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ABSTRACT

Redefining NBA Basketball Positions Through Visualization and Mega-Cluster Analysis

by

Alexander L. Hedquist, Master of Science

Utah State University, 2022

Major Professor: Jürgen Symanzik, Ph.D.
Department: Mathematics and Statistics

In basketball, player positions constitute the simplest and most widely-used tool to

characterize members of a team. While the standard five positions, including Point Guard,

Shooting Guard, Small Forward, Power Forward, and Center provide general categories for

certain major types of players, these vague position titles limit players to a pre-defined role,

and limit coaches’ and managers’ ability to recruit, draft, and utilize players in an effective

manner. This MS thesis proposes a method for expanding the current basketball positions to

define players based on their abilities and performance rather than based on height, weight,

or perceived role. We analyze players from the past 20 seasons of the National Basketball

Association (NBA) to determine updated and meaningful player positions. We utilize a

collection of indices in R to select nine as an optimal number of player clusters. We perform

hierarchical cluster analysis to regroup players into nine meaningful and specific categories.

Using R and Python, we explore the differences between these player clusters through vi-

sualization techniques, such as dendograms and histograms, and dimensionality reduction

methods, including Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor

Embedding (tSNE), and Potential of Heat-Diffusion for Affinity-Based Trajectory Embed-

ding (PHATE). We also use a grand tour software feature to explore these updated player

clusters in a more dynamic and interactive fashion. Finally, we introduce a new method



iv

called mega-clustering that allows us to partition each NBA season’s player clusters into

combined clusters for an overall analysis and discussion of each position’s unique attributes.

In addition, we assemble all player data and clustering results into a single GitHub repository

for easy access and further analysis.

(134 pages)
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PUBLIC ABSTRACT

Redefining NBA Basketball Positions Through Visualization and Mega-Cluster Analysis

Alexander L. Hedquist

Basketball players have historically been classified based on one of five positions, namely

Point Guards, Shooting Guards, Small Forwards, and Centers. While grouping players into

these five categories may provide general descriptions of their perceived role, these standard

positions fall short of describing players based on their true abilities and performance. This

MS thesis proposes a method to group players of the National Basketball Association (NBA)

from the past 20 seasons into more meaningful and specific player positions. We system-

atically group these players into nine distinct categories, and we draw from a vast array of

visualization tools, techniques, and software to view and analyze these new player positions

and compare them to the standard roles currently used by the basketball community. These

visualization tools and methods allow us to view highly complex data with many variables

in low-dimensional plots that are both meaningful and interpretable. Each season’s nine

player positions are then grouped into nine overall positions across the 20-year span and

their unique attributes and behaviors will be explored in depth. All of the player tables, the

individual player position assignments, and many other relevant data tables are assembled

and included on a single online repository for public access and use.
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CHAPTER 1

Introduction

1.1 Background

Basketball is one of the most popular sports in the world. In 2021, the International

Basketball Federation (FIBA) estimated that 450 million people play basketball at some

level worldwide (FIBA, 2021). The pinnacle of the basketball world is certainly the National

Basketball Association (NBA). In 2021, Game 6 of the NBA Finals between the Milwaukee

Bucks and the Phoenix Suns peaked at 16.54 million viewers worldwide (NBA, 2021). With

the NBA’s popularity growing globally, the way the game is played is changing rapidly.

Players, coaches, and managers are discovering new and innovative ways to play the game,

and players’ roles and abilities are adapting to these new approaches. The conventional

method to create lineups is by selecting one player from each of the standard five positions

of basketball, but with the constant evolution of the game, coaches and managers must

become more precise in categorizing players if they want to achieve the highest possible

performance out of their lineups.

1.1.1 NBA Basketball Standard Positions

The game of basketball is contested between two teams with five players from each

team on the floor at a time. Historically, these players have been assigned a position and a

number based on their role on the court. These positions are: Point Guard (one), Shooting

Guard (two), Small Forward (three), Power Forward (four), and Center (five). Teams and

coaches may choose to play multiple players from the same position on the court at once

(e.g., Two Power Forwards and no Center), but the standard lineup structure contains one

player from each of the five positions with a dynamic and flexible set of roles.

The Point Guard is the player who generally brings the ball up the court and runs the
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offense. This type of player will frequently call out plays and sets to get certain players

good shots. Point Guards are usually very fast and can score from the outside and inside.

They generally have more assists (passes immediately preceding a made basket) than other

players and are strong ball-handlers and dribblers. Some famous NBA Point Guards include

John Stockton and Stephen Curry.

The Shooting Guard is a player who shares many of the same characteristics of a Point

Guard, but their primary goal is to shoot on offense. These players often move without the

ball and get open for quick shots. They often play on the ‘wings’, while the point guard plays

more in the middle of the court. Some famous Shooting Guards include Michael Jordan and

Kobe Bryant.

The Small Forward is a very versatile player. These players have a wide range of roles

depending on the team and the game situation. They are generally very strong defenders,

and tend to be a bit larger and taller than the ‘guard’ players. These players can be great

outside shooters like the Shooting Guards, but may also be adept at finishing around the

basket and rebounding. Some famous Small Forwards include LeBron James and Kevin

Durant.

The Power Forward is often a larger version of the Small Forward. These players

frequently play around the low ‘blocks’ or the ‘post’ by the basket, and are proficient mid-

range scorers. These players are strong and can guard big players under the basket. Some

famous Power Forwards include Tim Duncan and Karl Malone.

The Center is usually one of the tallest players on the team. Centers are strong defenders

and shot-blockers, and deter smaller players from driving to the basket. Centers generally

score most of their points in the painted area. Centers also have high rebound totals and set

lots of screens for ball-handlers. Some famous Centers include Kareem Abdul-Jabbar and

Shaquille O’Neal.

1.1.2 The Limits of Standard Positions

While these standard positions have been the most common approach to creating lineups

and classifying players, these categories do not paint the whole picture of player abilities
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or their true role on the floor. For example, John Stockton and Stephen Curry are both

classified as Point Guards. However, their roles on the court are incredibly different, and

these players would normally not be talked about in the same sentence. John Stockton fits

more of the standard definition for a Point Guard. He is the NBA’s all-time leader in assists

and steals. While Stockton was a threat to score, he generally had very modest scoring

averages, especially when compared to Stephen Curry’s scoring potential. Curry is widely

considered as the greatest three-point shooter of all time, and recently surpassed Ray Allen,

a well-known Hall of Fame Shooting Guard, for the most three-pointers made all time in

December of 2021. John Stockton and Stephen Curry can and should be classified into

different positions since John Stockton was a pass-first Point Guard, while Stephen Curry

was a score-first Point Guard.

Similar inconsistencies can be found across all seasons and players. We can also find

examples of players who play multiple positions on the floor. LeBron James and Kevin

Durant are technically classified as Small Forwards, but these two players have been known

to play all five positions throughout their career. Kevin Durant stands at almost seven feet

tall, giving him the height of a Center. He has the mid-range shooting and post-up ability of

a Power Forward, the length and quickness on defense of a Small Forward, and the shooting

ability of some of the best Shooting Guards. Durant and James also frequently bring the

ball up the floor and are considered the ‘floor generals’, similar to the role of a Point Guard.

In the last decade, the NBA has experienced a major surge in three-point shooting,

largely due to the increased understanding and use of basketball analytics (Schuhmann,

2021). With more threes being attempted, and with the mid-range jump shot on the decline,

players who can stretch the floor and play inside and outside are highly sought after. Teams

and coaches are adjusting their strategy on both defense and offense in response to the

increased three-point shooting across all NBA teams.

Forcing a taller player to play the traditional Power Forward or Center position when

he or she is a great ball-handler and outside shooter will diminish that player’s ability to

impact the game. How can we classify these players more accurately to paint a correct
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picture of player roles and lineup compositions? How can we determine which players truly

have similar roles and which players have very different roles? The answer is through cluster

analysis.

1.1.3 Previous Research Into ‘Updated’ Player Positions

While the mainstream classification of basketball players still revolves around the stan-

dard five positions, research into ‘updated’ or ‘advanced’ player positions has been conducted

in the past decade.

Alagappan (2012) used a method called topological data analysis based on player shot

charts to classify players from the 2010-2011 NBA season into new positions that were more

indicative of their roles on the court. He proposed stretching "from 5 to 13" positions and

described how these updated positions can improve team building, player management, and

recruiting.

Kalman and Bosch (2020) used data from the 2009-2010 NBA season to the 2018-2019

NBA season to perform model-based clustering. Nine clusters were chosen to restructure

player positions. Specific players were tracked to see how their roles evolved over the course

of their career. These new positions were compared to the standard positions and regression

and random forest models were constructed to predict lineup performances based on their

compositions.

Finally, Jyad (2020) analyzed the 2018-19 NBA season using Principal Component

Analysis (PCA) to explore the characteristics that appear to distinguish players the most.

Hierarchical cluster analysis was performed to group players into nine different positions.

These new player positions were analyzed in detail to determine their unique attributes.

1.1.4 Motivation

The current framework for classifying basketball players does not allow for confident

decision-making when building lineups and teams. Players are short-changed when their

array of unique skills and abilities are mischaracterized to fit an extremely broad and vague

definition. The assumption that one player from each of these standard positions must be
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present on the floor limits a team’s ability to respond to game flow and unique matchups.

The advent of so-called ‘small lineups’ in today’s game provides an example of how teams

are departing from the standard lineup composition to try and make the opposing team

uncomfortable.

Creating updated player positions will open the door to more advanced and focused

lineups and will allow players, coaches, and managers to create the optimal lineups for

specific matchups and game situations. These new-and-improved player categories will allow

players to play their true role on the court, rather than forcing them into a standard role

that does not match their abilities.

This MS thesis aims to expand on previous research by analyzing and visualizing player

clusters in more detail. While certain visualization techniques are introduced by previous

authors, we will give considerable attention to a wide array of static and dynamic visual-

ization techniques for exploring player cluster distinctions. While Alagappan (2012) and

Jyad (2020) explored player characteristics in a single season and Kalman and Bosch (2020)

analyzed a span of ten seasons, this research will consider twenty NBA seasons of player

statistics to determine the dominant player characteristics that have prevailed over time.

This MS thesis will differ from previous work by clustering based on easily trackable game

statistics rather than more advanced and less intuitive metrics like assist rates, efficiency,

and shot locations.

1.2 Overview

We will begin in Chapter 2 by discussing the 20 seasons of NBA player data and vari-

ables that will be used for the cluster analysis and exploration of the new player positions.

Attention will be given to the data cleaning and processing performed to enhance the pro-

ceeding methods. The GitHub page (https://github.com/ahed1194/MS_Thesis) with all

relevant data tables as well as all R (R Core Team, 2021) and Python (Van Rossum and

Drake, 2009) code used to retrieve and prepare this data will be provided and summarized.

Zuccolotto et al. (2021) introduced how to summarize basketball data in R through visual-

izations of player statistics and game statistics, and they introduced a BasketballAnalyzeR

https://github.com/ahed1194/MS_Thesis
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R package that provides helpful tools and functions for analyzing basketball data.

Following the presentation of the data, Chapter 3 will explore the various methods

used to analyze the NBA player data. An overview of some major types of clustering will

be provided, followed by a discussion of ways to select the optimal number of clusters for

a particular data set. An overview of various validity checks and dimensionality reduction

methods will be presented. Finally, this chapter will provide descriptions and links to doc-

umentation for all R packages, Python packages, and other software employed to carry out

these analyses.

In Chapter 4, we will determine the optimal number of player positions for an individual

season and for all 20 seasons combined. Justification for this choice will be provided through

various dimensionality reduction visualizations in R, Python, and GGobi (Cook and Swayne,

2007).

Chapter 5 will begin by providing the results of the consistency measures of our clus-

tering algorithm from season to season. Next, we will present the clustering results and key

characteristics of these clusters for players in the 2000-2001 NBA season. We will then dis-

cuss a new technique called mega-clustering. A description of this method will be provided.

This will be followed by an in-depth visual and numerical analysis of these ‘mega-clusters’

and their distinguishing features. Finally, we will compare the mega-clustering results to

those obtained through clustering all 20 seasons combined.

The results obtained through Chapters 4 and 5 will be discussed in detail in Chapter 6.

Reasoning behind the specific number of clusters chosen will be provided. We will specifically

compare and contrast the various visualization techniques based on how they contribute to

the analysis and effective visualization of cluster differences. The positions defined through

the single season and combined season clusterings will then be compared and analyzed.

We will conclude in Chapter 7 with a glimpse into the wide range of applications of this

analysis, followed by some proposed future improvements and complementary research that

can be performed.

Appendices A, B, C, D, and E can be consulted for additional discussions and insights.
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In Appendix A, we will discuss variations in the lower cutoff for minutes played. In Appendix

B, we will provide the details of the indices used to choose the optimal cluster number. In

Appendix C, we will analyze and discuss how variations in the lower and upper limit param-

eters affect the optimal cluster selections. In Appendix D, we will view the simulations of

the consistency measures for cluster differences from season to season. Finally, in Appendix

E, we will briefly discuss the results of clustering players from the 2000-2001 NBA season

into only three clusters instead of nine.

All relevant data and code can be found at the following GitHub link:

https://github.com/ahed1194/MS_Thesis

Specifically, the reader may access the following tables in the following sub-folders of the

above URL:

• Player_Data: All the individual player tables with their career statistics

• Lineup_Data: The 20 lineup tables with the five-man lineup combinations and their

statistics

• R_Code: The R code used to scrape and analyze the NBA player data

• Python_Code: The Python code used for visualizing the player clusters

• Player_Cluster: The scaled player data with their cluster assignments by season

• Mega_Cluster: The ‘mega-cluster’ assignments for each season’s clusters

https://github.com/ahed1194/MS_Thesis
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CHAPTER 2

Data Overview

In this chapter, we will provide the source for the individual NBA player data as well as

the lineup data used in this MS thesis. We will discuss the many variables included in our

data sets and how they were manipulated and normalized to prepare for further analysis.

Finally, we will provide information on how to access these scraped NBA player and lineup

tables as well as the code used to generate all figures and tables that will be presented.

2.1 Accessing Individual and Team Data

As the original goal of this research was to cross-analyze individual player statistics

with lineup performances comprised of five players, data was compiled for all active NBA

players from the 2000-2001 season to the 2019-2020 season. All lineup combinations during

the same time-frame were also extracted. Basketball Reference (Basketball Reference, 2022)

provides incredibly thorough records of all games and statistics recorded since well before

the merger of the NBA and ABA (the two major American basketball leagues) back in 1976.

This website allows users to extract most data free of charge, and even has the option to

convert most tables to .csv files or other easy-to-use formats.

Data was extracted over a 20-year span by using the read_html function in the rvest

R package (Wickham, 2020b). While the individual player data is still available on Basket-

ball Reference, the lineup data has since been moved to a subscription-only section called

Stathead (https://stathead.com/basketball/).

Once the individual and team lineup tables for all 20 years were scraped, it became

necessary to match the five names from each lineup row with each player’s unique identifier.

Every player who has ever appeared on an NBA roster possesses a unique identifier which

consists of the first five letters of his last name, the first two letters of his first name, and

then ‘01’ if the player is the first with the given first and last name. For example, Stephen

https://stathead.com/basketball/


9

Curry’s unique page for his career statistics and history is found at

https://www.basketball-reference.com/players/c/curryst01.html.

For duplicate appearances of a player reference, a ‘02’ is added if he is the second, a

‘03’ if he is the third, and so on. For example, three people with the name ‘George Johnson’

have played in the NBA. The third player to appear in the NBA named George Johnson

has this unique webpage:

https://www.basketball-reference.com/players/j/johnsge03.html

Data for all players who recorded data from the 2000-2001 NBA season to the 2019-2020

NBA season was collected and saved as individual .csv files on the GitHub page (https:

//github.com/ahed1194/MS_Thesis). The individual player data can be found by accessing

the Player_Data sub-directory. The team lineup data by season can be found by accessing

the Lineup_Data sub-directory.

2.2 Data Description

There are two major data pools discussed in this research. The individual player data

is used extensively in this research, while the team lineup data is merely mentioned as a

counterpart for potential future applications. Each data pool is discussed in detail below.

2.2.1 Player Data

The player data is comprised of all NBA players who were active on any of the 30

franchises between the 2000-2001 season and the 2019-2020 season. It is important to note

that not all of these players were included in the subsequent clustering algorithms and

classifications since some players did not record enough minutes to be considered for the

cluster analysis (see Section 2.3.1). We should also note that only regular season statistics

will be used for this analysis. Playoff minutes vary more widely between players since some

players played much of their career on teams in the upper half of the rankings, while other

players may have appeared very little in the playoffs due to being on a poor team. Playoff

https://www.basketball-reference.com/players/c/curryst01.html
https://www.basketball-reference.com/players/j/johnsge03.html
https://github.com/ahed1194/MS_Thesis
https://github.com/ahed1194/MS_Thesis
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games are starkly different from regular season games since a team plays an opponent up to

seven times to determine who advances to the next round. This leads to different strategies

and player uses, as well as fewer bench players being utilized due to varying strategies. There

is also little reason to rest certain players and go deeper into the bench since it is the end

of the season.

The variables included in each one of these player tables are shown in Table 2.1 along

with their descriptions. Table 2.2 shows Stephen Curry’s career table, and Table 2.3 shows

a closeup of some of Curry’s statistics by season. While more advanced statistics were

available on other pages on Basketball Reference, the focus of this analysis is on classifying

players based on data that can be viewed or easily computed from a box score. Statistics

like rebounds, steals, assists, turnovers, and points may not provide a comprehensive display

of a player’s true value, but they shed light on a player’s role on a given team, regardless of

their value.

It is also important to note the format of the variables in each player table (see Table

2.1 for details and brief explanations of all variables in the player tables). If we move top to

bottom on Table 2.1, we can see Season, Age, and Team (Tm), which are used to identify a

player. We will treat each year and each team as if it is a completely new player. With players

constantly changing teams mid-season and during the off-season, players’ roles change, and

they frequently change positions. Stephen Curry may be classified as a traditional Point

Guard for the first three seasons, and then transition to a Shooting Guard, for example. In

Table 2.4, we can see the last five rows of Dwyane Wade’s career. In the 2016-2017 season,

he played for the Chicago Bulls (CHI). In the 2017-2018 season, he began with the Cleveland

Cavaliers (CLE), but then was traded mid-season to the Miami Heat (MIA). We can also

see a total (TOT) row listed above the two different team rows. This total row was removed

from the clustering analysis, and Dwyane Wade’s two rows for the 2017-2018 season are

treated as different players with a unique identifier including his team abbreviation.
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Table 2.1: Label explanations for individual NBA player tables (labels are precisely as seen
on Basketball Reference (2022))

LABEL NAME EXPLANATION

Season Season
NBA Season listed from fall of the first year
to spring of the next year (final two numbers of second year)
(Ex: 2019-20)

Age Age Players age at the start of the season

Tm Team One of 30 teams, listed as three-letter abbreviation
(Ex: GSW = Golden State Warriors)

Lg League League that the player participates in. For this
analysis, all listings are ‘NBA’.

Pos Position

One of five standard player positions:
‘PG’ = Point Guard, ‘SG’ = Shooting Guard,
‘SF’ = Small Forward, ‘PF’ = Power Forward,
‘C’ = Center

G Games Played Games played in given season. Max games
in a season is 82.

GS Games Started Games for which the given player was one
of five starters.

MP Minutes Played AVERAGE minutes played per 36 minutes
FG Field Goals Made AVERAGE field goals made per 36 minutes
FGA Field Goals Attempted AVERAGE field goals attempted per 36 minutes
FG% Field Goal Percentage Field goal percentage for the entire season
3P Three-Pointers Made AVERAGE three-pointers made per 36 minutes

3PA Three-Pointers Attempted AVERAGE three-pointers attempted per
36 minutes

3P% Three-Pointer Percentage Three-point percentage for the entire season
2P Two-Pointers Made AVERAGE two-pointers made per 36 minutes
2PA Two-Pointers Attempted AVERAGE two-pointers attempted per 36 minutes
2P% Two-Pointer Percentage Two-point percentage for the entire season
FT Free Throws Made AVERAGE free throws made per 36 minutes
FTA Free Throws Attempted AVERAGE free throws attempted per 36 minutes
FT% Free Throw Percentage Free throw percentage for the entire season
ORB Offensive Rebounds AVERAGE offensive rebounds per 36 minutes
DRB Defensive Rebounds AVERAGE defensive rebounds per 36 minutes
TRB Total Rebounds AVERAGE total rebounds per 36 minutes
AST Assists AVERAGE assists per 36 minutes
STL Steals AVERAGE steals per 36 minutes
BLK Blocks AVERAGE blocks per 36 minutes
TOV Turnovers AVERAGE turnovers per 36 minutes
PF Personal Fouls AVERAGE personal fouls per 36 minutes
PTS Points AVERAGE points per 36 minutes

Continuing top to bottom on Table 2.1, Games Played (G), Games Started (GS), and

Minutes Played (MP) are displayed as totals for a given season, while all variables from

Field Goals Made (FG) to Points (PTS) are listed as per 36 minutes average. This deci-
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Table 2.2: Stephen Curry career statistics obtained from https://www.basketball-
reference.com/players/c/curryst01.html

Season Age Tm Lg Pos G GS MP FG FGA FG% 3P 3PA 3P% 2P 2PA 2P% FT FTA FT% ORB DRB TRB AST STL BLK TOV PF PTS
1 2009-10 21 GSW NBA PG 80 77 2896 6.6 14.2 0.462 2.1 4.7 0.437 4.5 9.5 0.474 2.2 2.5 0.885 0.6 3.8 4.4 5.9 1.9 0.2 3 3.1 17.4
2 2010-11 22 GSW NBA PG 74 74 2489 7.3 15.2 0.48 2.2 4.9 0.442 5.1 10.3 0.498 3.1 3.3 0.934 0.8 3.4 4.1 6.2 1.6 0.3 3.3 3.4 19.9
3 2011-12 23 GSW NBA PG 26 23 732 7.1 14.6 0.49 2.7 6 0.455 4.4 8.6 0.514 1.9 2.3 0.809 0.7 3.6 4.3 6.8 1.9 0.4 3.2 3 18.8
4 2012-13 24 GSW NBA PG 78 78 2983 7.6 16.8 0.451 3.3 7.2 0.453 4.3 9.5 0.449 3.2 3.5 0.9 0.7 3.1 3.8 6.5 1.5 0.1 2.9 2.4 21.6
5 2013-14 25 GSW NBA PG 78 78 2846 8.2 17.5 0.471 3.3 7.8 0.424 4.9 9.7 0.509 3.9 4.4 0.885 0.6 3.6 4.2 8.4 1.6 0.2 3.7 2.5 23.7
6 2014-15 26 GSW NBA PG 80 80 2613 9 18.5 0.487 3.9 8.9 0.443 5.1 9.6 0.528 4.2 4.6 0.914 0.8 3.9 4.7 8.5 2.2 0.2 3.4 2.2 26.2
7 2015-16 27 GSW NBA PG 79 79 2700 10.7 21.3 0.504 5.4 11.8 0.454 5.4 9.5 0.566 4.8 5.3 0.908 0.9 4.8 5.7 7 2.3 0.2 3.5 2.1 31.7
8 2016-17 28 GSW NBA PG 79 79 2638 9.2 19.7 0.468 4.4 10.8 0.411 4.8 8.9 0.537 4.4 4.9 0.898 0.8 4 4.8 7.2 1.9 0.2 3.3 2.5 27.3
9 2017-18 29 GSW NBA PG 51 51 1631 9.4 19.1 0.495 4.7 11.1 0.423 4.8 8 0.595 6.1 6.7 0.921 0.8 5 5.8 6.8 1.8 0.2 3.4 2.5 29.7
10 2018-19 30 GSW NBA PG 69 69 2331 9.8 20.7 0.472 5.5 12.5 0.437 4.3 8.2 0.525 4.1 4.4 0.916 0.7 5 5.7 5.6 1.4 0.4 3 2.6 29.1
11 2019-20 31 GSW NBA PG 5 5 139 8.5 21.2 0.402 3.1 12.7 0.245 5.4 8.5 0.636 6.7 6.7 1 1 5.7 6.7 8.5 1.3 0.5 4.1 2.8 26.9
12 Career NA NBA 699 693 23998 8.5 17.9 0.476 3.7 8.6 0.435 4.8 9.3 0.515 3.8 4.2 0.906 0.7 4 4.7 6.9 1.8 0.2 3.3 2.6 24.6

Table 2.3: Stephen Curry career statistics - Showing the first 6 rows and first 13 variables

Season Age Tm Lg Pos G GS MP FG FGA FG% 3P 3PA
1 2009-10 21 GSW NBA PG 80 77 2896 6.6 14.2 0.462 2.1 4.7
2 2010-11 22 GSW NBA PG 74 74 2489 7.3 15.2 0.48 2.2 4.9
3 2011-12 23 GSW NBA PG 26 23 732 7.1 14.6 0.49 2.7 6
4 2012-13 24 GSW NBA PG 78 78 2983 7.6 16.8 0.451 3.3 7.2
5 2013-14 25 GSW NBA PG 78 78 2846 8.2 17.5 0.471 3.3 7.8
6 2014-15 26 GSW NBA PG 80 80 2613 9 18.5 0.487 3.9 8.9

Table 2.4: Dwyane Wade’s final five rows and first 13 variables obtained from https://www.
basketball-reference.com/players/w/wadedw01.html

Season Age Tm Lg 22Pos G GS MP FG FGA FG% 3P 3PA
... ... ... ... ... ... ... ... ... ... ... ... ... ...
14 2016-17 35 CHI NBA SG 60 59 1792 8.3 19.2 0.434 0.9 2.9
15 2017-18 36 TOT NBA SG 67 3 1536 7 16 0.438 0.7 2.6
16 2017-18 36 CLE NBA SG 46 3 1069 6.7 14.6 0.455 0.8 2.4
17 2017-18 36 MIA NBA SG 21 0 467 7.8 19 0.409 0.7 3.2
18 2018-19 37 MIA NBA SG 72 2 1885 7.9 18.3 0.433 1.6 5

sion was made due to the volatility of games played. If Player A plays half the season, and is

injured for the second half, his total points, rebounds, assists, etc. would appear much lower

than another Player B who played a full season, even if Player A’s game-to-game output

was higher.

2.2.2 Lineup Data

While the team lineup data was not used in the research presented in this MS thesis, we

should still discuss its variables and dimensions, since its contents will be extremely useful

for further research. Tables 2.5 and 2.6 display the first rows of the 2019-2020 season lineup

combinations. Like the individual player data, these tables contain only regular season data.

Lineup table observations consist of five unique players, the team, and the season.

https://www.basketball-reference.com/players/c/curryst01.html
https://www.basketball-reference.com/players/c/curryst01.html
https://www.basketball-reference.com/players/w/wadedw01.html
https://www.basketball-reference.com/players/w/wadedw01.html
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Table 2.5: First five rows and first twelve variables of 2019-2020 season lineups (Ordered
by Minutes Played). Obtained from https://www.basketball-reference.com/play-
index/lineup_finder in May 2019. Note that this link is no longer valid. See Section
2.1

ranker lineup team_id season g mp poss opp_poss pace fg fga fg_pct
1 W. Barton | G. Harris | N. Jokic | P. Millsap | J. Murray DEN 2019-20 38 735.3 1474 1453 95.5 42.3 89.3 0.474
2 B. Bogdanovic | R. Gobert | J. Ingles | D. Mitchell | R. O’Neale UTA 2019-20 47 570.5 1164 1155 97.6 41.4 80.8 0.513
3 J. Allen | S. Dinwiddie | J. Harris | T. Waller-Prince | G. Temple BRK 2019-20 43 490.9 1003 999 97.9 39.8 89.1 0.447
4 B. Adebayo | J. Butler | M. Leonard | K. Nunn | D. Robinson MIA 2019-20 39 487.4 956 955 94.1 41.8 82.7 0.505
5 D. Brooks | J. Crowder | J. Jackson | J. Morant | J. Valanciunas MEM 2019-20 36 413.7 868 861 100.3 44.2 91.8 0.482

Table 2.6: First five rows and final five variables of 2019-2020 season lineups. Obtained
from https://www.basketball-reference.com/play-index/lineup_finder in May 2019.
Note that this link is no longer valid. See Section 2.1

X1 X2 X3 X4 X5
/players/b/bartowi01.html /players/h/harriga01.html /players/j/jokicni01.html /players/m/millspa01.html /players/m/murraja01.html
/players/b/bogdabo02.html /players/g/goberru01.html /players/i/inglejo01.html /players/m/mitchdo01.html /players/o/onealro01.html
/players/a/allenja01.html /players/d/dinwisp01.html /players/h/harrijo01.html /players/p/princta02.html /players/t/templga01.html
/players/a/adebaba01.html /players/b/butleji01.html /players/l/leoname01.html /players/n/nunnke01.html /players/r/robindu01.html
/players/b/brookdi01.html /players/c/crowdja01.html /players/j/jacksja02.html /players/m/moranja01.html /players/v/valanjo01.html

Other identifiers were added to the end of the tables, including each player’s unique ref-

erence linked to the Basketball Reference website. These identifiers could be useful for

matching individual players with their lineup combinations and performances. Please note

that variable abbreviations are lower case for the lineup tables, while they are upper case

for the individual player tables.

Games (g) and Minutes Played (mp) variables were again listed as totals for the entire

season. Possessions (poss) and Opponent Possessions (opp_poss) were listed as totals

as well. The rest of the data from Pace all the way to Point Differential (diff_pts)

are listed as averages per 48 minutes playing time to control for lineups that played very

little time together.

2.3 Data Manipulation

Once the data was downloaded and stored by player references and season references,

the process of setting up the data for analysis began. In this section we will note important

changes and filters placed on the data in an attempt to make the subsequent analysis more

meaningful.

https://www.basketball-reference.com/play-index/lineup_finder
https://www.basketball-reference.com/play-index/lineup_finder
https://www.basketball-reference.com/play-index/lineup_finder
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2.3.1 Lower Limit for Minutes

It is important that we try to include only meaningful minutes played in each game,

and eliminate the ‘garbage time’. ‘Garbage time’ is the time in the game when one team

is blowing out the other and the outcome has already been decided. At this point, coaches

usually pull their star players and put reserves in who don’t play many minutes. Garbage

time plays more like an exhibition match and should be excluded from further analysis as

much as possible, without eliminating any meaningful playing time.

While a cutoff of 24 minutes played (two quarters) per player for each season, higher

cutoffs were tested to ensure no major differences in the optimal number of clusters selection.

The reader is invited to consult Appendix A for further details and discussion on this topic.

2.3.2 Missing Values

Missing values were located on many player tables in percentage categories. For exam-

ple, Shaquille O’Neal played most of his seasons without attempting a three-pointer (See

https://www.basketball-reference.com/players/o/onealsh01.html). This resulted in

0’s on 3FG and 3FGA, but resulted in NA’s on 3FG_pct. These NA values were set to -0.1.

This allowed for players who never attempted a three-point shot to be included in the anal-

ysis, but also allowed for a distinction between players who attempted no three-pointers and

players who attempted one or more three-pointers and missed all of them.

2.3.3 Normalizing the Data

Once these necessary manipulations were performed, the numerical columns beginning

with FG all the way to PTS were normalized using the scale function from base R.

Normalizing the data before analysis has many benefits. It allows for all input variables

to be equally treated in models. A player’s points-per-game average is likely to be notably

higher than their blocks-per-game average, but it can be argued that one block is far more

valuable than one point in a game. Many models are based on Euclidean distances between

points in determining loss and other important statistics, and we do not want these values

to be skewed by differing variable ranges.

https://www.basketball-reference.com/players/o/onealsh01.html
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Another benefit of normalizing data applies to machine learning. Many machine learn-

ing algorithms require the data to be properly normalized or scaled in order to converge to

some output (Baijayanta, 2020). There are many potential applications of this research in

the field of machine learning and regression that will be discussed in Section 7.2.

2.4 Public Availability

A major contribution of this research to the sports community is the acquisition and

cleaning of the player and lineup data. The potential applications and uses of these player

tables are limitless. The fact that the lineup data is no longer freely acquired makes this web

scraping work even more valuable. A GitHub repository has been made available to house all

relevant tables, code, and results (https://github.com/ahed1194/MS_Thesis). The indi-

vidual player tables are found in the Player_Data sub-folder and team lineup tables from the

2000-2001 NBA season to the 2019-2020 NBA season are found in the Team_Data sub-folder.

The reader may also access all player and season clustering results in the Player_Cluster

and Mega_Cluster sub-folders, respectively, to find where any specific players have been clas-

sified that were not mentioned in this MS thesis. Finally, all relevant R code and Python

code used to acquire and analyze the data are available for public use in the R_Code and

the Python_Code sub-directories. Assuming no changes occur in the Basketball Reference

interface, interested individuals and parties may run the R code and scrape to-date player

tables to a local drive.

https://github.com/ahed1194/MS_Thesis


16

CHAPTER 3

Methods

In this chapter, we will discuss the essentials of data clustering and the various algo-

rithms that can be performed. We will also look into other methods used to verify and

enhance our analysis of clustering player positions, such as the Adjusted Rand Index, Prin-

cipal Component Analysis, tSNE, and PHATE. Finally, we will outline the R packages and

other software approaches that were used in this MS thesis.

3.1 What is Clustering?

This section provides a brief informative discussion of different types of clustering while

outlining the particular algorithms and methods relevant to this data analysis. Statistical

clustering, or cluster analysis, refers to placing observations into meaningful groups (Kauf-

man and Rousseeuw, 1990, pp. 1-67). Clustering groups similar data points and seeks to

exclude points that are beyond some similarity threshold. Clustering data can be done using

one of many algorithms depending on the type of data and the end goal. In this research

setting, we will focus primarily on the difference between two highly popular clustering

methods: hierarchical clustering and k-means clustering.

3.1.1 Hierarchical vs k-means Clustering

Hierarchical clustering and k-means clustering are two fundamentally different ways to

approach classifying data points into groups. The former focuses on matching pairs of points

that are close together or ‘similar’ to one another, while the latter focuses on the proximity of

individual data points to a cluster’s centroid, or local optima (Kaushik and Mathur, 2014).

As one would imagine, there are advantages and limits to both of these methods.

k-means clustering is a type of ‘centroid’ clustering where the number of clusters is

pre-determined and the data points are classified based on their proximity to a particular
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centroid. This type of partitioning works well for large data sets, but requires advanced

knowledge of how many ways to divide the data in order to achieve meaningful separations.

Convergence is guaranteed in this scenario since a data point will always have a ‘closest

neighbor’, but the interpretability of cluster separations may prove difficult to impossible

(Kaushik and Mathur, 2014).

Hierarchical clustering allows the user to stop at any step in the division or agglomera-

tion process. The agglomerative algorithms generally begin with each data point as its own

cluster. The most similar clusters are then combined, and this process is iterated until all

data points are part of one big cluster. The data points can be combined until variability has

reached a certain point or has leveled off (Larose and Larose, 2014). Choosing the number

of partitions can be somewhat arbitrary, but hierarchical clustering does have the advantage

of interpretability. If the goal is to produce a natural hierarchy of elements, hierarchical

clustering methods provide a step-by-step process of inclusion. For NBA player positions,

for example, we may observe scoring point guards and passing point guards be combined

into a ‘point guard’ cluster. We could further see an inclusion of shooting guards and point

guards into a ‘guard’ cluster.

A well-known disadvantage of hierarchical clustering is the potential computational cost

due to large data sets. This method requires the storage of dissimilarity matrices for each

element, and can greatly increase processing time (Kaufman and Rousseeuw, 1990).

Given the benefits and drawbacks, as well as the example of player position data given

above, it became evident that hierarchical clustering would be the better choice to proceed

with the NBA player data. We already have some prior knowledge about player character-

istics, and we would like to have some interpretability for the cluster separations. We will

now look at the different types of hierarchical clustering, including the method selected for

partitioning the data in this MS thesis.

3.1.2 Different Types of Hierarchical Clustering

The hierarchical clustering algorithms considered for the cluster analysis of the NBA

data are: Single Linkage, Complete Linkage, Average Linkage, and Ward’s Distance-Squared
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method (Ferreira and Hitchcock, 2009; Murtagh and Contreras, 2017). While these are not

the most complex clustering algorithms available, they comprise some of the most frequently

used methods across all fields of study (Rokach and Maimon, 2005). These methods are all

known as Agglomerative Nesting (AGNES) methods, or Hierarchical Agglomerative Cluster-

ing (HAC) methods (Kaufman and Rousseeuw, 1990). We will begin with a brief description

of each clustering method, followed by a comparison. For further comparisons and specific

calculations for these clustering methods and related methods, the reader is invited to con-

sult the works of Ferreira and Hitchcock (2009) and Murtagh and Contreras (2017).

Single Linkage: This method combines points into clusters one by one based on a

minimum distance between two points in two clusters. It is one of the oldest methods of

agglomerative hierarchical clustering. It has the disadvantage of combining groups that may

have one pair of points with a small distance, but the overall group is highly distinct, or

dissimilar.

Complete Linkage: This method combines clusters together based on the maximum

distance between points in different clusters. This method carries a similar disadvantage to

single linkage since it can be heavily influenced by outliers and will often place points with

relatively small distances between each other into different clusters.

Average Linkage: This method combines clusters together iteratively by measuring

the average distance between all points in one group and all points in another group. Groups

are combined that have the smallest average distance from each other. This method could

be seen as an improvement on the limitations mentioned with single and complete linkage.

Ward’s Distance-Squared (Ward D2): This method differs from the previously

mentioned linkage methods in that it does not group by some distance measure, but rather

a within-cluster sum of squares. For this reason, this method is sometimes referred to as the

Ward minimum variance method. At each step in the agglomeration process, a new cluster

is made that minimizes this within sum of squares measure. An important distinction

must be made between Ward’s method and Ward’s Distance-Squared method. They are

often used synonymously and perform similarly, but the distance-squared method is more
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frequently used since it highlights the distances between objects and makes them easier to

distinguish and partition. Murtagh and Legendre (2014) discussed the differences between

Ward’s method and Ward’s Distance-Squared method and clarified some overgeneralizations

and misunderstandings about them.

We can use dendograms to visually compare the four methods mentioned above (Ferreira

and Hitchcock, 2009). Dendograms are plots that show the hierarchical relationship between

observations. For this introductory example, we will use the mtcars dataset from base R.

Table 3.1 displays the 32 rows and 11 columns of this data set.

Table 3.1: mtcars data set (rounded to 1 decimal place)

model mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6.0 160.0 110.0 3.9 2.6 16.5 0.0 1.0 4.0 4.0
Mazda RX4 Wag 21.0 6.0 160.0 110.0 3.9 2.9 17.0 0.0 1.0 4.0 4.0
Datsun 710 22.8 4.0 108.0 93.0 3.9 2.3 18.6 1.0 1.0 4.0 1.0
Hornet 4 Drive 21.4 6.0 258.0 110.0 3.1 3.2 19.4 1.0 0.0 3.0 1.0
Hornet Sportabout 18.7 8.0 360.0 175.0 3.2 3.4 17.0 0.0 0.0 3.0 2.0
Valiant 18.1 6.0 225.0 105.0 2.8 3.5 20.2 1.0 0.0 3.0 1.0
Duster 360 14.3 8.0 360.0 245.0 3.2 3.6 15.8 0.0 0.0 3.0 4.0
Merc 240D 24.4 4.0 146.7 62.0 3.7 3.2 20.0 1.0 0.0 4.0 2.0
Merc 230 22.8 4.0 140.8 95.0 3.9 3.2 22.9 1.0 0.0 4.0 2.0
Merc 280 19.2 6.0 167.6 123.0 3.9 3.4 18.3 1.0 0.0 4.0 4.0
Merc 280C 17.8 6.0 167.6 123.0 3.9 3.4 18.9 1.0 0.0 4.0 4.0
Merc 450SE 16.4 8.0 275.8 180.0 3.1 4.1 17.4 0.0 0.0 3.0 3.0
Merc 450SL 17.3 8.0 275.8 180.0 3.1 3.7 17.6 0.0 0.0 3.0 3.0
Merc 450SLC 15.2 8.0 275.8 180.0 3.1 3.8 18.0 0.0 0.0 3.0 3.0
Cadillac Fleetwood 10.4 8.0 472.0 205.0 2.9 5.3 18.0 0.0 0.0 3.0 4.0
Lincoln Continental 10.4 8.0 460.0 215.0 3.0 5.4 17.8 0.0 0.0 3.0 4.0
Chrysler Imperial 14.7 8.0 440.0 230.0 3.2 5.3 17.4 0.0 0.0 3.0 4.0
Fiat 128 32.4 4.0 78.7 66.0 4.1 2.2 19.5 1.0 1.0 4.0 1.0
Honda Civic 30.4 4.0 75.7 52.0 4.9 1.6 18.5 1.0 1.0 4.0 2.0
Toyota Corolla 33.9 4.0 71.1 65.0 4.2 1.8 19.9 1.0 1.0 4.0 1.0
Toyota Corona 21.5 4.0 120.1 97.0 3.7 2.5 20.0 1.0 0.0 3.0 1.0
Dodge Challenger 15.5 8.0 318.0 150.0 2.8 3.5 16.9 0.0 0.0 3.0 2.0
AMC Javelin 15.2 8.0 304.0 150.0 3.2 3.4 17.3 0.0 0.0 3.0 2.0
Camaro Z28 13.3 8.0 350.0 245.0 3.7 3.8 15.4 0.0 0.0 3.0 4.0
Pontiac Firebird 19.2 8.0 400.0 175.0 3.1 3.8 17.1 0.0 0.0 3.0 2.0
Fiat X1-9 27.3 4.0 79.0 66.0 4.1 1.9 18.9 1.0 1.0 4.0 1.0
Porsche 914-2 26.0 4.0 120.3 91.0 4.4 2.1 16.7 0.0 1.0 5.0 2.0
Lotus Europa 30.4 4.0 95.1 113.0 3.8 1.5 16.9 1.0 1.0 5.0 2.0
Ford Pantera L 15.8 8.0 351.0 264.0 4.2 3.2 14.5 0.0 1.0 5.0 4.0
Ferrari Dino 19.7 6.0 145.0 175.0 3.6 2.8 15.5 0.0 1.0 5.0 6.0
Maserati Bora 15.0 8.0 301.0 335.0 3.5 3.6 14.6 0.0 1.0 5.0 8.0
Volvo 142E 21.4 4.0 121.0 109.0 4.1 2.8 18.6 1.0 1.0 4.0 2.0
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Fig. 3.1: Dendograms displaying differing hierarchical methods. The lower the connection
occurs in the dendogram, the earlier these two clusters were combined together. For example,
in the Single Linkage method in the top left, the Maserati Bora is linked very last to the
rest of the cars.

In Figure 3.1, we can view how each of the four hierarchical methods we have discussed

classifies the 32 different cars. While information is lost in dendograms, such as the true

proximity of points, it is still informative to determine when certain points, or cars in

this case, are combined in the iterative process. The lower the connection occurs on the

dendogram, the earlier these two clusters were combined together. For example, we can see

with the Single Linkage method in the top left of Figure 3.1 that the Maserati Bora is linked

very last. This means that before the final agglomeration to one big cluster, this car was its

own cluster, and the 31 other cars formed the other cluster.

When we move to the top right to look at the Complete Linkage method, we can see

that the Maserati Bora was combined later in the agglomeration process, but it was linked

to a cluster of 8 other cars before the final linkage.

Continuing with the same example, the Average Linkage method shows the Maserati

Bora gets linked to a cluster of 15 cars, and then the following and final agglomeration

combines two clusters of 16 cars each into one cluster of all 32 cars.



21

Finally, the Ward D2 method appears to have the most smooth and uniform agglom-

eration process, where all cars get clustered more evenly as we move through the iterative

process. We don’t see any later combinations of single cars as we do in the single, complete,

or average linkage methods. The Maserati Bora gets linked to a group of just three other

cars, rather than being grouped with a very large subset of the entire data set.

For further information about these clustering methods and others, the reader is invited

to consider the articles by Borgatti (1994) and Saraçli et al. (2013).

Within R, there exists a cluster package that can provide additional help in deter-

mining the optimal clustering method between a number of different hierarchical methods,

including the four methods listed above (Maechler et al., 2019). One of the functions in

this package allows the user to compute an agglomerative clustering coefficient given the

method. The details of the calculation are described by Maechler et al. (2019), but will not

be discussed in detail in this MS thesis. This clustering coefficient measures the amount of

clustering structure found in the data, with values closer to one indicating a stronger struc-

ture. When comparing the methods side-by-side, the user can make an educated assumption

about the optimal method for clustering the given data set. With the NBA player data, the

highest computed coefficient resulted from using the Ward D2 method (see Table 4.1).

3.1.3 Selecting the Optimal Number of Clusters

One potential drawback of hierarchical clustering mentioned previously involves the am-

biguous number of clusters needed for further analysis. Agglomerative clustering combines

the data from each individual point until all observations are in one cluster. The user has

to determine the optimal number of clusters in order to proceed.

Many different measures have been constructed to determine the optimal number of

clusters for hierarchical data over the years (Charrad et al., 2014; Martín-Fernández et al.,

2020). Many of these measures are related, but all commonly-used methods are calculated

in their own unique way. Within the NbClust R package (Charrad et al., 2014), 30 different

indices can be computed and their choices can be viewed simultaneously to gain a consensus

decision of the optimal number of clusters for a given data set (see Section 3.3.7).
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In Appendix B, the reader may view the list of all 30 indices used by the NbClust R

package along with their formula and a brief description. While 30 methods are available,

only 26 of these were used for the NBA player data to reduce the computational time. The

reasoning for this is based on the comments made by Charrad et al. (2014) in the official

NbClust article:

"Clustering with index argument set to "alllong" requires more time, as the run of some

measures, such as Gamma, Tau, Gap and Gplus, is computationally very expensive, espe-

cially when the number of clusters and objects in the data set grows very large. The user

can avoid running these four indices by setting the argument index to "all". In this case,

only 26 indices are computed."

While it is possible to further limit the types of indices used in the computation, journal

articles by Cai et al. (2019), Reimann-Philip et al. (2019), and Sai Krishna et al. (2018) all

appear to agree on the use of at least 26 indices in the decision-making process.

Fig. 3.2: Optimal number of clusters for the mtcars data set based on 26 indices. Ten of
the 26 indices chose ‘three’ as the optimal cluster number for the cars.
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Using the NbClust R package on our NBA player data, we can view the optimal number

of clusters from year to year based on each criterion, and combine them into one image

(Charrad et al., 2014). Figure 3.2 gives an example of the optimal number of clusters as

chosen by the 26 criteria for the mtcars data set from base R. In this example, 10 of the 26

indices chose three as the optimal number of clusters for the mtcars data.

3.2 Other Methods

Additional methods are used in this research to either verify or enhance the player

data analysis. It is important to verify that our clustering results are both meaningful

and consistent. We will begin by discussing the usefulness of the within sum of squares

and Adjusted Rand Index calculations, followed by a discussion of dimensionality reduction

methods, including PCA, tSNE, and GGobi’s grand tour feature.

3.2.1 Within Sum of Squares

A useful method to determine the optimal cluster number involves taking a sum of

squares measure within each cluster, known as the within sum of squares (WSS). A sum of

squares measure is computed by measuring the distance between each data point and the

mean, or in this case, the centroid. We can compute the WSS as we increase or decrease

the number of partitions to see how the number of partitions affects the overall clustering

variation. The WSS will decrease as we add more partitions to the data since the data

points will become increasingly closer to the center of their cluster. Generally, this decrease

in WSS will begin very rapidly as we increase the number of clusters, and will level off as

we get closer to each data point as its own cluster, or a WSS value of 0.

Figure 3.3 provides an example WSS plot (Galili, 2013) using the mtcars data set

from base R introduced in Section 3.1.2. We can see that the WSS appears to level off

after the third separation, so a possible cluster number for the mtcars data would be three.

We can also see another drop-off between the sixth and seventh cluster separation that is

steeper relative to the previous three separations. This line of logic can help us make a more

meaningful decision regarding the best number of clusters.
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Fig. 3.3: Example within sum of squares plot by cluster number - mtcars data set. We
can see a significant leveling off, or ‘elbow’ in the plot around three clusters, making this a
reasonable selection.

3.2.2 Adjusted Rand Index

Since we are looking at NBA player data from 2000 to 2020, it became important to

verify that the optimal number of clusters from year to year are consistent. Due to the

continuing evolution of the game of basketball, and especially with a heavier emphasis on

drafting and starting players who can perform a number of different roles on the court rather

than specializing, we must verify that it is logical to use the same number of clusters (in this

case, nine clusters were selected for the combined data) in each year, or if there has been an

evolution in player roles.

While it would be interesting to carry out a more in-depth exploration of the evolution

of player usage over a 20+ year span, the pertinent question to this cluster analysis was

simply whether or not the clustering algorithm is relatively consistent from year to year.

The Rand Index (RI) provides a similarity measure between two different data clus-

terings (Rand, 1971). To calculate the Rand Index, we must count up all the ‘agreements’

between two data clusterings and then divide the resulting number by the total number of

unordered pairs. Equation 3.1 displays the full calculation, where a refers to the number of

unordered pairs placed in the same cluster in both clustering methods, and b refers to the

number of unordered pairs placed in different clusters in both clustering methods. We can

count up the total number of unordered pairs by computing
(
n
2

)
= n(n− 1)/2.
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RI =
a+ b(

n
2

) (3.1)

Suppose we have a set of 6 elements {A,B,C,D,E,F}, and we cluster them into one of

three groups using two different clustering methods. The first clustering, called X, is shown

below, where A was clustered into group 1, B into group 2, and so on:

1 2 3 1 2 3

The second clustering we will call Y and is shown below:

1 1 3 1 1 2

Due to the small set of six elements, we only have
(
6
2

)
= 6(6 − 1)/2 = 15 unordered

pairs, and we can list them out as follows: {A,B}, {A,C}, {A,D}, {A,E}, {A,F}, {B,C},

{B,D}, {B,E}, {B,F}, {C,D}, {C,E}, {C,F}, {D,E}, {D,F}, {E,F}.

We can calculate a from 3.1 by finding the total number of unordered pairs that are

placed in the same cluster in both X and Y . In this case, {A,D} and {B,E} qualify, since A

and D are both placed in cluster 1 in X, and A and D are placed in cluster 1 in Y. Similarly,

B and E are both placed in cluster 2 in X, and B and E are both placed in cluster 1 in Y.

This means that a = 2. Next, we can calculate b by finding the total number of unordered

pairs that are placed in different clusters in both X and Y . In this case, we have {A,C},

{A,F}, {B,C}, {B,F}, {C,D}, {C,E}, {D,F}, {E,F}, so b = 8. When we plug these values

into the Rand Index formula, we get: RI = (2+8)/15 = 10/15 = 0.667. Notice that 5 pairs

were not included in the numerator of the RI calculation. This is because these pairs are

clustered into different groups in X and the same group in Y, or vice versa. For example,

the ordered pair {A,B} is placed into different clusters (1 and 2) in X, but {A,B} are placed

in the same cluster in Y (1 and 1).

Intuitively, the Rand Index is valued between 0 and 1, where a 0 would denote no

agreement between the two clusterings, and a 1 indicating that the two data clusterings are

exactly the same.
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The Adjusted Rand Index (ARI) further adds on the Rand Index by accounting for

chance in clustering (Hubert and Arabie, 1985). The random chance is based off a contin-

gency table created between matches of X and Y, where Nij refers to the number of objects

in common between X and Y and i and j corresponding to a row and column for each

object, respectively. More simply put, the Adjusted Rand Index accounts for chance by

computing the Rand Index, the expected value of the Rand Index, and the maximum of the

Rand Index. Equation 3.2 illustrates how these computations are implemented.

ARI =
RI − Expected(RI)

Max(RI)− Expected(RI)
(3.2)

To illustrate an example of how the Adjusted Rand Index is calculated, we will use the

same data and partitions as the previous example. Table 3.2 shows the contingency table for

our clustering methods X and Y , where Nij corresponds to the number of times an element

is clustered into group i in X and group j in Y . For example, the third row and second

column contains a value of 1, since F is the only object placed into cluster 3 in X and cluster

2 in Y .

Table 3.2: Contingency table displaying Nij for clustering methods X and Y

Y1 Y2 Y3 Row Sums
X1 2 0 0 2
X2 2 0 0 2
X3 0 1 1 2

Col Sums 4 1 1 N=6

Equation 3.3 shows the full calculation for the Adjusted Rand Index, where i refers

to the row number, j refers to the column number, and P and P∗ refer to two different

partitions of the same data.

ARI(P, P∗) =
∑

ij

(Nij

2

)
− [

∑
i

(
ai
2

)∑
j

(bj
2

)
]/
(
N
2

)
1
2 [
∑

i

(
ai
2

)
+
∑

j

(bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(bj
2

)
]/
(
N
2

) (3.3)

We will start by calculating
∑

ij

(Nij

2

)
=

(
2
2

)
+
(
0
2

)
+
(
0
2

)
+
(
2
2

)
+
(
0
2

)
+
(
0
2

)
+
(
0
2

)
+
(
1
2

)
+
(
1
2

)
=

1+0+0+1+0+0+0+0+0 = 2. Since ai corresponds to the row sums, we can calculate
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i

(
ai
2

)
=

(
2
2

)
+
(
2
2

)
+
(
2
2

)
= 1+1+1 = 3. Finally, since bj corresponds to the column sums,

we can calculate
∑

j

(bj
2

)
=

(
4
2

)
+

(
1
2

)
+

(
1
2

)
= 6 + 0 + 0 = 6. Plugging these values into

Equation 3.3, we obtain the following:

ARI =
2− [3 ∗ 6]/

(
6
2

)
1
2 [3 + 6]− [3 ∗ 6]/

(
6
2

) =
2− 1.2

4.5− 1.2
=

0.8

3.3
= 0.242

As in the case of the Rand Index, the output of the Adjusted Rand Index will tend

towards 1 as the two data clusterings become more similar, and will tend towards 0 for two

clusterings that highly disagree.

For the purposes of this research, we want to verify that there is consistency from year to

year in the way the hierarchical clustering algorithm partitions the NBA players. Obviously,

players who change teams, roles, or positions, or players who simply develop and enhance

their skills in the offseason will have a high chance of being placed in a different cluster,

but this is to be expected. We simply want to verify that the clustering is worth more than

random partitioning.

The Adjusted Rand Index was calculated comparing each season to the season immedi-

ately preceding it and immediately following it. Rows were removed from the two seasons in

question if the player did not participate in both seasons. The total number of 19 different

ARI measures were taken starting with the 2000-2001 season compared to the 2001-2002

season, and ending with the 2018-2019 season compared to the 2019-2020 season. The results

were then compared to a random baseline where the same players were randomly assigned

to one of nine clusters and simulated 9,999 times to compare the ARI results to our achieved

outcomes.

3.2.3 Principal Component Analysis

Principal Component Analysis (PCA) endeavors to reduce data down to a few principal

components in order to more easily visualize it in two-dimensional space (Pearson, 1901).

The first principal component is the one that maximizes the variance of the projection

of data. While PCA was used only as a baseline for more sophisticated dimensionality
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reduction methods, it is important to set the stage with the most frequently used and

understood method available.

For the purposes of this research, PCA was used as a dimensionality reduction method

for exploratory data analysis. This method allows us to display the nine NBA player clusters

in two dimensional space while still being able to view some separation between the clusters.

Jolliffe (1986) provided further information on the calculation, history, and scope of PCA.

3.2.4 tSNE

As an alternative to PCA, t-Distributed Stochastic Neighbor Embedding (tSNE) offers a

more robust technique to visualize high-dimensional data in two-dimensional space. While

PCA is the more frequently used method, tSNE is a more advanced technique that can

analyze much more complicated data sets (van der Maaten and Hinton, 2008).

While PCA provides a linear dimensionality reduction, i.e., placing dissimilar points

farther away from each other in the two-dimensional plane, tSNE can evaluate non-linear

and non-parametric relationships to provide a better two-dimensional interpretation of the

data. The details of the tSNE implementation will not be presented in this research, but

the reader may consult the work of Hinton and Roweis (2002) for further information about

tSNE and its uses.

3.2.5 PHATE

Another dimensionality reduction method known as Potential for Heat-diffusion Affinity-

based Trajectory Embedding (PHATE) (Moon et al., 2019) was employed in this MS thesis

using Python. Like tSNE, PHATE is capable of handling non-linear data, as well as data

sets with lots of noise. Examples of the output in two and three dimensions were compared

to the other representations of the NBA player data to show how the nine player clusters

can be distinguished using different methods and projections.

The details of the PHATE implementation and logic will not be presented in this

MS thesis, but the official documentation, introductory code, and examples provided by
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Moon et al. (2019) are available on Github via the following link: https://github.com/

KrishnaswamyLab/PHATE.

3.3 R Packages

In this section, we will explore briefly the different R (R Core Team, 2021) packages used

for this research. While we will not describe all functionalities of the various R packages,

helpful links to documentation and examples will be given for further study.

3.3.1 tidyverse

The tidyverse is actually a collection of data manipulation R packages (Wickham et al.,

2019). Loading tidyverse allows the user to access many functions and tools, including

those found within the rvest, purrr, and dplyr R packages described in more detail in the

next sections.

3.3.2 rvest

The rvest R package provides a simple and compact way to scrape data from the web

(Wickham, 2020b). rvest is found within the tidyverse R package, therefore it can be

loaded either by loading tidyverse or by installing and loading rvest directly.

In this research, rvest was used to extract all lineup tables by referencing the specific

HTML nodes (kjytay, 2018). For further information about rvest, please visit the following

help page: https://rvest.tidyverse.org/

3.3.3 purrr

The purrr R package is a data manipulation tool that enhances R programming by

providing tools to work with vectors and functions (Henry and Wickham, 2020). The purrr

R package can be installed and loaded directly, or can be loaded by simply loading the

tidyverse R package.

The map_dbl function was used in this research to synthesize and display the results of

the agnes function from the cluster R package (see Section 3.3.8). The map_dbl function,

https://github.com/KrishnaswamyLab/PHATE
https://github.com/KrishnaswamyLab/PHATE
https://rvest.tidyverse.org/
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as well as the map_chr, map_lgl, and map_int functions return an atomic vector of the

indicated type. Boehmke (2020) provides a complete example using the agnes R function

as well as the map_dbl function for displaying the results of the different algorithms.

The reader is invited to visit the purrr help page found at the following link: https:

//purrr.tidyverse.org/

3.3.4 dplyr

The dplyr R package is a data storage, manipulation, and transformation tool (Wick-

ham et al., 2020). The functions associated with dplyr allow the user to more compactly

organize and summarize data by using fewer steps than base R.

Various functions from dplyr were used throughout the data preparation, including

using the piping process to web scrape, subset, re-order, and add new columns to the data.

For more information on the wide array of uses of the dplyr R package, please visit the

following source: https://dplyr.tidyverse.org/

3.3.5 XML

The XML R package provides many helpful tools for parsing, generating, and reading

XML and HTML documents through R (Temple Lang, 2020).

In this research, the XML R package was used to scrape all individual player tables from

the year 2000 to the year 2020 (Frey, 2019). For further information about XML, please visit

the help page: https://cran.r-project.org/web/packages/XML/XML.pdf

3.3.6 httr

The httr R package is designed to work with the most frequent HTTP verbs, like

GET(), POST(), HEAD(), etc. The package is designed to allow the user to easily access

content such as status codes and cookies (Wickham, 2020a).

The GET() function in R was used to access the URLs and parse specific information

from the HTML tables. For further information on the usage of the httr R package, please

visit the help page: https://cran.r-project.org/web/packages/httr/httr.pdf

https://purrr.tidyverse.org/
https://purrr.tidyverse.org/
https://dplyr.tidyverse.org/
https://cran.r-project.org/web/packages/XML/XML.pdf
https://cran.r-project.org/web/packages/httr/httr.pdf
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3.3.7 NbClust

The NbClust R package was briefly discussed in Section 3.1.3. The 30 different indices

found in Appendix B provide the user with a proposal of the optimal number of clusters.

The user can select all or any subset of the indices in the selection process (Charrad et al.,

2014).

The indices mentioned were used to determine the optimal number of clusters for the

player data by year, and then aggregated to determine the optimal number of clusters for

all 20 years combined. Histograms were used to display the frequency of selections for each

number between as low as two clusters and as high as 20 clusters. It was determined that the

start and end points always show an increase in number of selections over their neighbors.

See Appendix C for work and visuals related to the analysis of the effect of different start

and end points on the optimal cluster selection.

The reader is also invited to view the help page for the NbClust R package found here:

https://cran.r-project.org/web/packages/NbClust/NbClust.pdf

3.3.8 cluster

The cluster R package provides an array of clustering algorithims and tools for ana-

lyzing and plotting clustering results (Maechler et al., 2019).

For this analysis, the agnes function was used to compute the agglomerative nesting

coefficient. This measures the amount of clustering structure found, with values closer

to 1 indicating a stronger structure. Different types of hierarchical clustering algorithms

(including "ward", "ward D2", "single", "complete", and "average") were computed and

the coefficients were compared to determine the most useful method. See the following help

page for additional information and usage for the cluster package as well as many helpful

examples: https://cran.r-project.org/web/packages/cluster/cluster.pdf

3.3.9 factoextra

The factoextra R package provides an efficient and effective way to extract and visual-

ize multivariate data using methods such as PCA, Correspondence Analysis (CA), Multiple

https://cran.r-project.org/web/packages/NbClust/NbClust.pdf
https://cran.r-project.org/web/packages/cluster/cluster.pdf
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Correspondence Analysis (MCA), and others (Kassambara and Mundt, 2020).

The fviz_cluster R function in factoextra was used to display the results of the

nine clusters by year, as well as the mega-clustering analysis results. This was used as

a base visualization for comparison to more advanced methods such as tSNE. For further

information on the functionalities of factoextra, please visit the following source: https:

//cran.r-project.org/web/packages/factoextra/factoextra.pdf

3.3.10 mclust

The mclust R package provides “Gaussian mixture modeling for model-based clustering,

classification, and density estimation" (Scrucca et al., 2016). Within the mclust library there

exists an AdjustedRandIndex function for comparing two classifications.

In this research, the AdjustedRandIndex function was used to verify similarities between

data clusterings from season to season. This process is described in Section 3.2.2. For further

information on the use cases of the AdjustedRandIndex R function, as well as the other

functions within the mclust R package, the reader is invited to visit the following source:

https://cran.r-project.org/web/packages/mclust/mclust.pdf

3.3.11 Rtsne

The Rtsne R package allows the user to implement the tSNE dimensionality reduction

method (Krijthe, 2015). This method was discussed in Section 3.2.4. The function takes as

input a matrix where the rows are observations and the columns are variables or dimensions.

In this research, the different player statistics constituted the columns and each indi-

vidual player in a given season made up a row. The new values resulting from the Rtsne

procedure were then displayed using baseR to show the separations of the nine player clus-

ters. For further information on the Rtsne R package, the reader is invited to visit the help

page: https://cran.r-project.org/web/packages/Rtsne/Rtsne.pdf

3.4 Python Packages

This section provides a brief explanation of the various Python (Van Rossum and Drake,

https://cran.r-project.org/web/packages/factoextra/factoextra.pdf
https://cran.r-project.org/web/packages/factoextra/factoextra.pdf
https://cran.r-project.org/web/packages/mclust/mclust.pdf
https://cran.r-project.org/web/packages/Rtsne/Rtsne.pdf
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2009) packages that were used in this MS thesis. The use of Python provided additional

methods to explore and visualize our NBA player data and clustering results.

3.4.1 pandas

The pandas Python package is an open source data manipulation and analysis tool

(McKinney, 2010). This package allows the user to easily perform functions including the

following: reading in data, adding rows and columns to a data frame, slicing data, and

merging and reshaping data frames.

In this MS thesis, the pandas Python package was used to read in the NBA player .csv

files. pandas was also used to further prepare and modify the data to be run through the

PHATE modeling process. For further information about the uses of pandas, the reader

is invited to consult the following web page: https://pandas.pydata.org/docs/getting_

started/index.html#getting-started

3.4.2 matplotlib

The matplotlib Python package contains a wide variety of plotting functions, from

static graphs to dynamic and interactive visualizations (Hunter, 2007). This package works

well with data in many different formats, including the resulting objects from the phate

procedure.

The matplotlib Python package was used in this research to visualize the NBA player

clusters using PHATE. Two-dimensional scatter plots were created and displayed in a single

image using the subplot function within matplotlib. For further information on the ap-

plications of matplotlib, please visit the following user guide: https://matplotlib.org/

stable/users/index.html.

3.4.3 scprep

The scprep Python package is a framework for loading, preprocessing, and plotting

matrices (https://github.com/KrishnaswamyLab/scprep). The scprep package allows

https://pandas.pydata.org/docs/getting_started/index.html#getting-started
https://pandas.pydata.org/docs/getting_started/index.html#getting-started
https://matplotlib.org/stable/users/index.html
https://matplotlib.org/stable/users/index.html
https://github.com/KrishnaswamyLab/scprep
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the user to work with many of the open-source Python packages, including scipy (https:

//www.scipy.org/), pandas, numpy (https://numpy.org/), and matplotlib.

For the purposes of this research, the scatter2d function within the scprep Python

package was used to display the results of the PHATE procedure. This package was used

in conjunction with the matplotlib package to create the PHATE visualizations. The

following URL may be consulted for further examples of scatterplots using scprep: https:

//scprep.readthedocs.io/en/stable/examples/scatter.html

3.4.4 phate

The phate Python package (Moon et al., 2019) was created to implement the PHATE

procedure, as discussed in Section 3.2.5. Results from this alternative dimensionality re-

duction method can then be displayed using a variety of plotting packages, including the

matplotlib family of plotting functions mentioned in Section 3.4.2.

In this research, the phate Python package was used to provide an additional vi-

sualization for the NBA player cluster data to compare to PCA and tSNE. The reader

may learn more about the phate package and see examples at the following link: https:

//dburkhardt.github.io/tutorial/visualizing_phate/

3.5 GGobi

GGobi is an interactive platform constructed to provide insights into multi-dimensional

data (Cook and Swayne, 2007). From the official GGobi website found at http://ggobi.

org/, the description reads as follows: “GGobi is an open source visualization program for

exploring high-dimensional data. It provides highly dynamic and interactive graphics such as

tours, as well as familiar graphics such as the scatterplot, barchart and parallel coordinates

plots. Plots are interactive and linked with brushing and identification."

GGobi was used in this research to explore and validate the nine player clusters using

all their individual statistics. The grand tour feature was used extensively to visualize the

nine NBA player clusters for each year, as well as to analyze and brush the nine player

clusters across all 20 NBA seasons. The grand tour is a procedure that allows the user

https://www.scipy.org/
https://www.scipy.org/
https://numpy.org/
https://scprep.readthedocs.io/en/stable/examples/scatter.html
https://scprep.readthedocs.io/en/stable/examples/scatter.html
https://dburkhardt.github.io/tutorial/visualizing_phate/
https://dburkhardt.github.io/tutorial/visualizing_phate/
http://ggobi.org/
http://ggobi.org/
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to view scatterplots from all possible projections for high-dimensional data (Asimov, 1985;

Cook et al., 1995). The user may pause at any point and ‘brush’ clusters of points to watch

how they behave across different projections.

Lee et al. (2020) provided an in-depth comparison between grand tours and other ‘em-

bedding’ reduction methods, including tSNE. The authors of this research introduce the

liminal R package as a link between tours and embedding methods in order to bridge the

gaps in understanding between the two approaches (Lee, 2021).

Examples of the grand tour and ‘brushing’ features will be shown and discussed in the

next chapter.
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CHAPTER 4

Selecting the Optimal Method & Number of Clusters

In this chapter, we will go further into detail on the selection and justification of the best

clustering method and the optimal number of clusters for each of the 20 NBA seasons. This

chapter will cover the application of the NbClust R package discussed in Section 3.3.7, as

well as the various visualizations used to explore the clusters, including histograms, scatter

plots, and snapshots of the grand tour feature of GGobi.

4.1 Selecting a Clustering Method

Before we can decide on the optimal number of clusters for the NBA players, we need

to decide which algorithm will perform the best in making meaningful separations. As

previously mentioned, a hierarchical approach was ultimately chosen in place of a k-means

algorithm, largely due to its interpretability (see Section 3.1.1).

Many hierarchical methods exist, and the most frequently encountered methods were

cross-analyzed using the agnes function in the cluster R package (Maechler et al., 2019)

(see Section 3.3.8). For each NBA season, the AGNES coefficient was computed to measure

the amount of clustering structure, where higher coefficients (closer to 1) indicate a stronger

clustering structure. Table 4.1 displays the average AGNES coefficient for the major hierar-

chical clustering methods. Ward’s (Distance-Squared) method showed the highest amount

of structure at 0.959, therefore the decision was made to proceed with this method for the

rest of the analysis (see Section 3.1.2).

Table 4.1: AGNES coefficient comparison between different hierarchical methods. Ward’s
Distance-Squared method shows the highest amount of clustering structure at 0.959.

Average Single Complete Ward (Dist-Squared) Weighted
Coefficient 0.793 0.716 0.863 0.959 0.818
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4.2 Application of NbClust

Selecting the optimal number of clusters comprises a large portion of this research. The

task of assigning the appropriate number of clusters, especially in hierarchical clustering

methods, can be somewhat subjective. With this in mind, we will attempt, through a wide

array of visualizations and calculations, to justify the selection of nine clusters for any given

year of player data, as well as for the combined clustering over a 20 year span of NBA

players.

The NbClust R package was introduced in Section 3.3.7 as an effective way to select

the optimal number of clusters by using 26 different indices and tallying their ‘votes’. We

can use these index results to see which cluster amount tends to get selected the most and

to see the trends as we stretch from two partitions all the way to twenty different partitions.

4.2.1 Determining Start/End Points

The NbClust function in R contains arguments for start and end points. Initially, a

starting value of five was chosen since the sports community already categorizes players into

one of five positions. However, we must also consider the possibility that we may be able to

cluster players into fewer than five positions.

Starting points from two to five were chosen, and end points from fifteen to twenty to

see how the decisions by the indices would be affected. In Appendix B, the reader may view

a more in-depth discussion of how varying the start and end points affects the resulting

decisions for best cluster number. Three clusters are overwhelmingly chosen as the optimal

cluster number. This cluster configuration tends to separate high scoring forwards and

traditional ‘big men’ from the rest of the players. Additional details and commentary on

the three-cluster configuration can be found in Appendix E. With this in mind, one of the

primary motives of this research is to describe players in more detail and explore subtle

differences between players through visualization. For this reason, we focus on cluster sizes

of five or more for the remainder of this thesis.

Ultimately it was determined that varying start and end points did not influence our

final decision for the optimal number of clusters.
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4.2.2 NbClust Results

Fig. 4.1: Optimal number of clusters per year for NBA player data based on 26 indices by
season. Most years’ cluster selections decrease from 5 to 15 clusters, followed by an increase
in selections from 15 to 20 clusters. Individual seasons such as the 2000-2001 season and
the 2008-2009 season show nine clusters as the optimal selection.
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We can individually assess the optimal cluster selections for each NBA season in ques-

tion. The histogram matrix in Figure 4.1 displays the optimal number of clusters chosen

by the 26 indices from the 2000-2001 season to the 2019-2020 season. Most histograms are

skewed to the right with many showing local maximums at around eight or nine clusters.

In Figure 4.2, we can view the results of the NbClust analysis for all years combined.

If we look beyond the highest frequency at six clusters, we can see a strong local maximum

at nine clusters, as well as a local maximum at twelve, fifteen, and twenty clusters.

Fig. 4.2: Optimal number of clusters for NBA player data based on 26 indices from the 2000-
2001 season to the 2019-2020 season using Ward D2. We see the most frequently selected
cluster number is six, with local maximums occurring at nine, twelve, fifteen, and twenty
clusters.

4.3 Clusterplots/Dimensionality Reduction

We will justify the choice of nine clusters through various visualizations and dimen-

sionality reduction methods. In this section, we will view the results of PCA (see Section

3.2.3), tSNE (see Section 3.2.4), and PHATE (see Section 3.2.5). Examples of each will

be given, as well as several side-by-side comparisons of the methods. Please be advised
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that the cluster numbers are not consistent from season to season. For example, Cluster 1

from the 2000-2001 NBA season PCA clusters will likely not be the same player position as

Cluster 1 from the 2001-2002 PCA clusters. This same inconsistency will also apply to the

visualizations using the other dimensionality reduction methods from season to season. One

must look in to the underlying data points to determine the mapping of clusters from one

year to the next.

4.3.1 PCA

We will visualize the results of PCA partitioning through base R and through the

factoextra R package (see Section 3.3.9). The results of PCA in base R by year for each

NBA season available are shown in Figure 4.3.

We can see from Figure 4.3 that for each year some clusters have clear separations,

while others appear to have considerable overlap. This does not mean that the overlapping

clusters are not distinct. This likely means that the visualization does not capture the

correct dimensions to accurately depict the distinction.

We can take a closer look at the first season’s PCA clustering in Figure 4.4. We can see

that Cluster 9 in the top right of the scatter plot has clear separation from the rest of the

data. We can also see that Cluster 7 on the bottom middle of the scatter plot shows very

little overlap with the rest of the data. Other clusters like 1, 3 and 5 show compactness, but

the limitations of two dimensions make it difficult to determine clear separation.

We can view a similar PCA output using the factoextra R package. Figure 4.5 shows

the same 2000-2001 NBA season’s players. We can see that this figure is the mirrored

version of Figure 4.4 with the well-separated cluster appearing in the top left as opposed to

the top right. This additional plot draws a shape around the clusters and also labels the

center of each cluster with a different symbol. The factoextra plot gives the appearances

of potentially unique ‘planes’ on which the points may appear in higher dimensions.
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Fig. 4.3: PCA plots for NBA seasons 2000-2001 to 2019-2020 - separated into nine clusters.
Note that the cluster numbers are not consistent from season to season. For example,
Cluster 9 in the 2000-2001 season corresponds to the Superstar players, while in the 2001-
2002 season, the Superstar players correspond to Cluster 3.
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Fig. 4.4: PCA plot using base R for players in the 2000-2001 NBA season - separated
into nine clusters. While this technique does not display all player clusters as being highly
distinct, we can see certain clusters that show relative separation. We can see that Cluster
9 in the top right of the scatter plot has clear separation from the rest of the data.

Figure 4.5 shows that the first principal component (‘Dim1’ on the x-axis) accounts for

29.8% of the total variation, while the second principal component (‘Dim2’ on the y-axis)

accounts for 26.6%. Between these first two principal components, we have only accounted

for roughly 56% of the total variation in the player clusters. This further illustrates the need

for more advanced dimensionality reduction techniques to visualize the cluster separations.

The reader may also consult Appendix E for a brief discussion and visualization of only

three player clusters instead of nine.
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Fig. 4.5: PCA plot using factoextra R package for players in the 2000-2001 NBA season
- separated into nine clusters. While this technique does not display all player clusters as
being highly distinct, we can see certain clusters that show relative separation. We can see
that Cluster 9 in the top left of the scatter plot has clear separation from the rest of the
data.

4.3.2 tSNE

The tSNE method is discussed in Section 3.2.4. Figure 4.6 gives a two-dimensional

representation of each NBA season using tSNE. We can compare these results to the same

data using PCA found in Figure 4.3. In general, there tends to be greater distinctions

and spacing between clusters using tSNE. This outcome was to be expected based on the

robustness of tSNE with more complex and high-dimensional data.

Figure 4.7 displays a close-up view of the 2000-2001 season using tSNE, while Figure

4.8 shows a side-by-side comparison of tSNE and PCA. When compared with PCA, we can

see considerably fewer overlaps between clusters. Clusters 1, 3, 4, 5, and 7 show almost no
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Fig. 4.6: tSNE plots for NBA seasons 2000-2001 to 2019-2020 - separated into nine clusters.
Please note that cluster numbers are not consistent from season to season. For example,
Cluster 9 in the 2000-2001 season corresponds to the Superstar players, while in the 2001-
2002 season, Cluster 3 corresponds to the Superstar players.
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Fig. 4.7: tSNE plot for players in the 2000-2001 NBA season - separated into nine clusters.

Fig. 4.8: Visualizing the 2000-2001 NBA season clusters using PCA (left) and tSNE (right)
- separated into nine clusters. In general, tSNE does a better job of showing the distinction
between clusters than PCA. We can see that most clusters in the tSNE plot, with the
exception of Clusters 2 and 4, show relatively strong distinction from the rest of the data.

overlap with other data points. Clusters 6, 8, and 9 still show high distinction from the

other data points, but may have just a few points which appear misplaced in this limited

two-dimensional view. Cluster 2 is the only cluster that appears very spread out across the
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entire plot. We will see in Section 5.2.1 that this cluster corresponds to the Bench Role

Players position, which is a smaller cluster with more miscellaneous players. This is overall

an encouraging sight as we attempt to justify the meaningfulness of using nine partitions

for the NBA player data.

4.3.3 PHATE

Fig. 4.9: PHATE plots for NBA seasons 2000-2001 to 2019-2020 - separated into nine
clusters. Please note that cluster numbers are not consistent from season to season. For
example, Cluster 9 in the 2000-2001 season corresponds to the Superstar players, while in
the 2001-2002 season, Cluster 3 corresponds to the Superstar players.
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The PHATE procedure (see Section 3.2.5) was also used to view the clustering results

for all 20 NBA seasons. Figure 4.9 displays the results of dimensionality reduction in Python

using PHATE for each of the 20 NBA seasons. These plots display the nine distinct clusters

with considerably less overlap than the PCA plots. Note that the colors and cluster numbers

mirror those of the PCA and tSNE plots.

Fig. 4.10: PHATE plot for NBA players in the 2000-2001 season - separated into nine
clusters. PHATE does an excellent job of displaying the uniqueness of many of the nine
player clusters in two dimensions. Clusters 1 and 3 in the top right show particularly strong
separation from the rest of the players.

We can take a closer look at the 2000-2001 NBA season in Figure 4.10 to view the

unique clusters. We can see that Clusters 1, 3, 5, 7, 8, and 9 are mostly distinct from the

rest of the data. Note that the cluster colors and numbers match those of Figure 4.4 and

4.7. For this particular season, Clusters 2, 4, and 6 appear to be spread across many other

clusters with very little distinction. However, it is overall encouraging to see mostly clear

distinctions between the clusters across all seasons.
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4.4 GGobi

While tSNE and PHATE provide a certain level of clarity and justification for our use of

nine different player clusters, we want to examine these clusters in more detail in a much

more interactive fashion. GGobi provides a way to visualize and identify cluster separations

across all dimensions available (see Section 3.5).

In this section, we will view snapshots of different projections created using the GGobi

interface.

4.4.1 Grand Tour/Brushing Results

Based on the selection of nine clusters across the 20 years of data, we can use the Brush

feature in GGobi to customize the color and shape of the points according to their partition.

Table 4.2 shows how these cluster symbols line up with the colors and numbers in the PCA,

tSNE, and PHATE plots.

Table 4.2: GGobi cluster colors and symbols compared to PCA, tSNE, and PHATE clusters

Cluster PCA/tSNE/PHATE Color GGobi Symbol GGobi Color
1 Red Large + Purple
2 Orange Large X Pink
3 Yellow Large ⃝ Red
4 Lime Green Large □ Blue
5 Sea Green Small + Green
6 Light Blue Small x Orange
7 Royal Blue Small ◦ White
8 Purple Small □ Gray
9 Magenta Large + Yellow

Once the data is appropriately brushed, we can view the data in many static plots,

including scatter plots, histograms, and parallel coordinate plots. Since R provides plenty of

options for static visualization, our primary focus with GGobi was the dynamic/interactive

features provided by the grand tour functionality (see Section 3.5).

Figure 4.11 shows an example of one projection of the data from the 2000-2001 NBA

season. We can see that many of the clusters show strong distinction in this two-dimensional

view, including the small orange x’s (top left), the small yellow +’s (top right), the small
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gray □’s (right), the large red ⃝’s (lower middle), and the large yellow +’s (bottom). We

will discuss to which player positions these various colors and shapes correspond in Section

6.2.1. The user may also note in the bottom left of Figure 4.11 the variables that contribute

most to this projection. A longer bar indicates a larger impact, while a smaller bar indicates

a low impact of a variable on the projection. It appears that the top four variables are ‘X2’,

which corresponds to two-point shots, ‘X3’, which corresponds to three-point shots, ‘PT’,

which corresponds to points, and ‘FT’, which corresponds to free-throws. Note that only

the first two letters of each variable are displayed in the axes.

Fig. 4.11: Projection of nine clusters in GGobi. This projection shows several clusters clearly
distinct from the rest of the players. Cluster 9 (Superstars; large yellow +’s) on the bottom
is a notable example.

We can use the grand tour feature to seek low-dimensional representations of our data

that show clear separations of each of our clusters at different points in the tour. We will

briefly view a projection for each of the nine clusters at a point in the tour where they
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show distinction. While these static views of the dynamic tour will not completely capture

every cluster’s uniqueness, they provide insight into the process by which one can view each

cluster’s movement across all projections. The reader may also note that the projection map

at the bottom left of each figure can aid in viewing which variables carry the most weight

in the projection.

Fig. 4.12: Projection showing separation of Cluster 1 (Large Purple +’s) in GGobi

Figure 4.12 shows Cluster 1 with some minor separation from the rest. This cluster

overlaps heavily with Cluster 4 in Figure 4.11, but this projection shows some clear distinc-

tion. Personal fouls (‘PF’) and free throws (‘FT’) appear to have a larger impact on this

projection than other variables.

Figure 4.13 shows Cluster 2 with considerably less overlap than in most other projections

viewed. We recall from our PCA, tSNE, and PHATE plots (see Section 4.3) that Cluster 2

represents one of the more ambiguous positions with players who appear to not stand out

in any single area. It is encouraging to see some distinction in this figure, albeit with some



51

Fig. 4.13: Projection showing separation of Cluster 2 (Large Pink X’s) in GGobi

Fig. 4.14: Projection showing separation of Cluster 3 (Large Red ⃝’s) in GGobi
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overlap with several other clusters. The variables that contribute the most to this projection

include free throws (‘FT’), field goals (‘FG’), and defensive rebounds (‘DR’).

Figure 4.14 displays the uniqueness of Cluster 3. This particular projection shows the

large red ⃝’s with very little overlap with any other cluster. Two-point shots (‘X2’), three-

point shots (‘X3’), and points (‘PT’) appear to have the largest impact on this projection.

Figure 4.15 shows Cluster 4. The process of finding a projection to illustrate the unique-

ness of this particular cluster proved extremely difficult. Like the players in Cluster 2, these

players in Cluster 4 are usually found in the middle of all the projections. These players

do not stand out in one particular area, so it is difficult to find a projection that distin-

guishes them clearly like some of the other positions. The variables that carry the most

weight in this projection include offensive rebounds (‘OR’), defensive rebounds (‘DR’), and

two-pointers (‘X2’).

Fig. 4.15: Projection showing separation of Cluster 4 (Large Blue □’s) in GGobi
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Fig. 4.16: Projection showing separation of Cluster 5 (Small Green +’s) in GGobi

Fig. 4.17: Projection showing separation of Cluster 6 (Small Orange X’s) in GGobi
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Figure 4.16 shows a pause in the grand tour where Cluster 5 stands out on the upper left

portion of the plot. Some variables that appear to have a bigger impact in this projection

include free throws (‘FT’), three-pointers (‘X3’), and steals (‘ST’).

Figure 4.17 shows a very clear distinction for Cluster 6. This particular projection is

extremely insightful since it appears that all the other players are packed together, while

Cluster 6 stands out up above. Field goals (‘FG’) and three-pointers (‘X3’) appear to have

the largest impact on this projection.

Figure 4.18 shows Cluster 7 with almost no overlaps. As was the case with several other

clusters, it was relatively easy to find a projection where Cluster 7 stood out from the rest.

In particular, when these data points were observed during the grand tour, they frequently

did not follow the flow of the rest of the data and would move in opposite directions of the

rest of the points. We will see in Section 5.2.1 that these players are part of the Defensive

Big Men cluster. The most influential variables in this projection include two-pointers

(‘X2’), three-pointers (‘X3’), and points (‘PT’).

Fig. 4.18: Projection showing separation of Cluster 7 (Small Yellow ◦’s) in GGobi)
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Fig. 4.19: Projection showing separation of Cluster 8 (Small Gray □’s) in GGobi

Figure 4.19 provides a moment in the grand tour where Cluster 8 overlaps very little

with other clusters. It is interesting to note that this cluster’s proximity to Cluster 7 to

the upper left, Cluster 2 to the upper right, and Cluster 3 to the lower right. This same

relationship can be seen in the introductory figure (Figure 4.11), meaning that these positions

are likely related to one another. The most important variables in this projection include

three-pointers (‘X3’), points (‘PT’), and two-pointers (‘X2’).

Figure 4.20 shows a very clear distinction of Cluster 9 from the rest of the players.

Much like Cluster 3, this cluster is clearly distinct across many projections. We will see

in Section 5.3.2 that Clusters 3 and 9 constitute the final agglomeration in the hierarchical

clustering process, suggesting that they are the most distinct of the new player positions. In

this projection, the variables that are most influential include include three-pointers (‘X3’),

points (‘PT’), and two-pointers (‘X2’).
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Fig. 4.20: Projection showing separation of Cluster 9 (Large Yellow +’s) in GGobi
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CHAPTER 5

Clustering Results

Now that we have determined the validity and uniqueness of the nine clusters, we will

explore the details and characteristics of the player clusters. We will verify the consistency

of the clustering algorithm using the Adjusted Rand Index, and then explore and discuss

the implementation of mega-clustering of the players across all 20 seasons.

5.1 Clustering by Year

Before we look at the characteristics of the nine NBA player clusters for the different

seasons, we can use the Adjusted Rand Index (see Section 3.2.2) to confirm that the Ward

D2 algorithm is somewhat consistent from year to year.

5.1.1 Adjusted Rand Index Results

We can see from the Table 5.1 that the ARI falls between 0.18 and 0.32. These results

were compared to a random benchmark where all players were clustered randomly for each

year. The amount of players randomly placed in a given cluster was fixed to the amount of

players placed in that cluster by Ward’s D2 method. After randomly assigning all players

to one of the nine clusters, the Adjusted Rand Index was calculated comparing the two

seasons. This process was simulated 9,999 times for each pair of seasons. Figure 5.1 displays

a histogram of all simulations comparing the 2017-2018 NBA season to the 2018-2019 NBA

season, while Figure 5.2 compares the simulations to the actual ARI for the two seasons

based on Ward’s D2 Method. A complete display of the ARI simulations for all pairs of

adjacent NBA seasons can be found in Appendix D.
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Table 5.1: Adjusted Rand Index comparing adjacent seasons. An ARI value of 0 would
indicate no consistency in clustering from season to season, while a value of 1 would indicate
identical clustering between two seasons. The lowest ARI result (0.182) occurs when com-
paring the 2018-2019 season to the 2019-2020 season, while the highest ARI result (0.348)
results from comparing the 2009-2010 season to the 2010-2011 season.

Seasons ARI
2000-2001 vs 2001-2002 0.193
2001-2002 vs 2002-2003 0.227
2002-2003 vs 2003-2004 0.210
2003-2004 vs 2004-2005 0.254
2004-2005 vs 2005-2006 0.208
2005-2006 vs 2006-2007 0.248
2006-2007 vs 2007-2008 0.227
2007-2008 vs 2008-2009 0.271
2008-2009 vs 2009-2010 0.277
2009-2010 vs 2010-2011 0.348
2010-2011 vs 2011-2012 0.316
2011-2012 vs 2012-2013 0.279
2012-2013 vs 2013-2014 0.242
2013-2014 vs 2014-2015 0.250
2014-2015 vs 2015-2016 0.248
2015-2016 vs 2016-2017 0.277
2016-2017 vs 2017-2018 0.247
2017-2018 vs 2018-2019 0.285
2018-2019 vs 2019-2020 0.182

We can see that the ARI does well in detecting true random cluster assignments as

nearly all of the simulated scores fall between -0.02 and 0.02. We expect many players to

evolve due to being traded to a new team, changing roles, or simply improving their skills,

but the fact that we still see a significant link between any two adjacent seasons is very

encouraging.



59

Fig. 5.1: ARI calculation for 9,999 simulations of random cluster assignment for the 2017-
2018 and 2018-2019 NBA seasons. In a random simulation of clustering two seasons, we
would expect most ARI values to fall around 0, meaning there was no consistency in the
two seasons’ clusterings of the same players. We can see that nearly all ARI values in the
simulations fall between -0.02 and 0.02.

5.2 Exploring Clustering Characteristics for a Single Season

We will now explore the nine clusters for an individual season. We will choose the first

season in the 20-year span (2000-2001) for this in-depth exploration to remain consistent

with the close-up views from Chapter 4.

5.2.1 Single Season Cluster Characteristics

One way we can explore the characteristics of the different clusters is to look at their

averages in each of the 21 statistical categories. For each cluster we will classify the statistical
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Fig. 5.2: ARI calculation for 9,999 simulations of random cluster assignment for the 2017-
2018 and 2018-2019 NBA seasons compared to true ARI from hierarchical clustering. It is
clear from these random clustering simulations that the true clustering results were some-
what consistent from season to season.

categories as ‘high’ if the average for the given cluster is above the 75th percentile for all

players in the 2000-2001 NBA season. Table 5.2 displays the results of this method for all

nine clusters across all 21 statistical categories.
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Table 5.2: Cluster characteristics by statistical category for the 2000-2001 NBA season.
‘high’ values indicate that players in this cluster are, on average, above the 75th percentile
for all players in the given season. ‘low’ values indicate that players in this cluster are, on
average, below the 25th percentile for all players in the given season.

1 2 3 4 5 6 7 8 9
FG high high low high
FGA high high low high
FG% low low low high
3P high high high
3PA high high low
3P% high high low
2P high high low low low high
2PA high high low low low high
2P% low low low high
FT high high low low high
FTA high low low high
FT% low low
ORB low low low high high
DRB low high high
TRB low high high
AST high low low
STL high high
BLK low high high high
TOV high high high
PF high high
PTS high high low low high

From Table 5.2, we can pick out some unique characteristics of the different clusters,

and perhaps make some preliminary assumptions about the types of players who were likely

classified in this particular group. We can pair these results with Table 5.3, which displays

10 players selected from each cluster. Generally, more well-known players were selected as

examples as this will make it easier to analyze player roles based on the players’ perceived

impacts on the court. The table also includes the total number of players found in each

cluster. If there were less than 10 players found in a cluster, all players from that cluster are

included in the table. The full list of players in each cluster for the 2000-2001 NBA season,

as well as clustering assignments by player for the other 19 NBA seasons, can be found in

the Mega_Cluster sub-folder of the GitHub repository.

Using Table 5.2 and Table 5.3, we will characterize these new player positions based on
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Table 5.3: Notable players in each cluster for the 2000-2001 NBA season

#1 Score-First Guards #2 Bench Role Players #3 Scoring Big Men
Total Players: 54 Total Players: 68 Total Players: 42

Ray Allen - MIL John Amaechi - ORL Vin Baker - SEA
Michael Finley - DAL Shandon Anderson - HOU Vlade Divac - SAC
Steve Francis - HOU Isaac Austin - VAN Juwan Howard - WAS
Allan Houston - NYK David Benoit - UTA Juwan Howard - DAL
Rashard Lewis - SEA PJ Brown - CHA Zydrunas Ilgauskas - CLE
Dirk Nowitzki - DAL Desmond Mason - SEA Shawn Kemp - POR
Gary Payton - SEA Greg Foster - LAL Hakeem Olajuwon - HOU
Latrell Sprewell - NYK Devean George - LAL Rasheed Wallace - POR
Peja Stojakovic - SAC AC Green - MIA Donyell Marshall - UTA
Grant Hill - ORL Ron Harper - LAL Elton Brand - CHI

#4 Pass-First Guards #5 Two-Way Players/ #6 Bench Perimeter Scorers
Primary Defenders

Total Players: 52 Total Players: 86 Total Players: 10
Stacey Augmon - POR Brent Barry - SEA Nick Anderson - SAC
Mookie Blaylock - GSW Bruce Bowen - MIA Eric Barkley - POR
Baron Davis - CHA Jamal Crawford - CHI Raja Bell - PHI
Anfernee Hardaway - PHX Dell Curry - TOR Muggsy Bogues - TOR
Tim Hardaway - MIA Derek Fisher - LAL Scott Burrell - CHA
Bobby Jackson - SAC Hersey Hawkins - CHA Kornel David - DET
Jason Kidd - PHX Robert Horry - LAL Michael Hawkins - CLE
Steve Nash - DAL Steve Kerr - SAS Jaren Jackson - SAS
Scotti Pippen - POR Hedo Turkoglu - SAC Terry Mills - IND
John Stockton - UTA Bryon Russell - UTA Elliot Perry - ORL

#7 Defensive Big Men #8 Interior Big Men #9 Superstars
Total Players: 26 Total Players: 98 Total Players: 18

Luc Longley - NYK Marcus Camby - NYK Kobe Bryant - LAL
Ben Wallace - DET Erick Dampier - GSW Vince Carter - TOR
Otis Thorpe - CHA Patrick Ewing - SEA Tim Duncan - SAS
Eric Montross - DET Kenyon Martin - NJN Kevin Garnett - MIN
Eric Montross - TOR Dikembe Mutombo - ATL Allen Iverson - PHI
Jeff Foster - IND Dikembe Mutombo - PHI Karl Malone - UTA
Duane Causwell - MIA Jermaine O’Neal - IND Tracy McGrady - ORL
Adonal Foyle - GSW Greg Ostertag - UTA Shaquille O’Neal - LAL
Michael Ruffin - CHI Shawn Bradley - DAL Paul Pierce - BOS
Joel Pryzbilla - MIL Jamaal Magloire - CHA Chris Webber - SAC

their ‘highs’ and ‘lows’ and the key players that were placed in these clusters. For example,

Cluster 1 shows ‘high’ values in most of the scoring categories, including field goals made

and attempted, three-pointers made, free-throws made, and total points. We can also see

that Cluster 1 includes players such as Ray Allen, Michael Finley, and Steve Francis. These

players’ main role on the court was to score from the outside and inside, rather than ball

facilitating/distributing. We will call this position Score-First Guards.

Cluster 2 contains players with low field goal percentage and two-point percentage, and

with average marks in every other category. Most of these players came off the bench and

were relied on for defense and hustle, rather than scoring and distributing. These players

didn’t tend to make a splash on the box score and they very likely had inconsistent minutes,
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so we will call these players Bench Role Players.

Cluster 3 shows similar ‘high’ values to Cluster 1. The key difference here is that

Cluster 3 does not show ‘high’ values in three-pointers made or three-point percentage like

Cluster 1. We can also see players like Vlade Divac, Shawn Kemp, and Hakeem Olajuwon.

These players were well-known big men who scored a lot from the interior, and went to the

free-throw line at high rates. We will call these players Scoring Big Men.

Cluster 4 is highlighted by lower-than-average rebounding numbers, and higher-than-

average assists, steals, and turnovers. This information coupled with some key players like

Jason Kidd, Steve Nash, and John Stockton indicate that this position is clearly for guards

whose primary role is ball handling and passing. These players have the ball in their hands

a lot, so they get credit for a lot more assists, but also a lot more turnovers. We will call

this position Pass-First Guards.

Cluster 5 contains players with ‘high’ values for all three-point shooting categories, and

‘low’ values for two-pointers made and attempted. We can see players like Brent Barry, Dell

Curry, and Steve Kerr, who are known as some of the best three-point shooters in the NBA.

We can also see players like Bruce Bowen, Robert Horry, and Bryon Russell. These players

could shoot the three, but also frequently took the most difficult defensive assignment. We

will call this position Two-Way Players/Primary Defenders.

Cluster 6 shows players with higher three-point making and shooting averages, but

low points per game averages. This may indicate that these players were scorers, but they

didn’t get as many minutes. Players like Nick Anderson, Raja Bell, and Jaren Jackson

played fewer games and came off the bench. These players were good scorers, but may have

been inconsistent with minutes throughout the season. We will call these players Bench

Perimeter Scorers.

Cluster 7 shows players who take very few shots from any distance, and are low on

points. These players have high rebounding and blocking totals. This information com-

bined with player names like Luc Longley and Ben Wallace indicates that these players are

Defensive Big Men. These players’ primary role on the floor is to defend the paint and
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contest shots from close range.

Cluster 8 contains similar ‘highs’ and ‘lows’ to Cluster 7, but these players don’t show

‘low’ values for shots attempted. Players like Marcus Camby, Patrick Ewing, and Kenyon

Martin were strong paint defenders, but were effective post-up players who could score

around the basket at high percentages. We will call these players Interior Big Men.

Cluster 9 is the easiest group to distinguish. These players have ‘high’ values in a

wide range of statistics, including field goals attempted, free throws attempted, turnovers,

and points. Players like Kobe Bryant, Vince Carter, and Allen Iverson were among the

elite superstars of the league. These players have the ball in their hands on most offensive

possessions, and they take all of the big shots. We will call these players the Superstars.

It is important to note at this point that these new clusters each contain many play-

ers from different traditional positions (see Section 1.1.1). For example, the Score-First

Guards includes Shooting Guards like Ray Allen and Michael Finley, Point Guards like

Steve Francis and Gary Payton, small forwards like Peja Stojakovic and Grant Hill, and

even power forwards like Dirk Nowitzki. The Superstars cluster provides another example

of the variety of standard positions that can be found within these new clusters. Allen

Iverson (Point Guard), Kobe Bryant (Shooting Guard), Vince Carter (Small Forward), Karl

Malone (Power Forward), and Shaquille O’Neal (Center) are all traditionally classified as

different positions, but are placed in the same cluster here due to their actual performance.

This type of analysis can be conducted for each of the nine clusters across all 20 seasons

to determine what unique roles are found on the court that are not currently classified by

any player position. We will take a closer look at each individual cluster for the players

across all seasons combined in the next sections.

5.3 Mega-Clustering

In this section we will explore a new method developed to cluster across all 20 NBA

seasons. We will refer to this method as mega-clustering, since it involves applying the same

hierarchical clustering method, but instead of to individual players, the clustering applies

to the nine clusters for each year. In total we will have 9 x 20 = 180 individual ‘objects’,
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and we will be clustering each one into one of nine ‘mega-clusters’. We will then view some

of the characteristics of each ‘mega-cluster’ to determine our new player positions. We will

also provide an example of how an individual player’s position can evolve over the course of

his career. Finally, we will display the results of combined clustering where all individual

players from each season will be clustered together.

5.3.1 Methodology

Before we conduct our analysis of the nine ‘mega-clusters’, we will calculate the ‘highs’

and ‘lows’ for every cluster across every season. This will result in each season having a

table having nine rows, one for each of the nine clusters, and 21 columns, one for each of

the statistical categories. We then can then add an identifier column that lists the year that

this season ended.

In order to mega-cluster all of the season clusters, we must append each year’s table

so that we have 180 rows, one for each cluster, with each row containing their ‘highs’

and ‘lows’. Finally, we can convert the ‘high’ values to 1’s, the ‘low’ values to -1, and

the blanks to 0’s. Table 5.4 displays the first 20 rows of this new table for all clusters

across the 20 NBA seasons. The full table can be found at the following link: https:

//github.com/ahed1194/MS_Thesis/blob/main/Mega_Cluster/megaclusters.csv.

Now that we have the 180 rows that show each cluster’s characteristics across the 20

seasons, we can apply Ward’s D2 method to ‘cluster the clusters’ into one of nine groups.

The purpose of this mega-clustering approach is to to link each player position from year

to year. For example, if Stephen Curry is classified into Cluster 7 in the 2018-2019 season,

we want to see which cluster he is in for the 2019-2020 season. We would expect him to

be grouped with similar players in both years, assuming his skills and his role on the team

didn’t change. We also want to see which players most consistently appear in the same

cluster. As a reminder, the cluster numbers vary from year to year, so we will need to use

these ‘mega-clusters’ to see which player appears in that same group the most.

Obviously, we would hope for a one-to-one matching from year to year. This way, each

‘mega-cluster’ would have 20 observations: one cluster from each season. It was highly

https://github.com/ahed1194/MS_Thesis/blob/main/Mega_Cluster/megaclusters.csv
https://github.com/ahed1194/MS_Thesis/blob/main/Mega_Cluster/megaclusters.csv
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Table 5.4: Cluster characteristics for NBA seasons 2000-2001 to 2019-2020 – first 20 rows.
A value of ‘1’ for a given player cluster indicates that these players, on average, are higher
than the 75th percentile of all players for the given season and the given statistic. A value
of ‘-1’ for a given player cluster indicates that these players, on average, are below the 25th
percentile of all players for the given season and the given statistic. A value of ‘0’ is given
for all players in between.

CLUSTER YEAR FG FGA FG. X3P X3PA X3P. X2P X2PA X2P. FT FTA FT. ORB DRB TRB AST STL BLK TOV PF PTS
1 2001 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1
2 2001 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
3 2001 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1
4 2001 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 1 1 0 1 0 0
5 2001 0 0 -1 1 1 1 -1 -1 0 0 -1 0 -1 0 0 0 0 0 0 0 0
6 2001 0 0 -1 1 1 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 1 -1 1 0 -1
7 2001 -1 -1 0 0 -1 -1 -1 -1 -1 -1 0 -1 1 1 1 -1 0 1 0 1 -1
8 2001 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 -1 0 1 0 1 0
9 2001 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1
1 2002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2002 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 -1
3 2002 1 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1
4 2002 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
5 2002 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0
6 2002 -1 -1 0 0 -1 -1 0 0 0 0 0 -1 1 1 1 -1 0 1 0 1 -1
7 2002 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 1 1 0 1 0 0
8 2002 -1 0 -1 0 0 -1 0 0 -1 1 1 -1 0 0 0 0 0 0 0 1 0
9 2002 0 0 0 1 1 0 -1 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0
1 2003 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 -1 0 1 0 1 0
2 2003 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1

likely that this wouldn’t match up perfectly, but we hope that we will at least see close to

20 observations in each.

5.3.2 Mega-Clustering Visualization

Once Ward’s D2 method was performed on our new data, we can apply the same

visualizations and analyses that were conducted on the individual seasons.

We will begin by viewing the hierarchical clustering process to see when and how the

nine ‘mega-clusters’ were formed. Figure 5.3 shows the order in which each of the player

positions were split from the complete data. We can recall from Section 3.1.2 that we can

consider the dendogram from top-to-bottom or bottom-to-top. In this case it is informative

to discuss the clustering in terms of ‘splits’ from the top down.

We can see that the first split (labeled ‘1’ at the top of the plot) separates Clusters 9

and 3 from the rest of the data. This means that these two positions were clearly the most

distinct from the rest of the players. We will see in Section 5.3.3 that these two positions

correspond to the Superstars (Cluster 3) and the Scoring Big Men (Cluster 9). These

are generally the most dominant players on the floor.
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Fig. 5.3: Dendogram displaying hierarchical clustering of the nine ‘mega-clusters’. The
higher the combination of two clusters occurs, the more distinct these clusters are. We can
see that the final connection brings Clusters 3 and 9 (Superstars and Scoring Big Men
together with the other seven clusters.

We can also see that the final ‘split’ occurs as Clusters 5 and 8 are separated. Appar-

ently, these two ‘mega-clusters’ are the most similar of the nine. We will also see in Section

5.3.3 that these two clusters correspond to the Miscellaneous/Transient Players (Clus-

ter 5) and the Bench Role Players (Cluster 8). These two positions are quite similar in

that they include players who have fairly small impacts on the floor and who tend to play

relatively few minutes per game. This dendogram will be discussed in more detail in Section

6.2.2.

We can now begin to explore the various dimensionality reduction methods discussed

in Section 3.2. We will begin with the visualization of the nine ‘mega-clusters’ using PCA

via the factoextra R package (see Section 3.2.3 and Section 3.3.9). Figure 5.4 displays the

results of PCA on the new ‘mega-cluster’ data.

In Figure 5.4, we can see that four of the ‘mega-clusters’ are highly distinct even in this

two-dimensional view. We also can see individual data points highlighted. The observation

labels consist of a starting number from 1 to 9 corresponding to one of the nine clusters for

a given season, and the last four digits correspond to the ending year of that NBA season.
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Fig. 5.4: ‘mega-clusters’ using PCA from the factoextra R package. The Score-First
Guards and the Pass-First Guards appear to overlap, likely due to many similar aspects
of their positions, while the Defensive Big Men and the Scoring Big Men appear well-
separated from the rest of players, likely due to their highly distinctive roles.

For example, ‘1.2007’ refers to the first cluster from the 2006-2007 NBA season.

While this initial PCA visualization shows distinctness for several ‘mega-clusters’ we

would like to further visualize these clusters using tSNE (see Section 3.2.4 and Section

3.3.11). Figure 5.5 displays the same ‘mega-clusters’ using tSNE in R.

The same labeling method of cluster number and year was applied to the tSNE figure

as to the PCA figure. We can see that all of these ‘mega-clusters’ are highly distinct through

this visualization. We can also see that most of the ‘mega-clusters’ appear to have a similar
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Fig. 5.5: ‘mega-clusters’ using tSNE from the Rtsne R package. This visualization technique
displays clear separation for all nine player clusters.

amount of data points. For the most part, we don’t see many repeat years in the same

cluster, although we can see an example in the purple cluster on the bottom right that we

have cluster 8 and cluster 9 from the 2014-2015 season.

5.3.3 Mega-Clustering Results

Table 5.5 provides the distribution of yearly clusters in each of the nine ‘mega-clusters’.

We can see that Clusters 1 and 5 have only 12 year clusters, while Clusters 6 and 8 have 27

and 29, respectively. Five of the nine ‘mega-clusters’ have more than 20 observations, while

the other four have fewer than 20 observations.

We can view which players appear the most frequently in each ‘mega-cluster’. Table

5.6 shows the top 10 players in each ‘mega-cluster’ based on number of appearances, while

Table 5.7 shows the top 10 players in each ‘mega-cluster’ based on the percentage of their

career spent in that particular cluster. This second top 10 list was implemented to capture

players that either had shorter careers, or whose entire playing career is not captured in the
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Table 5.5: Number of season clusters in each ‘mega-cluster’ – filled red for ‘mega-clusters’
with less than 20 season clusters and green for ‘mega-clusters’ with more than 20 season
clusters

mega-cluster Count
1 12
2 22
3 23
4 16
5 12
6 27
7 22
8 29
9 17

20-year span being analyzed. A full list of the number of appearances by player in each of

these ‘mega-clusters’ can be found in the GitHub repository by accessing the following link:

(https://github.com/ahed1194/MS_Thesis/tree/main/Mega_Cluster).

Based on these lists of key players in each ‘mega-cluster’, we can begin to characterize

these different ‘mega-clusters’ into new player positions.

5.3.4 Cluster 1: Score-First Guards

Cluster 1 (red cluster in top middle of Figure 5.4 and red cluster in bottom left of Figure

5.5) contains players such as Ray Allen, Jamaal Crawford, JJ Redick, and CJ McCollum.

While these players are usually not the top scorer on the team, they are known as great

scorers. Taking a look at Jamal Crawford’s career statistics at https://www.basketball-

reference.com/players/c/crawfja01.html, we can see that from the 2009-2010 season to

the 2019-2020 season, he started in only 40 games (less than four starts per season), and he

still managed to average over 14 points per game seven times. When these players are on

the floor, their primary goal is to find ways to score. We will call this position Score-First

Guards.

5.3.5 Cluster 2: Pass-First Guards

Cluster 2 (orange cluster in top middle of Figure 5.4 and orange cluster in middle

https://github.com/ahed1194/MS_Thesis/tree/main/Mega_Cluster
https://www.basketball-reference.com/players/c/crawfja01.html
https://www.basketball-reference.com/players/c/crawfja01.html
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Table 5.6: Most frequently occurring players in each ‘mega-cluster’

Cluster 1
Score-First Guards # of Apps Cluster 2

Pass-First Guards # of Apps Cluster 3
Superstars # of Apps

Jason Richardson 7 Andre Miller 15 LeBron James 17
Ray Allen 6 Raymond Felton 13 Dwyane Wade 17
Jamaal Crawford 6 Rajon Rondo 13 Kobe Bryant 16
JJ Redick 6 Beno Udrih 13 Carmelo Anthony 13
Al Harrington 6 Jose Calderon 12 Allen Iverson 12
Tim Thomas 6 Earl Watson 11 Tony Parker 12
Leandro Barbosa 5 Ish Smith 11 Russell Westbrook 12
Trey Burke 5 Jarrett Jack 10 Kevin Durant 11
Alec Burks 5 Jeff Teague 10 Paul Pierce 10
Brevin Knight 5 Steve Nash 9 Derrick Rose 10

Cluster 4
Bench Perimeter Scorers # of Apps Cluster 5

Miscellaneous/Transient Players # of Apps Cluster 6
Defensive Big Men # of Apps

Kyle Korver 14 Earl Barron 2 Tyson Chandler 19
Marco Belinelli 10 Jarron Collins 2 Reggie Evans 14
Rasual Butler 10 Jason Collins 2 Brendan Haywood 14
Wayne Ellington 10 Justin Harper 2 Kendrick Perkins 14
James Posey 9 Solomon Jones 2 Marcus Camby 13
Derek Fisher 8 Art Long 2 Zaza Pachulia 13
Damon Jones 8 Primoz Brezec 2 Anderson Varejao 13
James Jones 8 Dominic McGuire 2 Samuel Dalembert 11
Wes Matthews 8 Byron Mullens 2 Ben Wallace 11
Brent Barry 7 Jannero Pargo 2 Eric Dampier 11

Cluster 7
Two-Way Players/Primary Defenders # of Apps Cluster 8

Bench Role Players # of Apps Cluster 9
Scoring Big Men # of Apps

Marvin Williams 11 Jason Collins 7 Pau Gasol 15
Erson Ilyasova 10 Thabo Sefolosha 7 Zach Randolph 14
Shawn Marion 10 Anthony Tolliver 7 Dwight Howard 12
Jeff Green 9 Jared Dudley 6 Tim Duncan 11
Andrei Kirilenko 9 Gary Temple 6 Al Jefferson 11
Markieff Morris 9 Derek Fisher 5 David Lee 10
Tayshaun Prince 9 Richard Jefferson 5 Javale McGee 10
Joe Smith 9 Wesley Johnson 5 Greg Monroe 10
Gerald Wallace 9 DeShawn Stevenson 5 Kevin Garnett 9
Tony Allen 8 Solomon Hill 5 LaMarcus Aldridge 9

left of Figure 5.5) shows players like Rajon Rondo, Ricky Rubio, and Steve Nash. These

players are well-known as ‘pass-first’ guards. They are generally high in assists, steals, and

turnovers, but are not commonly the leading scorer on their team. Andre Miller (https://

www.basketball-reference.com/players/m/millean02.html) spent a total of 15 seasons

in this ‘mega-cluster’. He led the entire league in assists in the 2001-2002 season with 10.9.

We will call this position Pass-First Guards.

5.3.6 Cluster 3: Superstars

Cluster 3 (light green cluster in top left of Figure 5.4 and yellow-green cluster on far

left of Figure 5.5) contains players like LeBron James, Kobe Bryant, and Kevin Durant,

so these are clearly the ‘superstar’ players. These players have the ball in their hands

very frequently when they are on the court, and they are high scorers from inside and

https://www.basketball-reference.com/players/m/millean02.html
https://www.basketball-reference.com/players/m/millean02.html
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Table 5.7: Players with highest percentage of career in each ‘mega-cluster’

Cluster 1
Score-First Guards % of Career Cluster 2

Pass-First Guards % of Career Cluster 3
Superstars % of Career

Courtney Alexander 75% Tim Frazier 100% Lebron James 100%
Jordan McRae 71% Travis Best 100% Dwyane Wade 100%
Jimmer Fredette 67% Tyler Ennis 100% Kobe Bryant 100%
Trey Burke 63% Avery Johnson 100% Russell Westbrook 100%
Allan houston 60% Robert Pack 100% Allen Iverson 92%
Latrell Sprewell 60% Fred Vanvleet 100% Kevin Durant 91%
CJ McCollum 57% Jerian Grant 100% Kyrie Irving 89%
Andrew Wiggins 57% Andrew Harrison 100% Derek Rose 83%
Rodney Rogers 57% Ricky Rubio 89% James Harden 82%
Tim Hardaway Jr. 50% Rajon Rondo 87% Devin Booker 80%

Cluster 4
Bench Perimeter Scorers % of Career Cluster 5

Miscellaneous/Transient Players % of Career Cluster 6
Defensive Big Men % of Career

Jon Barry 100% Byron Mullens 33% Shawn Bradley 100%
Glen Rice 100% Dominic McGuire 25% Dikembe Mutombo 100%
Walter McCarty 100% Yakhouba Diawara 25% Greg Ostertag 100%
Chris Whitney 100% Bryce Drew 25% Bismack Biyombo 100%
Rick Fox 100% Henry Ellenson 25% Brendan Haywood 100%
Damon Jones 89% Tremaine Fowlkes 25% Brian Skinner 100%
Wesley Person 88% Pops Mensah-Bonsu 25% Miles Plumlee 100%
Daequan Cook 86% Adam Morrison 25% Etan Thomas 100%
Pat Garrity 86% Randolph Morris 25% Steven Hunter 100%
Mirza Teletovic 83% Jeremy Pargo 25% Bo Outlaw 100%

Cluster 7
Two-Way Players/Primary Defenders % of Career Cluster 8

Bench Role Players % of Career Cluster 9
Scoring Big Men % of Career

Derrick Brown 100% Mardy Collins 80% Boban Marjanovic 100%
Landry Fields 100% Patric McCaw 80% Julius Randle 100%
KJ McDaniels 100% Dorian Finney-Smith 75% Karl Anthony Towns 100%
Andrew Nicholson 83% Raymond Livingston 75% Anthony Davis 88%
Alonzo Gee 80% Jake Layman 75% Greg Monroe 83%
Justin Anderson 80% Marquis Teague 75% Jusuf Nurkic 83%
Joffrey Lauvergne 80% Rashad Vaughn 75% Maurice Speights 82%
Trey Lyles 80% James Anderson 67% Montrezl Harrell 80%
Donatas Motiejunas 80% Solomon Hill 63% Willy Hernangomez 80%
Maurice Harkless 78% Quinton Ross 63% Al Jefferson 79%

outside. If we look at the points leaders throughout the 20 NBA seasons (https://www.

basketball-reference.com/leaders/ptsyearly.html), we see players like LeBron James,

Kobe Bryant, Allen Iverson, and Kevin Durant. They appeared in this ‘mega-cluster’ 17,

16, 12, and 11 times, respectively. We will call this position the Superstars.

5.3.7 Cluster 4: Bench Perimeter Scorers

Cluster 4 (green cluster in top right of Figure 5.4 and bright green cluster in middle of

Figure 5.5) includes key players such as Kyle Korver, Derek Fisher, James Jones, and Brent

Barry. These players shoot a high percentage from the three-point line and usually come

off the bench. Their primary role is to provide a spark off the bench with three-pointers

and defensive hustle. Damon Jones (https://www.basketball-reference.com/players/

j/jonesda01.html) appeared 8 times in this cluster, and spent 89% of his career in this

https://www.basketball-reference.com/leaders/ptsyearly.html
https://www.basketball-reference.com/leaders/ptsyearly.html
https://www.basketball-reference.com/players/j/jonesda01.html
https://www.basketball-reference.com/players/j/jonesda01.html
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cluster. We can also see that for his most of his career he averaged more three-point attempts

per game than two-point attempts. We will call this position Bench Perimeter Scorers.

5.3.8 Cluster 5: Miscellaneous/Transient Players

Cluster 5 (forest green cluster in right middle of Figure 5.4 and teal cluster in mid-

dle of Figure 5.5) appears to be the cluster with the least clarity. No player in the 20-

year span appears in this cluster more than twice. This grouping appears to comprise of

miscellaneous players. They may have played inconsistent minutes throughout the sea-

son, or barely breached the minimum threshold for minutes played to be included. Tak-

ing a look at Earl Barron’s career statistics at https://www.basketball-reference.com/

players/b/barroea01.html, we can see that he played for seven different teams in his

eight seasons, and he even played overseas during the 2008-2009 season. The most games

he played in a season was 46 in the 2007-2008 season, which is exactly half of all pos-

sible games for that season. We can also look at a player like Jason Collins (https:

//www.basketball-reference.com/players/c/collija04.html), who spent his first eight

seasons or so with the New Jersey Nets. He played in the majority of the games during that

span, so he likely appeared in a different ‘mega-cluster’ during that time, but his last six

seasons he spent with five different teams. This adds to our assertion that this cluster is for

transient players who bounce around from team to team and show very little consistency in

their performances. We will call this position Miscellaneous/Transient Players.

5.3.9 Cluster 6: Defensive Big Men

Cluster 6 (light blue cluster in bottom middle of Figure 5.4 and light blue cluster in

top right of Figure 5.5) contains players like Ben Wallace, Shawn Bradley, and Dikembe

Mutombo. These players’ primary role is to play defense and rebound the ball, and their

only field goals will be high-percentage shots at or near the rim. Many of the players in

this category were/are well-known for their rebounding and interior defense. Ben Wal-

lace (https://www.basketball-reference.com/players/w/wallabe01.html) led the en-

tire league in total rebounds twice and blocks once in his career, while Dikembe Mutombo

https://www.basketball-reference.com/players/b/barroea01.html
https://www.basketball-reference.com/players/b/barroea01.html
https://www.basketball-reference.com/players/c/collija04.html
https://www.basketball-reference.com/players/c/collija04.html
https://www.basketball-reference.com/players/w/wallabe01.html
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(https://www.basketball-reference.com/players/m/mutomdi01.html) led the league in

total rebounds twice and blocks three times throughout his career. We will call this position

Defensive Big Men.

5.3.10 Cluster 7: Two-Way Playeres/Primary Defenders

Cluster 7 (royal blue cluster in middle of Figure 5.4 and royal blue cluster in middle right

of Figure 5.5) has many notable wing defenders, such as Shawn Marion, Andrei Kirilenko,

and Tayshaun Prince. These players frequently play the traditional ‘small forward’ position

and often take the most difficult defensive assignment. Andrei Kirilenko averaged more than

one block and more than one steal for almost every season of his career, and led the league

in blocks in the 2004-2005 season. These players are known for their quickness and length,

and they don’t normally take a high volume of shots. We will call this position Two-Way

Players/Primary Defenders.

5.3.11 Cluster 8: Bench Role Players

Cluster 8 (purple cluster in right middle of Figure 5.4 and purple cluster in bottom

right of Figure 5.5) is similar to Cluster 5 in that the same players don’t consistently get

classified in this group. Three players spent 7 of the possible 20 seasons in this ‘mega-cluster’,

namely Jason Collins, Thabo Sefolosha, and Anthony Tolliver. These players’ points per

game averages for their entire career were 3.6, 5.7, and 6.1, respectively. These are very low

averages, so these players were not counted on for scoring. They mostly came off the bench

and likely played a very minor role on the team when they were in this ‘mega-cluster.’ We

will call this position Bench Role Players.

5.3.12 Cluster 9: Scoring Big Men

Finally, Cluster 9 (pink cluster in bottom left of Figure 5.4 and pink cluster in top right

of Figure 5.5) contains players like Tim Duncan, Kevin Garnett, and Anthony Davis. These

are well-known ‘scoring big men’. Each of these players were around seven feet tall, and

average more than 20 points per game any given season. It is also notable that Tim Duncan

https://www.basketball-reference.com/players/m/mutomdi01.html
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won the Most Valuable Player award in the 2001-2002 and 2002-2003 seasons, and Kevin

Garnett won the award in the 2003-2004 season. These players were the focal points of their

teams and the entire offense generally ran through them. We will call this position Scoring

Big Men.

This type of analysis and characterization can be conducted more thoroughly than the

top 10 player lists to determine the uniqueness of each of the nine ‘mega-clusters’.

5.3.13 Individual Player Tracking

In addition to viewing the most frequently occurring players in each ‘mega-cluster’, we

can track an individual player’s position evolution from season to season. For this example,

we will examine Stephen Curry’s career from his rookie season in 2009-2010 to the 2019-2020

season.

Table 5.8: Stephen Curry’s ‘mega-cluster’ position by season

Season mega-cluster
2009-2010 Superstars
2010-2011 Pass-First Guards
2011-2012 Superstars
2012-2013 Pass-First Guards
2013-2014 Score-First Guards
2014-2015 Superstars
2015-2016 Superstars
2016-2017 Superstars
2017-2018 Superstars
2018-2019 Superstars
2019-2020 Superstars

Table 5.8 shows Stephen Curry’s ‘mega-cluster’ for each of the 11 seasons since his

rookie year. We can see that in his first five seasons he alternated between the Superstar,

Pass-First Guard, and Score-First Guard positions. In these first seasons preceding

Curry’s first of two MVP awards in 2014-2015, he was not as dominant of a player and

he likely shared a lot of characteristics of the Pass-First Guards and the Score-First

Guards. He had the ability to score in bunches at times as an elite outside shooter, but he

also played the traditional Point Guard role running the offense and distributing to other
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players. It is possible that Curry hovered between the overlaps of the three clusters in the

top of Figure 5.4. We would expect there to be fringe players in each of these ‘mega-clusters’

as they are transitioning roles or developing their skills, especially in the early years of their

career.

This method of examining individual players’ positions over the course of their career

can provide insights into their development and evolution.

5.4 Clustering All Years Combined

The last method we want to consider involves clustering all players combined over

the 20 NBA seasons. While mega-clustering is the focus of the results, it can still be

informative to compare our ‘mega-clusters’ to the nine clusters obtained from performing

the same hierarchical clustering method on all seasons combined. Like the mega-clustering

method, each unique combination of player, season, and team is considered a unique data

point to be partitioned. The major difference between these two approaches is that we are

partitioning players instead of partitioning each season’s nine clusters. With mega-clustering,

we partitioned each season’s nine clusters based on their ‘highs’ and ‘lows’, whereas with this

combined clustering method, we are clustering all players based on their scaled statistics.

Table 5.9: Combined clustering notable players

CLUSTER 1 Seasons in Cluster Total Seasons PCT CLUSTER 2 Seasons in Cluster Total Seasons PCT CLUSTER 3 Seasons in Cluster Total Seasons PCT
Mo Williams 15 15 100% Rajon Rondo 15 15 100% Zach Randolph 18 18 100%
JJ Barea 14 14 100% Eric Maynor 8 8 100% Al Jefferson 14 14 100%
Steve Nash 14 14 100% Cameron Payne 6 6 100% DeMarcus Cousins 10 10 100%
Tyreke Evans 11 11 100% Lorenzo Brown 5 5 100% Kenneth Faried 9 9 100%
Ben Gordon 11 11 100% Mardy Collins 5 5 100% Nikola Vucevic 9 9 100%
Darren Collison 10 10 100% TJ McConnel 5 5 100% Anthony Davis 8 8 100%
Sam Cassell 9 9 100% Keith McLeod 5 5 100% Ike Diogu 7 7 100%
Kemba Walker 9 9 100% Pablo Prigioni 5 5 100% Boban Marjanovic 7 7 100%
Trey Burke 8 8 100% Chris Childs 4 4 100% Jusuf Nurkic 6 6 100%
Jordan Clarkson 8 8 100% Shane Larkin 4 4 100% Willy Hernangomez 5 5 100%

CLUSTER 4 Seasons in Cluster Total Seasons PCT CLUSTER 5 Seasons in Cluster Total Seasons PCT CLUSTER 6 Seasons in Cluster Total Seasons PCT
Maurice Harkless 9 9 100% Jamison Brewer 2 4 50% Marco Belinelli 14 14 100%
Kelly Olynyk 7 7 100% Elliot Williams 2 5 40% Wayne Ellington 13 13 100%
Stacey Augmon 6 6 100% Bruno Caboclo 2 6 33% Troy Daniels 9 9 100%
Nemanja Bjelica 5 5 100% Linton Johnson 2 6 33% Wesley Person 8 8 100%
Landry Fields 5 5 100% DeAndre Liggins 2 6 33% Eric Piatkowski 8 8 100%
Yi Jianlian 5 5 100% Dominic McGuire 2 8 25% Joe Harris 5 5 100%
Terrence Jones 5 5 100% Michael Ruffin 2 8 25% Davis Bertans 4 4 100%
Thon Maker 5 5 100% Tariq Abdul-Rahad 1 4 25% Seth Curry 4 4 100%
KJ McDaniels 5 5 100% Ron Baker 1 4 25% Rudy Fernandez 4 4 100%
Derrick Brown 4 4 100% Yakhouba Diawara 1 4 25% Tim Hardaway 4 4 100%

CLUSTER 7 Seasons in Cluster Total Seasons PCT CLUSTER 8 Seasons in Cluster Total Seasons PCT CLUSTER 9 Seasons in Cluster Total Seasons PCT
Bruce Bowen 9 9 100% Brendan Haywood 14 14 100% Kevin Durant 12 12 100%
Tony Snell 6 7 86% Ryan Hollins 13 13 100% LeBron James 16 17 94%
Chris Johnson 5 6 83% DeAndre Jordan 13 13 100% Kobe Bryant 14 16 88%
Hubert Davis 4 5 80% Ben Wallace 13 13 100% Carmelo Anthony 15 18 83%
Bryon Russell 4 5 80% Joel Anthony 11 11 100% Russell Westbrook 10 12 83%
Dorian Finney-Smith 3 4 75% Ed Davis 11 11 100% James Harden 8 11 73%
Rashad Vaughn 3 4 75% Andris Biedrins 10 10 100% Allen Iverson 9 13 69%
James Young 3 4 75% Dikembe Mutombo 10 10 100% Correy Maggete 9 13 69%
Iman Shumpert 8 11 73% Ronny Turiaf 10 10 100% Dirk Nowitzki 13 19 68%
Alan Anderson 5 8 63% Adonal Foyle 9 9 100% Dwyane Wade 11 17 65%
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While the same in-depth exploration won’t be performed on this clustering method as

with the ‘mega-clusters’, we still want to verify that we achieve similar results. Table 5.9

displays the most frequently occurring players in each of the nine clusters for the 20 NBA

seasons. For example, Mo Williams appears in Cluster 1 for all 15 seasons in which he played

during this 20-season span.

Beginning with Cluster 1, we can see players like Mo Williams, Steve Nash, Kemba

Walker, and Jordan Clarkson. These players are scoring guards, which is similar to the

Score-First Guards ‘mega-cluster’.

With Cluster 2, we can see players like Rajon Rondo, Cameron Payne, and TJ Mc-

Connel. These players are ‘pass-first’ guards who will have high assist counts. This is

similar to the Pass-First Guards ‘mega-cluster’.

Cluster 3 shows Zach Randolph, DeMarcus Cousins, Nikola Vucevic, and Anthony

Davis. These players are ‘scoring big men’ who often play in the post, but also have the

ability to shoot from the outside. This is similar to the Scoring Big Men ‘mega-cluster’.

Cluster 4 shows players like Maurice Harkless, Kelly Olynyk, and Stacey Augmon.

These players stretch the floor with defense, but generally do not score at a high volume.

They appear to be similar to the Two-Way Players/Primary Defenders ‘mega-cluster’.

Cluster 5 appears to have a lot of less-recognized players and no player spends more

than two seasons in this cluster. This is strikingly similar to the Miscellaneous/Transient

Players ‘mega-cluster’.

Cluster 6 shows players like Marco Belinelli, Wesley Person, Joe Harris, and Seth Curry.

These players can score in bunches, but generally come off the bench. This cluster appears

to mirror the Bench Perimeter Scorers ‘mega-cluster’.

Cluster 7 is another ambiguous cluster that appears to capture a lot of bench role

players who don’t score at a high volume. This is similar to the Bench Role Players

‘mega-cluster’.

Cluster 8 shows players like Ben Wallace and Dikembe Mutombo. These players were

discussed along with the Defensive Big Men ‘mega-cluster’, and the other top players
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appear to be consistent with this description of players with high block and rebound totals.

Cluster 9 is clearly the superstar cluster with players like Kevin Durant, LeBron James,

and Kobe Bryant. This bears a strong resemblance to the Superstars ‘mega-cluster’.
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CHAPTER 6

Discussion

This MS Thesis is comprised of two major components: (1) The selection of nine as the

preferred cluster number for NBA player positions, and (2) the visualization and analysis of

these new player positions. This chapter discusses the results from Chapters 4 and 5 while

comparing the results with those achieved through previous research.

6.1 Number of Clusters Selection

The decision to proceed with nine player clusters weighed heavily on two pillars: (1)

the NbClust index selections in R, and (2) the influences of previous work. This choice of

nine separate groups was further validated through various visualizations and dimensionality

reduction techniques. We will discuss these two pillars and their importance, followed by a

summary of the visualization results in the next section.

The NbClust index selections displayed in Figure 4.2 show a jump at six, nine, twelve,

and fifteen. As discussed in Appendix B, if we move the starting point between two and

five clusters and the end point between twelve and twenty, the histogram trends downward

before climbing back up at the end. With this caveat in mind, this MS thesis aims to strike a

balance between describing players’ abilities in further detail without creating clusters with

little to no meaning. Nine clusters provides this ‘happy medium’.

In addition, we can see the work of Kalman and Bosch (2020) and Jyad (2020) both

selecting nine as the optimal number of clusters through differing methods. Kalman and

Bosch (2020) analyzed 10 NBA seasons, beginning with the 2009-2010 season and concluding

with the 2017-2018 season, and arrived at the decision of nine clusters through the mclust R

package (see Section 3.3.10). Jyad (2020) used hierarchical clustering on the 2018-2019 NBA

season and used an ‘elbow plot’ that tracks the amount of variance explained by the number

of clusters. Similar to the WSS plot discussed in Section 3.2.1, the goal of an elbow plot is
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to find the elbow of the curve where variation starts to level off. Jyad (2020) observed the

elbow effect at two, six, and nine clusters, and arrived at the conclusion that nine clusters

made the most sense as the goal is to be able to describe players with increasing precision

and detail.

Alagappan (2012), on the other hand, used a visual technique called topological data

analysis to observe groups in the 2010-2011 NBA season. This method involves normalizing

data points and displaying results in a type of map, where the user can determine what

branches constitute separate and distinct partitions. Similar to the other methods discussed

in this MS thesis, the selection of the optimal number of clusters in this case is largely

up to user preference and individual interpretation. Alagappan (2012) selected thirteen as

the optimal number of clusters. This selection of a large number allows for more in-depth

discussion of single player differences, especially since the author only considered a single

season.

6.2 Comparison of Visualization Techniques

In this section, we will compare the various visualization methods and how they provide

clarity on the player clusters. We will specifically explore how each of these methods displays

the distinctiveness of the clusters.

6.2.1 Single Season Visualization

When clustering an individual NBA season, the application of multiple dimensionality

reduction methods was extremely useful and insightful. In Figure 4.8, we can see that the

tSNE method shows cluster distinction that PCA fails to capture. For example, the PCA

plot shows the Bench Perimeter Scorers cluster (Cluster 6) on the left-hand side being

quite spread out, while the tSNE plot shows this cluster seemingly tightly packed in the top

left corner, with the exception of three points, located at approximately (-20, -10), (-15, 5),

and (20, 15). It is unclear immediately whether or not these ‘stray’ points are related to the

6’s in the PCA plot around (-3, -3) and (-4, 5), but this could be investigated further.
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While the PCA and tSNE projections display only a two-dimensional view of very high-

dimensional data, the relative compactness of the points is encouraging. In the PCA plot, the

Score-First Guards cluster (Cluster 1) overlaps heavily with the Bench Role Players,

Pass-First Guards, and Two-Way Players/Primary Defenders clusters (Cluster 2, 4,

and 5, respectively). When we look at the Score-First Guards cluster (Cluster 1) in the

tSNE plot, we can see very little overlap on the edges with Clusters 2, 4, and 5.

The Bench Role Players (Cluster 2) provide an interesting exception in that they

appear more compact in the PCA plot than the tSNE plot. The tSNE plot seems to show

these players on the outer boundaries of many other clusters, while the PCA plot shows the

Bench Role Players right in the middle of the other players.

Finally, the Superstars cluster (Cluster 9) in the PCA plot shows good separation

from the rest of the data points, but the points are quite spread out. When we look at

this same cluster in the tSNE plot, we can see that the data points appear tightly packed

together, with the exception of one point located at around (10, 10). In general, it appears

that the tSNE method does a better job of displaying the distinctiveness of the nine player

clusters.

The PHATE method also shows good distinctiveness of data points in their respective

clusters. We notice in Figure 4.10 that the Superstars cluster (Cluster 9) stands out in

the top right of the plot. This is similar to the PCA and tSNE plots. We can also see from

the PHATE plot that the Defensive Big Men and Interior Big Men clusters (Cluster

7 and 8) are located in the bottom right corner of the plot with a small amount of overlap.

In this case, the PHATE plot performs similarly to the tSNE and PHATE plots, since

both of these visualizations show Cluster 2 and Cluster 4 with heavy overlapping with each

other and other positions. It is very possible that these overlaps constitute players who are

‘fence-sitters’, meaning that they were very close to being placed in a different cluster.

The implementation of GGobi for viewing the nine player clusters allows for in-depth

exploration of all possible projections. The full list of players in each cluster for the 2000-

2001 NBA season can be found by accessing the following link within the GitHub repository:
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https://github.com/ahed1194/MS_Thesis/blob/main/Player_Cluster/player_cluster0001_

scaled.csv. The process of running and pausing the grand tour provided additional insights

and views not available through static clustering. Not every projection can capture every

cluster as distinct and compact simultaneously, therefore it became very useful to pause the

tour and view projections that capture one or several clusters in ‘a good light’.

Figure 4.11 shows a particular point in the projection where we see clear distinctions

of certain clusters. We can see that the Superstars cluster (Cluster 9 - Large Yellow +) is

well-separated across the bottom of the plot. This cluster is easily distinguished in the other

dimensionality reduction methods employed. Another cluster that shows clear distinction

in this figure is the Defensive Big Men (Cluster 7 - Small Yellow Circles). It appears

that many variable categories carry a similar amount of weight in this projection, including

two-point shots (‘X2’), three-point shots (‘X3’), free-throws (‘FT’), and points (‘PT’).

We can also see some clusters in this projection that overlap heavily with one or more

other clusters. For example, the Score-First Guards cluster (Cluster 1 - Large Purple +’s)

and the Pass-First Guards (Cluster 4 - Large Blue Squares) show considerable overlap.

One must examine other projections or observe the points actively moving throughout the

tour in order to see their distinction. Figure 4.12 gives an example where the Score-First

Guards (Cluster 1 - Large Purple +’s) and the Pass-First Guards (Cluster 4 - Large

Blue Squares) show some distinction.

This high-dimensional visualization technique is extremely effective for complex data.

Alagappan (2012) utilized a visual technique called topological data analysis that provides

robustness to noisy data. This technique provides insights beyond the capabilities of static

2D plots. When analyzing NBA player data with a wide range of measurements and statis-

tics, the ability to customize the visualization to capture the unique behaviors of the different

clusters is highly insightful.

6.2.2 Mega-Clustering Visualization

Taking a look at the dendogram in Figure 5.3, we can see which ‘mega-clusters’ are

considered the most distinct and which clusters could have potentially been combined. The

https://github.com/ahed1194/MS_Thesis/blob/main/Player_Cluster/player_cluster0001_scaled.csv
https://github.com/ahed1194/MS_Thesis/blob/main/Player_Cluster/player_cluster0001_scaled.csv
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first ‘split’ (or, equivalently, the final ‘combination’) distinguishes the Superstars (Cluster

3) and the Scoring Big Men (Cluster 9) from the rest of the players. These players have

the biggest impact on the floor, especially from a scoring and ball-handling standpoint. The

offense runs through these players, and they both tend to have the ball in their hands more

than any other players.

The second ‘split’ occurs as the Defensive Big Men (Cluster 6) are separated from

the larger group of players. This also makes sense since these players are quite unique in

that they are defined by their defensive role, whereas most other positions are defined by

offensive metrics such as shooting and assists.

The third ‘split’ separates the Miscellaneous/Transient Players (Cluster 5) and the

Bench Role Players (Cluster 8) from the remaining four positions. These two positions

are very similar in that their roles are not clearly defined and the players tend to have low

and inconsistent minutes.

The fourth ‘split’ places the Superstars (Cluster 3) and the Scoring Big Men (Clus-

ter 9) into their own cluster. These two positions were the first to be separated, and they

were also the first to become their own clusters. This reiterates their importance and their

perceived impact.

The fifth ‘split’ separates the Two-Way Players/Primary Defenders (Cluster 7)

and the Pass-First Guards (Cluster 2) from the Score-First Guards (Cluster 1) and

the Bench Perimeter Scorers (Cluster 4). This division seems to be based on scoring

ability, since the Score-First Guards and the Bench Perimeter Scorers both have

scoring as their primary role and point of impact, while the other two positions are more

about adding spacing, defense, and passing to the team.

The sixth ‘split’ separates the Score-First Guards (Cluster 1) and the Bench Perime-

ter Scorers (Cluster 4). This separation is likely due to the latter generally playing less

minutes and scoring less points per game than the Score-First Guards, who are mostly

starters.

The seventh ‘split’ places the Two-Way Players/Primary Defenders (Cluster 7)
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and the Pass-First Guards (Cluster 2) into their own position. This division likely occurs

due to the higher assist and turnover totals for the Pass-First Guards.

The eight and final ‘split’ divides the Miscellaneous/Transient Players (Cluster 5)

from the Bench Role Players (Cluster 8). These two positions are clearly the most similar

of the nine, as we have mentioned.

Next we will discuss the PCA plot in Figure 5.4, which displays the nine mega-clusters

across the 20 NBA seasons. We can see four distinct clusters in this projection: the Super-

stars (dark yellow) on the top left, the Scoring Big Men (pink) on the bottom left, the

Defensive Big Men (light blue) on the bottom middle, and the Two-Way Players/Pri-

mary Defenders (royal blue) in the middle.

We can see that the Defensive Big Men and the Scoring Big Men on the bottom

middle and left of Figure 5.4 appear the most distinct and separate from the other clusters.

In the visualization of the clusters generated by Alagappan (2012), the Paint Protector

and Scoring Rebounder players were spread out far to the right, while the ball-handling

positions were clustered to the left side. The Paint Protector and Scoring Rebounder

positions from the work of Alagappan (2012) line up well with the Defensive Big Men

and Scoring Big Men positions defined here. The Superstars (dark yellow) and the

Score-First Guards (red) appear to touch in the top left of Figure 5.4. The visualization

of Alagappan (2012) showed three positions in close proximity that are similar to these two:

Offensive Ball-Handler, Shooting Ball-Handler, and Combo Ball-Handler.

In the top of Figure 5.4, we can see the Pass-First Guards (orange) cluster overlapping

heavily on its left side with the Score-First Guards (red). We can also see the Pass-

First Guards (orange) position overlapping on its right side with the Bench Perimeter

Scorers (lime green). The fact that the first two principal components show some heavy

overlap of these three clusters is not surprising. Scoring guards and passing guards may be

distinguished by certain statistics, but are likely quite similar in other areas. For example,

they likely get similar rebounding, stealing, and blocking totals. Similarly, passing guards

likely overlap with bench scorers due to lower rebounding totals and blocks.
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The remaining two clusters on the right side of Figure 5.4 are the Bench Role Players

(purple) and the Miscellaneous/Transient Players (teal). Again, it is not surprising that

these two clusters would heavily overlap in this projection. Both of these positions likely

contain players who play significantly lower minutes, and record average to below-average

numbers in most statistical categories. Many of these players were likely subject to mid-

season trades and were not one of the main rotation players for every game.

For the cases where the ‘mega-clusters’ overlap in Figure 5.4, we can visually analyze

the tSNE method in Figure 5.5 for further clarity and separation. We can see that the four

‘mega-clusters’ that are well-separated and distinct in Figure 5.4, namely the Superstars

(dark yellow, top left), Scoring Big Men (pink, bottom left), Defensive Big Men (light

blue, bottom middle), and Two-Way Players/Primary Defenders (royal blue, middle),

are also distinct in Figure 5.5. For the other five ‘mega-clusters’, we can see that tSNE does

a good job of displaying a view where each cluster is separate and compact. The Pass-First

Guards (orange), Score-First Guards (red), and the Bench Perimeter Scorers (lime

green) are well-separated on the left side of the tSNE projection. The Bench Role Players

(purple) and the Miscellaneous/Transient Players (teal) are also very far apart in the

tSNE projection.

Combining the results of the PCA and tSNE methods is sufficient to view the distinc-

tions of the ‘mega-clusters’. Now we will discuss the labeling of these groups in more detail

and compare them to other research.

6.3 Mega-Cluster Characterization

We will now explore in more detail the nine ‘mega-cluster’ positions chosen through

this analysis, and compare our positions with those defined in previous research.

While the naming of these updated positions may provide some reference to the tradi-

tional player positions, it is important to note that most of these new positions contain play-

ers from many different standard positions (see Section 1.1.1). The Score-First Guards

and Pass-First Guards appear to contain mostly Shooting Guards and Point Guards, re-

spectively. The Superstars cluster contains many standard positions, such as Point Guards
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(Tony Parker & Allen Iverson), Shooting Guards (Kobe Bryant & Dwyane Wade), and Small

Forwards (LeBron James & Kevin Durant). The Defensive Big Men and Scoring Big

Men ‘mega-clusters’ contain a mix of Power Forwards and Centers. The Miscellaneous &

Transient Players and the Bench Role Players each appear to contain a fairly even mix

of all five standard positions. This analysis highlights the ambiguity of standard position

classification and the need for updated positions.

Referring back to our introductory examples in Section 1.1.2, we listed several players

and their traditional positions. Stephen Curry and John Stockton, who are both classified

traditionally as Point Guards, are placed into different ‘mega-clusters’ in all seasons for

which we have conducted this analysis. We can see from Table 5.8 that Stephen Curry is

mostly classified as a Superstar. While we only have the final three years of John Stockton’s

career in our 20-year span, he is classified as a Bench Role Player in all three years. We

can be highly confident, however, that had we clustered Stockton during his prime playing

years, he would have been classified as a Pass-First Guard. Even with the years for which

we have data for these players, it is clear that they play very different roles on the court.

Michael Jordan and Kobe Bryant are both traditionally classified as Shooting Guards.

Through the mega-clustering analysis, Kobe Bryant spent all 17 seasons of the 20-year

timespan in the Superstars ‘mega-cluster’ (see Tables 5.6 and 5.7). Michael Jordan only

played two seasons in our time window, and he was classified as a Superstar in 2001-2002

and a Scoring Big Man in 2002-2003. While the latter classification may seem incorrect,

we must consider that Jordan averaged less than one three-point attempt per game in his

final two seasons. Most of his scoring came from post-up and turnaround shots, similar to

what we would expect from Scoring Big Men players. We can be confident that in Michael

Jordan’s prime years in the 1980’s and 1990’s, he would be classified as a Superstar, as he

is considered by many to be the greatest basketball player of all time.

Another example from Section 1.1.2 illustrated the dynamic roles of two players classi-

fied as Small Forwards: LeBron James and Kevin Durant. We see in Tables 5.6 and 5.7 that

LeBron James spent 17 seasons in the Superstar ‘mega-cluster’ (100% of his career), and
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Kevin Durant spent 11 seasons (91% of his career) in the Superstar ‘mega-cluster’. This

is a fine example of how the updated position classification gives more value and context to

these key players.

Two well-known Power Forwards mentioned in Section 1.1.2 are Tim Duncan and Karl

Malone. Tim Duncan spent a total of 11 seasons in our 20-season span in the Scoring

Big Men ‘mega-cluster’. This is not surprising since Duncan is regarded as one of the

great mid-range and post-up scorers in NBA history. Karl Malone was past the prime of his

career by the debut of the 2000-2001 NBA season, and he retired after the 2003-2004 season,

but his final four season’s ‘mega-clusters’ were Superstar, Superstar, Scoring Big Man,

and Two-Way Player/Primary Defender. Note that his final season was spent with a

new team, the Los Angeles Lakers, where Shaquille O’Neal was established as the primary

interior scorer. This provides an example of how player roles and positions can change when

they join a new team. Karl Malone is currently the third all-time leading scorer in NBA

history (as of April 2022), so it would make sense that in his prime playing years he could

be classified as either a Superstar or a Scoring Big Man.

Finally, Kareem Abdul-Jabbar and Shaquille O’Neal were presented in Section 1.1.2 as

examples of Centers. Since the 2000-2001 NBA season, O’Neal was classified as a Scoring

Big Man seven times and a Superstar four times. While we do not have clustering results

for Kareem Abdul-Jabbar, we can look at his career statistics at https://www.basketball-

reference.com/players/a/abdulka01.html and see that he led the league in points per

game twice in his career, and regularly averaged more than 25 points per game. This would

place him with the elite superstars of the league in scoring averages every year. We can

also see his dominant presence inside through his high rebounding and blocking totals. It

is very likely, given this information, that he would have been classified similarly to O’Neal

for most of his career, either as a Scoring Big Man or a Superstar.

Table 6.1 displays how our nine ‘mega-clusters’ overlap with the clusters defined by

previous authors. The clusters characterized by the other researchers are linked with the

‘mega-cluster’ that best matched their description and example players.

https://www.basketball-reference.com/players/a/abdulka01.html
https://www.basketball-reference.com/players/a/abdulka01.html
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Table 6.1: Comparing ‘mega-clusters’ to previous work

Hedquist Jyad (2020) Kalman and Bosch (2020) Alagappan (2012)
2000-2001 to 2019-2020 NBA Season 2018-2019 NBA Season 2019-2010 to 2018-2019 NBA Season 2010-2011 NBA Season

Hierarchical Clustering Hierarchical Clustering Model-Based Clustering Topological Data Analysis
Score-First Guards Elite 3 Point Shooters High Usage Guard Combo Ball-Handler

3 Level Shooters Three Point Shooting Guard Shooting Ball-Handler
Defensive Big Men Traditional Big Men Traditional Center Paint Protector
Bench Role Players Role Players Versatile Role Player Role Player
Superstars Elite All-Stars Ball-Dominant Scorer One-of-a-Kind

NBA 1st Team
Pass-First Guards Decent Ball Handlers Floor General Offensive Ball-Handler

Defensive Ball-Handler
Bench Perimeter Scorers 3 and D Players Stretch Forward 3-Point Rebounder
Miscellaneous/Transient Players Role-Playing Ball-Handler
Two-Way Players/Primary Defenders Two-Way Perimeter Players NBA 2nd Team
Scoring Big Men Elite Modern Big Men Skilled Forward Scoring Rebounder

Mid-Range Big Scoring Paint Protector

We can see that the Score-First Guards ‘mega-cluster’ is broken up into two clusters

by the other three groups of researchers. Jyad (2020) and Kalman and Bosch (2020) sepa-

rated them by their three-point shooting abilities, while Alagappan (2012) separated them

based on their defensive abilities.

All of the researchers have a clearly-defined Defensive Big Men cluster for tall players

who protect the paint and are not high scorers. Another clearly-defined cluster is the Bench

Role Players cluster. Every researcher distinguishes a cluster for players who displayed

average marks in most statistical categories. These players were generally lower scorers

coming off the bench.

The Superstars ‘mega-cluster’ is clearly defined in our analysis, and we can see that

Jyad (2020) and Kalman and Bosch (2020) both had this ‘elite’ cluster in their analysis.

Alagappan (2012) determined that there were two clusters within this superstar category:

One-of-a-kind and NBA 1st Team. It is possible that if we had increased our number

of clusters from nine to thirteen, we may have seen a similar split within the Superstars

cluster. However, it is also quite plausible that we would see splits in the Miscellaneous/-

Transient Players cluster (Cluster 5; teal cluster), the Defensive Big Men cluster (Clus-

ter 6; light blue cluster) or the Bench Role Players cluster (Cluster 8; purple cluster),

since they appear to be starting to separate in Figure 5.5.

It is overall highly encouraging to see considerable overlapping of player positions con-

sidering that all of these methods used different season ranges, clustering algorithims, and/or



89

optimal cluster numbers. This MS thesis employs a 20-year span, so it is very likely that

some of these player positions have evolved and adapted over the past two decades. When

we combine two decades of player data, we achieve a more holistic view of the important

distinctions between players. As we can see with the single-season view in Section 5.2.1,

there are slightly different position characteristics when compared to the mega-clustering

over 20 years combined. Looking specifically at the 2000-2001 discussion in Section 5.2.1,

we can see that there is no Miscellaneous/Transient Players cluster, but there is an

additional position for big men, namely the Interior Big Men cluster. It is possible that

there was a greater and more diverse usage for big men on the court, especially since the

three-pointer wasn’t shot at the volume that it is today.

In general we would expect each season to play out differently and for different players

rise to the top. This inevitably causes teams and players to react accordingly and adjust

strategies. Recent years have seen an incredible surge in three-point shot attempts per game,

so we would expect some player positions to evolve accordingly.

Performing hierarchical clustering on a single season or a span of several seasons provides

key insights into player behaviors and usage. It can also display the evolution of player

knowledge and abilities. Understanding how to categorize players more accurately opens up

a wide range of applications and possibilities that will be discussed in the following chapter.
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CHAPTER 7

Conclusion and Future Work

In this MS thesis, we have responded to the research question related to how players

can be classified to give more meaning to their positions. We have outlined new methods for

assigning and analyzing player positions based on their abilities and performances, rather

than an assumed role based on their height or weight. In this concluding chapter, we will

briefly discuss the implications for practice, and we will outline some possible directions for

future research that can be conducted.

7.1 Implications

The first major implication of our study stems from the selection of the optimal number

of player positions as well as the practical reasons for choosing a higher number of clusters

than five. The decision of a precise number of player positions is critical to understanding

player roles at the right level of detail. We have introduced several methods to numerically

and visually justify the higher cluster selection.

This research highlights the value and utility of using hierarchical clustering to partition

players. The tiered nature of this clustering algorithm in a basketball context allows for in-

depth interpretation of player similarities and differences. The ‘splitting’ and ‘combining’ of

player positions as we move up and down the hierarchy are easily interpretable for basketball

minds as to how players can adapt to different roles or evolve and improve their skills.

Another important contribution of our research surrounds the many visualization op-

tions available for viewing and comparing player positions. While this MS thesis does not

cover many of the more complicated and intensive visualization methods, we have still pro-

vided valuable insights into the vast possibilities for analyzing NBA players. The NBA

player clustering is meant to be understood and applied specifically in a sports context, and

the visualizations implemented are invaluable tools for sports researchers and fanatics alike.
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Another major implication of this study is the introduction of mega-clustering across

many NBA seasons. While there are certainly applications for this method outside of the

sports community, we are primarily interested in how we are able to track individual players

over the course of their career. Being able to track player evolution and even position

evolution through mega-clustering is an incredibly powerful tool for managers and coaches

as they plan and adjust their strategies for drafting and fielding lineups.

A final contribution of this MS thesis is found in the NBA individual player data as

well as the seasonal lineup data scraped from https://www.basketball-reference.com/.

Users wishing to analyze this data will see the utility in the pre-scraped NBA tables in-

cluded on the Github repository (https://github.com/ahed1194/MS_Thesis), particularly

those individuals without a technical background or those without a subscription to the

Stathead (https://stathead.com/basketball/) portion of the website (see Section 2.4).

These tables coupled with the analysis conducted in this research provide a solid foundation

for many different paths of exploration and discovery.

7.2 Future Work

This MS thesis creates many opportunities for future research and analysis. The contri-

bution of the player and lineup tables will allow for many types of analysis related to team

performance and potential.

The player clusters can be used to perform various predictive regression and machine

learning models to determine the optimal lineups for a given team. The exploration of his-

torical lineups and the composition of teams based on these new positions can help to better

predict performances in the future. The lineup tables included within the GitHub reposi-

tory (https://github.com/ahed1194/MS_Thesis/tree/main/Lineup_Data) will prove ex-

tremely useful for this type of predictive analysis. One can find many examples of lineups

that underperformed despite being filled with many well-known and talented players. One

can also find historical examples of lineups filled with more underrated players who exceeded

expectations. These new player positions can be factored in to the modeling process to de-

termine which player positions have the largest impact on game outcomes. The reader may

https://www.basketball-reference.com/
https://github.com/ahed1194/MS_Thesis
https://stathead.com/basketball/
https://github.com/ahed1194/MS_Thesis/tree/main/Lineup_Data
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consult the work of Holland (2020), Ahmadalinezhad et al. (2019), Pelechrinis (2019), and

Perera et al. (2016) for examples of how to analyze lineup data and predict performances.

This research also encourages further analysis of the player positions from year to year.

As we discovered in our comparison of the single-season clusters and the ‘mega-clusters’,

the player clusters for a given season will vary from the combined clustering. An analysis

of how positions are evolving will help coaches and managers to determine which positions

are becoming obsolete or are beginning to merge with others. Each year may also require a

different number of player clusters to avoid overgeneralizing certain positions. This type of

analysis over the course of many seasons can also be applied to individual players to view

their position changes over the course of their career.

Finally, this MS thesis offers the opportunity to expand the clustering parameters to

more complex statistics, including efficient field goal percentage, pace, and win shares. While

this research focuses on standard player data, more complex statistics may yield slightly

different player positions.
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APPENDIX A

Lower Limit for Minutes Played

It is important to verify that selecting a Minutes Played cutoff of only 24 minutes (two

quarters) will not drastically change the results for the optimal cluster selection. Higher

cutoffs of 48 minutes (one game) and 240 minutes (five games) played were tested using the

NbClust function in the NbClust R package. Figures A.1 and A.2 display the combined

cluster selection histograms across the 20 NBA seasons, similar to the histogram obtained

in Figure 4.2.

Fig. A.1: Optimal number of clusters for NBA player data based on 26 indices from the 2000-
2001 season to the 2019-2020 season using Ward D2 – Using 48 Minutes Played minimum
cutoff. We can see from these figures that there is still a declining trend as we increase from
five clusters to around fourteen or fifteen clusters, followed by a slight incline as we approach
twenty clusters.

We can see from these figures that there is still a declining trend as we increase from

five clusters to around fourteen or fifteen clusters, followed by a slight incline as we approach

twenty clusters. We can can also see that both of these figures show minor ‘jumps’, or local
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Fig. A.2: Optimal number of clusters for NBA player data based on 26 indices from the
2000-2001 season to the 2019-2020 season using Ward D2 – Using 240 Minutes Played
minimum cutoff. We can see from these figures that there is still a declining trend as we
increase from five clusters to around fourteen or fifteen clusters, followed by a slight incline
as we approach twenty clusters.

maximas, at regular intervals, very similar to those observed in Figure 4.2. This observation

leads to the assumption that the players who are removed as we increase the cutoffs are not

having a major impact on the selections by the NbClust R function.

We can also consider the number of players being removed with each of these cutoff

levels. Tables A.1, A.2, and A.3 display the number of player rows removed by year using

the 24 minute cutoff, 48 minute cutoff, and the 240 minute cutoff. We can observe that the

24 minute cutoff leaves between 95% and 98% of all possible players for the analysis. The

48 minute cutoff leaves between 80% and 89% of all possible players, and the 240 minute

cutoff leaves between 67% and 79% of all possible players.

While the argument could be made that setting a minimum of 24 minutes played over the

course of an entire season may likely still include many ‘garbage time’ players, the decision

was made to err on the side of over-inclusion rather than removing players who could

meaningfully contribute to the cluster algorithm and subsequent position characteristics

analysis. We would be removing at least 10% of all players with a cutoff of 48 minutes or
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more, and the research of Alagappan (2012), Jyad (2020), and Kalman and Bosch (2020)

makes no mention of the exclusion of any players during the seasons they analyzed. Taking

this conservative approach of removing a small amount of players who are almost guaranteed

to be ‘garbage time‘ players was determined to be the best course of action.

Table A.1: Number of rows removed by year from player tables using 24 Minutes Played
cutoff. At least 95% of all possible players are used in each season after applying the cutoff.

Season Player rows before
24 min cutoff

Player rows after
24 min cutoff

Garbage time
players removed

Pct of total
data used

2000-2001 510 496 14 97%
2001-2002 483 474 9 98%
2002-2003 471 455 16 97%
2003-2004 570 541 29 95%
2004-2005 562 551 11 98%
2005-2006 539 519 20 96%
2006-2007 489 481 8 98%
2007-2008 571 550 21 96%
2008-2009 563 542 21 96%
2009-2010 572 555 17 97%
2010-2011 613 594 19 97%
2011-2012 526 511 15 97%
2012-2013 553 538 15 97%
2013-2014 583 562 21 96%
2014-2015 625 608 17 97%
2015-2016 561 543 18 97%
2016-2017 577 559 18 97%
2017-2018 609 579 30 95%
2018-2019 639 624 15 98%
2019-2020 465 453 12 97%
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Table A.2: Number of rows removed by year from player tables using 48 Minutes Played
cutoff. Applying this cutoff eliminates between 10% and 20% of all players for a given season.

Season Player rows before
48 min cutoff

Player rows after
48 min cutoff

Garbage time
players removed

Pct of total
data used

2000-2001 510 443 67 87%
2001-2002 483 431 52 89%
2002-2003 471 419 52 89%
2003-2004 570 457 113 80%
2004-2005 562 481 81 86%
2005-2006 539 455 84 84%
2006-2007 489 445 44 91%
2007-2008 571 474 97 83%
2008-2009 563 465 98 83%
2009-2010 572 471 101 82%
2010-2011 613 496 117 81%
2011-2012 526 473 53 90%
2012-2013 553 477 76 86%
2013-2014 583 493 90 85%
2014-2015 625 524 101 84%
2015-2016 561 483 78 86%
2016-2017 577 489 88 85%
2017-2018 609 505 104 83%
2018-2019 639 526 113 82%
2019-2020 465 398 67 86%
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Table A.3: Number of rows removed by year from player tables using 240 Minutes Played
cutoff. Applying this cutoff eliminates between 20% and 35% of all players for a given season.

Season Player rows before
240 min cutoff

Player rows after
240 min cutoff

Garbage time
players removed

Pct of total
data used

2000-2001 510 381 129 75%
2001-2002 483 371 112 77%
2002-2003 471 366 105 78%
2003-2004 570 402 168 71%
2004-2005 562 411 151 73%
2005-2006 539 392 147 73%
2006-2007 489 386 103 79%
2007-2008 571 400 171 70%
2008-2009 563 395 168 70%
2009-2010 572 400 172 70%
2010-2011 613 412 201 67%
2011-2012 526 399 127 76%
2012-2013 553 417 136 75%
2013-2014 583 414 169 71%
2014-2015 625 443 182 71%
2015-2016 561 420 141 75%
2016-2017 577 420 157 73%
2017-2018 609 426 183 70%
2018-2019 639 455 184 71%
2019-2020 465 351 114 75%
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APPENDIX B

NbClust Indices

In this appendix, we include a brief summary of the 30 indices used in the NbClust R

package (Section 3.1.3) to select the optimal number of clusters. Tables B.1 and B.2 outline

the 30 different indices along with their formulas, the logic employed to select the optimal

cluster number, and a brief description of its application. Following these tables, the reader

may view a glossary of terms and symbols that are used in these equations where applicable.
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B.1 NbClust Indices

Table B.1: NbClust Indices 1-15

INDEX FORMULA OPTIMAL # OF CLUSTERS DESCRIPTION

1 CH CH(q) =
trace(Bq)/(q − 1)

trace(Wq)/(n− q)

Maximum value of the
index

Based on average between
and within cluster sum of squares

2 Duda Duda >= 1− 2

πp
− z

√
2(1− 8

π2p
)

nmp
= critV alDuda

Smallest number of
clusters such that index >
criticalValue

Ratio criterion using sum of
squares within clusters

3 Pseudot2 Pseudot2 <= (
1− critV alDuda

critV alDuda
) ∗ (nk + nl − 2)

Smallest number of
clusters such that index >
criticalValue

*Only applicable for
hierarchical
Within group dispersion ratio

4 Cindex Cindex =
Sw − Smin

Smax − Smin
, Smin ̸= Smax, Cindex ∈ (0, 1)

Maximum value of the
index

Uses smallest differences
between pairs vs largest
differences

5 Gamma
*not used Gamma =

s(+)− s(−)

s(+) + s(−)

Maximum value of the
index

Determines if within-cluster
dissimilarity is less than
between-cluster dissimilarity

6 Beale Beale = F ≡
( Vkl
Wk+Wl

)

((nm−1
nm−2)2

2
p − 1)

Number of clusters such
that critical value >=
alpha

Uses F-ratio to test hypothesis
of the existence of q1 vs q2
clusters of data

7 CCC CCC = ln[
1− E(R2)

1−R2
]

√
np∗

2

(0.0001 + E(R2))1.2
Maximum value of the
index

SAS software method:
compare R^2 to R^2
obtained from uniformly
distributed data

8 Ptbiserial Ptbiserial =
[S̄b − S̄w][NwNb/N

2
t ]

1
2

sd

Maximum value of the
index

A point biserial correlation
between the raw input
dissimilarity matrix and a
corresponding matrix of 0’s
and 1’s

9 Gplus
*not used Gplus =

2s(−)

Nt(Nt − 1)

Maximum value of the
index

Uses proportion of discordant
pairs among all pairs of
distinct points

10 DB DB(q) =
1

q

q∑
k=1

max
k ̸=l

(
δk + δl
dkl

)
Maximum value of the
index

Sum ratio of within-cluster
scatter to between-cluster
separation

11 Frey Frey =
S̄bj+1

− S̄bj

S̄wj+1 − S̄wj

Cluster level before index
val <100

* Only applicable for
hierarchical
Ratio of difference scores
from two successive levels in
the hierarchy

12 Hartigan Hartigan = (
trace(Wq̃)

trace(Wq̃+1)
− 1)(n− q̃ − 1)

Maximum difference
between hierarchy levels
of the index

Based on Euclidean within-
cluster sum of squares

13 Tau
*not used Tau =

s(+)− s(−)

[(Nt(Nt − 1)/2− t)(Nt(Nt − 1)/2)]1/2
Maximum value of the
index

Computed between
corresponding entries within
two matrices: first shows
distance between items, and
the second 0/1 indicates if
pairs are within same cluster

14 Ratkowsky Ratkowsky =
S̄

q1/2
Maximum value of the
index

Based on the sum of squares
between clusters for each
variable and the total sum of
squares for each variable

15 Scott Scott = n log
det(T )

det(Wq)

Maximum difference
between hierarchy levels
of the index

Log of determinants of within
sum of squares and total sum
of squares
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Table B.2: NbClust Indices 16-30

INDEX FORMULA OPTIMAL # OF CLUSTERS DESCRIPTION

16 Marriot Marriot = q2 det(Wq)
Max. value of second
differences between
levels of the index

Uses determinant of within
sum of squares

17 Ball Ball =
Wq

q

Maximum difference
between hierarchy levels
of the index

Based on the average distance
of items to their cluster
centroids

18 Trcovw Trcovw = trace(COV (Wq))
Maximum difference
between hierarchy levels
of the index

Trace of within clusters
pooled covariance matrix

19 Tracew Tracew = trace(Wq)
Max. value of second
differences between levels

*One of most popular
Uses trace of within cluster
sum of squares

20 Friedman Friedman = trace(W−1
q Bq)

Maximum difference
between hierarchy levels
of the index

*Used for non-hierarchical
clustering
Uses the trace of the inverse
within sum of squares matrix
and the between sum of
squares matrix

21 McClain McClain =
S̄w

S̄b
=

Sw/Nw

Sb/Nb

Minimum value of the
index

Ratio using the average
within cluster distance and
the average between cluster
distance compared to the
number of total distances

22 Rubin Rubin =
det(T )

det(Wq)

Minimum value of
second differences
between levels

Based on the ratio of the
determinant of the total sum
of squares and cross products
matrix to the determinant of
the pooled within cluster
matrix

23 KL KL(q) = | DIFFq

DIFFq+1
| Maximum value of the

index
Uses the trace of within sum
of squares

24 Silhouette Silhouette =

∑n
i=1 S(i)

n
, Silhouette ∈ [−1, 1]

Maximum value of the
index

Uses the mean distance of a
point to the points in the
cluster to which it belongs vs
the mean distance to the
points not in its cluster

25 Gap
*not used

Gap(q) =
1

B

B∑
b=1

logWqb − logWq

Gap(q) ≥ Gap(q + 1)− sq + 1, (q = 1, ..., n− 2)

Smallest number of
clusters such that
criticalVal >= 0

The gap statistic compares the
total within intra-cluster
variation for different values
of k within their expected
values under null reference
distribution of the data

26 Dindex Gain = w(P q−1)− w(P q) Graphical method Based on clustering gain on
intra-cluster inertia

27 Dunn Dunn =
min1≤i<j≤q d(Ci, Cj)

max1≤k≤q diam(Ck)

Maximum value of the
index

Uses the ratio between the
minimal intercluster distance
to maximal intracluster
distance

28 Hubert Γ(P,Q) =
1

Nt

n−1∑
i=1,i<j

PijQij Graphical method
Uses a point-serial correlation
coefficient between any two
matrices

29 SDindex SDindex(q) = αScat(q) +Dis(q)
Minimum value of the
index

Based on the concepts of
average scattering for clusters
and total separation between
clusters

30 SDbw SDbw(q) = Scat(q) +Density.bw(q)
Minimum value of the
index

Based on the criteria of
compactness and separation
between clusters
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B.2 Glossary of Terms

General Terms

n = number of observations,

p = number of variables,

q = number of clusters,

X = {xij}, i = 1, 2, ..., n, j = 1, 2, ..., p,

= n× p data matrix of p variables measured on n independent observations,

X̄ = q × p matrix of cluster means,

x̄ = centroid of data matrix Xi,

k, l = 1, ..., q = cluster number,

Ck = a given cluster in the data, where k = 1, ..., q,

nk = number of objects in cluster Ck, k = 1, ..., q,

ck = centroid of cluster Ck,

xi = p-dimensional vector of observations of the ith object in the cluster Ck,

||x|| = (xTx)1/2,

Wq =
∑q

k=1

∑
i∈Ck

(xi − ck)(xi − ck)
T is the within-group dispersion matrix for the data

clustered into q clusters,

Bq =
∑q

k=1 nk(ck−x̄)(ck−x̄)T is the between-group dispersion matrix for the data clustered

into q clusters,

Nt = total number of pairs of observations in the data set: Nt =
n(n−1)

2 ,

Nw = total number of pairs of observations belonging to the same cluster: Nw =
∑q

k=1
nk(nk−1)

2 ,

Nb = total number of pairs of observations belonging to different clusters: Nb = Nt −Nw,

d(x, y) =
√∑p

j=1(xj − yj)2 = Euclidean distance between two vectors x and y,

Sw = sum of the within-cluster differences: Sw =
∑q

k=1

∑
i,j∈Ck,i<j d(xi, xj),

Sb = sum of the between-cluster differences: Sb =
∑q−1

k=1

∑q
l=k+1

∑
i∈Ck,j∈Cl

d(xi, xj)

Duda
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Duda = Je(2)
Je(1) =

Wk+Wl
Wm

, where Cm = Ck ∪ Cl

and where Wk and Wl are the within-group dispersions for clusters Ck and Cl, and Wm is

the within-group disperion for cluster Cm.

Pseudot2

Pseudot2 = Vkl
Wk+Wl
nk+nl−2

where Vkl = Wm −Wk −Wl, and Cm = Ck ∪ Cl

and where Wk and Wl are the within-group dispersions for clusters Ck and Cl, and Wm is

the within-group disperion for cluster Cm.

Cindex

Smin = the sum of the lw smallest distances between all the pairs of points in the entire

data set (there are lt such pairs);

Smax = the sum of the lw largest distances between all the pairs of points in the entire data

set.

Gamma

s(+) = number of concordant comparisons,

s(−) = number of discordant comparisons.

Beale

Vkl = Wm −Wk −Wl.

CCC

R2 = 1− trace(XTX−X̄TZTZX̄)
trace(XTX)
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XTX = total-sample sum-of-squares and crossproducts (SSCP) matrix (P × P ),

X̄ = (ZTZ)−1ZTX,

Z is a cluster indicator matrix n× q with element zik = 1 if the ith observation belongs to

the kth cluster and zik = 0 otherwise,

E(R2) = 1− [

∑p∗
j=1

1
n+uj

+
∑p

j=p∗+1

u2j
n+uj∑p

j=1 u
2
j

][ (n−q)2

n ][1 + 4
n ],

uj =
sj
c , j = 1, .., p,

sj = square root of the j th eigenvalue of XTX/(n− 1), j = 1, .., p,

c = (v
∗

q )
( 1
p∗ ),

v∗ =
∏p∗

j=1 sj ,

p∗ is chosen to be the largest integer less than q such that up∗ is not less than one.

Ptbiserial

S̄w = Sw/Nw,

S̄b = Sb/Nb,

sd = standard deviation of all distances.

Gplus

s(-) = the number of discordant comparisons.

DB

dkl = v

√∑p
k=1 |ckj − clj |v = distance between centroids of clusters Ck and Cl (for v=2, dkl

is the Euclidean distance),

δk = u

√
1
nk

∑
i∈Ck

∑p
j=1 |xij − ckj |u = dispersion measure of a cluster Ck to the centroid of

this cluster).
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Frey

S̄b = Sb/Nb = mean between-cluster distance,

S̄w = Sw/Nw = mean within-cluster distance.

Hartigan

q̃ ∈ {1, ..., n− 2}.

Tau

s(+) represents the number of times where two points not clustered together had a larger

distance than two points which were in the same cluster, i.e., s(+) is the number of concor-

dant comparisons,

s(-) represents the reverse outcome, i.e., s(-) is the number of discordant responses,

Nt is the total number of distances and t is the number of comparisons of two pairs of

points where both pairs represent within cluster comparisons or both pairs are between

cluster comparisons.

Ratkowsky

S̄2 = 1
p

∑p
j=1

BGSSj

TSSj
,

BGSSj =
∑q

k=1 nk(ckj − x̄j)
2.

KL

DIFFq = (q − 1)2/ptrace(Wq−1)− q2/ptrace(Wq)

Silhouette

S(i) = b(i)−a(i)
max{a(i);b(i)} ,

a(i) =
∑

j∈{Cr/i} dij
nr−1 is the average dissimilarity of the ith object to all other objects of cluster
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Cr,

b(i) =
∑

j∈Cs
dij

ns
is the average dissimilarity of the ith object to all objects of cluster Cs.

Gap

B = the number of reference data sets generated using uniform prescription,

Wqb = within-dispersion matrix as defined in Hartigan Index,

sq = sdq
√

1 + 1/B,

sdq is the standard deviation of {logWqb}, b = 1, ..., B : sdq =
√

1
B

∑B
b=1(logWqb − l̄)2,

l̄ = 1
B

∑B
b=1 logWqb.

Dindex

w(P q) = 1
q

∑q
k=1

1
nk

∑
xi∈Ck

d(xi, ck)

Dunn

d(Ci, Cj) = minx∈Ci;y∈Cj d(x, y)

diam(C) = maxx,y∈C d(x, y)

Hubert

P = the proximity matrix of the data set,

Q = an n×n matrix whose (i, j) element is equal to the distance between the representative

points (vci , vcj ) of the clusters where the objects xi and xj belong.

Γ̄ =
∑n−1

i=1,i<j(Pij−µP )(Qij−µQ)

σP σQ
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SDindex

Scat(q) =
1
q

∑q
k=1 ||σ

(k)||
||σ|| ,

σ = (V AR(V1), V AR(V2), ..., V AR(Vp)); i.e. the vector of variances for each variable in the

data set,

σ(k) = (V AR(V
(k)
1 ), V AR(V

(k)
2 ), ..., V AR(V

(k)
p )); i.e. the variance vector for each cluster

Ck,

Dis(q) = Dmax
Dmin

∑q
k=1(

∑q
z=1 ||ck − cz||)−1,

Dmax = max(||ck − cz||)∀k, z ∈ {1, 2, 3, ..., q} is the maximum distance between cluster cen-

ters,

Dmin = min(||ck − cz||)∀k, z ∈ {1, 2, 3, ..., q} is the minimum distance between cluster cen-

ters.

SDbw

Density.bw(q) = 1
q(q−1)

∑q
i=1(

∑
j=1,i ̸=j

density(uij)
max(density(ci),density(cj))

),

uij = the middle point of the line segment defined by the clusters centroids ci and cj ,

density(uij) =
∑nij

l=1 f(xl, uij),

nij = the number of tuples that belong to the clusters Ci and Cj ,

f(xl, uij) = equal to 0 if d(x, uij) > Stdev and 1 otherwise,

Stdev = 1
q

√∑q
k=1 ||σ(k)||,

σ(k) = variance vector for each cluster Ck as described in SDindex.



115

APPENDIX C

NbClust Start/End Points

In this appendix, we provide an overview of the effect of varying start and end points on

the optimal cluster selection conducted by the NbClust R package. Since one of the original

goals of this MS thesis is to expand current player positions and definitions beyond the

traditional five, a starting point of five for the NbClust procedure seemed logical. However,

we must also consider that there may potentially be fewer than five meaningful positions.

The argument could be made that there are only two types of player: Ball-Handlers and

Non-Ball-Handlers. We must also consider what happens to the selections as we vary the

upper limit of the procedure. Figure C.1 provides the NbClust selection histograms with

combinations of two starting points (two & five) and three ending points (twelve, fifteen, &

twenty).

As the starting point moves from two clusters to five clusters, we notice that the highest

frequency occurs with three clusters and six clusters, respectively. The three histograms on

the left side of Figure C.1 with ‘Start=2’ show the consensus falling heavily in favor of

three clusters. While proceeding with three clusters would have been a legitimate option,

the purpose of this research is to describe players in more detail and explore more subtle

differences between players through visualization. Describing players in more than five ways

will also allow for more precise lineup creation and performance prediction.

The reader will also note that most of the figures show slight increases on the right limit

of the histogram, whether the end point is twelve, fifteen, or twenty. This is likely a result

of the limits capturing the maximum value plus every choice that would have fallen beyond

that maximum value. For this reason, it made sense to ignore the local maximas that occur

at both end points because they are capturing all cluster number selections as extreme or

more extreme than that value.

While each of the six histograms presented may appear to tell a slightly different story,
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the key feature to be considered for this analysis is the ‘jumps’ at nine clusters in the

three histograms on the right column of Figure C.1 where ‘Start=5’. When we calculate

the optimal cluster number under the assumption that there are more than five meaningful

player positions, it is logical to consider nine or even twelve clusters for subsequent analysis.

(a) Start=2, End=12 (b) Start=5, End=12

(a) Start=2, End=15 (b) Start=5, End=15

(c) Start=2, End=20 (d) Start=5, End=20

Fig. C.1: Optimal number of clusters selected for the 2000-2001 NBA season with varying
start and end points. The three histograms on the left side of the figure with ‘Start=2’ show
the consensus falling heavily in favor of three clusters, while the three figures on the right
with ‘Start=5’ choose six clusters as the optimal number.
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APPENDIX D

Adjusted Rand Index Simulations

This appendix contains the ARI scores calculated for each pair of adjacent NBA seasons

(see Table 5.1) can be compared to baseline ARI calculations to confirm that the NBA player

clustering similarities from year to year were not observed by chance.

Each NBA season’s players were randomly assigned to one of nine clusters, and the

amount of players randomly placed in a given cluster was fixed to the amount of players

placed in that cluster by Ward’s D2 method. 9,999 such clusterings were performed for each

NBA season and compared to the following season. The results for each comparison can be

viewed in Figure D.1.

We can see that most ARI scores that were calculated from the simulated player cluster-

ings lie between -0.025 and 0.025. When we consider the actual ARI results found in Table

5.1, we can confirm that there is consistency in player clusterings from season to season.

The lowest ARI score observed between two adjacent NBA seasons occurred between the

2018-2019 season and the 2019-2020 season (0.182). We would overall expect there to be

many players placed in the same clusters from year to year, but we would also expect many

players’ roles and positions to change over time for many reasons, including age, injuries, or

skill development.
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Fig. D.1: 9999 random ARI simulations for each pair of adjacent NBA seasons. Nearly all
ARI simulations across the 20 seasons fall between -0.025 and 0.025.
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APPENDIX E

Visualizing Three Clusters

This appendix includes a brief discussion and analysis of what would happen if we had

only chosen three player clusters as the NbClust output suggests. While this outcome does

not align with our purpose of analyzing player differences in great detail, this approach must

be considered due to being the overwhelming choice by the 26 indices.

Figure E.1 displays the the PCA plot for the players in the 2000-2001 NBA season using

the factoextra R package. The reader may compare this plot to Figure 4.5, which shows

the same players clustered into nine different positions. If we consider the same players listed

in Table 5.3 in the main text, we find that the Defensive Big Men and Interior Big Men

(Clusters 7 & 8) are combined into a Traditional Big Men (Cluster 3) in this example.

The Scoring Big Men and Superstars (Clusters 3 & 9) are combined into Ball-Dominant

Scorers (Cluster 2) in this figure. All other players in Clusters 1, 2, 4, 5, and 6 are found

in Cluster 1.

While these results are not discussed in the main text, it is informative to observe how

players may be more similar than different in many ways. Even though the focus of this

research centers on detailed player differences, the broad view that there may be only two

or three different types of players, especially in lower league levels, is certainly noteworthy.
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Fig. E.1: PCA plot using factoextra R package for players in the 2000-2001 NBA season
- separated into three clusters
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