SPD$calBP), PrDens = nlsFinal$m$fitted()) 

      robustKeeper <- as.numeric(robust1[which(methodSelection == 
min(methodSelection)),]) 

      robustList[i,c(1:length(robustKeeper))] <- robustKeeper 

    } 

     

  } 

   

  BIC(modelList[[i]])+(log(nrow(SPD))*3*clusterCounts[i]) 

   

} 

for(i in 1:length(modelList)){ 

   

  BICdf[i,] <- cbind(Unit = fileNumbers[i],BIC = 
BIC(modelList[[i]])+(log(nrow(SPD))*3*clusterCounts[i])) 

   

} 

 

writeLines(modelsExport, paste(csvOutputs, "Models.txt", sep = "")) 

 

write.csv(BICdf, paste(csvOutputs, "BICmultilog.csv", sep = ""), row.names = F) 
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SPD <- read.csv(SPDList[i]) 

plot(SPD$PrDens~SPD$calBP, type = "lines") + 

  lines(modelList[[i]]$m$fitted()~SPD$calBP, col = "blue") 

 

mTList <- list() 

 

for(i in 1:length(fileNumbers)){ 

   

  eval(parse(text = paste("Sbox <- SboxList[[\"", 

                          fileNumbers[i],"\"]]", 

                          sep = ""))) 

  cptcal <- calibrate(x = Sbox$Age, 

                      errors = Sbox$Sd, 

                      normalised = F, 

                      ncores = 6) 

  predGrid[[i]]$calBP <- abs(predGrid[[i]]$calBP) 

  mTList[[i]] <- modelTest(cptcal, 

                           errors = Sbox$Sd, 

                           nsim = 1000, 

                           bins = NA, 

                           runm = 250, 

                           timeRange = c(abs(min(SPD$calBP)), 

                                         abs(max(SPD$calBP))), 

                           model = "custom", 

                           normalised = F, 

                           raw = T, 

                           edgeSize = -550, 

                           ncores = 6, 
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                           verbose = T, 

                           predgrid = data.frame(predGrid[[i]])) 

  mT <- mTList[[i]]$result 

  mT$calBP <- -abs(mT$calBP) 

  predGrid[[i]]$calBP <- -abs(predGrid[[i]]$calBP) 

  png(file = paste(currentPath, 

                   "Images/Unit ", 

                   Sbox$Sbox[1], 

                   ifelse(i == 4, 

                          "MultiLogistic", 

                          "Bilogistic"), 

                   ".png", 

                   sep = ""), 

      height = 8.5, 

      width = 11, 

      units = "in", 

      res = 300, 

      family = "Times") 

  plot(mT$PrDens ~ mT$calBP, 

       type = "lines", 

       main = paste(boxLookup[which(boxLookup[,1] %in% Sbox$Sbox[1]),2], 

                    ifelse(i == 4, 

                           " Multilogistic", 

                           " Bilogistic"), 

                    " Curve With Envelope", 

                    sep = ""), 

       ylim = c(min(min(mT$PrDens), 

                    min(mT$lo)), 
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                max(max(mT$PrDens), 

                    max(mT$hi))), 

       xlab = "calBP", 

       ylab = "PrDens") 

  polygon(c(mT$calBP, rev(mT$calBP)), 

          c(mT$lo, rev(mT$hi)), 

          col = "grey", 

          lty = 0) 

  lines(mT$PrDens~mT$calBP) 

  lines(predGrid[[i]]$PrDens~predGrid[[i]]$calBP, 

        col = "blue") 

  dev.off() 

  pdf(paste(pdfOutputs, 

            "Unit ", 

            Sbox$Sbox[1], 

            ifelse(i == 4, 

                   "MultiLogistic", 

                   "Bilogistic"), 

            ".pdf", 

            sep = ""), 

      height = 8.5, 

      width = 11) 

  plot(mT$PrDens ~ mT$calBP, 

       type = "lines", 

       main = paste(boxLookup[which(boxLookup[,1] %in% Sbox$Sbox[1]),2], 

                    ifelse(i == 4, 

                           " Multilogistic", 

                           " Bilogistic"), 
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                    " Curve With Envelope", 

                    sep = ""), 

       ylim = c(min(min(mT$PrDens), 

                    min(mT$lo)), 

                max(max(mT$PrDens), 

                    max(mT$hi))), 

       xlab = "calBP", 

       ylab = "PrDens") 

  polygon(c(mT$calBP, rev(mT$calBP)), 

          c(mT$lo, rev(mT$hi)), 

          col = "grey", 

          lty = 0) 

  lines(mT$PrDens~mT$calBP) 

  lines(predGrid[[i]]$PrDens~predGrid[[i]]$calBP, 

        col = "blue") 

  dev.off() 

  residuals <- nlsFinal$m$resid() 

  laggedresiduals <- lag(residuals) 

  png(file = paste(currentPath, 

                   "Images/Unit ", 

                   Sbox$Sbox[1], 

                   "resid~lagged(multilog).png", 

                   sep = ""), 

      height = 8.5, 

      width = 11, 

      units = "in", 

      res = 300, 

      family = "Times") 
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  plot(residuals~laggedresiduals) 

  dev.off() 

   

} 

 

for(i in 1:4){ 

  SPD <- read.csv(SPDList[i], header = T) 

  inflection1 <- (paramList[[i]][which(paramList[[i]]$names == "limit1"),2] - 
unname(modelList[[i]]$m$getPars()))/2 

  plot(SPD$PrDens~SPD$calBP, type = "lines") + 

    abline(h = inflection1) 

  when <- SPD[which(min(abs(SPD$PrDens-inflection1)) == abs(SPD$PrDens-
inflection1)),c(1,2)] 

  inflection2 <- (paramList[[i]][which(paramList[[i]]$names == "limit1"),2] - 
unname(modelList[[i]]$m$getPars())+paramList[[i]][which(paramList[[i]]$names == 
"limit2"),2])/2 

  when2 <- SPD[which(min(abs(SPD$PrDens-inflection2)) == abs(SPD$PrDens-
inflection2)),c(1,2)] 

  inflection3 <- (paramList[[i]][which(paramList[[i]]$names == "limit1"),2] - 
unname(modelList[[i]]$m$getPars())+paramList[[i]][which(paramList[[i]]$names == 
"limit2"),2]+paramList[[i]][which(paramList[[i]]$names == "limit3"),2])/2 

  when3 <- SPD[which(min(abs(SPD$PrDens-inflection3)) == abs(SPD$PrDens-
inflection3)),c(1,2)] 

  cat(paste("\n\n",when[,1], when[,2], when2[,1], when2[,2], when3[,1], when3[,2])) 

} 
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