
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

8-2022 

Multidisciplinary Reference Solutions for Performance-Optimized Multidisciplinary Reference Solutions for Performance-Optimized 

Aircraft Wings with Tailored Aerodynamic Load Distributions Aircraft Wings with Tailored Aerodynamic Load Distributions 

Jeffrey D. Taylor 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Taylor, Jeffrey D., "Multidisciplinary Reference Solutions for Performance-Optimized Aircraft Wings with 
Tailored Aerodynamic Load Distributions" (2022). All Graduate Theses and Dissertations. 8584. 
https://digitalcommons.usu.edu/etd/8584 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F8584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.usu.edu%2Fetd%2F8584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/8584?utm_source=digitalcommons.usu.edu%2Fetd%2F8584&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


MULTIDISCIPLINARY   REFERENCE   SOLUTIONS   FOR 

PERFORMANCE-OPTIMIZED AIRCRAFT WINGS WITH  

TAILORED AERODYNAMIC LOAD DISTRIBUTIONS 

by 

Jeffrey D. Taylor 

A dissertation submitted in partial fulfillment 
of the requirements for the degree 

of 

DOCTOR OF PHILOSOPHY 

in 

Mechanical Engineering 

Approved: 

______________________ ____________________ 
Douglas F. Hunsaker, Ph.D. Thomas H. Fronk, Ph.D. 
Major Professor Committee Member 

______________________ ____________________ 
Stephen A. Whitmore, Ph.D. Matthew W. Harris, Ph.D. 
Committee Member Committee Member 

______________________ ____________________ 
Nhan T. Nguyen, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY 
Logan, Utah 

2022 



Copyright © Jeffrey D. Taylor 2022 

All Rights Reserved 

ii



ABSTRACT 

Multidisciplinary Reference Solutions for Performance-Optimized Aircraft Wings 

with Tailored Aerodynamic Load Distributions 

by 

Jeffrey D. Taylor 

Utah State University, 2022 

Major Professor: Douglas F. Hunsaker, Ph.D. 
Department: Mechanical and Aerospace Engineering 

The optimization of wings that employ static or active wing shaping to tailor the load 

distribution is a multidisciplinary task involving the coupling of various operational and 

wing-design parameters. Computational methods for multidisciplinary design and 

optimization are common, but obtaining relational understanding about the coupling 

between operational and design parameters from these methods is often very difficult. In 

this dissertation, analytic and low-order multidisciplinary methods are presented that 

capture the coupling between aerodynamics, structures, control, and the flight path 

trajectory in the design and optimization of wings with wing-shaping controls. These 

methods are used to obtain reference solutions that reveal important relational information 

and provide insights to inform future research in active wing shaping. Results are presented 

both for wings with static wing shaping and wings using active wing shaping that 

characterize the impact of wing shaping on aircraft efficiency and performance.  

(513 pages) 
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PUBLIC ABSTRACT 

Multidisciplinary Reference Solutions for Performance-Optimized Aircraft Wings 

with Tailored Aerodynamic Load Distributions 

Jeffrey D. Taylor 

Morphing wings, or wings that can change shape during flight, have the potential to 

substantially reduce the amount of fuel consumed by an aircraft over the course of its 

flight. However, the extent to which these wings can reduce fuel consumption depends on 

the design of the wing, including its aerodynamic efficiency and its structural layout, and 

how the aircraft flies, including its flight altitude and speed. Correctly predicting how 

these design and operational characteristics interact is critical to predicting how wing 

morphing may affect aircraft fuel consumption. Many computer prediction tools exist that 

include the effects of these interactions, but extracting the information needed to 

understand how the interactions work from most of these tools is very difficult. In this 

dissertation, some simplified models are presented that more directly reveal key 

information about the interplay between aerodynamics, structures, control, and the flight 

trajectory in the design of morphing wings. This information is used to characterize the 

impacts of wing morphing on aircraft efficiency.   
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CHAPTER 1 

INTRODUCTION 

 THE design and optimization of wings that use wing-shaping controls to tailor the 

load distribution requires a multidisciplinary approach that captures the coupling between 

various operational and design parameters. Computational methods for the 

multidisciplinary design and optimization (MDO) of aircraft wings can often accurately 

model this coupling for specific discrete design scenarios, but the field is lacking in 

theoretical reference solutions that advance our understanding of the general relationships 

between coupled operational and design parameters. Much of our relational 

understanding between wing design parameters and aerodynamic performance is based 

on solutions obtained from theory. Designers often rely on insights gained from 

aerodynamic theories in the conceptual and preliminary phases of aircraft design.  In 

many cases, solutions based on theory have been shown to be in good agreement with 

experimental data and computational fluid dynamics [1-8], while providing substantially 

more mathematical and physical insight than most computational models.    

 This dissertation is focused on the development and use of analytical and low-order 

methods to obtain theoretical reference solutions that provide relational understanding 

between various coupled operational and design parameters in the optimization of wings 

that utilize wing shaping to tailor the load distribution. The majority of modern MDO 

methods link individual computational solvers to model the interaction between various 

coupled disciplines. Research in this area is trending toward higher-fidelity 

computational models that may require heavy computation but can capture intricate 

details and yield highly accurate results. In this dissertation, these methods will generally 



  

 
 

be referred to as high-fidelity computational methods. Whereas high-fidelity 

computational MDO methods can be very valuable for complex design and analysis 

problems, their discrete nature often makes extracting general relational information from 

them very difficult. Moreover, because of the high computational cost of many high-

fidelity computational MDO methods, it is often very expensive and time-consuming to 

use them for design-space exploration or optimization studies involving a large number 

of function calls. Therefore, when studying highly-coupled design spaces, it is sometimes 

useful to use analytic methods, which yield equations that show general relationships 

between operational and design parameters for a wide range of aircraft configurations, or 

efficient lower fidelity computational methods, which can be used to perform rapid 

design-space exploration and optimization. This dissertation presents several analytic and 

low-order MDO methods and shows how they can be used to obtain reference solutions 

that provide relational understanding to inform ongoing research in shape-adaptive 

aircraft wing structures.   

 The methods and solutions presented in this dissertation will also complement 

ongoing and future computational MDO research by providing insights for conceptual-

level multidisciplinary design and innovation and by providing simple, theoretical 

validation cases for high-fidelity computational methods. One of the main challenges in 

MDO is to correctly link computational aerodynamic, structural, and other analysis tools 

to achieve accurate coupling. This process often requires substantial effort and introduces 

many opportunities for error. Therefore, it is valuable to have a simple, known solution 

that includes interdisciplinary coupling as a validation case to ensure that coupling 

between all individual computational components is properly implemented. Once a high-
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fidelity computational solution is obtained, theoretical solutions can also serve as a point 

of reference for interpreting computational results. 

 Although wing design involves a large number of disciplines, this dissertation is 

primarily focused on aspects of the coupling between aerodynamics, structures, and 

control, since each of these areas is highly related to wing-shaping control and affects the 

wing load distribution and the wing performance. 

1.1 Static Wing Shaping 

 Aircraft wings are typically designed with a fixed jig twist that is tailored to produce 

optimal aerodynamic characteristics at a desired design condition. When the wing 

operates away from this design condition, its performance is suboptimal. The elliptic lift 

distribution is traditionally considered to be the lift distribution that produces optimum 

aerodynamic efficiency for a wing in cruise. The elliptic lift distribution was first 

identified by Ludwig Prandtl in 1918 [9,10] from lifting-line theory as the lift distribution 

that minimizes induced drag for a wing with fixed weight and wingspan. Under these 

constraints, the elliptic lift distribution has since been studied extensively using analytic, 

computational, and experimental methods, and it has been shown to be optimal for many 

complex and unconventional wing designs in both high- and low-speed subsonic flight. 

 When aerostructural constraints are considered, however, the optimum lift 

distribution is typically non-elliptic. In 1933, Prandtl [11] showed that under 

aerostructural constraints, the optimum lift distribution for minimum induced drag 

depends on the coupling between the weight, wingspan, and lift distribution. The primary 

reasons for this can be conveniently illustrated using classical lifting-line theory [9,10]. 

Using the Fourier-series solution to classical lifting line theory, the lift distribution on an 
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unswept wing immersed in an incompressible, inviscid flow with freestream density ρ 

and freestream velocity V can be written as 
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where L is the total lift, )(
~ L  is the section lift, b is the wingspan, and Bn are normalized 

Fourier coefficients. The induced drag on a wing in steady-level flight can be written as  
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where W is the weight.  

 When weight and wingspan are fixed, Eq. (1.2) is minimized with the elliptic lift 

distribution, which has Bn = 0 for all n. If the weight W and/or wingspan b are allowed to 

vary, Eq. (1.2) can be reduced by decreasing weight and/or increasing wingspan. 

However, this cannot be done arbitrarily because the weight of the wing-structure 

depends, in large part, on the bending moments. Any change in the lift distribution, 

wingspan, or weight distribution affects the wing bending moments and the 

corresponding wing-structure weight required to support the bending moments. When 

these structural effects are considered, the elliptic lift distribution does not provide an 

absolute minimum in induced drag. Instead, it is advantageous to shift lift inboard to 

alleviate the wing bending moments, which can serve to reduce the necessary wing-

structure weight. Thus, truly minimizing induced drag involves a tradeoff between the lift 

distribution, wingspan, and wing-structure weight. 
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 Because of this tradeoff, minimizing drag on a wing with a fixed wing-twist 

distribution or a fixed lift distribution involves a compromise between designs with high 

load-alleviation at the load limit and low drag during cruise. This often results in a non-

elliptic lift distribution that is an aerostructural analogue to the aerodynamically-optimum 

elliptic lift distribution. The load alleviation provided by such a lift distribution can allow 

for a larger wingspan than would be structurally feasible with a fixed elliptic lift 

distribution with the same wing-structure weight. This increase in wingspan outweighs 

the drag penalty incurred by operating with a non-elliptic lift distribution, resulting in an 

overall reduction in induced drag over the flight envelope. The extent of this drag 

reduction depends on the design constraints.  

 In 1933, Prandtl [11] identified a bell-shaped lift distribution that minimizes induced 

drag on a rectangular wing with fixed gross weight. Prandtl’s study [11] included 

constraints on the gross lift and the moment of inertia of gross lift, which is derived from 

the integrated bending moment. To obtain an analytic solution, Prandtl [11] assumed that 

the wing bending moments are solely due to the lift distribution, regardless of the weight 

of the wing. Prandtl also assumed that the wing bending moments bM
~  are related to the 

wing-structure weight sW  by a spanwise-invariant proportionality coefficient bS , i.e.,  
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where b is the wingspan and y is the spanwise coordinate. This assumption corresponds 

to rectangular wings. Within the framework of these constraints and assumptions, Prandtl 

identified a bell-shaped lift distribution that allows a 22.5% larger wingspan and 

produces 11.1% less induced drag than the elliptic lift distribution with the same wing 
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weight [11]. Prandtl concluded that because the bell-shaped lift distribution corresponds 

more closely to the lift distribution of an untwisted tapered wing than the elliptic lift 

distribution, “[pointed-end] wings have an advantage over those with a nearly rectangular 

profile” when aerostructural effects are considered [11,12]. However, because Prandtl’s 

assumptions and approximations correspond most closely with rectangular wings, his 

conclusions were not fully assessed. 

 The subsequent literature includes several additional theoretical solutions for 

minimizing drag using wingspan, lift distribution, and wing weight. Jones [13] sought to 

minimize induced drag under the constraints of fixed gross lift and root bending moment 

in cruise. Gopalarathnam and Norris [14], Verstraetan and Slingerland [15], and Ranjan 

[16] also sought to minimize total drag with root-bending-moment constraints. Pate and 

German [17] constrained the root bending moment at a given off-design lift coefficient, 

but did not allow the wingspan to change. DeYoung [18] replaced Jones’ root-bending-

moment constraint with a constraint on the bending moment at a prescribed spanwise 

location. Jones and Lasinski [19] later constrained the integrated bending moment. Klein 

and Viswanathan [20,21] considered both root and integrated bending moment [20] and 

included the effects of shear on the wing-structure weight [21]. Löbert [22] and  

McGeer [23] introduced a constraint based on the ratio of the bending-moment 

distribution and the wing-section thickness.  

 More recently, Phillips et al. [24,25] extended Prandtl’s approach to account for the 

effects of the wing weight distribution, with the bending moments evaluated at critical 

high- and low-load limits.  Revisiting Prandtl’s 1933 [11] assumption that the wing-

structure weight is proportional to the bending moments, Phillips et al. [24,25] used 
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simple beam theory to define the proportionality coefficient Sb in terms of the beam 

geometric and material properties, i.e., [24],  
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where ctmax  is the wing thickness-to-chord ratio, c is the wing chord, max  is the 

maximum allowable stress, γ is the specific weight of the wing-structure material, and I, 

A¸ and h are the second moment of inertia, area, and height of the wing structure, 

respectively. Note that Eq. (1.4) is analogous to Eq. (1.3) but includes a limit on the 

maximum allowable bending stress. Thus, Eq. (1.4) describes the wing-structure weight 

for stress-limited designs. Phillips et al. [24] also included deflection constraints by 

relating the maximum allowable deflection to the maximum allowable stress to give [24]  
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where E is the modulus of elasticity of the wing-structure material, and max  is the 

maximum allowable deflection. Thus, Eq. (1.5) describes the wing-structure weight for 

deflection-limited designs. 

 Whereas Prandtl [11] assumed that the wing bending moments are a function of the 

lift distribution alone, Phillips et al. [24,25] assumed that the bending moments are 

related to the lift distribution and wing weight distribution according to the relation [24]  
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where )(
~

zL  is the section lift distribution, )(
~

zWs  is the section wing-structure weight, 
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zW n  is the section weight of all non-structural elements carried in the wing, and an  is 

the load factor. At all points, the wing structure must be designed to support the bending 

moments encountered during a high-load maneuver and during a negative-load 

maneuver, such as a hard landing. To obtain analytic results, Phillips et al. [24,25] 

assumed that the lift distribution is fixed for all flight phases and identified lift 

distributions that minimize induced drag under constraints of fixed gross weight [24], 

fixed net weight [25], fixed wing loading [24,25], and fixed stall speed [25].  

 The solutions from the studies described here show that by tailoring the lift 

distribution, the wingspan can be increased by between 1-33% over that allowed by the 

elliptic lift distribution with the same weight, giving a 1-16% reduction in induced drag, 

depending on the design constraints. However, each of these studies includes 

assumptions that may not be representative of all aircraft. For example, Refs. [11,20,21] 

include assumptions about the proportionality between the wing-structure weight and the 

wing bending moments that correspond to rectangular wings. References [11-22] include 

the assumption that the bending moments are caused by the lift alone, which limits their 

application to wings with negligible structural or payload weight. The formulations given 

by Phillips et al. [24,25] are arguably more general than those given in Refs. [11-22], but 

in order to obtain analytic solutions, Phillips et al. [24,25] limited their results to 

rectangular wings with a single ideal weight distribution.  

 Taylor [26] extended the method of Phillips et al. [24,25] and presented preliminary 

results of a semi-analytic method for the aerostructural optimization of wings with 

tapered planforms and a numerical method for wings with arbitrary planform and payload 

distribution [26]. Still, these methods, like the others discussed in this section assume that 
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the lift distribution is fixed throughout the course of the flight, which is only true for rigid 

wings operating at a fixed lift coefficient. For most aircraft, the lift distribution changes 

during flight, requiring active wing-shaping control to maintain optimum aerodynamic 

performance at all flight conditions.  

1.2  Active Wing-Shaping Control 

 Active Wing-Shaping control is a general term denoting the use of control effectors 

or propulsion elements to actively change the wing geometry during flight to achieve 

desired aerodynamic characteristics. It is often colloquially referred to as “morphing”. 

The use of active wing shaping is not new. As early as 1903, the Wright Brothers used 

wing shaping in the form of twist to control their flyer. Although the practice was 

generally discontinued in favor of fixed, discrete control surfaces, wing-shaping has 

reemerged in recent years as a potential improvement over traditional discrete control 

surfaces. Active wing-shaping concepts have been explored by organizations including 

NASA [27-29], the Air Force Research Laboratory (AFRL) [30], the Defense Advanced 

Research Projects Agency (DARPA) [31], Boeing [32], Airbus [33], the European  

Union [34]. The general idea of each of these concepts is to use active wing shaping to 

tailor the aerodynamics in flight to achieve a desired goal, such as noise reduction, flutter 

suppression, gust load alleviation, enhanced control, or performance improvement. In this 

dissertation, the methods and results are focused on the performance benefits of wing-

shaping control in the context of load alleviation and drag and fuel-burn minimization. 

 One of the main benefits of wing-shaping control is the ability to tailor the wing 

geometric or aerodynamic twist to alter the lift distribution in-flight and achieve desired 

performance characteristics. This can be achieved through a variety of morphing 
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mechanisms, but the work presented in this dissertation is primarily relevant for 

morphing strategies that employ twist and camber morphing mechanisms. Some 

examples of this type of mechanism include the Mission Adaptive Compliant Wing 

designed by FlexSys [35], the University of Bristol’s FishBAC morphing aerofoil [36], 

NASA’s Variable Camber-Continuous Trailing-Edge Flap (VCCTEF) system [29], the 

Air Force Research Laboratory’s Variable Camber-Compliant Wing (VCCW) [30], and 

many others [37-39]. 

1.2.1 Load Alleviation 

 Using active wing-shaping controls, the performance benefits of load alleviation are 

often more pronounced than for static wing designs. If the wing aerodynamic or 

geometric twist can change during flight, the designer is not limited to a single lift 

distribution or a fixed twist distribution. Instead, the twist can theoretically be tailored to 

produce the elliptic lift distribution at cruise and a load-alleviating lift distribution at the 

design limit. In some cases, this may result in even greater drag savings than those seen 

in Refs. [11-26].  

 For example, Hunsaker et al. [40] showed that when wing-shaping controls are used 

to actively tailor the lift distribution during flight, the drag can be reduced on the order of 

5% over the single-point optimized solution. Similarly, Curiale and Zingg [41] showed 

that morphing can increase the max L/D on the order of 5% for a hypothetical transonic 

regional transport, and Burdette et al. [42] and Burdette and Martins [43] found that, 

using morphing, fuel burn can be reduced on the order of 5% over the non-morphing 

optimized design of the NASA Common Research Model (CRM) transonic transport 

configuration [44,45]. Burdette et al. [42] point out that morphing mechanisms improve 
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fuel burn using two mechanisms: maneuver load alleviation and reduced coupling 

between cruise and maneuver conditions. Thus, to fully take advantage of load 

alleviation, the use of wing-shaping controls should be considered from the beginning of 

the design process, instead of at the end to solely mitigate negative effects that arise later 

in the design process or in a retrofit scenario.  

1.2.2 Aeroelastic Wing-Shaping Control 

 Active wing-shaping control can be leveraged to mitigate negative aeroelastic effects 

at off-design cruise conditions. This practice is known as aeroelastic wing-shaping 

control. The jig twist on modern aircraft wings is carefully designed to account for static 

aeroelastic deformations caused by the wing weight and aerodynamic load distributions 

at the design condition. However, for a wing with fixed jig twist, the aerodynamic load 

distribution is a function of the lift coefficient and therefore may change over the course 

of a flight as the lift coefficient changes. Moreover, for a commercial aircraft, which may 

begin cruise with as high as 80% fuel and end cruise with as low as 20% fuel, the wing 

weight distribution may change substantially during flight. The resulting changes to the 

static aeroelastic deformations on the wing may cause the aircraft to operate at off-design 

conditions for the majority of cruise. 

 Additionally, at off-design cruise conditions, the effects of aeroelasticity can further 

alter the lift distribution and result in even greater performance reductions. This is 

especially true for highly-flexible aircraft, which are becoming increasingly ubiquitous as 

advances in material science result in more-flexible aircraft wings made of light-weight, 

high-strength composites with reduced stiffness. Aeroelasticity affects the aircraft 

performance primarily through elastic twist induced by the spanloads. Under typical 
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cruise-loading scenarios, the aeroelastic twist tends to redistribute the lift inboard, 

bringing the lift distribution away from the optimum elliptical shape, and it tends to lower 

the overall lift coefficient, requiring the aircraft to operate at a higher angle of attack. 

Both of these phenomena have detrimental effects on the aircraft performance. However, 

distributed wing-shaping control effectors can be used dynamically throughout the course 

of a flight to effectively re-twist the wing to mitigate these aeroelastic effects and produce 

an optimal or near-optimal lift distribution at each individual flight condition.  

 This strategy is especially relevant when considering the benefits of retrofitting an 

existing wing with wing-shaping controls. The majority of the research done on the 

benefits of aeroelastic wing shaping has been along these lines. For example, Lebofsky 

et. al [46,47], Ippolito et al. [48], Nguyen et al. [49], Ting et al. [50] and Chaparro et  

al. [51] studied the potential benefits of using the VCCTEF system on the commercial-

class NASA Generic Transport Model (GTM) aircraft. Under cruise trim conditions, 

Lebofsky et al. [46,47] showed that the VCCTEF can produce drag reductions on the 

order of 10-20% over the baseline GTM configuration at off-design conditions. Ting et 

al. [50] and Chaparro et al. [51] found that when transonic effects are considered, the 

VCCTEF can reduce total cruise drag by 6-8% over the baseline GTM configuration. 

Rodriguez et al. [52] showed that optimizing the VCCTEF by condition can reduce 

traditional cruise drag and overspeed cruise drag by about 5%. Nguyen et al. [49] showed 

that when flutter constraints and the effects of load alleviation are considered, the 

VCCTEF can reduce drag total cruise drag by up to 5.6% and reduce the root bending 

moment by around 25% over the baseline GTM model.  
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 Results similar to those shown in refs. [46-52] have also been shown for other wing 

geometries, including the NASA CRM [53,54], the LANN wing [55], the Goland  

Wing [56], and others [57,58]. In general, these studies show that aeroelastic wing-

shaping control can feasibly and substantially improve the performance of flexible 

aircraft under a variety of practical constraining conditions. Moreover, many of these 

studies show that benefits of aeroelastic wing-shaping control are more pronounced with 

increased wing flexibility.  

1.2.3  Trajectory Optimization 

 To determine the effect of active wing shaping over the course of a flight, the effect 

of the wing shaping on the optimum flight trajectory must also be considered. 

Traditionally, fuel burn optimization has been done using multipoint methods. Multipoint 

optimization entails the simultaneous optimization of the wing design at several points in 

the flight, called a flight stencil. The flight stencil is chosen to represent the nominal 

flight conditions, design load conditions, and any other flight condition that the aircraft 

may encounter. Thus, the optimizer must balance between all of the flight conditions. 

Examples of multipoint optimization approaches for morphing aircraft are shown in  

Refs. [43,59-62] The multipoint approach depends on the flight points chosen, and it 

requires the user to select points from a pre-determined representative mission profile. 

However, the optimal trajectory for aircraft that employ wing-shaping control may differ 

somewhat from the optimal trajectory for a non-morphing aircraft. 

 In order to perform a fair comparison between aircraft with traditional control 

surfaces and an aircraft employing wing-shaping control, the potential effects of wing 

shaping on optimal trajectory must be considered. Although trajectory optimization 
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studies for morphing flight vehicles have become common in recent years, there are 

relatively few of these studies that consider the effects of camber morphing on the 

optimum trajectory of typical manned aircraft types. However, Nguyen et al. [63] 

recently presented preliminary results for the trajectory for a transonic truss-braced wing 

with active wing shaping controls employing camber-morphing mechanisms. Fasel et al. 

[64] preformed a concurrent design and trajectory optimization for an airborne wind 

energy system (energy kite) and found that camber morphing can increase power 

production by nearly 8% with relatively small changes in the flight trajectory. Jasa et al. 

[65] presented a coupled aerostructural and trajectory optimization for the CRM wing 

with a morphing trailing edge and showed modest fuel-burn reductions of less than 1% 

over the course of a long-range cruise. Rudnick-Cohen et al. [66,67] have also sought to 

develop methods for concurrent airframe and mission design of aircraft with camber-

morphing wings.  

 The concurrent physical design and trajectory or mission design of an aircraft or other 

engineering system is sometimes referred to as co-design [68]. Modern methods for co-

design are generally focused on linking a variety of independent high-fidelity or reduced-

order models within a multidisciplinary optimization routine. Co-design methods for 

multidisciplinary aircraft design are currently under development by AFRL [69-74], 

NASA [75-79], and the University of Michigan [80], among others [81-82].  Such 

methods have been used for various multidisciplinary aircraft design applications. 

However, because these methods generally rely on linking black-box computational 

models, much of the relational understanding about the coupling between disciplines is 

largely lost. Moreover, ensuring that the models are properly linked requires some 
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reference solution or intuition regarding the coupling between each discipline.  

 In this dissertation, this need is addressed by presenting a series of multidisciplinary 

reference solutions that account for the effects of aerostructural load alleviation and the 

optimal trajectory in the design and optimization of aircraft wings that use static and 

active wing shaping to tailor the aerodynamic load distributions. The purpose of these 

reference solutions is twofold. One purpose is to present reference solutions that reveal to 

what extent wing shaping can be employed to reduce aircraft cruise fuel consumption. 

The second purpose is to advance fundamental understanding of multidisciplinary design 

and optimization by revealing relational information regarding the coupling between 

aerodynamics, wing structure, and the aircraft trajectory and to serve as simple 

multidisciplinary test cases that can be used to validate results from higher fidelity 

multidisciplinary design codes. The analytic and low-order methods used to obtain these 

solutions will be presented, and their utility for rapidly obtaining valuable relational 

design information will be demonstrated through design-space exploration and 

optimization. It should be noted that this dissertation is focused on the use of camber 

morphing for load alleviation, rather than aeroelastic wing shaping, to reduce weight, 

drag, and fuel burn over the course of a flight trajectory. Therefore, the solutions 

presented in this dissertation do not include the effects of aeroelasticity. 

 This dissertation is comprised of a series of four standalone papers, along with three 

appendices containing supplemental information, that present studies focused on the 

effects of aerostructural load alleviation from static and active wing shaping on the 

efficiency and optimum trajectory of aircraft.  Chapters 2-4 build primarily on the early 

aerostructural work performed by Prandtl [11] and the more recent work of Phillips et  

15



  

 
 

al. [24,25] to identify the effects of tailoring the lift distribution through static wing 

shaping on the coupling between aerodynamics and structures in the design of wings for 

minimum induced drag. The first paper, presented in Chapter 2, assesses Prandtl’s 1933 

conclusion that tapered wings have an advantage over wings with rectangular planforms 

by revisiting preliminary work of Taylor [26] on minimizing induced drag for tapered 

wings under structural constraints. In assessing Prandtl’s conclusions [11,12], this paper 

also reveals important insights on how the wing planform affects aerostructural coupling 

and suggests that a triangular planform may achieve drag reductions of nearly 15% over a 

rectangular planform in the absence of stall. 

 In Chapter 3, the methods from Chapter 2 are generalized to wings with arbitrary 

planform and weight distribution to further identify how the planform, weight 

distribution, and other design variables and constraints may affect the optimum 

aerostructural design of wings with static wing shaping. The methods from this chapter 

are demonstrated through an optimization case study and design-space exploration on a 

high-endurance UAV, the results reveal important insights on the relative importance of 

aerodynamic, structural, and operational design parameters in designing a wing for 

minimum induced drag.  

 The paper presented in Chapter 4 addresses the extent to which theoretical 

aerostructural solutions based on static wing shaping, including many of those presented 

in Refs. [11-25], may apply to practical aircraft configurations and if they may serve as 

appropriate reference solutions for higher-fidelity computational studies. The results 

suggest that, when appropriate constraints are considered, theoretical aerostructural 

solutions agree well with solutions from high-fidelity computational studies for a variety 
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of aircraft configurations and flight conditions. 

 Chapter 5 presents a study focused on the use of active wing shaping to minimize fuel 

consumption over the optimal flight trajectory. The study combines a simple trajectory 

optimization framework with many of the aerostructural relationships presented in the 

previous chapters. The results from this study suggest that active wing shaping can be 

used to substantially reduce fuel burn over an optimized wing with static wing shaping, 

operating along its optimum trajectory. They also show that wing shaping can have a 

substantial effect on the optimum trajectory, with active wing shaping tending to favor 

lower-speed trajectories with higher lift coefficients and higher lift-to-drag ratios than the 

baseline non-morphing configurations.  
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CHAPTER 2 

Minimum Induced Drag for Tapered Wings              
Including Structural Constraints 

Jeffrey D. Taylor* and Douglas F. Hunsaker† 
Utah State University, Logan, Utah 84322-4130 

For a wing in steady level flight, the lift distribution that minimizes induced drag 

depends on a tradeoff between wingspan and wing-structure weight. In 1933, Prandtl 

suggested that tapered wings have an advantage over rectangular wings due to this 

tradeoff. However, Prandtl’s solutions were obtained using assumptions that 

correspond to rectangular wings. Therefore, his claim was not analytically proven by 

his 1933 publication. Here, an approach similar to Prandtl’s is taken with more 

general approximations that apply to wings of arbitrary planform. This more general 

development is used to study Prandtl’s claim about tapered wings. Closed-form 

solutions for the optimum wingspan and corresponding induced drag are presented 

for wings having elliptic and linearly-tapered planforms with constraints of fixed 

wing loading and maximum stress. It is shown that induced drag is minimized with a 

triangular planform, which gives a reduction in induced drag of up to 24.44% over 

the rectangular planform and up to 11.71% over the elliptic planform. Numerical 

solutions for the lift distributions that minimize induced drag for each planform are 

also presented. It is shown that the optimum lift distribution produces up to 5.94% 
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less induced drag than the elliptic lift distribution when the triangular planform is 

used. 

Nomenclature 

A = beam cross-sectional area 

ma  = fit coefficients in the polynomial approximation of nC  for linearly-tapered wings, Eq. (A1) 

nB  = Fourier coefficients in the lifting-line solution for the dimensionless section-lift distribution, 

Eq. (1) 

b = wingspan 

nC  = weighting coefficients for nB  in the expressions for wing-structure weight, Eqs. (25) and (44) 

C  = shape coefficient for the stress-limited design, Eq. (9) 

c = local wing section chord length 

c  = wing mean geometric chord, defined as bSc   

rc  =  local wing section chord length at the wing root 

tc  =  local wing section chord length at the wing tip 

iD  = wing induced drag 

h = height of the beam cross-section 

I = beam section moment of inertia 

L = total wing lift 

L
~

 = local wing section lift 

bM
~

 = local wing section bending moment 

an  = load factor, g 

gn  = limiting load factor at the hard-landing design limit 

mn  = limiting load factor at the maneuvering-flight design limit 

TR  = wing taper ratio 

ebR  = wingspan ratio for the elliptic planform, Eq. (35)  
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tbR  = wingspan ratio for the linearly-tapered planform, Eq. (55) 

eDR  = induced-drag ratio for the elliptic planform, Eq. (34)  

tDR  = induced-drag ratio for the linearly-tapered planform, Eq. (54) 

S = wing planform area 

bS  = proportionality coefficient between )(
~

zWs  and )(
~

zMb  having units of length squared, Eqs. (9) 

and (13) 

maxt  = maximum thickness of the local airfoil section 

V  = freestream airspeed 

W = aircraft gross weight 

nW  = aircraft net weight, defined as sWW   

rW  = that portion of nW  carried at the wing root 

sW  = total weight of the wing structure required to support the wing bending moment distribution 

nW
~

 = net weight of the wing per unit span, i.e., total wing weight per unit span less sW
~

 

sW
~

 = weight of the wing structure per unit span required to support the wing bending moment 

distribution 

z = spanwise coordinate relative to the midspan 

  = specific weight of the beam material 

 = change of variables for the spanwise coordinate, Eq. (1) 

W  = weight distribution coefficient, Eq. (8) 

  = air density 

max  = maximum longitudinal stress 

 

I.   Introduction 

 PRANDTL’S classical lifting-line theory [1,2] relates the spanwise lift distribution to the spanwise 

chord-length and aerodynamic angle-of-attack distributions for an unswept wing immersed in an inviscid, 

incompressible, uniform flow. If any two of these distributions are known, Prandtl’s classical lifting-line 
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equation can be used to find the third. For instance, below stall, any desired lift distribution can be 

produced on any given planform if the correct twist distribution is used. Given a planform shape, the 

lifting-line equation can be used to find the twist distribution needed to produce the desired lift  

distribution [3]. Therefore, in this work, we will treat planform and lift distribution as two independent 

parameters that are linked through the dependent parameter of wing twist. Lifting-line theory has long been 

used in the aerospace industry for aerodynamic analyses and optimization, and results based on this theory 

have been shown to be in good agreement with CFD [4-11]. However, lifting-line theory can also be used 

to gain insight into the aerodynamic and structural coupling involved in designing a wing for minimum 

induced drag.  

 From classical lifting-line theory, the spanwise lift distribution can be written in terms of a Fourier 

series. Although this series is generally written in an alternate form, here we shall use the dimensionless 

form [12] 
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where 11 B . Equation (1) can be used to define any dimensionless lift distribution. However, in this paper, 

we will only consider spanwise-symmetric lift distributions, which have 0nB  for all even n. In steady 

level flight, the lift, L , is equal to the weight, W , and the induced drag can be written in terms of the 

Fourier coefficients, nB , as [12] 
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Equation (2) shows that for a given flight condition, the induced drag is a function of the weight, the 

wingspan, and the Fourier coefficients that define the lift distribution. For any fixed weight and wingspan, 

Eq. (2) is minimized by using 0nB  for all 2n . This yields the well-known elliptic lift distribution. Any 

other lift distribution having nonzero Fourier coefficients incurs a penalty in induced drag.  
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 The elliptic lift distribution can be produced using an untwisted elliptically-tapered planform. Because 

of this, the elliptically-tapered planform is commonly considered the most efficient planform. The lift 

distribution produced by any other untwisted planform is non-elliptic and therefore produces more induced 

drag than the untwisted elliptically-tapered planform at a given span. However, it has been shown that 

linearly-tapered wings produce nearly elliptic lift distributions at taper ratios near 4.0TR  [13] without 

any twist. Because a wing with elliptic taper is much more difficult to manufacture than a linearly-tapered 

planform, linearly-tapered planforms with taper ratios near 4.0TR  are commonly favored over the 

elliptic planform to minimize induced drag for a fixed weight and wingspan. 

 If the weight and wingspan are allowed to vary, the elliptic lift distribution does not necessarily 

minimize induced drag. Equation (2) shows that the induced drag can be decreased by reducing weight 

and/or increasing wingspan. However, wingspan cannot be increased arbitrarily because as wingspan 

increases, the weight of the wing structure, which is proportional to the wing bending moments, also 

increases. Because of this, if weight and wingspan are not fixed, certain non-elliptic lift distributions that 

decrease bending moments across the span can allow a larger wingspan than that allowed by the elliptic lift 

distribution for the same wing-structure weight. Therefore, there exists some optimum wingspan, wing-

structure weight, and lift distribution that minimizes induced drag on a wing in steady level flight. 

 Prandtl seems to be the first to have realized this and published a paper on the topic in 1933 [14]. In 

that publication, he showed that for a rectangular wing with fixed gross weight and moment of inertia of 

gross weight, the lift distribution that minimizes induced drag is a bell-shaped lift distribution having 

313 B  and 0nB  for all   3n . Under Prandtl’s design constraints [14], this bell-shaped lift 

distribution allows a 22.5% increase in wingspan and an 11.1% reduction in induced drag over the elliptic 

lift distribution. In order to obtain analytic results, Prandtl assumed that the wing bending moments are 

only a function of the lift distribution and that the wing-structure weight makes no contribution to the 

bending moments. He also assumed that at each section, the bending moment, )(
~

zMb , is related to the 

wing-structure weight, )(
~

zWs , by a spanwise-invariant proportionality coefficient, bS  [14], i.e.,  
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 In his 1933 paper, Prandtl noted that the lift distribution given by 313 B  corresponds more closely 

to that produced by what he called “spitzendigen Flügel” [14] (which can be translated as “pointed-end 

wings” or “tapered wings”) than to the elliptic lift distribution. Within the framework of his solution [14], 

the elliptic lift distribution performs “noticeably worse” [14,15] than the lift distribution given by 

313 B . Therefore, near the end of his 1933 paper, Prandtl concluded that “tapered wings have an 

advantage over those with a nearly rectangular profile” [14,15]. Prandtl’s statement is somewhat vague 

because any wing having a chord distribution that decreases with span could be considered a tapered wing. 

For example, elliptically-tapered wings and linearly-tapered wings are two common types of wings that 

could be considered tapered wings. However, because Prandtl assumed that the proportionality coefficient, 

bS , is constant along the span and did not consider the effects of the chord distribution, his solution applies 

only to rectangular planforms. Therefore, his claim was not proven by his 1933 results [14]. In fact, it 

appears that no analytic proof of Prandtl’s conclusion, with structural and planform effects included, has 

ever been shown. 

 Various analytic or low-order studies on minimizing induced drag using lifting-line theory and similar 

methods have been published since 1933. Whereas many of these studies approach the problem from a 

purely aerodynamic point of view [16-24], others follow an approach similar to that taken by Prandtl in 

1933 [25-38]. Many of the early analytical studies in this second group consider the wing structure 

independent of the wing geometry. For instance, Jones [32] used the root bending moment as the primary 

structural constraint, without considering any physical wing structure. DeYoung [33] replaced the root-

bending-moment constraint with a constraint on the bending moment at an arbitrary spanwise location. 

Later, Jones and Lasinski [34] and Klein and Viswanathan [35,36] incorporated constraints on the 

integrated bending moment, relating the bending moments to the wing-structure weight using the 

relationship shown in Eq. (3). However, like Prandtl [14], Jones and Lasinski [34] and Klein and 

Viswanathan [35,36] did not include the effects of the chord distribution and treated the proportionality 
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coefficient as a fixed parameter, independent of the wing geometry. Löbert [37], on the other hand, 

introduced a structural constraint based on the ratio of the section bending moment and the wing-section 

thickness. Because the wing-section thickness is often related to the chord distribution, Löbert’s [37] 

constraint indirectly accounts for the effects of the chord distribution. However, instead of investigating 

how the chord distribution affects the induced drag, Löbert [37] investigated the effect of sweep on the 

induced drag for a given chord distribution.  

 More recently, Phillips et al. [12,38] revisited Prandtl’s 1933 analysis [14] and relaxed many of his 

main assumptions, including the assumption that the proportionality coefficient is spanwise invariant and 

independent of the wing geometry. Instead, Phillips et al. [12,38] related the proportionality coefficient to 

the local wing dimensions, wing-structure shape, and the wing-structure material. Thus, the development 

given by Phillips et al. [12] includes the effects of the wing-structure and the chord distribution. However, 

like Prandtl [14], Phillips et al. [12,38] limited their results to rectangular wings. In this paper, the work of 

Phillips et al. [12,38] will be extended analytically to identify expressions for the induced drag of non-

rectangular wings, including the effects of the chord distribution on the wing structure. The new 

expressions will then be used to evaluate Prandtl’s claim that tapered wings have an advantage over 

rectangular wings [14,15]. As will be shown, the results in this paper demonstrate that Prandtl’s claim is 

indeed correct for elliptically-tapered and linearly-tapered planforms when the effects of planform shape 

are considered. Because it provides a foundation for the work presented in this paper, a brief review of the 

work of Phillips et al. [12,38] is given in the following section. 

 

II. Analytical Foundation 

 Whereas Prandtl assumed that the wing bending moments are produced by the lift distribution alone, 

Phillips et al. [12] assumed that at a given load factor, an , the bending moments are caused by the lift 

distribution, the wing-structure weight distribution, )(
~

zWs , and the distribution of the net weight of all non-

structural components carried in the wing, )(
~

zWn  [12], i.e.,  
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For wing-structure design, the bending moment must be evaluated at the design load factor for 

maneuvering flight, mn , and the design load factor for a hard landing, gn . In general, the integral in Eq. (4) 

must be evaluated numerically. However, it can be evaluated analytically if the weight distribution 

introduced by Phillips et al. [12] is used, i.e., 
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where rW  is the net weight of all non-structural components carried at the wing root. Equation (5) 

minimizes the bending moments from Eq. (4) when the weight carried at the root satisfies the  

condition [12] 
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Using Eq. (5) in Eq. (4), Phillips et al. [12] found that the bending-moment distribution reduces to a form 

that is proportional to that used by Prandtl in 1933 [14], i.e., 
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where 
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 Like Prandtl, Phillips et al. [12] also assumed that the bending moments are related to the wing-

structure weight by a proportionality coefficient. However, unlike Prandtl, they did not assume that the 
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proportionality coefficient is spanwise invariant for all planforms. Instead, Phillips et al. [12] defined the 

proportionality coefficient in terms of the local chord, )(zc , and the beam properties, i.e., 
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Although Eq. (9) can be used for any planform shape, in order to obtain analytic results, Phillips et  

al. [12,38] considered only the rectangular planform, for which bS  is constant. Using Eqs. (4) and (5) in  

Eq. (9), and assuming a rectangular planform with an all-positive, spanwise-symmetric lift distribution, the 

integral in Eq. (9) can be evaluated to give the total wing-structure weight 
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Using the relation given in Eq. (6) and the definition for bS  from Eq. (9), Eq. (10) can be solved for the 

wingspan to give [38] 
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Using Eqs. (10) and (11) in Eq. (2), along with the relation given in Eq. (6), gives the associated induced 

drag [38] 
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 (12) 

If the wing loading, SW , is fixed, Phillips et al. [38] show that this induced drag is minimized with a lift 

distribution having 121649833 B  and 0nB  for n = 2 and all 3n . This lift distribution, 

along with Prandtl’s 1933 lift distribution and other optimum lift distributions found by Phillips et  

al. [12,38] under different constraints, differ only in the value of 3B . All of the optimum lift distributions 
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found by Phillips et al. [12,38] have values for 3B  that fall somewhere between that of Prandtl’s 1933 lift 

distribution ( 313 B ) and that of the elliptic lift distribution ( 03 B ). However, due to the constraints 

and assumptions imposed by Prandtl [14] and Phillips et al. [12,38], including that the proportionality 

coefficient, bS , the chord, c, and the spar height, h, are not a function of z, their optimum solutions apply 

only to wings with a rectangular planform. In this paper, we will relax some of these assumptions and 

consider wings with non-rectangular planforms. 

 For non-rectangular wings, including tapered wings, the proportionality coefficient, bS , as defined in 

Eq. (9), is a function of spanwise location. Therefore, for non-rectangular planforms, it is often convenient 

to rewrite the proportionality coefficient in terms of the mean geometric chord, bSc  , such that it 

remains spanwise invariant, i.e., 
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This new definition for the proportionality coefficient will be used for the remainder of this paper. If  

Eq. (13) is used to define the proportionality coefficient, Eq. (9) must also be rewritten to give a new 

expression for the wing-structure weight that includes the effects of the chord distribution 
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Note that, like Eq. (9), Eqs. (13)-(14) are valid for any arbitrary planform, provided that the planform is 

expressed using a chord distribution that can be integrated in z . However, in light of Prandtl’s observations 

about tapered wings, in this paper, we will consider wings with elliptically-tapered and linearly-tapered 

planforms. For these planforms, integrating Eq. (14) gives closed-form expressions for the wing-structure 

weight that can be used to predict the induced drag and identify the lift distributions that minimize induced 

drag.  
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III.  Elliptically-Tapered Planforms 

 For a wing with fixed wingspan and lift distribution, the elliptically-tapered planform (which will be 

referred to in this paper as the elliptic planform) is commonly accepted as the most efficient planform 

because it produces an elliptic lift distribution with no aerodynamic or geometric twist when immersed in a 

uniform flow. For a wing with an elliptic planform, the normalized chord distribution can be written as 
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where c  is the mean geometric chord, and is given by 
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Note that the dimensionless chord distribution given in Eq. (15) depends only on the wingspan.  

Equation (15) can be used in Eq. (14) to give the wing-structure weight required to support the bending 

moments on a wing with an elliptic planform and any fixed all-positive spanwise-symmetric lift 

distribution 
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where the proportionality coefficient is defined in Eq. (13). If the weight distribution from Eq. (5) is used, 

the moment distribution from Eq. (7) can be used in Eq. (17) to give 
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Equation (18) is written in terms of the spanwise coordinate z . However, in order to evaluate the integral in 

Eq. (18), the change of variables from Eq. (1) can be used to rewrite the integrand in a more convenient 
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form. Using the change of variables and the lift distribution from Eq. (1), along with the trigonometric 

identity )sin()cos(2)2sin(   , Eq. (18) becomes  
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In this form, the inner integral in Eq. (19) can be evaluated analytically using the relations 
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and 
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which, when used in Eq. (19), give 
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 Each of the integrals in Eq. (22) can be evaluated analytically. Carrying out the integration gives a 

closed-form expression for the wing-structure weight required to support the bending moments on a wing 

with an elliptic planform, the weight distribution given by Eq. (5), and any all-positive spanwise-symmetric 

lift distribution 
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For convenience, Eq. (23) can be rewritten in the form 
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where 
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Note that whereas the wing-structure weight given in Eq. (10) for a rectangular wing is a function of only 

the third Fourier coefficient, 3B , Eq. (24) shows that for the elliptic planform with an all-positive spanwise-

symmetric lift distribution, the wing-structure weight is dependent on all odd Fourier coefficients. 

However, it is also important to note from Eq. (25) that as n  increases, the coefficient, nC , for each n  scales 

roughly as 51 n , meaning that as n  increases, the influence of the Fourier coefficient on the wing-structure 

weight decreases.  

 Because the wing loading, SW , is often fixed by airspeed requirements, it is also sometimes 

convenient to rewrite Eq. (24) in terms of the wing loading. This can be done by using the relation bSc   

and Eq. (13) in Eq. (24) to give 
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Equation (26) can be used to find the weight of the wing structure required for a wing having an elliptic 

planform with fixed wing loading and fixed gross weight. The corresponding wingspan can be found by 

rearranging Eq. (26) to give 
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Using Eq. (27) in Eq. (2), the induced drag can be written as 
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 The gross weight, W , is the sum of the wing-structure weight, sW , and the net weight, nW . Equation 

(28) requires that the gross weight and the wing-structure weight be known. However, in many cases, it is 

more useful to fix the net weight and allow the gross weight to vary. Applying the relationship given in Eq. 

(6) to minimize the bending moments, the gross weight can be eliminated from Eq. (26), and the wing-

structure weight can be rewritten as 
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Using the relation sn WWW   and Eq. (29) in Eq. (2), the induced drag can be written as 
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The wingspan that minimizes the induced drag can be found by differentiating Eq. (30) with respect to the 

wingspan and setting the result equal to zero. This gives  
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Using Eq. (31) in Eq. (29) gives the wing-structure weight that minimizes the induced drag 
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Note that Eq. (32) matches the result found by Phillips et al. in [38] for the wing-structure weight that 

minimizes induced drag for a stress-limited rectangular wing with fixed wing loading. Thus, although  

Eq. (14) shows that the wing-structure weight is, in general, a function of the chord distribution, the 

optimum total wing-structure weight, as a percent of the net weight, is the same for wings with elliptic 

planforms and rectangular planforms.  Using Eqs. (31) and (32) in Eq. (30) gives the minimum induced 

drag 
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 Because Eq. (33) is in the same form as Eq. (12), the minimum induced drag produced by a wing with 

an elliptic planform and a given lift distribution can be easily compared to the minimum induced drag 

produced by a rectangular wing with the same lift distribution by defining an induced-drag ratio 
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Similarly, comparing Eqs. (31) and (11) gives a wingspan ratio 
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Because Eq. (34) is a function of an infinite number of Fourier coefficients, in general, minimizing Eq. (34) 

requires the use of numerical methods. However, Eq. (25) shows that the influence of each Fourier 

coefficient decreases as n increases. This means that Eqs. (34) and (35) are most heavily influenced by the 

coefficient 3B . Therefore, it is useful to consider the case where 0nB  for all 3n . Figure 11 shows how 

Eqs. (34) and (35) vary with 3B  for this special case. Note that results are only shown for 031 3  B . 

This is because for 313 B , the section lift becomes negative near the wingtips. As seen in Eq. (18), the 

wing-structure weight is proportional to the integral of the lift distribution. Negative lift near the wingtips 

would result in zero integrated lift and zero wing-structure weight at some inboard location, which is not 

physically valid. Therefore, in this paper, we assume that the lift distribution is all positive. 

 Recall that each value of 3B  in Fig. 11 corresponds to a different lift distribution. For any given 

planform, any lift distribution can be obtained using wing twist. The elliptic planform is commonly 

considered the most efficient planform because it produces the elliptic lift distribution with no twist. 

However, Fig. 11 shows that when structural effects are included, the elliptic planform produces less 

induced drag than the rectangular planform not only for the elliptic lift distribution, but for all of the lift 

distributions shown in Fig. 11. The induced-drag ratio is minimized, and the wingspan ratio is maximized, 

using 313 B , which corresponds to Prandtl’s 1933 lift distribution. This supports Prandtl’s claim that 

“tapered wings have an advantage over those with a nearly rectangular profile” [14,15], 
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Fig. 1 Ratio of the induced drag and corresponding wingspan produced by an elliptic planform to 
those produced by a rectangular planform, plotted as a function of B3. 

 

especially when Prandtl’s 1933 lift distribution is used. Using this lift distribution, Eqs. (34) and (35) show 

that the elliptic planform produces up to 12.73% less induced drag than the rectangular planform with a 

wingspan increase of 7.05%. However, although the induced-drag ratio in Eq. (34) is minimized using 

Prandtl’s 1933 lift distribution, this lift distribution is not the same as the lift distribution that minimizes the 

induced drag given in Eq. (33). As will be shown later, the optimum lift distribution that gives an absolute 

minimum in induced drag for the elliptic planform has a 3B  value that falls somewhere between that of the 

elliptic lift distribution and that of Prandtl’s 1933 lift distribution.  

 

IV. Linearly-Tapered Planforms 

 The process that was shown in the previous section for elliptic planforms can be repeated for wings 

with linearly-tapered planforms. Linearly-tapered wings are commonly used on modern aircraft as a 

tradeoff between efficiency and ease of manufacture. Consider a linearly-tapered wing with tip chord tc  

and root chord rc . The wing taper ratio is defined as rtT ccR  , and the normalized chord distribution can 

be written in terms of the taper ratio as  
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where c  is simply the average of the root chord and the tip chord, and can be expressed in terms of the root 

chord and the taper ratio as 
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 Using Eq. (36) in Eq. (14), along with the definition of bS  given in Eq. (13), the wing-structure weight 

required to support the bending moments on a wing with a linearly-tapered planform becomes 
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If the weight distribution given by Eq. (5) is used, the bending-moment distribution given by Eq. (7) can be 

used in Eq. (38)  to give 
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For convenience, Eq. (39) can be rewritten in a form similar to Eq. (19) using the lift distribution and 

change of variables from Eq. (1). This gives 
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Using the integral identities given in Eqs. (20) and (21), the inner integral from Eq. (40) can be evaluated 

analytically. For any spanwise-symmetric lift distribution, the result of these evaluations can be written as 

 

47



  

 
 

 

 
 

 
 

 
 

 
 

 

  










































































































2
2

2
2

2

3

2

3

22

2

sin
cos)1(1)4(2

])2sin[()2(])2sin[()2(

)2sin(
cos)1(1)1(2

])1sin[()1(])1sin[()1(

cos)1(110

sinsin5)5sin(

cos)1(18

)2sin()2sin(2)4sin(

cos)1(16

sinsin3)3sin(

cos)1(14

)2sin()2sin(22

4

)1(

d
Rn

nnnn
B

d
Rn

nnnn
B

d
R

Bd
R

B

d
R

d
RS

RbW
W

T
n

T
n

TT

TTb

TrW
s

 (41) 

In general, the complexity of the integrals in Eq. (41) prohibits any simple analytical evaluation. However, 

for the specific case of a rectangular wing ( 1TR ), the integrals can be evaluated analytically, and Eq. (41) 

reduces to 
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which is equivalent to Eq. (10). Note that for a rectangular wing, )(zcc  , and the definition of bS  given in 

Eq. (13) is the same as that given in Eq. (9). 

 Here, again, it is convenient to rewrite Eq. (41) in terms of the coefficients nC  
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where  
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Note that whereas the coefficients, nC , for the elliptic planform can be found analytically, the coefficients 

given in Eq. (44) must be found numerically. This can be done using any high-order integration scheme. 

Because numerical integration techniques require that the integrand be evaluated at the limits of integration, 

special care must be taken in the case of a wing with a triangular planform ( 0TR ). In this case, each of 

the integrands in Eq. (44) is indeterminate when evaluated at   . Thus, L’hospital’s rule can be used to 

evaluate the limit of each integrand as   approaches  . Applying L’hospital’s rule twice to each of the 

integrands in Eq. (44) gives 
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Using Simpson’s rule and a step size of 4105.1 d , solutions to Eq. (44) were obtained for taper ratios 

in the range 10  TR . The resulting values of nC  for all odd n in the range 291  n  are given in the 

appendix, along with closed-form expressions that can be used to approximate nC  as a function of taper 

ratio in the range 5.12.0  TR . 

 If the wing loading is fixed, Eq. (43) can be rewritten in terms of the gross weight using Eq. (13) and 

the relation bSc   to give 

 

 
  

  












 



3

1

3

maxmax4

1

n

nn
rWT

s BCC
W

bW

ctC

RSW
W







 (46) 

49



  

 
 

Rearranging Eq. (46) gives the wingspan allowed by a given lift distribution and wing-structure weight on a 

wing with a linearly-tapered planform with fixed weight and wing loading 
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Using Eq. (47) in Eq. (2) gives the induced drag 
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If the gross weight is not known, the weight constraint from Eq. (6) can be used in Eq. (46) to give 
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Using the relation ns WWW   and Eq. (49) in Eq. (2) gives the induced drag 
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 The wingspan that minimizes Eq. (50) is  
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When used in Eq. (49), this wingspan gives the wing-structure weight that minimizes induced drag for a 

linearly-tapered wing with fixed wing loading  
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which is the same result as that shown in Eq. (32). Thus we see that for the planforms considered in this 

paper, the optimum wing-structure weight is always 2nW , independent of the planform shape. Using  

Eq. (51) in Eq. (50) gives the minimum induced drag 
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 (53) 

Note that for a rectangular wing, Eq. (53) reduces to the same result given in Eq. (12) for the stress-limited 

design of a rectangular wing with fixed wing loading and fixed net weight. However, to compare the 

minimum induced drag produced by linearly-tapered planforms having 1TR  to that produced by the 

rectangular planform, it is convenient to define an induced-drag ratio for linearly-tapered wings, i.e.,  
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and a wingspan ratio for linearly-tapered wings, i.e.,  
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Note that when the values for Cn and TR  for a rectangular wing are used in Eqs. (54) and (55), the induced-

drag ratio and the wingspan ratio reduce to 
tbR  = 

tDR = 1. Fully minimizing Eq. (54) requires the use of 

numerical methods. However, the solutions to Eq. (44) show that, like Eq. (34), Eq. (54) is most heavily 

influenced by 3B . Therefore, we again consider the case where 0nB  for all 3n . For this special case, 

the variation in Eq. (54) with 3B  is shown in Fig. 2 for several linearly-tapered planforms having  

10  TR . The results from Eq. (34) are also included for reference. The variation in Eq. (55) with 3B  is 

shown in Fig. 3 for the same range of taper ratios, along with results from Eq. (35). Again, we assume that 

the lift distribution is all positive. Therefore, results are only shown for 031 3  B . 
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Fig. 2 Ratio of the induced drag produced by the elliptic planform and linearly-tapered planforms 
with 10  TR  to that produced by a rectangular planform, plotted as a function of B3. 

 

 

 

Fig. 3 Ratio of the allowable wingspan for the elliptic planform and linearly-tapered planforms with 
10  TR  to the allowable wingspan for rectangular planform, plotted as a function of B3. 

 

 

 As was true for the elliptic planform, the lift distribution that minimizes the induced-drag ratio and 

maximizes the wingspan ratio for all of the linearly-tapered planforms shown in Figs. 2 and 3 is Prandtl’s 

1933 lift distribution ( 313 B ). However, it is interesting to note that as taper ratio decreases, the degree 

to which 3B  influences the induced-drag ratio and wingspan ratio increases. Therefore, for this case, the 

induced-drag ratio is minimized, and the wingspan ratio is maximized, using a triangular wing with 0TR

. When compared to the elliptic planform, this planform produces up to 11.71% less induced drag. 

Equations (54) and (55) show that when compared to the rectangular planform, the triangular planform can 

reduce induced drag by up to 24.44%, with a wingspan increase of 15.04%.  Thus, Prandtl’s argument that 
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“tapered wings have an advantage over those with a nearly rectangular profile” [14,15] holds when the 

effects of taper on wing-structure weight are taken into account for all of the lift distributions considered 

here, with the greatest advantage at 313 B . However, the reader is reminded that although the lift 

distribution having 313 B  minimizes Eq. (54), it may not be the lift distribution that gives an absolute 

minimum in induced drag for the linearly-tapered planform. This lift distribution is discussed further in the 

following section. 

 

V. Optimum Lift Distributions 

 Equations (28) and (48) give the induced drag for a wing with fixed gross weight and wing-structure 

weight, and Eqs. (33) and (53) give the induced drag for a wing with fixed net weight.  However, it is 

important to note that Eqs. (33) and (53) were obtained under the assumption that the wing-structure weight 

satisfies Eqs. (32) and (52). Thus, because gross weight is the sum of the wing-structure weight and the net 

weight, minimizing induced drag under the constraint of fixed net weight is, in effect, the same as 

minimizing induced drag for a wing with fixed gross weight and the wing-structure weight set at one-half 

the net weight. Therefore, in this section, we will only consider the constraint of fixed net weight. 

 Under this constraint, Eqs. (33) and (53) give the minimum induced drag for wings with elliptic and 

linearly-tapered planforms, respectively, given a known lift distribution and fixed wing loading. However, 

neither equation produces an absolute minimum in induced drag unless the optimum lift distribution is also 

used. Because the wing-structure weight and induced drag are both functions of all the Fourier coefficients 

that define the lift distribution, in general, the optimum lift distribution is also a function of all the Fourier 

coefficients. Therefore, to find the lift distribution that minimizes induced drag, the Fourier series must be 

truncated at a finite value of n, and a numerical optimization framework must be employed. For example, 

Fig. 4 shows the lift distributions that minimize Eqs. (33) and (53) for the elliptic planform and for linearly-

tapered planforms with 10  TR . Each lift distribution was found using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) [40-43] method with the Fourier coefficients, nB , for all odd n in the range 291  n . The 

elliptic lift distribution, Prandtl’s 1933 lift distribution [14], and the lift distribution produced by an 

53



  

 
 

untwisted linearly-tapered wing with aspect ratio 8 and 0TR  are also included for reference in Fig. 4. 

The values of nB  that correspond to the optimum lift distributions for wings having the elliptic planform 

and linearly-tapered planforms with 10  TR  are given in the appendix. Note that because we only wish 

to consider spanwise-symmetric lift distributions, each even Fourier coefficient is identically zero. 

 

 

Fig. 4 Solutions for the lift distributions that minimize induced drag for an elliptic planform and 
linearly-tapered planforms with 10  TR .  

 

 Figure 4 shows that for each of the planforms considered here, including the elliptic planform, the 

optimum lift distribution takes neither a bell shape nor an elliptic shape. Instead, each of the optimum lift 

distributions takes a shape that is somewhat similar to the lift distribution produced by an untwisted 

linearly-tapered wing with 0TR . This agrees with Prandtl’s observation that the lift distribution that 

minimizes induced drag is not elliptic but corresponds more closely to that produced by tapered  

wings [14,15]. It is also interesting to note that for the planforms considered here, the optimum lift 

distribution is only a weak function of planform shape. 

 The optimum lift distributions shown in Fig. 4 were obtained by truncating the Fourier series in Eq. (1) 

at 29n . Because the lift distributions that truly minimize Eqs. (33) and (53) are a function of an infinite 

number of Fourier coefficients, the results shown in Fig. 4 are only an approximation. However, as seen in 

Eqs. (25) and (44), as n increases, the magnitude of the coefficients, nC , for wings with elliptic and linearly-

tapered planforms decrease. This means that the relative influence of each Fourier coefficient on the wing-

structure weight, wingspan, and induced drag also decreases as n increases. An example of this is given in 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5

L

zLb )(
~

bz

Prandtl’s 1933 Distribution

Elliptic Lift Distribution
Untwisted Tapered Wing (RT = 0)

Optimum Lift Distributions

0.2
0.4

0.6
0.8

Elliptic Planform

1.0

RT = 0.0

54



  

 
 

Fig. 55, which shows the percent change in induced drag caused by including Fourier coefficients up to 

29n  in the definition for the optimum lift distribution. The percent change in induced drag shown in Fig. 

55 at point n is the percent change between the induced drag obtained using n Fourier coefficients and the 

induced drag obtained by including up to 2n  Fourier coefficients. For example, for the data point at 

7n , the percent change in induced drag is the percent change between the induced drag obtained by 

including coefficients up to 7n  in the optimum lift distribution and the induced drag obtained by 

including coefficients up to 5n  in the optimum lift distribution.  

 Note that as n increases, the effect of the corresponding Fourier coefficient on the induced drag 

decreases, as expected. With as few as two Fourier coefficients (n = 5), the percent change in induced drag 

drops below 0.1% for all the planforms shown. This suggests that lift distributions at or near the optimum 

lift distribution are dominated by 3B  and can be described using 3B  alone with little loss in accuracy.  

Figure 6 shows the value of 3B  in the optimum lift distribution for the elliptic planform and linearly-tapered 

planforms with 10  TR . Note that all of the 3B  values shown in Fig. 6 fall between that of the elliptic lift 

distribution ( 03 B ) and that of Prandtl’s 1933 lift distribution ( 313 B ). 

 

 

Fig. 5 Percent change in minimum induced drag resulting from including up to n Fourier coefficients 
in the solution for the optimum lift distribution. 
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Fig. 6 B3 values in the Fourier series defining the optimum lift distributions for the elliptic planform 
and linearly-tapered planforms with 10  TR . 

 

 Although the optimum lift distributions shown in Fig. 4 are all very similar in shape, Fig. 6 shows that 

the value of 3B  for each lift distribution exhibits a well-defined trend. As taper ratio decreases, minimum 

induced drag is obtained with lower values of 3B .  In general, as the value of 3B  decreases, the lift 

distribution is shifted more toward the root, which means that at low taper ratios, slightly more lift is 

shifted inboard than at taper ratios near 1TR .  

 For an elliptic planform, the optimum wingspan and minimum possible induced drag are obtained 

using Eqs. (31) and (33) with the optimum lift distribution for the elliptic planform. For linearly-tapered 

planforms, the optimum wingspan and the minimum possible induced drag are obtained using Eqs. (51)  

and (53) with the optimum lift distribution for the linearly-tapered planform. When these values are 

compared to the wingspan and induced drag obtained using the elliptic lift distribution, the percent change 

in wingspan and induced drag depends on the planform shape. Figures 7 and 8 show the percent change in 

induced drag and wingspan, respectively, obtained using the optimum lift distribution compared to those 

obtained using a fixed elliptic lift distribution for the elliptic planform and linearly-tapered planforms with 

10  TR .  

 The trends shown in Figs. 7 and 8 reveal that the effect of using the optimum lift distribution instead of 

the elliptic lift distribution on the minimum induced drag and corresponding wingspan is greater for wings 

with low taper ratios than for wings with nearly rectangular planforms. The most significant changes in 

induced drag and corresponding wingspan occur at a taper ratio of 0TR . At this taper ratio, the optimum 
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lift distribution allows a 7.63% increase in wingspan and a 5.94% reduction in induced drag over the 

elliptic lift distribution. Thus, it is shown that Prandtl’s argument for tapered wings [14,15] holds not only 

when the lift distribution is fixed, but also when the lift distribution is optimized for each planform.  

 

 

Fig. 7 Percent change in minimum induced drag produced by the optimum lift distribution compared 
to the elliptic lift distribution for the elliptic planform and linearly-tapered planforms with 10  TR
. 

 

 

Fig. 8 Percent change in wingspan allowed by the optimum lift distribution compared to the elliptic 
lift distribution for the elliptic planform and linearly-tapered planforms with 10  TR . 
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predict that minimum induced drag is obtained using a high-aspect-ratio, low-taper-ratio wing when 

structural constraints are considered.  

  

VI. Example Results 

 As an example of minimizing induced drag for an elliptic or linearly-tapered planform, consider an 

aircraft with net weight fixed at 7000nW  lbf, wing loading fixed at 30SW , and the additional 

parameters 165.0C , 75.3 gm nn , 12.0max ct , 3
max 1015  psi, 10.0  lbf/in3, 200V  ft/s, 

and 0023769.0  slug/ft3. The weight distributions given in Eqs. (5) and (6) are used to minimize the 

critical wing bending moments.  

 Minimum induced drag is obtained by using the optimum lift distributions from Fig. 4 in Eq. (33) for 

the elliptic planform and Eq. (53) for the linearly-tapered planform. Minimum induced-drag solutions for 

each of these cases are shown in black in Fig. 9. The wingspans that correspond to each of these cases are 

found by using the optimum lift distributions from Fig. 4 in Eqs. (31) and (51), and are shown in black in 

Fig. 10. For reference, the induced drag and corresponding allowable wingspan for the elliptic planform 

and linearly-tapered planform with a fixed elliptic lift distribution are also included in gray in Figs. 9  

and 10.  

 

 

Fig. 9 Example minimum-induced-drag solutions for the elliptic planform and linearly-tapered 
planforms with 10  TR . Black: Optimum Lift Distribution, Gray: Elliptic Lift Distribution.  
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Fig. 10 Example wingspan solutions that correspond to the minimum-induced-drag solutions for 
the elliptic planform and linearly-tapered planforms with 10  TR . Black: Optimum Lift 
Distribution, Gray: Elliptic Lift Distribution. 

 

 Note that the elliptic planform gives results that closely match those obtained using a linearly-tapered 

planform with taper ratio just over 4.0TR . This agrees with traditional intuition based on classical lifting-

line theory [44,45]. However, it is important to note that whereas the elliptic planform is commonly 

considered the optimum planform shape, the elliptic planform does not minimize induced drag for this case. 

Instead, induced drag is minimized for both the fixed elliptic lift distribution and the optimum lift 

distribution at a taper ratio of 0TR , which corresponds to a triangular wing. This agrees with the results 

shown in Figs. 2 and 7. Using the optimum lift distribution, the triangular planform allows a wingspan 

increase of 15.16% and an induced-drag reduction of 22.13% when compared to the rectangular planform. 

In contrast, using the optimum lift distribution, the elliptic planform gives a maximum reduction in induced 

drag of only 12.12% over the rectangular planform. Thus, for this example, the minimum induced drag is 

obtained with a linearly-tapered planform having a taper ratio of 0TR , with 74617.71iD  lbf at 

17193.03 B  and 88820.105b  ft. The optimum wing-structure weight for this solution is 3500sW  lbf. 

Induced-drag contours around the minimum-induced-drag solution are shown in Fig. 1111 as a function of 

B3 and wingspan. 

 Although the results presented in this section predict minimum induced drag at a taper ratio of 0TR , 

it is important to remember that wings with low taper ratios have low Reynolds numbers near the wingtips, 

which often cause the wing to stall first in these regions. For most aircraft, this can create serious handling 

problems, especially during stall recovery. For this reason, wings with low taper ratios are seldom used in 
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practice on aircraft. Nevertheless, the results presented here provide important insight into the aerodynamic 

and structural coupling in the stress-limited design of wings with elliptic and linearly-tapered planforms for 

minimum induced drag.  

 

 

Fig. 11 Induced-drag contours around the minimum-induced drag solution for fixed net weight. 

 

VII. Conclusions 

 From classical lifting-line theory, the induced drag on a wing in steady level flight is given by Eq. (2) 

and is a function of wingspan, wing weight, and lift distribution. For a given lift distribution, Eq. (2) is 

minimized by maximizing wingspan and/or minimizing wing weight. Increasing wingspan increases the 

required wing-structure weight, but certain non-elliptic lift distributions can alleviate bending moments 

near the wingtips, allowing an increase in wingspan with no increase in the wing-structure weight. 

However, any non-elliptic lift distribution incurs a penalty in induced drag. Thus, there exists an optimum 

wingspan and lift distribution that minimizes induced drag and depends on the tradeoff between wingspan, 

wing weight, and associated lift distribution.  

 In a 1933 paper, Prandtl noted that these optimum lift distributions correspond more closely to those 

produced by untwisted tapered wings than the elliptic lift distribution, giving tapered wings an advantage 

over nearly rectangular wings. However, Prandtl’s mathematical development for finding the optimum 

wingspan and lift distribution that minimize induced drag was limited to rectangular wings. Here, we have 
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relaxed many of the assumptions used in Prandtl’s development so that it applies to non-rectangular wings. 

Closed-form solutions for the optimum wingspan and corresponding induced drag are given in Eqs. (27) 

and (28), respectively, for the elliptic planform with fixed gross weight, Eqs. (31) and (33) for the elliptic 

planform with fixed net weight, Eqs. (47) and (48) for linearly-tapered planforms with fixed gross weight, 

and Eqs. (51) and (53) for linearly-tapered planforms with fixed net weight. If the net weight is fixed and 

gross weight is allowed to vary, there also exists an optimum wing-structure weight that is one-half the net 

weight for both elliptic and linearly-tapered planforms. Thus, if the optimum wing-structure weight is used, 

the constraint of fixed gross weight and the constraint of fixed net weight are equivalent. 

 Figure 2 shows that for a linearly-tapered planform with a fixed lift distribution having 031 3  B  

and 0nB  for all 3n , the induced drag is always minimized using a triangular planform having 0TR . 

When compared to the rectangular planform, the triangular planform allows a wingspan increase of up to 

15.04% and a reduction in induced drag of up to 24.44%, depending on the lift distribution. When 

compared to the elliptic planform, the triangular planform gives a reduction in induced drag of up to 

11.71%.  Results similar to these are typical for any fixed lift distribution; however, an absolute minimum 

in induced drag is not obtained unless the optimum lift distribution is also used.  

 In general, the optimum lift distribution that minimizes induced drag for a wing with an elliptic or 

linearly-tapered planform is an infinite Fourier series with coefficients nB . In order to predict the optimum 

lift distribution, the infinite series must be truncated at some finite value of n and the values of nB  that 

minimize induced drag must be obtained numerically. For the planforms considered in this paper, the 

optimum values for nB  are given in Table A3. These values depend on the planform shape and the design 

constraints. However, Fig. 4 shows that for the planforms and design constraints considered here, the 

general shape of the optimum lift distribution varies only slightly with planform shape. Figures 7 and 8 

show that, when compared to the elliptic lift distribution, the optimum lift distribution can allow a 

wingspan increase of up to 7.63% and an induced-drag reduction of up to 5.94% at 0TR . Thus, it has 

been shown that Prandtl’s conclusions about tapered wings maintain their validity when the effects of 

planform on the wing-structure weight are taken into account.  
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 It has also been shown that although the optimum lift distributions that minimize induced drag for 

wings with elliptic and linearly-tapered planforms depend on an infinite number of Fourier coefficients, for 

the planforms and design constraints considered here, a good approximation for the optimum lift 

distribution can be made by including only 3B  in the series defining the lift distribution. Figure 6 shows that 

the value of 3B  in the optimum lift distribution decreases as the taper ratio decreases. 

 The results presented in this paper provide valuable insight into the aerodynamic and structural 

coupling involved in the stress-limited design of wings with elliptic and linearly-tapered planforms for 

minimum induced drag.  Although the results favor wings with low taper ratios, it should always be 

remembered that planforms with small chord values near the wingtips are seldom practical because they 

tend to stall at the wingtips and exhibit poor handling qualities, especially during stall recovery. 

Nevertheless, the results shown here may shed light on why many high-endurance birds have low-taper-

ratio wings. It is also important to remember that we have only considered wings with the weight 

distribution given by Eqs. (5) and (6) and elliptic or linearly-tapered planforms with 10  TR . If any 

other weight distribution is used, the wing-structure weight, optimum wingspan, and minimum induced 

drag may need to be found using numerical methods. However, if the weight distribution given by Eqs. (5) 

and (6) is used, the methods presented in this paper can be repeated for any planform with a chord 

distribution that can be integrated in z.  

 

Appendix 

 As seen in Eq. (44), each of the coefficients, nC , for a linearly-tapered wing is a nonlinear function of 

taper ratio and must be evaluated numerically. The result of evaluating Eq. (44) for taper ratios in the range 

10  TR  is shown in Table A1. The composite Simpson’s rule was used for all numerical integration. For 

convenience, each of the coefficients, nC , was also fit, as a function of taper ratio, to a sixth-order 

polynomial of the form 
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 where ma  are the fit coefficients given in Table A2 for all odd 29n  and taper ratios in the range 

5.12.0  TR . Outside this range of taper ratios, the value of nC  as a function of taper ratio cannot be 

accurately approximated using a polynomial of reasonably low order.  

 With the coefficients from Table A1, Eqs. (33) and (53) can be minimized using a numerical 

optimization framework with wingspan and the coefficients, Bn, as the design variables. Using the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) [40-43] method with the Fourier coefficients, Bn, for all odd n 

in the range 293  n  gives the optimum lift distributions shown in Fig. 4 and the optimum values for the 

Fourier coefficients, Bn, shown in Table A3.  
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Table A1 Cn coefficients for all odd n ≤ 29 for wings with linearly-tapered planforms having 10  TR .

RT = 0.0 RT = 0.1 RT = 0.2 RT = 0.3 RT = 0.4 RT = 0.5 RT = 0.6 RT = 0.7 RT = 0.8 RT = 0.9 RT = 1.0 

C1 2.7716×10-1 2.6155×10-1 2.4966×10-1 2.3983×10-1 2.3139×10-1 2.2398×10-1 2.1737×10-1 2.1140×10-1 2.0596×10-1 2.0097×10-1 1.9635×10-1

C3 3.1562×10-1  2.8932×10-1 2.7072×10-1 2.5600×10-1 2.4378×10-1 2.3332×10-1 2.2420×10-1 2.1612×10-1 2.0887×10-1 2.0232×10-1 1.9635×10-1

C5 4.3190×10-2 2.8797×10-2 2.0825×10-2 1.5437×10-2 1.1491×10-2 8.4614×10-3 6.0592×10-3 4.1092×10-3 2.4975×10-3 1.1462×10-3 0 

C7 7.6085×10-3 2.1946×10-3 5.1974×10-4 -1.5985×10-4 -4.2757×10-4 -4.9724×10-4 -4.6465×10-4 -3.7786×10-4 -2.6275×10-4 -1.3397×10-4 0 

C9 3.4235×10-3 9.5812×10-4 4.8609×10-4 3.2466×10-4 2.4850×10-4 1.9910×10-4 1.5792×10-4 1.1872×10-4 7.9520×10-5 3.9910×10-5 0 

C11 1.1890×10-3 5.1200×10-6 -9.7040×10-5 -1.0446×10-4 -9.4190×10-5 -7.9840×10-5 -6.4390×10-5 -4.8540×10-5 -3.2470×10-5 -1.6270×10-5 0 

C13 7.5613×10-4 1.0620×10-4 6.6420×10-5 5.5000×10-5 4.6900×10-5 3.9190×10-5 3.1470×10-5 2.3670×10-5 1.5820×10-5 7.9200×10-6 0 

C15 3.3871×10-4 -2.7780×10-5 -3.3150×10-5 -2.9780×10-5 -2.5690×10-5 -2.1480×10-5 -1.7230×10-5 -1.2950×10-5 -8.6500×10-6 -4.3300×10-6 0 

C17 2.5479×10-4 2.5700×10-5 2.0420×10-5 1.7800×10-5 1.5300×10-5 1.2780×10-5 1.0240×10-5 7.7000×10-6 5.1400×10-6 2.5700×10-6 0 

C19 1.3071×10-4 -1.3500×10-5 -1.2810×10-5 -1.1270×10-5 -9.6800×10-6 -8.0800×10-6 -6.4800×10-6 -4.8600×10-6 -3.2500×10-6 -1.6200×10-6 0 

C21 1.0865×10-4 9.8600×10-6 8.5400×10-6 7.4800×10-6 6.4300×10-6 5.3600×10-6 4.3000×10-6 3.2300×10-6 2.1500×10-6 1.0800×10-6 0 

C23 6.0660×10-5 -6.5300×10-6 -5.8900×10-6 -5.1700×10-6 -4.4400×10-6 -3.7000×10-6 -2.9600×10-6 -2.2300×10-6 -1.4800×10-6 -7.4000×10-7 0 

C25 5.3880×10-5 4.7500×10-6 4.2000×10-6 3.6800×10-6 3.1600×10-6 2.6400×10-6 2.1100×10-6 1.5900×10-6 1.0600×10-6 5.3000×10-7 0 

C27 3.1880×10-5 -3.4500×10-6 -3.0800×10-6 -2.7000×10-6 -2.3100×10-6 -1.9300×10-6 -1.5500×10-6 -1.1600×10-6 -7.7000×10-7 -3.9000×10-7 0 

C29 2.9690×10-5 2.5900×10-6 2.3100×10-6 2.0200×10-6 1.7300×10-6 1.4500×10-6 1.1600×10-6 8.7000×10-7 5.8000×10-7 2.9000×10-7 0 

,
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Table A2 Fit coefficients in the polynomial approximation for Cn as a function of taper ratio for wings with 
linearly-tapered planforms having 5.12.0  TR . 

a0 a1 a2 a3 a4 a5 a6 RMS 

C1 2.7264×10-1 -1.3235×10-1 8.8200×10-2 -4.0101×10-2 7.9669×10-3 0 0 5.3456×10-3 

C3 3.0641×10-1 -2.1072×10-1 1.6649×10-1 -8.3750×10-2 1.7923×10-2 0 0 7.9136×10-3 

C5 3.8614×10-2 -1.2292×10-1 2.1171×10-1 -2.4417×10-1 1.7341×10-1 -6.7698×10-2 1.1056×10-2 2.3554×10-3 

C7 4.1527×10-3 -3.0318×10-2 7.8593×10-2 -1.0626×10-1 8.1457×10-2 -3.3185×10-2 5.5653×10-3 1.7653×10-3 

C9 1.3151×10-3 -7.0966×10-3 1.9698×10-2 -2.9850×10-2 2.4629×10-2 -1.0516×10-2 1.8203×10-3 1.0419×10-3 

C11 1.5970×10-5 -1.1787×10-3 4.0982×10-3 -6.4574×10-3 5.5203×10-3 -2.4288×10-3 4.3041×10-4 5.8846×10-4

C13 1.0667×10-4 -3.1870×10-4 7.8674×10-4 -1.2858×10-3 1.1205×10-3 -4.9856×10-4 8.9100×10-5 2.8810×10-4

C15 -4.1110×10-5 3.6170×10-5 7.4800×10-6 -2.5400×10-6 0 0 0 2.0678×10-4 

C17 2.5570×10-5 -2.5570×10-5 0 0 0 0 0 1.6191×10-4 

C19 -1.6170×10-5 1.6170×10-5 0 0 0 0 0 1.2791×10-4 

C21 1.0730×10-5 -1.0730×10-5 0 0 0 0 0 9.0310×10-5 

C23 -7.4000×10-6 7.4000×10-6 0 0 0 0 0 7.2520×10-5 

C25 5.2700×10-6 -5.2700×10-6 0 0 0 0 0 5.5860×10-5 

C27 -3.8600×10-6 3.8600×10-6 0 0 0 0 0 4.4150×10-5 

C29 2.8900×10-6 -2.8900×10-6 0 0 0 0 0 3.5500×10-5 
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Table A3 Optimum Bn coefficients for the elliptic planform and linearly-tapered planforms having 10  TR . 

Elliptic RT = 0.0 RT = 0.1 RT = 0.2 RT = 0.3 RT = 0.4 RT = 0.5 RT = 0.6 RT = 0.7 RT = 0.8 RT = 0.9 RT = 1.0 

B3 -1.4241×10-1 -1.7193×10-1 -1.6170×10-1 -1.5562×10-1 -1.5122×10-1 -1.4777×10-1 -1.4495×10-1 -1.4256×10-1 -1.4051×10-1 -1.3870×10-1 -1.3709×10-1 -1.3564×10-1

B5 -2.9064×10-3 -1.4116×10-2 -9.6570×10-3 -7.1827×10-3 -5.4712×10-3 -4.1795×10-3 -3.1540×10-3 -2.3118×10-3 -1.6029×10-3 -9.9503×10-4 -4.6599×10-4 9.0000×10-12

B7 -3.2293×10-4 -1.7762×10-3 -5.2567×10-4 -1.2804×10-4 4.0467×10-5 1.1108×10-4 1.3239×10-4 1.2663×10-4 1.0528×10-4 7.4774×10-5 3.8903×10-5 2.0000×10-12

B9 -6.6720×10-5 -6.2162×10-4 -1.7850×10-4 -9.3141×10-5 -6.3924×10-5 -5.0212×10-5 -4.1229×10-5 -3.3472×10-5 -2.5726×10-5 -1.7602×10-5 -9.0136×10-6 -1.0000×10-11

B11 -1.9347×10-5 -1.7664×10-4 -7.8088×10-7 1.5213×10-5 1.6829×10-5 1.5571×10-5 1.3527×10-5 1.1167×10-5 8.6058×10-6 5.8801×10-6 3.0064×10-6 -1.8900×10-10 

B13 -6.9638×10-6 -9.5050×10-5 -1.3697×10-5 -8.8098×10-6 -7.4968×10-6 -6.5608×10-6 -5.6190×10-6 -4.6176×10-6 -3.5519×10-6 -2.4234×10-6 -1.2382×10-6 9.1600×10-10

B15 -2.9162×10-6 -3.6901×10-5 3.1050×10-6 3.8109×10-6 3.5170×10-6 3.1145×10-6 2.6692×10-6 2.1918×10-6 1.6852×10-6 1.1479×10-6 5.8668×10-7 -1.1860×10-9 

B17 -1.3650×10-6 -2.4492×10-5 -2.5354×10-6 -2.0725×10-6 -1.8559×10-6 -1.6362×10-6 -1.4009×10-6 -1.1497×10-6 -8.8294×10-7 -6.0131×10-7 -3.0728×10-7 4.9300×10-10

B19 -6.9478×10-7 -1.1242×10-5 1.1916×10-6 1.1628×10-6 1.0507×10-6 9.2567×10-7 7.9261×10-7 6.5023×10-7 4.9931×10-7 3.4024×10-7 1.7371×10-7 5.6000×10-11

B21 -3.7990×10-7 -8.4548×10-6 -7.8731×10-7 -7.0147×10-7 -6.3170×10-7 -5.5646×10-7 -4.7621×10-7 -3.9035×10-7 -2.9985×10-7 -2.0409×10-7 -1.0423×10-7 -2.1700×10-10

B23 -2.1930×10-7 -4.3099×10-6 4.7602×10-7 4.4285×10-7 3.9864×10-7 3.5092×10-7 2.9990×10-7 2.4586×10-7 1.8871×10-7 1.2888×10-7 6.5063×10-8 -5.8000×10-11 

B25 -1.3294×10-7 -3.5226×10-6 -3.1846×10-7 -2.9050×10-7 -2.6115×10-7 -2.2987×10-7 -1.9673×10-7 -1.6023×10-7 -1.2354×10-7 -8.4664×10-8 -4.3076×10-8 3.7500×10-10

B27 -8.4463×10-8 -1.9291×10-6 2.1416×10-7 1.9705×10-7 1.7719×10-7 1.5597×10-7 1.3237×10-7 1.0902×10-7 8.3873×10-8 5.3819×10-8 2.9154×10-8 -1.9700×10-10 

B29 -5.3073×10-8 -1.6725×10-6 -1.5014×10-7 -1.3694×10-7 -1.2425×10-7 -1.0813×10-7 -9.3527×10-8 -7.5954×10-8 -5.4803×10-8 -3.9496×10-8 -1.9609×10-8 5.1200×10-10

,
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Abstract 

During early phases of wing design, analytic and low-fidelity methods are often used to identify promising 

design concepts. In many cases, solutions obtained using these methods provide intuition about the design 

space that is not easily obtained using higher-fidelity methods. This is especially true for aerostructural 

design. However, many analytic and low-fidelity aerostructural solutions are limited in application to wings 

with specific planforms and weight distributions. Here, a numerical method for minimizing induced drag 

with structural constraints is presented that uses approximations that apply to unswept planar wings with 

arbitrary planforms and weight distributions. The method is applied to the NASA Ikhana airframe to show 

how it can be used for rapid aerostructural optimization and design-space exploration. The design space 

around the optimum solution is visualized, and the sensitivity of the optimum solution to changes in weight 

distribution, structural properties, wing loading, and taper ratio is shown. The optimum lift distribution and 

wing-structure weight for the Ikhana airframe are shown to be in good agreement with analytic solutions. 

Whereas most modern high-fidelity solvers obtain solutions in a matter of hours, all of the solutions shown 

here can be obtained in a matter of seconds.  
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1230. (doi:10.1017/aer.2021.14) 
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Nomenclature 

A beam cross-sectional area 

nA  Fourier coefficients in the lifting-line solution for the section-lift distribution, Equation (1) 

b wingspan 

nB  Fourier coefficients in the lifting-line solution for the dimensionless section-lift distribution, 

Equation (1) 

c local wing section chord length 

C  shape coefficient for the deflection-limited design, Equation (15) 

C  shape coefficient for the stress-limited design, Equation (5) 

iD  wing induced drag 

E modulus of elasticity of the beam material 

h height of the beam cross-section 

I beam section moment of inertia 

K scaling coefficient in the equation for the fuel distribution, Equation (21) 

L total wing lift 

L
~

 local wing section lift 

bM
~  local wing section bending moment 

an  load factor, g 

gn  limiting load factor at the hard-landing design limit 

mn  limiting load factor at the maneuvering-flight design limit 

AR  wing aspect ratio 

TR  wing taper ratio 

S wing planform area 
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bS  proportionality coefficient between )(
~

zW s  and )(
~

zM b  having units of length squared, Equations (5) 

and (15) 

maxt  maximum thickness of the local airfoil section 

V  freestream airspeed 

w width of the beam cross-section 

maxw  maximum allowable width of the beam cross-section 

W aircraft gross weight 

fW  gross weight of fuel 

nW  aircraft net weight, defined as sWW   

rW  that portion of nW  carried at the wing root 

sW  total weight of the wing structure required to support the wing bending moment distribution 

nW
~

 net weight of the wing per unit span, i.e., total wing weight per unit span less sW
~  

sW
~  weight of the wing structure per unit span required to support the wing bending-moment 

distribution 

z spanwise coordinate relative to the midspan 

  specific weight of the beam material 

  local wing deflection 

max  maximum wing deflection 

 change of variables for the spanwise coordinate, Equation (1) 

  air density 

max  maximum longitudinal stress 

 

1.0   Introduction 

 When designing a wing for minimum drag, low-fidelity tools are useful for rapid design-space 

exploration and for gaining important insight into how the design variables, parameters, and constraints 

influence the optimum solution. Designers often rely on rules-of-thumb based on these insights during the 
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conceptual and preliminary design phases. In many cases, low-fidelity solutions have been shown to be in 

good agreement with experimental data and computational fluid dynamics(1-8), while providing significantly 

more mathematical and physical insight than higher-fidelity models. For example, the well-known elliptic 

lift distribution, which minimizes induced drag on an unswept planar wing with fixed weight and wingspan, 

was first identified from analytic solutions based on lifting-line theory(9,10) by Prandtl(9) and later by 

Munk(11). The elliptic lift distribution remains a common benchmark in many mid- and high-fidelity 

computational studies(12-19). However, the elliptic lift distribution does not minimize drag under all 

conditions(20-29). In particular, when structural effects are considered, drag is typically minimized using a 

non-elliptic lift distribution that depends on the design constraints(12,13,16-18,30-49). Low-fidelity and analytic 

aerostructural methods are valuable for identifying these non-elliptic lift distributions and for understanding 

how structural considerations affect the minimum-drag solution. 

 There are many mid- and high-fidelity computational studies for minimizing drag under structural 

constraints that include solutions with non-elliptic lift distributions(12,13,16-18,30-38). However, there are 

relatively few studies that approach this multidisciplinary problem from an analytic or low-fidelity point of 

view(39-49). Prandtl seems to be the first do so, minimizing induced drag with fixed lift and moment of 

inertia of gross lift(39). Jones later(40) sought to minimize induced drag under the constraints of fixed gross 

lift and root bending moment in cruise. Pate and German(41) constrained the root bending moment at a given 

off-design lift coefficient. DeYoung(42) replaced Jones’ root-bending-moment constraint with a constraint 

on the bending moment at a prescribed spanwise location. Jones and Lasinski(43) constrained the integrated 

bending moment. Klein and Viswanathan(44,45) considered both root and integrated bending moment(44) and 

included the effects of shear on the wing-structure weight(45). Löbert(46) introduced a constraint based on the 

ratio of the bending-moment distribution and the wing-section thickness. More recently, Phillips et al.(47,48) 

and Taylor and Hunsaker(49) minimized induced drag under constraints of fixed gross weight(47,49), fixed net 

weight(48,49), fixed wing loading(47-49), and fixed stall speed(48), including the effects of the planform shape 

on the wing-structure weight and the effects of the wing weight distribution on the bending moments. 
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 Each of the studies in Refs. (39-49) includes assumptions that may not be representative of all aircraft. 

For example, Refs. (39,44,45) include assumptions about the proportionality between the wing-structure 

weight and the bending moments that correspond to rectangular wings. References (39-46) include the 

assumption that the bending moments are caused by the lift alone, which limits their application to wings 

with negligible structural or payload weight. The formulations given by Phillips et al.(47,48) and Taylor and 

Hunsaker(49) are arguably more general than those given in Refs. (39-46). Still, in order to obtain analytic 

solutions, Phillips et al.(47,48) and Taylor and Hunsaker(49) limited their results to specific wing planforms 

with a single ideal weight distribution.  

 The purpose of this paper is to present a low-fidelity numerical method that extends the work of  

Phillips et al.(47,48) and Taylor and Hunsaker(49) to more practical aircraft configurations with arbitrary 

planforms and weight distributions. We will apply the method to a high-endurance unmanned aircraft 

configuration to demonstrate how it can be used for rapid conceptual design and for gaining intuition about 

the aerostructural design space. The present work builds on the approach taken by Prandtl(39) and Phillips et 

al.(47,48). Therefore, we will first briefly review the work of these authors.  

 

2.0    Analytical Foundation 

 Using Prandtl’s classical lifting-line theory(9,10), the dimensionless spanwise section-lift distribution on 

a finite wing with no dihedral or sweep immersed in a uniform flow can be written as(47) 
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where nB  are normalized Fourier coefficients. Below stall, any lift distribution can be produced by a 

twisted wing of any planform if the correct twist distribution is used(50). Therefore, in this paper, the lift 

distribution and the planform are treated as independent parameters, related through the wing twist, which 

is assumed to be correctly designed to achieve the desired lift distribution. In steady-level flight, the drag 

induced by such a wing can be written as 
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where W is the wing weight, and b is the wingspan. Because this study focuses on minimizing induced 

drag, we will neglect the effects of viscous drag. 

 Equation (2) reveals that induced drag depends on the weight, wingspan, and lift distribution. For a 

fixed ratio of weight to wingspan, Equation (2) is minimized with a lift distribution having 0nB  for all 

1n , which gives the well-known elliptic lift distribution. If weight and wingspan are allowed to vary, the 

induced drag can be reduced by increasing wingspan or decreasing wing weight. However, as wingspan 

increases, the weight of the wing structure required to support the bending moments also increases, which 

increases the total weight. Certain lift distributions that shift lift inboard can alleviate bending moments 

near the wingtips, allowing a higher wingspan with no increase in wing-structure weight. Therefore, to 

fully minimize Equation (2) for a given flight condition, the weight, wingspan, and lift distribution must all 

be considered. 

 In 1933, Prandtl(39) identified a bell-shaped lift distribution having 02 B , 313 B , and 0nB  for 

3n  that minimizes induced drag for rectangular wings under constraints of fixed gross weight and 

moment of inertia of gross weight. Prandtl assumed that the wing-structure weight distribution )(
~

zWs  is 

related to the bending-moment distribution )(
~

zMb  by a spanwise-invariant proportionality coefficient bS , 

i.e., 
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This assumption is best matched by a rectangular wing with a constant thickness-to-chord ratio(39). Prandtl 

also assumed that the bending-moment distribution is a function of the lift distribution alone. Under the 

constraints of these assumptions, Prandtl’s 1933 lift distribution allows an increase in wingspan of 22.5% 

and a reduction in induced drag of 11.1% when compared to that of the elliptic lift distribution with the 
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same wing-structure weight. However, Prandtl acknowledged that his formulation of the problem may not 

be the most appropriate for practical wing designs(39). 

 Phillips et al.(47,48) reformulated the problem with more practical assumptions and constraints. They 

pointed out that at each spanwise location, the wing bending moments are a function of the lift distribution, 

the net-weight distribution )(
~

zWn  of all non-structural components carried in the wing, and the wing-

structure weight distribution )(
~

zWs  according to the relation(47)  
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where na is the load factor. The wing structure must be designed to support the bending moments during a 

high-load maneuver with a positive load limit nm and during a hard landing with a negative load limit ng. 

Assuming that all of the wing bending moments are supported by a single, vertically-symmetric beam in 

pure bending with maximum allowable stress max , the weight of the wing structure required to support the 

bending moments can be written(47) 
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where c(z) is the section chord-length distribution,   is the specific weight of the beam material, ctmax  is 

the maximum-thickness-to-chord ratio of the local airfoil section, and C  is a beam shape factor. A list of 

shape factors for common beam cross sections is given in Ref. (47). For deflection-limited designs, 

Equation (5) can be rewritten as(47) 
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 (6) 

where C  is the beam shape factor for the deflection-limited design and δmax is the maximum allowable 

vertical wingtip deflection. Although vertical deflection limits are seldom explicitly enforced in practice, 
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excessive vertical wingtip deflection can result in serious adverse effects, including wingtip strike at 

landing and dynamic instabilities during flight. Therefore, we will include both stress and vertical 

deflection limits in this paper. Nevertheless, the deflection limits in this paper are for structural sizing only. 

The static aeroelastic effects of structural bending and torsion are not explicitly considered. Instead, we 

assume that these effects can be corrected using wing twist. 

 The total weight of the wing is the sum of the wing-structure weight and the net weight of all non-

structural components, i.e.,  

 

 ns WWW   (7) 

The net weight Wn is found from the relation 
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where Wr is the portion of the net weight carried at the wing root. The bending moments are minimized 

when the net weight is distributed according to the weight constraints given by(47) 
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For a rectangular wing having the weight distribution from Equation (9), Equations (5) and (6) can be 

evaluated analytically. Assuming that the wing loading is fixed and a single lift distribution is used at all 

flight phases, Phillips et al.(48) showed that induced drag is minimized with a lift distribution having 02 B , 

121649833 B , with 0nB  for 3n  for the stress-limited design and 02 B , 

211499733 B , with 0nB  for 3n  for the deflection-limited design.  

 In this paper, we extend the work of Phillips et al.(47,48) and present a method for minimizing induced 

drag for wings with non-rectangular planforms and weight distributions other than Equation (9). It should 
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be remembered that the present method maintains the assumptions associated with lifting-line theory, 

including a planar wing with zero sweep and moderate to high aspect ratio. For other wing configurations, 

modifications to this method may be needed. 

 

3.0   Wing-Structure Weight and Induced Drag 

 For the stress-limited design of a wing with a non-rectangular planform and a weight distribution other 

than Equation (9), the integrals in Equations (4) and (5) must often be evaluated numerically. Moreover, for 

any given flight condition, Equations (4) and (5) show that the wing bending moments and wing-structure 

weight distribution are coupled. Therefore, for a wing with any weight distribution other than Equation (9), 

a numerical iterative method is required to compute the wing-structure weight. The induced drag can be 

then found by using Equation (7) in Equation (2).  An implementation of one such iterative process is given 

by Taylor et al.(51) for the stress-limited design.  

 For deflection-limited designs, the vertical spar deflection can be found using the relation(47) 
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where E is the modulus of elasticity of the beam material. For any spanwise-symmetric load distribution, 

the boundary conditions on Equation (11) are 
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Integrating Equation (11) subject to Equation (12), the deflection at any spanwise location 0z  becomes 
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If both maneuvering and hard-landing design limits are considered, maximum deflection always occurs at 

the wingtips. Using Equation (13), the deflection at the wingtip is  
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Because airfoil thickness is typically a fraction of the chord length, the beam-height distribution h(z) is 

typically related to the chord distribution. If the beam-height or chord distribution is an arbitrary function of 

spanwise location,  

Equation (14) must be evaluated using numerical methods.  

 Using Equation (14) to replace max  in Equation (5), the wing-structure weight required to support the 

bending moments for the deflection-limited design can be written 
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Like Equation (5), Equation (15) is coupled with the bending-moment distribution. Thus, an iterative solver 

is needed to compute the wing-structure weight for the deflection-limited design.  

 If Equation (5) predicts a wing-structure weight that is greater than that predicted by Equation (15), the 

design is stress limited; if Equation (15) gives a value greater than Equation (5), the design is deflection 

limited. Because the limiting constraint depends on the design parameters, both stress and deflection limits 

must be considered at each spanwise location. However, recall that in this study, the aerodynamic effects of 

structural bending and twist are not included. 

 

4.0   Numerical Methodology 

 Here, we present a method to iteratively compute the wing-structure weight and minimize induced 

drag. This method is similar to that given by Taylor et al.(51), but here we will include the deflection-limited 

design and several additional constraints that were not considered in Ref. (51).  
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4.1    Solving for Wing-Structure Weight 

 A fixed-point iteration scheme is used to compute the wing-structure weight and bending-moment 

distribution. An initial guess for the wing-structure weight is used in Equation (4) to calculate the section 

bending-moment distribution for both the maneuvering and hard-landing limits. At each section, the limit 

that produces a higher-magnitude section bending moment is the design limit. The limiting section bending 

moment is used in Equations (5) and (15) to predict the section wing-structure weight for the stress- and 

deflection-limited designs. At each section, the limiting wing-structure weight is then passed back as the 

guess for the next iteration. The process is repeated until the wing-structure weight converges within some 

specified tolerance. For the purposes of this study, an initial guess of 0)(
~

zWs  provides good results. The 

process is summarized as follows: 

 

1. Input b, LzL )(
~

, Wr, )(
~

zWn , c(z), )()(max zczt , γ, E, max , max , nm, ng, C , and C .  

2. Calculate the total weight using Equation (7). For the initial guess, use 0)(
~

zWs , Ws = 0. 

3. Calculate the total net weight using Equation (8). 

4. Calculate the maneuvering and hard-landing bending-moment distributions using Equation (4). 

5. Using the higher-magnitude section bending moment from step 4 in Equations (5) and (15), 

calculate the wing-structure weight distribution for the stress-and deflection-limited designs.  

6. Calculate the total wing-structure weight by integrating either Equation (5) or (15). 

7. Repeat steps 2 through 6 until the wing-structure weight has converged to within a specified 

tolerance. 

 

 Once the wing-structure weight is known, the induced drag is calculated using Equation (2). A 

schematic of the process is shown in Fig. 1. Note that after the first iteration, step 3 is only required if the 

net weight is a function of the wing-structure weight, as it is in Equation (9). In this paper, this special case 

will be used only for benchmarking the wing-structure weight solver against analytic solutions.  
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Figure 1. Schematic of the iterative wing-structure weight solver. 
 
 

 In general, any high-order integration scheme can be used to evaluate the integrals in  

Equations (4), (5), (8), and (15). In this study, the composite Simpson’s rule is used. The wing is 

discretized using the cosine clustering scheme given in Equation (1), with even spacing in θ. The resulting 

grid is shown in Fig. 2. Using Simpson’s rule, the wing-structure weight is evaluated as(51) 
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where m is the number of nodes, and isW ,
~

 is evaluated from Equation (5) or Equation (15), i.e., 
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The integral in the denominator of Equation (18) is also evaluated using Simpson’s rule, and ibM ,
~

 is found 

from Equation (4), i.e.(51), 
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 (19) 

Note that Simpson’s rule requires even grid spacing. Therefore, Equations (16)-(19) are written in terms  

of θ.  

 

 

Figure 2. Discretization of a tapered semispan with 40 nodes and cosine clustering near the wing tip. 
 
 

 Figure 3 shows the results of a grid-resolution study for the iterative wing-structure weight solver 

using a wing with the parameters 5.0TR , 0.66b  ft, 2ft3.267S , 1875.0ct , 165.0C , 

653.0C , 3
max 1025  psi, 5.3max   ft, 6100.10 E psi, 3lbf/in10.0 , 4500rW  lbf,  

7500nW  lbf, 75.3 gm nn , and the weight distribution given by Equation (9). Results were compared 

using grids with node counts ranging between 10 and 1280, and Richardson Extrapolation(52) was used to 

project a fully-grid-resolved value from the results obtained with 160, 320, and 640 nodes. Above 40 

nodes, the method shows second-order convergence, meaning that as the grid size is halved, the solution 

error is approximately reduced to one-fourth the previous value. The extrapolated value differs from the 

analytic solution(49) by only 0.001%. With as few as 160 nodes, the predicted wing-structure weight falls 

within 0.003 % of the extrapolated value. Therefore, 160 nodes will be used for all subsequent results. With 

160 nodes, the total predicted wing-structure weight matches the analytic solution to within 0.004%, and 

Fig. 4 shows that the predicted wing-structure weight distribution is in good agreement with the analytic 

solution. 
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Figure 3. Grid-resolution results for the iterative wing-structure weight solver.  

 

 

Figure 4. Comparison of the wing-structure weight predicted by the numerical wing-structure weight solver 
and the analytic solution from Ref. (49). 

 

4.2   Minimizing Induced Drag in an Optimization Framework 

 The induced drag from the wing-structure solver can be used as an objective function in an 

optimization framework similar to that shown in Fig. 5. Any of the parameters from Equations (2), (5), (7), 

or (15) could be used as design variables. However, in this study, we will use only the lift distribution (Bn) 

and wingspan (b). Note that in the previous sections, the lift distribution is assumed to be spanwise 

symmetric (Bn = 0 for all even n). Therefore, for the remainder of this study, we will assume that the even 

Fourier coefficients are identically zero.  

 The optimization process is summarized as follows: an initial guess is made for the design variables b 

and Bn; the wing-structure weight and induced drag are computed using the methodology explained in the 

previous section; the design variables are updated using an optimization method of the user’s choosing, 
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subject to relevant constraints; and the updated design variables are fed back to the wing-structure weight 

solver. The process is repeated until the induced drag converges within some specified tolerance. Because 

the relationship between induced drag and the design variables is well behaved, any gradient-based method 

with appropriate constraints should be adequate for updating the design variables b and Bn. The method 

used in this study for updating b and Bn is discussed in the following section. 

 

 

Figure 5. Example optimization framework for minimizing induced drag using wingspan and lift 
distribution. 

 
 

 The choice of design constraints can have a significant impact on the minimum-induced-drag 

solution(47,48). In this study, we will consider only a few example constraints proposed by Phillips et al.(47,48), 

including an all-positive spanwise lift distribution, fixed net weight, and fixed wing loading. We will also 

constrain spar height h and width w, as explained in Ref. (53), to ensure that the spar fits within the local 

airfoil section. The optimization problem can be summarized as follows: 
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where the subscript 0 indicates that the parameter value is prescribed. The first three constraints in 

Equation (20) are enforced implicitly in Equations (2), (5), and (15). The remaining constraints can be 

enforced as explained in Ref. (53).  

 

5.0   Results 

 As an example of minimizing induced drag for a wing with a non-rectangular planform and a net-

weight distribution other than Equation (9), consider the NASA Ikhana airframe(54-57). Ikhana has a linearly-

tapered wing with a wingspan 66b  ft, an aspect ratio RA = 16.296, and a taper ratio RT = 0.421. A generic 

instrumentation pod weighing 500 lbf(57) is sometimes mounted at a hard point outboard of the wing root.  

Assuming that all of the fuel is distributed in fuel bladders that extend to 83.1% semispan(53), the net-weight 

distribution can be approximated as  

 

 2)()(
~

zKczWn   (21) 

where K is a scaling constant that depends on the length of the fuel bladder and the weight of the fuel 

carried in the wing. Using Equation (21) in Equation (8) gives a relationship that can be solved to find K for 

a fuel bladder that extends to 83.1% semispan with a given fuel weight fW , i.e., 
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 For this study, we will consider two example Ikhana configurations in steady level flight at sea level 

with a cruise velocity of 287 ft/s(55). The first configuration has 3000 lbf of fuel distributed according to 

Equation (21) in fuel bladders spanning 83.1% semispan with no instrumentation pod. This gives a scaling 

constant 8212.2K . The second example configuration includes a generic instrument pod mounted on 

each wing at hard points located at 25% semispan that each cover 1 ft spanwise. To maintain the same 

fixed net weight as the no-pod configuration, the fuel weight is reduced to 2000 lbf, which gives a scaling 

constant 8808.1K . The resulting net-weight distribution is shown in Fig. 6. All other parameters for both 
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configurations are given in Table 1. Note that the values for C  and C  correspond to a beam with a 

rectangular cross section, and the values for max , E, and   were selected to be conservative. The 

maneuvering and hard-landing load limits represent a typical load limit of 2.5 g with a safety factor of 1.5. 

The maximum deflection is just over 10% of the semispan, which is reasonable for a high-aspect-ratio 

wing. However, it will be shown that results are sensitive to changes in this parameter.  

 

 

Figure 6.   Example net-weight distribution for the Ikhana wing carrying 2000 lbf of fuel and a generic 
instrumentation pod. 
 

Table 1.   Example Specifications for the Ikhana airframe  

S (ft2) 267.3  

b (ft) 66  

TR  0.421 

t/c 0.1875 

C  0.165 

C  0.653 

max  (psi) 
3100.15   

 
max  (ft) 3.5  

E (psi) 
6100.10   

  ( lbf/in3) 0.10  

mn  3.75 

gn  3.75 

rW  (lbf) 4500  

nW  (lbf) 7500  

fW  (No Pod) (lbf) 3000  

fW  (With Pod) (lbf) 2000  

Pod Weight (lbf) 500 ( 2 ) 

  (slug/ft3) 0.0023769  

V  (ft/s) 287.0  
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 Wings with taper ratios near 4.0TR  produce a nearly elliptic lift distribution with no aerodynamic or 

geometric twist(58,59). Therefore, we will use the elliptic lift distribution for the baseline design. The solver 

described in Section 4.1 predicts a wing-structure weight of 1008.4 lbf and induced drag of 54.040 lbf for 

the baseline no-pod configuration. The total weight is 8508.4 lbf, and the wing loading is 31.831. For the 

baseline pod configuration, the solver predicts a wing-structure weight of 1080.5 lbf, giving a total weight 

of 8580.5 lbf and a wing loading of 32.101. The induced drag is 54.959 lbf. A summary of the results for 

the baseline design is included in Table 2. 

5.1   Minimizing Induced Drag 

 The lift distribution, wingspan, and wing-structure weight that minimize induced drag were found 

using the framework from Fig. 5, in conjunction with the SciPy* implementation of the Sequential Least-

Squares Programming (SLSQP) method(60). Using SLSQP, the nonlinear constrained optimization problem 

is cast as an approximate linear least squares problem around the initial design variables x. This problem is 

solved to give an update for the design variables Δx. The original problem is then recast as a linear least 

squares problem around the updated point x + Δx, and the process is repeated until Δx falls below a 

specified tolerance. Gradients for the objectives and constraints are calculated using finite differencing. For 

additional details, see Ref. (60).  

  The wing loading is fixed at 31.831 for the no-pod Ikhana configuration and at 32.101 for the pod 

configuration. The net weight for both configurations is fixed at 7500nW  lbf. A spar-width constraint of 

1.0cw  is also imposed. The wingspan b and the Fourier coefficients nB  that define the lift distribution 

are the design variables. For the results shown here, the Fourier series is truncated at 29n .  

 The optimum lift distribution for each configuration is shown in Fig. 7, along with five reference lift 

distributions labeled a, b, c, d, and e. Curve a is the elliptic lift distribution. Curve b is Prandtl’s 1933 lift 

distribution(39). Curves c and d are the optimum lift distributions found by Phillips et al.(48) for the stress- 

and deflection-limited designs, respectively, of a rectangular wing with fixed wing loading and the weight 

                                                           
* docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html 
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distribution given by Equations (9) and (10). Curve e is the optimum lift distribution found by Taylor and 

Hunsaker(49) for the stress-limited design of a tapered wing with fixed wing loading, the weight distribution 

given by Equations (9) and (10), and a taper ratio of RT = 0.4. Additional optimization results are 

summarized in Table 2. Note that in this study, we have fixed the taper ratio to RT = 0.421 for all 

configurations. Therefore, the optimum solutions shown in Table 2 have a different root and tip chord than 

the baseline configuration. 

 

 

Figure 7. Solutions for the lift distributions that minimize induced drag for the example no-pod and pod 
configurations of the NASA Ikhana airframe.  
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Table 2. Example optimization results for the NASA Ikhana airframe 
  Without Pod With Pod 

 Baseline Optimum Baseline Optimum 

b (ft) 66  78.083  66  77.084  

S (ft2) 267.3  298.10  267.3  296.35  

AR  16.296 20.453 16.296 20.050 

sW  (lbf) 1008.4  1988.6  1080.5  2013.1  

Di (lbf) 54.040  49.213  54.959  50.588  
 maxcw  0.037602  0.072507  0.039047  0.070664 

3B  0 −0.091066 0 −0.084530 

5B  0 -3101.6121 0 -3102429.1   

7B  0 -4109248.2   0 -4106259.2   

9B  0 -6101777.5   0 -5105980.3   

11B  0 -5102718.1   0 -5101619.1   

13B  0 -6101777.5   0 -6107294.4   

15B  0 -6103058.2   0 -6101291.2   

17B  0 -6103044.1   0 -6101761.1   

19B  0 -7101712.6   0 -7107982.5   

21B  0 -7108380.4   0 -7102720.4   

23B  0 -7108249.1   0 -7106479.1   

25B  0 -7103663.2   0 -7101818.2   

27B  0 -8109513.3   0 -8103079.3   

29B  0 -7104703.1   0 -7103633.1   

 

 Figure 7 shows that the lift distributions that minimize induced drag for the no-pod and pod 

configurations are nearly identical, and both lift distributions are noticeably non-elliptic.  Table 2 shows 

that the magnitude of the Fourier coefficients decreases rapidly as n increases. The same trend is shown in 

Refs. (49) and (51). Both lift distributions are primarily dominated by B3, with 091066.03 B  for the no-

pod configuration and 084530.03 B  for the pod configuration. These values fall near the theoretical 

optimum 059716.03 B  for the deflection-limited design of a rectangular wing with fixed wing 

loading(47). Indeed, both optimum Ikahana designs are deflection-limited. 

 The reader is reminded that in order to obtain any of the lift distributions in Fig. 7, the wing must be 

twisted. For an unswept wing with any given planform shape, the twist distribution required to produce a 

desired lift distribution, specified by Bn, can be computed using the method shown by Phillips and 

Hunsaker(50). However, in this study we assume that the wing is correctly twisted to produce the desired lift 

distribution. 
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 From Table 2, we see that for the no-pod configuration, using the optimum lift distribution allows an 

increase in wingspan of 18.31%, an increase in wing-structure weight of 97.21%, and results in a reduction 

in induced drag of 8.93% over the baseline no-pod configuration. For the pod configuration, the optimum 

lift distribution allows an increase in wingspan of 16.79%, an increase in wing-structure weight of 86.32%, 

and a reduction in induced drag of 7.95% over the baseline pod configuration. 

 The wing-structure weight distributions for the baseline Ikhana designs and the optimum designs are 

shown in Fig. 8, along with their corresponding planforms. Although Ikhana has a non-rectangular 

planform and a weight distribution other than Equation (9), the optimum wing-structure weight for each 

configuration is just over 26% of the net weight. This agrees relatively well with the theoretical optimum 

wing-structure weight of 4ns WW  (48) for the deflection-limited design of a rectangular wing with the 

weight distribution given by Equation (9).   

 
 

  

Figure 8. Wing-structure weight distributions and corresponding planforms for the baseline design and 
optimum design of the example no-pod configuration and pod configuration of the NASA Ikhana airframe. 
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 Induced-drag contours around the optimum design for each example Ikhana configuration are shown in 

Fig. 9 as a function of the design variables b and 3B . In reality, the lift distribution is a function of n Fourier 

coefficients, and the design space is more than n-dimensonal. However, because the optimum lift 

distribution for each Ikhana configuration is dominated by 3B , we approximate the lift distribution using 3B  

alone. Note that the induced-drag contours are not smooth at low wingspans, since the wing design 

transitions from stress-limited to deflection-limited at a low wingspan for each Ikhana configuration.  

 

  

Figure 9. Induced-drag contours for the example no-pod configuration and pod configuration of the NASA 
Ikhana airframe.  

 

 Figure 9 gives some insight into the relative influence of the wingspan, weight, and lift distribution on 

the induced drag at different points in the design space. For example, for both Ikhana configurations, the 

induced drag is much more sensitive to changes in wingspan than it is to changes in lift distribution around 

the baseline design. Since the wing-structure weight typically increases as B3 and b increase, it is more 
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advantageous to increase the wingspan and the weight than to decrease the weight by changing the lift 

distribution near the baseline design. On the other hand, there are regions in the design space where 

reducing the weight by changing the lift distribution gives a greater reduction in induced drag than 

changing the wingspan.  

 The characteristics of the design space depend on the wing configuration, and a figure like Fig. 9 can 

require more than 100,000 function evaluations. However, using the methods presented in this paper, Fig. 9 

was produced in seconds. Understanding of the design space during early design phases can facilitate rapid 

conceptual optimization and reveal important aspects of the design that cannot be easily seen using high-

fidelity methods alone. 

5.2   Sensitivity of Optimum Solution to Design Parameters 

 To illustrate the sensitivity of the optimum solutions in this paper to changes in design parameters, Fig. 

10 shows the percent change in the minimum induced drag, optimum wingspan, optimum 3B , and optimum 

wing-structure weight as a function of the percent change in pod location, average Sb, and the parameters 

Wr, W/S, and TR  for the pod configuration of the NASA Ikhana airframe. The percent change in pod 

location is measured in percent semispan. 

 The plots for Wr and pod location in Fig. 10 show that the optimum lift distribution, characterized by 

B3, is most sensitive to the weight distribution. As the pod is shifted away from the wing root and the root 

weight decreases, the value for B3 also decreases. This corresponds to a less-elliptic lift distribution, which 

results in an increase in the wingspan and lower induced drag. This supports the result found by Phillips et 

al.(47) that the optimum root weight is given by Equation (10), which predicts that the theoretical optimum 

root weight for Ikhana is close to 3500rW  lbf. The lift distribution is not sensitive to changes in average 

Sb or W/S, and B3 only changes by about   1% with   10% changes in RT, which agrees with the 

observation made by Taylor and Hunsaker(49) that the optimum lift distribution is relatively insensitive to 

the taper ratio.  

 Figure 10 also shows that the wing-structure weight does not change with changes in average Sb and 

W/S, and it changes by less than   0.65% with   10% changes in pod location, Wr, and RT. This supports 
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the analytic solutions found by Phillips et al.(48) and Taylor and Hunsaker(49) that the optimum wing-

structure weight is independent of all other design parameters. 

 

 

Figure 10.  Percent change in minimum induced drag and optimum wingspan, B3, and wing-structure 
weight with change in pod location and the parameters Sb, Wr, W/S, and RT  for the example Ikhana pod 
configuration.  

 

 Only the optimum wingspan and corresponding induced drag are affected by changes in average Sb and 

W/S. For Sb, this is not surprising, since increasing Sb means that less weight is required to support the 

bending moments. This allows for larger increases in wingspan with smaller corresponding increases in 

wing-structure weight. For the range of Sb shown, the optimum design is deflection-limited, which means 
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that Sb is inversely proportional to   and directly proportional to C , E, and max , as shown in  

Equation (15). Therefore, the sensitivities shown in Fig. 10 for Sb are also characteristic of the sensitivities 

for C , E, max , and the quantity 1/ . 

 The results in this section show how the methods presented in this paper can be used for design-space 

exploration. Because the methods are fast, they can be used to rapidly visualize the coupled aerostructural 

design space and obtain solution sensitivities to various design parameters. It should be remembered that 

the results shown here are only valid for the two example configurations of the NASA Ikhana airframe 

given in Table 1. Nevertheless, the methods presented in this paper can be used for any unswept planar 

wing with arbitrary planform and weight distribution to rapidly iterate on possible design concepts. 

 

6.0   Conclusions 

 Low-fidelity methods are valuable for rapid aerostructural optimization during the conceptual and 

preliminary design phases. However, most modern aerostructural methods use mid- and high-fidelity 

solvers, which are better suited for later design phases. The majority of analytic and low-fidelity 

aerostructural optimization methods are limited in application to wings with specific planforms and weight 

distributions. Here, a low-fidelity numerical method has been presented that includes more general 

approximations corresponding to arbitrary planforms and weight distributions. The method uses an iterative 

solver to determine the wing-structure weight and induced drag for a given lift distribution and wingspan. 

The solver is used within an optimization framework for rapid design-space exploration and optimization.  

 Section 5.0 shows an example application of the method presented in this paper to two configurations 

of the NASA Ikhana airframe. A summary of the optimization results, including the optimum wingspans, 

wing-structure weights, and lift distributions are given in Table 2. The optimum lift distributions for both 

Ikhana configurations are shown in Fig. 7. It has been shown that the optimum lift distributions for the 

Ikhana configurations are very similar to the analytic optimum lift distribution for a rectangular wing with 

the ideal weight distribution given in Equation (9). The optimum wing-structure weight for each Ikhana 

configuration is also in good agreement with theoretical solutions.  
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 A visualization of the design space for each Ikhana configuration is shown in Fig. 9. The relative 

influence of the wingspan, lift distribution, and wing-structure weight depend on the location of the design 

in the design space. Figure 10 shows the sensitivities of the design values around the optimum solution to 

changes in pod location, proportionality coefficient, root weight, wing loading, and taper ratio for the pod 

configuration of the Ikhana airframe. The optimum wingspan is most sensitive to the proportionality 

coefficient and wing loading, and the optimum lift distribution is most sensitive to the weight distribution. 

The optimum wing-structure weight is nearly independent of all other parameters. For the Ikhana 

configurations considered here, the optimum design allows a wingspan increase of up to 18.31%, an 

increase in wing-structure weight of up to 97.21%, and a reduction in induced drag of up to 8.93% over the 

baseline Ikhana configuration. All results were obtained in a matter of seconds.  

  It should be remembered that the methods presented here were derived using the assumptions 

associated with lifting-line theory, including wing planarity, zero sweep, and moderate to high aspect ratio. 

For other wing designs, modifications to these methods may be needed. However, the methods presented 

here are useful for many practical aircraft configurations. In early design phases, these methods can be used 

for rapid conceptual optimization and visualization of the design space. These results can provide important 

insight into the effects of the wing aerodynamic and structural properties and the wing weight distribution 

on the minimum-induced-drag design. 
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CHAPTER 4  

 

Comparison of Theoretical and Multi-Fidelity Optimum 
Aerostructural Solutions for Wing Design 

Jeffrey D. Taylor* and Douglas F. Hunsaker† 
Utah State University, Logan, Utah 84322-4130 

As contemporary aerostructural research for aircraft design trends toward high-

fidelity computational methods, aerostructural solutions based on theory are often 

neglected or forgotten. In fact, in many modern aerostructural wing optimization 

studies, the elliptic lift distribution is used as a reference in place of theoretical 

aerostructural solutions with more appropriate constraints. In this paper, we review 

several theoretical aerostructural solutions that could be used as reference cases for 

wing design studies, and we compare them to high-fidelity solutions with similar 

constraints. Solutions are presented for studies with 

1) constraints related to the wing integrated bending moment, 2) constraints related 

to the wing root bending moment, and 3) structural constraints combined with 

operational constraints related to either wing stall or wing loading.  It is shown that, 

under appropriate design constraints, theoretical solutions for the optimum lift 

distribution may capture aerostructural coupling sufficiently to serve as appropriate 

reference cases for higher fidelity solvers.  A comparison of theoretical and high-

fidelity solutions for the optimum wingspan and corresponding drag reveals 

important insights into the effects of certain aerodynamic and structural parameters 
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and constraints on the aerodynamic and structural coupling involved in 

aerostructural wing design and optimization. 

Nomenclature 

A beam cross-sectional area 

nB  Fourier coefficients in the lifting-line solution for the dimensionless section-lift distribution 

b wingspan 

CD global drag coefficient 

CL global lift coefficient 

max

~
LC  maximum lift coefficient of the local airfoil section 

C  shape coefficient for the deflection-limited design, Eq. (5) 

C  shape coefficient for the stress-limited design, Eq. (4) 

c local wing section chord length 

D total drag 

iD  induced drag 

Dref reference drag  

E modulus of elasticity of the beam material 

h height of the beam cross-section 

I beam section moment of inertia 

J aerostructural cost function based on a linear combination of drag and weight 

L total lift 

L
~

 local wing section lift 

bM
~

 local wing section bending moment 

an  load factor, g 

gn  limiting load factor at the hard-landing design limit 

mn  limiting load factor at the maneuvering-flight design limit 
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TR  wing taper ratio 

sg,TO takeoff ground roll 

sg,L landing ground roll 

bS  proportionality coefficient between )(
~

yWs  and )(
~

yMb  having units of length squared 

SW wing planform area 

T thrust 

tf landing brake-engagement reaction time 

tr takeoff rotation time 

maxt  maximum thickness of the local airfoil section 

Vstall stall speed 

V  freestream airspeed 

W aircraft gross weight 

nW  aircraft net weight, defined as sWW   

sW  total weight of the wing structure required to support the wing bending-moment distribution 

Wref reference weight 

nW
~

 net weight of the wing per unit span, i.e., total wing weight per unit span less sW
~

 

sW
~

 weight of the wing structure per unit span required to support the wing bending-moment 

distribution 

y spanwise coordinate relative to the midspan 

β relative weighting coefficient in the linear combination of drag and weight 

  specific weight of the beam material 

max  maximum wing deflection 

μr coefficient of rolling friction between the aircraft landing gear and the ground 

  air density 

max  maximum longitudinal stress 
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I.  Introduction 

While modern computational tools have enhanced our understanding of finite-wing design, much of our 

relational understanding between wing design parameters and aerodynamic performance is based on 

solutions obtained from analytic theories. Designers often rely on insights gained from these theories in the 

conceptual and preliminary phases of aircraft design.  In many cases, solutions based on theory have been 

shown to be in good agreement with experimental data and computational fluid dynamics [1-8], while 

providing significantly more mathematical and physical insight than higher fidelity models. In some cases, 

the applicability of a theoretical solution extends far beyond the assumptions and approximations 

associated with the original theory. For example, the well-known elliptic lift distribution, which minimizes 

induced drag on an unswept planar wing with fixed weight and wingspan, was first identified in 1918 by 

Prandtl [9,10] and later by Munk [11] from analytic solutions based on lifting-line theory [9,10], and it is 

often used today as a reference solution in many multi- and high-fidelity aerodynamic studies. Since 1918, 

the elliptic lift distribution has appeared repeatedly in analytic, computational, and experimental studies, 

and it has been shown to be optimal for many complex and unconventional wing designs in both high- and 

low-speed subsonic flight. Still, the elliptic lift distribution is only optimal under a limited set of 

aerodynamic design constraints [12-21].  

When aerostructural constraints are considered, the elliptic lift distribution is not always optimal. From 

classical lifting-line theory, the induced drag Di on a wing in steady-level flight with freestream density ρ 

and freestream velocity V  can be written as  
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2
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2

n

ni nB
V

bW
D


 (1) 

where W is the weight, b is the wingspan, and Bn are Fourier coefficients that define the lift distribution. 

When weight and wingspan are fixed, Eq. (1) is minimized with the elliptic lift distribution, which has  

Bn = 0 for all n. If the weight and wingspan are allowed to vary, Eq. (1) can be reduced by decreasing the 

weight and/or increasing the wingspan. However, this cannot be done arbitrarily because the wingspan, lift 

distribution, and weight are all coupled through the bending moments. Certain non-elliptic lift distributions 
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can alleviate bending moments, allowing a larger wingspan with little or no increase in wing weight. Thus, 

the solution found by minimizing Eq. (1) with variable weight and/or wingspan often includes a non-

elliptic lift distribution that is the aerostructural analogue of the aerodynamically-optimum elliptic lift 

distribution [22-32].  

Although the induced drag is not generally the main focus in modern aerostructural optimization, most 

theoretical aerostructural studies primarily focus on minimizing induced drag with a variety of simple 

structural and operational constraints, and results from these studies can provide significant insight into the 

aerodynamic and structural coupling involved in aerostructural wing design and optimization [33-43]. In 

1933, Prandtl identified a bell-shaped lift distribution that minimizes induced drag on a rectangular wing 

with fixed gross weight and moment of inertia of gross weight [33]. Independently, Jones [34] sought to 

minimize induced drag under the constraints of fixed gross lift and root bending moment in cruise. Pate and 

German [35] constrained the root bending moment at a given off-design lift coefficient but did not allow 

the wingspan to change. DeYoung [36] used a constraint on the bending moment at a prescribed spanwise 

location. Following Prandtl’s lead [33], Jones and Lasinski [37] sought to minimize induced drag on non-

planar wings with constrained integrated bending moment. Klein and Viswanathan [38,39] considered both 

root and integrated bending moment [38] and included the effects of shear on the wing-structure  

weight [39]. Extending Prandtl’s [33] and Jones and Lasinski’s [37] structural constraints, Löbert [40] 

introduced a constraint based on the ratio of the bending-moment distribution and the wing-section 

thickness. More recently, Phillips et al. [41,42] and Taylor and Hunsaker [43] extended Prandtl’s  

approach [33] to account for the effects of the planform shape and the wing weight distribution and 

identified lift distributions that minimize induced drag under constraints of fixed gross weight [41], fixed 

net weight [42,43], fixed wing loading [41-43], and fixed stall speed [42].  

In modern aerostructural literature, these theoretical solutions are seldom revisited. Like most 

theoretical studies, each of the studies in Refs. [33-43] includes assumptions and approximations that are 

not fully representative of all aircraft wings, particularly those with unconventional designs. Most modern 

research in aerostructural design and optimization focuses on high-fidelity computational methods that can 
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handle complex geometries and design conditions. In the modern aerostructural literature, the elliptic lift 

distribution is often included as a reference [22-25,44,46-48] in place of theoretical aerostructural solutions 

with more applicable constraints that include the effects aerodynamic and structural coupling.  

The main value of theoretical aerostructural solutions is not that they can or should replace or reduce 

the use of high-fidelity solutions for aircraft design, but that they can enhance high-level aerostructural 

insight to inform conceptual design and provide simple validation cases for high-fidelity computational 

methods. A firm understanding of theoretical solutions can serve as a point of reference for evaluating 

conceptual designs with aerostructural constraints and for interpreting results from high-fidelity 

aerostructural solvers. Also, in high-fidelity aerostructural optimization, one of the main challenges is to 

correctly link computational aerodynamic and structural analysis tools to achieve accurate aerostructural 

coupling. This process often requires significant effort and introduces many opportunities for error. 

Therefore, it is valuable to have a simple, known aerostructural solution that includes aerodynamic and 

structural coupling as a validation case to ensure that coupling between aerodynamic and structural 

computational components is properly implemented in the development of high-fidelity aerostructural 

optimization codes. In both cases, the greatest value is obtained when the primary constraints that affect 

aerodynamic and structural coupling in the high-fidelity study of interest are included or approximated 

within the theoretical reference solution. 

To that end, in this paper, we address two questions: 1) How well do theoretical aerostructural solutions 

apply to typical real-world aircraft configurations? and 2) Can theoretical solutions serve as appropriate 

aerostructural reference cases for higher fidelity studies? We address these questions by reviewing 

solutions from several theoretical aerostructural studies [33,34,36-43] and comparing their solutions for the 

optimum lift distribution, wingspan, and drag to results from several multi- and high-fidelity computational 

studies on various practical aircraft configurations with comparable constraints [44-46,49-60]. Results are 

also compared to the elliptic lift distribution. As will be shown, the answers to the above questions largely 

depend on the design constraints and assumptions associated with theoretical solutions. However, for 

certain sets of design constraints, the optimum lift distributions predicted by the theoretical methods 
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considered here agree well with high-fidelity solutions for various practical wing configurations and flight 

conditions. It follows that, in certain cases, the optimum lift distributions predicted by theoretical methods 

can serve as appropriate aerostructural reference solutions for higher-fidelity methods.  

 Due to differences is design objectives, variables, and flight conditions, fully consistent comparisons 

between theoretical and high-fidelity aerostructural solutions, especially those for the optimum wingspan 

and corresponding drag, are often difficult, and sometimes impossible, to make. Because of the 

complexities associated with aerostructural optimization, analytic solutions often require simplifying 

assumptions that sometimes neglect important considerations including the effects of viscosity, 

compressibility, aeroelasticity, composite structures, buckling, and fatigue, among others. Moreover, 

because of the high computational costs associated with high-fidelity aerostructural optimization, most 

high-fidelity aerostructural studies report only a few solutions or a single solution, from which relational 

information is very difficult to obtain. Nevertheless, in this paper, we have sought to highlight important 

relational considerations by comparing analytic and high-fidelity aerostructural solutions. These 

comparisons give important insights into how certain parameters and constraints are likely to affect 

aerostructural wing design. 

In some respects, this paper can be thought of as a survey of the subset of theoretical literature 

concerning aerostructural optimization for minimum drag. However, in this paper, no attempt is made to 

present a comprehensive review of the complete body of comparable high-fidelity aerostructural literature. 

Instead, we have selected only a few available solutions from several multi- and high-fidelity  

studies [44-46,49-60] with constraints that are most comparable to those used in the theoretical studies 

discussed in the following section.  

 

II.  Analytic Aerostructural Solutions 

In this section, we will briefly review the key assumptions, constraints, and solutions from several 

foundational aerostructural studies. In this section and the following sections, solutions are grouped into 

three major categories: 1) those that include constraints involving the integrated bending  

110



  

moment [33,37,39,44,45], 2) those with constraints involving the root bending moment [34,36,38,49-52], 

and 3) those that combine constraints on wing stress and deflection with operational constraints related to 

either wing stall [42,46,53,59] or wing loading [40-43,54-58,60]. A summary of the key objectives, design 

variables, and constraints for each of the analytic studies considered here is given in in the appendix. 

A.  Analytic Solutions with Integrated Bending Moment Constraints 

In 1933, Ludwig Prandtl published one of the first known studies [33] involving minimizing drag under 

structural constraints. In this publication [33], Prandtl presented a method for identifying the optimum lift 

distribution and wingspan that minimize induced drag, including the effects of the wing weight. Prandtl’s 

study included constraints on the gross lift and the moment of inertia of gross lift, which is derived from the 

integrated bending moment. To obtain an analytic solution, Prandtl assumed that the wing bending 

moments are solely due to the lift distribution, regardless of the weight of the wing. Prandtl also assumed 

that the wing bending moments bM
~

 are related to the wing-structure weight sW  by a spanwise-invariant 

proportionality coefficient bS , i.e.,  

 
2
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b
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S

yM
W  (2) 

where b is the wingspan and y is the spanwise coordinate. This assumption best corresponds to rectangular 

wings. Within the framework of these constraints and assumptions, Prandtl identified a bell-shaped lift 

distribution that allows a 22.5% larger wingspan and produces 11.1% less induced drag than the elliptic lift 

distribution with the same wing weight [33].  

Prandtl’s solution was revisited in 1975 by Klein and Viswanathan [39] and in 1980 by Jones and 

Lasinski [37]. Klein and Viswanathan noted that the wing-structure weight is not only dependent on the 

bending-moment distribution, but it also depends on the distribution of shear force in the wing. Thus, in 

addition to constraints of fixed gross lift and integrated bending moment, Klein and Viswanathan [39] 

imposed a constraint on the integrated shear force. Their solution results in a 16% larger wingspan and 

about 7% less induced drag than the elliptic lift distribution for the same wing-structure weight, or about 

6% smaller wingspan and 4% more induced drag than Prandtl’s solution [33]. Jones and Lasinksi [37] 
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extended Prandtl’s methodology to non-planar wings and considered the effects of winglets. Both Klein 

and Viswanathan and Jones and Lasinski assumed an arbitrary constant value for Sb in Eq. (2), making their 

solutions most representative of rectangular wings. 

B.  Analytic Solutions with Root Bending Moment Constraints 

In 1950, R.T. Jones [34] sought to identify the lift distribution that minimizes induced drag from a 

family of lift distributions that produce a given root bending moment and gross lift. Assuming that the lift 

distribution is all-positive, Jones found that there exists a triangular-shaped lift distribution that can allow 

up to a 33% increase in wingspan and a reduction in induced drag of over 15% when compared to the 

elliptic lift distribution. However, Jones noted that nearly the same induced-drag reduction can be achieved 

with a 15% increase in wingspan, which, in many cases, is more practical. Thus, Jones [34] reported his 

“optimum” solution as having a 15% larger wingspan and producing 15% less induced drag than the 

elliptic lift distribution with the same root bending moment.  

In the 1970’s, Klein and Viswanathan [38] and DeYoung [36] obtained similar results to those found by 

Jones in 1950. Klein and Viswanathan [38] identified an optimum lift distribution that corresponds to a 

33.3% increase in wingspan and a 15.6% reduction in induced drag over the elliptic lift distribution by 

modifying Prandtl’s 1933 method [33] to include a constraint on the root bending moment, rather than the 

integrated bending moment. DeYoung [36] obtained the same result from a more general method with a 

constraint on the bending moment at any given location on the wing. Like the theoretical studies in  

Refs. [33,37,39], the studies of Jones [34], Klein and Viswanathan [38], and DeYoung [36] include the 

assumption that the bending moments are only due to the lift distribution. Moreover, by using the root 

bending moment as a surrogate for wing weight and constraining the root bending moment to a fixed value, 

each author implicitly assumes that the wing weight is constant. 

 The analytic solutions given in Refs. [34,36,38] each include a considerably larger wingspan than that 

resulting from the elliptic lift distribution with the same root bending moment. Because no area constraints 

are included in any of these studies, the wing areas corresponding to the optimum solutions are also large. 
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Since more wing area typically results in higher viscous drag, viscous effects can significantly reduce the 

practical optimality of these solutions. 

C.  Analytic Solutions Combining Stress and Deflection Limits with Operational Constraints 

In each of the analytic studies described thus far, the wingspan is allowed to vary without any constraint 

on the wing area. However, as pointed out by Iglesias and Mason [31], if no wing-area constraint is 

imposed, changing the wingspan changes the wing area, which results in a comparison between wings with 

fundamentally different operational performance characteristics. Since aircraft are typically designed to 

meet at least one specified performance parameter, it is unhelpful to compare any “optimized” wing to a 

baseline configuration if the “optimum” wing does not have similar operational performance characteristics 

as the baseline wing. In order to ensure a fair comparison, Phillips et al. [41,42] suggested that the wing 

design be constrained so that either the wing loading, which affects several key airspeed requirements, or 

the stall speed, which is critical for takeoff and landing performance, be fixed.  

Phillips et al. [41,42] extended Prandtl’s 1933 study by relaxing many of his main assumptions. For 

example,  whereas Prandtl [33] assumed that the wing bending moments are a function of the lift 

distribution alone, Phillips et al. [41,42] assumed that the bending moments are related to the lift 

distribution and wing weight distribution according to the relation [41] 
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where na is the load factor at the design limit, )(
~

yWn  is the weight of all non-structural components in the 

wing, and )(
~

yL  is the section lift distribution. At all points, the wing structure must be designed to support 

the bending moments encountered during a high-load maneuver and during a negative-load maneuver, such 

as a hard landing. To obtain analytic results, Phillips et al. [41,42] assumed that the lift distribution is fixed 

for all flight phases.  

Revisiting Prandtl’s 1933 assumption that the wing-structure weight is proportional to the bending 

moments, Phillips et al. [41,42] used simple beam theory to define the proportionality coefficient Sb in 

terms of the beam geometric and material properties, i.e., [41],  

113



  

 
2
max

2

0

maxmax )(2
,

)()(
)(;

)(

)(
~

Ah

thI
C

ycctC
ySdy

yS

yM
W

b

b
b

b
s   




  (4) 

where ctmax  is the wing thickness-to-chord ratio, c is the wing chord, max  is the maximum allowable 

stress, γ is the specific weight of the wing-structure material, and I, A¸ and h are the second moment of 

inertia, area, and height of the wing structure, respectively. Note that Eq. (4) is analogous to Eq. (2) but 

includes a limit on the maximum allowable bending stress within the definition of Sb. Thus, Eq. (4) 

describes the wing-structure weight for the stress-limited design.  

Phillips et al. [41] also included deflection constraints by relating the maximum allowable deflection to 

the maximum allowable stress to give [41] 
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where E is the modulus of elasticity of the wing-structure material, and max  is the maximum allowable 

deflection. Thus, Eq. (5) describes the wing-structure weight for the deflection-limited design.  

1.  Stall-Related Constraints 

For most aircraft, the takeoff and landing performance are heavily influenced by the stall speed Vstall. 

For example, FAR regulations dictate that the takeoff speed must be at least 10% higher than the stall speed 

and that reference landing speed must be 30% higher than the stall speed. Because of this, the stall speed 

can be constrained to ensure that any optimal wing design maintains similar takeoff and landing 

performance to the baseline design. Phillips et al. [41,42] defined the stall speed as the speed at which stall 

begins at any section of the wing. This happens when the local lift coefficient exceeds the maximum lift 

coefficient max

~
LC  of the airfoil section. For a rectangular wing with chord c and lift distribution )(

~
yL , this 

occurs when  

 max

~)(
~

2
stall2

1

max
LC

cV

yL



 (6) 

Equation (6) shows that for a given lift distribution and freestream density, the stall speed and maximum 

lift coefficient are related. If max

~
LC is fixed, then the chord must change to ensure that the local lift 

coefficient does not exceed max

~
LC , which alters the wing area.  
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Under the constraint of fixed stall speed, Phillips et al. [42] found that the optimum lift distribution for 

the stress-limited design is the same as that found by Prandtl in 1933 [33], but corresponds to a 25.99% 

increase in wingspan and a 16.01% reduction in induced drag over the elliptic lift distribution. For the 

deflection-limited design, Phillips et al. [42] identified an alternate lift distribution that corresponds to a 

9.07% larger wingspan and 8.03% less induced drag than those corresponding to the elliptic lift 

distribution. 

2.  Wing-Loading Constraints 

As shown by  Phillips [63], The wing loading W/SW  affects several aircraft performance metrics, 

including takeoff and landing and several additional key performance airspeeds. Fixing the wing area 

ensures that any optimum wing design has similar performance to the baseline wing design in these areas. 

In order to maintain fixed wing loading with no constraint on the wing weight, the wing area must be 

constrained such that as the weight changes, the wing area changes to maintain the wing loading. This is 

the approach taken by Phillips et al. [41,42] and Taylor and Hunsaker [43]. 

For the stress-limited design of a wing with fixed wing loading, Phillips et al. [41,42] found that the 

optimum lift distribution corresponds to a 4.98% increase in wingspan and a 4.25% reduction in induced 

drag over the elliptic lift distribution. For the deflection-limited design, the optimum solution allows a 

wingspan increase of 1.03% and a drag reduction of 0.98%. Taylor and Hunsaker [43] extended the 

methodology of Phillips et al. [41,42] to tapered wings, and found that depending on the taper ratio, the 

optimum solution for the stress-limited design may result in a wingspan increase of up to 7.63% and a drag 

reduction of up to 5.94%.  

 

III.  Comparison of Solutions with Integrated Bending Moment Constraints 

In this section, we compare the solutions from the analytic studies of Prandtl [33], Klein and 

Viswanathan [39], and Jones and Lasinksi [37] to solutions from two recent high-fidelity aerostructural 

optimization studies by Zhang [44] and Hoogervorst and Elham [45]. Zhang [44] sought to minimize a 

combination of drag and weight by optimizing the wingspan and wing twist for an aircraft wing 

115



  

configuration similar to that of a Boeing 737-900, subject to constraints on the maneuver stress and 

buckling stress. Hoogervorst and Elham [45] sought to minimize fuel weight with respect to the wingspan 

and wing twist at three spanwise locations for a wing based on the Airbus A320, subject to stress and 

fatigue constraints. A summary of the design objectives, key design variables, and key constraints for each 

study is included in Table A1 of the appendix.  

Note that, like Prandtl [33] and Klein and Viswanathan [39],  Zhang [44] did not include any 

constraints on the wing area. However, Hoogervorst and Elham [45] included a constraint on the maximum 

wing loading –  the ratio of weight to wing area – that could, under certain conditions, place some lower 

limit on the wing area. Still, since wing loading decreases as the wing area increases, a limit on the 

maximum wing loading places no functional upper limit on the wing area. In fact, in the study by 

Hoogervorst and Elham [45], the optimal solution has a wing loading that is about 10% less than the 

baseline solution, suggesting that the maximum wing loading constraint is inactive. By comparison, the 

wing loading in the study of Klein and Viswanathan [39] reduces by about 13%, and in Prandtl’s 1933 

study [33], the wing loading reduces by 18%.      

Although the design objectives, variables, and constraints from these two studies are much more 

comprehensive than those used by Prandtl [33], Klein and Viswanathan [39], and Jones and Lasinksi [37], 

in many respects, they are comparable. For instance, Zhang [44] sought to minimize a weighted 

combination of induced drag Di and weight W of the form 

 
refref W

W

D

D
J i )1(    (7) 

where Dref and Wref are reference drag and weight values, respectively, and β is a weighting value.  

However, the results considered here place considerably more emphasis on minimizing induced drag than 

weight. Hoogervorst and Elham [45] sought to minimize fuel weight, which is closely related to drag 

through the fuel burn. Instead of using the lift distribution as a design variable, both Zhang [44] and 

Hoogervorst and Elham [45] used the wingspan and wing twist as design variables. Nevertheless, as 

116



  

evident from lifting-line theory and as shown by Phillips and Hunsaker [62], for a wing with a given 

planform, the lift distribution is a direct function of the wing twist distribution.  

Whereas Prandtl [33], Klein and Viswanathan [39], and Jones and Lasinksi [37] imposed constraints on 

the integrated bending moment,  Zhang [44] used constraints on the wing stress, and Hoogervorst and 

Elham [45] used constraints on the wing stress, buckling, and fatigue. In modern aerostructural literature, 

there are few, if any, studies that use constraints on the integrated bending moment and/or integrated shear 

force alone. However, Phillips et al. [41] have shown that the maximum allowable stress of the wing 

structure can be related to the bending moments by defining the proportionality coefficient Sb in Eq. (2) in 

terms of the properties of the wing structure. When viewed from this perspective, the wing stress is implicit 

in Eq. (2), and constraints on wing stress can be thought of as analogous to constraints on the integrated 

bending moment. Buckling and fatigue are not included in any of the studies in Refs. [33,37,39].  

The optimum cruise lift distributions identified by Prandtl [33], Klein and Viswanathan [39], Jones and  

Lasinksi [37], Zhang [44] (with β = 0.75), and Hoogervorst and Elham [45] are shown in Fig. 1. The 

elliptic lift distribution is also included for reference. From Fig. 1, we see that Zhang’s solution [44] 

matches Prandtl’s solution very well [33]. The solution of Hoogervorst and Elham [45] deviates from each 

of the analytic solutions shown. However, it should be remembered that Hoogervorst and Elham only 

allowed the wing to twist at the root, the tip, and one other intermediate location [45], which results in a 

low-resolution approximation of the optimum lift distribution. A significantly different result may be 

obtained with more wing-twist design variables. Still, both high-fidelity studies appear to agree more 

closely with all of the theoretical aerostructural solutions shown here than with the elliptic lift distribution. 

The relative agreement between Prandtl’s solution [33]  and Zhang’s solution [44] is most remarkable 

because Zhang’s [44] solution is for a tapered wing configuration similar to that of a Boeing 737-900, 

whereas Prandtl’s solution is for a generic rectangular, planar wing. Since the solution for Zhang shown 

here primarily minimizes induced drag, the main differences between Zhang’s solution and Prandtl’s 

solution is in the wing geometry, most notably taper, and structural variables and constraints, including 
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structural layout and buckling constraints. Figure 1 suggests that these differences do not result in 

significantly different solutions for the optimum lift distribution. 

 

 
Fig. 1  Normalized optimum lift distributions from solutions with constraints related to the integrated 
bending moment. 

 

Figure 2 compares the drag and wingspan from the solutions of Prandtl [33], Klein and Viswanathan 

[39], and Zhang [44]. For each solution, the drag and the wingspan are presented as ratios of the drag and 

wingspan resulting from the elliptic lift distribution on the respective study’s “baseline” wing 

configuration. These ratios will hereafter be referred to as the “drag ratio” and the “wingspan ratio”, 

respectively. Results from Jones and Lasinski [37] and Hoogervorst and Elham [45] were not available. 

Note that both Prandtl [33] and Klein and Viswanathan [39] provide solutions for the drag ratio as a 

function of the wingspan ratio, whereas Zhang provides results for a single, optimum configuration. The 

optimum solutions for Prandtl [33] and Klein and Viswanathan [39] are marked with black circles. 
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Fig. 2  Drag ratio with respect to wingspan ratio from solutions with constraints related to the 
integrated bending moment.  

 

From Fig. 2, we see that whereas the drag ratio from Zhang’s solution [44] falls between the drag ratios 

from the solutions of Prandtl [33] and Klein and Viswanathan [39], the wingspan ratio for Zhang’s solution 

is between 10-11% higher than Prandtl’s theoretical solution [33]. As is common in computational studies, 

the data presented do not provide definitive relational information. Hence, we are largely unable to 

quantitatively assess all of the reasons for the differences between theoretical and high-fidelity solutions.  

However, a qualitative assessment of a few likely reasons can help to build some insight into how certain 

constraints can affect aerostructural optimization.  

For example, the 10-11% difference in wingspans between Zhang’s [44] and Prandtl’s solutions [33] is 

consistent with solutions given by Taylor and Hunsaker [43] that include the effects of wing taper on the 

optimum solution. In fact, whereas Prandtl [33] and Klein and Viswanathan [39] limited their solutions to 

rectangular wings, Zhang used a wing configuration with a taper ratio of nearly 0.16 [44]. Using the 

method given by Taylor and Hunsaker [43], the optimum wingspan for a tapered wing with a taper ratio of 

0.16 and Prandtl’s lift distribution [33] is about 11.5% higher than the optimum wingspan for a rectangular 

wing with the same lift distribution, which is in excellent agreement with the wingspan difference of 10-

11% shown in Fig. 2.  

It is also possible that Zhang’s [44] solution takes advantage of passive aeroelastic load alleviation, by 

which maneuver loads induce aeroelastic deflections, which result in a lift distribution that alleviates 

bending moments at the maneuver condition. This allows the wing to be designed with a higher wingspan 
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than would be allowed for a wing with no passive aeroelastic load alleviation. Moreover, in the absence of 

constraints on the wing area, increasing the wingspan increases the aspect ratio, which tends to increase the 

wing flexibility and induce even more aeroelastic load alleviation. The result is a larger wingspan than that 

of a corresponding rigid wing. In fact, Zhang’s solution [44] includes a maneuver lift distribution (not 

shown in Fig. 2) that features high load near the wing root and negative load near the wing tips, which 

results in lower bending moments at the maneuver condition than those resulting from the cruise lift 

distribution.  

It is worth noting that the solutions of Prandtl [33] and Klein and Viswanathan [39] are both limited by 

the constraint that the lift distribution is fixed for all flight conditions and positive at all spanwise locations. 

The optimum solution for both studies lies at the limit of this second assumption, where the slope of the lift 

distribution at the wingtip is zero. For analytic solutions employing the methods of Prandtl [33] and Klein 

and Viswanathan [39], a solution having a wingspan ratio higher than the optimum shown in Fig. 2 requires 

negative lift at the wingtips. Under the constraints of the assumption described in Eq. (2), this would result 

in zero bending moment and, therefore, zero weight at some spanwise location, which is not physically 

valid. 

 

IV.  Comparison of Solutions with Root Bending Moment Constraints 

In this section, we compare analytic solutions from Jones [34], Klein and Viswanathan [38], and 

DeYoung [36] to a few multi-fidelity computational studies with constraints on the root bending moment. 

In 2009, Verstraetan and Slingerland [50] performed a computational study to minimize drag on both 

planar and nonplanar wings with fixed lift and root bending moment, including viscous effects.  For a 

planar wing, the solution of Verstraetan and Slingerland [50] allows a wingspan increase of 22% and a drag 

reduction of 8% over the elliptic lift distribution. Later, Ranjan [49] and Wroblewski and Ansell [51] 

obtained similar results using a similar computational method. However, experimental data from 

Wroblewski and Ansell [51] deviates slightly from the predicted optimum solution.   
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There are very few high-fidelity studies that include constraints on the root bending moment. However, 

in 2014, Lyu and Martins [52] performed one such study within in a series of high-fidelity optimization 

case studies aimed at minimizing the drag coefficient at cruise on a swept-wing blended-wing-body 

aircraft. Lyu and Martins [52] added the root-bending-moment constraint only as a limiter within an 

aerodynamic optimization framework. The result was a marginal increase in the wingspan and a small 

reduction in drag. A summary of the design objectives and key design variables and constraints for this and 

each of the other studies considered in this section is given in Table A2 in the appendix.  

Figure 3 shows the normalized lift distributions from the solutions of Jones [34], Klein and 

Viswanathan [38], DeYoung [36], Verstraetan and Slingerland [50], and Lyu and Martins [52]. The 

optimum lift distributions predicted by Ranjan [49] and Wroblewski and Ansell [51] for minimum inviscid 

drag and total drag are indistinguishable from those given by Klein and Viswanathan [38] and Verstraetan 

and Slingerland [50], respectively, and are therefore not shown. From Fig. 3, we see that the lift distribution 

from the high-fidelity solution of Lyu and Martins [52] is most similar to the lift distribution given by  

Jones [34]. 

 

 
Fig. 3  Normalized optimum lift distributions from solutions with constraints related to the root 
bending moment. 

 

Figure 4 shows the drag and wingspan ratios for each of the solutions discussed in this section. The 

results in Fig. 4 include two groups: analytic solutions that consider only induced drag [34, 36, 38], which 

are shown in black, and computational solutions that include viscous effects [49-51], which are shown in 
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gray. The experimental results from Wroblewski and Ansell [51] are for wing designs based on the 

optimum solutions of Ranjan [49] and Klein and Viswanathan [38]. Notice that the high-fidelity solution 

given by Lyu and Martins [52] falls very near unity for both the wingspan ratio and drag ratio. This is 

somewhat surprising, since Fig. 3 shows that the optimum lift distribution from this solution is similar to 

that given by Jones [34]. Nevertheless, Lyu and Martins [52] note that any additional increase in wingspan 

is limited by the root bending moment and by the increase in viscous drag due to additional wing surface 

area. 

 

 
Fig. 4  Drag ratio with respect to wingspan ratio from solutions with constraints related to the root 
bending moment. 

 

The difference between the results of Ranjan [49] and Verstraetan and Slingerland [50] and those of  

Jones [34], Klein and Viswanathan [38], and DeYoung [36] highlight the importance of viscous drag on the 

optimum solution. In low-speed cruise, viscous drag makes up about half of the total drag. Because of this, 

any reduction in induced drag shown in Fig. 4 corresponds to a much smaller reduction in total drag. In 

fact, if viscous drag remains relatively constant,  we should expect that the induced drag reductions of 

around 15% reported by Jones [34], Klein and Viswanathan [38], and DeYoung [36] translate to only about 

7 or 8% total drag reduction, which agrees very well with the computational results of  Ranjan [49] and 

Verstraetan and Slingerland [50]. Moreover, as noted by Jones [34] viscous drag effectively limits the 

optimum wingspan, since large increases in wingspan correspond to more wetted area and higher viscous 

drag, which offsets the induced-drag benefits obtained by increasing the wingspan. Thus, the results of 
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Ranjan [49] and Verstraetan and Slingerland [50] have lower wingspans than the inviscid results of Klein 

and Viswanathan [38] and DeYoung [36]. When viscous effects are considered, these two viscous  

solutions [49,50] and Jones’ “optimum” solution, which produces nearly minimum induced drag with a 

much smaller wingspan and wing area than the true minimum-induced-drag solution, are likely to have less 

total drag than those given by Klein and Viswanathan [38] and DeYoung [36]. 

Like the solutions of Prandtl [33] and Klein and Viswanathan [39] shown in the previous section, the 

solutions of Jones [34], Klein and Viswanathan [38], and DeYoung [36] are limited to all-positive lift 

distributions. In each case, the optimum lift distribution again lies at the limit of this assumption, where the 

lift distribution has zero slope at the wingtip. However, the result of Ranjan [49] shows that when viscous 

effects are considered, the optimum wingspan falls well below the maximum allowed under the all-positive 

lift-distribution constraint. 

 

V.  Comparison of Solutions having Stress and Deflection Limits  
with Operational Constraints 

Here, we compare solutions from studies having both structural constraints and operational constraints. 

The following section is grouped into solutions with operational constraints related to the stall speed and 

operational constraints related to the wing loading. 

A.  Stall-Related Constraints 

The lift distribution from the solution of Phillips et al. [42] that minimizes induced drag for a stress-

limited wing with fixed stall speed is shown in Fig. 5, alongside the optimum lift distribution from a high-

fidelity study by van den Kieboom and Elham [53] aimed at minimizing fuel burn for a Fokker 100 class 

regional jet aircraft wing in low-speed flight with fixed maximum takeoff weight (MTOW). In van den 

Kieboom’s and Elham’s study, the lift distribution is controlled by a small number of discrete high-lift 

flaps. The flap deflection, flap shape, wingspan, and wing shape are all included as design variables, and 

the wing is subject to constraints on wing stress and takeoff and landing distance.  
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Fig. 5  Normalized optimum lift distributions from solutions with constraints related to the wing stress 
and the stall speed.  

Although van den Kieboom and Elham [53] did not explicitly enforce constraints on the stall speed, 

Phillips [63] has shown that the no-wind takeoff distance sg,TO  for an aircraft with a takeoff speed of 

1.1Vstall can be approximated as [63] 
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where Sw is the wing area, tr is the rotation time, and the thrust T =T(V), the drag D =D(V), and the rolling 

friction Fr =Fr(V) are evaluated at 77% of the stall speed. The landing distance sg,L for an aircraft with a 

landing speed of 1.3Vstall can be approximated as [63] 
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where tf is the brake-engagement reaction time, μr is the coefficient of rolling friction, and CL and CD are 

constant. Equations (8) and (9) show that for a wing with fixed MTOW, Sw, and max

~
LC  on a surface with 

known μr, constraints on takeoff and landing distance are a function of the stall speed. Thus, van den 

Kieboom and Elham’s [53] constraints on the takeoff and landing distance are closely related to the stall 

speed. A summary of the key design variables and constraints for the studies of Phillips et al. [42] and van 

den Kieboom and Elham [53] are given in Table A3 in the appendix.  

    Figure 5  shows that the lift distributions of Phillips et al. [42] and van den Kieboom and Elham [53] are 

in general agreement but exhibit some differences. As was the case with Hoogervorst and Elham [45], these 

differences are likely due to the relatively low number of flaps used by van den Kieboom and Elham [53] to 
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control the lift distribution, which results in a low-resolution approximation of the optimum lift 

distribution. Figure 6 shows that the wingspan ratio and corresponding drag ratio from van den Kieboom 

and Elham [53] agree relatively well with the trend predicted by Phillips et al. [42], but the drag ratio is 

higher, and the wingspan ratio is lower, than the optimum solution from Phillips et al. [42]. While there are 

likely many reasons for this, it should be noted that van den Kieboom and Elham [53] included both 

buckling and fatigue constraints in their solution, which in some cases may limit the allowable wingspan. 

Although van den Kieboom and Elham [53] do not report if these constraints are active in their study, for 

many wing structures, buckling and fatigue are the critical failure modes that drive the structural sizing.  

 

 
Fig. 6  Drag ratio with respect to wingspan ratio from solutions with constraints related to the wing 
stress and the stall speed.  

 

The optimum lift distribution found by Phillips et al. [42] for the deflection-limited design of a wing 

with fixed stall speed is shown in Fig. 7, alongside four additional lift distributions from high-fidelity 

solutions found by Jansen et al. [46] for a flexible tapered wing with wingtip devices and three lift 

distributions from a high-fidelity study by Mader et al. [59] for the flexible D8 wing in transonic flight with 

cruise Mach numbers of 0.72, 0.78, and 0.82. In their study, Jansen et al. [46] sought to minimize induced 

and total drag on wings with winglets and raked wingtips using design variables including the wingspan, jig 

twist, sweep angle, and dihedral distribution, with constraints on lift, maneuver stress, and wing stall. The 

results labeled a, b, c, and d in Fig. 7 correspond to solutions for minimum total drag with raked  

wingtips (a), minimum total drag with winglets (b), minimum induced drag with winglets (c), and 
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minimum induced drag with raked wingtips (d). Mader et al. [59] sought to minimize fuel burn using 

wingspan, twist, airfoil shape, sweep angle, and other design variables, subject to constraints on the wing 

stress, pitching moment, and flow separation.  

Although static wing deflection constraints, like those used by Phillips et al. [41,42], are seldom, if 

ever, enforced explicitly in practice, wing deflection can have significant aerodynamic effects, especially 

for highly flexible wings. While flexible wings often benefit from some passive aeroelastic maneuver load 

alleviation, excessive wing deflection can negatively impact cruise performance. Conceptually, there is 

some limit on flexibility at which negative effects during cruise outweigh passive load alleviation during a 

maneuver. This limit can be thought of as a “soft” deflection limit. Because wings with high aspect ratios 

often have greater flexibility, this “soft” limit on wing deflection can also serve as a limit on the aspect 

ratio. Thus, although Phillips et al. [41,42] did not account for the aerodynamic effects of static wing 

deflections, their “hard” deflection limit acts as a surrogate for the natural aerostructural efficiency limit 

associated with high-aspect-ratio designs. Nevertheless, it should be remembered that the deflection limit 

imposed by Phillips et al. [41,42] is an imperfect approximation of natural aeroelastic limits. Therefore, a 

comparison between deflection-limited solutions from Phillips et al. [41,42] and high-fidelity studies with 

flexible wings that include possible “soft” limits on wing deflection is also imperfect.  

It is important to note that in place of a constraint on the stall speed, Jansen et al. [46] placed a 

constraint on the maximum section lift coefficient max

~
LC , and Mader et al. [59] included a constraint on 

flow separation to preclude stall due to buffet. Although these constraints differ from the fixed-stall-speed 

constraint used by Phillips et al. [42], the stall speed and max

~
LC  are related through Eq. (6), and since stall is 

a result of flow separation, the stall speed and max

~
LC  can be thought of as surrogate indicators of flow 

separation. Thus, the constraints on flow separation are also closely related to the stall speed and max

~
LC . 

Figure 7 shows that the optimum lift distribution of Phillips et al. [42] falls well within the range of 

solutions given by Jansen et al. [46] and shows good agreement with the results given by Mader et al. [59], 

with the closest agreement at M = 0.82. The reason for this may be that at M = 0.82, the flow-separation 

constraint is most active. In fact, the results from Mader et al. [59] show little to no flow separation at  
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M = 0.72 and M = 0.78, but indicate small regions of flow separation at M = 0.82, which suggests that at 

this Mach number, the optimum design may be approaching the constraining flow-separation limit.  

 

 
Fig. 7  Normalized optimum lift distributions from solutions with constraints related to the wing 
deflection and the stall speed.  

 

The drag ratio and wingspan ratio for the solutions of Phillips et al. [42] and Jansen et al. [46] are 

shown in Fig. 8. Results from Mader et al. [59] were not available. Although the wingspan ratios given by 

Jansen et al. [46] are generally higher than that given by Phillips et al. [42], we see that the solutions of 

Jansen et al. [46] follow the general trend of the solution of Phillips et al. [42] reasonably well. Note that 

because Jansen et al. [46] did not include the vertical portion of the winglet in the wingspan measurement, 

the solutions for wings with raked wingtips (a and d) have significantly higher wingspan ratios than the 

solutions for wings with winglets (b and c).  
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Fig. 8  Drag ratio with respect to wingspan ratio from solutions with constraints related to the wing 
deflection and the stall speed. 

 

B.  Wing-Loading Constraints 

Here we compare the solutions of Phillips et al. [41,42] and Taylor and Hunsaker [43] for planar wings 

with fixed wing loading to several high-fidelity studies with similar constraints. In the studies of Stewart 

and Hunsaker [60], Löbert [40], McGeer [54], Piperni et al. [55], and Liem et al. [56], the wing loading is 

fixed through a combination of constraints on the wing area and the weight. However, we will also consider 

results from studies by Kenway et al. [58] and Ning and Kroo [57], in which the wing area is fixed with no 

constraint on the weight. In general, this allows for changes in the wing loading. However, in Ref. [58], the 

wing loading changes by only 1.7%. In Ref. [57], the weight is not given, but we assume that changes in 

wing loading are similarly small.  

1.  Stress-Limited Design  

Key results from several studies with constraints related to the wing stress and wing loading are shown 

in Figs. 9 and 10. Figure 9 shows the optimum cruise lift distribution from each study, and Fig. 10 shows 

the optimum wingspan and drag ratios. Results shown in Fig. 9 include the theoretical studies of Phillips et 

al. [41,42], Taylor and Hunsaker [43] (with RT = 0), and Löbert [40]; the multi-fidelity results of Stewart 

and Hunsaker [60] (with geometric and aerodynamic twist) and McGeer [54]; and the high-fidelity studies 

of Piperni et al. [55], Ning and Kroo [57], and Liem et al. [56]. A summary of the optimization objectives, 

key design variables, and key design constraints for each of these studies is given in Table A5 in the 
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appendix. Note that because Piperni et al. [55] and Ning and Kroo [57] do not give data for the drag and 

wingspan ratios, their solutions are not included in Fig. 10.  

 

   
Fig. 9  Normalized optimum lift distributions from solutions with constraints related to the wing stress 
and the wing loading.  

 

 
Fig. 10  Drag ratio with respect to wingspan ratio from solutions with constraints related to the wing 
stress and the wing loading. 

 

The most striking observation from Fig. 9 is the high level of agreement between all of the cruise lift 

distributions shown, despite significant differences in the design objectives, variables, and assumptions 

used in each study. Phillips et. al [41,42] used only the wingspan and lift distribution as design variables to 

minimize induced drag on a planar, unswept rectangular wing. Taylor and Hunsaker [43] extended the 
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work of Phillips et al. [41,42] to tapered wings. Stewart and Hunsaker [60] considered the effects of 

parasitic drag on the results given by Phillips et al. [41,42] when the lift distribution is achieved using 

either geometric or aerodynamic twist alone. The approaches of Löbert [40] and McGeer [54] are similar to 

those of Phillips et al. [41,42] and Taylor and Hunsaker [43], but both considered swept wings, and 

McGeer [54] allowed the airfoil thickness to change, while imposing constraints on the parasitic drag. In 

the high-fidelity study by Ning and Kroo [57], the cruise and maneuver twist distributions are treated as 

separate design variables and are optimized to minimize total drag on a trapezoidal wing typical of a 

commercial transport. Piperni et al. [55] sought to minimize the cash operating cost on the wing of a large 

transonic business jet, including the effects of wing flexibility. Liem et al. [56] sought to minimize the fuel 

burn on the Common Research Model wing including aeroelastic and transonic effects. The agreement of 

the results in Fig. 9 suggests that the optimum cruise lift distribution for a wing with stress and wing-

loading constraints is relatively consistent over a wide range of aircraft configurations and flight conditions 

and is well approximated by the theoretical solutions of Phillips et al. [41,42], Taylor and Hunsaker [43], 

and Löbert [40].  

Figure 10 shows the optimum drag ratios and wingspan ratios for solutions given by Phillips et  

al. [41,42], Taylor and Hunsaker [43], Stewart and Hunsaker [60], Löbert [40], McGeer [54] and Liem et 

al. [56]. Note that the wingspan ratios from the solutions of Stewart and Hunsaker [60] are slightly smaller, 

and the drag ratios are slightly higher, than the optimum solutions given by Phillips et al. [41,42], Taylor 

and Hunsaker [43], and Löbert [40]. Although Stewart and Hunsaker [60] used very nearly the same 

constraints as Phillips et al. [41,42] and Taylor and Hunsaker [43], the solutions of Stewart and  

Hunsaker [60] are for minimum total drag, whereas the results of Phillips et al. [41,42], Taylor and 

Hunsaker [43], and Löbert [40] are for minimum induced drag. Since in each of these cases, the wing-

structure weight is constant, the wing area must also be constant, and changes in parasitic drag are 

primarily a result of changes in geometric or aerodynamic twist. Figure 9 shows that the lift distributions 

from Phillips et al. [41,42] and Taylor and Hunsaker [43], which minimize induced drag, feature higher lift 

at the wing root and lower lift at outboard portions of the wing than the elliptic lift distribution. However, 
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on a rectangular wing, these lift distributions require more twist, and therefore, produce more parasitic drag 

than lift distributions that are more nearly elliptic. Therefore, when minimizing total drag on subsonic 

wings with fixed wing area, there is a tradeoff between induced and parasitic drag resulting from the 

relationship between the lift distribution, wing twist, and drag. The result of this tradeoff is an optimum lift 

distribution that is slightly more elliptic, and requires less twist, than the optimum lift distribution for 

minimum induced drag, as shown in Fig. 9. If the wing-structure weight is fixed, then the corresponding 

wingspan ratio is slightly lower, and the drag ratio is slightly higher, than the minimum-induced drag 

solution. This is reflected in the differences between the solutions of Stewart and Hunsaker [60] and those 

of Phillips et al. [41,42], Taylor and Hunsaker [43], and Löbert [40] in Fig. 10. 

  It is also important to note that two solutions from McGeer [54] are included in Fig. 10. Both are 

solutions for the design of a light, low-speed wing. The only difference between these two solutions is that 

the solution at the bottom of Fig. 10 includes the airfoil thickness as a design variable, while the solution 

near those of Phillips et al. [41,42], Taylor and Hunsaker [43], and Löbert [40] only includes the wingspan 

and lift distribution as design variables. Within the constraints of McGeer’s study [54], the allowable height 

of the wing structure inside the airfoil section increases as the airfoil thickness increases, which reduces the 

amount of structure needed to support a given distribution of wing bending moments. Since McGeer’s 

solution is for a low-speed wing, the airfoil thickness is not constrained by transonic effects, which tend to 

favor thin airfoils that reduce transonic shock. Thus, when the thickness is included as a design variable, as 

is the case with McGeer’s solution [54], we expect the solution to favor a thick airfoil that allows for a 

more efficient wing-structure design and results in a higher wingspan and lower drag than solutions with 

prescribed thickness, such as those in Refs. [40,41,42,54]. 

In the case of Liem et al. [56], the relatively high wingspan ratio and low drag ratio shown in Fig. 10 are 

likely due to several effects, including passive aeroelastic load alleviation, as described in Section III, 

wave-drag reduction, and the use of composite structures. Whereas all other solutions in Fig. 10 are for 

low-speed flight, the solution given by Liem et al. [56] is for flight in the transonic regime, where wave 

drag constitutes a significant portion of total drag. Wave drag can be reduced by changing wing sweep and 
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by tailoring the airfoil cross sections to delay shock. In fact, in their study, Liem et al. [56]   include the 

sweep angle and the airfoil shapes as design variables and show that the wave drag is the largest contributor 

to the drag reduction achieved by their optimum solution. Additionally, Liem et al. [56] used composite 

materials for the wing structure, which have been shown to allow larger wingspans, and result in greater 

drag reductions, than isotropic materials such as aluminum [61], which are generally used for structural 

modeling in theoretical and analytic studies. 

2.  Deflection-Limited Design  

Phillips et al. [41,42] also presented a solution for the deflection-limited design of a wing with fixed 

wing loading. Here, we compare this solution to the minimum-drag solution presented by McGeer [54] for 

a light, high-speed elastic wing with fixed wing-structure weight and fixed wing area and the minimum-

fuel-burn solution presented by Kenway et al. [58] for the flexible undeflected Common Research Model 

wing in transonic flight. A summary of the optimization setup for each of these studies is given in Table A6 

in the appendix. Recall that the deflection limit imposed by Phillips et al. [41,42] can be thought of as an 

approximate surrogate for the natural aeroelastic deflection limits encountered by flexible wings, as 

described in Section V.A. The optimum lift distribution from each solution is shown in Fig. 11, and the 

corresponding drag ratios and wingspan ratios are shown in Fig. 12.  

 

 
Fig. 11  Normalized optimum lift distributions from solutions with constraints related to the wing 
deflection and the wing loading.  
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Fig. 12  Drag ratio with respect to wingspan ratio for solutions with constraints related to the wing 
deflection and the wing loading. 

 

 From Fig. 11, we see that, as was the case for solutions with stress and wing-loading constraints, the 

optimum lift distribution from solutions with deflection and wing-loading constraints show remarkable 

consistency, especially considering the range of configurations and flight conditions represented by these 

three studies. However, as expected, the wingspan and drag ratios of McGeer [54] and Kenway et al. [58] 

shown in Fig. 12 are significantly different from those given by Phillips et al. [41,42]. Again, in the case of 

McGeer [54], this is likely due to thickness effects, and in the case of Kenway et al. [58], this may be 

influenced by passive aeroelastic load alleviation and wave drag reduction achieved by changing the sweep 

angle and airfoil shapes.  

 

VI.  Conclusions 

As aerostructural research trends more toward computational methods, theoretical aerostructural 

solutions are often neglected and are sometimes forgotten. However, as evidenced by the aerodynamically-

optimum elliptic lift distribution, solutions based on theory can sometimes have value well beyond the 

assumptions of the original theory. Because of this, in this paper, we have sought to address two 

foundational questions regarding theoretical solutions:  1) How well do theoretical aerostructural solutions 

apply to practical aircraft configurations? and 2) Can these solutions be used as appropriate reference 

solutions for higher fidelity methods? Analysis of these two questions was made by comparing results from 

theoretical aerostructural solutions to several multi- and high-fidelity aerostructural solutions. It has been 
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shown that, depending on the design constraints, certain theoretical solutions agree reasonably well with 

results from high-fidelity studies for a wide variety of wing configurations and can serve as appropriate 

reference solutions for higher fidelity results. Each of the theoretical solutions shown in this paper captures 

important aerostructural trends that are useful for gaining insights into the aerodynamic and structural 

coupling involved in aerostructural design and optimization, and each solution could be used as a simple 

validation case to help address the challenge of achieving proper coupling between computational 

aerodynamic and structural analysis components within a high-fidelity aerostructural optimization code.  

For appropriate comparison, the results in this paper are divided into categories based on the design 

constraints. Section III compares solutions from studies with constraints related to the integrated bending 

moment, with no other constraint on wing area. Section IV compares solutions from studies with 

constraints on the root bending moment. Section V compares solutions combining constraints related to 

wing stress or wing deflection with constraints on either wing stall or the wing loading. The results are 

summarized in Figs. 1-12.  

The optimum lift distributions for each of these categories are shown in Figs. 1, 3, 5, 7, 9, and 11. The 

best agreement in lift distributions are those for the stress- and deflection-limited design of a wing with 

fixed wing loading, as shown in Figs. 9 and 11. Because of variations in the design objectives, variables 

and assumptions, a true consistent comparison of drag and wingspan values often cannot be obtained. Still, 

a qualitative comparison of these results highlights the importance of understanding and accounting for the 

limiting approximations of theoretical solutions when using them as a reference for conceptual design or 

interpreting results from higher-fidelity solvers.  

It should be remembered that the studies considered in this paper do not represent an exhaustive review 

of the aerostructural literature. Instead, this paper only focuses on the specific subset of theoretical 

aerostructural studies concerned with minimizing drag with respect to the wingspan and the lift distribution. 

The multi- and high-fidelity studies shown here were selected based on their design constraints to provide 

as appropriate a comparison as possible to the theoretical results. It should also be remembered that, in the 

absence of definitive relational information from computational studies, the results and discussion in this 
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paper do not provide a quantitative analysis of all of the physical mechanisms that contribute to the 

solutions shown here. Certain key considerations, including the effects of viscosity, aeroelasticity, 

composite materials, buckling, and fatigue, are only qualitatively assessed. Nevertheless, the comparisons 

made here do provide important insights into the aerodynamic and structural coupling involved in 

aerostructural wing design and optimization and the ways in which theoretical aerostructural solutions can 

be used to inform and validate higher fidelity aerostructural research.  

 

Appendix 

The following tables give a summary of the key design objectives, design variables, and design 

constraints for each of the aerostructural studies discussed in this paper. Table A1 includes studies with 

constraints related to the wing integrated bending moment. Table A2 shows studies with constraints related 

to the wing root bending moment. Tables A3 and A4 are for studies combining constraints on the wing 

stress and deflection with constraints related to wing stall. Tables A5 and A6 are for studies combining 

constraints on the wing stress and deflection with constraints related to the wing loading. For each table, the 

primary constraints or assumptions that relate to these categories are typeset in bold, along with key design 

variables related to the wingspan and lift distribution. It should be remembered that these tables are 

intended for high-level reference and comparison only. In many cases, the design variables and constraints 

shown here do not represent an exhaustive list of all design variables and constraints considered in the 

respective study. 
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Table A1  Optimization summary and key constraints for studies including constraints related to the 
integrated bending moment. 

 study type configuration objective key design variables key constraints 

Prandtl [33] analytic 
planar, unswept 

rectangular wing 

minimum 

induced drag 

wingspan fixed gross weight 

lift distribution fixed moment of inertia of weight 

 fixed chord  

 fixed t/c 

Klein & 

Viswanathan [39] 
analytic 

planar, unswept 

wing 

minimum 

induced drag 

wingspan fixed wing-structure weight 

lift distribution fixed lift 

 max integrated bending moment 

 max integrated shear force 

Jones & 

Lasinski [37] 
analytic 

unswept wing 

with winglets 

minimum 

induced drag 
wingspan max integrated bending moment 

lift distribution fixed weight 

Zhang [44] high fidelity 
Boeing 737  

(similar) 

minimum 

linear combination, 

induced drag  

& weight 

wingspan max maneuver stress  

twist distribution fixed net weight 

airfoil shape fixed Mach number 

angle of attack fixed altitude 

structure thickness  

Hoogervorst & 

Elham [45] 
high fidelity 

Airbus A320 

(similar) 

minimum 

fuel weight 

wingspan steady level lift coefficient 

break, tip twist max stress, 2.5 g pull up  

airfoil shape max stress, -1.0 g push over  

angle of attack max fatigue stress, 1.3 g gust 

root chord max stress, 1.0 g roll 

taper ratio min aileron effectiveness 

sweep angle fixed maximum wing loading 

structure thicknesses  

takeoff weight  
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Table A2  Optimization summary and key constraints for studies including constraints related to the 
root bending moment. 

 study type configuration objective key design variables key constraints 

Jones [34] analytic 
planar, unswept 

wing 
minimum 

induced drag 
wingspan fixed lift 

lift distribution fixed root bending moment 

Klein & 
Viswanathan [38] 

analytic 
planar, unswept 

wing 
minimize 

induced drag 
wingspan fixed lift  

lift distribution fixed root bending moment 

DeYoung [36] analytic 
planar, unswept 

wing 
minimum 

induced drag 
wingspan fixed lift 

lift distribution fixed bending moment, given location 

Verstraetan & 
Slingerland [50] 

multi fidelity 
unswept wing 
with winglets 

minimum 
drag 

 

wingspan fixed lift 

lift distribution fixed root bending moment 

winglet height fixed wing area 

winglet length  

Ranjan [49] multi fidelity 
planar, unswept 

wing 

minimum 
drag 

 

wingspan fixed lift 

twist distribution fixed root bending moment, maneuver 

chord fixed wing area 

 fixed Reynolds number 

 fixed airfoil shape 

 fixed taper ratio 

Wroblewski & 
Ansell [51] 

experimental 
planar, unswept 

wing 
minimum 

drag 

wingspan fixed lift 

twist distribution fixed root bending moment, maneuver 

 fixed wing area 

 fixed Reynolds number 

 fixed airfoil shape 

 fixed taper ratio 

Lyu & Martins 
[52] 

high fidelity 
Blended 

Wing-Body 
minimum 

drag 

wingspan steady level lift coefficient 

twist distribution max root bending moment 

airfoil shape fixed taper ratio 

angle of attack min internal volume 

chord fixed static margin 

sweep angle fixed center of gravity 

structure thickness trim 
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Table A3  Optimization summary and key constraints for studies including constraints related to the 
wing stress and stall. 

 study type configuration objective key design variables key constraints 

Phillips et al. [42] analytic 
planar, unswept 
rectangular wing 

minimum 
induced drag 

wingspan  max maneuver/hard-landing stress 

lift distribution fixed stall speed 

wing weight fixed max lift coefficient 

van den Kieboom 
& Elham [53] 

high fidelity 
Fokker 100-class 

(similar) 
minimum 

fuel weight 

wingspan steady level lift coefficient 

flap deflection max stress, 2.5 g pull up  

airfoil shape max stress, -1.0 g push over  

chord distribution 
max fatigue stress, 1.3 g gust 

max buckling stress 

flap planform max stress, 1.0 g roll 

structure thickness min aileron effectiveness 

 max takeoff distance 

 min takeoff distance 

 fixed max takeoff weight 

 

Table A4  Optimization summary and key constraints for studies including constraints related to the 
wing deflection and stall. 

 study type configuration objective key design variables key constraints 

Phillips et al. [42] analytic 
planar, unswept 
rectangular wing 

minimum 
induced drag 

wingspan max maneuver/hard-landing deflection 

lift distribution fixed stall speed 

wing weight fixed max lift coefficient 

Jansen et al. [46] high fidelity 
tapered, elastic 

wing with 
wingtip devices 

maximum 
range 

wingspan steady level lift 

jig twist max section lift coefficient (stall) 

angle of attack max stress, 2.5g maneuver 

root chord  

sweep angle  

dihedral distribution  

taper ratio  

structure thickness  

Mader et al. [59] high fidelity 
MIT D8  

"double bubble" 
(elastic) 

minimum  
fuel burn 

wingspan steady level lift 

twist distribution zero pitching moment (trim) 

airfoil shapes max wingspan (gate constraint) 

angle of attack separation constraint (buffet) 

chord distribution min wing thickness 

tail rotation min wing volume 

cruise altitude max yield stress, 2.5g/1g gust 

structure thickness max buckling stress, 2.5g/-1g/1g gust 

structure design structural thickness adjacency 
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Table A5  Optimization summary and key constraints for studies including constraints related to the 
wing stress and the wing loading. 

 study type configuration objective key design variables key constraints 

Phillips et al. 
[41,42] 

analytic 
planar, unswept 
rectangular wing 

minimum 
induced drag 

wingspan max maneuver/hard-landing stress 

lift distribution fixed wing loading 

wing weight [42] fixed gross weight [41] 

Taylor & 
Hunsaker [43] 

analytic 
planar, unswept 

tapered wing 
minimum 

induced drag 

wingspan max maneuver/hard-landing stress 

lift distribution fixed wing loading 

wing weight  

Löbert [40] 
 

analytic 
planar, unswept 

wing 
 

minimum 
induced drag 

 

wingspan fixed wing area 

lift distribution fixed airfoil thickness 

 fixed gross weight 

 
max integrated moment/thickness 

ratio 

Stewart & 

Hunsaker [60] 
multi fidelity 

planar, unswept 

rectangular wing 

minimum 

drag 

wingspan max maneuver/hard-landing stress 

twist distribution max maneuver/hard-landing deflection 

 fixed wing area 

 fixed wing-structure weight 

McGeer [54] multi fidelity 
planar, unswept 

wing  
(light, low-speed) 

minimum 
drag 

wingspan max section lift coefficient (stall) 

lift distribution fixed parasitic drag coefficient 

airfoil thickness fixed wing-structure weight 

 fixed wing area 

Ning & Kroo [57] high fidelity 
swept, planar 

trapezoidal wing 
minimum 

drag 

wingspan min cruise/maneuver lift 

cruise twist max section lift coefficient (inactive) 

maneuver twist fixed wetted area 

chord distribution max maneuver stress 

Piperni et al. [55] 
 

high fidelity 
large  

business jet 
 

minimum 
cash operating  

cost 
 

aspect ratio relative inboard/outboard sweep 

lift distribution max/min strain 

airfoil shapes fixed flight condition 

break chords max critical maneuver load 

sweep angle fixed wing area 

structure thickness fixed max takeoff weight 

Liem et al. [56] high fidelity 
Common 

Research Model 
minimum 
fuel burn 

wingspan min wing area 

twist distribution min wing-box volume 

airfoil shapes fixed mean aerodynamic chord 

angle of attack fixed center of gravity 

chord distribution fixed cruise/maneuver lift 

sweep angle max maneuver stress 

tail rotation max gust stress 
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Table A6  Optimization summary and key constraints for studies including constraints related to the 
wing deflection and the wing loading. 

 study type configuration objective key design variables key constraints 

Phillips et al. 
[41,42] 

analytic 
planar, unswept 
rectangular wing 

minimum 
induced drag 

wingspan 
max maneuver/hard-landing 
deflection 

lift distribution fixed wing loading 

wing weight [42] fixed gross weight [41] 

McGeer [54] multi fidelity 
swept, elastic wing 
(light, high-speed) 

minimum 
drag 

wingspan max integrated moment/thickness ratio 

lift distribution max section lift coefficient (stall) 

airfoil thickness fixed crest-critical Mach number 

 fixed wing area 

 fixed wing-structure weight 

Kenway et al. [58] high fidelity 
undeflected 

Common Research 
Model (elastic) 

minimum 
fuel burn 

wingspan steady level lift coefficient 

twist distribution max buffet lift coefficient 

airfoil shapes structural thickness adjacency 

angle of attack fixed wing area 

chord length min fuel volume 

sweep angle max yield stress, 2.5 g maneuver 

altitude max yield stress, -1.0 g push over 

structure dimensions max buckling stress 

structure location  
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CHAPTER 5 

 
Effects of Wing Morphing on Aircraft Fuel Burn  

Along Fuel-Optimal Trajectories 

Jeffrey D. Taylor* and Douglas F. Hunsaker† 
Utah State University, Logan, Utah 84322-4130 

Active wing shaping, or morphing, of an aircraft wing has the potential to 

substantially improve aircraft efficiency. In recent years, several studies have sought 

to quantify the efficiency improvements possible through active wing shaping, but 

relatively few have considered how it may affect the optimum flight-path trajectory. 

In this paper, we seek to characterize the fuel savings from active wing shaping over 

an approximate optimum flight trajectory. To accomplish this, we present a simple 

direct trajectory optimization framework that can be used to perform a large number 

of trajectory optimizations to rapidly explore the design space of aircraft employing 

active wing shaping controls and identify how wing shaping may affect the total 

aircraft fuel consumption. Example solutions are presented for the approximate 

optimal flight-path trajectory and fuel consumption of the NASA Ikhana high-

endurance UAV configuration and the NASA Common Research Model 

configuration. Results indicate that the use of active wing-shaping controls for load 

alleviation can result in up to around 8% fuel savings over an optimized baseline 

design operating along the optimized trajectory. It is also shown that active wing 

shaping tends to favor optimal trajectories with lower velocity, higher lift coefficient, 

and higher lift-to-drag ratio, than the baseline design.  

                                                           
* PhD Candidate, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Student Member 
† Associate Professor, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Senior Member 
 
This paper was submitted to the AIAA SciTech 2023 Forum in Orlando, FL. 
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Nomenclature 

A  = wing-structure cross-sectional area 

1a  = fit coefficient in the power model for a high-bypass ratio turbofan engine as a function of 

velocity 

2a  = fit coefficient in the power model for a high-bypass ratio turbofan engine as a function of 

velocity 

nB  = Fourier coefficients in the lifting-line solution for the dimensionless section-lift distribution, 

Eq. (14) 

b  = wingspan 

DC  = drag coefficient 

0DC  = fit coefficient in the parabolic approximation of the drag coefficient as a function of the lift 

coefficient 

1DC  = fit coefficient in the parabolic approximation of the drag coefficient as a function of the lift 

coefficient 

2DC  = fit coefficient in the parabolic approximation of the drag coefficient as a function of the lift 

coefficient 

pDC
,2

 = parasitic drag component of the fit coefficient in the parabolic approximation of the drag 

coefficient as a function of the lift coefficient 

iDC  = induced drag coefficient 

LC  = lift coefficient 

1MC  = fit coefficient in the exponential approximation of the drag coefficient with respect to Mach 

number 

2MC  = fit coefficient in the exponential approximation of the drag coefficient with respect to Mach 

number 

nC  = weighting coefficients for nB  in the expression for wing-structure weight of tapered wings  

148



   

TSFCC  = static thrust-specific fuel consumption coefficient in the fuel consumption model for a turbofan 

engine 

C  = shape coefficient for deflection-limited sizing of the wing structure, Eq. (A2)  

C  = shape coefficient for stress-limited sizing of the wing structure, Eq. (33) 

c  = thrust-specific fuel consumption 

Wc  = local wing section chord length 

D = total drag 

E = modulus of elasticity of the wing-structure material 

e = Oswald efficiency factor 

se  = span efficiency factor 

h = altitude 

sh  = height of the beam cross-section 

I = beam section moment of inertia 

L = total lift 

L
~

 = local wing section lift 

M  = Mach number 

bM
~

 = local wing section bending moment 

m = exponential fit coefficient for the ratio of temperature at altitude h to temperature at sea level 

in the power model for a high-bypass ratio turbofan engine 

1N  = throttle parameter in the power model for a high-bypass ratio turbofan engine 

en  = number of engines 

mn  = limiting load factor at the maneuvering-flight design limit 

AP  = engine power available 

RP  = power required to maintain steady level flight 

ijp  = fit coefficients in the multidimensional polynomial available power model for a turboprop 

engine, as a function of altitude and airspeed 
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q = exponential fit coefficient for the Mach number in the fuel consumption model for a turbofan 

engine 

ijq  = fit coefficients in the multidimensional polynomial power-specific fuel consumption model for 

a turboprop engine, as a function of altitude and airspeed 

pq  = power-specific fuel consumption 

AR  = wing aspect ratio 

TR  = wing taper ratio 

WS  = wing area 

T = engine thrust 

0T  = reference static engine thrust at sea-level 

RT  = thrust required to maintain steady level flight 

t = cruise time 

maxt  = maximum thickness of the local airfoil wing section 

V = freestream velocity 

cV  = aircraft climb rate 

W = aircraft gross weight 

endW  = aircraft weight at the end of cruise 

fW  = aircraft fuel weight 

nW  = aircraft net weight, defined as sWW   

rW  = that portion of nW  carried at the wing root 

sW  = wing-structure weight 

nW
~

 = net weight of the wing per unit span, i.e., total wing weight per unit span less sW
~  

sW
~

 = weight of the wing structure per unit span required to support the wing bending-moment 

distribution 

x = downrange distance variable 

z = spanwise wing coordinate relative to the midspan 
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max  = maximum wing deflection 

  = specific weight of the wing-structure material 

max  = maximum longitudinal stress 

  = change of variables for the spanwise coordinate, Eq. (14) 

  = air density 

0  = reference air temperature at sea-level 

h  = air temperature at altitude h 

 

I.  Introduction 

The ability to morph, or actively change the shape of, an aircraft’s wings may have the potential to 

substantially reduce aircraft fuel consumption. The level of fuel savings possible through wing morphing 

depends on a variety of operational and design parameters. Recent years have seen increased interest in the 

development of aircraft morphing mechanisms [1-8], including several camber-morphing  

mechanisms [9-13], that allow designers to actively tailor the shape of a wing to achieve desired 

aerodynamic characteristics across a variety of flight conditions. In conjunction with these efforts, several 

studies have sought to determine how wing shaping using morphing mechanisms may affect aircraft 

performance over a representative flight-path trajectory. However, relatively few of these studies have 

considered how wing shaping may also affect the optimal flight-path trajectory. In this paper, we present a 

series of reference solutions that illustrate some of the ways in which static and active wing shaping may 

affect the efficiency of an aircraft over its optimal flight-path trajectory.  

The ability to actively change the shape of a wing, particularly through twist or camber morphing, can 

be leveraged to improve aerodynamic efficiency and provide aerostructural load alleviation. The lift 

distribution on a wing is related to the wing planform shape, the wing geometric twist distribution, and the 

airfoil cross sections across the wing (aerodynamic twist distribution). Active shaping of wing geometric or 

aerodynamic twist therefore produces changes in the aerodynamic lift distribution. The elliptic lift 

distribution, which was first identified by Prandtl in 1918 [14,15] as the lift distribution that minimizes 
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induced drag, is considered to be the optimum lift distribution for cruise. Since 1918, the elliptic lift 

distribution has been shown to be optimal for a wide range of aircraft and flight conditions. Therefore, 

aircraft typically operate with nearly elliptic lift distributions during cruise. However, for non-morphing 

aircraft wings, as flight conditions change over the course of a typical trajectory, the aerodynamic load 

distribution also may change, and the aircraft may experience suboptimal performance. 

Active wing-shaping control can be used to mitigate these negative effects by adjusting the 

aerodynamic load distribution to maintain desired performance at a variety of design conditions. This 

especially true for flexible wings, where aeroelastic effects can further degrade performance at off-design 

conditions. For example, Lebofsky et al. [16,17] showed that drag may be reduced by 10-20% under trim 

cruise conditions when the wing of the Generic Transport Model (GTM) is actively shaped to mitigate 

negative aeroelastic effects using a morphing mechanism known as the Variable Camber-Continuous 

Trailing-Edge Flap (VCCTEF). In transonic flight, Ting et al. [18] and Chaparro et al. [19] showed that 

drag on the GTM can be reduced by 5-8% at off-design conditions using the VCCTEF. Similar results have 

been shown for various other aircraft configurations and morphing mechanisms [20-28].  

 When wing-sizing constraints are considered, static wing design involves a tradeoff between efficiency 

during cruise and structural requirements in high-load maneuver conditions. The wing structure is generally 

sized based on limiting load conditions, including a high-load maneuver. Several theoretical aerostructural 

studies [29-43], beginning with Prandtl in 1933 [29], show that, under structural constraints, optimizing a 

wing for minimum induced drag involves tradeoffs between the wingspan, the lift distribution, and the 

wing weight distribution. These tradeoffs often result in an optimum wing design that takes advantage of 

load alleviation provided by a non-elliptic lift distribution to reduce weight or extend the wingspan without 

adding weight. Taylor and Hunsaker [44] provide a thorough review of theoretical aerosturctural literature 

for minimizing induced drag, as well as a sampling of more recent computational studies aimed at 

optimizing aircraft efficiency through aerostructural wing design. These studies highlight how tailoring the 

aerodynamic lift distribution to alleviate bending moments may have a substantial impact on aircraft 

efficiency. 
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 For wings with active wing shaping, the lift distribution may be changed dynamically to provide both 

load alleviation at high-load maneuvers and high efficiency during cruise. Recently, Hunsaker et al. [45] 

estimated that this load alleviation could result in around 10% reduction in cruise drag on a long-endurance 

UAV. Nguyen et al. [21] showed that active wing shaping using the VCCTEF could reduce drag on the 

GTM by 6% and reduce the root bending moment by around 25%, including both flutter constraints and the 

effects of load alleviation.  Burdette et al. [46,47] showed that for a morphing retrofit on the CRM, fuel 

burn may be reduced by between about 0.3% and 1% over the optimized non-morphing configuration.  

This is in good agreement with results shown by Lyu and Martins [48] for a variety of flight ranges. 

Fujiwara estimated a 4.7% reduction in fuel burn using morphing on the CRM under similar 

conditions [23]. 

 The majority of published literature on the impacts of wing morphing or active wing shaping on 

aircraft efficiency uses multipoint analysis or optimization at a series of predetermined flight conditions or 

a given fixed flight trajectory. For example, in Refs. [29-43], the wing lift distribution is assumed either to 

be fixed for all flight conditions, including the critical load maneuver, or to change only due to passive 

aeroelastic or aerodynamic effects. The studies in Refs. [16-23] and [45-48] use multipoint optimization at 

only a handful of points in the flight trajectory. Relatively few studies consider how morphing may also 

affect the optimal flight-path trajectory. Nguyen et al. [49] presented trajectory optimization results for a 

transonic truss-braced wing employing the VCCTEF to minimize fuel consumption. Fasel et al. [50] sought 

to simultaneously optimize the design and trajectory of an energy kite with camber morphing and found 

that morphing may result in up to 8% increase in power production. Jasa et al. [51] performed simultaneous 

aerostructural weight reduction and trajectory optimization for the CRM and showed fuel burn reductions 

of under 1% over the static cruise-optimized design. Rudnick-Cohen et al. [52,53] have also performed 

simultaneous design and trajectory optimizations for wings with camber morphing for a variety of 

performance objectives. 

In this paper, we present a series of solutions highlighting the effects of active wing shaping on aircraft 

performance, considering both aerostructural load alleviation and the impact of morphing on the optimum 
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flight trajectory. Note that in this paper, we will not consider the effects of aeroelasticity in our analysis. 

We anticipate that these solutions will add to the relatively sparse literature including the effects of wing 

morphing on the optimal flight trajectory and serve as reference solutions to inform future design and 

research efforts. Many of the methods used in the publications referenced here rely on linking black-box 

computational models from which relational information is very difficult to obtain. Such relational 

information is highly valuable in revealing how certain design and operational parameters may affect 

overall flight performance. The discrete nature of computational models means that obtaining relational 

information requires a large number of individual computational runs to reveal trends. Due to the 

computational expense of many of these methods, obtaining a sufficient number of results to reveal 

relational trends is infeasible. By using low- and multi-fidelity methods, we can quickly obtain a wide 

range of solutions with relatively low computational cost and reveal important trends and insights to 

support ongoing research and development in the design and optimization of wings with active wing-

shaping controls. Therefore, in this paper, we use low- and multi-fidelity analysis and optimization 

methods, which are described in Sections II and III. In Section IV, we give a description of the case studies 

considered in this paper, and in Section V, we present a discussion of the insights that can be gained from 

the results of those case studies.  

In the following sections, we will consider cases involving both static and active wing shaping. In this 

paper, static wing shaping refers to the use of aerodynamic or geometric twist distribution to achieve a 

single, fixed lift distribution for all flight conditions along the flight trajectory. In this way, static wing 

shaping is meant to approximate a rigid non-morphing wing operating with only small variations in the lift 

coefficient. Cases involving static wing shaping are included in this paper primarily for reference purposes. 

Active wing shaping refers to the active use of wing morphing mechanisms to dynamically tailor the 

aerodynamic lift distribution over the flight trajectory.  
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II.  Fuel Consumption for Quasi-Steady Level Flight 

In order to determine how wing shaping may affect the efficiency of an aircraft over the flight-path 

trajectory, we use the fuel consumption as our principal efficiency metric. For most long-haul trajectories, 

we can assume that changes in altitude and velocity are small relative to changes in downrange position. 

Therefore, we will assume that the aircraft is in quasi-steady level flight. Consider an aircraft in quasi-

steady level flight with weight W and thrust T. If we assume that the thrust is oriented in the direction of 

flight, then level flight requires that the lift L be equal to the weight, i.e.,  

 WL   (1) 

and steady flight requires that the drag D be equal to the thrust, i.e.,  

 TD   (2) 

The lift and drag can be rewritten in terms of the lift coefficient LC  and the drag coefficient DC  as 

 LWCSVL 2

2

1   (3) 

 DW CSVD 2

2

1   (4) 

where ρ is the freestream density, V is the freestream velocity, and SW is the reference area of the aircraft 

wing. Rearranging Eq. (3) and using the relation given in Eq. (1) gives an expression for the lift coefficient 

in quasi-steady level flight, i.e.,  

 
W

L SV

W
C

2
2
1 

  (5) 

which is also sometimes referred to as the weight coefficient. For low-speed subsonic flows, where the 

freestream can be assumed to be nearly incompressible, the drag coefficient is well approximated as a 

parabolic function of the lift coefficient, i.e.,  

 2

210 LDLDDD CCCCCC   (6) 

where 
0DC , 

1DC , and 
2DC  are constant fit coefficients that depend on the aircraft configuration.  

 In high-speed subsonic flight, compressibility effects can alter the lift and drag coefficients. Near a 

Mach 1, the formation of shockwaves in the flow causes a substantial increase in total drag. This is 
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sometimes known as drag divergence. For most aircraft, the drag divergence can be approximated below 

M=1 by modifying Eq. (6) as 

   2

1210
1),( 2 MC

MLDLDDLD MCCCCCCMCC   (7)   

where 
1MC  and 

2MC  are fit coefficients in the expression of the drag coefficient as a function of Mach 

number. Note that Eq. (7) does not approximate the drag around and above M = 1. Nevertheless, for the 

purposes of this study, it does provide a reasonable approximation of the drag divergence for high-speed 

subsonic flight below M = 1. 

A.  Fuel Consumption  

 The amount of fuel used by an aircraft power plant can be related to the thrust through a parameter 

known as the thrust-specific fuel consumption as 

 cTW   (8) 

where W  is the time rate of change of weight of the aircraft due to the fuel burn and c is the thrust-specific 

fuel consumption. Equation (8) can also be rewritten in terms of the range variable as  

 
V

cT
W   (9) 

where the notation  represents a derivative with respect to the downrange variable x. Using Eq. (8), the 

total fuel consumption Wf  of an aircraft over a specified time interval 10 ttt   can be written as 

 
1

0

t

t
f cTdtW  (10) 

Equation (9) can be used to give the total fuel consumption over a specified distance 10 xxx  , i.e.,  

 
1

0

x

x
f dx

V

cT
W  (11) 

The fuel consumption can also be written in terms of engine power rather than engine thrust using the 

power-specific fuel consumption, qp, as  

 TVqW p  (12) 
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where the product TV represents the power produced by the aircraft engine. In terms of the range variable x, 

Eq. (12) can be rewritten as 

 TqW p  (13) 

The thrust-specific fuel consumption and the power-specific fuel consumption are dependent on the 

powerplant and are typically functions of the flight velocity and the air properties, which change with 

altitude. 

B.  Effects of Active Wing Shaping 

In this paper, we model the effects of morphing primarily through the term 
2DC  in Eqs. (6) and (7). This 

term includes effects from both parasitic drag and induced drag. For a wing that is optimized for efficiency 

at a given cruise condition, the addition of morphing is expected to have very little effect on the parasitic 

drag. However, changing the aerodynamic lift distribution through morphing may have a substantial impact 

on the induced drag.  

Classical lifting-line theory describes the relationship between the aerodynamic lift distribution and the 

induced drag. From classical lifting-line theory, the normalized lift distribution can be expressed in terms of 

a Fourier sine series as [42] 
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where Bn are the normalized Fourier coefficients. These coefficients are determined based on the planform 

distribution and aerodynamic and geometric twist distributions. Therefore, in this study, we will assume 

that the aerodynamic effects of wing shaping through the aerodynamic and/or geometric twist can be 

modeled using the Fourier coefficients Bn.   

The induced drag coefficient from classical lifting-line theory is written as 

 
As

L
D Re

C
C

i 

2

  (15) 

where es is the span efficiency factor, given by 
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and RA is the aspect ratio, given by 
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b
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2

  (17) 

Using the induced drag coefficient from Eq. (15), the term 
2DC  can be rewritten as 

 
As

DD Re
CC

p 
1

,22
  (18) 

where 
pDC

,2
 is the component of the 

2DC  term that comes from the parasitic drag. It is important to note 

that the span efficiency factor es, which includes only induced-drag effects, is different from the Oswald 

efficiency factor e, which includes both parasitic and induced drag effects. Equation (18) can alternatively 

be written as 

 
A

D eR
C


1

2
  (19) 

where the effects of parasitic drag are included in the Oswald efficiency factor.  

For aircraft without wing shaping, the wing is typically designed to achieve desired aerodynamic 

characteristics, such as minimum drag, at a design cruise lift coefficient. As the aircraft operates away from 

the design lift coefficient, the lift distribution changes and the aircraft no longer has minimum drag. 

However, for wings with active wing shaping, the wing shape can be tailored to achieve minimum drag at 

all lift coefficients, resulting in a drag polar with lower curvature, and lower drag at all off-design lift 

coefficients than for a wing with no wing shaping. This tends to increase the maximum lift-to-drag ratio 

and the lift coefficient at which it is achieved for a wing with wing shaping. 

 

III.  Trajectory Optimization Framework 

In order to provide a consistent assessment of the effects of wing morphing on aircraft fuel 

consumption, we compare the fuel usage of non-morphing designs to that of morphing designs along each 

design’s respective optimum trajectory. Many methods for aircraft trajectory optimization can either be 
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described as direct or indirect methods. Using a direct method, the aircraft trajectory is discretized directly 

and trajectory characteristics are obtained, typically using numerical optimization methods. Using an 

indirect method, the conditions for optimality are derived from optimal control theory in the form of a 

system of differential equations that can be solved to obtain the optimum trajectory. In this study, we 

employed a direct trajectory optimization method, which will be described in this section, to approximate 

the minimum-fuel optimal trajectory.   

 

A.  Minimizing Fuel Burn with Altitude and Velocity 

 We seek to identify the trajectory that minimizes fuel burn for an aircraft in quasi-steady level 

flight, using the altitude and velocity as the control variables. In general, this requires that we minimize Eq. 

(10) or (11). However, for a wing in steady-level flight, the calculus of variations shows that minimizing 

the functional in Eq. (10) or (11) is equivalent to minimizing the fuel consumption rate shown in Eq. (8) or 

(9), respectively. From the calculus of variations, minimizing a functional with respect to any function 

requires, by theorem, that the Euler Lagrange equation be satisfied, i.e.,  

 0 yy L
dx

d
L  (20) 

where L is the Lagrangian of the functional, y is the design variable of interest, and the subscript denotes a 

partial derivative. For the case where we wish to find both the altitude h and velocity V that minimize Eq. 

(11), the Euler-Lagrange equation from Eq. (20) becomes 

 0
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h
 (21) 

and  

 0
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Vdx

d

V

cT

V
 (22) 

For quasi-steady level flight, we assume that the time rate of change of altitude h’ and velocity V’ are 

negligible, meaning that the fuel consumption rate, cT/V is not dependent on h’ or V’. Equations (21) and 

(22) then reduce to 
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V

cT

h
 (23) 

and  

 0










V

cT

V
 (24) 

which can be solved for h and V to find the altitude and velocity that minimize fuel consumption. Note that 

this is equivalent to minimizing the fuel consumption rate from Eq. (9). This suggests that we can obtain a 

good approximation of the overall fuel consumption by minimizing the fuel consumption rate at each point 

along the flight trajectory. 

 Therefore, in this study, the altitude and velocity are chosen at each trajectory point to minimize the 

fuel burn at that point. For a typical airframe/powerplant combination, there is a tradeoff between the 

thrust- or power-specific fuel consumption, the flight velocity, the air density (which depends on the flight 

altitude), and the engine thrust (which for quasi-steady level flight is equal to the drag). Based on this 

tradeoff, there is often an altitude and velocity that minimize fuel burn for a given fixed aircraft 

configuration. This optimum altitude and velocity depend on various aircraft design parameters, including 

the weight, lift coefficient, and drag coefficient, which may change over the course of a flight, particularly 

for wings with active wing-shaping controls.   

 To determine the optimum altitude and velocity for each point in the cruise trajectory, the 

trajectory is discretized into sections with N evenly spaced control points. The objective is to minimize fuel 

consumption at each control point. The fuel consumption is evaluated using Eq. (9) or Eq. (13), where the 

thrust is equal to the drag, as shown in Eq. (2). The drag is found by combining Eqs. (4) and (7), with the 

lift coefficient specified by Eq. (5). In order to minimize the fuel consumption, the altitude and velocity are 

chosen such that Eq. (9) or Eq. (13) is minimized at each control point. This can be accomplished using a 

variety of existing numerical optimization methods. In this paper, we will utilize the SciPy* implementation 

of the Sequential Least-Squares Programming (SLSQP) method [54].  

                                                           
* docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html 
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 It is important to note that the lift coefficient from Eq. (5) depends on the current aircraft weight. 

Therefore, the fuel consumption at point i in the flight trajectory depends on the fuel weight that was lost 

due to fuel consumption at point i-1, which means that the optimization must be performed sequentially. If 

the aircraft initial weight is known, then the optimization should begin at the start cruise point i = 0 and 

proceed until the final end-cruise weight is obtained. If the aircraft end-cruise weight is specified, then the 

optimization can begin at the end-cruise point i = N and proceed in reverse order until the initial weight is 

obtained. The total fuel burned over the course of the trajectory can then be found as 

 Niif WWW   0  (25) 

B.  Aerodynamic Ceiling 

For an aircraft in powered flight, there is a maximum altitude at which the aircraft can fly which 

depends on the powerplant performance and the aerodynamic characteristics of the aircraft. For an aircraft 

in steady level flight with velocity V, the power required, PR, for an aircraft to maintain steady level flight 

can be expressed as 

 VTP RR   (26) 

where TR is the thrust required to maintain steady-level flight and is equal to the drag, according to Eq. (2). 

The power available to the aircraft, PA, depends on the powerplant and generally decreases with density as 

the altitude increases. When the power required exceeds the power available, the aircraft sinks; when the 

power available exceeds the power required, the aircraft climbs, according to the relation 

 
W

PP
V RA

c


  (27) 

where Vc is the aircraft rate of climb. Because the power available generally decreases with altitude, the 

climb rate also tends to decrease with altitude. When the climb rate is zero, the aircraft is said to have 

reached its absolute ceiling; when the climb rate reaches 100 ft/min, the aircraft is said to have reached its 

service ceiling. In this study, we constrain the optimization such that the aircraft remains below the service 

ceiling. All atmospheric properties are evaluated using the 1976 U.S. standard atmosphere model [55].  

 

161



   
C.  Optimization Summary 

In this paper, we will consider trajectories where the altitude varies along the length of the trajectory, 

trajectories where the altitude is constant along the length of the trajectory and is chosen to minimize fuel 

consumption, and trajectories that have a given altitude that remains fixed along the length of the trajectory.  

For trajectories with varying altitude h(x) along their length, both the altitude and velocity are optimized at 

every control point to minimize the fuel consumption rate.  For each point, the optimization can be 

summarized as 

 

minimize: W'(xi) 
with respect to: h(xi), V(xi)  

subject to: Vc,i ≥ 100 ft/min 
 hi > 0 
 Vi > 0 

The climb rate is evaluated at each optimizer iteration to ensure that the aircraft remains below the service 

ceiling. When the optimum altitude, velocity, and corresponding fuel consumption for point xi are returned 

by the optimizer, the aircraft weight for the subsequent point (xi+1 if the initial aircraft weight is specified, 

xi-1 if the end-cruise weight is specified) is updated according to 
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The optimization is then performed at the subsequent point. A schematic of the optimization procedure is 

shown in Fig. 1.  

Aircraft trajectories are often constrained such that the altitude is constant over cruise. Therefore, in 

addition to operation over an optimum variable-altitude trajectory, we estimate the effects of wing shaping 

over a constant-altitude trajectory, where the altitude is optimized to minimize fuel consumption. We will 

also consider a fixed-altitude trajectory, where the altitude is fixed at some prescribed value. Throughout 

the remaining sections, we refer to these trajectory types as variable altitude, constant altitude, and fixed 

altitude, respectively.  
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Fig. 1  Schematic of the trajectory optimization procedure for trajectories with varying altitude. 

 

 For trajectories with constant altitude along their length, the optimization procedure requires nested 

optimization. In the inner loop, the velocity at each point xi is chosen to minimize the instantaneous fuel 

consumption rate for a given altitude. The inner-loop optimization is summarized as 

 

minimize: W'(xi) 
with respect to: V(xi)  

subject to: Vc,i ≥ 100 ft/min 
 Vi > 0 

Again, the optimization is performed sequentially, and at each point, the weight is updated according to  

Eq. (28). In the outer loop, the altitude is chosen to minimize the total trajectory fuel burn. For the outer 

loop, the optimization is summarized as follows:  

 

minimize: Wf 

with respect to: h  
subject to: h > 0 

A schematic of the nested setup for the constant-altitude optimization is shown in Fig. 2. 
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Fig. 2  Schematic of the trajectory optimization procedure for trajectories with constant altitude. 

 

IV.  Case Studies 

 In order to assess the impact of active wing shaping using the methodology described above, we 

performed trajectory optimization case studies on the Ikhana long-endurance UAV airframe and an 

augmented variant of the NASA Common Research Model (CRM) aircraft. These two aircraft were 

selected based on the accessibility of publicly available data and because they represent distinct aircraft 

configurations and flight regimes. 

 

A.  NASA Ikhana 

 The NASA Ikhana airframe is a modified Predator-B airframe used by NASA for scientific and 

wildfire monitoring missions. Ikhana has an unswept, tapered wing with negligible dihedral. A 

characterization of the Ikhana geometry from publicly available data is given by Taylor and Hunsaker [56].  

update
h

inner loop

ou
te

r 
lo

op

if W0 known
istart = 0, iend = N

if Wend known
istart = N, iend = 0 

yes

find W(xnext)
Eq. (23) i = iend?

if W0 known:
inext = i+1 

if Wend known
inext = i-1

discretize trajectory
N nodes

set initial guess
V(xi)

Vc(xi) < 100 ft/min?
Eq. (22)

update
h(xi), V(xi)

compute CL

Eq. (5)
compute CD

Eq. (5)

compute W'
Eq. (9) or (10)

compute D, T
Eqs. (2) & (4)

compute Wf

Eq. (20)

no

yesno

W' minimized?
yes

no

164



   

For the purposes of this study, we approximate Ikhana’s wing area to be SW = 265.6 ft2 with a maximum 

weight of W = 8500 lbf. The end-cruise weight is approximated at Wend = 5950 lbf and includes the 

airframe empty weight and some reserve fuel weight, estimated at 15% of the total fuel capacity. For 

Ikhana, the drag parameters 
0DC , 

1DC , and 
2DC  are assumed to be 

0DC = 0.023, 
1DC = 0.0, and 

2DC = 

0.0364. The parasitic drag parameter 
pDC

,2
 is estimated to be 

pDC
,2

= 0.017. Additional example 

aerodynamic and weight parameters for Ikhana are given in Table 1. 

 

Table 1:  Example aerodynamic and weight design parameters for the NASA Ikhana aircraft. 

net weight, lbf 7,500 
end-cruise weight, lbf 5,950 
root weight, lbf 4,500 
wing area, ft2 265.63 
design cruise range, mi 3500 
max wing loading, lbf/ft2 31.87 

0DC  0.023 

1DC  0.0 

2DC  0.0364 

pDC
,2

 0.017 

1MC  3.0 

2MC  30 

  

 Ikhana is equipped with a Honeywell  TPE331-10 turboprop engine [57]. The performance 

characteristics of the TPE331-10 can be approximated from charts given by Honeywell [58]. Based on data 

provided in these charts, the power-specific fuel consumption and available power are each approximated 

as functions of altitude and velocity using a  multidimensional parabolic fit of the form 
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where qij and pij are, respectively, the fit coefficients for the power-specific fuel consumption and power 

available. Example values for qij and pij are given in Table 2 for the Honeywell TPE331-10 engine.  
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Table 2:  Example fit coefficients for the approximate parabolic engine performance model of the 
Honeywell TPE331-10 turboprop engine. 

p00 
3100048.1   q00 

1105686.5   
p01 2106841.3   q01 5107803.2   
p02

 3106006.1   q02
 7103804.3   

p10 2101717.2   q10 6106096.2   
p11 8103175.2   q11 9107139.4   
p12 8109694.1   q12 11100069.2   
p20 8104470.8   q20 11100364.7   
p21 11103564.4   q21 13106919.1   
p22 14105221.2   q22 16106756.7   

 

B.  NASA Common Research Model (CRM) 

The CRM is a benchmark geometry typical of a swept-wing wide-body transonic transport aircraft that 

was originally intended for validation of Computational Fluid Dynamics (CFD) studies. The CRM 

geometry was first described by Vassberg [59], and CAD models of the CRM are provided by NASA.† The 

original CRM geometry includes only the outer mold line of the aircraft, but several variants exist that 

augment the original CRM with models that can be used to obtain additional information, including the 

weight distribution, structural layout, and fuel distribution. In this study, we will use the augmented CRM 

variant given by Taylor and Hunsaker [60], which includes basic structural properties, a fuel distribution 

and burn scheduling model, and a weight distribution model.  

The augmented CRM given by Taylor and Hunsaker [60] includes data derived or inferred from 

publicly available information on the Boeing 777-200ER, which is very similar to the CRM. Using the data 

provided by Taylor and Hunsaker [60], we approximate the maximum takeoff weight of the CRM as  

W = 628,342 lbf, with a maximum fuel load of Wf = 302,270 lbf [61]. The end-cruise weight (with 15% of 

total fuel capacity) is estimated as Wend = 370,664 lbf. The wing reference area is approximated as  

SW = 4130 ft2 [59]. The example drag polar for the CRM used in this study was obtained from trimmed 

drag data from case 1b of the fourth AIAA drag-prediction workshop [62] and data from a general 

implementation of the numerical lifting-line method of Phillips and Snyder [63], as presented by Goates 

and Hunsaker [64]. Data from this method was obtained using transonic airfoil data from a transonic small-

                                                           
† https://commonresearchmodel.larc.nasa.gov/ 
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disturbance theory/integral boundary layer code [65], as detailed in [60]. The average 
0DC , 

1DC , and 
2DC

values obtained by fitting these data using the parabolic approximation given in Eq. (6) are given by 

0194.0
0
DC , 0159.0

1
DC , and 0666.0

2
DC . From additional data in Ref. [62], the term 

pDC
,2

 for the 

parasitic drag is estimated to be 0316.0,2
pDC .  Based on data given by Vassberg [59], the drag divergence 

begins just above M = 0.85, and can be modeled below M = 1 using values for the coefficients 
1MC  and 

2MC  from Eq. (6) of 3
1
MC  and 30

2
MC . A summary of the example aerodynamic and weight 

parameters for the CRM are given in Table 3. 

 

Table 3:  Example aerodynamic and weight design parameters for the CRM aircraft. 

net weight, lbf 628,342 
end-cruise weight, lbf 370,664 
root weight, lbf 233,343 
wing area, ft2 4130 
design cruise range, mi 7725 
max wing loading, lbf/ft2 152.14 

0DC  0.0194 

1DC  -0.0159 

2DC  0.0666 

pDC
,2

 0.0316 

1MC  3.0 

2MC  30 

 

In this study, we assume that the CRM operates with a high-bypass ratio turbofan engine similar to the 

GE-90. The thrust-specific fuel-consumption is approximated using a relation given by Eshelby [66]: 

 qh MCMhc
2

1

0
TSFC),( 













 (31) 

where CTSFC is a constant coefficient that depends on the engine, τh is the atmospheric temperature at 

altitude h, τ0 is the atmospheric temperature at sea level, and q is an exponent that depends on the engine. 

Eshelby [66] notes that q is around 0.6 for a high-bypass ratio turbofan engine. The coefficient CTSFC can be 

found using Eq. (31) with a reference value for the GE-90 high-bypass ratio turbofan engine of 

c = 0.0563 kg/N·h [67], or 61077.4 c  slug/lbf·s, during Mach 0.84 cruise at an altitude of 35,000 ft. 
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Using these values in Eq. (31), and assuming that q = 0.6 for the high-bypass ratio GE-90 power plant gives 

a constant 6
TSFC 100706.6 C  slug/lbf·s. 

To predict the available power, we use the engine model given by Daidzic [68], i.e.,  

  3
2

2
1

0
01 VaVaVTNnP

m

h
eA 













 (32) 

where ne is the number of engines, N1 is a throttle parameter, T0 is the static thrust at sea level, and a1 and a2 

are parameters that depend on the engine. For the CRM, ne = 2, and for the GE-90, the static thrust at sea 

level is T0 = 93,000 lbf. The exponent m is set to m = 0.7 when h < 36,131 ft and m = 1.0 for  

h > 36,131 ft [68]. The remaining parameters in Eq. (32) can be estimated as N1 = 0.9, 4
1 1050.9 a , 

and 7
2 1000.5 a  [68].  

 

C.  Static and Active Wing Shaping 

To assess the effects of static and active wing shaping, we compute the fuel burn along the approximate 

optimum trajectory for a range of configurations employing static or active wing shaping for aerodynamic 

efficiency and aerostructural load alleviation. Wing shaping is modeled aerodynamically through variations 

in the Fourier coefficient B3 from Eq. (14), which impacts the span efficiency factor, Oswald efficiency 

factor, and the term 
2DC from Eqs. (6) and (7). The effects of aerostructural load alleviation are 

approximated using wing-structure weight relationships given by Taylor and Hunsaker [56,69] for wings 

with fixed wing loading. For both Ikhana and the CRM, we consider three cases: 1) load alleviation through 

static wing shaping is leveraged to decrease aircraft weight, 2) load alleviation from static wing shaping is 

leveraged to increase the wingspan and/or aspect ratio, and 3) load alleviation from active wing shaping is 

leveraged to increase the wingspan and/or aspect ratio. 

For Ikhana, aerostructural predictions for the wing-structure weight and wingspan are obtained using 

the closed-form relationships for the stress-limited design of unswept tapered wings given in Ref. [69]. 

Using these relationships, the maximum wingspan structurally allowed for a wing with given weight and 

lift distribution is approximated by  
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where RT is the taper ratio, nm is the maneuvering load limit in g’s, Wr is the weight of the aircraft at the 

wing root, tmax/cW is the maximum thickness-to-chord ratio of the wing airfoil section, σmax is the maximum 

allowable stress, and γ is the specific weight of the wing-structure material. The parameters I, A, and hs 

represent the moment of inertia, cross-sectional area, and height of the wing structure, respectively. The 

terms C1 and Cn are coefficients that depend on the taper ratio. In this study, we will approximate the lift 

distribution using B3 alone, as suggested by Taylor and Hunsaker [69], meaning that we will only use the 

C1 and C3 coefficients in our aeorstructural predictions. For Ikhana, we use the coefficients that correspond 

to a taper ratio of RT = 0.4, which gives 1
1 103139.2 C  and 1

3 104378.2 C . The remaining relevant 

structural parameters for Ikhana are given in Table 4.   

 

Table 4:  Example structural parameters for Ikhana. 

taper ratio 0.4 
thickness-to-chord-ratio 0.1365 
maneuver load limit, g 3.75 
max allowable stress, psf 6106.3   
specific weight, slug/(ft2s2) 172.8 
wing-structure weight, lbf 1,008 

C  0.165 

1C  0.0666 

3C  0.0316 

  

 For the CRM, the aerostructural predictions are performed using the numerical wing-structure 

prediction algorithm presented by Taylor and Hunsaker in ref. [56], combined with numerical optimization. 

In each case, optimization is carried out using the SciPy implementation of the SLSQP algorithm [54]. 

Again, we approximate the lift distribution assuming that Bn = 0 for all n > 3. The structural parameters for 

the CRM are approximated based on the low-fidelity CRM characterization given by Taylor and  

Hunsaker [60], as described in Appendix A. Note that in this paper, predictions for the wing-structure 

weight of the CRM include the weight of ribs located at each of the 48 wing-sections shown in Table A2 in 

Appendix A. 
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 For case 1, where load alleviation through static wing shaping is leveraged to decrease the wing-

structure weight, we hold the wingspan constant while varying the wing-structure weight. For each wing-

structure weight, we determine the lift distribution that provides sufficient load alleviation to meet the 

given structural-weight requirement. For Ikhana, this is done by rearranging Eq. (33). Assuming that Bn = 0 

for all n > 3, solving for B3 gives 

 
  3

1

3
3
maxmax
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   (34) 

For the CRM, we use numerical optimization to predict the value of B3 that minimizes the difference 

between the wing-structure weight predicted by the algorithm of Taylor and Hunsaker [56] and the desired 

wing-structure weight. In this way, we simulate tailoring of the lift distribution through wing shaping to 

reduce the structural weight. Note that as the lift distribution changes to alleviate more loads, the span 

efficiency factor given in Eq. (16) decreases, resulting in a tradeoff between lift distributions that alleviate 

loads at the high-load limiting condition and lift distributions that provide aerodynamic efficiency in cruise. 

We constrain the wing loading W/S to a fixed value, which means that as the weight changes, the wing area 

changes. Because the parasitic drag is proportional to the wetted area of the wing, as the wing area changes, 

we also scale the terms 
0DC , 

1DC , and 
pDC

,2
 by the new wing area. 

For case 2, where load alleviation through static wing shaping is leveraged to increase the wingspan, we 

vary the lift distribution through B3, and for each value of B3, we compute the wingspan that results in the 

same wing-structure weight as the baseline design. For Ikhana, this is done using Eq. (33). For the CRM, 

we use numerical optimization to determine the wingspan that minimizes the difference between the wing-

structure weight given by the algorithm of Taylor and Hunsaker [56] and the fixed wing-structure weight 

from the CRM baseline design for each given value of B3. Again, for this case, as the lift distribution 

changes, we expect to see a tradeoff between load alleviation and aerodynamic efficiency, which results in 

changes in the span efficiency factor as B3 changes.  

For case 3, where active wing shaping is used to increase the wingspan, the same process is repeated as 

in case 2, but the span efficiency factor is fixed at 1. In this way, we simulate the use of active wing 
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shaping to tailor the lift distribution during maneuvers to alleviate loads (with B3 ≠ 0), and the use of an 

aerodynamically optimum configuration with es = 1 for high efficiency during cruise. For this case, the B3 

values in Table 5 represent different levels of morphing capability, with B3 = 0 being no morphing 

capability, B3 = -1/3 being full morphing capability, and all other values being some intermediate level of 

morphing capability. Note that for this study, we only consider B3 values that result in all-positive spanwise 

lift distributions. Therefore, we limit our study to values of B3 > -1/3, because when B3 < -1/3, the lift 

distribution is no longer all-positive. A summary of the three case studies to be considered in this paper is 

given in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

171



   
Table 5:  Summary of trajectory optimization cases for Ikhana and the CRM 

Case 1: static wing shaping to reduce wing-structure weight 

Ikhana CRM 
Ws, lbf B3 RA es 

2DC  e Ws, lbf B3 RA es 
2DC  e 

675 -0.3384 17.0908 0.7443 0.0414 0.4503 32000 -0.2954 9.3761 0.7926 0.0728 0.4660 
700 -0.3139 17.0387 0.7719 0.0406 0.4603 34000 -0.2709 9.3451 0.8196 0.0717 0.4752 
725 -0.2892 16.9869 0.7994 0.0399 0.4699 36000 -0.2465 9.3143 0.8458 0.0706 0.4839 
750 -0.2644 16.9354 0.8267 0.0392 0.4792 38000 -0.2223 9.2838 0.8708 0.0697 0.4920 
775 -0.2394 16.8843 0.8533 0.0386 0.4881 40000 -0.1983 9.2534 0.8945 0.0689 0.4995 
800 -0.2143 16.8334 0.8789 0.0381 0.4963 42000 -0.1745 9.2232 0.9163 0.0682 0.5062 
825 -0.1890 16.7829 0.9032 0.0376 0.5040 44000 -0.1507 9.1932 0.9362 0.0676 0.5122 
850 -0.1636 16.7326 0.9256 0.0372 0.5109 46000 -0.1272 9.1635 0.9537 0.0671 0.5174 
875 -0.1381 16.6827 0.9459 0.0369 0.5170 48000 -0.1038 9.1339 0.9687 0.0668 0.5218 
900 -0.1125 16.6330 0.9634 0.0366 0.5222 50000 -0.0805 9.1045 0.9809 0.0666 0.5253 
925 -0.0867 16.5837 0.9780 0.0365 0.5264 52000 -0.0574 9.0752 0.9902 0.0664 0.5280 
950 -0.0607 16.5346 0.9891 0.0363 0.5296 54000 -0.0345 9.0462 0.9964 0.0664 0.5298 
975 -0.0346 16.4858 0.9964 0.0363 0.5317 56000 -0.0117 9.0174 0.9996 0.0665 0.5306 

1008 0.0000 16.4219 1.0000 0.0364 0.5328 57028 0.0000 9.0026 1.0000 0.0666 0.5308 

 
Case 2: static wing shaping to increase wingspan 

Ikhana CRM 
B3 es b, ft RA 

2DC  e B3 es b, ft RA 
2DC  e 

-0.3333 0.7500 76.4773 21.9116 0.0364 0.3994 -0.3333 0.7500 215.1715 11.2104 0.0691 0.4108 
-0.3000 0.7874 75.1453 21.1550 0.0361 0.4167 -0.3000 0.7874 212.0891 10.8915 0.0684 0.4274 
-0.2750 0.8151 74.2047 20.6287 0.0359 0.4294 -0.2750 0.8151 209.9479 10.6727 0.0679 0.4396 
-0.2500 0.8421 73.3095 20.1340 0.0358 0.4419 -0.2500 0.8421 207.9368 10.4692 0.0674 0.4513 
-0.2250 0.8681 72.4560 19.6679 0.0356 0.4541 -0.2250 0.8681 206.0433 10.2794 0.0669 0.4627 
-0.2000 0.8929 71.6409 19.2279 0.0355 0.4658 -0.2000 0.8929 204.2563 10.1018 0.0666 0.4735 
-0.1750 0.9159 70.8613 18.8117 0.0355 0.4770 -0.1750 0.9159 202.5659 9.9353 0.0662 0.4837 
-0.1500 0.9368 70.1146 18.4173 0.0354 0.4875 -0.1500 0.9368 200.9635 9.7788 0.0660 0.4931 
-0.1250 0.9552 69.3983 18.0429 0.0355 0.4974 -0.1250 0.9552 199.4414 9.6312 0.0659 0.5018 
-0.1000 0.9709 68.7105 17.6870 0.0355 0.5064 -0.1000 0.9709 197.9930 9.4918 0.0658 0.5096 
-0.0750 0.9834 68.0492 17.3482 0.0357 0.5146 -0.0750 0.9834 196.6120 9.3599 0.0658 0.5165 
-0.0500 0.9926 67.4126 17.0251 0.0358 0.5217 -0.0500 0.9926 195.2932 9.2347 0.0660 0.5224 
-0.0250 0.9981 66.7991 16.7167 0.0361 0.5278 -0.0250 0.9981 194.0317 9.1158 0.0662 0.5271 
0.0000 1.0000 66.2074 16.4219 0.0364 0.5328 0.0000 1.0000 192.8234 9.0026 0.0666 0.5308 

 
Case 3: active wing shaping (morphing) to increase wingspan 

Ikhana CRM 
B3 es b, ft RA 

2DC  e B3 es b, ft RA 
2DC  e 

-0.3333 1.0000 76.4773 21.9116 0.0315 0.4608 -0.3333 1.0000 215.1715 11.2104 0.0597 0.4760 
-0.3000 1.0000 75.1453 21.1550 0.0320 0.4695 -0.3000 1.0000 212.0891 10.8915 0.0605 0.4832 
-0.2750 1.0000 74.2047 20.6287 0.0324 0.4758 -0.2750 1.0000 209.9479 10.6727 0.0611 0.4883 
-0.2500 1.0000 73.3095 20.1340 0.0328 0.4819 -0.2500 1.0000 207.9368 10.4692 0.0617 0.4931 
-0.2250 1.0000 72.4560 19.6679 0.0332 0.4877 -0.2250 1.0000 206.0433 10.2794 0.0622 0.4976 
-0.2000 1.0000 71.6409 19.2279 0.0336 0.4934 -0.2000 1.0000 204.2563 10.1018 0.0628 0.5020 
-0.1750 1.0000 70.8613 18.8117 0.0339 0.4988 -0.1750 1.0000 202.5659 9.9353 0.0633 0.5061 
-0.1500 1.0000 70.1146 18.4173 0.0343 0.5041 -0.1500 1.0000 200.9635 9.7788 0.0638 0.5101 
-0.1250 1.0000 69.3983 18.0429 0.0346 0.5093 -0.1250 1.0000 199.4414 9.6312 0.0643 0.5139 
-0.1000 1.0000 68.7105 17.6870 0.0350 0.5142 -0.1000 1.0000 197.9930 9.4918 0.0648 0.5176 
-0.0750 1.0000 68.0492 17.3482 0.0353 0.5191 -0.0750 1.0000 196.6120 9.3599 0.0653 0.5211 
-0.0500 1.0000 67.4126 17.0251 0.0357 0.5238 -0.0500 1.0000 195.2932 9.2347 0.0657 0.5244 
-0.0250 1.0000 66.7991 16.7167 0.0360 0.5283 -0.0250 1.0000 194.0317 9.1158 0.0662 0.5276 
0.0000 1.0000 66.2074 16.4219 0.0364 0.5328 0.0000 1.0000 192.8234 9.0026 0.0666 0.5308 
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V.  Results 

For each of the cases described in the previous section, we approximate the optimum trajectory and the 

overall fuel burn along that trajectory. These values are compared to identify which static and active wing-

shaping configurations for both the Ikhana airframe and the CRM provide a minimum in overall fuel 

consumption. The results of this study are presented in this section.  

Recall that in this paper, the impact of wing morphing on aircraft fuel burn is primarily modeled 

through the span efficiency factor, which changes as wing shaping is used to tailor the lift distribution 

through B3. This, in turn, affects the Oswald efficiency factor and the term 
2DC . In order to assess the extent 

to which variations in these parameters affect the overall aircraft fuel consumption over the optimal 

trajectory, we approximate the optimum trajectory and the corresponding fuel consumption for various 

values of the Oswald efficiency factor e and various wing aspect ratios for both the Ikhana and the CRM. 

The results are shown in Figs. 3 and 4, respectively, for Oswald efficiency factors ranging between 0.4 ≤ e 

≤ 1.0 and aspect ratios between 6 ≤ RA ≤ 20. It is important to remember that each of the points in the 

curves shown in Figs. 3 and 4 represents a full trajectory optimization. Similar results to those shown in 

Figs. 3 and 4 can be obtained by optimizing the trajectory such that the altitude is constant along the flight 

path, as described in Section III.C. 

 Figure 5 shows the altitude and velocity profiles from the optimum trajectory for four points in Ikhana 

design space, as represented in Fig. 3, for both variable-altitude and constant-altitude cruise. Analogous 

results are shown for the CRM in Fig. 6, for four points in the CRM design space, as represented in Fig. 4. 

Note that at RA = 16, the optimum altitude for Ikhana tends to decrease with increasing Oswald efficiency 

factor. For the CRM, at RA = 10, the optimum altitude tends to increase as the Oswald efficiency factor 

increases. For both aircraft, the optimum velocity tends to either remain constant or decrease as the Oswald 

efficiency factor increases.  
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Fig. 3  Variation in the overall fuel consumption over the optimized trajectory with changes in aspect 
ratio and Oswald efficiency factor for Ikhana. 

 

 
Fig. 4  Variation in the overall fuel consumption over the optimized trajectory with changes in aspect 
ratio and Oswald efficiency factor for the CRM. 

 

 
Fig. 5  Example optimized altitude and velocity profiles for variations of Ikhana with aspect ratio  
RA = 16 and various Oswald efficiency factors. 
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Fig. 6  Example optimized altitude and velocity profiles for variations of the CRM with aspect ratio  
RA = 10 and various Oswald efficiency factors. 

 

Because 
2DC  is a function of both the aspect ratio and the Oswald efficiency factor, as shown in  

Eq. (19), the results from Figs. 3 and 4 can be simplified in terms of 
2DC . Figures 7 and 8 show the fuel 

consumption for Ikhana and the CRM, respectively, as a function of 
2DC . The vertical lines in Figs. 7 and 8 

represent the 
2DC  values for the baseline design and the optimum configurations for each of the cases listed 

in Table 5, which are described later in this section.  Notice that there is a nearly linear relationship 

between the coefficient  
2DC  and the overall fuel consumption over the optimal trajectory for both Ikhana 

and the CRM. Variation in average characteristics of the optimum trajectories corresponding to the fuel-

consumption values in Figs. 7 and 8 are given as a function of 
2DC in Appendix B for Ikhana and the CRM 

in both variable-altitude and fixed-altitude cruise.  
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Fig. 7  Variation in overall fuel consumption over the optimized trajectory for Ikhana with respect to 

2D
C . 

 

  
Fig. 8  Variation in overall fuel consumption over the optimized trajectory for the CRM with respect 
to 

2D
C . 

 

It is important to note that the results in Figs. 3-8 and in Appendix B represent very large variations in 

2DC , which fall well outside the capabilities of typical morphing mechanisms, which are more appropriately 

represented by the range of 
2DC  values shown for the baseline configuration and the optimum 

configurations for each wing-shaping case listed in Table 5.  In the following subsections, we compare 

results for the applications of wing shaping represented by these case studies. Results are shown for the 

optimum variable-altitude trajectory, the constant-altitude trajectory, where the altitude has been optimized 

to minimize fuel consumption, and the fixed-altitude trajectory, where the altitude is prescribed to be  

h = 20,000 ft for Ikhana and h = 35,000 ft for the CRM.  
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A.  Case 1: Use of Static Wing Shaping to Reduce Wing Weight 

For case 1, we will consider the use of load alleviation achieved through static wing shaping to reduce 

the wing weight for a fixed wingspan. Using the methods described in Section III, we can compute the 

optimum trajectory and the resulting total fuel consumption for each of the aircraft configurations listed for 

case 1 in Table 5. The total fuel consumption over the optimum trajectory for Ikhana and the CRM, 

respectively, is shown as a function of the wing-structure weight in Figs. 9 and 10. Note that for each 

aircraft, there is a wing-structure weight at which the fuel consumption is minimized.  

 

 
Fig. 9  Summary of the fuel consumption for each of the Ikhana configurations listed for case 1 in Table 
5, operating with variable altitude, constant altitude, and with the altitude fixed at 20,000 ft.  

 

 
Fig. 10  Summary of the fuel consumption for each of the CRM configurations listed for case 1 in Table 
5, operating with variable altitude, constant altitude, and with the altitude fixed at 35,000 ft.  
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for the baseline design. For the optimum configuration, load alleviation is achieved with a lift distribution 

characterized by B3 = -0.0751, which, through static wing shaping, is assumed to be constant over the 

course of cruise and at the high-load structural design limit. A schematic of the optimum wing 

configuration and lift distribution for case 1 is shown in Fig. 11, alongside the baseline design.  

 

 
Fig. 11  Comparison of the Ikhana baseline wing and the optimum Ikhana wing configuration for  
case 1. 

 

For the CRM, fuel consumption is minimized using a wing configuration having a wing-structure 

weight of Ws = 50,636 lbf, which is about 11.21% lower than the wing-structure weight for the baseline 

design. This reduction in wing-structure weight is a result of load alleviation provided by operating with a 

lift distribution characterized by B3 = -0.0988. The result is that the optimum configuration has a total fuel 

consumption of Wf = 200,940 lbf, or about 0.97% less than the baseline design. A schematic of the 

optimized wing and its corresponding lift distribution is shown in Fig. 12. 

It is important to note that for the three trajectory types considered here (variable altitude, constant 

altitude, or fixed altitude), the fuel burn reductions between the baseline design and the optimum 

configuration for case 1 vary by only around 0.1% for the CRM and less than 0.001% for Ikhana. However, 

for the CRM, Fig. 10 shows that the minimum fuel consumption for the optimum variable-altitude 

trajectory is just over 1% lower than the optimum constant-altitude trajectory and nearly 1.6% lower than 

the fixed-altitude trajectory.  
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Fig. 12  Comparison of the CRM baseline wing and the optimum CRM wing configuration for case 1. 

 

B.  Case 2: Use of Static Wing Shaping to Increase Wingspan 

For case 2, we consider the use of load alleviation through static wing shaping to increase the wingspan, 

while holding wing-structure weight constant. The total fuel burn for each of the case 2 configurations from 

Table 5 is shown in Fig. 13 for Ikhana and Fig. 14 for the CRM, as a function of the lift distribution, as 

characterized by the Fourier coefficient B3. Recall that each of the values of B3 shown in Figs. 13 and 14 

corresponds to a wing configuration that produces a distinct lift distribution, which through load alleviation 

results in a different wingspan and aspect ratio for each configuration. Again, we see that for each aircraft, 

there is a value of B3 that gives a minimum in fuel consumption. For each aircraft, this optimum B3 is 

consistent over the three trajectory types considered here. 
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Fig. 13  Summary of the fuel consumption for each of the Ikhana configurations listed for case 2 in 
Table 5, operating with variable altitude, constant altitude, and with the altitude fixed at 20,000 ft.  

 

 
Fig. 14  Summary of the fuel consumption for each of the CRM configurations listed for case 2 in Table 
5, operating with variable altitude, constant altitude, and with the altitude fixed at 35,000 ft.  

 

For Ikhana, fuel consumption is minimized with a wing configuration having B3 = -0.1476. This 

corresponds to a wingspan of b = 70.04 ft, which is 5.8% larger than that of the baseline Ikhana 

configuration. The result is a total fuel consumption of Wf = 1901 lbf, or 1.45% less than the baseline 

design. For the CRM, the optimum wing configuration operates with a lift distribution characterized by  

B3 = -0.0985, which corresponds to a wingspan of nearly b = 198 ft. This is around 2.6% larger than the 

baseline CRM wingspan, and results a fuel consumption of Wf = 199,890 lbf, which represents a small 

reduction of about 0.97% over the baseline design. A schematic of the optimum Ikhana and CRM wing 

configurations and their corresponding lift distributions are shown in Figs. 15 and 16, respectively.  
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Fig. 15  Comparison of the Ikhana baseline wing and the optimum Ikhana wing configuration for 

case 2. 

 

 
Fig. 16  Comparison of the CRM baseline wing and the optimum CRM wing configuration for case 2. 

 

As was true for case 1, the variation in the fuel burn reductions between the baseline and optimum 

configuration for each of the trajectory types considered here is very small. For this case, the optimum 

variable altitude trajectory for the CRM results in about 0.8% less minimum fuel consumption than the 

constant-altitude and fixed-altitude trajectories. The difference in minimum fuel consumption between the 

trajectory types for Ikhana is negligible.  
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C.  Case 3: Use of Active Wing Shaping to Increase Wingspan 

Here, we consider case 3, which represents the use of active wing shaping to alleviate loads at during 

high-load maneuvers and to operate with high-efficiency during cruise. Recall that the configurations 

shown in Table 5 for this case represent different degrees of morphing capability, as characterized by B3. 

For example, a configuration with B3 = -0.2 represents a configuration with the ability to morph the wing 

during a high-load maneuver to achieve the lift distribution characterized by B3 = -0.2 and operate with the 

elliptic lift distribution (B3 = 0) during cruise. Therefore, the configuration with B3 = 0 represents the 

baseline with no morphing ability and the configuration with B3 = -1/3 represents maximum morphing 

capability. The overall fuel consumption over the optimum trajectory for each of the case 3 configurations 

is shown in Fig. 17 for Ikhana and Fig. 18 for the CRM.  

 

 
Fig. 17  Summary of the fuel consumption for each of the Ikhana configurations listed for case 3 in 
Table 5, operating with variable altitude, constant altitude, and with the altitude fixed at 20,000 ft.  

 

 
Fig. 18  Summary of the fuel consumption for each of the CRM configurations listed for case 3 in Table 
5, operating with variable altitude, constant altitude, and with the altitude fixed at 35,000 ft.  
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As expected, minimum fuel consumption for both Ikhana and the CRM is achieved using the 

configuration with B3 = -1/3, or full morphing capability. For Ikhana, this configuration has a wingspan of 

b = 76.48 ft and has total fuel consumption over the optimum trajectory of around Wf = 1780 lbf. These 

values correspond to a wingspan increase of 15.5% and a fuel burn reduction of about 7.70% over the 

baseline configuration. A schematic of this wing and its corresponding cruise and maneuver lift 

distributions is shown in Fig. 19.  For the CRM, the optimum configuration has a wingspan of just over  

b = 215 ft, which is around 11.5% larger than the baseline configuration. The total fuel consumption for 

this configuration is about Wf = 184,941 lbf, or 8.38% less than the baseline configuration. A schematic of 

this configuration is shown in Fig. 20. Again, for both Ikhana and the CRM, the fuel savings between the 

baseline and optimized design is consistent across trajectory types, and the difference in the minimum fuel 

consumption between the trajectory types is negligible for Ikhana and around 0.8% for the CRM. 

 

 
Fig. 19  Comparison of the Ikhana baseline wing and the optimum Ikhana wing configuration for  
case 3. 
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Fig. 20  Comparison of the CRM baseline wing and the optimum CRM wing configuration for case 3. 

 

A summary of the optimization results for all three cases is given in Table 6. Figures 21 and 22 show 

the altitude and velocity profiles for the optimum trajectory for each of the optimum solutions given in 

Table 6. Results for Ikhana are shown in Fig. 21, and results for the CRM are shown in Fig. 22. Additional 

characteristics of these optimum trajectories are shown in Appendix B.    
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Table 6  Summary of results for the baseline configuration and the optimum configurations from Cases 
1-3 for Ikhana and the CRM. 

Baseline configuration 

Ikhana CRM 
 Variable h constant h fixed h  Variable h constant h fixed h 

Ws, lbf 1008 1008 1008 Ws, lbf 57,028 57,028 57,028 
RA 16.50 16.50 16.50 RA 9.00 9.00 9.00 
B3 0.0 0.0 0.0 B3 0.0 0.0 0.0 
Wf, lbf 1929 1929 1929 Wf, lbf 201,850 203,586 203,657 
 
Case 1: static wing shaping to reduce wing-structure weight 

Ikhana CRM 
 Variable h constant h fixed h  Variable h constant h fixed h 

Ws, lbf 936.2 936.2 936.2 Ws, lbf 50,636 50,291 49,907 
B3 -0.0750 -0.0751 -0.0751 B3 -0.0988 -0.0889 -0.0818 
Wf, lbf 1928 1928 1928 Wf, lbf 200,941 203,099 201,700 
% ΔWf -0.48 -0.48 -0.48 % ΔWf -0.67 -0.71 -0.77 
 
Case 2: static wing shaping to increase wingspan  

Ikhana CRM 
 Variable h constant h fixed h  Variable h constant h fixed h 

RA 18.38 18.38 18.38 RA 9.48 9.48 9.48 
B3 -0.1476 -0.1476 -0.1476 B3 -0.0949 -0.0949 -0.0949 
Wf, lbf 1901 1901 1901 Wf, lbf 199,890 201,582 201,670 
% ΔWf -1.45 -1.45 -1.45 % ΔWf -0.97 -0.98 -0.96 
 
Case 3: active wing shaping to increase wingspan  

Ikhana CRM 
 Variable h constant h fixed h  Variable h constant h fixed h 

RA 21.91 21.91 21.91 RA 11.21 11.21 11.21 
B3 -0.3333 -0.3333 -0.3333 B3 -0.3333 -0.3333 -0.3333 
Wf, lbf 1780 1780 1780 Wf, lbf 184,941 186,500 187,173 
% ΔWf -7.70 -7.70 -7.70 % ΔWf -8.38 -8.39 -8.09 
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Fig. 21  Altitude and velocity profiles for the optimum trajectories for the baseline and optimum 
Ikhana configurations.   

 
Fig. 22  Altitude and velocity profiles for the optimum trajectories for the baseline and optimum CRM 
configurations.   

 

Notice that although the effects of wing shaping do not vary substantially over the three trajectory types 

considered here, wing shaping does impact the optimum trajectory profile.  For Ikhana, static and active 
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wing shaping tend to result in a lower altitude optimal trajectory than the baseline design. However, for the 

CRM, wing shaping tends to result in a higher altitude optimal trajectory than the baseline design. For both 

Ikhana and the CRM, the velocity profiles for the configurations with wing shaping are lower than for the 

baseline design. Note that for case 1, the altitude profile includes a small region where the altitude is fixed 

at h = 36,131 ft. This is due to a discontinuity in the calculation of the service ceiling. Recall that in  

Eq. (32), the exponent m switches from 0.7 at altitudes under 36,131 ft to 1.0 at altitudes over 36,131 ft. 

This creates a discontinuous break in the power available, which, in turn, creates a discontinuity in the 

aircraft climb rate. For case 1, the aerodynamic ceiling constraint is active near 36,131 ft. As the altitude 

profile passes through this altitude, the climb rate abruptly switches from a value just above the service-

ceiling limit of 100 ft/s to a value that violates the limit. This leads the optimizer to revert to an altitude of  

h = 36,131 ft until the other trajectory characteristics change such that the service-ceiling is sufficiently 

above 36,131 ft to overcome the discontinuity.  This same effect causes the altitude profiles for the 

constant-altitude cruise to cluster around h = 36,131 ft. The effects of this implementation artifact on the 

optimum trajectory estimation can be seen in several of Figs. B1-B16 in Appendix B. 

Figures B10-B16 in Appendix B provide additional insights about the effects of wing shaping on 

optimum trajectory. In general, morphing tends to result in a slower flight profile with lower thrust and a 

higher lift coefficient than the baseline design. When altitude can vary, the optimum trajectory tends to 

have a nearly constant Mach number, lift coefficient, drag coefficient, lift-to-drag ratio, and specific fuel 

consumption. When the altitude is constant or fixed, the trajectory parameters seem to vary such that the 

lift-to-drag ratio remains relatively constant.  It is important to note that none of these parameters were 

assumed to be constant a priori. 

Figure B13 shows that wing shaping tends to result in a higher lift-to-drag ratio than the baseline design 

over the optimum trajectory. This is because each wing-shaping case has a 
2DC  value that is less than the 

baseline design, which increases the maximum lift-to-drag ratio and the lift coefficient at which it occurs. 

An example of this effect is illustrated in Fig. 23, which shows the drag polar and lift-to-drag ratio for the 

case 3 optimum configuration of the CRM with active wing shaping, compared to the drag polar and lift-to-
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drag ratio for the baseline CRM. The result is that the optimum configuration for each wing-shaping case 

tends to operate at a higher lift coefficient than the baseline design to achieve its respective maximum L/D.  

 
Fig. 23  Drag polar and lift-to-drag ratio for the CRM baseline design and the optimum CRM 
configuration for case 3 with active wing shaping. 

Because each configuration tends to operate at or near its maximum lift-to-drag ratio, it is not surprising 

that for our analysis, the optimum trajectory features a nearly constant lift-to-drag ratio. The lift-to-drag 

ratio is wholly dependent on the aerodynamic characteristics of the aircraft. Therefore, if we consider a 

morphing retrofit in which a non-morphing configuration is optimized for maximum L/D at the same 

design cruise lift coefficient as maximum L/D for the morphing configuration, we expect that the morphing 

retrofit will result in very little, if any improvement in the maximum L/D unless the morphing retrofit is 

coupled with a reduction in wing weight or modification of the wing design. In other words, unless 

aerostructural effects, including load alleviation or aeroelasticity, are leveraged, we expect that retrofitting 

optimized non-morphing wings with morphing mechanisms will have little effect on the overall aircraft 

fuel burn over the optimal trajectory. 

It is important to remember that the results in this paper are not specific to any morphing mechanism for 

wing shaping. Instead, in this study, we have focused on the desired aerodynamic load distribution, which 

we have assumed can be achieved through wing shaping using any distributed flap or morphing system. 
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The actuator scheduling required to achieve these load distributions depends on the mechanism used for 

wing shaping. 

 

VI.  Conclusions 

The degree to which wing morphing, or active wing shaping, can improve aircraft performance depends 

on various design and operational parameters related to the aircraft configuration and its flight-path 

trajectory. Most of the existing literature on the effects of wing shaping on aircraft efficiency assesses the 

effects of wing morphing over a fixed flight trajectory or over a small number of points intended to 

represent critical design and off-design conditions. However, studies considering the effect that morphing 

may have on the optimal flight-path trajectory are relatively few. In this paper, we have presented a series 

of solutions that reveal important insights into the effects of active wing shaping on aircraft efficiency, 

represented by the aircraft fuel consumption, over the fuel-optimal flight-path trajectory.  

The solutions presented in this paper were obtained using low- and multi-fidelity computational 

methods, as described in Sections II and III. The effects of wing shaping were modeled through changes in 

the lift distribution, which was characterized using the Fourier coefficient B3 from Eq. (14), and the span 

efficiency factor, as described in Eq. (16). The fuel-optimal trajectory and the associated total fuel 

consumption were obtained using a direct optimization method described in Section III, in which the 

altitude and velocity are selected to minimize fuel consumption at each individual point in the discretized 

trajectory. At each location, the altitude is constrained such that it remains below the aircraft service 

ceiling, as described in Section III.B. Schematics of the optimization procedure are given in Figs. 1 and 2. 

Using the methods presented in Sections II and III, optimum trajectories along with their corresponding 

fuel consumption were found for a range of variations of the NASA Ikhana high-endurance UAV and the 

NASA CRM configuration, which are described in Section IV. Figures 3-8 show how the total fuel 

consumption and additional characteristics of the optimum trajectory vary with changes in the Oswald 

efficiency factor for both Ikhana and the CRM. A series of static and active wing-shaping case-studies was 

selected for each aircraft to represent three practical wing-shaping applications: 1) the use of static wing 
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shaping to reduce wing weight, 2) the use of static wing shaping to increase wingspan, and 3) the use of 

active wing shaping to increase wingspan. A summary of the study cases is given in Table 5.  

Static wing-shaping results for case 1 (wing shaping to decrease wing-structure weight) and 2 (wing 

shaping to increase wingspan) are summarized in Figs. 9-16. Figures 9 and 10 show the variation in total 

fuel consumption for each of the configurations in case 1. Figures 13 and 14 show the variation in total fuel 

consumption for each of the configurations in case 2. For each case, it has been shown that there is a 

solution with the range of configurations shown that minimizes fuel consumption. For case 1, the optimum 

Ikhana configuration results in less than 0.5% reduction in fuel consumption over the baseline design. The 

optimum CRM configuration results in about 0.7% fuel reduction. For case 2, the optimum configurations 

result in fuel reductions of about 1.5% for Ikhana and just under 1% for the CRM. A schematic of the 

optimum wing planforms for cases 1 and 2 are shown in Figs. 11,12,15, and 16. These results suggest that 

for the cases considered here, leveraging load alleviation through wing shaping to increase wingspan can 

result in greater reductions in fuel consumption than using load alleviation to reduce wing weight.  

Active wing-shaping results for case 3 (active wing shaping to increase wingspan) are shown in  

Figs. 17-20 for Ikhana and the CRM. The results in these figures suggest that utilizing active wing shaping 

can result in reductions of up to 7.7% for Ikhana and around 8.3% for the CRM.  These reductions are 

achieved by leveraging maneuver load alleviation at the high-load structural design limit to increase the 

wingspan by up to 15.5%. Here, the greatest fuel burn reductions are achieved using the maximum 

morphing capability possible (B3 = -1/3). Schematics of the optimum configurations for  Ikhana and the 

CRM are shown in Figs. 19 and 20, respectively. A summary of the optimization results for all three cases 

is shown in Table 6. 

The altitude and velocity profiles for the optimum trajectories corresponding to the optimum 

configurations from cases 1-3 are shown in Figs. 21 and 22, with additional trajectory characteristics shown 

in Figs. B10-B16 in Appendix B. An examination of these figures reveals that the optimum trajectory tends 

to have nearly constant lift-to-drag ratio over its length. When altitude is allowed to vary over the flight-

path trajectory, the lift coefficient, drag coefficient, Mach number, and specific fuel consumption are also 
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nearly constant. It has been shown that the application of wing shaping tends to result in trajectories that 

have lower velocity, higher lift coefficients, and higher lift-to-drag ratios than the baseline design. These 

differences result in fuel burn reductions of about 1% for the CRM. Fuel savings from wing shaping 

relative to the baseline design are consistent between trajectories with variable altitude along their length, 

trajectories with constant altitude that has been optimized to minimize fuel consumption, and trajectories 

with fixed altitude.  

 Taken together, the results in this paper suggest that static wing shaping or active wing shaping 

achieved through morphing mechanisms can have a substantial effect on aircraft efficiency and the fuel-

optimal trajectory. It is important to remember that the results shown in this paper are intended as reference 

solutions to inform ongoing research on morphing mechanisms for wing shaping and to provide insight for 

conceptual design phases.  Therefore, some effects that may be important in later design phases have not 

been considered, including aeroelasticity and 3-D transonic effects. When designing a wing with any 

specific morphing mechanism, additional methods may be required to assess the full effects of the 

mechanism on the aircraft performance. Nevertheless, the results presented in this paper provide valuable 

insight into the ways in which wing shaping can affect the overall performance and optimal flight-path 

trajectory of aircraft. 

 

Appendix A: Example Structural Properties of the CRM 

 The example structural model for the CRM used in this paper is derived from the wing-box model 

provided by the University of Michigan for the undeflected Common Research Model (uCRM), an 

aerostructural variant of the CRM [70]. The uCRM wingbox geometry is characterized in detail by Taylor 

and Hunsaker in Ref. [60]. In order to approximate the wing-structure weight using the numerical method 

from Ref. [56], some parameters not presented by Taylor and Hunsaker [60] are required. The additional 

approximations that were used to obtain these properties are detailed in this appendix.  

 Using the method presented by Taylor and Hunsaker in [56], the wing-structure weight can be written 

for wings with stress-limited designs as 
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or, for deflection-limited designs, as  
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where the bending-moments )(
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zM b  resulting from the lift distribution )(
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For the CRM, the chord c(z), thickness-to-chord ratio tmax(z)/cW(z), spar height ratio hs(z)/tmax(z), and shape 

factors Cσ(z) and Cδ(z) all change along the span of the wing. Therefore, an estimation of all of these values 

is needed as a function of the spanwise location. The wing chord and thickness-to-chord ratio distributions 

are given by Vassberg [59], and are shown in Table A1.  The remaining distributions can be obtained using 

a simplified geometric approximation for the wing box, as shown in Fig. A1. 

 

Table A1:  Wing chord and thickness-to-chord ratio for the CRM. 

section 2z/b chord, ft tmax/cW 
1 0.00 44.6818 0.1542 
2 0.10 39.0425 0.1380 
3 0.15 36.2230 0.1280 
4 0.20 33.4028 0.1198 
5 0.25 30.5830 0.1137 
6 0.30 27.7632 0.1092 
7 0.35 24.9430 0.1060 
8 0.37 23.8151 0.1052 
9 0.40 23.1073 0.1038 

10 0.45 21.9276 0.1019 
11 0.50 20.7479 0.1000 
12 0.55 19.5682 0.0988 
13 0.60 18.3881 0.0978 
14 0.65 17.2084 0.0970 
15 0.70 16.0287 0.0962 
16 0.75 14.8490 0.0958 
17 0.80 13.6689 0.0955 
18 0.85 12.4892 0.0953 
19 0.90 11.3095 0.0952 
20 0.95 10.1298 0.0951 
21 1.00 8.9501 0.0950 
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Fig. A1  Schematic of the geometric approximation of the CRM wingbox model for wing-structure 
weight prediction. 

 

 For the wing-box model shown in Fig. A1, the leading-edge and trailing-edge spar locations, as well as 

the spar thicknesses are given by Taylor and Hunsaker [60], and are summarized here in Table A1. The 

upper and lower edges of the wing box are assumed to have the same thickness as the upper and lower 

wing skins of the CRM, which are also given by Taylor and Hunsaker [60]. Using these data, the wing-box 

cross-sectional area, moment of inertia, and height distribution can all be found. The shape factors Cσ(z) 

and Cδ(z) are computed using the definitions in Eqs. (A1) and (A2). The wing and structural parameter 

distributions for the CRM wingbox are summarized in Table A2. The remaining material properties γ, σmax,  

δmax, and E, which are shown in Table A3, are assumed to be constant and are representative of 7000-series 

aluminum alloy.  

 The net weight distribution of the CRM is detailed in Ref. [60], including the weight of the engines and 

fuel distributed in fuel tanks that extend to around 76% semisipan.  The net weight distribution for various 

fuel loadings for the baseline CRM is given in Fig. A2. The wing-structure weight distribution predicted by 

the algorithm presented by Taylor and Hunsaker in Ref. [56] is shown in Fig. A3. 
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Table A2:  Example structural parameters for the CRM. 

section 2z/b hLE, ft hTE, ft I, ft4 A, ft2 Cσ Cδ 
0 0.0000 6.6849 4.2560 19.3153 2.8814 1.7540 2.0371 
1 0.0264 6.0919 4.2471 17.7264 2.9278 1.7540 1.8564 
2 0.0527 5.4160 4.2193 15.8264 2.9873 1.7551 1.6504 
3 0.0791 4.6477 4.1712 13.6963 3.1081 1.7553 1.4163 
4 0.1055 3.7458 4.0931 3.2198 0.8680 1.7539 1.1415 
5 0.1139 3.5429 4.0815 2.7338 0.7514 1.7519 1.0797 
6 0.1212 3.3449 4.0713 4.4484 1.2528 1.7501 1.0193 
7 0.1295 3.1513 4.0598 5.0550 1.7436 1.7481 0.9603 
8 0.1416 2.9696 4.0430 5.7388 2.0324 1.7452 0.9049 
9 0.1639 2.8024 3.6818 4.4934 1.8431 1.7411 0.8540 

10 0.1860 2.6489 3.3853 3.5730 1.6911 1.7330 0.8072 
11 0.2079 2.5079 3.1414 2.9308 1.5858 1.7245 0.7642 
12 0.2298 2.3790 2.9257 2.5787 1.5856 1.7154 0.7250 
13 0.2516 2.2620 2.7303 2.2798 1.5867 1.7062 0.6893 
14 0.2735 2.1552 2.5520 2.0230 1.5885 1.6962 0.6568 
15 0.2953 2.0586 2.3859 1.8149 1.6147 1.6847 0.6273 
16 0.3172 1.9720 2.2276 1.6331 1.6608 1.6736 0.6009 
17 0.3392 1.8956 2.0707 1.4094 1.6044 1.6621 0.5777 
18 0.3615 1.8503 1.9088 1.0885 1.3762 1.6492 0.5639 
19 0.3839 1.8093 1.7401 0.9897 1.4027 1.6364 0.5514 
20 0.4059 1.7715 1.6089 0.8340 1.3051 1.6222 0.5398 
21 0.4271 1.7351 1.5624 0.7478 1.2271 1.6096 0.5287 
22 0.4482 1.6979 1.5209 0.6700 1.1538 1.6025 0.5174 
23 0.4693 1.6618 1.4812 0.5984 1.0815 1.5927 0.5064 
24 0.4904 1.6298 1.4438 0.5321 1.0059 1.5855 0.4967 
25 0.5116 1.6013 1.4058 0.4715 0.9318 1.5779 0.4880 
26 0.5327 1.5741 1.3687 0.4165 0.8598 1.5706 0.4797 
27 0.5538 1.5473 1.3340 0.3674 0.7932 1.5633 0.4715 
28 0.5749 1.5207 1.3007 0.3218 0.7239 1.5559 0.4634 
29 0.5961 1.4942 1.2666 0.2803 0.6594 1.5486 0.4553 
30 0.6172 1.4674 1.2322 0.2428 0.5981 1.5367 0.4472 
31 0.6383 1.4390 1.1989 0.2113 0.5459 1.5284 0.4385 
32 0.6593 1.4082 1.1665 0.1834 0.4983 1.5198 0.4291 
33 0.6804 1.3764 1.1355 0.1589 0.4548 1.5108 0.4194 
34 0.7014 1.3448 1.1060 0.1370 0.4130 1.5015 0.4098 
35 0.7224 1.3132 1.0775 0.1174 0.3734 1.4921 0.4002 
36 0.7435 1.2811 1.0499 0.0996 0.3346 1.4761 0.3904 
37 0.7645 1.2486 1.0203 0.0837 0.2986 1.4658 0.3805 
38 0.7855 1.2152 0.9860 0.0703 0.2678 1.4548 0.3703 
39 0.8066 1.1810 0.9496 0.0586 0.2402 1.4427 0.3599 
40 0.8277 1.1458 0.9143 0.0484 0.2138 1.4299 0.3492 
41 0.8487 1.1097 0.8803 0.0393 0.1883 1.4141 0.3382 
42 0.8697 1.0727 0.8477 0.0318 0.1657 1.3989 0.3269 
43 0.8907 1.0351 0.8162 0.0254 0.1445 1.3701 0.3154 
44 0.9117 0.9970 0.7830 0.0205 0.1280 1.3518 0.3038 
45 0.9328 0.9589 0.7470 0.0163 0.1125 1.3322 0.2922 
46 0.9538 0.9214 0.7111 0.0132 0.1014 1.3113 0.2808 
47 0.9748 0.8829 0.6767 0.0107 0.0913 1.2890 0.2691 
48 1.0000 0.8402 0.6203 0.0107 0.0913 1.2495 0.2560 
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Table A3: Material properties for the low-fidelity CRM wing-structure weight estimation. 

Density, slug/ft3 5.39 
Specific Weight,  slug/(ft2s2) 173.6 
Modulus of Elasticity, psf 81026.15   
Yield Strength, psf 61077.8   
Poisson Ratio 0.33 
Shear Modulus, psf 81074.5   

 

  

 
Fig. A2  Example net-weight distributions for the CRM. 

 

 
Fig. A3  Approximate wing-structure weight distribution for the CRM wing. 

 

Appendix B: Trajectory Characteristics 

The figures in this appendix show characteristics of the optimum trajectories for the solutions presented 

in section V.  Figures B1-B9 show the variations in average optimum trajectory parameters for Ikhana and 

the CRM with respect to changes in 
2DC . Note that the jogs seen in the results for the CRM in Figs. B1-B6 

and Fig. B9 are due to the discontinuity in the implementation of the power available model for the CRM, 

as described in Section V.C. 
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Fig. B1: Variation in average cruise time over the optimized trajectory with respect to 

2D
C  for a) the 

CRM and b) Ikhana. 

 

 
Fig. B2: Variation in average altitude over the optimized trajectory with respect to 

2D
C  for a) the CRM 

and b) Ikhana. 

 

 
Fig. B3: Variation in average velocity over the optimized trajectory with respect to 

2D
C  for a) the CRM 

and b) Ikhana. 
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Fig. B4: Variation in average Mach number over the optimized trajectory with respect to 

2D
C  for a) 

the CRM and b) Ikhana. 

 

 
Fig. B5: Variation in average lift coefficient over the optimized trajectory with respect to 

2D
C  for a) the 

CRM and b) Ikhana. 

 

 
Fig. B6: Variation in average drag coefficient over the optimized trajectory with respect to 

2D
C  for a) 

the CRM and b) Ikhana. 
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Fig. B7: Variation in average lift-to-drag ratio over the optimized trajectory with respect to 

2D
C  for a) 

the CRM and b) Ikhana. 

 

 
Fig. B8: Variation in average thrust over the optimized trajectory with respect to 

2D
C  for a) the CRM 

and b) Ikhana. 

 

 
Fig. B9: Variation in average thrust-specific fuel consumption (a) or power-specific fuel consumption 
(b) over the optimized trajectory with respect to 

2D
C  for a) the CRM and b) Ikhana. 
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Characteristics of the optimum trajectories for each of the wing-shaping configurations given in Table 5 

is shown in Figs. B10-B16 for Ikhana and the CRM, alongside the respective baseline design. Results are 

shown for optimum trajectories with variable altitude cruise, constant altitude cruise, and fixed altitude 

cruise. Again, note that the jogs shown for the CRM case 1 in Figs. 10-12 and Fig. 15 are due to a 

discontinuity in the implementation of the power available model for the CRM, as described in  

Section V.C. 

 

 
Fig. B10: Variation in Mach number over the optimum trajectories for each of the wing-shaping 
configurations from Table 5, along with the optimum trajectory for the baseline configuration for a) 
the CRM and b) Ikhana. 

 

 
Fig. B11: Variation in lift coefficient over the optimum trajectories for each of the wing-shaping 
configurations from Table 5, along with the optimum trajectory for the baseline configuration for a) 
the CRM and b) Ikhana. 
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Fig. B12: Variation in drag coefficient over the optimum trajectories for each of the wing-shaping 
configurations from Table 5, along with the optimum trajectory for the baseline configuration for a) 
the CRM and b) Ikhana. 

 

 
Fig. B13: Variation in lift-to-drag ratio over the optimum trajectories for each of the wing-shaping 
configurations from Table 5, along with the optimum trajectory for the baseline configuration for a) 
the CRM and b) Ikhana. 

 

 
Fig. B14: Variation in thrust over the optimum trajectories for each of the wing-shaping configurations 
from Table 5, along with the optimum trajectory for the baseline configuration for a) the CRM and b) 
Ikhana. 
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Fig. B15: Variation in thrust-specific fuel consumption (a) or power-specific fuel consumption (b) over 
the optimum trajectories for each of the wing-shaping configurations from Table 5, along with the 
optimum trajectory for the baseline configuration for a) the CRM and b) Ikhana. 

 

 
Fig. B16: Variation in aircraft weight over the optimum trajectories for each of the wing-shaping 
configurations from Table 5, along with the optimum trajectory for the baseline configuration for a) 
the CRM and b) Ikhana. 
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CHAPTER 6 

CONCLUSION 

 The reference solutions in this dissertation suggest that tailoring the lift distribution 

on an aircraft wing through static or active wing shaping can be used to leverage 

tradeoffs between the lift distribution, the wingspan, and the wing weight to achieve 

substantial efficiency benefits over the course of a flight-path trajectory. Predicting these 

efficiency benefits requires a multidisciplinary approach that considers, among other 

things, the coupling between aerodynamics, structures, flight mechanics, and control. 

There are a variety of existing multidisciplinary design and optimization tools that have 

been shown to provide accurate predictions for specific design scenarios, but most rely on 

linking computationally expensive black-box tools from which relational information 

about the coupling between design and operational parameters is difficult to obtain. This 

dissertation presents an alternative approach using analytic and low-fidelity methods to 

obtain relational information about the effects of load alleviation through wing shaping 

on the efficiency and optimum flight-path trajectory of aircraft wings through closed 

form mathematical relationships and rapid design-space exploration and optimization. 

The solutions presented in this dissertation are meant to serve as reference solutions in 

efforts to predict the efficiency benefits of wing shaping and to support and inform 

ongoing research on adaptive wing morphing for aircraft performance. 

 The papers presented in this dissertation primarily focus on the effects of load 

alleviation in designing a wing with wing shaping for minimum induced drag or 

minimum fuel burn over the optimal flight-path trajectory. In Chapter 2, closed-form 

solutions are presented for the lift distribution and wing-structure weight that minimize 
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induced drag on tapered wings with structural constraints and static wing-shaping to 

produce a fixed lift distribution at all flight phases. These solutions extend earlier analytic 

work on rectangular wings and show that using a tapered planform rather than a 

rectangular planform can allow up to a 15% larger wingspan for the same wing-structure 

weight, reducing induced drag by up to 25%. Minimum induced drag is obtained below 

stall with a triangular wing having a taper ratio of RT = 0. When the lift distribution and 

wing-structure weight are optimized, the optimum design has a lift distribution that is 

nearly fully characterized by the Fourier coefficient B3 from Eq. (1.1) in the introduction, 

with all other Fourier coefficients having very little influence. The theoretical optimum 

wing-structure weight matches that of the rectangular wing at one-half the net weight of 

all other wing components for the stress-limited design, independent of all other design 

parameters.   

 The results from Chapter 2 provide valuable insights into the effects of the planform 

on the aerodynamic and structural coupling involved in designing a wing with static wing 

shaping for minimum induced drag. However, they include some assumptions that are not 

necessarily representative of many practical aircraft configurations. In particular, the 

solutions in Chapter 2 are all obtained assuming that the weight is distributed in the wing 

according to an ideal weight distribution. The solutions are also limited to wings with 

elliptic or linear taper. Therefore, in Chapter 3, the methodology from Chapter 2 is 

generalized using low-order numerical methods to accommodate wings with arbitrary 

planform and payload distribution. 

 In Chapter 3, these methods are used to perform optimization and a design-space 

exploration on the NASA Ikhana high-endurance UAV, including a sensitivity study to 
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estimate the relative influence of various aerodynamic, structural, and operational 

constraints on the induced drag for an aircraft configuration more representative of a 

typical aircraft design. This study shows that the relative influence of design parameters, 

including the wingspan and wing-structure weight, depend on where the design falls in 

the design space. For example, for the baseline Ikhana design, the induced drag is much 

more sensitive to the wingspan than the wing-structure weight. Therefore, a design that 

can alleviate loads to allow a larger wingspan can have greater efficiency benefits than a 

design that reduces the wing-structure weight through load alleviation. The results also 

show that for Ikhana, the optimum lift distribution from static wing shaping is very 

similar to the analytic and closed-form solutions for rectangular wings and tapered wings 

and is nearly independent of the degree of taper in the wing. Moreover, the optimum 

wing-structure weight is nearly independent of all other design variables and is very near 

the optimum analytical wing-structure weight for a rectangular wing of one-half the 

weight of all other components for the stress-limited design and one-fourth the weight of 

all other components for the deflection-limited design. This confirms the analytic results 

for rectangular wings and the closed-form results for tapered wings shown in Chapter 2. 

 The results in Chapter 3 suggest that analytic aerostructural solutions for static wing 

shaping may be representative for a variety of aircraft configurations and flight 

conditions. In order to assess this, and by extension, to assess whether these solutions 

may serve as aerostructural reference solutions in the development of higher-fidelity 

computational models, in Chapter 4, a series of theoretical aerostructural solutions are 

compared to results from multi- and high-fidelity static-wing-shaping studies with similar 

constraints. The results in Chapter 4 suggest that depending on the design constraints, the 
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theoretical aerostructural solutions for the optimum lift distribution show good agreement 

with high-fidelity results. The greatest agreement is seen between theoretical and high-

fidelity solutions for the stress-limited design of wings with operational constraints 

related to the wing loading. This is perhaps not very surprising, since these constraints 

were chosen specifically to represent typical aircraft operation. However, the results 

showed a surprising level of agreement across aircraft configurations and flight 

conditions, suggesting that for this case, the operational constraints may play a relatively 

important role in determining optimal wing shaping configurations that minimize drag. 

The high level of agreement in these results also suggests that using the analytic solutions 

presented in this dissertation and in other studies can provide a good reference for 

determining optimal wing shaping configurations under structural constraints. However, 

it is important to note that the results in Chapter 4 also suggest that several effects that are 

not considered in the analytic studies, including transonic effects, viscosity, and 

aeroelasticity, are important in predicting the extent to which using the optimal lift 

distribution can reduce drag or fuel consumption. 

 In Chapter 5, a simple method is presented for predicting the optimum flight-path 

trajectory and the corresponding fuel consumption for an aircraft in quasi-steady level 

cruise. This method is used to predict how both static and active wing shaping may affect 

the optimum trajectory. The effects of wing shaping are modeled through changes in the 

B3 alone, as suggested by the results in Chapter 2. The aerostructural relationships from 

Chapters 2 and 3 are used to model the effects of load alleviation from both static and 

active wing shaping. Case studies are presented for the NASA Ikhana and the NASA 

Common Research Model Aircraft. The results in Chapter 5 show that using active wing 
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shaping can reduce fuel consumption by up to 8% over the baseline design between 

around 6-7% over the optimum static wing-shaping configuration. Greater fuel savings 

are achieved by using load alleviation from wing shaping to increase the wingspan than 

by using load alleviation from wing shaping to reduce the wing-structure weight. The 

greatest fuel savings are achieved by using active morphing to dynamically change the 

lift distribution to alleviate loads at the high-load structural design condition and to 

operate with high efficiency during cruise. The results in Chapter 5 also suggest that wing 

shaping can have a substantial effect on the optimum flight-path trajectory, generally 

favoring a lower velocity profile with a high lift coefficient and high lift-to-drag ratio. 

When the altitude is allowed to vary along the trajectory, the optimum flight profile has a 

constant lift-to-drag ratio and a constant lit coefficient. Therefore, if a non-morphing 

wing is optimized to operate with maximum L/D at the design cruise lift coefficient, the 

non-morphing wing would be able to operate at the design condition for the vast majority 

of cruise. For such a wing, it is expected that morphing retrofit without any load 

alleviation would provide minimal efficiency benefits, since the morphing mechanism 

would be unable to significantly improve L/D over the non-morphing configuration at the 

design lift coefficient, and both would operate with the same configuration at the same 

condition for nearly the entirety of the cruise.  

 Taken as a whole, the results in this dissertation reveal some important insights 

related to static and active wing shaping. For example, Chapters 2, 3, and 5 all suggest 

that for many typical aircraft designs, the design space is such that load allevation from 

active or static wing shaping of wing shaping is more effectively leveraged to increase 

the wingspan of a wing, rather than reduce the weight of the wing. While this may seem 
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intuitive, aerostructural literature often tends to focus on the load alleviation benefits of 

wing shaping in terms of weight reduction alone, rather than in terms of increasing the 

wingspan. As was the case in Chapter 5, many of these studies show similarly small 

benefits from using load alleviation from wing shaping to reduce the weight. In fact, 

Results for the optimum wing-structure weight in Chapters 2 and 3 suggest that drag may 

be minimized with a wing having a lift distribution and wingspan that results in greater 

wing-structure weight than the baseline design. This optimum wing-structure weight has 

been shown to be nearly independent of all other design variables. In addition, as 

discussed in Chapters 2 and 3, the optimum lift distribution for the wing configurations 

shown here are primarily characterized by only the Fourier coefficient B3 from Eq. (1.1). 

As this coefficient represents a low-frequency symmetric harmonic in the lift distribution, 

it plays a substantial role in determining the general shape of the lift distribution. This 

suggests that substantial benefits from wing morphing may be obtained using relatively 

low-frequency and low-resolution changes in the lift distribution, reducing the need to 

produce morphing mechanisms with the capability to produce high-frequency variations 

in the lift distribution. 
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APPENDIX A 

 
Characterization of the Common Research Model Wing  

for Low-Fidelity Aerostructural Analysis 

Jeffrey D. Taylor* and Douglas F. Hunsaker† 
Utah State University, Logan, Utah 84322-4130 

A characterization of the Common Research Model (CRM) wing for low-fidelity 

aerostructural optimization is presented. The geometric and structural properties are 

based on the CAD geometries and finite-element models for the CRM wing and the 

undeflected Common Research Model Wing (uCRM). Three approximations are 

presented for the elastic axis from previously-published studies on wing boxes similar 

to the uCRM, and approximations of the flexural and torsional rigidity are presented 

from a previously-published study using the uCRM wing. The characterization 

presented in this paper is intended to be used within low-fidelity aerostructural 

analysis tools to facilitate rapid design optimization and exploratory studies using the 

CRM wing.  

Nomenclature 

ai,b = fit coefficients in the exponential fit for flexural rigidity 

ai,cg = fit coefficients in the polynomial fit for section center of gravity 

ai,ea = fit coefficients in the polynomial fit for section center of gravity 

ai,t = fit coefficients in the exponential fit for torsional rigidity 

aL,ijk = fit coefficients in the multidimensional fit for section lift coefficient 

am,ijk = fit coefficients in the multidimensional fit for section moment coefficient 

                                                           
* PhD Candidate, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Student Member 
† Assistant Professor, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Senior Member 
 
This paper was presented at the AIAA SciTech 2021 Virtual Forum as: 
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Fidelity Aerostructural Analysis,” AIAA 2021-1591, AIAA SciTech 2021 Virtual Forum, 11-15 & 19-21 
January 2021. (doi:10.2514/6.2021-1591). 
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aD,ijk = fit coefficients in the multidimensional fit for section drag coefficient 

b = wingspan 

C  = shape coefficient for the deflection-limited design 

C  = shape coefficient for the stress-limited design 

Cb = fit coefficient in the exponential fit for flexural rigidity 

CD = drag coefficient 

CL = lift coefficient 

Cm = moment coefficient 

Ct = fit coefficient in the exponential fit for torsional rigidity 

c = local wing section chord length 

cref = wing reference chord 

ct = local wing section chord length at the wing tip 

iD  = wing induced drag 

E = modulus of elasticity of the wing-structure material 

G = shear modulus of the wing-structure material 

h = spar height of the wing-structure cross-section 

I = beam section moment of inertia 

J = torsion constant of the wing-structure cross section 

M = freestream Mach number 

AR  = wing aspect ratio 

TR  = wing taper ratio 

S = wing planform area 

Sexp = exposed wing area 

Sref = wing reference area 

t = panel thickness of the wing-structure 

xc/4 = x location of the wing-section quarter chord 
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zc/4 = z location of the wing-section quarter chord 

  = air density 

ξ = normalized spanwise coordinate 

 

I.  Introduction 

THE common research model (CRM)1 is an open-source aircraft geometry that was developed in 2007-

2008 [1] through a partnership between NASA, Boeing, and other industry and government groups for the 

validation and assessment of computational-fluid-dynamics (CFD) tools [1,2]. The CRM geometry is 

representative of a typical wide-body transonic transport aircraft. NASA has compiled extensive 

experimental data for the CRM from at least four wind-tunnel tests [3-5], and several CRM variants have 

been developed for further study, including a high-lift variant (CRM-HL) [6], a natural laminar flow variant 

(CRM-NLF) [7-9], and additional variants created by the Office National d’Etudes et de Recherches 

Aerospaciales (ONERA) [10,11] in France, the Japan Aerospace Exploration Agency (JAXA) [12] in 

Japan, and the National Research Council (NRC) [13] in Canada.  

Aerostructural CRM variants that include a representative wing box have also been presented by 

Kilmmek [14], Kennedy et al. [15] (QCRM) and Brooks et al. [16] (uCRM-9). Because the CRM was 

originally developed for aerodynamic validation, the CRM wind-tunnel model wing was designed to match 

the 1-g cruise geometry. However, as pointed out by Keye et al. [17], the wind-tunnel model experiences 

significant aeroelastic deflection at the cruise condition, which can cause discrepancies between rigid-wing 

computational results and wind-tunnel data. The aerostructural models presented by Klimmek [14] and 

Brooks et al. [16] were created to address this concern, and to facilitate analysis of the CRM at multiple 

flight conditions, including off-design conditions. 

In fulfillment of its original purpose, the CRM and its variants have been used in hundreds of high-

fidelity CFD studies throughout government, industry, and academia. For example, the CRM was the 

subject for AIAA CFD drag prediction workshops IV-VI [18-23]. The CRM-HL configuration has been 

                                                           
1 https://commonresearchmodel.larc.nasa.gov/ 
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used in AIAA high-lift prediction workshops III and IV and is currently the subject of the AIAA stability 

and control prediction workshop. The uCRM has been used in several aerostructural and multidisciplinary 

design optimization studies [16,24]. In addition to benchmarking, the CRM and its variants have also been 

used as a baseline configuration in studies regarding aircraft icing [25,26], flutter [27], and morphing-wing 

technologies [28].  

Although the CRM was originally intended for validation of high-fidelity CFD tools, it can also provide 

an excellent benchmark case for the validation of low- to mid-fidelity aerodynamic and aerostructural tools. 

Low- and mid-fidelity methods also require less computation time than higher-fidelity methods, which 

makes them ideal for exploratory and proof-of-concept studies. In many cases, these low- and mid-fidelity 

methods have been shown to be in good agreement with grid-resolved CFD [29-36]. However, to date, 

there have been very few low- to mid-fidelity studies that use the CRM geometry. This may be, in part, 

because the publicly-available CRM geometry presents some challenges for many low-fidelity tools. The 

most apparent challenge is that the official CRM geometry is presented only in initial graphics exchange 

specification (IGES) and CAD format. The uCRM wing and wing-box geometries are also available in 

CAD format2. In each case, only the outer mold line of the aircraft is given. This is convenient for CFD 

meshing, but it is not useful for many low-fidelity tools.  

It appears that Vassberg et al. [1] give the most detailed description of the full-scale CRM model in 

their inaugural CRM publication. In this publication, Vassberg et al. [1] present data for the wing leading- 

and trailing-edge coordinates, twist, chord, thickness-to-chord ratio, max camber, and camber slope at 21 

spanwise sections. However, neither the airfoil geometries nor the airfoil performance data is given. This 

creates a challenge for low-fidelity tools that require 2-D airfoil data for aerodynamic analysis, such as 

tools based on lifting-line theory [34,37-38]. Moreover, the locus of aerodynamic centers, the quarter-

chord-sweep distribution, and the dihedral distribution must be inferred or extracted from the CAD 

geometry. The same is true for the uCRM geometry. The process of extracting the geometric details from 

the CAD models and other resources often requires significant time and effort. 

                                                           
2 http://mdolab.engin.umich.edu/ucrm 
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The purpose of this paper is to present a detailed overview of the CRM and uCRM-9 wing geometries 

for use in low-fidelity aerodynamic and aerostructural analyses. In the following sections, we describe the 

geometry of the CRM and uCRM wings and the uCRM wing box, extracted from publicly-available CAD 

models, and we present an example weight breakdown for the uCRM-9 model for use in aerostructural 

analyses.  

 

II.  Wing Geometry 

The coordinate system used in this paper is shown in Fig. 1. The axes are aligned with the conventional 

body-fixed axes, with the origin at the quarter-chord location of the root airfoil section, as projected to the 

fuselage centerline. The x-axis is aligned with the horizontal and points out the nose of the aircraft, the y-

axis is aligned with the horizontal and points out the right wing, and the z-axis is aligned vertically and 

points straight down out the bottom of the aircraft, as shown.  

The data in this section were extracted from the CAD models for the CRM and uCRM wings using 

SolidWorks. The CRM wing has a wingspan of b = 58.76 m and an aspect ratio of RA = 9. The total wing 

area is S = 412.7 m2, the reference area is Sref = 383.74 m2, and the exposed wing area is Sexp = 337.05 m2. 

The wing is double tapered with a break at 37% semispan and a taper ratio of RT = 0.533 inboard of the 

break and RT = 0.376 outboard of the break. The reference chord is cref = 7.01 m. The CRM wing is 

designed for cruise at M = 0.85 at an altitude of 37000 ft (11275 m) and a lift coefficient of CL = 0.5. For 

standard atmospheric conditions with no temperature offset, this gives a Reynolds number near 

7103.4Re  . Wing and flight reference values are summarized in Table 1. 

The uCRM wing has the same wingspan and planform shape as the CRM but is designed to represent 

the undeflected, 0g loading case for the CRM. The uCRM wing also includes a wing box that was designed 

through a reverse-engineering process and produces the original CRM shape when loaded at cruise. A top-

down view of the CRM/uCRM planform is shown in Fig. 2.  
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Fig. 1  Coordinate system for the CRM and uCRM wing. 

 

Table 1  Wing and flight reference values for the CRM/uCRM. 

wingspan, m 58.76 
aspect ratio 9.00 
total wing area, m2 412.70 
reference area, m2 383.74 
exposed wing area, m2 337.05 
reference chord, m 7.01 
altitude, m 11275.19 
Mach number 0.85 
lift coefficient  0.50 
Reynolds number 4.33˟107 

 

 
Fig. 2  Planform view of the CRM/uCRM wing geometry. 
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A.  Chord distribution 

In Ref. [1], Vassberg et al. give the wing chord distribution, and other wing geometry parameters, at 21 

spanwise locations beginning at the wing root and ending at the wing tip. For consistency, the data in this 

section are shown at the same 21 spanwise locations. The chord was verified from the uCRM CAD 

geometry by slicing the wing at each spanwise location of interest on a plane parallel to the x-axis and 

perpendicular to the projection of a spline fit through the locus of section quarter-chord points in the y-z 

plane. Accounting for the wing twist, the chord was measured from the local airfoil cross-section leading 

edge to trailing edge. The resulting chord distribution matched the data given by Vassberg et al. [1] for the 

CRM. The chord distribution is shown in Fig. 3, and values for the local chord at the 21 locations given by 

Vassberg et al. [1] are given in Table A1 in the appendix. 

 

 
Fig. 3  Chord distribution for the CRM/uCRM wing. 

 

B.  Quarter-Chord Sweep 

The spanwise variation in quarter-chord sweep for the uCRM and CRM wings is shown in Fig. 4. The 

sweep angle was extracted from the CAD model by measuring the angle in the x-y plane between the y-axis 

and a line tangent to the projection in the x-y plane of the locus of section quarter-chord points at each of 

the 21 spanwise locations of interest. The results in Fig. 4 show that outboard of the break (2y/b = 0.37), the 

sweep angle is fairly constant at around 35 degrees. Note that the sweep distribution for the CRM at cruise 

and uCRM at 0g have slight differences to account for the effects of bending about the z-axis. However, 
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these differences are small. Values for the sweep distributions of the CRM and uCRM are given in  

Table A1 in the appendix.  

 

 
Fig. 4  Spanwise variation in quarter-chord sweep angle for the CRM and uCRM wings. 

 

C.  Quarter-Chord dihedral 

The dihedral angle was obtained in a manner similar to that used to obtain the quarter-chord sweep 

angle. However, the dihedral angle at each spanwise section was measured between the y-axis and line in 

the y-z plane tangent to the projection of the locus of section quarter-chord points in the same plane. The 

resulting dihedral distributions for the CRM and uCRM wings are shown in Fig. 5. Here, we see that the 

uCRM dihedral distribution at 0g differs significantly from the CRM dihedral distribution at cruise due to 

the aeroelastic effects of bending about the x-axis. In fact, comparing the deflected 1g CRM geometry to 

the uCRM at 0g, bending in cruise results in a wingtip deflection of about 2.56 m, or 8.7% semispan. 

Values for the dihedral distributions for the CRM and uCRM are given in Table A1 in the appendix.  

 

 
Fig. 5  Spanwise variation in quarter-chord dihedral angle for the CRM and uCRM wings. 
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D.  Wing twist 

Figure 6 shows the wing-twist distribution for the CRM and uCRM wings. The wing twist was obtained 

by measuring the angle between the x-axis and the chord of the local airfoil section, which was obtained as 

described in Section II.A. Figure 5 shows that the twist distribution for the uCRM varies significantly from 

the CRM twist distribution to account for the effects of aeroelastic twist. The twist distributions for the 

CRM and uCRM wings are given in Table A1 in the appendix. 

 

 
Fig. 6  Wing twist distribution for the CRM and uCRM wings. 
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visualization of the airfoils, Fig. 8 shows a schematic of the CRM/uCRM airfoils with zero twist, aligned at 
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the quarter chord location. The coordinates of the airfoil surfaces are available from the Utah State 

University library repository.3 

With the airfoil geometric profiles known, the section properties can be obtained using any airfoil 

analysis tool. In this paper, transonic data for lift coefficient, moment coefficient, and drag coefficient were 

obtained using the method given by Fujiwara et al. [39], which couples the transonic small-disturbance 

theory code TSFOIL with an integral boundary-layer method. Data were obtained for a series of angles of 

attack, Reynolds numbers, and Mach numbers. 

 

 
 

Fig. 7  Airfoil stacks for the CRM wing (top) and the uCRM wing (bottom). 

 

                                                           
3 https://digitalcommons.usu.edu/all_datasets/125 (doi: 10.26078/8nv8-yj03) 
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Fig. 8  Schematic of the CRM/uCRM airfoils with zero twist, aligned at the quarter-chord location. 

 

Full airfoil data is available to the reader through the Utah State University library repository.4 The 

method shown by Ullah et al. [40] was used to obtain a series of multi-dimensional curve fits to data for 

airfoil lift coefficient, drag coefficient, and moment coefficient as a function of angle of attack, Reynolds 

number, and Mach number. For simplicity, in this paper, we use multidimensional linear fits for the lift 

coefficient and moment coefficient and multidimensional parabolic fits for the drag coefficient, i.e.,  
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where ijkLa , , ijkma , , are ijkDa ,  are arrays of fit coefficients, which are given in Tables A2-A6 in the appendix 

for all of the CRM/uCRM airfoils. For reference, the data and fits for the lift coefficient, moment 

coefficient, and drag coefficient, as a function of angle of attack, of the break airfoil (2y/b = 0.37) at a 

Reynolds number of 71022.3Re   and a Mach number of M = 0.84 are shown in Fig. 9.  

To give a more intuitive visualization of the spanwise variation in airfoil properties for the CRM and 

uCRM wings, the spanwise change in the lift slope ,
~

LC  and the coefficient 0

~
LC ; the moment parameters 

,
~

mC  and 
0

~
mC ; and the drag parameters 0

~
DC , LDC

~
, and 2

~
L

DC , are shown in Fig. 10. Note that the parameters 

,
~

LC  and 0

~
LC come from the linear approximation for lift as a function of angle of attack, the parameters 

,
~

mC  and 
0

~
mC  come from the linear approximation for the moment coefficient as a function of angle of 

attack, whereas coefficients 0

~
DC , LDC

~
, and 2

~
L

DC  come from the parabolic approximation for the drag 

                                                           
4 https://digitalcommons.usu.edu/all_datasets/125 (doi: 10.26078/8nv8-yj03) 
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coefficient as a function of α. Although we have chosen to use linear and low-order fits for the airfoil data 

in this paper, the methods shown in this subsection can be generalized to obtain higher-order polynomial 

fits for any of the airfoil data. 

 

  (a)                                                                                             (b) 
Fig. 9  Airfoil data and polynomial fits for (a) the lift and moment coefficients and (b) the drag 
coefficient for the break airfoil located at 2y/b = 0.37 with a Reynolds number of 3.22˟107 and a Mach 
number of 0.84 

 

 

 

 

 

 

 

 

 

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

-16 -12 -8 -4 0 4 8 12 16

angle of attack, deg

LC
~

mC
~

, TSFOIL/IBL
, TSFOIL/IBL

fit, Eqs. (1)-(2)

LC
~

mC
~

angle of attack, deg

DC
~

TSFOIL/IBL
fit, Eq. (3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-16 -12 -8 -4 0 4 8 12 16

226



     

 

                            (a)                                                                                   (b) 

(c) 

Fig. 10  Section airfoil properties as a function of spanwise location; (a) parameters for the linear 
approximation of the lift coefficient with respect to angle of attack, (b) parameters for the linear 
approximation of the moment coefficient with respect to angle of attack, and (c) parameters for the 
parabolic approximation of the drag coefficient with respect to angle of attack. 

 

III.  Wing Box Geometry 

The uCRM-9 wing box was designed based on cutaway drawings for the Boeing 777-200ER wing 

structure and tailored to conform to the CRM 1-g outer mold line [16]. The jig twist for the uCRM 

geometry was then obtained using an inverse-engineering process, as described by Brooks et al. [16]. The 
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wing box running length. The data in this section is reported at each of these rib locations. Figure 11 shows 
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approximations for the wing flexural and torsional rigidity are given in the following subsections. Note that 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

7.9
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

0 0.2 0.4 0.6 0.8 1
spanwise location, 2y/b

,
~

LC

,
~

LC

0

~
LC

0

~
LC

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

-2.0

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

0 0.2 0.4 0.6 0.8 1

spanwise location, 2y/b

,
~

mC

,
~

mC

0

~
mC

0

~
mC

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

-0.1

0.0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

spanwise location, 2y/b

1

0

~

~

D

D

C

C
2

~
DC

0

~
DC

2

~
DC

1

~
DC

227



     

because the ribs are oriented perpendicular to the wing running length, the y data for the front spar, rear 

spar, center of gravity, and elastic axis vary slightly in the swept portion of the wingbox. The flexural and 

torsional rigidity are reported at the y coordinates of the elastic axis. Values for key wing box geometric 

parameters are shown in Tables A7 and A8 in the appendix.  

 

 
Fig. 11  Planform view of the uCRM-9 wing box as extracted from the CAD geometry. 

 

A.  Wing Box Dimensions 
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edge spar also has a minor kink at the break. The normalized chordwise location of the leading and trailing-

edge spars are shown in Fig. 12 as a function of span.  
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uCRM-9, given by the University of Michigan.5 The thicknesses for the front and rear spars, upper and 

lower skins, and ribs are shown in Figs. 14, 15, and 16, respectively. Note that due to the change in wing 

box sweep at 10% semispan, there is no corresponding rear-spar section for ribs 4-6, and rib 4 has four 

distinct sections, labeled in Fig. 16, in order from front spar to rear spar, as a, b, c, and d. 

 

 
Fig. 12  Normalized chordwise location (measured from the wing leading edge) of the leading- and 
trailing-edge spars of the uCRM-9 wingbox, as a function of span. 

 

 
Fig. 13  Normalized spar-height distribution for the leading- and trailing-edge spars of the uCRM-9 
wing box. 

 

                                                           
5 http://mdolab.engin.umich.edu/ucrm 
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Fig. 14  Thicknesses of the leading- and trailing-edge spars for the uCRM-9 wing box. 

 

 
Fig. 15  Thicknesses of the upper and lower skins for the uCRM-9 wing box. 

 

 
Fig. 16  Thicknesses of the ribs for the uCRM-9 wing box. 
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location of interest. The resulting locus of centers of gravity is shown in Fig. 17, normalized by the local 

chord. For convenience, the normalized data were fit to a polynomial. Because the wing-box geometry is 

discontinuous at the wing-body junction (10% semispan) and the break (37% semispan), the fits were 

performed independently on three sections spanning 0-10% semispan, 10-37% semispan, and 37-100% 

semispan, respectively. The result is a piecewise function of the form 
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where ξ = 2y/b is the normalized spanwise coordinate, and ai,cg, bi,cg, and ci,cg are the fit coefficients for the 

center of gravity, which are given in Table 2. The fits are shown with the data in Fig. 17. 

For most aerostructural studies, the elastic axis is obtained from FEM models of the wingbox. 

However, FEM analysis is beyond the scope of this paper. Instead, we show here results from previously-

published data for the elastic axis of wings similar to the uCRM-9.  The three studies considered here are 

from Chauhan and Martins [24], Cramer and Nguyen [41], and Stodieck et al. [42]. Chauhan and  

Martins [24] approximated the elastic axis of the uCRM-9 wingbox in using the weighted-average process 

described in the previous paragraph. The result is identical to the center of gravity estimate shown in  

Fig. 17. Cramer and Nguyen [41] approximated the elastic axis for an elastic wind-tunnel model as a 

straight line with a sweep angle of 31.5 degrees beginning at about 40% of the chord at the wing-body 

junction. The elastic axis presented by Stodieck et al. [42] was obtained from computational models of an 

aluminum wing box, designed by the authors for the CRM. The elastic axis from each of these studies is 

shown in Fig. 18. 

Averaging the data from each of these studies gives the data points denoted by black circles in Fig. 18. 

Using the same wing partitions as shown in Eq. (4), the normalized average elastic-axis data were fit to a 

piecewise function of the form  
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Here, the coefficients ai,ea, bi,ea, and ci,ea are fit coefficients for the elastic axis, and are given in Table 2. The 

resulting fit is shown alongside the data in Fig. 18.  

 

 
Fig. 17  Approximate normalized chordwise location (measured from the wing leading edge) of the 
center of gravity for the uCRM-9 wingbox.  

 

          (a)                                                                                     (b) 

Fig. 18  Approximate locations of the uCRM-9 elastic axis in (a) normalized chordwise coordinates 
(measured from the wing leading edge) and (b) dimensional coordinates. 

 

 

 

 

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0 0.2 0.4 0.6 0.8 1
spanwise location, 2y/b

ce
nt

er
 o

f 
gr

av
it

y,
 x

/c

section data
fit, Eq. (4)

-

-

-

-

-

-

-

spanwise location, 2y/b

lo
ca

tio
n 

of
 e

la
st

ic
 a

xi
s,

 x
/c

0.25

0.30

0.35

0.40

0.45

0.50

0.55
0 0.2 0.4 0.6 0.8 1

Chauhan and Martins [24]
Cramer and Nguyen [41]
Stodieck et al. [42]
average
fit, Eq. (5)

-

-

-

-

-

-

-

0

2

4

6

8

10

12

14

16

18

20
0 5 10 15 20 25

y location, m

x
lo

ca
tio

n 
of

 e
la

st
ic

 a
xi

s,
 m

Chauhan and Martins [24]
Cramer and Nguyen [41]
Stodieck et al. [42]
average
fit, Eq. (5)

-

-

-

-

-

-

-

-

-

-

232



     
Table 2  Fit coefficients for the piecewise approximations of the locus of normlized centers of gravity  
and elastic axis (measured from the wing leading edge) of the uCRM-9 wing box.  

center of gravity, xcg/c(ξ)  elastic axis, xea/c(ξ) 
a0,cg 0.4206 a0,ea 0.4516 
a1,cg -0.6640 a1,ea -0.8940 
b0,cg 0.2928 b0,ea 0.7584 
b1,cg 1.4144 b1,ea -8.1124 
b2,cg -5.1770 b2,ea 56.8562 
b3,cg 7.4934 b3,ea -160.9238 
  b4,ea 162.2804 
c0,cg 0.4591 c0,ea 0.4552 
c1,cg 0.1335 c1,ea -0.0771 
c2,cg -0.2283 c2,ea 0.0963 

 

C.  Flexural and Torsional Rigidity 

The approximate flexural and torsional rigidity for the uCRM model were obtained from data presented 

by Fujiwara et al. [28]. In their study, Fujiwara et al. [28] presented the flexural and torsional rigidity 

required to produce the CRM 1-g geometry from their version of the uCRM model. The data shown in  

Fig. 19 were reproduced from this study. As was done for the center of gravity and elastic axis, the flexural 

and torsional rigidity were fit to a function. However, here, the fits were performed on the data within the 

range 0.11.0  . Below ξ = 0.1 the data were linearly interpolated to account for the dip shown in  

Fig. 19. The results are expressions for the flexural and torsional rigidity of the form 

 bb aa
beCEI ,1,0   (6) 

 tt aa
teCGJ ,1,0   (7) 

where Cb, and a0,b  and a1,b are fit coefficients for the flexural rigidity, and Ct, and a0,t and a1,t are fit 

coefficients for the torsional rigidity. Values for each of these coefficients are given in Table 3, and the fits 

are shown alongside the respective data in Fig. 19. 
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         (a)                                                                                     (b) 

Fig. 19  Flexural Rigidity and Torsional Rigidity as a function of span for the uCRM-9 wing box. 
Reproduced from Fujiwara et al. [28] 

 

Table 3  Fit coefficients for the approximate expressions for the flexural and torsional rigidity for the  
uCRM-9 wing structure.  

Flexural Rigidity, EI(ξ)  Torsional Rigidity, GJ(ξ) 
Cb 100.3820 Ct 104.9792 
a0,b 18.8684 a0,t 18.3235 
a1,b 7.3045 a1,t 6.3429 

 

IV.  Weight Distribution 

Key weight characteristics for the uCRM-9 can be obtained from data presented by Brooks et al. [16] 

and from publicly-available data for the Boeing 777-200ER [43], upon which the uCRM geometry is 

partially based. A summary of the weight breakdown is given in Table 4. Note that in this paper, we 

assume that the CRM carries one engine weighing 7,893 kg on each wing. The cruise weight is found from 

the nominal flight condition described at the beginning of Section II. Assuming that the CRM operates in 

steady level flight with 50% fuel at the nominal flight condition, the CRM weight with 50% fuel is found 

from the lift coefficient to be 220,240 kg. The weight with 100% fuel is then found by adding half of the 

maximum usable fuel weight (137,460 kg) for the Boeing 777-200ER [43] to give 288,970 kg, which is 

below the maximum takeoff weight (MTOW) of 297,550 kg [43]. The “net” weight in Table 4 is the total 

CRM weight with 100% fuel less the wing-structure weight, which is approximated using the method 

described below. The root weight is the net weight minus the total fuel load and the weight of both engines.  
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Table 4  Weight characteristics for the uCRM configuration. 

Maximum Takeoff Weight (MTOW), kg 297,550 
Maximum Zero-Fuel Weight (MZFW), kg 195,040 
Operational Empty Weight (OEW), kg 138,100 
Cruise Weight (50% Fuel), kg 220,240 
Total Weight (100% Fuel), kg 288,970 
Design Payload, kg 34,000 
Usable Fuel Weight, kg 137,460 
Root Weight, kg 105,806 
Net Weight (100% Fuel), kg 259,052 
Engine Weight, kg 7,893 
Wing-Structure Weight, kg 29,895 

 

For the low-fidelity CRM model, the wing-structure weight distribution was extracted from the  

uCRM-9 wing box finite element model. The material properties were chosen to be typical of 7000-series 

aluminum, as shown in Table 5. The resulting wing-structure weight distribution is shown in Fig. 20, 

without the weight of the ribs. Using the volume from the uCRM-9 wing box finite element model, 

including the ribs, and the density shown in Table 5, the total wing-structure weight is 23,916 kg, which 

matches the value found by Brooks et al. [16]. As suggested by Brooks et al. [16], we obtain the final wing-

structure weight by multiplying this value by 1.25 to account for the weight of fasteners, overlaps, and 

other unmodeled structural components. The result is a final wing-structure weight of 29,895 kg, as 

reported in Table 4.  

 The net weight distribution is defined as the distribution of all non-structural components carried by 

the wing. Here, we assume that the majority of net weight consists of the fuel weight and the weight of the 

engines, which are mounted at about 32.7% of the semispan [43]. The approximate fuel model for the low-

fidelity uCRM is based on publicly-available data for the Boeing 777-200ER [43,44]. As seen in Table 4, 

the maximum usable fuel weight is 137,460 kg. Based on fuel-tank layout diagrams for the Boeing  

777-200ER [44], we assume that 57.7% of the fuel is carried in a center tank and 42.3% is carried in wing 

tanks. Assuming that the fuel density is 803.1 kg/m3, and assuming that the fuel tanks fill the volume of the 

wing box, we find that in order to carry their respective portions of the fuel weight, the center tank must 
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extend to about 21% of the wing semispan, and the wing tank must extend from 21% semispan to 76% 

semispan. The fuel-tank layout is shown in Fig. 21. Over the course of a flight, fuel is first burned from the 

center tank, after which, fuel is burned from the wing tanks. Thus, as the fuel burns, the fuel-weight 

distribution changes, as shown in Fig. 22. Note that Fig. 22 also includes the weight of the engine in the 

net-weight distribution. The thrust-specific fuel consumption is estimated to be cT = 0.054 kg/(N h). 

 

Table 5  Material properties used for the low-fidelity CRM wing-structure weight estimation. 

Density, kg/m3 2780 
Specific Weight,  kg/(m2s2) 27,272 
Modulus of Elasticity, Pa 101031.7   
Yield Strength, Pa 8102.4   
Poisson Ratio 0.33 
Shear Modulus, Pa 101075.2   

 

 
Fig. 20  Approximate wing-structure weight distribution for the CRM wing. 

 

 
Fig. 21  Schematic of an example fuel-tank layout for the CRM. 
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Fig. 22  Example net-weight distributions for the CRM. 

 

V.  Conclusion 

The CRM was designed as a benchmark geometry for high-fidelity CFD methods, and it and its variants 

have been used in hundreds of high-fidelity studies throughout government, academia, and industry. The 

uCRM-9 geometry is an aerostructural variant of the CRM that includes a wing box model and an outer 

mold line representative of the 0-g geometry of the CRM.  Although both the CRM and uCRM-9 are 

tailored for high-fidelity studies, they can also be used with low-fidelity models as a benchmark 

configuration for exploratory and proof-of-concept studies that require a high number of computations. 

However, most low fidelity methods require parameterized data of the geometry to be used. Extracting 

these data is often difficult and time consuming. Therefore, in this paper, we have presented a 

characterization of the CRM/uCRM-9 wing and the uCRM-9 wing box that includes geometric and weight 

data that can be used with low-fidelity aerostructural analysis tools.  

The wing outer mold line geometry was extracted from CAD models of the CRM and uCRM-9 wings. 

The chord distribution, sweep distribution, dihedral distribution, and twist distribution are shown in  

Figs. 3-6. A summary of the wing properties and geometric distributions is given in Table A1 in the 

appendix. The airfoil profiles were also extracted from the CAD geometries and are shown in Figs. 7 and 8. 

Transonic data for the lift coefficient, moment coefficient, and drag coefficient for each airfoil were 

obtained using the transonic small-disturbance theory code TSFOIL in conjunction with an integral 

boundary layer method, as described in Section II.E. The data were obtained over a range of angles of 

attack, Reynolds numbers, and Mach numbers. Fit coefficients for the multidimensional linear fits of lift 
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coefficient and moment coefficient with respect to each of these variables are shown in Tables A2 and A3. 

Fit coefficients for the multidimensional parabolic fits of drag coefficient with respect to the same variables 

are given in Tables A4-A6. 

The wing box geometry was extracted from CAD and finite-element models of the uCRM-9 wing box. 

A geometric description of the wing box, including its location within the wing and dimensions and 

thicknesses of the various wing box components, is given in Section III.A. The spar locations, spar heights, 

and wing box component thicknesses are given in Fig. 12, Fig. 13, and Figs. 14-16, respectively. The locus 

of aerodynamic centers was also obtained from the finite element model of the uCRM-9 wing box and is 

shown in Fig. 17. Obtaining the elastic axis for the uCRM-9 wing is beyond the scope of this study. 

Therefore, three approximations for the elastic axis from previously-published studies on wing similar to 

the uCRM-9 are shown in Fig. 18, along with the average of the three approximations. Similarly, 

approximations for the flexural and torsional rigidity were obtained from previously-published data, as 

shown in Fig. 19. 

Section IV shows the weight breakdown of the uCRM-9 wing, based on available data on the Boeing 

777-200ER and data from the University of Michigan. The structural weight distribution, without the ribs, 

is shown in Fig. 20. An example fuel model is also presented, based, in part, on available fuel data for the 

777-200ER.  The resulting net-weight distribution resulting from this model is shown in Fig. 22. It is 

anticipated that the low-fidelity characterization of the CRM/uCRM wing presented in this paper will be 

useful for low-fidelity aerostructural analysis and optimization of the CRM configuration.  
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Appendix 

Table A1  Planform, twist, dihedral, and sweep information for the CRM and uCRM wing geometries. 

  CRM uCRM 
 

ξ chord, m twist, deg xc/4, m zc/4, m dihedral,  
deg 

sweep,  
deg 

twist, deg xc/4, m zc/4, m dihedral,  
deg 

sweep,  
deg 

0.00 13.6161 6.7166 0.0000 0.0000 0.0000 29.7522 6.6338 0.0000 0.0000 0.0000 29.7522 
0.10 11.8976 4.4402 1.7486 -0.2084 3.6709 29.9501 4.4145 1.7482 -0.2006 3.6709 30.0793 
0.15 11.0384 3.6063 2.6197 -0.2934 2.4339 31.1690 3.7304 2.6188 -0.2785 2.2160 31.0457 
0.20 10.1790 3.0131 3.5216 -0.3466 2.0360 31.6678 3.3105 3.5203 -0.3199 1.4119 31.6328 
0.25 9.3197 2.2419 4.4283 -0.4032 2.2941 31.5728 2.7349 4.4268 -0.3580 1.4162 31.4833 
0.30 8.4604 1.5252 5.3324 -0.4628 2.3945 31.7263 2.2480 5.3310 -0.3894 1.0428 31.6504 
0.35 7.6010 0.9379 6.2367 -0.5254 2.4187 31.0666 1.9361 6.2353 -0.4106 0.5650 30.9032 
0.37 7.2573 0.7635 6.5982 -0.5504 2.5002 32.9494 1.8787 6.5968 -0.4152 0.3120 32.8045 
0.40 7.0416 0.4285 7.2154 -0.5923 3.0022 35.6796 1.7370 7.2141 -0.4186 0.2433 35.4894 
0.45 6.6821 -0.2621 8.2440 -0.6796 3.6606 34.8209 1.3592 8.2430 -0.4263 0.1905 34.6167 
0.50 6.3226 -0.6782 9.2724 -0.7791 4.1806 35.0526 1.2762 9.2716 -0.4268 -0.0358 34.8329 
0.55 5.9631 -0.9436 10.3009 -0.8954 4.8250 34.9914 1.3784 10.3001 -0.4249 -0.1792 34.7655 
0.60 5.6035 -1.2067 11.3293 -1.0261 5.3523 35.0048 1.5129 11.3286 -0.4154 -0.5727 34.7735 
0.65 5.2440 -1.4526 12.3578 -1.1722 6.0639 35.0039 1.6816 12.3570 -0.3970 -0.7911 34.7685 
0.70 4.8845 -1.6350 13.3863 -1.3388 6.8534 35.0048 1.9304 13.3855 -0.3753 -0.9495 34.7653 
0.75 4.5250 -1.8158 14.4147 -1.5250 7.6114 34.9974 2.1837 14.4139 -0.3474 -1.2104 34.7518 
0.80 4.1654 -2.0301 15.4429 -1.7318 8.4165 34.9986 2.3788 15.4421 -0.3141 -1.3639 34.7448 
0.85 3.8059 -2.2772 16.4713 -1.9586 9.1030 35.0031 2.4860 16.4706 -0.2774 -1.5117 34.7463 
0.90 3.4464 -2.5773 17.4997 -2.2021 9.7474 35.0034 2.4437 17.4992 -0.2377 -1.5156 34.7378 
0.95 3.0869 -3.1248 18.5280 -2.4608 10.1231 35.0020 2.0515 18.5281 -0.1998 -1.4942 34.7657 
1.00 2.7274 -3.7500 19.5560 -2.7207 9.8390 34.9949 1.4465 19.5567 -0.1578 -1.8418 34.8792 
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Table A2  Multidimensional linear fit coefficients for the lift coefficient produced by the airfoil sections 
of the CRM/uCRM wing as a function of angle of attack, Mach number, and Reynolds number. 

 aL,000 aL,001 aL,010 ˟107 aL,011 ˟107 aL,100 aL,101 aL,110 aL,111 ˟107 

ξ = 0.0 -0.5682 0.6200 0.0000 0.0000 17.9513 -11.5657 0.0000 -0.3167
ξ = 0.1 -0.5122 0.5225 0.0000 0.0000 16.6136 -9.6691 0.0000 -0.5619
ξ = 0.15 -0.2953 0.3401 0.0000 0.0000 15.8984 -8.5657 0.0000 -0.5623
ξ = 0.2 -0.1624 0.2535 0.0000 0.0000 14.5488 -6.8159 0.0000 -0.6538
ξ = 0.25 -0.0191 0.1564 0.0000 0.0000 14.2191 -6.4702 0.0000 -0.6588
ξ = 0.3 0.1917 0.0405 0.0000 0.0000 13.9930 -6.2138 0.0000 -0.8402
ξ = 0.35 0.3995 -0.1062 0.0000 0.0000 14.6710 -7.2700 0.0000 -1.0286
ξ = 0.37 0.4055 -0.0629 0.0000 0.0000 13.5411 -5.6631 0.0000 -1.1746
ξ = 0.4 0.3910 0.0604 0.0000 0.0000 11.6430 -2.9371 0.0000 -1.1959
ξ = 0.45 0.4536 0.0346 0.0000 0.0000 12.4849 -4.2587 0.0000 -1.3269
ξ = 0.5 0.5343 -0.0163 0.0000 0.0000 12.3558 -4.1372 0.0000 -1.3607
ξ = 0.55 0.6403 -0.1218 0.0000 0.0000 12.6962 -4.5681 0.0000 -1.5118
ξ = 0.6 0.7591 -0.4458 0.0000 0.0000 14.1389 -6.0314 0.0000 -0.3449
ξ = 0.65 0.6512 -0.0900 0.0000 -0.1144 12.8697 -4.8439 0.0000 -1.7401
ξ = 0.7 0.6401 -0.0513 0.1078 -0.1431 12.9864 -5.0611 0.0000 -1.9190
ξ = 0.75 0.6826 -0.0936 0.1275 -0.1692 13.0417 -5.1567 0.0000 -1.9620
ξ = 0.8 0.6481 -0.0800 0.1199 -0.1592 12.8176 -4.7793 0.0000 -2.1277
ξ = 0.85 0.5828 -0.0685 0.0000 -0.1312 12.1771 -3.9081 0.0000 -2.1490
ξ = 0.9 0.4479 0.0543 0.1226 -0.1573 11.8963 -3.4408 0.0000 -2.4484
ξ = 0.95 0.3823 -0.0065 0.1020 -0.1213 11.5509 -2.8649 0.0000 -3.3893
ξ = 1.0 -0.1634 0.0953 0.0000 0.0000 9.8103 -0.3978 0.0000 -2.2602

 

Table A3  Multidimensional linear fit coefficients for the moment coefficient produced by the airfoil 
sections of the CRM/uCRM wing as a function of angle of attack, Mach number, and Reynolds 
number. 

 am,000 am,001 am,010 am,011 am,100 am,101 am,110 ˟107 am,111 ˟107 

ξ = 0.0 0.0812 -0.0508 0.0000 0.0000 0.9662 -3.4029 -0.1503 0.2010
ξ = 0.1 0.0691 -0.0270 0.0000 0.0000 1.4133 -3.9689 -0.2155 0.2819
ξ = 0.15 0.0429 -0.0384 0.0000 0.0000 1.6716 -4.3351 -0.1975 0.2640
ξ = 0.2 0.0366 -0.0686 0.0000 0.0000 2.0827 -4.8171 -0.2060 0.2765
ξ = 0.25 0.0373 -0.1051 0.0000 0.0000 2.1343 -4.7903 -0.1977 0.2658
ξ = 0.3 0.0358 -0.1704 0.0000 0.0000 2.1116 -4.7034 -0.2533 0.3344
ξ = 0.35 0.0034 -0.1788 0.0000 0.0000 1.7029 -4.0720 -0.3182 0.4160
ξ = 0.37 0.0257 -0.2308 0.0000 0.0000 2.0679 -4.6199 -0.3125 0.4192
ξ = 0.4 0.0489 -0.3027 0.0000 0.0000 2.4463 -5.1866 -0.2526 0.3487
ξ = 0.45 0.0447 -0.3240 0.0000 0.0000 2.1015 -4.6356 -0.2864 0.3929
ξ = 0.5 0.0347 -0.3319 0.0000 0.0000 2.1297 -4.6489 -0.3022 0.4155
ξ = 0.55 0.0171 -0.3219 0.0000 0.0000 2.0244 -4.5160 -0.3584 0.4890
ξ = 0.6 -0.0805 -0.1333 0.0000 0.0000 1.8123 -4.4083 0.0000 0.1380
ξ = 0.65 0.0200 -0.3453 0.0000 0.0000 1.8812 -4.3116 -0.3905 0.5359
ξ = 0.7 0.0311 -0.3680 0.0000 0.0000 1.8485 -4.2271 -0.4750 0.6417
ξ = 0.75 0.0197 -0.3589 0.0000 0.0000 1.7854 -4.1353 -0.4755 0.6466
ξ = 0.8 0.0153 -0.3430 0.0000 0.0000 1.8318 -4.2358 -0.4454 0.6232
ξ = 0.85 0.0151 -0.3151 0.0000 0.0000 2.1351 -4.6335 -0.4886 0.6714
ξ = 0.9 0.0430 -0.3330 0.0000 0.0000 2.1912 -4.7459 -0.4881 0.6931
ξ = 0.95 0.0200 -0.2460 0.0000 0.0000 2.4578 -5.1924 -0.6767 0.9233
ξ = 1.0 -0.0162 0.0536 0.0000 0.0000 2.9536 -5.9138 -0.3814 0.5391
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Table A4  Fit coefficients for the α0 terms in the multidimensional parabolic fit for the drag coefficient 
produced by the airfoil sections of the CRM/uCRM wing as a function of angle of attack, Mach 
number, and Reynolds number. 

 aD,000 aD,001 aD,002 aD,010 ˟107 aD,011 ˟107 aD,012 ˟107 aD,020 aD,021 aD,022
 

ξ = 0.0 -0.3249 0.4505 0.1282 0.1428 -0.3937 0.2596 0.0000 0.0000 0.0000 
ξ = 0.1 -0.1666 0.0736 0.3187 0.1303 -0.3663 0.2444 0.0000 0.0000 0.0000 
ξ = 0.15 -0.0016 -0.3656 0.5776 0.1648 -0.4587 0.3072 0.0000 0.0000 0.0000 
ξ = 0.2 0.0985 -0.6075 0.7063 0.1787 -0.4872 0.3196 0.0000 0.0000 0.0000 
ξ = 0.25 0.1386 -0.6857 0.7275 0.1889 -0.5273 0.3541 0.0000 0.0000 0.0000 
ξ = 0.3 0.1824 -0.7615 0.7473 0.0000 -0.2667 0.1812 0.0000 0.0000 0.0000 
ξ = 0.35 0.2710 -0.9996 0.8964 0.0000 0.1840 -0.1239 0.0000 0.0000 0.0000 
ξ = 0.37 0.1886 -0.7740 0.7525 0.1716 -0.4776 0.3199 0.0000 0.0000 0.0000 
ξ = 0.4 -6.3579 18.4320 -13.0157 8.6931 -25.2829 17.9795 0.0000 0.0000 0.0000 
ξ = 0.45 0.0336 -0.3156 0.4274 0.4223 -1.2122 0.8444 0.0000 0.0000 0.0000 
ξ = 0.5 0.3539 -1.2428 1.0813 0.0000 0.1835 -0.1293 0.0000 0.0000 0.0000 
ξ = 0.55 0.3909 -1.3550 1.1635 0.0000 0.2156 -0.1511 0.0000 0.0000 0.0000 
ξ = 0.6 0.2268 -0.8302 0.7671 0.1170 -0.4489 0.3666 0.0000 0.0000 0.0000 
ξ = 0.65 0.2699 -1.0076 0.9283 0.1245 -0.3463 0.2242 0.0000 0.0000 0.0000 
ξ = 0.7 -0.0721 -0.0040 0.2055 0.7014 -2.0130 1.4059 0.0000 0.0000 0.0000 
ξ = 0.75 0.0143 -0.2529 0.3815 0.6093 -1.7422 1.2097 0.0000 0.0000 0.0000 
ξ = 0.8 0.1697 -0.7273 0.7321 0.3889 -1.0702 0.7154 0.0000 0.0000 0.0000 
ξ = 0.85 0.2188 -0.8469 0.7993 0.3805 -1.0834 0.7451 0.0000 0.0000 0.0000 
ξ = 0.9 0.2261 -0.8748 0.8224 0.3380 -0.9252 0.6139 0.0000 0.0000 0.0000 
ξ = 0.95 0.2908 -1.0783 0.9584 0.3528 -1.0519 0.7431 0.0000 0.0000 0.0000 
ξ = 1.0 0.5669 -1.8816 1.5356 -0.1123 0.2966 -0.2110 0.0000 0.0000 0.0000 

Table A5  Fit coefficients for the α1 terms in the multidimensional parabolic fit for the drag coefficient 
produced by the airfoil sections of the CRM/uCRM wing as a function of angle of attack, Mach 
number, and Reynolds number. 

 aD,100 aD,101 aD,102 aD,110 ˟107 aD,111 ˟107 aD,112 ˟107 aD,120 aD,121 aD,122
 

ξ = 0.0 3.4522 -9.5715 6.3852 -0.3702 0.7616 -0.3849 0.0000 0.0000 0.0000 
ξ = 0.1 3.7241 -10.5048 7.1116 -0.2785 0.6081 -0.3319 0.0000 0.0000 0.0000 
ξ = 0.15 2.3719 -6.7957 4.6910 -0.2334 0.5091 -0.2763 0.0000 0.0000 0.0000 
ξ = 0.2 1.8475 -5.0214 3.3820 -0.5856 1.3866 -0.8163 0.0000 0.0000 0.0000 
ξ = 0.25 1.7373 -4.3757 2.8109 -1.0672 2.6945 -1.6907 0.0000 0.0000 0.0000 
ξ = 0.3 0.3988 -0.2622 -0.1073 0.2670 -0.7818 0.5436 0.0000 0.0000 0.0000 
ξ = 0.35 -0.6120 3.0560 -2.5606 0.0000 0.2133 -0.1314 0.0000 0.0000 0.0000 
ξ = 0.37 -0.5310 2.9002 -2.4828 -0.5517 1.4372 -0.9284 0.0000 0.0000 0.0000 
ξ = 0.4 7.2507 -19.4816 13.4060 -11.4235 32.7342 -23.0312 0.0000 0.0000 0.0000 
ξ = 0.45 -2.0364 7.5068 -5.7658 0.3047 -0.8602 0.5854 0.0000 0.0000 0.0000 
ξ = 0.5 -2.3027 8.3959 -6.4317 -0.1408 0.4136 -0.2967 0.0000 0.0000 0.0000 
ξ = 0.55 -2.8246 10.1164 -7.7435 0.0000 0.1733 -0.1277 0.0000 0.0000 0.0000 
ξ = 0.6 -0.1861 2.4692 -2.5041 -0.2853 0.6275 -0.3560 0.0000 0.0000 0.0000 
ξ = 0.65 -2.2169 8.4434 -6.5833 -1.5703 4.5294 -3.1899 0.0000 0.0000 0.0000 
ξ = 0.7 -3.0602 10.8701 -8.2789 -0.8040 2.2813 -1.5773 0.0000 0.0000 0.0000 
ξ = 0.75 -1.6789 6.8642 -5.4344 -3.6051 10.5826 -7.5465 0.0000 0.0000 0.0000 
ξ = 0.8 -2.7125 9.8408 -7.5601 -0.9386 2.8840 -2.1176 0.0000 0.0000 0.0000 
ξ = 0.85 -2.2931 8.4391 -6.5175 -0.2211 0.5277 -0.3305 0.0000 0.0000 0.0000 
ξ = 0.9 -1.4576 5.5134 -4.2259 -1.2781 3.7967 -2.7297 0.0000 0.0000 0.0000 
ξ = 0.95 -0.9530 4.0416 -3.2442 -0.6794 1.8443 -1.2332 0.0000 0.0000 0.0000 
ξ = 1.0 2.1107 -6.6056 4.8527 5.5156 -14.8095 9.8225 0.0000 0.0000 0.0000 
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Table A6  Fit coefficients for the α2 terms in the multidimensional parabolic fit for the drag coefficient 
produced by the airfoil sections of the CRM/uCRM wing as a function of angle of attack, Mach 
number, and Reynolds number. 

 aD,200 aD,201 aD,202 aD,210 ˟107 aD,211 ˟107 aD,212 ˟107 aD,220 aD,221 aD,222
 

ξ = 0.0 -29.3175 125.2950 -96.5283 -12.0835 31.1859 -19.7837 0.0000 0.0000 0.0000
ξ = 0.1 -38.2340 147.1626 -109.6929 -10.0881 26.6275 -17.1962 0.0000 0.0000 0.0000
ξ = 0.15 -39.8641 151.8656 -112.8863 -11.5079 30.4493 -19.7782 0.0000 0.0000 0.0000
ξ = 0.2 -41.8532 155.3432 -114.2371 -13.1423 34.4909 -22.2512 0.0000 0.0000 0.0000
ξ = 0.25 -39.9437 148.3293 -108.5422 -12.7401 33.6001 -21.7748 0.0000 0.0000 0.0000
ξ = 0.3 -44.7487 159.6118 -115.1512 -9.0101 24.1681 -15.8819 0.0000 0.0000 0.0000
ξ = 0.35 -50.0983 173.9021 -124.4604 2.0535 -5.7130 3.9051 0.0000 0.0000 0.0000
ξ = 0.37 -45.2050 162.1663 -117.8794 -12.1454 32.9826 -21.9460 0.0000 0.0000 0.0000
ξ = 0.4 -7.3546 52.8462 -40.6669 -60.1637 173.4676 -122.7107 0.0000 0.0000 0.0000
ξ = 0.45 -42.5019 155.0687 -113.7193 -12.5075 35.3122 -24.3604 0.0000 0.0000 0.0000
ξ = 0.5 -48.4733 172.0750 -125.6363 0.6943 -2.0402 1.4810 0.0000 0.0000 0.0000
ξ = 0.55 -52.5214 184.7772 -135.0893 1.7306 -4.9505 3.4937 0.0000 0.0000 0.0000
ξ = 0.6 -36.9600 140.6751 -104.1685 -10.0047 31.1780 -23.0141 0.0000 0.0000 0.0000
ξ = 0.65 -47.2434 170.4245 -125.6433 -11.8329 33.0339 -22.4416 0.0000 0.0000 0.0000
ξ = 0.7 -37.3132 141.1789 -104.6604 -29.4374 84.2729 -58.8640 0.0000 0.0000 0.0000
ξ = 0.75 -20.4532 91.6385 -69.2266 -62.8641 181.0406 -127.2507 0.0000 0.0000 0.0000
ξ = 0.8 -45.3995 165.2642 -122.0605 -17.1845 46.2002 -30.6045 0.0000 0.0000 0.0000
ξ = 0.85 -45.2908 163.5222 -119.9219 -12.0494 31.0498 -19.8488 0.0000 0.0000 0.0000
ξ = 0.9 -48.6533 172.4732 -125.8618 -8.7429 21.9033 -13.5197 0.0000 0.0000 0.0000
ξ = 0.95 -47.6118 169.3364 -123.4272 -18.0857 51.5001 -35.5157 0.0000 0.0000 0.0000
ξ = 1.0 -53.4387 183.5192 -132.0227 11.2253 -29.6558 19.8096 0.0000 0.0000 0.0000
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Table A7  Location and thickness data for the leading-edge spar, trailing-edge spar, upper and lower 
skins, and ribs of the uCRM-9 wingbox geometry. 

Sec ξLE xLE/c tLE, mm hLE, m ξTE xTE/c tTE, mm hTE, m tUS, mm tLS, mm trib, mm 

0 0.0000 0.2524 1.4396 2.0371 0.0000 0.6936 0.6517 1.2970 1.8226 2.0274 0.4526 
1 0.0264 0.2178 1.2204 1.8564 0.0264 0.6730 0.6865 1.2942 1.9227 2.1048 0.4905 
2 0.0527 0.1806 0.9505 1.6504 0.0527 0.6509 0.8352 1.2858 2.0233 2.1826 0.5402 
3 0.0791 0.1407 0.9639 1.4163 0.0791 0.6272 1.0439 1.2711 2.1246 2.2609 0.5652 
4 0.1055 0.0978 0.7299 1.1415 0.1055 0.6019 - 1.2473 1.7945 1.7093 1.2409 
5 0.1258 0.1016 0.5576 1.0797 0.1055 0.2301 - 1.2438 1.8025 1.6849 0.4526 
6 0.1462 0.1056 0.5620 1.0193 0.1055 0.3596 - 1.2407 1.8990 1.7610 0.4526 
7 0.1665 0.1089 0.5608 0.9603 0.1055 0.4891 1.2544 1.2372 1.9048 1.8375 0.4526 
8 0.1868 0.1123 0.5406 0.9049 0.1084 0.6026 0.8677 1.2320 1.8208 1.7735 0.4812 
9 0.2072 0.1157 0.5333 0.8540 0.1310 0.6090 0.6028 1.1220 1.7238 1.6970 0.4724 

10 0.2275 0.1193 0.5333 0.8072 0.1535 0.6157 0.5333 1.0316 1.6285 1.6210 0.4568 
11 0.2478 0.1232 0.5333 0.7642 0.1760 0.6219 0.5333 0.9573 1.5728 1.5717 0.4526 
12 0.2681 0.1274 0.5333 0.7250 0.1986 0.6286 0.5333 0.8916 1.6122 1.6478 0.4526 
13 0.2885 0.1319 0.5333 0.6893 0.2211 0.6356 0.5333 0.8320 1.6603 1.7243 0.4526 
14 0.3088 0.1369 0.5333 0.6568 0.2436 0.6432 0.5333 0.7777 1.7169 1.8012 0.4526 
15 0.3291 0.1422 0.7333 0.6273 0.2662 0.6515 0.5496 0.7271 1.8043 1.8786 0.4526 
16 0.3495 0.1481 1.1200 0.6009 0.2887 0.6607 0.7334 0.6788 1.8943 1.9564 0.5286 
17 0.3698 0.1545 1.1316 0.5777 0.3112 0.6707 0.5401 0.6310 1.8988 2.0018 1.0926 
18 0.3901 0.1570 0.7449 0.5639 0.3338 0.6818 0.5444 0.5817 1.9125 1.9734 0.7751 
19 0.4104 0.1596 0.5937 0.5514 0.3563 0.6941 0.7333 0.5303 1.8404 1.8962 0.4709 
20 0.4308 0.1579 0.6146 0.5398 0.3786 0.7016 0.7333 0.4903 1.7776 1.8195 0.5069 
21 0.4511 0.1650 0.6208 0.5287 0.4004 0.7002 0.6165 0.4761 1.7498 1.7432 0.4526 
22 0.4714 0.1680 0.6158 0.5174 0.4223 0.6988 0.5991 0.4635 1.7042 1.6782 0.4526 
23 0.4918 0.1710 0.6120 0.5064 0.4441 0.6972 0.5984 0.4514 1.6480 1.6164 0.4526 
24 0.5121 0.1742 0.6059 0.4967 0.4660 0.6957 0.5970 0.4400 1.5790 1.5490 0.4526 
25 0.5324 0.1775 0.6047 0.4880 0.4878 0.6941 0.5967 0.4284 1.5092 1.4767 0.4526 
26 0.5528 0.1810 0.6010 0.4797 0.5096 0.6924 0.5952 0.4171 1.4390 1.4025 0.4526 
27 0.5731 0.1847 0.6332 0.4715 0.5315 0.6906 0.5978 0.4065 1.3698 1.3289 0.4526 
28 0.5934 0.1886 0.5927 0.4634 0.5533 0.6888 0.5942 0.3964 1.2944 1.2556 0.4526 
29 0.6137 0.1927 0.5908 0.4553 0.5752 0.6868 0.5891 0.3860 1.2179 1.1828 0.4526 
30 0.6341 0.1970 0.5794 0.4472 0.5970 0.6848 0.5847 0.3755 1.1438 1.1105 0.4526 
31 0.6544 0.2015 0.5719 0.4385 0.6189 0.6826 0.5794 0.3653 1.0954 1.0385 0.4526 
32 0.6747 0.2063 0.5631 0.4291 0.6407 0.6804 0.5746 0.3555 1.0564 0.9670 0.4526 
33 0.6951 0.2114 0.5555 0.4194 0.6626 0.6779 0.5680 0.3460 1.0253 0.8960 0.4526 
34 0.7154 0.2168 0.5489 0.4098 0.6844 0.6754 0.5616 0.3370 0.9923 0.8254 0.4526 
35 0.7357 0.2226 0.5438 0.4002 0.7063 0.6726 0.5549 0.3284 0.9589 0.7552 0.4526 
36 0.7560 0.2287 0.5333 0.3904 0.7281 0.6697 0.5470 0.3199 0.9192 0.6854 0.4526 
37 0.7764 0.2353 0.5333 0.3805 0.7500 0.6666 0.5393 0.3109 0.8800 0.6162 0.4526 
38 0.7967 0.2423 0.5333 0.3703 0.7718 0.6633 0.5333 0.3005 0.8378 0.5691 0.4526 
39 0.8170 0.2498 0.5333 0.3599 0.7936 0.6597 0.5333 0.2894 0.7925 0.5337 0.4526 
40 0.8374 0.2579 0.5333 0.3492 0.8155 0.6558 0.5333 0.2786 0.7437 0.4982 0.4526 
41 0.8577 0.2666 0.5333 0.3382 0.8373 0.6516 0.5333 0.2682 0.6949 0.4574 0.4526 
42 0.8780 0.2760 0.5333 0.3269 0.8592 0.6470 0.5333 0.2583 0.6566 0.4153 0.4526 
43 0.8984 0.2862 0.5333 0.3154 0.8810 0.6420 0.5333 0.2487 0.6114 0.3772 0.4526 
44 0.9187 0.2973 0.5333 0.3038 0.9029 0.6365 0.5333 0.2386 0.5600 0.3762 0.4526 
45 0.9390 0.3094 0.5333 0.2922 0.9247 0.6303 0.5333 0.2276 0.5086 0.3751 0.4526 
46 0.9593 0.3209 0.5333 0.2808 0.9466 0.6236 0.5333 0.2167 0.4971 0.3741 0.4526 
47 0.9797 0.3373 0.5333 0.2691 0.9684 0.6163 0.5333 0.2062 0.4956 0.3730 0.4526 
48 1.0000 0.3536 0.5333 0.2560 1.0000 0.6039 0.5333 0.1890 0.4956 0.3730 0.4526 
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Table A8  Approximations for the locus of centers of gravity, elastic axis, and flexural and torsional 
stiffness of the uCRM-9 wingbox geometry. 

section ξ xcg/c xea/c [24]  xea/c [41] xea/c [42] xea/c (avg) EI, N.m2 ˟10-9 GJ, N.m2/rad ˟10-9 

0 0.0000 0.4507 0.4214 - - 0.4214 10.0052 7.6883 
1 0.0264 0.4287 0.4024 - - 0.4024 9.2733 7.2357 
2 0.0527 0.4057 0.3844 - - 0.3844 10.8361 7.6534 
3 0.0791 0.3798 0.3690 - - 0.3690 9.2963 6.6712 
4 0.1055 0.3677 0.3595 0.4046 0.4071 0.3904 7.4630 5.0283 
5 0.1139 0.3648 0.3709 0.4070 0.4121 0.3967 6.8888 4.6576 
6 0.1212 0.3622 0.3808 0.4091 0.4165 0.4021 6.4375 4.3570 
7 0.1295 0.3592 0.3921 0.4115 0.4185 0.4074 6.0379 4.1393 
8 0.1416 0.3305 0.4086 0.4153 0.4210 0.4150 5.4871 3.8367 
9 0.1639 0.3812 0.4097 0.4216 0.4265 0.4193 4.7280 3.3576 
10 0.1860 0.3829 0.4116 0.4279 0.4324 0.4240 4.1395 2.9743 
11 0.2079 0.3873 0.4147 0.4345 0.4354 0.4282 3.5313 2.5800 
12 0.2298 0.3928 0.4182 0.4415 0.4413 0.4337 2.6721 2.1271 
13 0.2516 0.3988 0.4221 0.4490 0.4469 0.4393 2.2503 1.8254 
14 0.2735 0.4053 0.4265 0.4572 0.4533 0.4457 2.0076 1.6216 
15 0.2953 0.4117 0.4311 0.4662 0.4620 0.4531 1.7067 1.4146 
16 0.3172 0.4174 0.4358 0.4760 0.4751 0.4623 1.4977 1.2288 
17 0.3392 0.4174 0.4403 0.4867 0.4845 0.4705 1.2962 1.0718 
18 0.3615 0.4229 0.4424 0.4988 0.4972 0.4794 1.2084 0.9685 
19 0.3839 0.4398 0.4351 0.5022 0.5043 0.4805 1.0475 0.8555 
20 0.4059 0.4399 0.4237 0.4999 0.5056 0.4764 0.9188 0.7550 
21 0.4271 0.4392 0.4255 0.4975 0.5064 0.4765 0.7754 0.6575 
22 0.4482 0.4392 0.4256 0.4950 0.4987 0.4731 0.6820 0.5923 
23 0.4693 0.4397 0.4257 0.4924 0.4939 0.4707 0.6197 0.5360 
24 0.4904 0.4404 0.4258 0.4897 0.4895 0.4683 0.5735 0.4874 
25 0.5116 0.4412 0.4255 0.4868 0.4849 0.4657 0.5247 0.4450 
26 0.5327 0.4418 0.4252 0.4838 0.4801 0.4630 0.4615 0.3963 
27 0.5538 0.4423 0.4252 0.4807 0.4789 0.4616 0.3986 0.3541 
28 0.5749 0.4431 0.4252 0.4774 0.4757 0.4594 0.3355 0.3142 
29 0.5961 0.4440 0.4253 0.4739 0.4715 0.4569 0.2917 0.2778 
30 0.6172 0.4449 0.4254 0.4702 0.4672 0.4542 0.2601 0.2500 
31 0.6383 0.4458 0.4257 0.4663 0.4591 0.4504 0.2088 0.2111 
32 0.6593 0.4468 0.4265 0.4622 0.4477 0.4454 0.1864 0.1835 
33 0.6804 0.4479 0.4275 0.4578 0.4381 0.4411 0.1453 0.1533 
34 0.7014 0.4489 0.4287 0.4532 0.4343 0.4387 0.1243 0.1269 
35 0.7224 0.4501 0.4302 0.4482 0.4386 0.4390 0.1033 0.1146 
36 0.7435 0.4513 0.4319 0.4430 0.4305 0.4351 0.0932 0.1024 
37 0.7645 0.4524 0.4335 0.4374 0.4176 0.4295 0.0716 0.0796 
38 0.7855 0.4537 0.4349 0.4314 0.4034 0.4232 0.0621 0.0674 
39 0.8066 0.4550 0.4363 0.4250 0.3904 0.4172 0.0621 0.0536 
40 0.8277 0.4564 0.4380 0.4180 0.3874 0.4145 0.0397 0.0402 
41 0.8487 0.4582 0.4401 0.4105 0.3734 0.4080 0.0311 0.0327 
42 0.8697 0.4600 0.4427 0.4024 0.3658 0.4036 0.0311 0.0299 
43 0.8907 0.4620 0.4457 0.3936 0.3630 0.4008 0.0311 0.0170 
44 0.9117 0.4642 0.4489 0.3841 0.3530 0.3953 0.0311 0.0146 
45 0.9328 0.4666 0.4521 0.3736 0.3401 0.3886 0.0311 0.0134 
46 0.9538 0.4692 0.4547 0.3620 0.3259 0.3809 0.0311 0.0107 
47 0.9748 0.4723 0.4600 0.3493 0.3025 0.3706 0.0311 0.0095 
48 1.0000 0.4764 0.4597 0.3322 0.2708 0.3542 0.0311 0.0080 
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APPENDIX B  

Simplified Trajectory Optimization Formulations Using Optimal Control Theory  

and the Calculus of Variations 

 

B.1   Mission Profile Optimization* 

Consider an aircraft having an engine with the thrust-specific fuel consumption c. The 

thrust-specific fuel consumption is defined as 

 
T

W
c f


  (B1) 

where fW  is the total weight of fuel consumed per unit time and T is the engine thrust. 

Rearranging Eq. (B1) to solve for fW  and integrating from time t = 0 to t = tf gives the 

total weight of fuel consumed over the interval ftt 0 , i.e., 

 
ft

f cTdtW
0

  (B2) 

In general, c depends on the altitude h, the throttle setting τ, and the airspeed V, i.e., 

),,( hcc  . If we wish to minimize the fuel burn, then we consider the minimum-fuel 

optimal control problem 

 
* The formulations in this section are based on notes from Dr. Nhan T. Nguyen, Senior Research Scientist 
and Technical Group Lead of the Advanced Control and Evolvable Systems Group in the Intelligent 
Systems Division at NASA Ames Research Center. 

251



   

 
ft

f cTdtWJ
0

min   (B3) 

Here, J is the functional which we wish to minimize subject to dynamic constraints based 

on the equations of motion. 

The equations of motion can be expressed according to the point-mass model in terms 

of the time rates of change of the climb angle , velocity V , altitude h, and the weight W . 

The climb angle is the angle between the velocity vector and the horizontal. Therefore, 

the time rate of change of the climb angle is related to the velocity V, the time rate of 

change of velocity in the direction perpendicular to V, the aerodynamic moment M, and 

the moment due to engine thrust, i.e., 

 
m

TzM

mV

TWL

V

V eTt 





 sincos
  (B4) 

where m is the aircraft mass, tV  is the time rate of change of the velocity in the direction 

perpendicular to V, L is the aircraft lift, W is the aircraft weight, αT is the engine thrust 

angle, and ze is the vertical distance from the engine centerline to the aircraft center of 

gravity. The time rate of change of velocity can be expressed as 

 
m

WDT
V T  sincos 
  (B5) 

The time rate of change of altitude is related to the velocity and the climb angle according 

to 

 sinVh   (B6) 
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The time rate of change of weight is simply the fuel-consumption rate, i.e., 

 cTW   (B7) 

For most aircraft, the thrust angle is small. Assuming that the thrust angle T  = 0, the 

thrust is aligned with the center of gravity (ze = 0), and the aerodynamic moment M = 0, 

we can rewrite Eqs. (B4) and (B5) to give 

 
mV

WL  cos
  (B8) 

 
m

WDT
V

sin
  (B9) 

Equations (B6)-(B9) are the equations of motion. Using the method of Lagrange 

multipliers, they are included as dynamic constraints to the minimization problem shown 

in Eq. (B3) to give the functional 
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 (B10) 

B.1.1 Lift and Drag Relationships 

 Consider an aircraft equipped with a distributed wing-flap system. Assuming that the 

aerodynamic center lies at or very near the center of gravity, we can trim the aircraft by 

enforcing the condition 

 0 ezz TzMqI   (B11) 
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where Izz is the second moment of inertia about the z axis, q is the pitch rate, M is the 

aerodynamic pitching moment, and ze is the vertical offset of the engine thrust from the 

aircraft center of gravity. For a trimmed aircraft with zero initial pitch rate, this implies 

that the flight path angle θ, which is related to the angle of attack and climb angle 

according to 

    (B12) 

is constant. 

The lift coefficient is assumed to be linear with respect to angle of attack α, the wing 

flap deflections δ, and elevator deflection e , i.e., 

 eLLLL e
CCCC   ,

T
,0

 δC δL,  (B13) 

where δ is a vector containing the individual flap deflections. The pitching moment is 

also assumed to be linear with respect to α, δ, and e , which gives 

 emmmm e
CCCC   ,

T
,0

 δC δm,  (B14) 

The drag coefficient is assumed to be parabolic with respect to α, δ, and e . This gives the 

relation 
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 (B15) 

Using Eq. (B13), the trim condition from Eq. (B11) can be rewritten to give 
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   0,
T

,0
 eemmm TzCCCSq

e
  δC δm,  (B16) 

where q  is the dynamic pressure and S is the wing reference area. Solving for e  in  

Eq. (B16) gives the elevator deflection required to trim an aircraft with a given angle of 

attack and known wing flap deflections 
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Using Eq. (B17) with Eqs. (B13) and (B15), the trim lift and drag can be written as 
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The derivatives of lift with respect to h, V, α, and δ are 
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The derivatives of drag with respect to h, V, α, and δ are 
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The partial derivatives of CL and CD with respect to h and V can be approximated 

using a finite difference scheme, i.e., 

 
 

h

q

Sq

Tz

C

C

h

hChhC

h

C e

m

LLLL

e

e











2
,

,)(








 (B28) 

 
VSq

Tz

C

C

V

VCVVC

V

C e

m

LLLL

e

e 2)()(

,

,















 (B29) 

256



   

 

 

 
h

q

Sq

Tz

C
CCC

h

hChhC

h

C

e

m
DeDD

DDD

e
eee 










2
,

,
T

,,
1

2

)(

2


 




δC
eδδD,

 (B30) 

 

 

 
VSq

Tz

C
CCC

V

VCVVC

V

C

e

m
DeDD

DDD

e
eee

21
2

)(

,
,

T

,, 2


 












δC
eδδD,

 (B31) 

The partial derivatives of CL and CD with respect to α and δ are 
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B.1.2 General Trajectory Optimization 

The Hamiltonian corresponding to the functional given in Eq. (B10) can be written as 

 )(
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where h , V ,  , and W  are the costate variables and are given by 
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The costate variables are bounded by the transversality condition, such that  

 0)()()()(  fWffVfh tttt  
  (B41) 

The optimal flap deflections can be found from 

 0
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Using Eqs. (B23), (B27), (B33), and (B35), Eq. (B42) can be rewritten as 
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Solving for δ in Eq. (B43) gives 
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The optimal thrust can be found from  

 0)1( 
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However, because Eq. (B36) is linear in T and T is bounded by maxmin TTT  , the 

optimal thrust has a singular-arc solution of the form 
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where T * is the singular-arc solution, which can be found by taking the time derivative of 

Eq. (B45), i.e., 
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Using Eqs. (B7), (B38), and (B40) in Eq. (B47) and simplifying gives 
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Equation (B48) can be solved for T 
* to give 
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From Eqs. (B44) and (B49), we see that solving for the optimum flap deflections and 

the optimum thrust requires that Eqs. (B37)-(B40) be solved for the costate variables, 

subject to Eq. (B41) and Eqs. (B6)-(B9). The states are generally known at the initial time 

t0. Thus, obtaining the optimum control inputs and trajectory for the Hamiltonian in  

Eq. (B36) requires the solution of a two-point boundary-value problem. The primary 

challenge with solving this two-point boundary-value problem is that we do not know 

when the thrust switches between maximum thrust, zero thrust, and the singular-arc 

solution.  
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B.1.3  Constant Mach Number Mission Profile 

Consider the case of an aircraft with distributed wing flaps operating with a constant 

Mach number. The Mach number M is related to the aircraft velocity V and the speed of 

sound a according to the relationship 

 
a

V
M   (B50) 

If the Mach number is constant, Eq. (B50) can be differentiated in time and rearranged to 

give the time rate of change of velocity V , i.e., 
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Using Eq. (B6) in Eq. (B51) gives 
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  (B52) 

Comparing Eq. (B52) with Eq. (B5), we have 

 
m

WDT
V

h

a
M

 sin
sin







 (B53) 

Assuming that the climb angle γ is small,  sin  and 1cos  . Using the small angle 

approximation, Eq. (B53) can be rearranged to give 
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Because we have known expressions for velocity and climb angle, constraints on these 

two state variables can be integrated directly into the Hamiltonian, without the need to 

include the dynamic constraints for flight path angle and velocity. The Hamiltonian is 

therefore given by 

 )( cTVcTH Wh    (B55) 

where V and γ are given by Eqs. (B50) and (B54). The costate variables λh and λW are 

found from 
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The optimal flap deflections δ are found from 
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Using Eqs. (B27), (B35), (B50), and (B54), Eq. (B58) can be rewritten as 
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Equation (B59) is solved for δ to give 
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which are the flap deflections that also minimize drag.  

The optimal thrust is found from  
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again, the optimal thrust is a bang-singular-bang control solution of the form 
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The singular-arc control T * can be found from the time derivative of Eq. (B62), i.e.,  
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 (B63) 

Using Eqs. (B6), (B7), (B50), (B51), (B54), (B56), and (B57), along with a small-climb-

angle assumption, Eq. (B63) can be solved to give the singular-arc thrust T *, i.e., 
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Thus, solving for the optimal flap deflections and optimal thrust for an aircraft operating 

with constant Mach number requires the solution of the two-point boundary-value 

problem given by Eqs. (B6), (B7), (B56), (B57), and the transversality condition 

0)()(  fWfh tt  . Again, a principal challenge in solving this problem is that we do 

not know when the optimal thrust switches between maximum thrust, zero, thrust, and the 

singular-arc solution. 

B.1.4 Constant Velocity Mission Profile 

Consider an aircraft with distributed flaps operating with a constant velocity. For this 

case, 0V , and Eq. (B5) can be rewritten to give 

 0
sin



m

WDT 
 (B65) 

Assuming that the climb angle is small, Eq. (B65) can be rearranged to give 

 
W

DT 
  (B66) 

Therefore, the velocity and climb angle are known functions, and the dynamic constraints 

for V and γ can be eliminated from the Hamiltonian. The Hamiltonian is then given by 

 )( cTVcTH Wh    (B67) 

which is identical to Eq. (B55). The costate variables are found from 
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The optimal flap deflections δ are found from 
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Using Eqs. (B27) and (B35), Eq. (B70) is rewritten as 
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which can be solved for δ to give 
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Note that Eq. (B72) is identical to Eq. (B60) and is also the flap setting that produces 

minimum drag. The optimal thrust is found from  
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The optimal thrust is a bang-singular-bang solution of the form 
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The singular-arc control is found from 
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Using Eqs. (B7), (B68), and (B69), Eq. (B75) is rewritten as 

 



 








 **
2

*
2

)1()()1(0 cT
h

c
WT

h

D

W

V
DT

W
cc hWW

h
W 


  (B76) 

Equation (B76) is solved for T * to give 
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Thus, solving for the optimal flap deflections and optimal thrust for an aircraft operating 

with a constant velocity requires the solution of the two-point boundary-value problem 

given by Eqs. (B6), (B7), (B68), (B69), along with the transversality condition, i.e., 

0)()(  fWfh tt  . 

B.1.5 Constant Altitude Mission Profile 

Consider the case of an aircraft operating at a constant altitude. For constant-altitude 

flight, the time rate of change of altitude is zero, i.e., 
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 0sin  Vh  (B78) 

The velocity V cannot be zero in forward flight. Therefore, Eq. (B78) implies that  

 0,0     (B79) 

The time rate of change of velocity from Eq. (B5) can then be rewritten as 
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and, using Eq. (B79) and the small-angle approximation for γ, Eq. (B8) results in 

 WL   (B81) 

which is typical for level (constant altitude) flight. Since the altitude and climb angle are 

zero, the altitude and climb-angle dynamic constraints can be neglected, and the 

Hamiltonian becomes 
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where the costate equations are given by 
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The optimal flap deflection is obtained from 
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which can be rewritten using Eqs. (B27) and (B35) to give 
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and solved for δ to give 
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Equation (B87) is identical to Eqs. (B72) and (B60), and it is the flap deflection that also 

minimizes drag. The optimal thrust is found from  
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which gives a bang-singular-bang solution, i.e.,  
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Note that Eq. (B89) is identical to Eq. (B46). The singular solution T * is found by taking 

the time derivative of Eq. (B88), i.e.,  
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Using Eqs. (B7), (B83), and (B84), Eq. (B90) is rewritten as 
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which can be solved to find the singular-arc solution, i.e., 
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Thus, in order to obtain the optimal thrust and optimal flap deflection for an aircraft 

operating at a constant altitude, we must solve the two-point boundary-value problem 

given by Eqs. (B7), (B78)-(B80), (B83), (B84), and the transversality conditions

0)()(  fWfV tt   . 

B.2   Trajectory Optimization for a Battery-Powered Elliptic Wing 

Consider a wing with an elliptic planform in climbing flight, with velocity V, weight 

W, climb angle 𝛾, and thrust T aligned in the direction of flight, as shown in Fig. B1. If 

the thrust is generated by a battery-powered motor, we can assume that the weight W is 

constant. 
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Fig. B1 Elliptic wing in climbing flight

B.2.1 Equations of Motion

The equations of motion for this wing can be found using a point mass model. We

assume that the wing is in pseudo-trim state with zero aerodynamic moment. If the wing is

in climbing flight with climb angle 𝛾, the time rate of change of downrange position 𝑥 is

simply the horizontal component of velocity 𝑉 , i.e.,

¤𝑥 = 𝑉 cos 𝛾 (B93)

The time rate of change in vertical position ℎ is the vertical component of the velocity, i.e.,

¤ℎ = 𝑉 sin 𝛾 (B94)

If the thrust is aligned with the direction of flight, the time rate of change of the climb angle

can be written as

¤𝛾 =
𝐿 −𝑊 cos 𝛾

𝑚𝑉
(B95)

where 𝐿 is the aircraft lift, and 𝑚 is the aircraft mass, which can be rewritten in terms of the

weight 𝑊 and acceleration 𝑔 due to gravity as 𝑚 = 𝑊/𝑔. The time rate of change of velocity

can be written

¤𝑉 =
𝑇 − 𝐷 −𝑊 sin 𝛾

𝑚
(B96)
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where 𝑇 is the thrust, and 𝐷 is the drag.

The equations of motion in Eqs. (B94)-(B96) can be rewritten in terms of range using

the change of variables 𝜕
𝜕𝑡 =

𝜕
𝜕𝑥

𝜕𝑥
𝜕𝑡 , and noting that 𝜕𝑥

𝜕𝑡 = ¤𝑥 = 𝑉 cos 𝛾, as shown in Eq. (B93).

Assuming that 𝛾 is small, cos 𝛾 ≈ 1, the equations of motion become

ℎ′ = sin 𝛾 (B97)

𝛾′ =
𝐿 −𝑊 cos 𝛾

𝑚𝑉2 (B98)

𝑉 ′ =
𝑇 − 𝐷 −𝑊 sin 𝛾

𝑚𝑉
(B99)

For an aircraft in climbing flight, we can rearrange Eq. (B151) to obtain an expression

for the thrust, i.e.,

𝑇 = 𝑚𝑉𝑉 ′ cos 𝛾 + 𝐷 +𝑊 sin 𝛾 (B100)

Here, it is convenient to rewrite Eq. (B100) in terms of the drag coefficient, i.e.,

𝑇 = 𝑚𝑉𝑉 ′ cos 𝛾 + 1
2𝜌𝑉

2𝑆𝑤𝐶𝐷 +𝑊 sin 𝛾 (B101)

In subsonic flight the drag coefficient can be thought of as the sum of the induced drag

coefficient 𝐶𝐷𝑖 and the parasitic drag coefficient 𝐶𝐷 𝑝 . From classical lifting-line theory, the

induced drag coefficient 𝐶𝐷𝑖 on a wing with an elliptic planform can be written in terms of

the lift coefficient 𝐶𝐿 as

𝐶𝐷𝑖 =
𝐶2
𝐿

𝜋𝑅𝐴
(B102)

The induced drag usually makes up around half of the total drag in cruise. Using Eq. (B102)

and the definition of the drag coefficient, (B101) can be rewritten as

𝑇 = 𝑚𝑉𝑉 ′ cos 𝛾 + 1
2𝜌𝑉

2𝑆𝑤

(
𝐶2
𝐿

𝜋𝑅𝐴
+ 𝐶𝐷 𝑝

)
+𝑊 sin 𝛾 (B103)
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Assuming that the forces are balanced in the direction perpendicular to the lift, we can

write the lift as

𝐿 = 𝑊 cos 𝛾 (B104)

Using Eq. (B104), along with the relation 𝑚 = 𝑊/𝑔, Eq. (B103) can be simplified to give

𝑇 = 𝑊

[
𝑉𝑉 ′

𝑔
cos 𝛾 + 2 cos2 𝛾

𝜌𝑉2𝜋𝑅𝐴

𝑊

𝑆𝑤
+ 𝜌𝑉2 𝑆𝑤

2𝑊
𝐶𝐷 𝑝 + sin 𝛾

]
(B105)

By the small angle approximation, sin 𝛾 ≈ 𝛾 and cos 𝛾 ≈ 1. Using this approximation in Eq.

(B105), we have

𝑇 = 𝑊

[
𝑉𝑉 ′

𝑔
+ 2
𝜌𝑉2𝜋𝑅𝐴

𝑊

𝑆𝑤
+ 𝜌𝑉2 𝑆𝑤

2𝑊
𝐶𝐷 𝑝 + 𝛾

]
(B106)

The climb angle can be found in terms of the velocity 𝑉 and climb rate, 𝑉𝑐. Using the

small angle approximation, the climb angle can be written as

𝛾 = sin−1 𝑉𝑐

𝑉
≈ 𝑉𝑐

𝑉
(B107)

The climb rate 𝑉𝑐 is simply the time rate of change of altitude ℎ, i.e.,

𝑉𝑐 =
𝑑ℎ

𝑑𝑡
= ¤ℎ (B108)

The climb rate can also be written in terms of the change in altitude with horizontal distance

𝑥 using the relation 𝑉 cos 𝛾 = 𝑑𝑥/𝑑𝑡 and the chain rule in Eq. (B108)to give

𝑉𝑐 = 𝑉ℎ′ cos 𝛾 (B109)
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Comparing Eq. (B107) to Eq. (B109), we see that for small climb angles

ℎ′ = 𝛾 (B110)

Using Eq. (B110) in Eq. (B106), we can rewrite the thrust in terms of 𝑉 , 𝑉 ′, ℎ, and ℎ′ to

give an expression for the thrust required to maintain climbing flight for an elliptic wing in

inviscid flow with small climb angle, i.e.,

𝑇 = 𝑊

[
𝑉𝑉 ′

𝑔
+ 2
𝜌𝑉2𝜋𝑅𝐴

𝑊

𝑆𝑤
+ 𝜌𝑉2 𝑆𝑤

2𝑊
𝐶𝐷 𝑝 + ℎ′

]
(B111)

In many cases, we can assume that we are in quasi-steady flight, or that during flight, the

velocity does not change quickly. Under this assumption, we assume that 𝑉 ′ = 0, and we can

obtain a simplified expression for the thrust, i.e.,

𝑇 = 𝑊

[
2

𝜌𝑉2𝜋𝑅𝐴

𝑊

𝑆𝑤
+ 𝜌𝑉2 𝑆𝑤

2𝑊
𝐶𝐷 𝑝 + ℎ′

]
(B112)

B.2.2 Minimizing Power using the Calculus of Variations

In this study, we aim to minimize the power over the course of a trajectory by identifying

the optimum altitude and velocity as a function of horizontal distance 𝑥. The total power

over a trajectory can be written as

𝐽 =
∫ 𝑡

0
𝑇𝑉𝑑𝑡 (B113)

where 𝑡 is the time of flight. If we assume that the climb angle 𝛾 is small, Eq. (B113) can be

rewritten in terms of the range 𝑟 using the change of variables 𝑑𝑥 = 𝑉𝑑𝑡, i.e.,

𝐽 =
∫ 𝑟

0
𝑇𝑑𝑥 (B114)
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Using Eq. (B111) in Eq. (B114) gives

𝐽 = 𝑊

∫ 𝑟

0

[
𝑉𝑉 ′

𝑔
+ 2
𝜌𝑉2𝜋𝑅𝐴

𝑊

𝑆𝑤
+ 𝜌𝑉2 𝑆𝑤

2𝑊
𝐶𝐷 𝑝 + ℎ′

]
𝑑𝑥 (B115)

Assuming that the density 𝜌 changes linearly with altitude within the typical operating

range of this wing, the density can be rewritten as

𝜌 = 𝐶𝜌0 + 𝐶𝜌1ℎ (B116)

Using Eq. (B116) in Eq. (B115) gives

𝐽 = 𝑊

∫ 𝑟

0

[
𝑉𝑉 ′

𝑔
+ 2(

𝐶𝜌0 + 𝐶𝜌1ℎ
)
𝑉2𝜋𝑅𝐴

𝑊

𝑆𝑤
+ (

𝐶𝜌0 + 𝐶𝜌1ℎ
)
𝑉2 𝑆𝑤

2𝑊
𝐶𝐷 𝑝 + ℎ′

]
𝑑𝑥 (B117)

Equation (B115) can be rewritten as a functional that is dependent on the functions 𝑉 (𝑥)
and ℎ(𝑥). These functions can be found by applying the calculus of variations. From the

calculus of variations, the first variation of 𝐽 can be written as

𝛿𝐽 =
𝑑

𝑑𝜖
𝑊

∫ 𝑟

0

{
(𝑉 + 𝜖 𝑦𝑣)

(
𝑉 ′ + 𝜖 𝑦′𝑣

)
𝑔

+ 2[
𝐶𝜌0 + 𝐶𝜌1 (ℎ + 𝜖 𝑦ℎ)

] (𝑉 + 𝜖 𝑦𝑣)2 𝜋𝑅𝐴

𝑊

𝑆𝑤

+ [
𝐶𝜌0 + 𝐶𝜌1 (ℎ + 𝜖 𝑦ℎ)

] (𝑉 + 𝜖 𝑦𝑣)2 𝑆𝑤
2𝑊

𝐶𝐷 𝑝 +
(
ℎ′ + 𝜖 𝑦′ℎ

)}
𝑑𝑥

����
𝜖=0

(B118)

where 𝜖 is a small number and 𝑦𝑣 = 𝑦𝑣 (𝑥) and 𝑦ℎ = 𝑦ℎ (𝑥) are perturbation functions on the

functions 𝑉 (𝑥) and ℎ(𝑥), respectively. Equation (B118) can be simplified to give

𝛿𝐽 = 𝑊

∫ 𝑟

0

[
𝑉𝑦′𝑣 +𝑉 ′𝑦𝑣

𝑔
− 4𝑊
𝜋𝑅𝐴

(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉3𝑆𝑤

𝑦𝑣 −
2𝑊𝐶𝜌1

𝜋𝑅𝐴
(
𝐶𝜌0 + 𝐶𝜌1ℎ

)2
𝑉2𝑆𝑤

𝑦ℎ

+𝑆𝑤𝐶𝐷 𝑝

𝑊

(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉𝑦𝑣 +

𝑆𝑤𝐶𝐷 𝑝

2𝑊
𝐶𝜌1𝑉

2𝑦ℎ + 𝑦′ℎ

]
𝑑𝑥 (B119)

Note that the first term in the integrand in Eq. (B119) is the product rule expansion of
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𝑑/𝑑𝑥(𝑉𝑦𝑣). The last term in the integrand can be rewritten as 𝑑/𝑑𝑥(𝑦ℎ). Thus, the first and

last terms can be integrated to give

𝛿𝐽 = 𝑊

∫ 𝑟

0

[
− 4𝑊
𝜋𝑅𝐴

(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉3𝑆𝑤

𝑦𝑣 −
2𝑊𝐶𝜌1

𝜋𝑅𝐴
(
𝐶𝜌0 + 𝐶𝜌1ℎ

)2
𝑉2𝑆𝑤

𝑦ℎ

+𝑆𝑤𝐶𝐷 𝑝

𝑊

(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉𝑦𝑣 +

𝑆𝑤𝐶𝐷 𝑝

2𝑊
𝐶𝜌1𝑉

2𝑦ℎ

]
𝑑𝑥 + 𝑉

𝑔
𝑦𝑣

����
𝑟

0
+ 𝑦ℎ

����
𝑟

0
(B120)

Because 𝑦𝑣 and 𝑦ℎ are perturbation functions on 𝑉 (𝑥) and ℎ(𝑥), which have fixed

boundary conditions at 𝑥 = 0 and 𝑥 = 𝑟, they are zero at 0 and 𝑟. Therefore, the last two

terms in Eq. (B120) are zero, and Eq. (B120) can be rewritten as

𝛿𝐽 = 𝑊

∫ 𝑟

0

[(
𝑆𝑤𝐶𝐷 𝑝

𝑊

(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉 − 4𝑊

𝜋𝑅𝐴
(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉3𝑆𝑤

)
𝑦𝑣

+
(
𝑆𝑤𝐶𝐷 𝑝

2𝑊
𝐶𝜌1𝑉

2 − 2𝑊𝐶𝜌1

𝜋𝑅𝐴
(
𝐶𝜌0 + 𝐶𝜌1ℎ

)2
𝑉2𝑆𝑤

)
𝑦ℎ

]
𝑑𝑥 (B121)

The functions ℎ(𝑥) and 𝑉 (𝑥) that minimize 𝐽 must satisfy the relation

𝛿𝐽 = 𝑊

∫ 𝑟

0

[(
𝑆𝑤𝐶𝐷 𝑝

𝑊

(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉 − 4𝑊

𝜋𝑅𝐴
(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉3𝑆𝑤

)
𝑦𝑣

+
(
𝑆𝑤𝐶𝐷 𝑝

2𝑊
𝐶𝜌1𝑉

2 − 2𝑊𝐶𝜌1

𝜋𝑅𝐴
(
𝐶𝜌0 + 𝐶𝜌1ℎ

)2
𝑉2𝑆𝑤

)
𝑦ℎ

]
𝑑𝑥 = 0 (B122)

for all possible functions 𝑦ℎ and 𝑦ℎ. Therefore, the condition in Eq. (B122) reduces to

(
𝑆𝑤𝐶𝐷 𝑝

𝑊

(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉 − 4𝑊

𝜋𝑅𝐴
(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉3𝑆𝑤

)
𝑦𝑣

+
(
𝑆𝑤𝐶𝐷 𝑝

2𝑊
𝐶𝜌1𝑉

2 − 2𝑊𝐶𝜌1

𝜋𝑅𝐴
(
𝐶𝜌0 + 𝐶𝜌1ℎ

)2
𝑉2𝑆𝑤

)
𝑦ℎ = 0 (B123)
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which requires that

𝑆𝑤𝐶𝐷 𝑝

𝑊

(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉 − 4𝑊

𝜋𝑅𝐴
(
𝐶𝜌0 + 𝐶𝜌1ℎ

)
𝑉3𝑆𝑤

= 0 (B124)

and
𝑆𝑤𝐶𝐷 𝑝

2𝑊
𝐶𝜌1𝑉

2 − 2𝑊𝐶𝜌1

𝜋𝑅𝐴
(
𝐶𝜌0 + 𝐶𝜌1ℎ

)2
𝑉2𝑆𝑤

= 0 (B125)

Note that Eqs. (B124) and (B125) both reduce to

𝑆𝑤𝐶𝐷 𝑝

𝑊
𝑉2 =

4𝑊
𝜋𝑅𝐴

(
𝐶𝜌0 + 𝐶𝜌1ℎ

)2
𝑉2𝑆𝑤

(B126)

which can be solved for the velocity to give

𝑉 = 4

√︄
4

𝜋𝑅𝐴𝐶𝐷 𝑝

√︄
𝑊

𝜌𝑆𝑤
(B127)

Equation (B127) is equivalent to the minimum drag airspeed for an aircraft in steady level

flight.

B.3 Trajectory Optimization for a Battery-Powered Aircraft
Consider an aircraft in climbing flight, with velocity 𝑉 , weight 𝑊 , climb angle 𝛾, and

thrust 𝑇 aligned in the direction of flight, as shown in Fig. B2. If the thrust is generated by a

battery-powered motor, we can assume that the weight 𝑊 is constant. The aircraft equations

of motion are given by Eqs. (B93)-(B99).

The lift and drag are often written in terms of a lift and drag coefficient, which are

defined as

𝐶𝐿 =
𝐿

1
2𝜌𝑉

2𝑆𝑤
(B128)

𝐶𝐷 =
𝐷

1
2𝜌𝑉

2𝑆𝑤
(B129)
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Fig. B2 Aircraft in climbing flight

where 𝜌 is the atmospheric density, and 𝑆𝑤 is the reference area of the main wing. Using

a linear approximation, the lift coefficient can be written in terms of a lift slope, 𝐶𝐿,𝛼, the

angle of attack 𝛼, and the zero-lift angle of attack 𝛼𝐿=0 as

𝐶𝐿 = 𝐶𝐿,𝛼 (𝛼 − 𝛼𝐿=0) (B130)

The drag coefficient can be written in terms of the lift coefficient by assuming that the drag

coefficient is nearly parabolic with respect to the lift coefficient, i.e.,

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷1𝐶𝐿 + 𝐶𝐷2𝐶
2
𝐿 (B131)

where 𝐶𝐷0 , 𝐶𝐷1 , and 𝐶𝐷2 are constant coefficients in the parabolic representation of the drag

coefficient as a function of the lift coefficient.

If the climb angle is assumed to be zero and constant, the time rate of change of velocity

can be simplified to give

¤𝑉 =
𝑇

𝑚
− 𝐷 (𝑉)

𝑚
(B132)

For this case, the lift is equal to the weight, which means that the lift coefficient 𝐶𝐿 can be

written as

𝐶𝐿 =
𝑊

1
2𝜌𝑉

2𝑆𝑤
(B133)
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Using Eq. B133 with Eq. B131 gives an expression for the drag as a function of the velocity,

i.e.,

𝐷 = 1
2𝜌𝑉

2𝑆𝑤𝐶𝐷0 + 𝐶𝐷1𝑊 + 𝐶𝐷2

𝑊2

1
2𝜌𝑉

2𝑆𝑤
(B134)

B.3.1 Minimum Thrust with Zero Climb Angle

Consider the optimal control problem in which the integral of thrust is to be minimized

over the course of a flight from an initial time 𝑡0 = 0 to some final time 𝑡 𝑓 with 𝛾 = 0. As

shown in the previous subsection, the aircraft is subject to equations of motion, which can

be considered dynamic constraints. The thrust can take any value bounded by 0 ≤ 𝑇 ≤ 𝑇max,

where 𝑇max is the maximum available thrust. The aircraft begins at a position 𝑥(0) = 𝑥0 with

veloctiy 𝑉 (0) = 𝑉0, and ends at a final position 𝑥(𝑡 𝑓 ) = 𝑥 𝑓 with final velocity 𝑉 (𝑡 𝑓 ) = 𝑉 𝑓 .

Thus, the optimization problem can be summarized as

minimize:
𝑡 𝑓∫
0
𝑇𝑑𝑡

with respect to: 𝑇 (𝑡), 𝑉 (𝑡)

subject to: ¤𝑥 = 𝑉

¤𝑉 =
𝑇

𝑚
− 1
𝑚

(
1
2𝜌𝑉

2𝑆𝑤𝐶𝐷0 + 𝐶𝐷1𝑊 + 𝐶𝐷2

𝑊2

1
2𝜌𝑉

2𝑆𝑤

)

𝑥(0) = 𝑥0, 𝑥(𝑡 𝑓 ) = 𝑥 𝑓

𝑉 (0) = 𝑉0, 𝑉 (𝑡 𝑓 ) = 𝑉 𝑓

0 ≤ 𝑇 ≤ 𝑇max

From optimal control theory, the Hamiltonian can be written as

𝐻 = _0𝑇 + _1𝑉 + _2

[
𝑇

𝑚
− 1
𝑚

(
1
2𝜌𝑉

2𝑆𝑤𝐶𝐷0 + 𝐶𝐷1𝑊 + 𝐶𝐷2

𝑊2

1
2𝜌𝑉

2𝑆𝑤

)]
(B135)

where _0, _1, and _2 are the costate variables. The costate variable _0 is a constant that

can be either 0 or 1. The other two variables, _1 and _2, can be found from the differential
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equations

¤_1 = −𝜕𝐻

𝜕𝑥
= 0 (B136)

¤_2 = −𝜕𝐻

𝜕𝑉
= −_1 + _2

𝑚

𝜕𝐷

𝜕𝑉
(B137)

The optimal thrust 𝑇∗ minimizes the Hamiltonian. This requires that 𝑇∗ minimize the

expression (
_0 + _2

𝑚

)
𝑇∗ (B138)

The value of 𝑇∗ that minimizes this expression depends on the value of the quantity in

parentheses. For the case where
(
_0 + _2

𝑚

)
> 0, Eq. B138 is minimized with 𝑇∗ = 0. When(

_0 + _2
𝑚

)
< 0, thrust is minimized with 𝑇∗ = 𝑇max. For the case where

(
_0 + _2

𝑚

)
= 0 the

optimal thrust is said to be singular.

Suppose that _0 = 0. For the expression in Eq. (B138) to remain zero, then _2 and ¤_2

must also be zero. Using _2 = ¤_2 = 0 in Eq. (B137) gives _1 = 0. Thus, if _0 = 0, then

_1 = _2 = 0. This violates the non-triviality condition, which dictates that (_0, _1, _2) ≠ 0.

Therefore, _0 must be equal to 1. In the case that _0 = 1, the condition
(
_0 + _2

𝑚

)
= 0 requires

that _2 = −𝑚, which is a constant. Therefore, ¤_2 = 0, and from Eq. (B137), we find that

_1 = 𝜕𝐷
𝜕𝑉 , which, by Eq. (B136), is also a constant. Evaluating 𝜕𝐷

𝜕𝑉 from Eq. (B134) gives

𝜕𝐷

𝜕𝑉
= 𝜌𝑉𝑆𝑤𝐶𝐷0 −

4𝐶𝐷2𝑊
2

𝜌𝑉3𝑆𝑤
(B139)

For Eq. (B139) to be constant requires that

¤𝜕𝐷
𝜕𝑉

= ¤𝑉
(
𝜌𝑆𝑤𝐶𝐷0 +

12𝐶𝐷2𝑊
2

𝜌𝑉4𝑆𝑤

)
= 0 (B140)

Equation (B140) can be satisfied only if 𝑉 is constant, i.e, ¤𝑉 = 0. From Eq. (B132), this
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gives

𝑇∗ = 1
2𝜌𝑉

2𝑆𝑤𝐶𝐷0 + 𝐶𝐷1𝑊 + 𝐶𝐷2

𝑊2

1
2𝜌𝑉

2𝑆𝑤
(B141)

which is equivalent to the drag 𝐷. Thus, the optimal thrust can be written

𝑇∗ =




0 for
(
_0 + _2

𝑚

)
> 0

𝑇max for
(
_0 + _2

𝑚

)
< 0

𝐷 for
(
_0 + _2

𝑚

)
= 0

(B142)

B.3.2 Minimum Power with zero Climb Angle

If the power, rather than the thrust, is to be minimized over time with 𝛾 = 0, the

optimization problem changes to

minimize:
𝑡 𝑓∫
0
𝑇𝑉𝑑𝑡

with respect to: 𝑇 (𝑡), 𝑉 (𝑡)

subject to: ¤𝑥 = 𝑉

¤𝑉 =
𝑇

𝑚
− 1
𝑚

(
1
2𝜌𝑉

2𝑆𝑤𝐶𝐷0 + 𝐶𝐷1𝑊 + 𝐶𝐷2

𝑊2

1
2𝜌𝑉

2𝑆𝑤

)

𝑥(0) = 𝑥0, 𝑥(𝑡 𝑓 ) = 𝑥 𝑓

𝑉 (0) = 𝑉0, 𝑉 (𝑡 𝑓 ) = 𝑉 𝑓

0 ≤ 𝑇 ≤ 𝑇max

Here, the Hamiltonian is written as

𝐻 = _0𝑇𝑉 + _1𝑉 + _2

(
𝑇

𝑚
− 𝐷

𝑚

)
(B143)
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The costate variables are found from

¤_1 = −𝜕𝐻

𝜕𝑥
= 0 (B144)

¤_2 = −𝜕𝐻

𝜕𝑉
= −_0𝑇 − _1 + _2

𝑚

𝜕𝐷

𝜕𝑉
(B145)

The optimal thrust minimizes the expression

(
_0𝑉 + _2

𝑚

)
𝑇∗ (B146)

When
(
_0𝑉 + _2

𝑚

)
> 0, the expression in Eq. (B146) is minimized with 𝑇∗ = 0; if(

_0𝑉 + _2
𝑚

)
< 0, the expression in Eq. (B146) is minimized with 𝑇∗ = 𝑇max; when(

_0𝑉 + _2
𝑚

)
= 0, the optimal thrust is singular.

Consider the case where
(
_0𝑉 + _2

𝑚

)
= 0 and _0 = 0. In order for Eq.(B146) to remain

zero,_2 and ¤_2 must be zero. Using _2 = ¤_2 = 0 in Eq. (B145) gives _1 = 0. Thus, _0 = 0

requires that _1 = _2 = 0, which violates the non-triviality condidition. If _0 = 1, then

_2 = −𝑚𝑉 . Differentiating gives

¤_2 = −𝑚 ¤𝑉 = 𝑇 − _1 −𝑉
𝜕𝐷

𝜕𝑉
(B147)

Equating Eq. (B145) and Eq. (B147) and simplifying gives

_1 = −𝑉 𝜕𝐷

𝜕𝑉
− 𝐷 (B148)

Differentiating Eq. (B148) and using Eq. (B144) gives

¤_1 = ¤𝑉
(
𝜕𝐷

𝜕𝑉
− 6𝐶𝐷2

2𝑊2

𝜌𝑉3𝑆𝑤
− 𝜌𝑉𝑆𝑤𝐶𝐷0 − 2𝐶𝐷2

2𝑊2

𝜌𝑉2𝑆𝑤

)
= 0 (B149)

which implies that ¤𝑉 = 0. Using this result with Eq. (B132) gives 𝑇∗ = 𝐷. Thus, the optimal
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thrust can be written as

𝑇∗ =




0 for
(
_0𝑉 + _2

𝑚

)
> 0

𝑇max for
(
_0𝑉 + _2

𝑚

)
< 0

𝐷 for
(
_0𝑉 + _2

𝑚

)
= 0

(B150)

B.3.3 Optimization with Free Final State and Zero Climb Angle

Consider now the case where we wish to identify the trajectory that minimizes the

thrust or the power over the course of a flight phase in which the final state is not specified.

In other words, we seek to minimize thrust or power, but we allow the optimization to

determine the optimal final state. This sort of problem often appears in cruise trajectory

optimization, in which the initial cruise state is specified, but the final cruise state is to

be determined through optimization alongside the optimal trajectory. For this case, we

require two boundary conditions in addition to the initial state boundary conditions. These

come from the transversality conditions _1(𝑡 𝑓 ) = _2(𝑡 𝑓 ) = 0. The optimization problem for

minimum thrust can be written as

minimize:
𝑡 𝑓∫
0
𝑇𝑑𝑡

with respect to: 𝑇 (𝑡), 𝑉 (𝑡)

subject to: ¤𝑥 = 𝑉

¤𝑉 =
𝑇

𝑚
− 1
𝑚

(
1
2𝜌𝑉

2𝑆𝑤𝐶𝐷0 + 𝐶𝐷1𝑊 + 𝐶𝐷2

𝑊2

1
2𝜌𝑉

2𝑆𝑤

)

𝑥(0) = 𝑥0, _1(𝑡 𝑓 ) = 0

𝑉 (0) = 𝑉0, _2(𝑡 𝑓 ) = 0

0 ≤ 𝑇 ≤ 𝑇max

The Hamiltonian for this problem is the same as that shown in Eq.(B135). Because ¤_1 = 0,
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as shown in Eq. (B136), and _1(𝑡 𝑓 ) = 0, we know that _1(𝑡) = 0 throughout the trajectory.

For the case where the final state is not specified, the optimization problem for minimum

power can be rewritten using the transversality conditions to give

minimize:
𝑡 𝑓∫
0
𝑇𝑉𝑑𝑡

with respect to: 𝑇 (𝑡), 𝑉 (𝑡)

subject to: ¤𝑥 = 𝑉

¤𝑉 =
𝑇

𝑚
− 1
𝑚

(
1
2𝜌𝑉

2𝑆𝑤𝐶𝐷0 + 𝐶𝐷1𝑊 + 𝐶𝐷2

𝑊2

1
2𝜌𝑉

2𝑆𝑤

)

𝑥(0) = 𝑥0, _1(𝑡 𝑓 ) = 0

𝑉 (0) = 𝑉0, _2(𝑡 𝑓 ) = 0

0 ≤ 𝑇 ≤ 𝑇max

The Hamiltonian matches that shown in Eq. (B143), and ¤_1 = 0, as shown in Eq. (B144),

which means that _1(𝑡) = 0 throughout the trajectory.

B.3.4 Minimum Power over a Specified Range with Zero Climb Angle

It is sometimes convenient to rewrite the problem in terms of downrange distance 𝑥.

Using the conversion 𝜕
𝜕𝑡 =

𝜕
𝜕𝑥

𝜕𝑥
𝜕𝑡 , and noting that 𝜕𝑥

𝜕𝑡 = ¤𝑥 = 𝑉 , as shown in Eq. (B93), we can

rewrite Eq. (B132) in terms of 𝑥 as

𝑉 ′ =
¤𝑉
𝑉

=
𝑇

𝑚𝑉
− 𝐷 (𝑉)

𝑚𝑉
(B151)

The power is 𝑃 = 𝑇𝑉 , thus, using the same conversion, we can rewrite the integral of the

power over time in terms of 𝑥 as

𝐽 =

𝑡 𝑓∫
0

𝑇𝑉𝑑𝑡 =

𝑥 𝑓∫
𝑥0

𝑇𝑉

𝑉
𝑑𝑥 =

𝑥 𝑓∫
𝑥0

𝑇𝑑𝑥 (B152)
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The optimization problem for minimum power over time can then be summarized as

minimize:
𝑥 𝑓∫
𝑥0

𝑇𝑑𝑥

with respect to: 𝑇 (𝑡), 𝑉 (𝑡)

subject to: 𝑉 ′ =
𝑇

𝑚𝑉
− 1
𝑚

(
1
2𝜌𝑉𝑆𝑤𝐶𝐷0 + 𝐶𝐷1

𝑊

𝑉
+ 𝐶𝐷2

𝑊2

1
2𝜌𝑉

3𝑆𝑤

)

𝑉 (0) = 𝑉0, 𝑉 (𝑡 𝑓 ) = 𝑉 𝑓

0 ≤ 𝑇 ≤ 𝑇max

The Hamiltonian for this problem is

𝐻 = _0𝑇 + _1

[
𝑇

𝑚𝑉
− 1
𝑚

(
1
2𝜌𝑉𝑆𝑤𝐶𝐷0 + 𝐶𝐷1

𝑊

𝑉
+ 𝐶𝐷2

𝑊2

1
2𝜌𝑉

3𝑆𝑤

)]
(B153)

and the costate variable _1 can be found from

_′1 = −𝜕𝐻

𝜕𝑉
=
_1
𝑚

(
𝑇

𝑉2 + 1
2
𝜌𝑆𝑤𝐶𝐷0 − 𝐶𝐷1

𝑊

𝑉2 − 3𝐶𝐷2

𝑊2

1
2𝜌𝑉

4𝑆𝑤

)
(B154)

The optimal thrust must minimize the expression

(
_0 + _1

𝑚𝑉

)
𝑇∗ (B155)

If
(
_0 + _1

𝑚𝑉

)
> 0, this expression is minimized with𝑇∗ = 0; if

(
_0 + _1

𝑚𝑉

)
< 0, the expression

is minimized with 𝑇∗ = 0; if
(
_0 + _1

𝑚𝑉

)
= 0, the optimal thrust is said to be singular.

Consider the case where _0 = 0. In order for
(
_0 + _1

𝑚𝑉

)
= 0, then _1 must also be zero.

This violates the non-triviality condition. Therefore, since _0 can only take the values 0

and 1, we know that _0 = 1. For this case, The expression
(
_0 + _1

𝑚𝑉

)
= 0 requires that

_1 = −𝑚𝑉 . Taking the derivative of _1 gives _′1 = −𝑚𝑉 ′. Using this expression and Eq.
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(B151) in Eq. (B154) gives

− 𝑇∗

𝑉
+ 1

2
𝜌𝑉𝑆𝑤𝐶𝐷0 +𝐶𝐷1

𝑊

𝑉
+𝐶𝐷2

𝑊2

1
2𝜌𝑉

3𝑆𝑤
= −𝑇

∗

𝑉
− 1

2
𝜌𝑉𝑆𝑤𝐶𝐷0 +𝐶𝐷1

𝑊

𝑉
+ 3𝐶𝐷2

𝑊2

1
2𝜌𝑉

3𝑆𝑤
(B156)

Simplifying Eq. (B156) gives

𝜌𝑉𝑆𝑤𝐶𝐷0 − 2𝐶𝐷2

𝑊2

1
2𝜌𝑉

3𝑆𝑤
=
𝜕𝐷

𝜕𝑉
= 0 (B157)

For the singular case, the optimal thrust can be found from

𝜕𝐻

𝜕𝑇

′
=
𝑚𝑉_′1 − _1𝑚𝑉

′

𝑚2𝑉2 = 0 (B158)

Equation (B158) can be expanded using Eqs. (B154) and (B99) and solved for 𝑇∗ to give

𝑇∗ =
1
2
𝜌𝑉2𝑆𝑤𝐶𝐷0

(
1 − 1

𝑚𝑉

)
(
1 + 1

𝑚𝑉

) + 𝐶𝐷1𝑊 + 𝐶𝐷2

𝑊2

1
2𝜌𝑉

2𝑆𝑤
(B159)

Thus, the optimal thrust can be written as

𝑇∗ =




0 for
(
_0 + _1

𝑚𝑉

)
> 0

𝑇max for
(
_0 + _1

𝑚𝑉

)
< 0

1
2
𝜌𝑉2𝑆𝑤𝐶𝐷0

(
1 − 1

𝑚𝑉

)
(
1 + 1

𝑚𝑉

) + 𝐶𝐷1𝑊 + 𝐶𝐷2

𝑊2

1
2𝜌𝑉

2𝑆𝑤
for

(
_0 + _1

𝑚𝑉

)
= 0

(B160)

B.3.5 Minimum Thrust Over Specified Range with Nonzero Climb Angle

Consider the case where thrust is to be minimized over specified range with known initial

states, and the aircraft is allowed to change altitude. For this case, the dynamic constraints

are the equations of motion given in Eqs. (B97)-(B99). Here, we will assume that the angle
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of attack (and therefore the lift coefficient) is constant, the density does not change with

altitude, and the climb angle 𝛾 is small. Under these assumptions, the optimization problem

can be summarized as

minimize:
𝑥 𝑓∫
𝑥0

𝑇𝑑𝑥

with respect to: 𝑇 (𝑥), 𝑉 (𝑥), ℎ(𝑥), 𝛾(𝑥)

subject to: ℎ′ = 𝛾

𝛾′ =
𝜌𝑆𝑤𝐶𝐿

2𝑚
− 𝑊

𝑚𝑉2

𝑉 ′ =
𝑇 − 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 −𝑊𝛾

𝑚𝑉

ℎ(0) = ℎ0, _ℎ (𝑡 𝑓 ) = 0

𝛾(0) = 𝛾0, _𝛾 (𝑡 𝑓 ) = 0

𝑉 (0) = 𝑉0, _𝑉 (𝑡 𝑓 ) = 0

0 ≤ 𝑇 ≤ 𝑇max

The Hamiltonian is written as

𝐻 = _0𝑇 + _ℎ𝛾 + _𝛾

(
𝜌𝑆𝑤𝐶𝐿

2𝑚
− 𝑊

𝑚𝑉2

)
+ _𝑉

(
𝑇 − 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 −𝑊𝛾

𝑚𝑉

)
(B161)

The costate variables, _ℎ, _𝛾, and _𝑉 are found from

_′ℎ = −𝜕𝐻

𝜕ℎ
= 0 (B162)

_′𝛾 = −𝜕𝐻

𝜕𝛾
= −_ℎ + _𝑉

𝑔

𝑉
(B163)

_′𝑉 = −𝜕𝐻

𝜕𝑉
= −2_𝛾𝑔

𝑉3 + _𝑉

(
𝑇 − 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 −𝑊𝛾

𝑉2 + 𝜌𝑆𝑤𝐶𝐷

)
(B164)
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The optimal thrust is found by minimizing the expression

(
_0 + _𝑉

𝑚𝑉

)
𝑇∗ (B165)

If
(
_0 + _𝑉

𝑚𝑉

)
> 0, this expression is minimized with𝑇∗ = 0; if

(
_0 + _𝑉

𝑚𝑉

)
< 0, the expression

is minimized with 𝑇∗ = 0; if
(
_0 + _𝑉

𝑚𝑉

)
= 0, the optimal thrust is said to be singular.

Consider the case where _0 = 0. In order for
(
_0 + _𝑉

𝑚𝑉

)
= 0, then _𝑉 must also be zero.

This violates the non-triviality condition. Therefore, since _0 can only take the values 0 and

1, we know that _0 = 1. For this case, The expression
(
_0 + _𝑉

𝑚𝑉

)
= 0 requires that _𝑉 = −𝑚𝑉 .

Taking the derivative of _𝑉 gives _′𝑉 = −𝑚𝑉 ′. Using Eq. (B151) in this expression, and

comparing the result to Eq. (B164) gives

− 𝑇∗ − 1
2𝜌𝑉

2𝑆𝑤𝐶𝐷 −𝑊𝛾

𝑉
= −2_𝛾𝑔

𝑉3 + _𝑉

(
𝑇∗ − 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 −𝑊𝛾

𝑉2 + 𝜌𝑆𝑤𝐶𝐷

)
(B166)

Using the requirement _𝑉 = −𝑚𝑉 , Eq. (B166) reduces to

2_𝛾𝑔
𝑉3 = 𝜌𝑉𝑆𝑤𝐶𝐷 (B167)

which can be solved for _𝛾 to give

_𝛾 = −𝜌𝑉4𝑆𝑤𝐶𝐷

2𝑔
(B168)

Taking the derivative of Eq. (B168) and comparing it to Eq. (B163) gives

− 4
2𝑔

𝜌𝐶𝐷𝑉
3𝑉 ′ = −2

𝑔
𝜌𝐶𝐷𝑉

3𝑇
∗ − 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 −𝑊𝛾

𝑚𝑉
= −_ℎ + _𝑉

𝑔

𝑉
(B169)
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which can be solved for 𝑇∗ to give

𝑇∗ = − 𝑊

2𝜌𝑆𝑤𝐶𝐷𝑉2

(
−_ℎ + _𝑉

𝑔

𝑉

)
+ 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 +𝑊𝛾 (B170)

Thus, the optimal thrust can be summarized as

𝑇∗ =




0 for
(
_0 + _𝑉

𝑚𝑉

)
> 0

𝑇max for
(
_0 + _𝑉

𝑚𝑉

)
< 0

− 𝑊

2𝜌𝑆𝑤𝐶𝐷𝑉2

(
−_ℎ + _𝑉

𝑔

𝑉

)
+ 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 +𝑊𝛾 for

(
_0 + _𝑉

𝑚𝑉

)
= 0

(B171)

B.3.6 Minimum Drag Over Given Range with Nonzero Climb Angle

Suppose we wish to minimize the integral of the drag over a specified range with a

variable climb angle, known initial conditions on the states, and no final conditions on the

states. The optimization problem can be summarized for this case as follows:

minimize:
𝑥 𝑓∫
𝑥0

𝐷𝑑𝑥

with respect to: 𝑇 (𝑥), 𝑉 (𝑥), ℎ(𝑥), 𝛾(𝑥)

subject to: ℎ′ = 𝛾

𝛾′ =
𝜌𝑆𝑤𝐶𝐿

2𝑚
− 𝑊

𝑚𝑉2

𝑉 ′ =
𝑇 − 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 −𝑊𝛾

𝑚𝑉

ℎ(0) = ℎ0, _ℎ (𝑡 𝑓 ) = 0

𝛾(0) = 𝛾0, _𝛾 (𝑡 𝑓 ) = 0

𝑉 (0) = 𝑉0, _𝑉 (𝑡 𝑓 ) = 0

0 ≤ 𝑇 ≤ 𝑇max
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The Hamiltonian is written as

𝐻 = _0
1
2𝜌𝑉

2𝑆𝑤𝐶𝐷 + _ℎ𝛾 + _𝛾

(
𝜌𝑆𝑤𝐶𝐿

2𝑚
− 𝑊

𝑚𝑉2

)
+ _𝑉

(
𝑇 − 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 −𝑊𝛾

𝑚𝑉

)
(B172)

The costate variables, _ℎ, _𝛾, and _𝑉 are found from

_′ℎ = −𝜕𝐻

𝜕ℎ
= 0 (B173)

_′𝛾 = −𝜕𝐻

𝜕𝛾
= −_ℎ + _𝑉

𝑔

𝑉
(B174)

_′𝑉 = −𝜕𝐻

𝜕𝑉
= −_0𝜌𝑉𝑆𝑤𝐶𝐷 − 2_𝛾𝑔

𝑉3 + _𝑉
𝑚

(
𝑇 − 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 −𝑊𝛾

𝑉2 + 𝜌𝑆𝑤𝐶𝐷

)
(B175)

The optimal thrust is found by minimizing the expression

_𝑉
𝑚𝑉

𝑇∗ (B176)

If _𝑉
𝑚𝑉 > 0, this expression is minimized with 𝑇∗ = 0; if _𝑉

𝑚𝑉 < 0, the expression is minimized

with 𝑇∗ = 𝑇max; if _𝑉
𝑚𝑉 = 0, _𝑉 must also be zero, and the optimal thrust is said to be singular.

Note that because the transversality conditions require that _ℎ (𝑥 𝑓 ) = 0, and Eq. (B173)

shows that _′ℎ = 0, we know that _ℎ (𝑥) = 0 along any trajectory. Along the singular arc,

_𝑉 = 0. Equation (B174) shows that when _𝑉 = 0 and _ℎ = 0, _′𝛾 = 0, which, by the

transversality condition requires that _𝛾 (𝑥) = 0.

Along the singular arc, _𝑉 is zero, _′𝑉 = 0. Comparing this to Eq. (B175) gives

0 = −_0𝜌𝑉𝑆𝑤𝐶𝐷 − 2_𝛾𝑔
𝑉3 + _𝑉

𝑚

(
𝑇∗ − 1

2𝜌𝑉
2𝑆𝑤𝐶𝐷 −𝑊𝛾

𝑉2 + 𝜌𝑆𝑤𝐶𝐷

)
(B177)

Because _𝑉 = 0 and _′𝛾 = 0, Eq. (B177) requires that _0 = 0, which violates the non-triviality

condition.
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''' 
wing_structure.py

Used to predict the wing-structure weight and its distribution for a 
specified aircraft

Calls the wing_structure_m3 module, which contains most calculations 
for the
wing-structure weight
'''

#!/usr/bin/env python
import numpy as np
import sys
import time
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
#User-Defined Module Containing functions used for
#-Reading Input File
#-Geometry Setup
#-Discretization
#-Moment Calculations
#-Wing Structure Calculations
#-Non-Structural Weight Calculations
#-Solver
import wing_structure_m3 as ws
from matplotlib import rc

data_format="{0:<30}{1:<24.16f}\n"
dist_header="{0:<24}{1:<24}{2:<24}{3:<24}{4:<32}{5:<24}\n"
dist_format="{0:<24.16f}{1:<24.16f}{2:<24.16f}{3:<24.16f}{4:<32.16f}{5
:<24.16f}\n"

plot_flag = False
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APPENDIX C

CODE EXAMPLES

C.1 Wing-Structure Prediction

The following example code extracts can be used to predict the wing-structure weight
for a desired input aircraft, as described in Chapter 3.

C.1.1 Wing-Structure Weight Code Main



""" 
wing_structure_m3.py

Calculates the wing-structure weight required to support the bending
moments produced by a given lift distribution and payload 
distribution for a
given wing geometry.

This module is intended to allow a user to output the required 
wing-structure
weight given the parameters described in the title. It takes an 
input file
containing the aircraft geometry, limits, and flight condition. It 
calculates
the bending moments for the hard-landing and maneuvering flight 
limits, for
the deflection-limited and stress-limited designs (if desired). It 
returns
the bending moment distribution, wing-structure weight distribution, 
total
wing-structure weight, and the induced drag. The process follows 
that outlined
in "Minimizing Induced Drag for Wings with Arbitrary Planform and 
Weight
Distribution" with the option to superimpose different payload 
distributions.

Parameters:
----------------------------------------------------------------------
---------
input.json file : the input file containing required parameters
See README in for more information.

Returns:
----------------------------------------------------------------------
---------
plane.w.structure_distribution : array containing the wing-structure 
weight
                                 distribution
plane.w.structure : the total wing-structure weight
plane.moments : array containing the limiting bending moments
plane.induced_drag : the induced drag produced under these conditions

Notes:
----------------------------------------------------------------------
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---------
This is a rewrite of a previous version. This version was rewritten 
in order
to accommodate the superposition of several payload distributions.

Certain parameters in the input file can be specified as functions. For
example, the chord distribution, the thickness-to-chord ratio, and 
the payload
distributions can all be specified as functions. Some of the 
functions are
built in and are included in the dist_functions.py script. The user 
also has
the option of specifying a custom distribution, which is contained 
in the
user_functions.py script.

Example:
----------------------------------------------------------------------
---------
plane = wing_structure_m2.Domain('input.json',comment_flag)
plane.solver(tolerance)

"""
import sys
import os
import numpy as np
import math as ma
import json
from collections import OrderedDict
import time
import dist_functions_2
from scipy import integrate
from scipy import interpolate
from decimal import *

getcontext().prec = 16

class Domain(object):
"""The Domain class contains all case information.

    The domain class contains all of the aircraft and flight 
condition values,

    both parameters and variables.

    Attributes
    ----------
    Wing : class
        Class containing all of the wing data and methods specific 

to the wing.
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    Spar : class
        Class containing all of the spar data and methods specific 

to the spar.
    Weight : class
        Class containing all of the spar data and methods specific 

to the spar.
    moment : Array
        Array containing the calculated bending moment for the input
        payload distribution at each spanwise location specified by 

the base
        grid.
    limits : array
        Array of length 2 containing the positive and negative load 

limits
    density : float
        The density of air at the flight condition
    velocity : float
        The velocity of the aircraft at the flight condition.

    Methods
    -------
    __init__:
        initializes the domain class.
    initialize_constants
        initializes and stores constants from input file.
    initialize_payload_distributions
        initializes and stores payload distributions from input file
    initialize_distributions
        initializes all distributions excluding the payload 

distribution

    """

def __init__(self, filename, comment_flag=False):
"""Initializes the Domain class

        The __init__ method initializes the Domain class with the
        information from the input file.

        Note
        ----
        This is a private method.

        Parameters
        ----------
        filename : str
            The name of the input file, in string form.
        comment_flag: Boolean
            Flag to specify whether the init function should display
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            information about the initialization of the Domain Class.

        """
# Create instances of each sublcass
self.wing = self.Wing()
self.spar = self.Spar()
self.weight = self.Weight()

self.comment_flag = comment_flag

# Read in the input file
with open(filename) as input_file:

data = json.load(input_file, object_pairs_hook=OrderedDict)

# Read Constants from Input File
self.read_constants(data)

# Initialize all distributions
self.initialize_distributions(data)

# Set Distributions
self.set_distributions(data)

def read_constants(self, data):
"""Initializes and stores constants from the input file

        The initialize_constants method reads in all constants (not
        distributions) from the input file and stores them inside 

the Domain
        class. Many of the constants are stored in the sublcasses 

Wing, Spar,
        and Weight.

        Parameters
        ----------
        data : dict
            Dictionary containing information from the input file.
        comment_flag: Boolean
            Flag to specify whether the init function should display
            information about the initialization of the constants.

        """

# Store constants general to the Domain Class
self.density = np.float128(data["flight"]["density"])
self.velocity = np.float128(data["flight"]["velocity"])

self.limits = np.zeros(2, dtype=np.float128)
self.limits[0] = np.float128(data["limits"]["maneuvering"])
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self.limits[1] = np.float128(data["limits"]["hard_landing"])

# Store constants for the Wing subclass
self.wing.read_constants(data)

# Store constants for the Spar sublcass
self.spar.read_constants(data)

# Store constants for the Weight subclass
self.weight.read_constants(data)

def initialize_distributions(self, data):
"""Initializes all distributions excluding the payload 
distributions

        The initialize_distributions method initializes all remaining
        distributions based on information from the input file and 

the spanwise
        locations specified in the weight.net_distribution list of 

arrays.
        Specifically, it sets a lift, wing_structure weight, 

bending_moment,
        chord, and thickness-to-chord ratio distribution for each 

set of
        spanwise locations given in the weight.net_distribution list 

of arrays.
        It stores each of these distributions in a respective list 

of arrays.
        (If a distribution is given in a file, instead of by a 

function, values
        will be linearly interpolated to find values at the correct 

spanwise
        locations.)

        Parameters
        ----------
        data : dict
            Dictionary containing information from the input file.
        comment_flag: Boolean
            Flag to specify whether the init function should display
            information about the initialization of the distributions.

        """

# Initialize moment distributions
self.moment = np.zeros(self.wing.grid+1, dtype=np.float128)

# Initialize Weight class distributions
self.weight.initialize_distributions(data)
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# Initialize Wing class distributions
self.wing.initialize_distributions(data)

# Initialize Spar class distributions
self.spar.initialize_distributions(data)

def set_distributions(self, data):
""" Sets distributions.

        This function sets all distributions based on built-in 
functions

        in the dist_functions script, and by custom functions 
defined in the

        user_functions script. These functions must return values, 
spanwise

        locations, and angle locations for each distribution

        Parameters
        ----------
        data : dict
            dictionary containing all input files values.
        """

self.wing.chord.set_values(self)

# Handle fixed wing loading
if self.wing.loading_type == 'fixed':

self.wing.area = self.weight.total/self.wing.loading

# Handle Max_Lift coefficient
elif self.wing.loading_type == 'lift':

self.wing.lift_coeffs =
np.divide(self.wing.lift_distribution,

self.wing.chord.values)
if self.wing.chord.definition == 'elliptic':

self.wing.lift_coeffs[-1] = 0.0
maxloc = np.argmax(self.wing.lift_coeffs)
self.wing.area = (

self.wing.area *
self.wing.lift_distribution[maxloc] *
self.weight.total*np.float128(2.0)/self.density /

self.wing.stall_velocity**np.float128(2)/self.wing.max
_lift_coeff /
self.wing.span/self.wing.chord.values[maxloc])

self.wing.chord.set_values(self)
# if self.wing.chord.definition == 'file':
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# ft = np.multiply(self.wing.chord.values,
# np.sin(self.wing.angle_location))

# area = -self.wing.span*integrate.simps(ft, 
self.wing.angle_location)
# self.wing.chord.values = 
self.wing.chord.values*self.wing.area/area

self.wing.thickness_chord.set_values(self)

self.wing.max_thickness = np.multiply(self.wing.chord.values,

self.wing.thickness_chor
d.values)

self.spar.height.set_values(self)
for i in range(1, len(self.weight.net_distributions)):

self.weight.net_distributions[i].set_values(self)

self.weight.net_weight(self.wing)

self.weight.base_net_weight_distribution(self.wing)

self.spar.set_spar(self, data)

def update_values(self):
"""updates values according to constraints

        constraints are implied from the input file.

        Parameters
        ----------

        """
self.wing.chord.set_values(self)

# Update Weight
self.weight.net_weight(self.wing)

self.weight.total = self.weight.net+self.weight.wing_structure

# Reset root weight, if needed
if self.weight.root_type == 'ratio':

self.weight.root =
self.weight.root_total_ratio*self.weight.total

# Handle fixed wing loading
if self.wing.loading_type == 'fixed':

self.wing.area = self.weight.total/self.wing.loading
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# Handle Max_Lift coefficient
elif self.wing.loading_type == 'lift':

self.wing.lift_coeffs =
np.divide(self.wing.lift_distribution,

self.wing.chord.values)
if self.wing.chord.definition == 'elliptic':

self.wing.lift_coeffs[-1] = 0.0
maxloc = np.argmax(self.wing.lift_coeffs)
self.wing.area = (

self.wing.area *
self.wing.lift_distribution[maxloc] *
self.weight.total*np.float128(2.0)/self.density /

self.wing.stall_velocity**np.float128(2)/self.wing.max
_lift_coeff /
self.wing.span/self.wing.chord.values[maxloc])

# print(self.wing.area)

self.wing.chord.set_values(self)
# if self.wing.chord.definition == 'file':

# ft = np.multiply(self.wing.chord.values,
# np.sin(self.wing.angle_location))

# area = -self.wing.span*integrate.simps(ft, 
self.wing.angle_location)
# self.wing.chord.values = 
self.wing.chord.values*self.wing.area/area

self.wing.max_thickness = np.multiply(
self.wing.chord.values, self.wing.thickness_chord.values)

self.spar.height.set_values(self)

self.spar.set_proportionality_coefficient(self.wing)

# ft = np.multiply(
# self.wing.chord.values, np.sin(self.wing.angle_location))

# self.wing.area = -self.wing.span*integrate.simps(
# ft, self.wing.angle_location)

self.wing.loading = self.weight.total/self.wing.area

# print(self.wing.area)

# reset net weight distributions
for k in range(1, len(self.weight.net_distributions)):

self.weight.net_distributions[k].set_values(self)

298



self.weight.base_net_weight_distribution(self.wing)

# Update Weight
self.weight.net_weight(self.wing)
self.weight.total = self.weight.net+self.weight.wing_structure

# Reset root weight, if needed
if self.weight.root_type == 'ratio':

self.weight.root =
self.weight.root_total_ratio*self.weight.total

def solver(self, tolerance, comment_flag=False):
"""Finds the wing-structure weight

        This function finds the wing-structure weight distribution 
and wing-

        structure weight, along with the bending moment distribution.

        Parameters
        ----------
        tolerance : float
            stopping criterion for the iterative solver.
        comment_flag: Boolean
            Flag to specify whether the solver function should display
            information.

        """

# open file to write convergence data
f = open('error.txt', 'w')
f.write('i'+'\t'+'error'+'\t'+'Wing structure weight'+'\n')

# initialize error and iteration counter
error = np.float128(1.0)
iteration = 0
maxiter = 200

# loop until convergence
while error > tolerance: # and iteration < maxiter:

prev = self.weight.wing_structure

# Calculate bending moments
self.calculate_moment()

# Update wing-structure weight
self.weight.calculate_structure(self)
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# Update error and iteration
if prev == 0.0:

error = np.float128(1.0)
else:

error = np.absolute(self.weight.wing_structure-prev)
# error = 
np.absolute(((self.weight.wing_structure-prev)

# / 
self.weight.wing_structure)*100.0)

iteration += 1

if comment_flag is True:
print('iteration:   ', iteration, '\t', 'error: ',
error,

'Wing Structure Weight: ',
"%.16f"%self.weight.wing_structure)

f.write(str(iteration)+'\t'+str(error)+'\t'+
str(self.weight.wing_structure)+'\n')

# Update Relevant Parameters
self.update_values()

if iteration == maxiter:
if comment_flag is True:

print('maximum number of iterations reached.')
break

if comment_flag is True:
print(' ')
print('Wing Structure Weight Converged in: 
'+str(iteration)+' iterations')
print(' ')

f.close()
self.calculate_induced_drag()

def calculate_moment(self):
"""calculates the bending moments on the wing

        Parameters
        ----------

        """
ng = np.zeros(self.wing.grid+1, dtype=np.float128)
nm = np.zeros(self.wing.grid+1, dtype=np.float128)
for i in range(0, self.wing.grid+1):

ft_lift_ng = np.multiply(np.multiply(np.multiply(
self.weight.total/self.limits[1]/np.float128(2.0),
np.sin(self.wing.angle_location[i:])),
self.wing.lift_distribution[i:]),
np.subtract(np.cos(self.wing.angle_location[i:]),
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ma.cos(self.wing.angle_location[i])))
ft_structure_ng = np.multiply(np.multiply(np.multiply(

-self.wing.span/np.float128(2.0),
np.sin(self.wing.angle_location[i:])),
self.weight.structure_distribution[i:]),
np.subtract(np.cos(self.wing.angle_location[i:]),

ma.cos(self.wing.angle_location[i])))
ft_net_ng = []
for k in range(1, len(self.weight.net_distributions)):

ft_net_ng.append(np.multiply(np.multiply(np.multiply(
-self.wing.span/np.float128(2.0),

np.sin(self.weight.net_distributions[k].angle_locat
ions)),
self.weight.net_distributions[k].values),
np.subtract(np.cos(
self.weight.net_distributions[k].angle_locations),

ma.cos(self.wing.angle_location[i]))))

ft_lift_nm = np.multiply(np.multiply(np.multiply(
-self.weight.total/np.float128(2.0),
np.sin(self.wing.angle_location[i:])),
self.wing.lift_distribution[i:]),
np.subtract(np.cos(self.wing.angle_location[i:]),

ma.cos(self.wing.angle_location[i])))
ft_structure_nm = np.multiply(np.multiply(np.multiply(

self.wing.span/np.float128(2.0),
np.sin(self.wing.angle_location[i:])),
self.weight.structure_distribution[i:]),
np.subtract(np.cos(self.wing.angle_location[i:]),

ma.cos(self.wing.angle_location[i])))
ft_net_nm = []
for k in range(1, len(self.weight.net_distributions)):

ft_net_nm.append(np.multiply(np.multiply(np.multiply(
self.wing.span/np.float128(2.0),

np.sin(self.weight.net_distributions[k].angle_locat
ions)),
self.weight.net_distributions[k].values),
np.subtract(np.cos(
self.weight.net_distributions[k].angle_locations),

ma.cos(self.wing.angle_location[i]))))

if (i == self.wing.grid):
self.moment[i] = np.float128(0.0)

else:
ng[i] =
-self.limits[1]*self.wing.span/np.float128(2.0)*(integ
rate.simps(
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ft_lift_ng,
self.wing.angle_location[i:])
+ integrate.simps(
ft_structure_ng,
self.wing.angle_location[i:]))

nm[i] =
self.limits[0]*self.wing.span/np.float128(2.0)*(integr
ate.simps(

ft_lift_nm,
self.wing.angle_location[i:])
+ integrate.simps(
ft_structure_nm,
self.wing.angle_location[i:]))

for k in range(1, len(self.weight.net_distributions)):
if self.wing.angle_location[i] \
>
self.weight.net_distributions[k].angle_locations
[0]:

ng[i] +=
-self.limits[1]*self.wing.span/np.float128(2.0
) \
* integrate.simps(
ft_net_ng[k-1],

self.weight.net_distributions[k].angle_loc
ations)

nm[i] +=
self.limits[0]*self.wing.span/np.float128(2.0)
 \

* integrate.simps(
ft_net_nm[k-1],

self.weight.net_distributions[k].angle_lo
cations)

elif self.wing.angle_location[i] \
<=
self.weight.net_distributions[k].angle_locatio
ns[0]\
and self.wing.angle_location[i] \
>=
self.weight.net_distributions[k].angle_locatio
ns[
self.weight.net_distributions[k].grid]:

start_loc = np.argmax(np.subtract(

self.weight.net_distributions[k].angle_locat
ions,
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self.wing.angle_location[i])
<= 1e-16)

ng[i] +=
-self.limits[1]*self.wing.span/np.float128(2.0
) \

* integrate.simps(
ft_net_ng[k-1][start_loc:],

self.weight.net_distributions[k].angle_lo
cations[

start_loc:])
nm[i] +=
self.limits[0]*self.wing.span/np.float128(2.0)
 \

* integrate.simps(
ft_net_nm[k-1][start_loc:],

self.weight.net_distributions[k].angle_lo
cations[

start_loc:])

self.moment[i] = max(np.absolute(ng[i]),
np.absolute(nm[i]))

def calculate_induced_drag(self):
"""Determines the induced drag.

        Parameters
        ----------

        """
Bsum = 0.0
for i in range(0, len(self.wing.lift_dist_coeffs)):

Bsum = Bsum + (i+2) *
self.wing.lift_dist_coeffs[i]**np.float128(2)

self.induced_drag =
(np.float128(2.0)*(self.weight.total/self.wing.span)**np.float
128(2)) \

/
(ma.pi*self.density*self.velocity**np.float128(2))*(1.0
+ Bsum)

class Wing(object):
"""The Wing class contains all wing information.

        The wing class contains attributes pertaining to the wing, 
primarily

        geometric attributes.
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        Attributes
        ----------
        base_grid: integer
            Grid used for visualization of data and for calculation 

of the
            lift distribution.
        grids : list
            List of integers containing the number of nodes used to 

specify
            each payload distribution.
        spanwise_locations : list
            List of arrays containing spanwise location data from the
            input payload distributions. These correspond to the 

distributions
            included in all distribution lists respectively. 

Generally, these
            should be cosine clustered according to the full semispan.
        base_span_loc : array
            the base spanwise location used in data visualization 

and in the
            calcluation of the lift distribution.
        angle_locations : list
            List of arrays containing the angles corresponding to 

the spanwise
            locations given in the input payload distributions. The 

angle
            locations should be evenly spaced for each payload 

distribution,
            making the spanwise locations cosine clustered.
        lift_distribution : array
            array containing the lift distribution at locations 

specified by
            the base grid.
        chord : array
            array containing the chord data corresponding to the 

spanwise
            locations given by the base grid
        chord_type : string
            String specifying if the chord values are interpolated 

from an
            input file or specified using a function.
        thickness_chord : array
            array containing thickness-to-chord ratio data 

corresponding to the
             spanwise locations given by the base grid
            distributions.
        thickness_chord_type : string
            String specifying if the thickness-to-chord values are 
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interpolated
            from an input file or specified using a function.
        max_thickness : array
            array containing the maximum airfoil thickness at each 

spanwise
            location specified by the base grid.
        area : float
            The total wing area, including both semispans.
        span : float
            The total wingspan. Semispan is span/2
        loading : float
            The wing loading, defined as Total weight/Area.
        taper_ratio : float
            The taper ratio for tapered wings. Only used in the case of
            linearly tapered wings.
        root_thickness_chord : float
            The thickness-to-chord ratio at the wing root. Only used 

in the
            case of linearly tapered thickness-to-chord ratio.
        tip_thickness_chord : float
            The thickness-to-chord ratio at the wing tip. Only used 

in the
            case of linearly tapered thickness-to-chord ratio.

        Methods
        -------
        initialize_constants:
            initializes the wing class constants.
        initialize_distributions:
            initializes the wing class distributions.

        """

def read_constants(self, data):
"""Initializes the wing class constants.

            Parameters
            ----------
            data : dict
                dictionary containing all of the input file data

            """
self.grid = data["wing"].get("grid", 0.0)
self.area = np.float128(data["wing"].get("wing_area", 0.0))
self.span = np.float128(data["wing"].get("wing_span", 0.0))
self.loading = np.float128(data["wing"].get("loading",
0.0))
self.max_lift_coeff =
np.float128(data["wing"].get("max_lift_coefficient", 0.0))
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self.stall_velocity =
np.float128(data["wing"].get("stall_velocity", 0.0))

temp_coeffs = data["lift_distribution"]["B"]
self.lift_dist_coeffs =
np.zeros(len(data["lift_distribution"]["B"]),
dtype=np.float128)
self.lift_dist_coeffs = temp_coeffs

if "loading" in data["wing"]:
self.loading_type = 'fixed'

elif "max_lift_coefficient" in data["wing"]:
self.loading_type = 'lift'

else:
self.loading_type = 'none'

if "function" in data["wing"]["chord"]["definition"]:
if "taper" in
data["wing"]["chord"]["definition"]["function"]:

self.taper_ratio =
np.float128(data["wing"]["chord"]["definition"][

"function"].get("taper", 'none'))
else:

self.taper_ratio = 'none'

if "function" in
data["wing"]["thickness_chord"]["definition"]:

if "root_tip" in
data["wing"]["thickness_chord"]["definition"][
"function"]:
self.root_thickness_chord =
np.float128(data["wing"][

"thickness_chord"]["definition"]["function"][
"root_tip"].get("root", 'none'))

self.tip_thickness_chord =
np.float128(data["wing"][

"thickness_chord"]["definition"]["function"][
"root_tip"].get("tip", 'none'))

else:
self.root_thickness_chord = 'none'
self.tip_thickness_chord = 'none'

def initialize_distributions(self, data):
"""Initializes the wing class distributions.

            Parameters
            ----------
            data : dict
                dictionary containing all of the input file data
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            """

# Discretize the wing according to the base grid
self.discretize()

# Calculate Lift Distribution
self.calculate_lift_distribution()

# Initialize other distributions
self.chord = Input_Distribution(data,
data["wing"]["chord"])

if self.chord.definition == 'constant':
self.loading_type = 'none'

self.thickness_chord = Input_Distribution(
data, data["wing"]["thickness_chord"])

self.max_thickness = np.multiply(self.chord.values,

self.thickness_chord.valu
es)

def discretize(self):
""" Discretizes the wing according to the grid

            Parameters
            ----------
            """

self.spanwise_location = np.zeros(self.grid,
dtype=np.float128)
self.angle_location = np.zeros(self.grid,
dtype=np.float128)
i = np.linspace(0, self.grid, self.grid+1)
self.angle_location = np.subtract(

np.float128(ma.pi)/np.float128(2.0),
np.divide(np.multiply(np.float128(ma.pi)/np.float128(2
.0), np.float128(i)),

np.float128(self.grid)))
self.spanwise_location = np.multiply(

self.span/np.float128(2.0),
np.cos(self.angle_location))

def calculate_lift_distribution(self):
"""Calculates the Lift distribution

            Parameters
            ----------
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            """
self.lift_distribution = np.zeros(self.grid+1,
dtype=np.float128)
for i in range(0, self.grid+1):

Bsinsum = np.float128(0.0)
for k in range(0, len(self.lift_dist_coeffs)):

Bsinsum = Bsinsum + self.lift_dist_coeffs[k] \
* ma.sin((k + np.float128(2)) *
self.angle_location[i])

self.lift_distribution[i] =
(np.float128(4.0)/np.float128(ma.pi)) \

* (ma.sin(self.angle_location[i])+Bsinsum)

class Spar(object):
"""The Spar class contains all spar information.

        The spar class contains attributes pertaining to the spar, 
primarily

        geometric and material attributes.

        Attributes
        ----------
        beam_type : string
            String specifying the beam type, if given in the input 

file. If no
            beam type is given in the input file, then beam_type is 

set to
            'null'
        height : array
            Array containing the spar height corresponding to the 

spanwise
            locations given by the base grid
        height_type : string
            String specifying if the height is based on a ratio of 

height to
            thickness or if it is interpolated and scaled from an
            input file.
        proportionality_coefficient : array
            Array containing the proportionality coefficient 

corresponding to
            the spanwise locations given by the base grid.
        max_stress : float
            The maximum allowable stress at any point in the spar.
        max_deflection : float
            The maximum allowable deflection at any point in the spar.
        specific_weight : float
            The specific weight of the beam material.
        modulus_elasticity : float
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            The modulus of elasticity of the beam material.
        stress_shape_factor : float
            The shape factor for the beam cross section for the 

stress-limited
            design. Can be specified or calculated from reference 

beam values.
        deflection_shape_factor : float
            The shape factor for the beam cross section for the
            deflection-limited design. Can be specified or 

calculated from
            reference beam values.
        inner_width : float
            Reference value for the inner width of a box-beam cross 

section
        inner_height : float
            Reference value for the inner height of a box-beam cross 

section
        outer_width : float
            Reference value for the outer width of a box-beam cross 

section
        flange_height : float
            Reference value for the flange height of an I-beam cross 

section
        flange_width : float
            Reference value for the flange width of an I-beam cross 

section
        web_width : float
            Reference value for the web width of an I-beam cross 

section

        Methods
        -------
        initialize_constants:
            initializes the wing class constants.
        initialize_distributions:
            initializes the wing class distributions.

        """

def read_constants(self, data):
"""Initializes the spar class constants.

            Parameters
            ----------
            data : dict
                dictionary containing all of the input file data

            """
self.max_stress =
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np.float128(data["spar"].get("max_stress", 'none'))
self.specific_weight =
np.float128(data["spar"].get("specific_weight", 'none'))
self.grid = np.float128(data["wing"]["grid"])
self.stress_shape_factor =
np.float128(data["spar"].get("C_sigma", 0.0))
self.deflection_shape_factor =
np.float128(data["spar"].get("C_delta", 0.0))
self.beam_type = data["spar"].get("beam_type", 'none')
if 'max_deflection' in data["spar"]:

self.max_deflection =
np.float128(data["spar"]["max_deflection"])
self.modulus_elasticity =
np.float128(data["spar"]["modulus_elasticity"])
self.design_name = 'deflection'

else:
self.design_name = 'stress'

if "function" in data["spar"]["height"]["definition"]:
if "fill" in
data["spar"]["height"]["definition"]["function"]:

self.fill_ratio =
np.float128(data["spar"]["height"]["definition"][

"function"].get("fill", 'none'))

def initialize_distributions(self, data):
"""Initializes the spar class distributions.

            Parameters
            ----------
            data : dict
                dictionary containing all of the input file data

            """
self.height = Input_Distribution(data,
data["spar"]["height"])
# self.stress_shape_factor = Input_Distribution(data, 
data["spar"]["C_sigma"])
# self.deflection_shape_factor = 
Input_Distribution(data, data["spar"]["C_delta"])
self.proportionality_coefficient = np.zeros(

data["wing"]["grid"]+1,
dtype=np.float128)

def set_spar(self, plane, data):
"""Sets up remaining spar parameters not from the input 
file.

            Parameters
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            ----------
            plane : class
                instance of the Domain class with initialization
            data : dict
                dictionary containing all of the input file data.

            """

# set shape coefficient if not already specified.
# if self.stress_shape_factor.definition == "none":

# self.set_shape_coefficient(plane.wing, data, 
'stress')
# if self.deflection_shape_factor.definition == "none":

# self.set_shape_coefficient(plane.wing, data, 
'deflection')

if self.stress_shape_factor == np.float128(0.0):
self.set_shape_coefficient(plane.wing, data, 'stress')
if self.deflection_shape_factor == np.float128(0.0):

self.set_shape_coefficient(plane.wing, data,
'deflection')

# else:
# self.stress_shape_factor.set_values(plane)
# self.deflection_shape_factor.set_values(plane)

# Set the Proportionality Coefficient
self.set_proportionality_coefficient(plane.wing)

def set_proportionality_coefficient(self, wing):
""" Sets the Proportionality Coefficient

            Considers both the stress- and deflection-limited cases and
            selects the proportionality coefficient at each section 

that is
            lower of the two.

            Parameters
            ----------
            wing : class
                instance of the Domain.Wing class with initialized 

values.

            """
# Stress-Limited Design
# stress = np.multiply(

# 
self.max_stress*np.divide(self.stress_shape_factor.val
ues,self.specific_weight),
# np.multiply(wing.thickness_chord.values, 
wing.chord.values))
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stress = np.multiply(

self.max_stress*self.stress_shape_factor/self.specific
_weight,
np.multiply(wing.thickness_chord.values,
wing.chord.values))

# Deflection-Limited Design
# if self.design_type == 'deflection':
ft = np.zeros(wing.grid+1, dtype=np.float128)
ft1 = np.zeros(wing.grid+1, dtype=np.float128)
deflection = np.zeros(wing.grid+1, dtype=np.float128)
if self.design_name == 'deflection':

for k in range(0, wing.grid+1):
if wing.chord.values[k] == np.float128(0.0):

ft[k] = np.float128(0.0)
else:

ft[k] =
(np.float128(1.)/wing.thickness_chord.values[k
]) \

* (np.float128(1.)/wing.chord.values[k]) \
* ma.sin(wing.angle_location[k])

for i in range(1, wing.grid+1):
ft1[i] =
-wing.span/np.float128(2.0)*integrate.simps(

ft[0:i+1],
wing.angle_location[0:i+1]) \
* ma.sin(wing.angle_location[i])

integral = -wing.span/np.float128(2.0)*integrate.simps(
ft1,
wing.angle_location)

for i in range(0, wing.grid+1):
# deflection[i] = 
(self.deflection_shape_factor.values[i]

# * self.modulus_elasticity
# * 
(wing.thickness_chord.values[i])
# * wing.chord.values[i]
# * self.max_deflection) \
# / 
(np.float128(8.)*self.specific_we
ight*integral)

deflection[i] = (self.deflection_shape_factor
* self.modulus_elasticity
* (wing.thickness_chord.values[i])
* wing.chord.values[i]

312



* self.max_deflection) \
/
(np.float128(8.)*self.specific_we
ight*integral)

else:
for i in range(0, wing.grid+1):

deflection[i] = 1e10

# Use the smaller of the two proportionality coefficients.
self.proportionality_coefficient = np.minimum(stress,

deflection)

if np.array_equal(stress,
self.proportionality_coefficient):

self.design_type = 'stress'
else:

self.design_type = 'deflection'

def set_shape_coefficient(self, wing, data, flag):
"""Sets the shape coefficient for stress and deflection 
designs

            Uses reference geometry parameters given in the input 
file to

            determine the shape coefficient.

            Parameters
            ----------
            wing : class
                instance of the Domain.Wing class with initialized 

values.
            data : dict
                dictionary containing all of the input file data
            flag : string
                either 'stress' or 'deflection', specifying which 

shape factor
                to calculate.

            """
if flag == 'stress':

if self.beam_type == 'rectangular':
self.rectangular_beam(wing, data, flag)

elif self.beam_type == 'box':
self.box_beam(wing, data, flag)

elif self.beam_type == 'I':
self.I_beam(wing, data, flag)

else:
print('WARNING: Spar not fully specified. Please 
select a \
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                        valid beam type or specify the shape 
coefficient.')

elif flag == 'deflection':
if self.beam_type == 'rectangular':

self.rectangular_beam(wing, data, flag)
elif self.beam_type == 'box':

self.box_beam(wing, data, flag)
elif self.beam_type == 'I':

self.I_beam(wing, data, flag)

# self.deflection_shape_factor.values = \
# self.stress_shape_factor.values*min(

# np.divide(self.height.values, 
wing.max_thickness))/np.float128(2.0)

# if wing.chord.definition == 'elliptic':
# self.deflection_shape_factor.values[-1] = 0.0

self.deflection_shape_factor = \
self.stress_shape_factor*min(

np.divide(self.height.values,
wing.max_thickness))/np.float128(2.0)

if wing.chord.definition == 'elliptic':
self.deflection_shape_factor[-1] = 0.0

def rectangular_beam(self, wing, data, flag):
"""Sets the shape factor for a rectangular beam

            Parameters
            ----------
            wing : class
                instance of the Domain.Wing class with initialized 

values.
            data : dict
                dictionary containing all of the input file data
            flag : string
                either 'stress' or 'deflection', specifying which 

shape factor
                to calculate.

            """
# self.stress_shape_factor.values = min(

# np.divide(self.height.values, 
wing.max_thickness))/np.float128(6.0)

# if wing.chord.definition == 'elliptic':
# self.stress_shape_factor.values[-1] = 0.0

self.stress_shape_factor = min(
np.divide(self.height.values,
wing.max_thickness))/np.float128(6.0)
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if wing.chord.definition == 'elliptic':
self.stress_shape_factor[-1] = 0.0

def box_beam(self, wing, data, flag):
"""Sets the shape factor for a box beam

            Parameters
            ----------
            wing : class
                instance of the Domain.Wing class with initialized 

values.
            data : dict
                dictionary containing all of the input file data
            flag : string
                either 'stress' or 'deflection', specifying which 

shape factor
                to calculate.

            """
self.inner_height = data["spar"]["beam_type"]["box"].get(

"inner_height", 'none')
self.inner_width = data["spar"]["beam_type"]["box"].get(

"inner_width", 'none')
self.outer_width = data["spar"]["beam_type"]["box"].get(

"outer_width", 'none')

ratio =
((np.float128(1.0)-self.inner_width*self.inner_height**np.
float128(3)

/
(self.outer_width*self.height.values[0]**np.floa
t128(3)))) \

/
(np.float128(6.0)*(np.float128(1)-self.inner_width*sel
f.inner_height

/ (self.outer_width*self.height.values[0])))

# self.stress_shape_factor.values = min(
# np.divide(self.height.values, wing.max_thickness)) 
* ratio

# if wing.chord.definition == 'elliptic':
# self.stress_shape_factor.values[-1] = 0.0

self.stress_shape_factor = min(
np.divide(self.height.values, wing.max_thickness)) *
ratio

if wing.chord.definition == 'elliptic':
self.stress_shape_factor[-1] = 0.0
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def I_beam(self, wing, data, flag):
"""Sets the shape factor for a I beam

            Parameters
            ----------
            wing : class
                instance of the Domain.Wing class with initialized 

values.
            data : dict
                dictionary containing all of the input file data
            flag : string
                either 'stress' or 'deflection', specifying which 

shape factor
                to calculate.

            """
self.flange_height = data["spar"]["beam_type"]["I"].get(

"flange_height", 'none')
self.web_width = data["spar"]["beam_type"]["I"].get(

"web_width", 'none')
self.flange_width = data["spar"]["beam_type"]["I"].get(

"flange_width", 'none')

ratio =
((np.float128(2.0)*(self.flange_height/self.height.values[
0])**np.float128(3)

+
np.float128(6.0)*(self.flange_height/self.height
.values[0])
*
(np.float128(1)-self.flange_height/self.height.v
alues[0])**np.float128(2)
+ (self.web_width/self.flange_width)
*
(np.float128(1)-np.float128(2.0)*self.flange_hei
ght/self.height.values[0])**np.float128(3))) \

/
(np.float128(6.0)*(np.float128(2.0)*self.flange_height
/self.height.values[0]

+ (self.web_width/self.flange_width)
*
(np.float128(1)-np.float128(2.0)*self.flange_h
eight/self.height.values[0])))

# self.stress_shape_factor.values = min(
# np.divide(self.height.values, wing.max_thickness)) 
* ratio

# if wing.chord.definition == 'elliptic':
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# self.stress_shape_factor.values[-1] = 0.0

self.stress_shape_factor = min(
np.divide(self.height.values, wing.max_thickness)) *
ratio

if wing.chord.definition == 'elliptic':
self.stress_shape_factor[-1] = 0.0

class Weight(object):
"""The Weight class contains all weight information.

        The weight class contains attributes pertaining to the weight

        Attributes
        ----------
        total : float
            The total weight, including the weight at the wing root, 

the
            payload distribution, and the wing-strucure weight 

distribution
        root : float
            The weight carried at the wing root.
        root_type : string
            String specifying whether the root weight is fixed or if 

it is a
            function of other parameters.
        root_total_ratio : float
            The ratio of root weight to total weight, for use in a 

function
            defining the root weight.
        net : float
            The weight of all non-structural components in the wing.
            Specifically, the root weight plus the integral of the 

payload
            distribution.
        net_type : string
            String specifying whether the net weight is fixed or a 

function
            of the wing-structure weight.
        wing_structure : float
            The total weight of the wing structure
        net_distributions : List
            List of arrays containing the payload distribution values.
        net_distribution_types : List
            List of strings defining whether the net_distributions 

are given
            by a function or interpolated from specific values from 

an input
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            file.
        net_distribution_names : List
            List of strings giving the name of each payload 

distribution.
        structure_distribution : Array
            Array containing the wing-structure weight distribution 

values.

        Methods
        -------
        initialize_constants:
            initializes the weight class constants.
        initialize_distributions:
            initializes the weight class distributions.

        """

def read_constants(self, data):
"""Initializes the weight class constants.

            Parameters
            ----------
            data : dict
                dictionary containing all of the input file data

            """

# Initialize Structural Weight
if 'initial_structure' in data["weight"]:

self.wing_structure =
np.float128(data["weight"]["initial_structure"])

# initialize Non-structural Weight
if 'net_weight' in data["weight"]:

self.net = np.float128(data["weight"]["net_weight"])
self.net_type = 'constant'

else:
self.net_type = 'variable'

# initialize root weight
if ('root_total' in data["weight"]):

self.root_total_ratio =
np.float128(data["weight"]["root_total"])
self.root_type = 'ratio'

else:
self.root = np.float128(data["weight"]["root_weight"])
self.root_type = 'constant'

# initialize total weight
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if 'total_weight' in data["weight"]:
self.total =
np.float128(data["weight"]["total_weight"])

else:
self.total = self.net + self.wing_structure

if self.root_type == 'ratio':
self.root = self.root_total_ratio*self.total

def initialize_distributions(self, data):
"""Initializes the weight class distributions.

            Parameters
            ----------
            data : dict
                dictionary containing all of the input file data

            """
self.structure_distribution = np.zeros(

data["wing"]["grid"]+1, dtype=np.float128)

self.net_distributions = []
self.net_distributions.append(np.zeros(

data["wing"]["grid"]+1, dtype=np.float128))
for key in data["weight"]["net_distribution"]:

self.net_distributions.append(Input_Distribution(
data, data["weight"]["net_distribution"][key]))

def base_net_weight_distribution(self, wing):
"""Gives the total net weight distribution on the base 
grid.

            Interpolates values from the given net weight 
distributions to

            give values on the base grid and adds net weight 
distributions

            together.

            Parameters
            ----------
            """

self.net_distributions[0].fill(0.0)
for i in range(1, len(self.net_distributions)):

start_loc = np.argmax(np.subtract(
wing.spanwise_location,
self.net_distributions[i].locations[0]) >= -1e-16)

end_loc = np.argmax(np.subtract(
wing.spanwise_location,
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self.net_distributions[i].locations[-1]) >= 1e-16)

self.net_distributions[0][0:start_loc-1] +=
np.float128(0.0)

self.net_distributions[0][start_loc:end_loc] \
+= interpolate.griddata(
self.net_distributions[i].locations,
self.net_distributions[i].values,
wing.spanwise_location[

start_loc:end_loc])

self.net_distributions[0][
end_loc:] += np.float128(0.0)

def calculate_structure(self, plane):
"""Calculates the required wing-structure weight

            Parameters
            ----------
            plane : class
                instance of the domain class, initialized

            """

self.structure_distribution = np.divide(
plane.moment,
plane.spar.proportionality_coefficient)

if plane.wing.chord.definition == 'elliptic':
self.structure_distribution[-1] = 0.0

ft = np.multiply(
self.structure_distribution,
np.sin(plane.wing.angle_location))

self.wing_structure = -plane.wing.span*integrate.simps(
ft,
plane.wing.angle_location)

def net_weight(self, wing):
"""calculates the total net weight

            Parameters
            ----------
            wing : class
                instance of the wing class, initialized

            """
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# if self.root_type == 'ratio':
# self.net = 0.0
# for k in range(1, len(self.net_distributions)):

# ft = np.multiply(
# self.net_distributions[k].values,
# 
np.sin(self.net_distributions[k].angle_locatio
ns))

# self.net += -wing.span*integrate.simps(
# ft,
# self.net_distributions[k].angle_locations)

# self.net += self.root_total_ratio*self.wing_structure
# self.net = self.net/(1.-self.root_total_ratio)

# else:
if self.net_type == 'constant':

self.net = self.net
else:

self.net = self.root
for k in range(1, len(self.net_distributions)):

ft = np.multiply(
self.net_distributions[k].values,

np.sin(self.net_distributions[k].angle_locatio
ns))

self.net += -wing.span*integrate.simps(
ft,
self.net_distributions[k].angle_locations)
# print(self.net_distributions[k].name, 
self.net)

class Input_Distribution(object):
"""The Input_Distribution class contains data for any input 
distributions.

    This class is meant to be used to define a distribution, including
    information about the distribution values and locations, as well 

as the
    distribution type and name, if applicable.

    Attributes
    ----------
    locations : array
        contains the spanwise locations at which the distribution 

values are
        known.
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    values : array
        contains the value of the distribution at each spanwise 

location.
    definition : string
        string that reveals how the distribution is defined.
    name : string
        string giving the name of the distribution, if applicable.

    Methods
    -------
    __init__:
        initializes the distribution value, location, and type from 

a function.
    file_distribution:
        initializes the distribution values and locations, if given 

in a file.

    """

def __init__(self, data, index):
"""Determines how a distribution should be initialized

        The __init__ function determines whether a distribution is 
initialized

        in a file or from a function and initializes the distribution
        accordingly, including its values, locations, type, and 

name, if
        applicable.

        Parameters
        ----------
        data : dict
            dictionary containing all of the input file data with 

distributions
            defined using the variable structure:

            "category" : { "distribution" : { "(function or file)" 
:{...}}}

        comment_flag: Boolean
            Flag to specify whether the init function should display
            information about the initialization of the distributions.

        """

# Set the distribution definition
self.definition = index.get("definition", 'none')
if type(self.definition) == OrderedDict:

self.definition = list(
index.get("definition", self.definition).keys())[0]
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self.definition = index["definition"].get("function",
self.definition)
if type(self.definition) == OrderedDict:

self.definition = list(
index["definition"].get("function",
self.definition).keys())[0]

if self.definition == 'file':
self.file_reference = index["definition"].get("file",
'none')

# Set the grid number
self.grid = index.get("grid", data["wing"]["grid"])

# Set the distribution name, if applicable
self.name = index.get("name", 'none')

# Set the distribution root_location, if applicable
self.location = index.get("location",
np.float128(data["wing"]["wing_span"])/np.float128(4.0))

# Set the distribution width, if applicable
self.width = index.get("width",
np.float128(data["wing"]["wing_span"])/np.float128(2.0))

self.values = np.zeros(self.grid+1, dtype=np.float128)
if self.definition == "constant":

self.values.fill(np.float128(index["definition"]["constant
"]))

self.locations = np.zeros(self.grid+1, dtype=np.float128)
self.angle_locations = np.zeros(self.grid+1, dtype=np.float128)

def set_values(self, plane):
# Set values and locations to zero
if self.definition == 'constant':

self.locations = plane.wing.spanwise_location
self.angle_locations = plane.wing.angle_location

elif self.definition == 'file':
self.locations = plane.wing.spanwise_location
self.angle_locations = plane.wing.angle_location
self.file_init(plane)

else:
self.angle_locations, self.locations, self.values =
getattr(

dist_functions_2, self.definition)(plane, self.name)

def file_init(self, plane):
#Read points from a file and interpolate based on grid.
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with open(self.file_reference) as dist_file:
dist = json.load(dist_file, object_pairs_hook=OrderedDict)

file_locations = np.zeros(len(dist.keys()), dtype=np.float128)
file_angle_locations = np.zeros(len(dist.keys()),
dtype=np.float128)
file_values = np.zeros(len(dist.keys()), dtype=np.float128)

i = 0
for key in dist:

file_locations[i] = dist[key]["c1"]*plane.wing.span/2.0
file_values[i] = dist[key]["c2"]
file_angle_locations[i] =
ma.acos(-2.0*file_locations[i]/plane.wing.span)
i += 1

self.locations = plane.wing.spanwise_location
self.angle_locations = plane.wing.angle_location
self.values = interpolate.griddata(file_locations,
file_values, self.locations)
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'''
dist_functions_2.py

This file contains the built-in functions for wing_structure_m3.py
includes functions that define the following
distributions:
   -Non-Structural Weight
   -Thickness-to-chord ratio
   -Chord Distribution

calls:
user_functions.py, which contains additional functions defined by 
the user
'''
import numpy as np
import math as ma
import user_functions as uf

def even(case, name):
for i in range(1, len(case.weight.net_distributions)):

if case.weight.net_distributions[i].name == name:
grid = case.weight.net_distributions[i].grid
location = case.weight.net_distributions[i].location
width = case.weight.net_distributions[i].width
k=i

z_low = location*case.wing.span/2.0-width/2.0
z_high = location*case.wing.span/2.0+width/2.0

theta_low = ma.acos(-2.0*z_low/case.wing.span)
theta_high = ma.acos(-2.0*z_high/case.wing.span)

angle = np.subtract(ma.pi, np.linspace(
theta_low, theta_high, grid+1))

# angle = case.weight.net_distributions[k].angle_locations

spanwise = case.wing.span/2.0*np.cos(
case.weight.net_distributions[k].angle_locations)

# spanwise = case.weight.net_distributions[k].locations

for i in range (0,grid+1) :
#Eq. (44)
if (case.weight.net_type=='variable'):

net_weight =
case.weight.total-case.weight.wing_structure#8.8

sumodd=0.0
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sumeven=0.0
j=1
while j < grid :

sumodd = sumodd+ma.sin(angle[j])
j=j+2

j=2
while j < grid :

sumeven = sumeven+ma.sin(angle[j])
j=j+2

values =
-(3.0*np.real(grid)*(net_weight-case.weight.root))/(case.wing.
span*(angle[grid]-angle[0])*(ma.sin(angle[0])+4.0*sumodd+2.0*s
umeven+ma.sin(angle[grid])))

return angle, spanwise, values

def hunsaker(case, name):
for i in range(1, len(case.weight.net_distributions)):

if case.weight.net_distributions[i].name == name:
grid = case.weight.net_distributions[i].grid
location = case.weight.net_distributions[i].location
width = case.weight.net_distributions[i].width
k=i

z_low = location*case.wing.span/2.0-width/2.0
z_high = location*case.wing.span/2.0+width/2.0

theta_low = ma.acos(0.0)
theta_high = ma.acos(-1.0)

angle = np.subtract(ma.pi, np.linspace(
theta_low, theta_high, grid+1))

# angle = case.weight.net_distributions[k].angle_locations

spanwise = case.wing.span/2.0*np.cos(
case.weight.net_distributions[k].angle_locations)

# spanwise = case.weight.net_distributions[k].locations
values = np.zeros(grid+1, dtype=np.float128)
for i in range (0, grid+1):

# print(case.weight.total-case.weight.wing_structure)
if case.weight.net_type == 'constant':

values[i] =
(case.weight.net+case.weight.wing_structure-case.weight.ro
ot)*case.wing.lift_distribution[i]/case.wing.span-case.wei
ght.structure_distribution[i]
# values[i] = 
(case.weight.total-case.weight.root)*case.wing.lift_distri
bution[i]/case.wing.span-case.weight.structure_distributio
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n[i]
else:

values[i] =
(case.weight.total-case.weight.root)*case.wing.lift_distri
bution[i]/case.wing.span-case.weight.structure_distributio
n[i]

return angle, spanwise, values

def root_tip(case, name) :
wing = case.wing
for i in range (0,wing.grid+1) :

values[i] =
wing.root_thickness_chord+2.0*(wing.tip_thickness_chord-wing.r
oot_thickness_chord)/wing.span*wing.spanwise_location[i]

angle = case.wing.angle_location
spanwise = case.wing.spanwise_location

return angle, spanwise, values

def taper(case, name) :
tr=case.wing.taper_ratio

Cr=(np.float128(2.0)*case.wing.area)/(case.wing.span*(np.float128(
1.0)+tr))
values = np.subtract(Cr,
np.multiply((Cr-tr*Cr)/(case.wing.span/np.float128(2.0)),
case.wing.spanwise_location))

angle = case.wing.angle_location
spanwise = case.wing.spanwise_location

return angle, spanwise, values

def elliptic(case, name):
Ra=case.wing.span**2/case.wing.area
values = np.zeros(case.wing.chord.grid+1, dtype=np.float128)
for i in range(0,case.wing.chord.grid+1) :

values[i] =
4.0*case.wing.span/(ma.pi*Ra)*ma.sqrt(1-(2.0*(case.wing.spanwi
se_location[i])/case.wing.span)**2)

angle = case.wing.angle_location
spanwise = case.wing.spanwise_location

return angle, spanwise, values
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def rectangular(case, name):
values = np.zeros(case.wing.chord.grid+1, dtype = np.float64)
values.fill(case.wing.area/case.wing.span)

angle = case.wing.angle_location
spanwise = case.wing.spanwise_location

return angle, spanwise, values

def custom(case, name):
angle, spanwise, values = getattr(uf, name)(case, name)

return angle, spanwise, values

def fill(case, name):
values = np.zeros(case.wing.chord.grid+1, dtype = np.float64)
for i in range (0,case.wing.grid+1):

# print(case.wing.angle_location[i], case.wing.grid)
values[i]=case.wing.max_thickness[i]*case.spar.fill_ratio

angle = case.wing.angle_location
spanwise = case.wing.spanwise_location

return angle, spanwise, values

def min_fill(case, name):
minval = np.min(case.wing.max_thickness)
values = np.zeros(case.wing.chord.grid+1, dtype = np.float64)
for i in range (0,case.wing.grid+1):

values[i]=minval

angle = case.wing.angle_location
spanwise = case.wing.spanwise_location

return angle, spanwise, values
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'''
user_functions.py

This version of the user_functions.py script contains the fuel and pod 
weight distributions for Ikhana. It is used in conjunction with
wing_structure_m3.py
'''

import numpy as np
import math as ma
from scipy import integrate
from scipy import interpolate

def fuel_2000(case, name):
# Ikhana Fuel distribution for pod configuration (2000 lbf Fuel)
for i in range(1, len(case.weight.net_distributions)):

if case.weight.net_distributions[i].name == name:
grid = case.weight.net_distributions[i].grid
location = case.weight.net_distributions[i].location
width =
np.float128(0.830515)*case.wing.span/np.float128(2.0)
# print("width:   ", width)
# case.weight.net_distributions[i].width
# print(width/case.wing.span*2.0)
k=i

z_low =
location*case.wing.span/np.float128(2.0)-width/np.float128(2.0)
z_high =
location*case.wing.span/np.float128(2.0)+width/np.float128(2.0)

theta_low = ma.acos(np.float128(-2.0)*z_low/case.wing.span)
theta_high = ma.acos(np.float128(-2.0)*z_high/case.wing.span)

angle = np.subtract(ma.pi, np.linspace(
theta_low, theta_high, grid+1))

# angle = case.weight.net_distributions[k].angle_locations

spanwise = case.wing.span/np.float128(2.0)*np.cos(
case.weight.net_distributions[k].angle_locations)

# spanwise = case.weight.net_distributions[k].locations

K=(np.float128(case.weight.net-case.weight.root-1000.0))/(np.float
128(2.0)*np.float128(0.247952)*case.wing.chord.values[0]**np.float
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128(2)*case.wing.span)
# print(case.weight.net-case.weight.root-1000.0)
# print(K)
chord = interpolate.griddata(case.wing.spanwise_location,
case.wing.chord.values, spanwise)
chord[0] = case.wing.chord.values[0]
values = np.zeros(grid+1, dtype=np.float128)
for i in range(0, grid+1):

if spanwise[i] <=
np.float128(0.830515)*case.wing.span/np.float128(2.0)+1e-12:

values[i] = K*chord[i]**np.float128(2)

return angle, spanwise, values

def fuel_3000(case, name):
# Ikhana Fuel distribution for pod configuration (3000 lbf Fuel)
for i in range(1, len(case.weight.net_distributions)):

if case.weight.net_distributions[i].name == name:
grid = case.weight.net_distributions[i].grid
location = case.weight.net_distributions[i].location
width =
np.float128(0.830515)*case.wing.span/np.float128(2.0)# 
case.weight.net_distributions[i].width
# print(width/case.wing.span*2.0)
k=i

z_low =
location*case.wing.span/np.float128(2.0)-width/np.float128(2.0)
z_high =
location*case.wing.span/np.float128(2.0)+width/np.float128(2.0)

theta_low = ma.acos(np.float128(-2.0)*z_low/case.wing.span)
theta_high = ma.acos(np.float128(-2.0)*z_high/case.wing.span)

angle = np.subtract(ma.pi, np.linspace(
theta_low, theta_high, grid+1))

# angle = case.weight.net_distributions[k].angle_locations

spanwise = case.wing.span/np.float128(2.0)*np.cos(
case.weight.net_distributions[k].angle_locations)

# spanwise = case.weight.net_distributions[k].locations

K=(np.float128(case.weight.net-case.weight.root))/(np.float128(2.0
)*np.float128(0.247952)*case.wing.chord.values[0]**np.float128(2)*
case.wing.span)
# print(K)
chord = interpolate.griddata(case.wing.spanwise_location,
case.wing.chord.values, spanwise)
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chord[0] = case.wing.chord.values[0]
values = np.zeros(grid+1, dtype=np.float128)
for i in range(0, grid+1):

if spanwise[i] <=
np.float128(0.830515)*case.wing.span/np.float128(2.)+1e-12:

values[i] = K*chord[i]**np.float128(2)

return angle, spanwise, values

def pod(case, name):
# Weight distribution for the Ikhana instrumentation pod (500 lbf)
for i in range(1, len(case.weight.net_distributions)):

if case.weight.net_distributions[i].name == name:
grid = case.weight.net_distributions[i].grid
location = case.weight.net_distributions[i].location
width = case.weight.net_distributions[i].width
k=i

z_low =
location*case.wing.span/np.float128(2.0)-width/np.float128(2.0)
z_high =
location*case.wing.span/np.float128(2.0)+width/np.float128(2.0)

theta_low = ma.acos(np.float128(-2.0)*z_low/case.wing.span)
theta_high = ma.acos(np.float128(-2.0)*z_high/case.wing.span)

angle = np.subtract(ma.pi, np.linspace(
theta_low, theta_high, grid+1))

# angle = case.weight.net_distributions[k].angle_locations

spanwise = case.wing.span/np.float128(2.0)*np.cos(
case.weight.net_distributions[k].angle_locations)

# spanwise = case.weight.net_distributions[k].locations

values = np.zeros(grid+1, dtype=np.float128)
for i in range(0, grid+1):

values[i] = np.float128(500.0)

return angle, spanwise, values
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'''
user_functions.py

This version of the user_functions.py script contains the fuel and 
engine 
weight distributions for the CRM. It is used in conjunction with
wing_structure_m3.py
'''
import numpy as np
import math as ma
from scipy import integrate
from scipy import interpolate

def center_tank(case, name):
# Fuel weight distribution for the CRM center tank
for i in range(1, len(case.weight.net_distributions)):

if case.weight.net_distributions[i].name == name:
grid = case.weight.net_distributions[i].grid
location = case.weight.net_distributions[i].location
width =
case.weight.net_distributions[i].width*case.wing.span/np.f
loat128(2.0)
k=i

z_low =
location*case.wing.span/np.float128(2.0)-width/np.float128(2.0)
z_high =
location*case.wing.span/np.float128(2.0)+width/np.float128(2.0)

theta_low = ma.acos(np.float128(-2.0)*z_low/case.wing.span)
theta_high = ma.acos(np.float128(-2.0)*z_high/case.wing.span)

angle = np.subtract(ma.pi, np.linspace(
theta_low, theta_high, grid+1))

spanwise = case.wing.span/np.float128(2.0)*np.cos(angle)

chord = interpolate.griddata(case.wing.spanwise_location,
case.wing.chord.values, spanwise)
height = interpolate.griddata(case.wing.spanwise_location,
case.spar.height.values, spanwise)
t_c = interpolate.griddata(case.wing.spanwise_location,
case.wing.thickness_chord.values, spanwise)
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fuel_weight =
(case.weight.net-case.weight.root-7893.0*2.0*9.81-58121.0*9.81)/2.
0

if fuel_weight < 0.0:
fuel_weight = 0.0

chord[0] = case.wing.chord.values[0]
values = np.zeros(grid+1, dtype=np.float128)
for i in range(0, grid+1):

if spanwise[i] < 0.1*case.wing.span/2.0:
w_c =
0.84977679*(spanwise[i]/case.wing.span*2.0)**2+0.54561078*
(spanwise[i]/case.wing.span*2.0)+0.43691627

elif spanwise[i] < 0.37*case.wing.span/2.0:
w_c =
0.64783085*(spanwise[i]/case.wing.span*2.0)**2+0.06455231*
(spanwise[i]/case.wing.span*2.0)+0.48770883

else:
w_c =
-1.21997827*(spanwise[i]/case.wing.span*2.0)**3+1.72590810
*(spanwise[i]/case.wing.span*2.0)**2-1.08314960*(spanwise[
i]/case.wing.span*2.0)+0.83163447

values[i] = 119.826427*height[i]*t_c[i]*w_c*chord[i]**2*9.81
# print(spanwise[i]/case.wing.span*2.0, w_c)

values = np.multiply(values, fuel_weight/integrate.simps(values,
spanwise))

return angle, spanwise, values

def wing_tanks(case, name):
# Fuel weight distribution for the CRM wing tanks
for i in range(1, len(case.weight.net_distributions)):

if case.weight.net_distributions[i].name == name:
grid = case.weight.net_distributions[i].grid
location = case.weight.net_distributions[i].location
width =
case.weight.net_distributions[i].width*case.wing.span/np.f
loat128(2.0)
k=i

z_low =
location*case.wing.span/np.float128(2.0)-width/np.float128(2.0)
z_high =
location*case.wing.span/np.float128(2.0)+width/np.float128(2.0)

theta_low = ma.acos(np.float128(-2.0)*z_low/case.wing.span)
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theta_high = ma.acos(np.float128(-2.0)*z_high/case.wing.span)

angle = np.subtract(ma.pi, np.linspace(
theta_low, theta_high, grid+1))

spanwise = case.wing.span/np.float128(2.0)*np.cos(angle)

chord = interpolate.griddata(case.wing.spanwise_location,
case.wing.chord.values, spanwise)
height = interpolate.griddata(case.wing.spanwise_location,
case.spar.height.values, spanwise)
t_c = interpolate.griddata(case.wing.spanwise_location,
case.wing.thickness_chord.values, spanwise)

if case.weight.net-case.weight.root-7893.0*2.0*9.81 <
58121.0146*9.81:

print('HERE!')
fuel_weight =
(case.weight.net-case.weight.root-7893.0*2.0*9.81)/2.0

else:
fuel_weight = (58121.01463*9.81)/2.0

# print(fuel_weight)
values = np.zeros(grid+1, dtype=np.float128)
# print('-----------------------')
for i in range(0, grid+1):

if spanwise[i] < 0.1*case.wing.span/2.0:
w_c =
0.84977679*(spanwise[i]/case.wing.span*2.0)**2+0.54561078*
(spanwise[i]/case.wing.span*2.0)+0.43691627

elif spanwise[i] < 0.37*case.wing.span/2.0:
w_c =
0.64783085*(spanwise[i]/case.wing.span*2.0)**2+0.06455231*
(spanwise[i]/case.wing.span*2.0)+0.48770883

else:
w_c =
-1.21997827*(spanwise[i]/case.wing.span*2.0)**3+1.72590810
*(spanwise[i]/case.wing.span*2.0)**2-1.08314960*(spanwise[
i]/case.wing.span*2.0)+0.83163447

# print(spanwise[i]/case.wing.span*2.0, w_c)
values[i] = 119.826427*height[i]*t_c[i]*w_c*chord[i]**2*9.81

values = np.multiply(values, fuel_weight/integrate.simps(values,
spanwise))

return angle, spanwise, values

def engines(case, name):
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# Weight distribution for the CRM Engines
for i in range(1, len(case.weight.net_distributions)):

if case.weight.net_distributions[i].name == name:
grid = case.weight.net_distributions[i].grid
location = case.weight.net_distributions[i].location
width = case.weight.net_distributions[i].width
k=i

z_low =
location*case.wing.span/np.float128(2.0)-width/np.float128(2.0)
z_high =
location*case.wing.span/np.float128(2.0)+width/np.float128(2.0)

theta_low = ma.acos(np.float128(-2.0)*z_low/case.wing.span)
theta_high = ma.acos(np.float128(-2.0)*z_high/case.wing.span)

angle = np.subtract(ma.pi, np.linspace(
theta_low, theta_high, grid+1))

# angle = case.weight.net_distributions[k].angle_locations

spanwise = case.wing.span/np.float128(2.0)*np.cos(angle)
# spanwise = case.weight.net_distributions[k].locations

values = np.zeros(grid+1, dtype=np.float128)
for i in range(0, grid+1):

values[i] = np.float128(15786.0)*9.81

return angle, spanwise, values
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{
"wing": {

"wing_area": 267.3,
"wing_span": 66.0,
"chord": {

"definition": {
"function": {

"taper": 0.42105
}

},
"name": "tapered_chord"

},
"thickness_chord": {

"definition": {
"constant": "0.1875"

},
"name": "constant_t_c"

},
"loading": 31.8308760988,
"grid": 160

},
"spar": {

"C_sigma": 0.165,
"C_delta": 0.653,
"max_stress": 3600000.0,
"max_deflection": 3.5,
"modulus_elasticity": 1440000000.0,
"height": {

"definition": {
"function": {

"fill": 1.0
}

}
},
"specific_weight": 172.8,
"beam_type": "rectangular"

},
"limits": {

"maneuvering": 3.75,
"hard_landing": 3.75

},
"weight": {

"root_weight": 4500.0,
"net_weight": 7500.0,
"net_distribution": {
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"dist1": {
"definition": {

"function": "custom"
},
"location": 0.4152575,
"width": 26.499,
"name": "fuel_3000",
"grid": 1280

}
},
"initial_structure": 0.0

},
"flight": {

"density": 0.0023769,
"velocity": 287.0

},
"lift_distribution": {

"B": [
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0

]
}

}
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{
"wing": {

"wing_area": 412.70,
"wing_span": 58.76,
"chord": {

"definition": {
"file" : "../chord_baseline.json"

},
"name": "crm_chord"

},
"thickness_chord": {

"definition": {
"file": "../thickness_chord.json"

},
"name": "crm_t_c"

},
"grid": 160

},
"spar": {

"C_sigma": {
"definition" : {
"file" : "../C_sigma.json"
},

"name": "crm_c_sigma"
},
"C_delta": {
"definition" : {
"file" : "../C_delta.json"
},

"name": "crm_c_delta"
},
"max_stress": 4.20e8,
"max_deflection": 2.56295388,
"modulus_elasticity": 7.31e10,
"height": {

"definition": {
"file": "../h_t.json"

}
},
"specific_weight": 27271.8

},
"limits": {

"maneuvering": 2.5,
"hard_landing": 1.0

},
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"weight": {
"root_weight" : 1037960.346, "_comment" : "in Newtons",
"net_weight" : 2541303.606, "_comment" : "in Newtons",
"80_net_weight" : 2271607.086,
"50_net_weight" : 1867062.05,
"20_net_weight" : 1462517.526,

"net_distribution": {
"dist1": {

"definition": {
"function": "custom"

},
"location": 0.48631355,
"width": 0.5473729,
"name": "wing_tanks",
"grid": 128

},
"dist2": {

"definition": {
"function": "custom"

},
"location": 0.10631355,
"width": 0.2126271,
"name": "center_tank",
"grid": 128

},
"dist3": {

"definition": {
"function": "custom"

},
"location": 0.3271489362,
"width": 0.5,
"name": "engines",
"grid": 80

}
},
"initial_structure": 340000.0

},
"flight": {

"density": 0.392967845,
"velocity": 250.3486805

},
"lift_distribution": {

"B": [
0.0,

0.0,
0.0,

0.0,
0.0,

0.0,
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0.0,
0.0,

0.0,
0.0,

0.0,
0.0
]

}
}
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{
"r1": {

"c1": 0.0,
"c2": 13.551661498457399
},

"r2": {
"c1": 0.1,
"c2": 11.945843636459227
},

"r3": {
"c1": 0.15,
"c2": 11.068259303509292
},

"r4": {
"c1": 0.2,
"c2": 10.194653744575007
},

"r5": {
"c1": 0.25,
"c2": 9.326566467360001
},

"r6": {
"c1": 0.3,
"c2": 8.460264114971995
},

"r7": {
"c1": 0.35,
"c2": 7.597275837754842
},

"r8": {
"c1": 0.37,
"c2": 7.246668020930948
},

"r9": {
"c1": 0.4,
"c2": 7.032628217313561
},

"r10": {
"c1": 0.45,
"c2": 6.671925934980483
},

"r11": {
"c1": 0.5,
"c2": 6.312443793284292
},
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"r12": {
"c1": 0.55,
"c2": 5.953615902712695
},

"r13": {
"c1": 0.6,
"c2": 5.594338590947295
},

"r14": {
"c1": 0.65,
"c2": 5.23537166265512
},

"r15": {
"c1": 0.7,
"c2": 4.876434228276691
},

"r16": {
"c1": 0.75,
"c2": 4.516924077882012
},

"r17": {
"c1": 0.8,
"c2": 4.157293273904669
},

"r18": {
"c1": 0.85,
"c2": 3.7976420583373067
},

"r19": {
"c1": 0.9,
"c2": 3.4381442572718566
},

"r20": {
"c1": 0.95,
"c2": 3.0785536491388363
},

"r21": {
"c1": 1.0,
"c2": 2.7148385291015975
}

}
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{
"r1": {

"c1": 0.0,
"c2": 0.1542
},

"r2": {
"c1": 0.02636972,
"c2": 0.14992810536
},

"r3": {
"c1": 0.05273944,
"c2": 0.14565621072
},

"r4": {
"c1": 0.07910916,
"c2": 0.14138431608000002
},

"r5": {
"c1": 0.10547888,
"c2": 0.13690422400000002
},

"r6": {
"c1": 0.108402167,
"c2": 0.13631956660000003
},

"r7": {
"c1": 0.130937309,
"c2": 0.1318125382
},

"r8": {
"c1": 0.153472451,
"c2": 0.127430518036
},

"r9": {
"c1": 0.176007594,
"c2": 0.123734754584
},

"r10": {
"c1": 0.198542736,
"c2": 0.120038991296
},

"r11": {
"c1": 0.221077879,
"c2": 0.117228498762
},
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"r12": {
"c1": 0.243613021,
"c2": 0.114479211438
},

"r13": {
"c1": 0.266148163,
"c2": 0.11224666533
},

"r14": {
"c1": 0.288683306,
"c2": 0.11021850246
},

"r15": {
"c1": 0.311218448,
"c2": 0.108482019328
},

"r16": {
"c1": 0.333753591,
"c2": 0.107039770176
},

"r17": {
"c1": 0.356288733,
"c2": 0.10574845068
},

"r18": {
"c1": 0.378553584,
"c2": 0.10480083274666667
},

"r19": {
"c1": 0.400400271,
"c2": 0.103784789702
},

"r20": {
"c1": 0.422246959,
"c2": 0.102954615558
},

"r21": {
"c1": 0.444093647,
"c2": 0.10212444141400001
},

"r22": {
"c1": 0.465940334,
"c2": 0.10129426730800001
},

"r23": {
"c1": 0.487787022,
"c2": 0.100464093164
},

"r24": {
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"c1": 0.50963371,
"c2": 0.09976879096
},

"r25": {
"c1": 0.531480397,
"c2": 0.099244470472
},

"r26": {
"c1": 0.553327085,
"c2": 0.0987334583
},

"r27": {
"c1": 0.575173773,
"c2": 0.09829652454
},

"r28": {
"c1": 0.59702046,
"c2": 0.0978595908
},

"r29": {
"c1": 0.618867148,
"c2": 0.097498125632
},

"r30": {
"c1": 0.640713836,
"c2": 0.097148578624
},

"r31": {
"c1": 0.662560523,
"c2": 0.096799031632
},

"r32": {
"c1": 0.684407211,
"c2": 0.09644948462399999
},

"r33": {
"c1": 0.706253898,
"c2": 0.09614996881599999
},

"r34": {
"c1": 0.728100586,
"c2": 0.095975195312
},

"r35": {
"c1": 0.749947274,
"c2": 0.095800421808
},

"r36": {
"c1": 0.771793961,
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"c2": 0.095669236234
},

"r37": {
"c1": 0.793640649,
"c2": 0.095538156106
},

"r38": {
"c1": 0.815487337,
"c2": 0.095438050652
},

"r39": {
"c1": 0.837334024,
"c2": 0.095350663904
},

"r40": {
"c1": 0.859180712,
"c2": 0.095281638576
},

"r41": {
"c1": 0.8810274,
"c2": 0.09523794520000001
},

"r42": {
"c1": 0.902874087,
"c2": 0.09519425182600001
},

"r43": {
"c1": 0.924720775,
"c2": 0.09515055845
},

"r44": {
"c1": 0.946567463,
"c2": 0.095106865074
},

"r45": {
"c1": 0.96841415,
"c2": 0.0950631717
},

"r46": {
"c1": 1.0,
"c2": 0.095
}

}
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{
"r1": {

"c1": 0.0,
"c2": 0.79397723
},

"r2": {
"c1": 0.02636972,
"c2": 0.84471244
},

"r3": {
"c1": 0.05273944,
"c2": 0.8509422
},

"r4": {
"c1": 0.07910916,
"c2": 0.84719307
},

"r5": {
"c1": 0.10547888,
"c2": 0.83153541
},

"r6": {
"c1": 0.108402167,
"c2": 0.68893291
},

"r7": {
"c1": 0.130937309,
"c2": 0.71319139
},

"r8": {
"c1": 0.153472451,
"c2": 0.70619773
},

"r9": {
"c1": 0.176007594,
"c2": 0.70155845
},

"r10": {
"c1": 0.198542736,
"c2": 0.70272557
},

"r11": {
"c1": 0.221077879,
"c2": 0.70234312
},
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"r12": {
"c1": 0.243613021,
"c2": 0.70465787
},

"r13": {
"c1": 0.266148163,
"c2": 0.70666337
},

"r14": {
"c1": 0.288683306,
"c2": 0.70989636
},

"r15": {
"c1": 0.311218448,
"c2": 0.71344447
},

"r16": {
"c1": 0.333753591,
"c2": 0.71646327
},

"r17": {
"c1": 0.356288733,
"c2": 0.72285886
},

"r18": {
"c1": 0.378553584,
"c2": 0.71713279
},

"r19": {
"c1": 0.400400271,
"c2": 0.70507497
},

"r20": {
"c1": 0.422246959,
"c2": 0.70914089
},

"r21": {
"c1": 0.444093647,
"c2": 0.71416734
},

"r22": {
"c1": 0.465940334,
"c2": 0.71988372
},

"r23": {
"c1": 0.487787022,
"c2": 0.72719199
},

"r24": {
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"c1": 0.50963371,
"c2": 0.73439937
},

"r25": {
"c1": 0.531480397,
"c2": 0.74113715
},

"r26": {
"c1": 0.553327085,
"c2": 0.74866464
},

"r27": {
"c1": 0.575173773,
"c2": 0.75637769
},

"r28": {
"c1": 0.59702046,
"c2": 0.76420115
},

"r29": {
"c1": 0.618867148,
"c2": 0.77155554
},

"r30": {
"c1": 0.640713836,
"c2": 0.77901018
},

"r31": {
"c1": 0.662560523,
"c2": 0.78638813
},

"r32": {
"c1": 0.684407211,
"c2": 0.79418333
},

"r33": {
"c1": 0.706253898,
"c2": 0.80250043
},

"r34": {
"c1": 0.728100586,
"c2": 0.81056473
},

"r35": {
"c1": 0.749947274,
"c2": 0.81927051
},

"r36": {
"c1": 0.771793961,
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"c2": 0.82721439
},

"r37": {
"c1": 0.793640649,
"c2": 0.83364822
},

"r38": {
"c1": 0.815487337,
"c2": 0.83901001
},

"r39": {
"c1": 0.837334024,
"c2": 0.84473792
},

"r40": {
"c1": 0.859180712,
"c2": 0.85089014
},

"r41": {
"c1": 0.8810274,
"c2": 0.85756037
},

"r42": {
"c1": 0.902874087,
"c2": 0.86495514
},

"r43": {
"c1": 0.924720775,
"c2": 0.87200941
},

"r44": {
"c1": 0.946567463,
"c2": 0.87833752
},

"r45": {
"c1": 0.96841415,
"c2": 0.8856619
},

"r46": {
"c1": 1.0,
"c2": 0.91714217
}

}
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{
"r1": {

"c1": 0.0,
"c2": 0.43850571
},

"r2": {
"c1": 0.02636972,
"c2": 0.43850571
},

"r3": {
"c1": 0.05273944,
"c2": 0.43877374
},

"r4": {
"c1": 0.07910916,
"c2": 0.43883692
},

"r5": {
"c1": 0.10547888,
"c2": 0.43846642
},

"r6": {
"c1": 0.108402167,
"c2": 0.43630839
},

"r7": {
"c1": 0.130937309,
"c2": 0.43526861
},

"r8": {
"c1": 0.153472451,
"c2": 0.43324681
},

"r9": {
"c1": 0.176007594,
"c2": 0.43112127
},

"r10": {
"c1": 0.198542736,
"c2": 0.42885859
},

"r11": {
"c1": 0.221077879,
"c2": 0.42654065
},

351

C.1.10 CRM Stress-Limited Shape Factor Input Distribution (python)



"r12": {
"c1": 0.243613021,
"c2": 0.42404501
},

"r13": {
"c1": 0.266148163,
"c2": 0.42116393
},

"r14": {
"c1": 0.288683306,
"c2": 0.41839396
},

"r15": {
"c1": 0.311218448,
"c2": 0.41552336
},

"r16": {
"c1": 0.333753591,
"c2": 0.41230608
},

"r17": {
"c1": 0.356288733,
"c2": 0.40910589
},

"r18": {
"c1": 0.378553584,
"c2": 0.40556033
},

"r19": {
"c1": 0.400400271,
"c2": 0.40239697
},

"r20": {
"c1": 0.422246959,
"c2": 0.40061331
},

"r21": {
"c1": 0.444093647,
"c2": 0.39817949
},

"r22": {
"c1": 0.465940334,
"c2": 0.39637273
},

"r23": {
"c1": 0.487787022,
"c2": 0.39447543
},

"r24": {
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"c1": 0.50963371,
"c2": 0.39265232
},

"r25": {
"c1": 0.531480397,
"c2": 0.3908163
},

"r26": {
"c1": 0.553327085,
"c2": 0.3889846
},

"r27": {
"c1": 0.575173773,
"c2": 0.38714149
},

"r28": {
"c1": 0.59702046,
"c2": 0.3841807
},

"r29": {
"c1": 0.618867148,
"c2": 0.38210578
},

"r30": {
"c1": 0.640713836,
"c2": 0.37995042
},

"r31": {
"c1": 0.662560523,
"c2": 0.37769785
},

"r32": {
"c1": 0.684407211,
"c2": 0.37536771
},

"r33": {
"c1": 0.706253898,
"c2": 0.37302048
},

"r34": {
"c1": 0.728100586,
"c2": 0.36903638
},

"r35": {
"c1": 0.749947274,
"c2": 0.36645211
},

"r36": {
"c1": 0.771793961,
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"c2": 0.3636975
},

"r37": {
"c1": 0.793640649,
"c2": 0.36066682
},

"r38": {
"c1": 0.815487337,
"c2": 0.35746334
},

"r39": {
"c1": 0.837334024,
"c2": 0.35352567
},

"r40": {
"c1": 0.859180712,
"c2": 0.34972583
},

"r41": {
"c1": 0.8810274,
"c2": 0.34252219
},

"r42": {
"c1": 0.902874087,
"c2": 0.33796082
},

"r43": {
"c1": 0.924720775,
"c2": 0.33304303
},

"r44": {
"c1": 0.946567463,
"c2": 0.32781819
},

"r45": {
"c1": 0.96841415,
"c2": 0.32225406
},

"r46": {
"c1": 1.0,
"c2": 0.3123694
}

}
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{
"r1": {

"c1": 0.0,
"c2": 1.75402283
},

"r2": {
"c1": 0.02636972,
"c2": 1.75402283
},

"r3": {
"c1": 0.05273944,
"c2": 1.75509497
},

"r4": {
"c1": 0.07910916,
"c2": 1.75534768
},

"r5": {
"c1": 0.10547888,
"c2": 1.75386569
},

"r6": {
"c1": 0.108402167,
"c2": 1.74523358
},

"r7": {
"c1": 0.130937309,
"c2": 1.74107444
},

"r8": {
"c1": 0.153472451,
"c2": 1.73298725
},

"r9": {
"c1": 0.176007594,
"c2": 1.72448509
},

"r10": {
"c1": 0.198542736,
"c2": 1.71543437
},

"r11": {
"c1": 0.221077879,
"c2": 1.70616259
},

355

C.1.11 CRM Deflection-Limited Shape Factor Input Distribution (python)



"r12": {
"c1": 0.243613021,
"c2": 1.69618005
},

"r13": {
"c1": 0.266148163,
"c2": 1.68465572
},

"r14": {
"c1": 0.288683306,
"c2": 1.67357583
},

"r15": {
"c1": 0.311218448,
"c2": 1.66209344
},

"r16": {
"c1": 0.333753591,
"c2": 1.64922433
},

"r17": {
"c1": 0.356288733,
"c2": 1.63642354
},

"r18": {
"c1": 0.378553584,
"c2": 1.62224134
},

"r19": {
"c1": 0.400400271,
"c2": 1.60958786
},

"r20": {
"c1": 0.422246959,
"c2": 1.60245325
},

"r21": {
"c1": 0.444093647,
"c2": 1.59271796
},

"r22": {
"c1": 0.465940334,
"c2": 1.58549094
},

"r23": {
"c1": 0.487787022,
"c2": 1.57790172
},

"r24": {
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"c1": 0.50963371,
"c2": 1.57060927
},

"r25": {
"c1": 0.531480397,
"c2": 1.56326521
},

"r26": {
"c1": 0.553327085,
"c2": 1.55593839
},

"r27": {
"c1": 0.575173773,
"c2": 1.54856594
},

"r28": {
"c1": 0.59702046,
"c2": 1.5367228
},

"r29": {
"c1": 0.618867148,
"c2": 1.52842311
},

"r30": {
"c1": 0.640713836,
"c2": 1.51980169
},

"r31": {
"c1": 0.662560523,
"c2": 1.5107914
},

"r32": {
"c1": 0.684407211,
"c2": 1.50147083
},

"r33": {
"c1": 0.706253898,
"c2": 1.4920819
},

"r34": {
"c1": 0.728100586,
"c2": 1.47614554
},

"r35": {
"c1": 0.749947274,
"c2": 1.46580845
},

"r36": {
"c1": 0.771793961,
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"c2": 1.45478998
},

"r37": {
"c1": 0.793640649,
"c2": 1.44266726
},

"r38": {
"c1": 0.815487337,
"c2": 1.42985335
},

"r39": {
"c1": 0.837334024,
"c2": 1.41410269
},

"r40": {
"c1": 0.859180712,
"c2": 1.39890333
},

"r41": {
"c1": 0.8810274,
"c2": 1.37008877
},

"r42": {
"c1": 0.902874087,
"c2": 1.35184328
},

"r43": {
"c1": 0.924720775,
"c2": 1.33217212
},

"r44": {
"c1": 0.946567463,
"c2": 1.31127277
},

"r45": {
"c1": 0.96841415,
"c2": 1.28901625
},

"r46": {
"c1": 1.0,
"c2": 1.2494776
}

}
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'''
ikhana_range_master.py

This file performs trajectory optimization for an aircraft having an 
engine model defined using a second-order multidimensional polynomial 
fit to obtain the power-specific fuel consumption and power 
available with 
respect to altitude and velocity 

'''

import math as ma
import numpy as np
import scipy.integrate as integrate
import scipy.optimize as optimize
import scipy.interpolate as interpolate
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import standard_atmosphere as std
import json
from collections import OrderedDict
import time
from progress.bar import IncrementalBar
import multiprocessing
from itertools import repeat
from functools import partial
import sys
import sys
sys.path.append('./Ikhana_structure')
import wing_structure_m4 as ws
sys.path.append('..')

class Aircraft(object):

def __init__(self, filename):
with open(filename) as input_file:

data = json.load(input_file, object_pairs_hook=OrderedDict)
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C.2 Trajectory Optimization

The following example code extracts can be used to compute the optimum cruise
trajectory for a desired input aircraft, as described in Chapter 5.

C.2.1 Trajectory Optimization for Ikhana (python)



self.input_airplane(data)
self.grid_setup()
self.array_initialize()

def input_airplane(self, data):

#Units
if data["units"] == 'English':

self.english_units = True
else:

self.english_units = False

# CRM Constant Properties
self.iweight = data["MTOW"]
self.fweight = data["M15FW"]
self.Sw = data["wing_area"]
self.CD0 = data["CD0"]
self.CD1 = data["CD1"]
self.CD2 = data["CD2"]
self.CM0 = data["CM0"]
self.CM1 = data["CM1"]
self.CM2 = data["CM2"]
self.r = data["range"]*5280.0
self.a00 = data["a00"]
self.a01 = data["a01"]
self.a02 = data["a02"]
self.a10 = data["a10"]
self.a11 = data["a11"]
self.a12 = data["a12"]
self.a20 = data["a20"]
self.a21 = data["a21"]
self.a22 = data["a22"]
self.b00 = data["b00"]
self.b01 = data["b01"]
self.b02 = data["b02"]
self.b10 = data["b10"]
self.b11 = data["b11"]
self.b12 = data["b12"]
self.b20 = data["b20"]
self.b21 = data["b21"]
self.b22 = data["b22"]
self.n = data["grid"]
self.g = 32.174
self.name = data["name"]
self.run_type = 'none'
self.run_direction = data["direction"]
self.s_runtime = 0.0
self.f_runtime = 0.0
self.results_path = '.'
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self.RA = 16.5
self.e = 1.

def grid_setup(self):
self.x = np.linspace(0, self.r, self.n)
self.xm = self.x/5280.0

def array_initialize(self):
self.W = np.zeros(self.n)
if self.run_direction == "f":

self.W[0] = self.iweight
elif self.run_direction == "b":

self.W[-1] = self.fweight
self.CL = np.zeros(self.n)
self.CD = np.zeros(self.n)
self.V = np.zeros(self.n)
self.h = np.zeros(self.n)
self.t = np.zeros(self.n)
self.esfc = np.zeros(self.n)
self.rho = np.zeros(self.n)
self.a = np.zeros(self.n)
self.Temp = np.zeros(self.n)
self.T = np.zeros(self.n)

def opt_h_V(self, y, i):
h = y[0]*100.
V = y[1]
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
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lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD

#Power Required
PR = T*V

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+self.
b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*V/1.6878
1*V/1.68781)*550
# ~ print(i, self.W[i])

climb = (PA-PR)/self.W[i]*60
# ~ print(h, V)

#ESFC
esfc =
((self.a00+self.a10*h+self.a20*h*h)+(self.a01+self.a11*h+self.
a21*h*h)*V/1.68781+(self.a02+self.a12*h+self.a22*h*h)*V/1.6878
1*V/1.68781)/550/(32.174*3600)

if i==self.n-1:
dx = self.x[i]-self.x[i-1]

else:
dx = self.x[i+1]-self.x[i]

t = dx/V

if climb>100.:
# ~ print(esfc*PR)
return esfc*PR*self.g*t

else:
# ~ print('yo',esfc*PR*self.g*t+10*(climb-100)**2)
return esfc*PR*self.g*t+10*(climb-100)**2

def set_state(self, y, i):
h = y[0]*100.
V = y[1]
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:
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statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD

#ESFC
esfc =
((self.a00+self.a10*h+self.a20*h*h)+(self.a01+self.a11*h+self.
a21*h*h)*V/1.68781+(self.a02+self.a12*h+self.a22*h*h)*V/1.6878
1*V/1.68781)/550/(32.174*3600)

self.h[i] = h
self.V[i] = V
self.rho[i] = rho
self.a[i] = a
self.Temp[i] = Temp
self.CL[i] = CL
self.CD[i] = CD
self.T[i] = T
self.esfc[i] = esfc

def breguet(self, y, flag='obj'):
h = y[0]
V = y[1]
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
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Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
if self.run_type == 'f':

CL = self.W[0]/(0.5*rho*V**2*self.Sw)
else:

CL = self.W[-1]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#TSFC
esfc =
((self.a00+self.a10*h+self.a20*h*h)+(self.a01+self.a11*h+self.
a21*h*h)*V/1.68781+(self.a02+self.a12*h+self.a22*h*h)*V/1.6878
1*V/1.68781)/550/(32.174*3600)
c = esfc*V

if self.run_direction == 'f':
Wf = self.W[0]/np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.esfcb = esfc
self.Wfb = Wf
self.W[-1] = self.Wfb
self.Mb = M
self.tb = self.r/V

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+s
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elf.b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*
V/1.68781*V/1.68781)*550

climb = (PA-PR)/self.W[0]*60

if climb>100.:
return self.W[0]-Wf

else:
return (self.W[0]-Wf)+10*(climb-100)**2

elif self.run_direction == 'b':
# ~ print(V, CL, CD)
Wi = self.W[-1]*np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.esfcb = esfc
self.iweight = Wi
self.W[0] = self.iweight
self.Mb = M
self.tb = self.r/V

# ~ print('fuel_burn', c*T*self.g*t)
# ~ print('velocity: ', V)
# ~ print('altitude: ', h)
# ~ print('Mach: ', M)
# ~ print('Drag Coefficient: ', CD)
# ~ print('Thrust: ', T)
# ~ print('TSFC: ', c)
# ~ print('Weight: ', self.W[i])
# ~ print('-----------------------------------')

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+s
elf.b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*
V/1.68781*V/1.68781)*550

climb = (PA-PR)/self.W[-1]*60

if climb>100.:

365



return Wi-self.W[-1]
else:

return (Wi-self.W[-1])+10*(climb-100)**2

def breguet_opt(self):
y0 = [20000., 200.0]
bnds = ((100., 80000.), (135.0, 1200.))
cons = [{"type" : "ineq",

"fun" : self.breguet}]
ans = optimize.minimize(self.breguet,

y0,
method='SLSQP',
bounds = bnds,
# ~ constraints = [{"type" : "ineq",

# ~ "fun" : self.breguet,
# ~ "args" : ("cons",)}],

options={'disp' : False,
'ftol' : 1e-16})

def service_ceiling(self, y, i):
# ~ print(y, i)
h = y[0]

#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

if self.run_type == 'Vmf':
V = optimize.newton(self.Vmfp, 800.0, args=(rho, a, i))

elif self.run_type == 'Vmd':
V = optimize.newton(self.Vmd, 800.0, args=(rho, a, i))

else:
V = y[1]

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
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CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+self.
b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*V/1.6878
1*V/1.68781)*550

climb = (PA-PR)/self.W[i]*60

return climb-100.+400.

def trajectory_opt(self):
opts = {'disp' : False,

'maxiter' : 500}#,
# ~ 'eps' : 1e-10,
# ~ 'ftol' : 1e-11}

tolerance = 1e-14
iguess = [200., 250.]

if self.run_direction == 'b':

if self.run_type == 'full_opt':
#Full Optimization

#-----------------------------------------------------
----------------------------------
y0 = iguess
bnds = ((1., 800.), (100.0, 600.))
# ~ cons = [{"type" : "ineq",

# ~ "fun" : self.service_ceiling}]
for i in range(1, self.n+1):

j = self.n-i
ans = optimize.minimize(self.opt_h_V,

y0, args=(j),
method='SLSQP',
bounds = bnds,
tol = tolerance,
options=opts)
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self.set_state(ans.x, j)

if j>0:
self.W[j-1] =
self.W[j]+self.esfc[j]*self.T[j]*self.V[j]*sel
f.g*(self.x[j]-self.x[j-1])/self.V[j]

if ans.success == False:
print('optimization failed', ans.message)
y0 = ans.x

#print(y0)
for i in range(0, self.n):

if i<self.n-1:
self.t[i+1] =
self.t[i]+(self.x[i+1]-self.x[i])/self.V[i]

#print(y0)

self.L = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CL))
self.D = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CD))
self.L_D = np.divide(self.L, self.D)

def trajectory_cases(self):
data_format="{0:<30}{1:<30.16f}\n"

dist_header="{0:<30}{1:<30}{2:<30}{3:<30}{4:<32}{5:<30}{6:<30}
{7:<32}{8:<30}{9:<30}{10:<32}{11:<30}{12:<30}\n"

dist_format="{0:<30.16f}{1:<30.16f}{2:<30.16f}{3:<30.16f}{4:<3
2.16f}{5:<30.16f}{6:<30.16f}{7:<32.16f}{8:<30.16f}{9:<30.16f}{
10:<30.16f}{11:<30.16f}{12:<30.16f}\n"

self.fig_path = self.results_path+'figs/'
if self.run_type == 'breguet':

self.breguet_opt()
print('Run Type: ', self.run_type)
if self.run_direction == 'f':

print('Total Fuel Burn: ', self.W[0]-self.Wfb, 'lbf')
else:

print('Total Fuel Burn: ', self.iweight-self.W[-1],
'lbf')

print('Total Time: ', self.tb/3600.0, 'hours')
print('L/D: ', self.L_Db)
print('V: ', self.Vb, 'ft/s')
print('h: ', self.hb, 'ft')
print('TSFC: ', self.esfcb, 'slugs/lbf/s')
print('Mach: ', self.Mb)
print('total run time: ', time.time()-self.s_runtime)
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print('---------------------------------------------------
')

else:
self.trajectory_opt()
print('Run Type:', self.run_type)
print('Total Fuel Burn: ', self.W[0]-self.W[-1], 'lbf')
print('Total Time: ', self.t[-1]/3600.0, 'hours')
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')

'''
data_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_data
.txt', 'w')
data_file.write(data_format.format('Total Fuel Burn:', 
self.W[0]-self.W[-1]))
data_file.write(data_format.format('Total Cruise Time:', 
self.t[-1]/3600.0))
data_file.write(data_format.format('Run Time:', 
time.time()-self.s_runtime))
data_file.close()

dist_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_dist
s.txt', 'w')
dist_file.write(dist_header.format('x[ft]', 
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/
D','T[lbf]','ESFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(self.x)):

dist_file.write(dist_format.format(self.x[i], 
self.x[i]/5280., self.t[i], self.t[i]/3600.0, 
self.h[i], self.V[i], self.V[i]/self.a[i], 
self.CL[i], self.CD[i], self.CL[i]/self.CD[i], 
self.T[i], self.esfc[i], self.W[i]))

dist_file.close()

plot_range_multiplier = 100.

#Altitude
plt.figure(1)
plt.plot(self.xm, self.h)
plt.xlabel('x [mi]')
plt.ylabel('h [ft]')
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plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_h
.png')

#Velocity
plt.figure(2)
plt.plot(self.xm, self.V)
plt.xlabel('x [mi]')
plt.ylabel('V [ft/s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_V
.png')

#Mach
plt.figure(3)
plt.plot(self.xm, np.divide(self.V,self.a))
plt.xlabel('x [mi]')
plt.ylabel('M')

plt.ylim(np.amin(np.divide(self.V,self.a))-(np.amax(np.div
ide(self.V,self.a))-np.amin(np.divide(self.V,self.a)))*plo
t_range_multiplier, 
np.amax(np.divide(self.V,self.a))+(np.amax(np.divide(self.
V,self.a))-np.amin(np.divide(self.V,self.a)))*plot_range_m
ultiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_M
.png')

#CL
plt.figure(4)
plt.plot(self.xm, self.CL)
plt.xlabel('x [mi]')
plt.ylabel('CL')

plt.ylim(np.amin(self.CL)-(np.amax(self.CL)-np.amin(self.C
L))*plot_range_multiplier, 
np.amax(self.CL)+(np.amax(self.CL)-np.amin(self.CL))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
L.png')

#CD
plt.figure(5)
plt.plot(self.xm, self.CD)
plt.xlabel('x [mi]')
plt.ylabel('CD')
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plt.ylim(np.amin(self.CD)-(np.amax(self.CD)-np.amin(self.C
D))*plot_range_multiplier, 
np.amax(self.CD)+(np.amax(self.CD)-np.amin(self.CD))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
D.png')

#L/D
plt.figure(6)
plt.plot(self.xm, self.L_D)
plt.xlabel('x [mi]')
plt.ylabel('L/D')

plt.ylim(np.amin(self.L_D)-(np.amax(self.L_D)-np.amin(self
.L_D))*plot_range_multiplier, 
np.amax(self.L_D)+(np.amax(self.L_D)-np.amin(self.L_D))*pl
ot_range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_L
_D.png')

#T
plt.figure(7)
plt.plot(self.xm, self.T)
plt.xlabel('x [mi]')
plt.ylabel('T [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_T
.png')

#TSFC
plt.figure(8)
plt.plot(self.xm, self.esfc)
plt.xlabel('x [mi]')
plt.ylabel('ESFC [slugs/lbf ft/s /s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_E
SFC.png')

#W
plt.figure(9)
plt.plot(self.xm, self.W)
plt.xlabel('x [mi]')
plt.ylabel('W [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_W
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.png')
# ~ plt.show()

plt.figure(1).clear()
plt.figure(2).clear()
plt.figure(3).clear()
plt.figure(4).clear()
plt.figure(5).clear()
plt.figure(6).clear()
plt.figure(7).clear()
plt.figure(8).clear()
plt.figure(9).clear()
'''

class Aircraft_h(object):

def __init__(self, filename):
with open(filename) as input_file:

data = json.load(input_file, object_pairs_hook=OrderedDict)

self.input_airplane(data)
self.grid_setup()
self.array_initialize()

def input_airplane(self, data):

#Units
if data["units"] == 'English':

self.english_units = True
else:

self.english_units = False

# CRM Constant Properties
self.iweight = data["MTOW"]
self.fweight = data["M15FW"]
self.Sw = data["wing_area"]
self.CD0 = data["CD0"]
self.CD1 = data["CD1"]
self.CD2 = data["CD2"]
self.CM0 = data["CM0"]
self.CM1 = data["CM1"]
self.CM2 = data["CM2"]
self.r = data["range"]*5280.0
self.a00 = data["a00"]
self.a01 = data["a01"]
self.a02 = data["a02"]
self.a10 = data["a10"]
self.a11 = data["a11"]
self.a12 = data["a12"]
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self.a20 = data["a20"]
self.a21 = data["a21"]
self.a22 = data["a22"]
self.b00 = data["b00"]
self.b01 = data["b01"]
self.b02 = data["b02"]
self.b10 = data["b10"]
self.b11 = data["b11"]
self.b12 = data["b12"]
self.b20 = data["b20"]
self.b21 = data["b21"]
self.b22 = data["b22"]
self.n = data["grid"]
self.g = 32.174
self.name = data["name"]
self.run_type = 'none'
self.run_direction = data["direction"]
self.s_runtime = 0.0
self.f_runtime = 0.0
self.results_path = '.'
self.RA = 16.5
self.e = 1.

def grid_setup(self):
self.x = np.linspace(0, self.r, self.n)
self.xm = self.x/5280.0

def array_initialize(self):
self.W = np.zeros(self.n)
if self.run_direction == "f":

self.W[0] = self.iweight
elif self.run_direction == "b":

self.W[-1] = self.fweight
self.CL = np.zeros(self.n)
self.CD = np.zeros(self.n)
self.V = np.zeros(self.n)
self.h = np.zeros(self.n)
self.t = np.zeros(self.n)
self.esfc = np.zeros(self.n)
self.rho = np.zeros(self.n)
self.a = np.zeros(self.n)
self.Temp = np.zeros(self.n)
self.T = np.zeros(self.n)
self.climb = np.zeros(self.n)

def opt_h_V(self, y, h, i):
V = y
#atmospheric properties
if self.english_units == True:
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statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD

#Power Required
PR = T*V

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+self.
b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*V/1.6878
1*V/1.68781)*550
# ~ print(i, self.W[i])

climb = (PA-PR)/self.W[i]*60
# ~ print(h, V)

#ESFC
esfc =
((self.a00+self.a10*h+self.a20*h*h)+(self.a01+self.a11*h+self.
a21*h*h)*V/1.68781+(self.a02+self.a12*h+self.a22*h*h)*V/1.6878
1*V/1.68781)/550/(32.174*3600)

if i==self.n-1:
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dx = self.x[i]-self.x[i-1]
else:

dx = self.x[i+1]-self.x[i]

t = dx/V

if climb>100.:
# ~ print(esfc*PR*self.g*t)
return esfc*PR*self.g*t

else:
# ~ print('yo',esfc*PR*self.g*t)#+10*(climb-100)**2)
return esfc*PR*self.g*t+10*(climb-100)**2

def set_state(self, y, h, i):
V = y
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD

#Power Required
PR = T*V

#Power Available
if h <36131:

m=0.7
else:

m=1.0
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PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+self.
b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*V/1.6878
1*V/1.68781)*550
# ~ print(i, self.W[i])

climb = (PA-PR)/self.W[i]*60

#ESFC
esfc =
((self.a00+self.a10*h+self.a20*h*h)+(self.a01+self.a11*h+self.
a21*h*h)*V/1.68781+(self.a02+self.a12*h+self.a22*h*h)*V/1.6878
1*V/1.68781)/550/(32.174*3600)

self.h[i] = h
self.V[i] = V
self.rho[i] = rho
self.a[i] = a
self.Temp[i] = Temp
self.CL[i] = CL
self.CD[i] = CD
self.T[i] = T
self.esfc[i] = esfc
self.climb[i] = climb

def breguet(self, y, flag='obj'):
h = y[0]
V = y[1]
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
if self.run_type == 'f':

CL = self.W[0]/(0.5*rho*V**2*self.Sw)
else:

CL = self.W[-1]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a
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#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#TSFC
esfc =
((self.a00+self.a10*h+self.a20*h*h)+(self.a01+self.a11*h+self.
a21*h*h)*V/1.68781+(self.a02+self.a12*h+self.a22*h*h)*V/1.6878
1*V/1.68781)/550/(32.174*3600)
c = esfc*V

if self.run_direction == 'f':
Wf = self.W[0]/np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.esfcb = esfc
self.Wfb = Wf
self.W[-1] = self.Wfb
self.Mb = M
self.tb = self.r/V

# ~ print('fuel_burn', c*T*self.g*t)
# ~ print('velocity: ', V)
# ~ print('altitude: ', h)
# ~ print('Mach: ', M)
# ~ print('Drag Coefficient: ', CD)
# ~ print('Thrust: ', T)
# ~ print('TSFC: ', c)
# ~ print('Weight: ', self.W[i])
# ~ print('-----------------------------------')
#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+s
elf.b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*
V/1.68781*V/1.68781)*550

climb = (PA-PR)/self.W[0]*60
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if climb>100.:
return self.W[0]-Wf

else:
return (self.W[0]-Wf)+10*(climb-100)**2

elif self.run_direction == 'b':
# ~ print(V, CL, CD)
Wi = self.W[-1]*np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.esfcb = esfc
self.iweight = Wi
self.W[0] = self.iweight
self.Mb = M
self.tb = self.r/V

# ~ print('fuel_burn', c*T*self.g*t)
# ~ print('velocity: ', V)
# ~ print('altitude: ', h)
# ~ print('Mach: ', M)
# ~ print('Drag Coefficient: ', CD)
# ~ print('Thrust: ', T)
# ~ print('TSFC: ', c)
# ~ print('Weight: ', self.W[i])
# ~ print('-----------------------------------')

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+s
elf.b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*
V/1.68781*V/1.68781)*550

climb = (PA-PR)/self.W[-1]*60

if climb>100.:
return Wi-self.W[-1]

else:
return (Wi-self.W[-1])+10*(climb-100)**2
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def breguet_opt(self):
y0 = [20000., 200.0]
bnds = ((100., 80000.), (135.0, 1200.))
cons = [{"type" : "ineq",

"fun" : self.breguet}]
ans = optimize.minimize(self.breguet,

y0,
method='SLSQP',
bounds = bnds,
# ~ constraints = [{"type" : "ineq",

# ~ "fun" : self.breguet,
# ~ "args" : ("cons",)}],

options={'disp' : False,
'ftol' : 1e-16})

def service_ceiling(self, y, i):
# ~ print(y, i)
h = y[0]

#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

if self.run_type == 'Vmf':
V = optimize.newton(self.Vmfp, 800.0, args=(rho, a, i))

elif self.run_type == 'Vmd':
V = optimize.newton(self.Vmd, 800.0, args=(rho, a, i))

else:
V = y[1]

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

379



#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+self.
b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*V/1.6878
1*V/1.68781)*550

climb = (PA-PR)/self.W[i]*60

return climb-100.+400.

def trajectory_opt(self, r):
h = r*10000.
opts = {'disp' : False,

'maxiter' : 500}#,
# ~ 'eps' : 1e-10,
# ~ 'ftol' : 1e-11}

tolerance = 1e-14
iguess = [250.]

if self.run_direction == 'b':

if self.run_type == 'full_opt':
#Full Optimization

#-----------------------------------------------------
----------------------------------
y0 = iguess
bnds = ((10.0, 1800.),)
for i in range(1, self.n+1):

j = self.n-i
ans = optimize.minimize(self.opt_h_V,

y0, args=(h, j),
method='SLSQP',
bounds = bnds,
tol = tolerance,
options=opts)

# print(i, self.x[i], ans.x[0], 
ans.x[1])
self.set_state(ans.x[0], h, j)

if j>0:
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self.W[j-1] =
self.W[j]+self.esfc[j]*self.T[j]*self.V[j]*sel
f.g*(self.x[j]-self.x[j-1])/self.V[j]

if ans.success == False:
print('optimization failed', ans.message)
y0 = ans.x

#print(y0)
for i in range(0, self.n):

if i<self.n-1:
self.t[i+1] =
self.t[i]+(self.x[i+1]-self.x[i])/self.V[i]

#print(y0)

self.L = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CL))
self.D = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CD))
self.L_D = np.divide(self.L, self.D)

print(' ')
print('altitude: ', h)
print(self.W[0]-self.W[-1])
print(np.min(self.climb))

# ~ return(self.W[0]-self.W[-1])
# ~ if np.isnan(self.W[0]-self.W[-1]):

# ~ return 1e16
if np.min(self.climb) > 100:

return (self.W[0]-self.W[-1])
else:

return
((self.W[0]-self.W[-1])+10*(np.min(self.climb)-100)**2)

def trajectory_cases(self):
data_format="{0:<30}{1:<30.16f}\n"

dist_header="{0:<30}{1:<30}{2:<30}{3:<30}{4:<32}{5:<30}{6:<30}
{7:<32}{8:<30}{9:<30}{10:<32}{11:<30}{12:<30}\n"

dist_format="{0:<30.16f}{1:<30.16f}{2:<30.16f}{3:<30.16f}{4:<3
2.16f}{5:<30.16f}{6:<30.16f}{7:<32.16f}{8:<30.16f}{9:<30.16f}{
10:<30.16f}{11:<30.16f}{12:<30.16f}\n"

self.fig_path = self.results_path+'figs/'
if self.run_type == 'breguet':

self.breguet_opt()
print('Run Type: ', self.run_type)
if self.run_direction == 'f':

print('Total Fuel Burn: ', self.W[0]-self.Wfb, 'lbf')
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else:
print('Total Fuel Burn: ', self.iweight-self.W[-1],
'lbf')

print('Total Time: ', self.tb/3600.0, 'hours')
print('L/D: ', self.L_Db)
print('V: ', self.Vb, 'ft/s')
print('h: ', self.hb, 'ft')
print('TSFC: ', self.esfcb, 'slugs/lbf/s')
print('Mach: ', self.Mb)
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')

# ~ data_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_data
_b.txt', 'w')
# ~ if self.run_direction == 'f':

# ~ data_file.write(data_format.format('Total Fuel 
Burn:', self.W[0]-self.Wfb))
# ~ self.W[-1] = self.Wfb

# ~ else:
# ~ data_file.write(data_format.format('Total Fuel 
Burn:', self.iweight-self.W[-1]))
# ~ self.W[0] = self.iweight

# ~ data_file.write(data_format.format('Total Cruise 
Time:', self.tb/3600.0))
# ~ self.t[-1] = self.tb
# ~ data_file.write(data_format.format('Run Time:', 
time.time()-self.s_runtime))
# ~ data_file.close()

else:
h0 = 0.0001
bnds = ((0.0001, 8.),)
tolerance = 1e-14
opts = {'disp' : True,

'maxiter' : 500,
'eps' : 1e-10,
'ftol' : 1e-11}

ans = optimize.minimize(self.trajectory_opt,
h0,
method='SLSQP',
bounds = bnds,
tol = tolerance,
options=opts)

self.h[:] = ans.x[0]*10000.
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print('Run Type:', self.run_type)
print('Total Fuel Burn: ', self.W[0]-self.W[-1], 'lbf')
print('Total Time: ', self.t[-1]/3600.0, 'hours')
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')

# ~ for i in range(0, len(self.x)):
# ~ print(self.rho[i])

#-------------------------------------------------------------
-------------------------

'''
data_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_data
.txt', 'w')
data_file.write(data_format.format('Total Fuel Burn:', 
self.W[0]-self.W[-1]))
data_file.write(data_format.format('Total Cruise Time:', 
self.t[-1]/3600.0))
data_file.write(data_format.format('Run Time:', 
time.time()-self.s_runtime))
data_file.close()

dist_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_dist
s.txt', 'w')
dist_file.write(dist_header.format('x[ft]', 
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/
D','T[lbf]','ESFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(self.x)):

dist_file.write(dist_format.format(self.x[i], 
self.x[i]/5280., self.t[i], self.t[i]/3600.0, 
self.h[i], self.V[i], self.V[i]/self.a[i], 
self.CL[i], self.CD[i], self.CL[i]/self.CD[i], 
self.T[i], self.esfc[i], self.W[i]))

dist_file.close()

plot_range_multiplier = 100.

#Altitude
plt.figure(1)
plt.plot(self.xm, self.h)
plt.xlabel('x [mi]')
plt.ylabel('h [ft]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_h
.png')
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#Velocity
plt.figure(2)
plt.plot(self.xm, self.V)
plt.xlabel('x [mi]')
plt.ylabel('V [ft/s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_V
.png')

#Mach
plt.figure(3)
plt.plot(self.xm, np.divide(self.V,self.a))
plt.xlabel('x [mi]')
plt.ylabel('M')

plt.ylim(np.amin(np.divide(self.V,self.a))-(np.amax(np.div
ide(self.V,self.a))-np.amin(np.divide(self.V,self.a)))*plo
t_range_multiplier, 
np.amax(np.divide(self.V,self.a))+(np.amax(np.divide(self.
V,self.a))-np.amin(np.divide(self.V,self.a)))*plot_range_m
ultiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_M
.png')

#CL
plt.figure(4)
plt.plot(self.xm, self.CL)
plt.xlabel('x [mi]')
plt.ylabel('CL')

plt.ylim(np.amin(self.CL)-(np.amax(self.CL)-np.amin(self.C
L))*plot_range_multiplier, 
np.amax(self.CL)+(np.amax(self.CL)-np.amin(self.CL))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
L.png')

#CD
plt.figure(5)
plt.plot(self.xm, self.CD)
plt.xlabel('x [mi]')
plt.ylabel('CD')

plt.ylim(np.amin(self.CD)-(np.amax(self.CD)-np.amin(self.C
D))*plot_range_multiplier, 
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np.amax(self.CD)+(np.amax(self.CD)-np.amin(self.CD))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
D.png')

#L/D
plt.figure(6)
plt.plot(self.xm, self.L_D)
plt.xlabel('x [mi]')
plt.ylabel('L/D')

plt.ylim(np.amin(self.L_D)-(np.amax(self.L_D)-np.amin(self
.L_D))*plot_range_multiplier, 
np.amax(self.L_D)+(np.amax(self.L_D)-np.amin(self.L_D))*pl
ot_range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_L
_D.png')

#T
plt.figure(7)
plt.plot(self.xm, self.T)
plt.xlabel('x [mi]')
plt.ylabel('T [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_T
.png')

#TSFC
plt.figure(8)
plt.plot(self.xm, self.esfc)
plt.xlabel('x [mi]')
plt.ylabel('ESFC [slugs/lbf ft/s /s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_E
SFC.png')

#W
plt.figure(9)
plt.plot(self.xm, self.W)
plt.xlabel('x [mi]')
plt.ylabel('W [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_W
.png')
# ~ plt.show()
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plt.figure(1).clear()
plt.figure(2).clear()
plt.figure(3).clear()
plt.figure(4).clear()
plt.figure(5).clear()
plt.figure(6).clear()
plt.figure(7).clear()
plt.figure(8).clear()
plt.figure(9).clear()
'''

class Aircraft_fixed_h(object):

def __init__(self, filename):
with open(filename) as input_file:

data = json.load(input_file, object_pairs_hook=OrderedDict)

self.input_airplane(data)
self.grid_setup()
self.array_initialize()

def input_airplane(self, data):

#Units
if data["units"] == 'English':

self.english_units = True
else:

self.english_units = False

# CRM Constant Properties
self.iweight = data["MTOW"]
self.fweight = data["M15FW"]
self.Sw = data["wing_area"]
self.CD0 = data["CD0"]
self.CD1 = data["CD1"]
self.CD2 = data["CD2"]
self.CM0 = data["CM0"]
self.CM1 = data["CM1"]
self.CM2 = data["CM2"]
self.r = data["range"]*5280.0
self.a00 = data["a00"]
self.a01 = data["a01"]
self.a02 = data["a02"]
self.a10 = data["a10"]
self.a11 = data["a11"]
self.a12 = data["a12"]
self.a20 = data["a20"]
self.a21 = data["a21"]
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self.a22 = data["a22"]
self.b00 = data["b00"]
self.b01 = data["b01"]
self.b02 = data["b02"]
self.b10 = data["b10"]
self.b11 = data["b11"]
self.b12 = data["b12"]
self.b20 = data["b20"]
self.b21 = data["b21"]
self.b22 = data["b22"]
self.n = data["grid"]
self.g = 32.174
self.name = data["name"]
self.run_type = 'none'
self.run_direction = data["direction"]
self.s_runtime = 0.0
self.f_runtime = 0.0
self.results_path = '.'
self.RA = 16.5
self.e = 1.
self.hf = 19720.0

def grid_setup(self):
self.x = np.linspace(0, self.r, self.n)
self.xm = self.x/5280.0

def array_initialize(self):
self.W = np.zeros(self.n)
if self.run_direction == "f":

self.W[0] = self.iweight
elif self.run_direction == "b":

self.W[-1] = self.fweight
self.CL = np.zeros(self.n)
self.CD = np.zeros(self.n)
self.V = np.zeros(self.n)
self.h = np.zeros(self.n)
self.t = np.zeros(self.n)
self.esfc = np.zeros(self.n)
self.rho = np.zeros(self.n)
self.a = np.zeros(self.n)
self.Temp = np.zeros(self.n)
self.T = np.zeros(self.n)
self.climb = np.zeros(self.n)

def opt_h_V(self, y, h, i):
V = y*100.
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
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else:
statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD

#Power Required
PR = T*V

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+self.
b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*V/1.6878
1*V/1.68781)*550
# ~ print(i, self.W[i])

climb = (PA-PR)/self.W[i]*60
# ~ print(h, V)

#ESFC
esfc =
((self.a00+self.a10*h+self.a20*h*h)+(self.a01+self.a11*h+self.
a21*h*h)*V/1.68781+(self.a02+self.a12*h+self.a22*h*h)*V/1.6878
1*V/1.68781)/550/(32.174*3600)

if i==self.n-1:
dx = self.x[i]-self.x[i-1]
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else:
dx = self.x[i+1]-self.x[i]

t = dx/V

# ~ print('fuel_burn', c*T*self.g*t)
# ~ print('velocity: ', V)
# ~ print('altitude: ', h)
# ~ print('Mach: ', M)
# ~ print('Drag Coefficient: ', CD)
# ~ print('Thrust: ', T)
# ~ print('TSFC: ', c)
# ~ print('Weight: ', self.W[i])
# ~ print('-----------------------------------')

if climb>100.:
# ~ print(esfc*PR*self.g*t)
return esfc*PR*self.g*t

else:
# ~ print('yo',esfc*PR*self.g*t)#+10*(climb-100)**2)
return esfc*PR*self.g*t+10*(climb-100)**2

def set_state(self, y, h, i):
V = y*100.
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD
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#Power Required
PR = T*V

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+self.
b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*V/1.6878
1*V/1.68781)*550
# ~ print(i, self.W[i])

climb = (PA-PR)/self.W[i]*60

#ESFC
esfc =
((self.a00+self.a10*h+self.a20*h*h)+(self.a01+self.a11*h+self.
a21*h*h)*V/1.68781+(self.a02+self.a12*h+self.a22*h*h)*V/1.6878
1*V/1.68781)/550/(32.174*3600)

self.h[i] = h
self.V[i] = V
self.rho[i] = rho
self.a[i] = a
self.Temp[i] = Temp
self.CL[i] = CL
self.CD[i] = CD
self.T[i] = T
self.esfc[i] = esfc
self.climb[i] = climb

def breguet(self, y, h, flag='obj'):
# ~ h = y[0]
V = y[0]*100.
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)
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#Lift coefficient
if self.run_type == 'f':

CL = self.W[0]/(0.5*rho*V**2*self.Sw)
else:

CL = self.W[-1]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#TSFC
esfc =
((self.a00+self.a10*h+self.a20*h*h)+(self.a01+self.a11*h+self.
a21*h*h)*V/1.68781+(self.a02+self.a12*h+self.a22*h*h)*V/1.6878
1*V/1.68781)/550/(32.174*3600)
c = esfc*V

if self.run_direction == 'f':
Wf = self.W[0]/np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.esfcb = esfc
self.Wfb = Wf
self.W[-1] = self.Wfb
self.Mb = M
self.tb = self.r/V

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+s
elf.b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*
V/1.68781*V/1.68781)*550

climb = (PA-PR)/self.W[0]*60
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if climb>100.:
return self.W[0]-Wf

else:
return (self.W[0]-Wf)+10*(climb-100)**2

elif self.run_direction == 'b':
# ~ print(V, CL, CD)
Wi = self.W[-1]*np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.esfcb = esfc
self.iweight = Wi
self.W[0] = self.iweight
self.Mb = M
self.tb = self.r/V

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+s
elf.b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*
V/1.68781*V/1.68781)*550

climb = (PA-PR)/self.W[-1]*60

if climb>100.:
return Wi-self.W[-1]

else:
return (Wi-self.W[-1])+10*(climb-100)**2

def breguet_opt(self, h):
y0 = [2.000]
bnds = ((1.350, 12.00),)
cons = [{"type" : "ineq",

"fun" : self.breguet}]
ans = optimize.minimize(self.breguet,

y0, args=(h),
method='SLSQP',
bounds = bnds,
options={'disp' : False,
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'ftol' : 1e-16})

def service_ceiling(self, y, i):
# ~ print(y, i)
h = y[0]

#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

if self.run_type == 'Vmf':
V = optimize.newton(self.Vmfp, 800.0, args=(rho, a, i))

elif self.run_type == 'Vmd':
V = optimize.newton(self.Vmd, 800.0, args=(rho, a, i))

else:
V = y[1]

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
((self.b00+self.b10*h+self.b20*h*h)+(self.b01+self.b11*h+self.
b21*h*h)*V/1.68781+(self.b02+self.b12*h+self.b22*h*h)*V/1.6878
1*V/1.68781)*550
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climb = (PA-PR)/self.W[i]*60

return climb-100.+400.

def trajectory_opt(self, r):
h = r
opts = {'disp' : False,

'maxiter' : 500}#,
# ~ 'eps' : 1e-10,
# ~ 'ftol' : 1e-11}

tolerance = 1e-14
iguess = [2.50]

if self.run_direction == 'b':

if self.run_type == 'full_opt':
#Full Optimization

#-----------------------------------------------------
----------------------------------
y0 = iguess
bnds = ((.100, 18.00),)
for i in range(1, self.n+1):

j = self.n-i
ans = optimize.minimize(self.opt_h_V,

y0, args=(h, j),
method='SLSQP',
bounds = bnds,
tol = tolerance,
options=opts)

self.set_state(ans.x[0], h, j)

if j>0:
self.W[j-1] =
self.W[j]+self.esfc[j]*self.T[j]*self.V[j]*sel
f.g*(self.x[j]-self.x[j-1])/self.V[j]

if ans.success == False:
print('optimization failed', ans.message)
y0 = ans.x

for i in range(0, self.n):
if i<self.n-1:

self.t[i+1] =
self.t[i]+(self.x[i+1]-self.x[i])/self.V[i]

self.L = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CL))
self.D = np.multiply(self.Sw*0.5*self.rho,
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np.multiply(np.multiply(self.V, self.V), self.CD))
self.L_D = np.divide(self.L, self.D)

print(' ')
print('altitude: ', h)
print(self.W[0]-self.W[-1])
print(np.min(self.climb))

if np.min(self.climb) > 100:
return (self.W[0]-self.W[-1])

else:
return
((self.W[0]-self.W[-1])+10*(np.min(self.climb)-100)**2)

def trajectory_cases(self):
data_format="{0:<30}{1:<30.16f}\n"

dist_header="{0:<30}{1:<30}{2:<30}{3:<30}{4:<32}{5:<30}{6:<30}
{7:<32}{8:<30}{9:<30}{10:<32}{11:<30}{12:<30}\n"

dist_format="{0:<30.16f}{1:<30.16f}{2:<30.16f}{3:<30.16f}{4:<3
2.16f}{5:<30.16f}{6:<30.16f}{7:<32.16f}{8:<30.16f}{9:<30.16f}{
10:<30.16f}{11:<30.16f}{12:<30.16f}\n"

self.fig_path = self.results_path+'figs/'
if self.run_type == 'breguet':

h0 = self.hf
self.breguet_opt(h0)
print('Run Type: ', self.run_type)
if self.run_direction == 'f':

print('Total Fuel Burn: ', self.W[0]-self.Wfb, 'lbf')
else:

print('Total Fuel Burn: ', self.iweight-self.W[-1],
'lbf')

print('Total Time: ', self.tb/3600.0, 'hours')
print('L/D: ', self.L_Db)
print('V: ', self.Vb, 'ft/s')
print('h: ', self.hb, 'ft')
print('TSFC: ', self.esfcb, 'slugs/lbf/s')
print('Mach: ', self.Mb)
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')

else:
h0 = self.hf
self.trajectory_opt(h0)
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print('Run Type:', self.run_type)
print('Total Fuel Burn: ', self.W[0]-self.W[-1], 'lbf')
print('Total Time: ', self.t[-1]/3600.0, 'hours')
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')

'''
data_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_data
.txt', 'w')
data_file.write(data_format.format('Total Fuel Burn:', 
self.W[0]-self.W[-1]))
data_file.write(data_format.format('Total Cruise Time:', 
self.t[-1]/3600.0))
data_file.write(data_format.format('Run Time:', 
time.time()-self.s_runtime))
data_file.close()

dist_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_dist
s.txt', 'w')
dist_file.write(dist_header.format('x[ft]', 
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/
D','T[lbf]','ESFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(self.x)):

dist_file.write(dist_format.format(self.x[i], 
self.x[i]/5280., self.t[i], self.t[i]/3600.0, 
self.h[i], self.V[i], self.V[i]/self.a[i], 
self.CL[i], self.CD[i], self.CL[i]/self.CD[i], 
self.T[i], self.esfc[i], self.W[i]))

dist_file.close()

plot_range_multiplier = 100.

#Altitude
plt.figure(1)
plt.plot(self.xm, self.h)
plt.xlabel('x [mi]')
plt.ylabel('h [ft]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_h
.png')

#Velocity
plt.figure(2)
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plt.plot(self.xm, self.V)
plt.xlabel('x [mi]')
plt.ylabel('V [ft/s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_V
.png')

#Mach
plt.figure(3)
plt.plot(self.xm, np.divide(self.V,self.a))
plt.xlabel('x [mi]')
plt.ylabel('M')

plt.ylim(np.amin(np.divide(self.V,self.a))-(np.amax(np.div
ide(self.V,self.a))-np.amin(np.divide(self.V,self.a)))*plo
t_range_multiplier, 
np.amax(np.divide(self.V,self.a))+(np.amax(np.divide(self.
V,self.a))-np.amin(np.divide(self.V,self.a)))*plot_range_m
ultiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_M
.png')

#CL
plt.figure(4)
plt.plot(self.xm, self.CL)
plt.xlabel('x [mi]')
plt.ylabel('CL')

plt.ylim(np.amin(self.CL)-(np.amax(self.CL)-np.amin(self.C
L))*plot_range_multiplier, 
np.amax(self.CL)+(np.amax(self.CL)-np.amin(self.CL))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
L.png')

#CD
plt.figure(5)
plt.plot(self.xm, self.CD)
plt.xlabel('x [mi]')
plt.ylabel('CD')

plt.ylim(np.amin(self.CD)-(np.amax(self.CD)-np.amin(self.C
D))*plot_range_multiplier, 
np.amax(self.CD)+(np.amax(self.CD)-np.amin(self.CD))*plot_
range_multiplier)
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plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
D.png')

#L/D
plt.figure(6)
plt.plot(self.xm, self.L_D)
plt.xlabel('x [mi]')
plt.ylabel('L/D')

plt.ylim(np.amin(self.L_D)-(np.amax(self.L_D)-np.amin(self
.L_D))*plot_range_multiplier, 
np.amax(self.L_D)+(np.amax(self.L_D)-np.amin(self.L_D))*pl
ot_range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_L
_D.png')

#T
plt.figure(7)
plt.plot(self.xm, self.T)
plt.xlabel('x [mi]')
plt.ylabel('T [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_T
.png')

#TSFC
plt.figure(8)
plt.plot(self.xm, self.esfc)
plt.xlabel('x [mi]')
plt.ylabel('ESFC [slugs/lbf ft/s /s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_E
SFC.png')

#W
plt.figure(9)
plt.plot(self.xm, self.W)
plt.xlabel('x [mi]')
plt.ylabel('W [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_W
.png')
# ~ plt.show()

plt.figure(1).clear()
plt.figure(2).clear()
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plt.figure(3).clear()
plt.figure(4).clear()
plt.figure(5).clear()
plt.figure(6).clear()
plt.figure(7).clear()
plt.figure(8).clear()
plt.figure(9).clear()
'''

def general(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header):

for RA in [4,6,8,10,12,14,16,18,20]:
for e in
[0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.8
5,0.9,0.95,1.]:

Ikhana_fo.RA = RA
Ikhana_fo.e = e
Ikhana_fo.CD2 = 1./(ma.pi*RA*e)
Ikhana_fo.s_runtime = time.time()
Ikhana_fo.trajectory_cases()
Ikhana_fo.f_runtime = time.time()

Ikhana_b.RA = RA
Ikhana_b.e = e
Ikhana_b.CD2 = 1./(ma.pi*RA*e)
Ikhana_b.s_runtime = time.time()
Ikhana_b.trajectory_cases()
Ikhana_b.f_runtime = time.time()

sdata_file.write(sdata_format.format(Ikhana_fo.RA,
Ikhana_fo.e, 1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.e),
Ikhana_fo.W[0]-Ikhana_fo.W[-1],
Ikhana_b.W[0]-Ikhana_b.W[-1], Ikhana_fo.t[-1]/3600.,
Ikhana_b.tb/3600., np.mean(Ikhana_fo.h),
np.mean(Ikhana_fo.V),
np.mean(np.divide(Ikhana_fo.V,Ikhana_fo.a)),
np.mean(Ikhana_fo.CL), np.mean(Ikhana_fo.CD),
np.mean(Ikhana_fo.L_D), np.mean(Ikhana_fo.T),
np.mean(Ikhana_fo.esfc)))

sdist_file.write(str(Ikhana_fo.RA)+'\t'+str(Ikhana_fo.e)+'
\n')
sdist_file.write(sdist_header.format('x[ft]',
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/
D','T[lbf]','ESFC[slugs/lbf ft/s /s]','W[lbf]'))
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for i in range(0, len(Ikhana_fo.x)):
sdist_file.write(sdist_format.format(Ikhana_fo.x[i],
Ikhana_fo.x[i]/5280., Ikhana_fo.t[i],
Ikhana_fo.t[i]/3600.0, Ikhana_fo.h[i],
Ikhana_fo.V[i], Ikhana_fo.V[i]/Ikhana_fo.a[i],
Ikhana_fo.CL[i], Ikhana_fo.CD[i],
Ikhana_fo.CL[i]/Ikhana_fo.CD[i], Ikhana_fo.T[i],
Ikhana_fo.esfc[i], Ikhana_fo.W[i]))

sdist_file.write('\n')

sdata_file.close()
sdist_file.close()

def wingspan(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header):

CD2p = 0.017
B3 =
[-0.333333333,-0.3,-0.275,-0.25,-0.225,-0.2,-0.175,-0.15,-0.125,-0
.1,-0.075,-0.05,-0.025,0.]
# ~ B3 = [-0.1476]
b =
[76.47728384,75.14525373,74.20467605,73.30948942,72.45599409,71.64
090659,70.86130084,70.11455917,69.39833135,68.71050012,68.04915205
,67.41255273,66.7991256,66.20743376]
# ~ b = [70.04465]
for k in range(0, len(B3)):

es = 1./(1.+3.*B3[k]*B3[k])

Ikhana_fo.RA = b[k]**2/Ikhana_fo.Sw
Ikhana_fo.CD2 = CD2p+1./(ma.pi*Ikhana_fo.RA*es)
Ikhana_fo.e = 1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.CD2)
Ikhana_fo.s_runtime = time.time()
Ikhana_fo.trajectory_cases()
Ikhana_fo.f_runtime = time.time()

Ikhana_b.RA = b[k]**2/Ikhana_b.Sw
Ikhana_b.CD2 = CD2p+1./(ma.pi*Ikhana_b.RA*es)
Ikhana_b.e = 1./(ma.pi*Ikhana_b.RA*Ikhana_b.CD2)
Ikhana_b.s_runtime = time.time()
Ikhana_b.trajectory_cases()
Ikhana_b.f_runtime = time.time()

sdata_file.write(sdata_format.format(Ikhana_fo.RA,
Ikhana_fo.e, 1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.e),
Ikhana_fo.W[0]-Ikhana_fo.W[-1],
Ikhana_b.W[0]-Ikhana_b.W[-1], Ikhana_fo.t[-1]/3600.,
Ikhana_b.tb/3600., np.mean(Ikhana_fo.h),
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np.mean(Ikhana_fo.V),
np.mean(np.divide(Ikhana_fo.V,Ikhana_fo.a)),
np.mean(Ikhana_fo.CL), np.mean(Ikhana_fo.CD),
np.mean(Ikhana_fo.L_D), np.mean(Ikhana_fo.T),
np.mean(Ikhana_fo.esfc)))

sdist_file.write(str(Ikhana_fo.RA)+'\t'+str(Ikhana_fo.e)+'\n')
sdist_file.write(sdist_header.format('x[ft]',
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/D','
T[lbf]','ESFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(Ikhana_fo.x)):

sdist_file.write(sdist_format.format(Ikhana_fo.x[i],
Ikhana_fo.x[i]/5280., Ikhana_fo.t[i],
Ikhana_fo.t[i]/3600.0, Ikhana_fo.h[i], Ikhana_fo.V[i],
Ikhana_fo.V[i]/Ikhana_fo.a[i], Ikhana_fo.CL[i],
Ikhana_fo.CD[i], Ikhana_fo.CL[i]/Ikhana_fo.CD[i],
Ikhana_fo.T[i], Ikhana_fo.esfc[i], Ikhana_fo.W[i]))

sdist_file.write('\n')

if np.isnan(Ikhana_fo.W[0]-Ikhana_fo.W[-1]):
continue

sdata_file.close()
sdist_file.close()

def weight(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header):

W0t = Ikhana_fo.iweight
W0f = Ikhana_fo.fweight
CD2p = 0.017
CD00 = Ikhana_fo.CD0
CD10 = Ikhana_fo.CD1
Ws0 = 1008.0
W_S = 31.874
b = 66.20743376
S0 = Ikhana_fo.Sw
Ws =
[675.00,700.00,725.00,750.00,775.00,800.00,825.00,850.00,875.00,90
0.00,925.00,950.00,975.00,1008.00]
# ~ Ws = [936.19]
B3 =
[-0.338444,-0.313888,-0.289193,-0.264360,-0.239388,-0.214278,-0.18
9030,-0.163643,-0.138119,-0.112455,-0.086654,-0.060714,-0.034635,0
.0]
# ~ B3 = [-0.07505]

for k in range(0, len(Ws)):
es = 1./(1.+3.*B3[k]*B3[k])
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Ikhana_fo.iweight = W0t-(Ws0-Ws[k])
Ikhana_fo.fweight = W0f-(Ws0-Ws[k])
Ikhana_fo.Sw = Ikhana_fo.iweight/W_S
Ikhana_fo.RA = b**2/Ikhana_fo.Sw
Ikhana_fo.CD2 = CD2p*Ikhana_fo.Sw/S0+1./(ma.pi*Ikhana_fo.RA*es)
Ikhana_fo.CD0 = CD00*Ikhana_fo.Sw/S0
Ikhana_fo.CD1 = CD10*Ikhana_fo.Sw/S0
Ikhana_fo.e = 1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.CD2)
Ikhana_fo.s_runtime = time.time()
Ikhana_fo.trajectory_cases()
Ikhana_fo.f_runtime = time.time()

Ikhana_b.iweight -= (Ws0-Ws[k])
Ikhana_b.fweight -= (Ws0-Ws[k])
Ikhana_b.Sw = Ikhana_b.iweight/W_S
Ikhana_b.RA = b**2/Ikhana_b.Sw
Ikhana_b.CD2 = CD2p*Ikhana_b.Sw/S0+1./(ma.pi*Ikhana_b.RA*es)
Ikhana_b.e = 1./(ma.pi*Ikhana_b.RA*Ikhana_b.CD2)
Ikhana_b.s_runtime = time.time()
Ikhana_b.trajectory_cases()
Ikhana_b.f_runtime = time.time()

sdata_file.write(sdata_format.format(Ikhana_fo.RA,
Ikhana_fo.e, 1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.e),
Ikhana_fo.W[0]-Ikhana_fo.W[-1],
Ikhana_b.W[0]-Ikhana_b.W[-1], Ikhana_fo.t[-1]/3600.,
Ikhana_b.tb/3600., np.mean(Ikhana_fo.h),
np.mean(Ikhana_fo.V),
np.mean(np.divide(Ikhana_fo.V,Ikhana_fo.a)),
np.mean(Ikhana_fo.CL), np.mean(Ikhana_fo.CD),
np.mean(Ikhana_fo.L_D), np.mean(Ikhana_fo.T),
np.mean(Ikhana_fo.esfc)))

sdist_file.write(str(Ikhana_fo.RA)+'\t'+str(Ikhana_fo.e)+'\n')
sdist_file.write(sdist_header.format('x[ft]',
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/D','
T[lbf]','ESFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(Ikhana_fo.x)):

sdist_file.write(sdist_format.format(Ikhana_fo.x[i],
Ikhana_fo.x[i]/5280., Ikhana_fo.t[i],
Ikhana_fo.t[i]/3600.0, Ikhana_fo.h[i], Ikhana_fo.V[i],
Ikhana_fo.V[i]/Ikhana_fo.a[i], Ikhana_fo.CL[i],
Ikhana_fo.CD[i], Ikhana_fo.CL[i]/Ikhana_fo.CD[i],
Ikhana_fo.T[i], Ikhana_fo.esfc[i], Ikhana_fo.W[i]))

sdist_file.write('\n')

if np.isnan(Ikhana_fo.W[0]-Ikhana_fo.W[-1]):
continue
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sdata_file.close()
sdist_file.close()

def morphing(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header):

CD2p = 0.017
B3 =
[-0.333333333,-0.3,-0.275,-0.25,-0.225,-0.2,-0.175,-0.15,-0.125,-0
.1,-0.075,-0.05,-0.025,0.]
b =
[76.47728384,75.14525373,74.20467605,73.30948942,72.45599409,71.64
090659,70.86130084,70.11455917,69.39833135,68.71050012,68.04915205
,67.41255273,66.7991256,66.20743376]
for k in range(0, len(B3)):

es = 1.0

Ikhana_fo.RA = b[k]**2/Ikhana_fo.Sw
Ikhana_fo.CD2 = CD2p+1./(ma.pi*Ikhana_fo.RA*es)
Ikhana_fo.e = 1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.CD2)
Ikhana_fo.s_runtime = time.time()
Ikhana_fo.trajectory_cases()
Ikhana_fo.f_runtime = time.time()

Ikhana_b.RA = b[k]**2/Ikhana_b.Sw
Ikhana_b.CD2 = CD2p+1./(ma.pi*Ikhana_b.RA*es)
Ikhana_b.e = 1./(ma.pi*Ikhana_b.RA*Ikhana_b.CD2)
Ikhana_b.s_runtime = time.time()
Ikhana_b.trajectory_cases()
Ikhana_b.f_runtime = time.time()

sdata_file.write(sdata_format.format(Ikhana_fo.RA,
Ikhana_fo.e, 1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.e),
Ikhana_fo.W[0]-Ikhana_fo.W[-1],
Ikhana_b.W[0]-Ikhana_b.W[-1], Ikhana_fo.t[-1]/3600.,
Ikhana_b.tb/3600., np.mean(Ikhana_fo.h),
np.mean(Ikhana_fo.V),
np.mean(np.divide(Ikhana_fo.V,Ikhana_fo.a)),
np.mean(Ikhana_fo.CL), np.mean(Ikhana_fo.CD),
np.mean(Ikhana_fo.L_D), np.mean(Ikhana_fo.T),
np.mean(Ikhana_fo.esfc)))

sdist_file.write(str(Ikhana_fo.RA)+'\t'+str(Ikhana_fo.e)+'\n')
sdist_file.write(sdist_header.format('x[ft]',
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/D','
T[lbf]','ESFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(Ikhana_fo.x)):

sdist_file.write(sdist_format.format(Ikhana_fo.x[i],
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Ikhana_fo.x[i]/5280., Ikhana_fo.t[i],
Ikhana_fo.t[i]/3600.0, Ikhana_fo.h[i], Ikhana_fo.V[i],
Ikhana_fo.V[i]/Ikhana_fo.a[i], Ikhana_fo.CL[i],
Ikhana_fo.CD[i], Ikhana_fo.CL[i]/Ikhana_fo.CD[i],
Ikhana_fo.T[i], Ikhana_fo.esfc[i], Ikhana_fo.W[i]))

sdist_file.write('\n')

if np.isnan(Ikhana_fo.W[0]-Ikhana_fo.W[-1]):
continue

sdata_file.close()
sdist_file.close()

def contour(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header, runtype):

W0t = Ikhana_fo.iweight
W0f = Ikhana_fo.fweight
CD2p = 0.017
Ws0 = 1008.0
W_S = 31.874
S0 = Ikhana_fo.Sw
B3 =
[-0.333333333,-0.3,-0.275,-0.25,-0.225,-0.2,-0.175,-0.15,-0.125,-0
.1,-0.075,-0.05,-0.025,0]
b =
[50.0,52.0,54.0,56.0,58.0,60.00,62.00,64.00,66.00,68.00,70.00,72.0
0,74.00,76.00,78.00,80.00,82.,84.,86.,88.,90.,92.,94.,96.,98.,100.
]
Ws = np.zeros((len(B3), len(b)),)
S = np.zeros((len(B3), len(b)),)
e = np.zeros((len(B3), len(b)),)
RA = np.zeros((len(B3), len(b)),)
Wf = np.zeros((len(B3), len(b)),)
ctime = np.zeros((len(B3), len(b)),)
havg = np.zeros((len(B3), len(b)),)
Vavg = np.zeros((len(B3), len(b)),)
Mavg = np.zeros((len(B3), len(b)),)
CLavg = np.zeros((len(B3), len(b)),)
CDavg = np.zeros((len(B3), len(b)),)
L_Davg = np.zeros((len(B3), len(b)),)
Tavg = np.zeros((len(B3), len(b)),)
esfcavg = np.zeros((len(B3), len(b)),)
CD2 = np.zeros((len(B3), len(b)),)

filename = 'Ikhana_Ws_range'

outname = 'Ikhana_Ws_range'

plane=ws.Domain(filename+'.json',True)
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for k in range(0, len(B3)):
for l in range(0, len(b)):

plane.wing.lift_dist_coeffs[1] = B3[k]
plane.wing.span = b[l]

plane.wing.discretize()
plane.wing.calculate_lift_distribution()
plane.set_distributions(filename+'.json')

plane.solver(1e-9, False)

Ws[k,l] = plane.weight.wing_structure
# ~ print(Ws[k,l])

if runtype == 'contour_m':
es = 1.

else:
es = 1./(1.+3.*B3[k]*B3[k])

Ikhana_fo.iweight = W0t-(Ws0-Ws[k,l])
Ikhana_fo.fweight = W0f-(Ws0-Ws[k,l])
Ikhana_fo.Sw = Ikhana_fo.iweight/W_S
Ikhana_fo.CD2 =
CD2p*Ikhana_fo.Sw/S0+1./(ma.pi*Ikhana_fo.RA*es)
Ikhana_fo.e = 1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.CD2)
Ikhana_fo.s_runtime = time.time()
Ikhana_fo.trajectory_cases()
Ikhana_fo.f_runtime = time.time()
Ikhana_fo.RA = b[l]**2/(Ikhana_fo.Sw)

# ~ CRM_b.iweight -= (Ws0-Ws[k])
# ~ CRM_b.fweight -= (Ws0-Ws[k])
# ~ CRM_b.Sw = CRM_b.iweight/W_S
# ~ CRM_b.CD2 = CD2p*CRM_b.Sw/S0+1./(ma.pi*CRM_b.RA*es)
# ~ CRM_b.e = 1./(ma.pi*CRM_b.RA*CRM_b.CD2)
# ~ CRM_b.s_runtime = time.time()
# ~ CRM_b.trajectory_cases()
# ~ CRM_b.f_runtime = time.time()

S[k,l] = Ikhana_fo.Sw
e[k,l] = Ikhana_fo.e
RA[k,l] = Ikhana_fo.RA
Wf[k,l] = Ikhana_fo.W[0]-Ikhana_fo.W[-1]
ctime[k,l] = Ikhana_fo.t[-1]/3600.
havg[k,l] = np.mean(Ikhana_fo.h)
Vavg[k,l] = np.mean(Ikhana_fo.V)
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Mavg[k,l] = np.mean(np.divide(Ikhana_fo.V,Ikhana_fo.a))
CLavg[k,l] = np.mean(Ikhana_fo.CL)
CDavg[k,l] = np.mean(Ikhana_fo.CD)
L_Davg[k,l] = np.mean(Ikhana_fo.L_D)
Tavg[k,l] = np.mean(Ikhana_fo.T)
esfcavg[k,l] = np.mean(Ikhana_fo.esfc)
CD2[k,l] = Ikhana_fo.CD2
# ~ sdata_file.write(sdata_format.format(Ikhana_fo.RA, 
Ikhana_fo.e, 1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.e), 
Ikhana_fo.W[0]-Ikhana_fo.W[-1], CRM_b.W[0]-CRM_b.W[-1], 
Ikhana_fo.t[-1]/3600., CRM_b.tb/3600., 
np.mean(Ikhana_fo.h), np.mean(Ikhana_fo.V), 
np.mean(np.divide(Ikhana_fo.V,Ikhana_fo.a)), 
np.mean(Ikhana_fo.CL), np.mean(Ikhana_fo.CD), 
np.mean(Ikhana_fo.L_D), np.mean(Ikhana_fo.T), 
np.mean(Ikhana_fo.c)))

sdist_file.write(str(B3[k])+'\t'+str(b[l])+'\n')
sdist_file.write(sdist_header.format('x[ft]',
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/
D','T[lbf]','ESFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(Ikhana_fo.x)):

sdist_file.write(sdist_format.format(Ikhana_fo.x[i],
Ikhana_fo.x[i]/5280., Ikhana_fo.t[i],
Ikhana_fo.t[i]/3600.0, Ikhana_fo.h[i],
Ikhana_fo.V[i], Ikhana_fo.V[i]/Ikhana_fo.a[i],
Ikhana_fo.CL[i], Ikhana_fo.CD[i],
Ikhana_fo.CL[i]/Ikhana_fo.CD[i], Ikhana_fo.T[i],
Ikhana_fo.esfc[i], Ikhana_fo.W[i]))

sdist_file.write('\n')

if np.isnan(Ikhana_fo.W[0]-Ikhana_fo.W[-1]):
continue

# ~ fig1.gca().plot(Ikhana_fo.xm, Ikhana_fo.h)
# ~ fig2.gca().plot(Ikhana_fo.xm, Ikhana_fo.V)
# ~ fig3.gca().plot(Ikhana_fo.xm, 
np.divide(Ikhana_fo.V,Ikhana_fo.a))
# ~ fig4.gca().plot(Ikhana_fo.xm, Ikhana_fo.CL)
# ~ fig5.gca().plot(Ikhana_fo.xm, Ikhana_fo.CD)
# ~ fig6.gca().plot(Ikhana_fo.xm, Ikhana_fo.L_D)
# ~ fig7.gca().plot(Ikhana_fo.xm, Ikhana_fo.T)
# ~ fig8.gca().plot(Ikhana_fo.xm, Ikhana_fo.esfc)
# ~ fig9.gca().plot(Ikhana_fo.xm, Ikhana_fo.W)

sdata_file = open(results_path+'sdata.txt', 'w')
sdata_file.write('Wing-Structure Weight'+'\n'+',')
for j in range(0, len(b)):
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sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(Ws[i,j])+',')

sdata_file.write('\n'+'\n'+'Aspect Ratio'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(RA[i,j])+',')

sdata_file.write('\n'+'\n'+'Oswald efficiency 
Factor'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(e[i,j])+',')

sdata_file.write('\n'+'\n'+'CD2'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(CD2[i,j])+',')

sdata_file.write('\n'+'\n'+'Fuel Burn'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(Wf[i,j])+',')

sdata_file.write('\n'+'\n'+'Cruise Time'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(ctime[i,j])+',')

sdata_file.write('\n'+'\n'+'average altitude'+'\n'+',')
for j in range(0, len(b)):
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sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(havg[i,j])+',')

sdata_file.write('\n'+'\n'+'average velocity'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(Vavg[i,j])+',')

sdata_file.write('\n'+'\n'+'average Mach'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(Mavg[i,j])+',')

sdata_file.write('\n'+'\n'+'average CL'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(CLavg[i,j])+',')

sdata_file.write('\n'+'\n'+'average CD'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(CDavg[i,j])+',')

sdata_file.write('\n'+'\n'+'average L/D'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(L_Davg[i,j])+',')

sdata_file.write('\n'+'\n'+'average Thrust'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
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for i in range(0, len(B3)):
sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(Tavg[i,j])+',')

sdata_file.write('\n'+'\n'+'average ESFC'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(esfcavg[i,j])+',')

sdata_file.close()
sdist_file.close()

def single(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header):

b = 66.20743376

Ikhana_fo.RA = b**2/Ikhana_fo.Sw
Ikhana_fo.e = 1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.CD2)
Ikhana_fo.s_runtime = time.time()
Ikhana_fo.trajectory_cases()
Ikhana_fo.f_runtime = time.time()

Ikhana_b.RA = b**2/Ikhana_b.Sw
Ikhana_b.e = 1./(ma.pi*Ikhana_b.RA*Ikhana_b.CD2)
Ikhana_b.s_runtime = time.time()
Ikhana_b.trajectory_cases()
Ikhana_b.f_runtime = time.time()

sdata_file.write(sdata_format.format(Ikhana_fo.RA, Ikhana_fo.e,
1./(ma.pi*Ikhana_fo.RA*Ikhana_fo.e),
Ikhana_fo.W[0]-Ikhana_fo.W[-1], Ikhana_b.W[0]-Ikhana_b.W[-1],
Ikhana_fo.t[-1]/3600., Ikhana_b.tb/3600., np.mean(Ikhana_fo.h),
np.mean(Ikhana_fo.V),
np.mean(np.divide(Ikhana_fo.V,Ikhana_fo.a)),
np.mean(Ikhana_fo.CL), np.mean(Ikhana_fo.CD),
np.mean(Ikhana_fo.L_D), np.mean(Ikhana_fo.T),
np.mean(Ikhana_fo.esfc)))

sdist_file.write(str(Ikhana_fo.RA)+'\t'+str(Ikhana_fo.e)+'\n')
sdist_file.write(sdist_header.format('x[ft]',
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/D','T[lb
f]','ESFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(Ikhana_fo.x)):
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sdist_file.write(sdist_format.format(Ikhana_fo.x[i],
Ikhana_fo.x[i]/5280., Ikhana_fo.t[i], Ikhana_fo.t[i]/3600.0,
Ikhana_fo.h[i], Ikhana_fo.V[i],
Ikhana_fo.V[i]/Ikhana_fo.a[i], Ikhana_fo.CL[i],
Ikhana_fo.CD[i], Ikhana_fo.CL[i]/Ikhana_fo.CD[i],
Ikhana_fo.T[i], Ikhana_fo.esfc[i], Ikhana_fo.W[i]))

sdist_file.write('\n')

sdata_file.close()
sdist_file.close()

def run(runtype, runfile):
# general
# wingspan
# weight
# morphing
# general_h
# wingspan_h
# weight_h
# morphing_h
# contour
# contour_m
if runtype == 'single':

results_path = './results/constrained/Ikhana_range/'+runfile
else:

results_path = './results/constrained/Ikhana_range/'+runtype

sdata_header="{0:<30}{1:<30}{2:<30}{3:<30}{4:<30}{5:<30}{6:<30}{7:
<30}{8:<30}{9:<30}{10:<30}{11:<30}{12:<30}{13:<30}{14:<30}\n"

sdata_format="{0:<30.16f}{1:<30.16f}{2:<30.16f}{3:<30.16f}{4:<30.1
6f}{5:<30.16f}{6:<30.16f}{7:<30.16f}{8:<30.16f}{9:<30.16f}{10:<30.
16f}{11:<30.16f}{12:<30.16f}{13:<30.16f}{14:<30.16f}\n"

sdist_header="{0:<30}{1:<30}{2:<30}{3:<30}{4:<32}{5:<30}{6:<30}{7:
<32}{8:<30}{9:<30}{10:<32}{11:<30}{12:<30}\n"

sdist_format="{0:<30.16f}{1:<30.16f}{2:<30.16f}{3:<30.16f}{4:<32}{
5:<30.16f}{6:<30.16f}{7:<32}{8:<30.16f}{9:<30.16f}{10:<32}{11:<30.
16f}{12:<30.16f}\n"

if runtype!='contour' or runtype!='contour_m':
sdata_file = open(results_path+'/sdata.txt', 'w')
sdata_file.write(sdata_header.format('Aspect Ratio', 'oswald 
efficiency', 'CD2', 'Fuel Burn [lbf]', 'Fuel Burn (breguet) 
[lbf]', 'time [hr]', 'time (breguet) [hr]', 'average 
altitude [ft]', 'average velocity [ft/s]', 'average Mach',
'average CL', 'average CD', 'average L/D', 'average T 
[lbf]', 'average ESFC [slugs/lbf ft/s /s]'))
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sdist_file = open(results_path+'/sdists.txt', 'w')

if runtype[-1] == 'h':
Ikhana_fo = Aircraft_h(runfile+'.json')
Ikhana_b = Aircraft_h(runfile+'.json')

elif runtype[-1] == 'f':
Ikhana_fo = Aircraft_fixed_h(runfile+'.json')
Ikhana_b = Aircraft_fixed_h(runfile+'.json')

else:
Ikhana_fo = Aircraft(runfile+'.json')
Ikhana_b = Aircraft(runfile+'.json')

Ikhana_fo.run_type = 'full_opt'
Ikhana_b.run_type = 'breguet'

Ikhana_fo.results_path = results_path
Ikhana_b.results_path = results_path

# ~ fig1=plt.figure(1)
# ~ fig1.gca().set_xlabel('x [mi]')
# ~ fig1.gca().set_ylabel('h [ft]')

# ~ fig2=plt.figure(2)
# ~ fig2.gca().set_xlabel('x [mi]')
# ~ fig2.gca().set_ylabel('V [ft/s]')

# ~ fig3=plt.figure(3)
# ~ fig3.gca().set_xlabel('x [mi]')
# ~ fig3.gca().set_ylabel('M')

# ~ fig4=plt.figure(4)
# ~ fig4.gca().set_xlabel('x [mi]')
# ~ fig4.gca().set_ylabel('CL')

# ~ fig5=plt.figure(5)
# ~ fig5.gca().set_xlabel('x [mi]')
# ~ fig5.gca().set_ylabel('CD')

# ~ fig6=plt.figure(6)
# ~ fig6.gca().set_xlabel('x [mi]')
# ~ fig6.gca().set_ylabel('L/D')

# ~ fig7=plt.figure(7)
# ~ fig7.gca().set_xlabel('x [mi]')
# ~ fig7.gca().set_ylabel('T [lbf]')

# ~ fig8=plt.figure(8)
# ~ fig8.gca().set_xlabel('x [mi]')
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# ~ fig8.gca().set_ylabel('ESFC [slugs/lbf ft/s /s]')

# ~ fig9=plt.figure(9)
# ~ fig9.gca().set_xlabel('x [mi]')
# ~ fig9.gca().set_ylabel('W [lbf]')
if runtype == 'general' or runtype == 'general_h' or runtype ==
'general_hf':

general(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header)

if runtype == 'wingspan' or runtype == 'wingspan_h' or runtype
== 'wingspan_hf':

wingspan(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header)

if runtype == 'weight' or runtype == 'weight_h' or runtype ==
'weight_hf':

weight(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header)

if runtype == 'morphing' or runtype == 'morphing_h' or runtype
== 'morphing_hf':

morphing(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header)

if runtype == 'contour' or runtype == 'contour_m':
contour(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header, runtype)

if runtype == 'single' or runtype == 'single_hf':
single(Ikhana_fo, Ikhana_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header)

# ~ fig1.savefig(results_path+'/h.png')
# ~ fig2.savefig(results_path+'/V.png')
# ~ fig3.savefig(results_path+'/M.png')
# ~ fig4.savefig(results_path+'/CL.png')
# ~ fig5.savefig(results_path+'/CD.png')
# ~ fig6.savefig(results_path+'/L_D.png')
# ~ fig7.savefig(results_path+'/T.png')
# ~ fig8.savefig(results_path+'/ESFC.png')
# ~ fig9.savefig(results_path+'/W.png')
# ~ plt.show()

# ~ fig1.gca().plot(Ikhana_fo.xm, Ikhana_fo.h)
# ~ fig2.gca().plot(Ikhana_fo.xm, Ikhana_fo.V)
# ~ fig3.gca().plot(Ikhana_fo.xm, 
np.divide(Ikhana_fo.V,Ikhana_fo.a))
# ~ fig4.gca().plot(Ikhana_fo.xm, Ikhana_fo.CL)
# ~ fig5.gca().plot(Ikhana_fo.xm, Ikhana_fo.CD)
# ~ fig6.gca().plot(Ikhana_fo.xm, Ikhana_fo.L_D)
# ~ fig7.gca().plot(Ikhana_fo.xm, Ikhana_fo.T)
# ~ fig8.gca().plot(Ikhana_fo.xm, Ikhana_fo.esfc)
# ~ fig9.gca().plot(Ikhana_fo.xm, Ikhana_fo.W)
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'''
CRM_range_master.py

The code in this file contains performs trajectory optimization for
aircraft having the engine model for thrust-specific fuel consumption 
given by Eshelby in "Aircraft Performance: Theory and Practice" and 
the 
power available model given by Daidzic in "Estimation of Performance 
Airspeeds for High-Bypass Turbofans Equipped Transport-Category 
Airplanes." 

'''

import math as ma
import numpy as np
import scipy.integrate as integrate
import scipy.optimize as optimize
import scipy.interpolate as interpolate
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import standard_atmosphere as std
import json
from collections import OrderedDict
import time
from progress.bar import IncrementalBar
import multiprocessing
from itertools import repeat
from functools import partial
import sys
sys.path.append('./CRM_structure')
import wing_structure_m3 as ws
sys.path.append('..')

class Aircraft(object):

def __init__(self, filename):
with open(filename) as input_file:

data = json.load(input_file, object_pairs_hook=OrderedDict)

self.input_airplane(data)
self.grid_setup()
self.array_initialize()
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def input_airplane(self, data):

#Units
if data["units"] == 'English':

self.english_units = True
else:

self.english_units = False

# CRM Constant Properties
self.iweight = data["MTOW"]
self.fweight = data["M15FW"]
self.Sw = data["wing_area"]
self.CD0 = data["CD0"]
self.CD1 = data["CD1"]
self.CD2 = data["CD2"]
self.CM0 = data["CM0"]
self.CM1 = data["CM1"]
self.CM2 = data["CM2"]
self.Ctsfc = data["CTSFC"]
self.r = data["range"]*5280.0
self.q = data["qTSFC"]
self.Ts = data["static_thrust_SL"]
self.a1 = data["a1"]
self.a2 = data["a2"]
self.n = data["grid"]
self.g = 32.174
self.name = data["name"]
self.run_type = 'none'
self.run_direction = data["direction"]
self.s_runtime = 0.0
self.f_runtime = 0.0
self.results_path = '.'
self.RA = 9.
self.e = 1.

def grid_setup(self):
self.x = np.linspace(0, self.r, self.n)
self.xm = self.x/5280.0

def array_initialize(self):
self.W = np.zeros(self.n)
if self.run_direction == "f":

self.W[0] = self.iweight
elif self.run_direction == "b":

self.W[-1] = self.fweight
self.CL = np.zeros(self.n)
self.CD = np.zeros(self.n)
self.V = np.zeros(self.n)
self.h = np.zeros(self.n)
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self.t = np.zeros(self.n)
self.c = np.zeros(self.n)
self.rho = np.zeros(self.n)
self.a = np.zeros(self.n)
self.Temp = np.zeros(self.n)
self.T = np.zeros(self.n)

def opt_h_V(self, y, i):
h = y[0]*100.
V = y[1]
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD

#Power Required
PR = T*V

#Power Available
if h <36131:

m=0.7
else:

m=1.0

PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V)
# ~ print(i, self.W[i])
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climb = (PA-PR)/self.W[i]*60

#TSFC
c = self.Ctsfc*(Temp/TSL)**0.5*M**self.q

if i==self.n-1:
dx = self.x[i]-self.x[i-1]

else:
dx = self.x[i+1]-self.x[i]

t = dx/V

if climb>100.:
return c*T*self.g*t

else:
return c*T*self.g*t+10*(climb-100)**2

def set_state(self, y, i):
h = y[0]*100.
V = y[1]
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD

#TSFC
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c = self.Ctsfc*(Temp/TSL)**0.5*M**self.q

self.h[i] = h
self.V[i] = V
self.rho[i] = rho
self.a[i] = a
self.Temp[i] = Temp
self.CL[i] = CL
self.CD[i] = CD
self.T[i] = T
self.c[i] = c

def breguet(self, y, flag='obj'):
h = y[0]
V = y[1]
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
if self.run_type == 'f':

CL = self.W[0]/(0.5*rho*V**2*self.Sw)
else:

CL = self.W[-1]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#TSFC
c = self.Ctsfc*(Temp/TSL)**0.5*M**self.q

if self.run_direction == 'f':
Wf = self.W[0]/np.exp(self.r*self.g*c/(V*CL/CD))
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self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.c = c
self.Wfb = Wf
self.W[-1] = self.Wfb
self.Mb = M
self.tb = self.r/V

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V
)

climb = (PA-PR)/self.W[0]*60

if climb>100.:
return self.W[0]-Wf

else:
return (self.W[0]-Wf)+10*(climb-100)**2

elif self.run_direction == 'b':
# ~ print(V, CL, CD)
Wi = self.W[-1]*np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.cb = c
self.iweight = Wi
self.W[0] = self.iweight
self.Mb = M
self.tb = self.r/V

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:
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m=1.0
PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V
)

climb = (PA-PR)/self.W[-1]*60

if climb>100.:
return Wi-self.W[-1]

else:
return (Wi-self.W[-1])+10*(climb-100)**2

def breguet_opt(self):
y0 = [30000., 800.0]
bnds = ((100., 80000.), (135.0, 1200.))
cons = [{"type" : "ineq",

"fun" : self.breguet}]
ans = optimize.minimize(self.breguet,

y0,
method='SLSQP',
bounds = bnds,
options={'disp' : False,

'ftol' : 1e-16})

def service_ceiling(self, y, i):
# ~ print(y, i)
h = y[0]

#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

if self.run_type == 'Vmf':
V = optimize.newton(self.Vmfp, 800.0, args=(rho, a, i))

elif self.run_type == 'Vmd':
V = optimize.newton(self.Vmd, 800.0, args=(rho, a, i))

else:
V = y[1]

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)
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#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V)

climb = (PA-PR)/self.W[i]*60

return climb-100.+400.

def trajectory_opt(self):
opts = {'disp' : False,

'maxiter' : 500}#,
# ~ 'eps' : 1e-10,
# ~ 'ftol' : 1e-11}

tolerance = 1e-14
iguess = [350., 850.]

if self.run_direction == 'b':

if self.run_type == 'full_opt':
#Full Optimization

#-----------------------------------------------------
----------------------------------
y0 = iguess
bnds = ((1., 800.), (100.0, 1800.))
# ~ cons = [{"type" : "ineq",

# ~ "fun" : self.service_ceiling}]
for i in range(1, self.n+1):

j = self.n-i
ans = optimize.minimize(self.opt_h_V,

y0, args=(j),
method='SLSQP',
bounds = bnds,
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tol = tolerance,
options=opts)

self.set_state(ans.x, j)

if j>0:
self.W[j-1] =
self.W[j]+self.c[j]*self.T[j]*self.g*(self.x[j
]-self.x[j-1])/self.V[j]

if ans.success == False:
print('optimization failed', ans.message)
y0 = ans.x

for i in range(0, self.n):
if i<self.n-1:

self.t[i+1] =
self.t[i]+(self.x[i+1]-self.x[i])/self.V[i]

self.L = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CL))
self.D = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CD))
self.L_D = np.divide(self.L, self.D)

def trajectory_cases(self):
data_format="{0:<30}{1:<30.16f}\n"

dist_header="{0:<30}{1:<30}{2:<30}{3:<30}{4:<32}{5:<30}{6:<30}
{7:<32}{8:<30}{9:<30}{10:<32}{11:<30}{12:<30}\n"

dist_format="{0:<30.16f}{1:<30.16f}{2:<30.16f}{3:<30.16f}{4:<3
2.16f}{5:<30.16f}{6:<30.16f}{7:<32.16f}{8:<30.16f}{9:<30.16f}{
10:<30.16f}{11:<30.16f}{12:<30.16f}\n"

self.fig_path = self.results_path+'figs/'
if self.run_type == 'breguet':

self.breguet_opt()
print('Run Type: ', self.run_type)
if self.run_direction == 'f':

print('Total Fuel Burn: ', self.W[0]-self.Wfb, 'lbf')
else:

print('Total Fuel Burn: ', self.iweight-self.W[-1],
'lbf')

print('Total Time: ', self.tb/3600.0, 'hours')
print('L/D: ', self.L_Db)
print('V: ', self.Vb, 'ft/s')
print('h: ', self.hb, 'ft')
print('TSFC: ', self.cb, 'slugs/lbf/s')
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print('Mach: ', self.Mb)
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')

else:
self.trajectory_opt()
print('Run Type:', self.run_type)
print('Total Fuel Burn: ', self.W[0]-self.W[-1], 'lbf')
print('Total Time: ', self.t[-1]/3600.0, 'hours')
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')

'''
data_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_data
.txt', 'w')
data_file.write(data_format.format('Total Fuel Burn:', 
self.W[0]-self.W[-1]))
data_file.write(data_format.format('Total Cruise Time:', 
self.t[-1]/3600.0))
data_file.write(data_format.format('Run Time:', 
time.time()-self.s_runtime))
data_file.close()

dist_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_dist
s.txt', 'w')
dist_file.write(dist_header.format('x[ft]', 
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/
D','T[lbf]','TSFC[slugs/lbf/s]','W[lbf]'))
for i in range(0, len(self.x)):

dist_file.write(dist_format.format(self.x[i], 
self.x[i]/5280., self.t[i], self.t[i]/3600.0, 
self.h[i], self.V[i], self.V[i]/self.a[i], 
self.CL[i], self.CD[i], self.CL[i]/self.CD[i], 
self.T[i], self.c[i], self.W[i]))

dist_file.close()

if np.isnan(self.W[0]-self.W[-1]):
return

plot_range_multiplier = 100.

#Altitude
plt.figure(1)
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plt.plot(self.xm, self.h)
plt.xlabel('x [mi]')
plt.ylabel('h [ft]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_h
.png')

#Velocity
plt.figure(2)
plt.plot(self.xm, self.V)
plt.xlabel('x [mi]')
plt.ylabel('V [ft/s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_V
.png')

#Mach
plt.figure(3)
plt.plot(self.xm, np.divide(self.V,self.a))
plt.xlabel('x [mi]')
plt.ylabel('M')

plt.ylim(np.amin(np.divide(self.V,self.a))-(np.amax(np.div
ide(self.V,self.a))-np.amin(np.divide(self.V,self.a)))*plo
t_range_multiplier, 
np.amax(np.divide(self.V,self.a))+(np.amax(np.divide(self.
V,self.a))-np.amin(np.divide(self.V,self.a)))*plot_range_m
ultiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_M
.png')

#CL
plt.figure(4)
plt.plot(self.xm, self.CL)
plt.xlabel('x [mi]')
plt.ylabel('CL')

plt.ylim(np.amin(self.CL)-(np.amax(self.CL)-np.amin(self.C
L))*plot_range_multiplier, 
np.amax(self.CL)+(np.amax(self.CL)-np.amin(self.CL))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
L.png')

#CD
plt.figure(5)
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plt.plot(self.xm, self.CD)
plt.xlabel('x [mi]')
plt.ylabel('CD')

plt.ylim(np.amin(self.CD)-(np.amax(self.CD)-np.amin(self.C
D))*plot_range_multiplier, 
np.amax(self.CD)+(np.amax(self.CD)-np.amin(self.CD))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
D.png')

#L/D
plt.figure(6)
plt.plot(self.xm, self.L_D)
plt.xlabel('x [mi]')
plt.ylabel('L/D')

plt.ylim(np.amin(self.L_D)-(np.amax(self.L_D)-np.amin(self
.L_D))*plot_range_multiplier, 
np.amax(self.L_D)+(np.amax(self.L_D)-np.amin(self.L_D))*pl
ot_range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_L
_D.png')

#T
plt.figure(7)
plt.plot(self.xm, self.T)
plt.xlabel('x [mi]')
plt.ylabel('T [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_T
.png')

#TSFC
plt.figure(8)
plt.plot(self.xm, self.c)
plt.xlabel('x [mi]')
plt.ylabel('TSFC [slugs/lbf/s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_T
SFC.png')

#W
plt.figure(9)
plt.plot(self.xm, self.W)

424



plt.xlabel('x [mi]')
plt.ylabel('W [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_W
.png')
# ~ plt.show()

plt.figure(1).clear()
plt.figure(2).clear()
plt.figure(3).clear()
plt.figure(4).clear()
plt.figure(5).clear()
plt.figure(6).clear()
plt.figure(7).clear()
plt.figure(8).clear()
plt.figure(9).clear()
'''

class Aircraft_h(object):

def __init__(self, filename):
with open(filename) as input_file:

data = json.load(input_file, object_pairs_hook=OrderedDict)

self.input_airplane(data)
self.grid_setup()
self.array_initialize()

def input_airplane(self, data):

#Units
if data["units"] == 'English':

self.english_units = True
else:

self.english_units = False

# CRM Constant Properties
self.iweight = data["MTOW"]
self.fweight = data["M15FW"]
self.Sw = data["wing_area"]
self.CD0 = data["CD0"]
self.CD1 = data["CD1"]
self.CD2 = data["CD2"]
self.CM0 = data["CM0"]
self.CM1 = data["CM1"]
self.CM2 = data["CM2"]
self.Ctsfc = data["CTSFC"]
self.r = data["range"]*5280.0
self.q = data["qTSFC"]
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self.Ts = data["static_thrust_SL"]
self.a1 = data["a1"]
self.a2 = data["a2"]
self.n = data["grid"]
self.g = 32.174
self.name = data["name"]
self.run_type = 'none'
self.run_direction = data["direction"]
self.s_runtime = 0.0
self.f_runtime = 0.0
self.results_path = '.'
self.RA = 9.
self.e = 1.
self.hguess = 1.0

def grid_setup(self):
self.x = np.linspace(0, self.r, self.n)
self.xm = self.x/5280.0

def array_initialize(self):
self.W = np.zeros(self.n)
if self.run_direction == "f":

self.W[0] = self.iweight
elif self.run_direction == "b":

self.W[-1] = self.fweight
self.CL = np.zeros(self.n)
self.CD = np.zeros(self.n)
self.V = np.zeros(self.n)
self.h = np.zeros(self.n)
self.t = np.zeros(self.n)
self.c = np.zeros(self.n)
self.rho = np.zeros(self.n)
self.a = np.zeros(self.n)
self.Temp = np.zeros(self.n)
self.T = np.zeros(self.n)
self.climb = np.zeros(self.n)

def opt_h_V(self, y, h, i):
V = y
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
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rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD

#Power Required
PR = T*V

#Power Available
if h <36131:

m=0.7
else:

m=1.0

PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V)
# ~ print(i, self.W[i])

climb = (PA-PR)/self.W[i]*60

#TSFC
c = self.Ctsfc*(Temp/TSL)**0.5*M**self.q

if i==self.n-1:
dx = self.x[i]-self.x[i-1]

else:
dx = self.x[i+1]-self.x[i]

t = dx/V

# ~ print('fuel_burn', c*T*self.g*t)
# ~ print('velocity: ', V)
# ~ print('altitude: ', h)
# ~ print('Mach: ', M)
# ~ print('Drag Coefficient: ', CD)
# ~ print('Thrust: ', T)
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# ~ print('TSFC: ', c)
# ~ print('Weight: ', self.W[i])
# ~ print('-----------------------------------')
# ~ return c*T*self.g*t
if climb>100.:

return c*T*self.g*t
else:

return c*T*self.g*t+10*(climb-100)**2

def set_state(self, y, h, i):
V = y
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD

#Power Required
PR = T*V

#Power Available
if h <36131:

m=0.7
else:

m=1.0

PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V)
# ~ print(i, self.W[i])
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climb = (PA-PR)/self.W[i]*60
#TSFC
c = self.Ctsfc*(Temp/TSL)**0.5*M**self.q

self.h[i] = h
self.V[i] = V
self.rho[i] = rho
self.a[i] = a
self.Temp[i] = Temp
self.CL[i] = CL
self.CD[i] = CD
self.T[i] = T
self.c[i] = c
self.climb[i] = climb

def breguet(self, y, flag='obj'):
h = y[0]
V = y[1]
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
if self.run_type == 'f':

CL = self.W[0]/(0.5*rho*V**2*self.Sw)
else:

CL = self.W[-1]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#TSFC
c = self.Ctsfc*(Temp/TSL)**0.5*M**self.q
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if self.run_direction == 'f':
Wf = self.W[0]/np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.c = c
self.Wfb = Wf
self.W[-1] = self.Wfb
self.Mb = M
self.tb = self.r/V

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V
)

climb = (PA-PR)/self.W[0]*60

if climb>100.:
return self.W[0]-Wf

else:
return (self.W[0]-Wf)+10*(climb-100)**2

elif self.run_direction == 'b':
# ~ print(V, CL, CD)
Wi = self.W[-1]*np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.cb = c
self.iweight = Wi
self.W[0] = self.iweight
self.Mb = M
self.tb = self.r/V

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD
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#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V
)

climb = (PA-PR)/self.W[-1]*60

return Wi-self.W[-1]
if climb>100.:

return Wi-self.W[-1]
else:

return (Wi-self.W[-1])+10*(climb-100)**2

def breguet_opt(self):
y0 = [self.hguess, 800.0]
bnds = ((100., 80000.), (135.0, 1200.))
cons = [{"type" : "ineq",

"fun" : self.breguet}]
ans = optimize.minimize(self.breguet,

y0,
method='SLSQP',
bounds = bnds,
# ~ constraints = [{"type" : "ineq",

# ~ "fun" : self.breguet,
# ~ "args" : ("cons",)}],

options={'disp' : False,
'ftol' : 1e-16})

def service_ceiling(self, y, i):
# ~ print(y, i)
h = y[0]

#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

if self.run_type == 'Vmf':
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V = optimize.newton(self.Vmfp, 800.0, args=(rho, a, i))
elif self.run_type == 'Vmd':

V = optimize.newton(self.Vmd, 800.0, args=(rho, a, i))
else:

V = y[1]

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V)

climb = (PA-PR)/self.W[i]*60

return climb-100.+400.

def trajectory_opt(self, r):
h=r*10000.
opts = {'disp' : False,

'maxiter' : 500}#,
# ~ 'eps' : 1e-10,
# ~ 'ftol' : 1e-11}

tolerance = 1e-14
iguess = [ 850.]

if self.run_direction == 'b':

if self.run_type == 'full_opt':
#Full Optimization

#-----------------------------------------------------
----------------------------------
y0 = iguess
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bnds = ((100.0, 1800.),)
for i in range(1, self.n+1):

j = self.n-i
ans = optimize.minimize(self.opt_h_V,

y0, args=(h, j),
method='SLSQP',
bounds = bnds,
tol = tolerance,
options=opts)

self.set_state(ans.x[0], h, j)

if j>0:
self.W[j-1] =
self.W[j]+self.c[j]*self.T[j]*self.g*(self.x[j
]-self.x[j-1])/self.V[j]

if ans.success == False:
print('optimization failed', ans.message)
y0 = ans.x

for i in range(0, self.n):
if i<self.n-1:

self.t[i+1] =
self.t[i]+(self.x[i+1]-self.x[i])/self.V[i]

self.L = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CL))
self.D = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CD))
self.L_D = np.divide(self.L, self.D)

print(' ')
print('altitude: ', h)
print(self.W[0]-self.W[-1])
print(np.min(self.climb))

if np.min(self.climb) > 100:
return (self.W[0]-self.W[-1])

else:
return
((self.W[0]-self.W[-1])+10*(np.min(self.climb)-100)**2)

def trajectory_cases(self):
data_format="{0:<30}{1:<30.16f}\n"

dist_header="{0:<30}{1:<30}{2:<30}{3:<30}{4:<32}{5:<30}{6:<30}
{7:<32}{8:<30}{9:<30}{10:<32}{11:<30}{12:<30}\n"

dist_format="{0:<30.16f}{1:<30.16f}{2:<30.16f}{3:<30.16f}{4:<3
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2.16f}{5:<30.16f}{6:<30.16f}{7:<32.16f}{8:<30.16f}{9:<30.16f}{
10:<30.16f}{11:<30.16f}{12:<30.16f}\n"

self.fig_path = self.results_path+'figs/'
if self.run_type == 'breguet':

self.breguet_opt()
print('Run Type: ', self.run_type)
if self.run_direction == 'f':

print('Total Fuel Burn: ', self.W[0]-self.Wfb, 'lbf')
else:

print('Total Fuel Burn: ', self.iweight-self.W[-1],
'lbf')

print('Total Time: ', self.tb/3600.0, 'hours')
print('L/D: ', self.L_Db)
print('V: ', self.Vb, 'ft/s')
print('h: ', self.hb, 'ft')
print('TSFC: ', self.cb, 'slugs/lbf/s')
print('Mach: ', self.Mb)
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')

else:
h0 = self.hguess/10000.0
bnds = ((0.0001, 8.),)
tolerance = 1e-14
opts = {'disp' : True,

'maxiter' : 500,
'eps' : 1e-10,
'ftol' : 1e-11}

ans = optimize.minimize(self.trajectory_opt,
h0,
method='SLSQP',
bounds = bnds,
tol = tolerance,
options=opts)

self.h[:] = ans.x[0]*10000.
if ans.success == False:

return
print('Run Type:', self.run_type)
print('Total Fuel Burn: ', self.W[0]-self.W[-1], 'lbf')
print('Total Time: ', self.t[-1]/3600.0, 'hours')
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')
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'''
data_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_data
.txt', 'w')
data_file.write(data_format.format('Total Fuel Burn:', 
self.W[0]-self.W[-1]))
data_file.write(data_format.format('Total Cruise Time:', 
self.t[-1]/3600.0))
data_file.write(data_format.format('Run Time:', 
time.time()-self.s_runtime))
data_file.close()

dist_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_dist
s.txt', 'w')
dist_file.write(dist_header.format('x[ft]', 
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/
D','T[lbf]','TSFC[slugs/lbf/s]','W[lbf]'))
for i in range(0, len(self.x)):

dist_file.write(dist_format.format(self.x[i], 
self.x[i]/5280., self.t[i], self.t[i]/3600.0, 
self.h[i], self.V[i], self.V[i]/self.a[i], 
self.CL[i], self.CD[i], self.CL[i]/self.CD[i], 
self.T[i], self.c[i], self.W[i]))

dist_file.close()

if np.isnan(self.W[0]-self.W[-1]):
return

plot_range_multiplier = 100.

#Altitude
plt.figure(1)
plt.plot(self.xm, self.h)
plt.xlabel('x [mi]')
plt.ylabel('h [ft]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_h
.png')

#Velocity
plt.figure(2)
plt.plot(self.xm, self.V)
plt.xlabel('x [mi]')
plt.ylabel('V [ft/s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_V
.png')

#Mach
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plt.figure(3)
plt.plot(self.xm, np.divide(self.V,self.a))
plt.xlabel('x [mi]')
plt.ylabel('M')

plt.ylim(np.amin(np.divide(self.V,self.a))-(np.amax(np.div
ide(self.V,self.a))-np.amin(np.divide(self.V,self.a)))*plo
t_range_multiplier, 
np.amax(np.divide(self.V,self.a))+(np.amax(np.divide(self.
V,self.a))-np.amin(np.divide(self.V,self.a)))*plot_range_m
ultiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_M
.png')

#CL
plt.figure(4)
plt.plot(self.xm, self.CL)
plt.xlabel('x [mi]')
plt.ylabel('CL')

plt.ylim(np.amin(self.CL)-(np.amax(self.CL)-np.amin(self.C
L))*plot_range_multiplier, 
np.amax(self.CL)+(np.amax(self.CL)-np.amin(self.CL))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
L.png')

#CD
plt.figure(5)
plt.plot(self.xm, self.CD)
plt.xlabel('x [mi]')
plt.ylabel('CD')

plt.ylim(np.amin(self.CD)-(np.amax(self.CD)-np.amin(self.C
D))*plot_range_multiplier, 
np.amax(self.CD)+(np.amax(self.CD)-np.amin(self.CD))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
D.png')

#L/D
plt.figure(6)
plt.plot(self.xm, self.L_D)
plt.xlabel('x [mi]')
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plt.ylabel('L/D')

plt.ylim(np.amin(self.L_D)-(np.amax(self.L_D)-np.amin(self
.L_D))*plot_range_multiplier, 
np.amax(self.L_D)+(np.amax(self.L_D)-np.amin(self.L_D))*pl
ot_range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_L
_D.png')

#T
plt.figure(7)
plt.plot(self.xm, self.T)
plt.xlabel('x [mi]')
plt.ylabel('T [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_T
.png')

#TSFC
plt.figure(8)
plt.plot(self.xm, self.c)
plt.xlabel('x [mi]')
plt.ylabel('TSFC [slugs/lbf/s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_T
SFC.png')

#W
plt.figure(9)
plt.plot(self.xm, self.W)
plt.xlabel('x [mi]')
plt.ylabel('W [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_W
.png')
# ~ plt.show()

plt.figure(1).clear()
plt.figure(2).clear()
plt.figure(3).clear()
plt.figure(4).clear()
plt.figure(5).clear()
plt.figure(6).clear()
plt.figure(7).clear()
plt.figure(8).clear()
plt.figure(9).clear()
'''
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class Aircraft_fixed_h(object):

def __init__(self, filename):
with open(filename) as input_file:

data = json.load(input_file, object_pairs_hook=OrderedDict)

self.input_airplane(data)
self.grid_setup()
self.array_initialize()

def input_airplane(self, data):

#Units
if data["units"] == 'English':

self.english_units = True
else:

self.english_units = False

# CRM Constant Properties
self.iweight = data["MTOW"]
self.fweight = data["M15FW"]
self.Sw = data["wing_area"]
self.CD0 = data["CD0"]
self.CD1 = data["CD1"]
self.CD2 = data["CD2"]
self.CM0 = data["CM0"]
self.CM1 = data["CM1"]
self.CM2 = data["CM2"]
self.Ctsfc = data["CTSFC"]
self.r = data["range"]*5280.0
self.q = data["qTSFC"]
self.Ts = data["static_thrust_SL"]
self.a1 = data["a1"]
self.a2 = data["a2"]
self.n = data["grid"]
self.g = 32.174
self.name = data["name"]
self.run_type = 'none'
self.run_direction = data["direction"]
self.s_runtime = 0.0
self.f_runtime = 0.0
self.results_path = '.'
self.RA = 9.
self.e = 1.
self.hf = 35000.0

def grid_setup(self):
self.x = np.linspace(0, self.r, self.n)
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self.xm = self.x/5280.0

def array_initialize(self):
self.W = np.zeros(self.n)
if self.run_direction == "f":

self.W[0] = self.iweight
elif self.run_direction == "b":

self.W[-1] = self.fweight
self.CL = np.zeros(self.n)
self.CD = np.zeros(self.n)
self.V = np.zeros(self.n)
self.h = np.zeros(self.n)
self.t = np.zeros(self.n)
self.c = np.zeros(self.n)
self.rho = np.zeros(self.n)
self.a = np.zeros(self.n)
self.Temp = np.zeros(self.n)
self.T = np.zeros(self.n)
self.climb = np.zeros(self.n)

def opt_h_V(self, y, h, i):
V = y
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD
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#Power Required
PR = T*V

#Power Available
if h <36131:

m=0.7
else:

m=1.0

PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V)
# ~ print(i, self.W[i])

climb = (PA-PR)/self.W[i]*60

#TSFC
c = self.Ctsfc*(Temp/TSL)**0.5*M**self.q

if i==self.n-1:
dx = self.x[i]-self.x[i-1]

else:
dx = self.x[i+1]-self.x[i]

t = dx/V

if climb>100.:
return c*T*self.g*t

else:
return c*T*self.g*t+10*(climb-100)**2

def set_state(self, y, h, i):
V = y
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
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M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Thrust
T = 0.5*rho*V**2*self.Sw*CD

#Power Required
PR = T*V

#Power Available
if h <36131:

m=0.7
else:

m=1.0

PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V)
# ~ print(i, self.W[i])

climb = (PA-PR)/self.W[i]*60
#TSFC
c = self.Ctsfc*(Temp/TSL)**0.5*M**self.q

self.h[i] = h
self.V[i] = V
self.rho[i] = rho
self.a[i] = a
self.Temp[i] = Temp
self.CL[i] = CL
self.CD[i] = CD
self.T[i] = T
self.c[i] = c
self.climb[i] = climb

def breguet(self, y, h, flag='obj'):
V = y[0]
#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
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TSL = statmos.T(0)
rhoSL = statmos.rho(0)
# ~ print(Temp, TSL)

#Lift coefficient
if self.run_type == 'f':

CL = self.W[0]/(0.5*rho*V**2*self.Sw)
else:

CL = self.W[-1]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#TSFC
c = self.Ctsfc*(Temp/TSL)**0.5*M**self.q

if self.run_direction == 'f':
Wf = self.W[0]/np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.c = c
self.Wfb = Wf
self.W[-1] = self.Wfb
self.Mb = M
self.tb = self.r/V

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V
)

climb = (PA-PR)/self.W[0]*60
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if climb>100.:
return self.W[0]-Wf

else:
return (self.W[0]-Wf)+10*(climb-100)**2

elif self.run_direction == 'b':
# ~ print(V, CL, CD)
Wi = self.W[-1]*np.exp(self.r*self.g*c/(V*CL/CD))

self.hb = h
self.Vb = V
self.L_Db = CL/CD
self.cb = c
self.iweight = Wi
self.W[0] = self.iweight
self.Mb = M
self.tb = self.r/V

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V
)

climb = (PA-PR)/self.W[-1]*60

return Wi-self.W[-1]
if climb>100.:

return Wi-self.W[-1]
else:

return (Wi-self.W[-1])+10*(climb-100)**2

def breguet_opt(self, h):
y0 = [800.0]
bnds = ((135.0, 1200.),)
cons = [{"type" : "ineq",

"fun" : self.breguet}]
ans = optimize.minimize(self.breguet,

y0, args=(h),
method='SLSQP',
bounds = bnds,
options={'disp' : False,

'ftol' : 1e-16})
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def service_ceiling(self, y, i):
# ~ print(y, i)
h = y[0]

#atmospheric properties
if self.english_units == True:

statmos = std.StandardAtmosphere('English')
else:

statmos = std.StandardAtmosphere('SI')

rho = statmos.rho(h)
a = statmos.a(h)
Temp = statmos.T(h)
TSL = statmos.T(0)
rhoSL = statmos.rho(0)

if self.run_type == 'Vmf':
V = optimize.newton(self.Vmfp, 800.0, args=(rho, a, i))

elif self.run_type == 'Vmd':
V = optimize.newton(self.Vmd, 800.0, args=(rho, a, i))

else:
V = y[1]

#Lift coefficient
CL = self.W[i]/(0.5*rho*V**2*self.Sw)

#Mach number
M = V/a

#Drag coefficient
CD =
(self.CD0+self.CD1*CL+self.CD2*CL**2)*(self.CM0+self.CM1*M**se
lf.CM2)

#Power Req.
PR = 0.5*rho*V**3*self.Sw*CD

#Power Available
if h <36131:

m=0.7
else:

m=1.0
PA =
2.0*.9*self.Ts*(rho/rhoSL)**m*(V+self.a1*V*V+self.a2*V*V*V)

climb = (PA-PR)/self.W[i]*60

return climb-100.+400.
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def trajectory_opt(self, r):
h=r
opts = {'disp' : False,

'maxiter' : 500}#,
# ~ 'eps' : 1e-10,
# ~ 'ftol' : 1e-11}

tolerance = 1e-14
iguess = [ 850.]

if self.run_direction == 'b':

if self.run_type == 'full_opt':
#Full Optimization

#-----------------------------------------------------
----------------------------------
y0 = iguess
bnds = ((100.0, 1800.),)
for i in range(1, self.n+1):

j = self.n-i
ans = optimize.minimize(self.opt_h_V,

y0, args=(h, j),
method='SLSQP',
bounds = bnds,
tol = tolerance,
options=opts)

self.set_state(ans.x[0], h, j)

if j>0:
self.W[j-1] =
self.W[j]+self.c[j]*self.T[j]*self.g*(self.x[j
]-self.x[j-1])/self.V[j]

if ans.success == False:
print('optimization failed', ans.message)
y0 = ans.x

for i in range(0, self.n):
if i<self.n-1:

self.t[i+1] =
self.t[i]+(self.x[i+1]-self.x[i])/self.V[i]

self.L = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CL))
self.D = np.multiply(self.Sw*0.5*self.rho,
np.multiply(np.multiply(self.V, self.V), self.CD))
self.L_D = np.divide(self.L, self.D)
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print(' ')
print('altitude: ', h)
print(self.W[0]-self.W[-1])
print(np.min(self.climb))

if np.min(self.climb) > 100:
return (self.W[0]-self.W[-1])

else:
return
((self.W[0]-self.W[-1])+10*(np.min(self.climb)-100)**2)

def trajectory_cases(self):
data_format="{0:<30}{1:<30.16f}\n"

dist_header="{0:<30}{1:<30}{2:<30}{3:<30}{4:<32}{5:<30}{6:<30}
{7:<32}{8:<30}{9:<30}{10:<32}{11:<30}{12:<30}\n"

dist_format="{0:<30.16f}{1:<30.16f}{2:<30.16f}{3:<30.16f}{4:<3
2.16f}{5:<30.16f}{6:<30.16f}{7:<32.16f}{8:<30.16f}{9:<30.16f}{
10:<30.16f}{11:<30.16f}{12:<30.16f}\n"

self.fig_path = self.results_path+'figs/'
if self.run_type == 'breguet':

h0 = self.hf
self.breguet_opt(h0)
print('Run Type: ', self.run_type)
if self.run_direction == 'f':

print('Total Fuel Burn: ', self.W[0]-self.Wfb, 'lbf')
else:

print('Total Fuel Burn: ', self.iweight-self.W[-1],
'lbf')

print('Total Time: ', self.tb/3600.0, 'hours')
print('L/D: ', self.L_Db)
print('V: ', self.Vb, 'ft/s')
print('h: ', self.hb, 'ft')
print('TSFC: ', self.cb, 'slugs/lbf/s')
print('Mach: ', self.Mb)
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')

else:
h0 = self.hf
self.trajectory_opt(h0)

print('Run Type:', self.run_type)
print('Total Fuel Burn: ', self.W[0]-self.W[-1], 'lbf')
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print('Total Time: ', self.t[-1]/3600.0, 'hours')
print('total run time: ', time.time()-self.s_runtime)

print('---------------------------------------------------
')

'''
data_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_data
.txt', 'w')
data_file.write(data_format.format('Total Fuel Burn:', 
self.W[0]-self.W[-1]))
data_file.write(data_format.format('Total Cruise Time:', 
self.t[-1]/3600.0))
data_file.write(data_format.format('Run Time:', 
time.time()-self.s_runtime))
data_file.close()

dist_file = 
open(self.results_path+str(self.RA)+'_'+str(self.e)+'_dist
s.txt', 'w')
dist_file.write(dist_header.format('x[ft]', 
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/
D','T[lbf]','TSFC[slugs/lbf/s]','W[lbf]'))
for i in range(0, len(self.x)):

dist_file.write(dist_format.format(self.x[i], 
self.x[i]/5280., self.t[i], self.t[i]/3600.0, 
self.h[i], self.V[i], self.V[i]/self.a[i], 
self.CL[i], self.CD[i], self.CL[i]/self.CD[i], 
self.T[i], self.c[i], self.W[i]))

dist_file.close()

if np.isnan(self.W[0]-self.W[-1]):
return

plot_range_multiplier = 100.

#Altitude
plt.figure(1)
plt.plot(self.xm, self.h)
plt.xlabel('x [mi]')
plt.ylabel('h [ft]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_h
.png')

#Velocity
plt.figure(2)
plt.plot(self.xm, self.V)
plt.xlabel('x [mi]')
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plt.ylabel('V [ft/s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_V
.png')

#Mach
plt.figure(3)
plt.plot(self.xm, np.divide(self.V,self.a))
plt.xlabel('x [mi]')
plt.ylabel('M')

plt.ylim(np.amin(np.divide(self.V,self.a))-(np.amax(np.div
ide(self.V,self.a))-np.amin(np.divide(self.V,self.a)))*plo
t_range_multiplier, 
np.amax(np.divide(self.V,self.a))+(np.amax(np.divide(self.
V,self.a))-np.amin(np.divide(self.V,self.a)))*plot_range_m
ultiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_M
.png')

#CL
plt.figure(4)
plt.plot(self.xm, self.CL)
plt.xlabel('x [mi]')
plt.ylabel('CL')

plt.ylim(np.amin(self.CL)-(np.amax(self.CL)-np.amin(self.C
L))*plot_range_multiplier, 
np.amax(self.CL)+(np.amax(self.CL)-np.amin(self.CL))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
L.png')

#CD
plt.figure(5)
plt.plot(self.xm, self.CD)
plt.xlabel('x [mi]')
plt.ylabel('CD')

plt.ylim(np.amin(self.CD)-(np.amax(self.CD)-np.amin(self.C
D))*plot_range_multiplier, 
np.amax(self.CD)+(np.amax(self.CD)-np.amin(self.CD))*plot_
range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_C
D.png')
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#L/D
plt.figure(6)
plt.plot(self.xm, self.L_D)
plt.xlabel('x [mi]')
plt.ylabel('L/D')

plt.ylim(np.amin(self.L_D)-(np.amax(self.L_D)-np.amin(self
.L_D))*plot_range_multiplier, 
np.amax(self.L_D)+(np.amax(self.L_D)-np.amin(self.L_D))*pl
ot_range_multiplier)

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_L
_D.png')

#T
plt.figure(7)
plt.plot(self.xm, self.T)
plt.xlabel('x [mi]')
plt.ylabel('T [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_T
.png')

#TSFC
plt.figure(8)
plt.plot(self.xm, self.c)
plt.xlabel('x [mi]')
plt.ylabel('TSFC [slugs/lbf/s]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_T
SFC.png')

#W
plt.figure(9)
plt.plot(self.xm, self.W)
plt.xlabel('x [mi]')
plt.ylabel('W [lbf]')

plt.savefig(self.fig_path+str(self.RA)+'_'+str(self.e)+'_W
.png')
# ~ plt.show()

plt.figure(1).clear()
plt.figure(2).clear()
plt.figure(3).clear()
plt.figure(4).clear()
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plt.figure(5).clear()
plt.figure(6).clear()
plt.figure(7).clear()
plt.figure(8).clear()
plt.figure(9).clear()
'''

def general(CRM_fo, CRM_b, sdata_file, sdist_file, sdata_format,
sdist_format, sdist_header):

for RA in [4,6,8,10,12,14,16,18,20]:
for e in
[0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.8
5,0.9,0.95,1.]:

CRM_fo.RA = RA
CRM_fo.e = e
CRM_fo.CD2 = 1./(ma.pi*RA*e)
CRM_fo.s_runtime = time.time()
CRM_fo.trajectory_cases()
CRM_fo.f_runtime = time.time()

CRM_b.RA = RA
CRM_b.e = e
CRM_b.CD2 = 1./(ma.pi*RA*e)
CRM_b.s_runtime = time.time()
CRM_b.trajectory_cases()
CRM_b.f_runtime = time.time()

sdata_file.write(sdata_format.format(CRM_fo.RA,
CRM_fo.e, 1./(ma.pi*CRM_fo.RA*CRM_fo.e),
CRM_fo.W[0]-CRM_fo.W[-1], CRM_b.W[0]-CRM_b.W[-1],
CRM_fo.t[-1]/3600., CRM_b.tb/3600., np.mean(CRM_fo.h),
np.mean(CRM_fo.V),
np.mean(np.divide(CRM_fo.V,CRM_fo.a)),
np.mean(CRM_fo.CL), np.mean(CRM_fo.CD),
np.mean(CRM_fo.L_D), np.mean(CRM_fo.T),
np.mean(CRM_fo.c)))

sdist_file.write(str(CRM_fo.RA)+'\t'+str(CRM_fo.e)+'\n')
sdist_file.write(sdist_header.format('x[ft]',
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/
D','T[lbf]','TSFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(CRM_fo.x)):

sdist_file.write(sdist_format.format(CRM_fo.x[i],
CRM_fo.x[i]/5280., CRM_fo.t[i], CRM_fo.t[i]/3600.0,
CRM_fo.h[i], CRM_fo.V[i], CRM_fo.V[i]/CRM_fo.a[i],
CRM_fo.CL[i], CRM_fo.CD[i],

450



CRM_fo.CL[i]/CRM_fo.CD[i], CRM_fo.T[i], CRM_fo.c[i],
CRM_fo.W[i]))

sdist_file.write('\n')

sdata_file.close()
sdist_file.close()

def wingspan(CRM_fo, CRM_b, sdata_file, sdist_file, sdata_format,
sdist_format, sdist_header):

Sref = CRM_fo.Sw+494.7109
CD2p = 0.03126
B3 =
[-0.333333333,-0.3,-0.275,-0.25,-0.225,-0.2,-0.175,-0.15,-0.125,-0
.1,-0.075,-0.05,-0.025,0.]
# ~ B3 = [-0.09849]
b =
[215.1715403,212.0891162,209.947867,207.9367975,206.0433018,204.25
62626,202.5658758,200.963486,199.441439,197.9929502,196.6119911,19
5.2931905,194.0317495,192.8233686]
# ~ b = [197.9097]
for k in range(0, len(B3)):

es = 1./(1.+3.*B3[k]*B3[k])

CRM_fo.RA = b[k]**2/(Sref)
print(CRM_fo.RA)
CRM_fo.CD2 = CD2p+1./(ma.pi*CRM_fo.RA*es)
CRM_fo.e = 1./(ma.pi*CRM_fo.RA*CRM_fo.CD2)
CRM_fo.s_runtime = time.time()
CRM_fo.trajectory_cases()
CRM_fo.f_runtime = time.time()

CRM_b.RA = b[k]**2/(Sref)
CRM_b.CD2 = CD2p+1./(ma.pi*CRM_b.RA*es)
CRM_b.e = 1./(ma.pi*CRM_b.RA*CRM_b.CD2)
CRM_b.s_runtime = time.time()
CRM_b.trajectory_cases()
CRM_b.f_runtime = time.time()

sdata_file.write(sdata_format.format(CRM_fo.RA, CRM_fo.e,
1./(ma.pi*CRM_fo.RA*CRM_fo.e), CRM_fo.W[0]-CRM_fo.W[-1],
CRM_b.W[0]-CRM_b.W[-1], CRM_fo.t[-1]/3600., CRM_b.tb/3600.,
np.mean(CRM_fo.h), np.mean(CRM_fo.V),
np.mean(np.divide(CRM_fo.V,CRM_fo.a)), np.mean(CRM_fo.CL),
np.mean(CRM_fo.CD), np.mean(CRM_fo.L_D), np.mean(CRM_fo.T),
np.mean(CRM_fo.c)))

sdist_file.write(str(CRM_fo.RA)+'\t'+str(CRM_fo.e)+'\n')
sdist_file.write(sdist_header.format('x[ft]',
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'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/D','
T[lbf]','TSFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(CRM_fo.x)):

sdist_file.write(sdist_format.format(CRM_fo.x[i],
CRM_fo.x[i]/5280., CRM_fo.t[i], CRM_fo.t[i]/3600.0,
CRM_fo.h[i], CRM_fo.V[i], CRM_fo.V[i]/CRM_fo.a[i],
CRM_fo.CL[i], CRM_fo.CD[i], CRM_fo.CL[i]/CRM_fo.CD[i],
CRM_fo.T[i], CRM_fo.c[i], CRM_fo.W[i]))

sdist_file.write('\n')

if np.isnan(CRM_fo.W[0]-CRM_fo.W[-1]):
continue

sdata_file.close()
sdist_file.close()

def weight(CRM_fo, CRM_b, sdata_file, sdist_file, sdata_format,
sdist_format, sdist_header):

CD2p = 0.03126
CD00 = CRM_fo.CD0
CD10 = CRM_fo.CD1
Ws0 = 57027.79952145
W_S = 152.1394
S0 = CRM_fo.Sw+494.7109
# ~ Sref = CRM_fo.Sw+494.7109
b = 192.8233686
Ws =
[32000.00,34000.00,36000.00,38000.00,40000.00,42000.00,44000.00,46
000.00,48000.00,50000.00,52000.00,54000.00,56000.00,57027.80]
# ~ Ws = [50635.64, 50291.14, 49893.84] 
B3 =
[-0.295362599,-0.270861909,-0.246522592,-0.222343058,-0.198321739,
-0.174457087,-0.150747576,-0.127191695,-0.103787959,-0.080534896,-
0.057431057,-0.034475009,-0.01166534,5.80698E-08]
# ~ B3 = [-0.0987877, -0.0888952, -0.0817692]

for k in range(0, len(Ws)):
es = 1./(1.+3.*B3[k]*B3[k])

CRM_fo.iweight -= (Ws0-Ws[k])
CRM_fo.fweight -= (Ws0-Ws[k])
CRM_fo.Sw = CRM_fo.iweight/W_S
print(CRM_fo.Sw)
CRM_fo.RA = b**2/(CRM_fo.Sw)
CRM_fo.CD2 = CD2p*CRM_fo.Sw/S0+1./(ma.pi*CRM_fo.RA*es)
CRM_fo.CD0 = CD00*CRM_fo.Sw/S0
CRM_fo.CD1 = CD10*CRM_fo.Sw/S0
CRM_fo.e = 1./(ma.pi*CRM_fo.RA*CRM_fo.CD2)
CRM_fo.s_runtime = time.time()
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CRM_fo.trajectory_cases()
CRM_fo.f_runtime = time.time()

CRM_b.iweight -= (Ws0-Ws[k])
CRM_b.fweight -= (Ws0-Ws[k])
CRM_b.Sw = CRM_b.iweight/W_S
CRM_b.RA = b**2/(CRM_b.Sw)
CRM_b.CD2 = CD2p*CRM_b.Sw/S0+1./(ma.pi*CRM_b.RA*es)
CRM_b.e = 1./(ma.pi*CRM_b.RA*CRM_b.CD2)
CRM_b.s_runtime = time.time()
CRM_b.trajectory_cases()
CRM_b.f_runtime = time.time()

sdata_file.write(sdata_format.format(CRM_fo.RA, CRM_fo.e,
1./(ma.pi*CRM_fo.RA*CRM_fo.e), CRM_fo.W[0]-CRM_fo.W[-1],
CRM_b.W[0]-CRM_b.W[-1], CRM_fo.t[-1]/3600., CRM_b.tb/3600.,
np.mean(CRM_fo.h), np.mean(CRM_fo.V),
np.mean(np.divide(CRM_fo.V,CRM_fo.a)), np.mean(CRM_fo.CL),
np.mean(CRM_fo.CD), np.mean(CRM_fo.L_D), np.mean(CRM_fo.T),
np.mean(CRM_fo.c)))

sdist_file.write(str(CRM_fo.RA)+'\t'+str(CRM_fo.e)+'\n')
sdist_file.write(sdist_header.format('x[ft]',
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/D','
T[lbf]','TSFC[slugs/lbf/s]','W[lbf]'))
for i in range(0, len(CRM_fo.x)):

sdist_file.write(sdist_format.format(CRM_fo.x[i],
CRM_fo.x[i]/5280., CRM_fo.t[i], CRM_fo.t[i]/3600.0,
CRM_fo.h[i], CRM_fo.V[i], CRM_fo.V[i]/CRM_fo.a[i],
CRM_fo.CL[i], CRM_fo.CD[i], CRM_fo.CL[i]/CRM_fo.CD[i],
CRM_fo.T[i], CRM_fo.c[i], CRM_fo.W[i]))

sdist_file.write('\n')

CRM_fo.iweight += (Ws0-Ws[k])
CRM_fo.fweight += (Ws0-Ws[k])

if np.isnan(CRM_fo.W[0]-CRM_fo.W[-1]):
continue

sdata_file.close()
sdist_file.close()

def morphing(CRM_fo, CRM_b, sdata_file, sdist_file, sdata_format,
sdist_format, sdist_header):

Sref = CRM_fo.Sw+494.7109
CD2p = 0.03126
B3 =
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[-0.333333333,-0.3,-0.275,-0.25,-0.225,-0.2,-0.175,-0.15,-0.125,-0
.1,-0.075,-0.05,-0.025,0.]
b =
[215.1715403,212.0891162,209.947867,207.9367975,206.0433018,204.25
62626,202.5658758,200.963486,199.441439,197.9929502,196.6119911,19
5.2931905,194.0317495,192.8233686]
for k in range(0, len(B3)):

es = 1.0

CRM_fo.RA = b[k]**2/Sref
CRM_fo.CD2 = CD2p+1./(ma.pi*CRM_fo.RA*es)
CRM_fo.e = 1./(ma.pi*CRM_fo.RA*CRM_fo.CD2)
CRM_fo.s_runtime = time.time()
CRM_fo.trajectory_cases()
CRM_fo.f_runtime = time.time()

CRM_b.RA = b[k]**2/Sref
CRM_b.CD2 = CD2p+1./(ma.pi*CRM_b.RA*es)
CRM_b.e = 1./(ma.pi*CRM_b.RA*CRM_b.CD2)
CRM_b.s_runtime = time.time()
CRM_b.trajectory_cases()
CRM_b.f_runtime = time.time()

sdata_file.write(sdata_format.format(CRM_fo.RA, CRM_fo.e,
1./(ma.pi*CRM_fo.RA*CRM_fo.e), CRM_fo.W[0]-CRM_fo.W[-1],
CRM_b.W[0]-CRM_b.W[-1], CRM_fo.t[-1]/3600., CRM_b.tb/3600.,
np.mean(CRM_fo.h), np.mean(CRM_fo.V),
np.mean(np.divide(CRM_fo.V,CRM_fo.a)), np.mean(CRM_fo.CL),
np.mean(CRM_fo.CD), np.mean(CRM_fo.L_D), np.mean(CRM_fo.T),
np.mean(CRM_fo.c)))

sdist_file.write(str(CRM_fo.RA)+'\t'+str(CRM_fo.e)+'\n')
sdist_file.write(sdist_header.format('x[ft]',
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/D','
T[lbf]','TSFC[slugs/lbf/s]','W[lbf]'))
for i in range(0, len(CRM_fo.x)):

sdist_file.write(sdist_format.format(CRM_fo.x[i],
CRM_fo.x[i]/5280., CRM_fo.t[i], CRM_fo.t[i]/3600.0,
CRM_fo.h[i], CRM_fo.V[i], CRM_fo.V[i]/CRM_fo.a[i],
CRM_fo.CL[i], CRM_fo.CD[i], CRM_fo.CL[i]/CRM_fo.CD[i],
CRM_fo.T[i], CRM_fo.c[i], CRM_fo.W[i]))

sdist_file.write('\n')

if np.isnan(CRM_fo.W[0]-CRM_fo.W[-1]):
continue

sdata_file.close()
sdist_file.close()
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def contour(CRM_fo, CRM_b, sdata_file, sdist_file, sdata_format,
sdist_format, sdist_header, runtype):

W0t = CRM_fo.iweight
W0f = CRM_fo.fweight
CD2p = 0.03126
Ws0 = 57027.79952145
W_S = 152.1394
S0 = CRM_fo.Sw+494.7109
B3 =
[-0.333333333,-0.3,-0.275,-0.25,-0.225,-0.2,-0.175,-0.15,-0.125,-0
.1,-0.075,-0.05,-0.025,0]
b =
[164.0770665,170.6401492,177.2032318,183.7663145,190.3293971,196.8
924798,203.4555625,210.0186451,216.5817278,223.1448104,229.7078931
,236.2709758,242.8340584,249.3971411,255.9602237,262.5233064,269.0
863891,275.6494717,282.2125544,288.775637,295.3387197,301.9018024,
308.464885,315.0279677,321.5910503,328.154133]
Ws = np.zeros((len(B3), len(b)),)
S = np.zeros((len(B3), len(b)),)
e = np.zeros((len(B3), len(b)),)
RA = np.zeros((len(B3), len(b)),)
Wf = np.zeros((len(B3), len(b)),)
ctime = np.zeros((len(B3), len(b)),)
havg = np.zeros((len(B3), len(b)),)
Vavg = np.zeros((len(B3), len(b)),)
Mavg = np.zeros((len(B3), len(b)),)
CLavg = np.zeros((len(B3), len(b)),)
CDavg = np.zeros((len(B3), len(b)),)
L_Davg = np.zeros((len(B3), len(b)),)
Tavg = np.zeros((len(B3), len(b)),)
cavg = np.zeros((len(B3), len(b)),)
CD2 = np.zeros((len(B3), len(b)),)

filename = 'CRM_Ws_range'

outname = 'CRM_Ws_range'

plane=ws.Domain(filename+'.json',True)

for k in range(0, len(B3)):
for l in range(0, len(b)):

plane.wing.lift_dist_coeffs[1] = B3[k]
plane.wing.span = b[l]

plane.wing.discretize()
plane.wing.calculate_lift_distribution()
plane.set_distributions(filename+'.json')
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plane.solver(1e-9, False)

Ws[k,l] = plane.weight.wing_structure
# ~ print(Ws[k,l])

if runtype == 'contour_m':
es = 1.

else:
es = 1./(1.+3.*B3[k]*B3[k])

CRM_fo.iweight = W0t-(Ws0-Ws[k,l])
CRM_fo.fweight = W0f-(Ws0-Ws[k,l])
CRM_fo.Sw = CRM_fo.iweight/W_S
CRM_fo.CD2 = CD2p*CRM_fo.Sw/S0+1./(ma.pi*CRM_fo.RA*es)
CRM_fo.e = 1./(ma.pi*CRM_fo.RA*CRM_fo.CD2)
CRM_fo.s_runtime = time.time()
CRM_fo.trajectory_cases()
CRM_fo.f_runtime = time.time()
CRM_fo.RA = b[l]**2/(CRM_fo.Sw)

S[k,l] = CRM_fo.Sw
e[k,l] = CRM_fo.e
RA[k,l] = CRM_fo.RA
Wf[k,l] = CRM_fo.W[0]-CRM_fo.W[-1]
ctime[k,l] = CRM_fo.t[-1]/3600.
havg[k,l] = np.mean(CRM_fo.h)
Vavg[k,l] = np.mean(CRM_fo.V)
Mavg[k,l] = np.mean(np.divide(CRM_fo.V,CRM_fo.a))
CLavg[k,l] = np.mean(CRM_fo.CL)
CDavg[k,l] = np.mean(CRM_fo.CD)
L_Davg[k,l] = np.mean(CRM_fo.L_D)
Tavg[k,l] = np.mean(CRM_fo.T)
esfcavg[k,l] = np.mean(CRM_fo.esfc)
CD2[k,l] = CRM_fo.CD2
# ~ sdata_file.write(sdata_format.format(CRM_fo.RA, 
CRM_fo.e, 1./(ma.pi*CRM_fo.RA*CRM_fo.e), 
CRM_fo.W[0]-CRM_fo.W[-1], CRM_b.W[0]-CRM_b.W[-1], 
CRM_fo.t[-1]/3600., CRM_b.tb/3600., np.mean(CRM_fo.h), 
np.mean(CRM_fo.V), 
np.mean(np.divide(CRM_fo.V,CRM_fo.a)), 
np.mean(CRM_fo.CL), np.mean(CRM_fo.CD), 
np.mean(CRM_fo.L_D), np.mean(CRM_fo.T), 
np.mean(CRM_fo.c)))

sdist_file.write(str(B3[k])+'\t'+str(b[l])+'\n')
sdist_file.write(sdist_header.format('x[ft]',
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'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/
D','T[lbf]','TSFC[slugs/lbf ft/s /s]','W[lbf]'))
for i in range(0, len(CRM_fo.x)):

sdist_file.write(sdist_format.format(CRM_fo.x[i],
CRM_fo.x[i]/5280., CRM_fo.t[i], CRM_fo.t[i]/3600.0,
CRM_fo.h[i], CRM_fo.V[i], CRM_fo.V[i]/CRM_fo.a[i],
CRM_fo.CL[i], CRM_fo.CD[i],
CRM_fo.CL[i]/CRM_fo.CD[i], CRM_fo.T[i], CRM_fo.c[i],
CRM_fo.W[i]))

sdist_file.write('\n')

if np.isnan(CRM_fo.W[0]-CRM_fo.W[-1]):
continue

# ~ fig1.gca().plot(CRM_fo.xm, CRM_fo.h)
# ~ fig2.gca().plot(CRM_fo.xm, CRM_fo.V)
# ~ fig3.gca().plot(CRM_fo.xm, 
np.divide(CRM_fo.V,CRM_fo.a))
# ~ fig4.gca().plot(CRM_fo.xm, CRM_fo.CL)
# ~ fig5.gca().plot(CRM_fo.xm, CRM_fo.CD)
# ~ fig6.gca().plot(CRM_fo.xm, CRM_fo.L_D)
# ~ fig7.gca().plot(CRM_fo.xm, CRM_fo.T)
# ~ fig8.gca().plot(CRM_fo.xm, CRM_fo.esfc)
# ~ fig9.gca().plot(CRM_fo.xm, CRM_fo.W)

sdata_file = open(results_path+'sdata.txt', 'w')
sdata_file.write('Wing-Structure Weight'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(Ws[i,j])+',')

sdata_file.write('\n'+'\n'+'Aspect Ratio'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(RA[i,j])+',')

sdata_file.write('\n'+'\n'+'Oswald efficiency 
Factor'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')

457



for j in range(0, len(b)):
sdata_file.write(str(e[i,j])+',')

sdata_file.write('\n'+'\n'+'CD2'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(CD2[i,j])+',')

sdata_file.write('\n'+'\n'+'Fuel Burn'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(Wf[i,j])+',')

sdata_file.write('\n'+'\n'+'Cruise Time'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(ctime[i,j])+',')

sdata_file.write('\n'+'\n'+'average altitude'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(havg[i,j])+',')

sdata_file.write('\n'+'\n'+'average velocity'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(Vavg[i,j])+',')

sdata_file.write('\n'+'\n'+'average Mach'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):
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sdata_file.write(str(Mavg[i,j])+',')

sdata_file.write('\n'+'\n'+'average CL'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(CLavg[i,j])+',')

sdata_file.write('\n'+'\n'+'average CD'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(CDavg[i,j])+',')

sdata_file.write('\n'+'\n'+'average L/D'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(L_Davg[i,j])+',')

sdata_file.write('\n'+'\n'+'average Thrust'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(Tavg[i,j])+',')

sdata_file.write('\n'+'\n'+'average ESFC'+'\n'+',')
for j in range(0, len(b)):

sdata_file.write(str(b[j])+',')
for i in range(0, len(B3)):

sdata_file.write('\n'+str(B3[i])+',')
for j in range(0, len(b)):

sdata_file.write(str(esfcavg[i,j])+',')

sdata_file.close()
sdist_file.close()

def single(CRM_fo, CRM_b, sdata_file, sdist_file, sdata_format,
sdist_format, sdist_header):

Sref = CRM_fo.Sw+494.7109
b = 192.8233686
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CRM_fo.RA = b**2/Sref
CRM_fo.e = 1./(ma.pi*CRM_fo.RA*CRM_fo.CD2)
CRM_fo.s_runtime = time.time()
CRM_fo.trajectory_cases()
CRM_fo.f_runtime = time.time()

CRM_b.RA = b**2/Sref
CRM_b.e = 1./(ma.pi*CRM_b.RA*CRM_b.CD2)
CRM_b.s_runtime = time.time()
CRM_b.trajectory_cases()
CRM_b.f_runtime = time.time()

sdata_file.write(sdata_format.format(CRM_fo.RA, CRM_fo.e,
1./(ma.pi*CRM_fo.RA*CRM_fo.e), CRM_fo.W[0]-CRM_fo.W[-1],
CRM_b.W[0]-CRM_b.W[-1], CRM_fo.t[-1]/3600., CRM_b.tb/3600.,
np.mean(CRM_fo.h), np.mean(CRM_fo.V),
np.mean(np.divide(CRM_fo.V,CRM_fo.a)), np.mean(CRM_fo.CL),
np.mean(CRM_fo.CD), np.mean(CRM_fo.L_D), np.mean(CRM_fo.T),
np.mean(CRM_fo.c)))

sdist_file.write(str(CRM_fo.RA)+'\t'+str(CRM_fo.e)+'\n')
sdist_file.write(sdist_header.format('x[ft]',
'x[mi]','t[s]','t[hr]','h[ft]','V[ft/s]','M','CL','CD','L/D','T[lb
f]','TSFC[slugs/lbf/s]','W[lbf]'))
for i in range(0, len(CRM_fo.x)):

sdist_file.write(sdist_format.format(CRM_fo.x[i],
CRM_fo.x[i]/5280., CRM_fo.t[i], CRM_fo.t[i]/3600.0,
CRM_fo.h[i], CRM_fo.V[i], CRM_fo.V[i]/CRM_fo.a[i],
CRM_fo.CL[i], CRM_fo.CD[i], CRM_fo.CL[i]/CRM_fo.CD[i],
CRM_fo.T[i], CRM_fo.c[i], CRM_fo.W[i]))

sdist_file.write('\n')

sdata_file.close()
sdist_file.close()

def run(runtype, runfile):
# general
# wingspan
# weight
# morphing
# general_h
# wingspan_h
# weight_h
# morphing_h
# contour
# contour_m
#*_hf
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# single
# single_h
if runtype == 'single':

results_path = './results/constrained/CRM_range/'+runfile
elif runtype == 'single_h':

results_path = './results/constrained/CRM_range/'+runfile+'_h'
else:

results_path = './results/constrained/CRM_range/'+runtype

sdata_header="{0:<30}{1:<30}{2:<30}{3:<30}{4:<30}{5:<30}{6:<30}{7:
<30}{8:<30}{9:<30}{10:<30}{11:<30}{12:<30}{13:<30}{14:<30}\n"

sdata_format="{0:<30.16f}{1:<30.16f}{2:<30.16f}{3:<30.16f}{4:<30.1
6f}{5:<30.16f}{6:<30.16f}{7:<30.16f}{8:<30.16f}{9:<30.16f}{10:<30.
16f}{11:<30.16f}{12:<30.16f}{13:<30.16f}{14:<30.16f}\n"

sdist_header="{0:<30}{1:<30}{2:<30}{3:<30}{4:<32}{5:<30}{6:<30}{7:
<32}{8:<30}{9:<30}{10:<32}{11:<30}{12:<30}\n"

sdist_format="{0:<30.16f}{1:<30.16f}{2:<30.16f}{3:<30.16f}{4:<32}{
5:<30.16f}{6:<30.16f}{7:<32}{8:<30.16f}{9:<30.16f}{10:<32}{11:<30.
16f}{12:<30.16f}\n"

if runtype!='contour' or runtype!='contour_m':
sdata_file = open(results_path+'/sdata.txt', 'w')
sdata_file.write(sdata_header.format('Aspect Ratio', 'oswald 
efficiency', 'CD2', 'Fuel Burn [lbf]', 'Fuel Burn (breguet) 
[lbf]', 'time [hr]', 'time (breguet) [hr]', 'average 
altitude [ft]', 'average velocity [ft/s]', 'average Mach',
'average CL', 'average CD', 'average L/D', 'average T 
[lbf]', 'average TSFC [slugs/lbf/s]'))

sdist_file = open(results_path+'/sdists.txt', 'w')

if runtype[-1] == 'h':
CRM_fo = Aircraft_h(runfile+'.json')
CRM_b = Aircraft_h(runfile+'.json')

elif runtype[-1] == 'f':
CRM_fo = Aircraft_fixed_h(runfile+'.json')
CRM_b = Aircraft_fixed_h(runfile+'.json')

else:
CRM_fo = Aircraft(runfile+'.json')
CRM_b = Aircraft(runfile+'.json')

CRM_fo.run_type = 'full_opt'
CRM_b.run_type = 'breguet'

CRM_fo.results_path = results_path
CRM_b.results_path = results_path
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# ~ fig1=plt.figure(1)
# ~ fig1.gca().set_xlabel('x [mi]')
# ~ fig1.gca().set_ylabel('h [ft]')

# ~ fig2=plt.figure(2)
# ~ fig2.gca().set_xlabel('x [mi]')
# ~ fig2.gca().set_ylabel('V [ft/s]')

# ~ fig3=plt.figure(3)
# ~ fig3.gca().set_xlabel('x [mi]')
# ~ fig3.gca().set_ylabel('M')

# ~ fig4=plt.figure(4)
# ~ fig4.gca().set_xlabel('x [mi]')
# ~ fig4.gca().set_ylabel('CL')

# ~ fig5=plt.figure(5)
# ~ fig5.gca().set_xlabel('x [mi]')
# ~ fig5.gca().set_ylabel('CD')

# ~ fig6=plt.figure(6)
# ~ fig6.gca().set_xlabel('x [mi]')
# ~ fig6.gca().set_ylabel('L/D')

# ~ fig7=plt.figure(7)
# ~ fig7.gca().set_xlabel('x [mi]')
# ~ fig7.gca().set_ylabel('T [lbf]')

# ~ fig8=plt.figure(8)
# ~ fig8.gca().set_xlabel('x [mi]')
# ~ fig8.gca().set_ylabel('ESFC [slugs/lbf ft/s /s]')

# ~ fig9=plt.figure(9)
# ~ fig9.gca().set_xlabel('x [mi]')
# ~ fig9.gca().set_ylabel('W [lbf]')
if runtype == 'general' or runtype == 'general_h' or runtype ==
'general_hf':

general(CRM_fo, CRM_b, sdata_file, sdist_file, sdata_format,
sdist_format, sdist_header)

if runtype == 'wingspan' or runtype == 'wingspan_h' or runtype
== 'wingspan_hf':

wingspan(CRM_fo, CRM_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header)

if runtype == 'weight' or runtype == 'weight_h' or runtype ==
'weight_hf':

weight(CRM_fo, CRM_b, sdata_file, sdist_file, sdata_format,
sdist_format, sdist_header)

if runtype == 'morphing' or runtype == 'morphing_h' or runtype
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== 'morphing_hf':
morphing(CRM_fo, CRM_b, sdata_file, sdist_file,
sdata_format, sdist_format, sdist_header)

if runtype == 'contour' or runtype == 'contour_m':
contour(CRM_fo, CRM_b, sdata_file, sdist_file, sdata_format,
sdist_format, sdist_header, runtype)

if runtype == 'single' or runtype == 'single_h' or runtype ==
'single_hf':

single(CRM_fo, CRM_b, sdata_file, sdist_file, sdata_format,
sdist_format, sdist_header)

# ~ fig1.savefig(results_path+'/h.png')
# ~ fig2.savefig(results_path+'/V.png')
# ~ fig3.savefig(results_path+'/M.png')
# ~ fig4.savefig(results_path+'/CL.png')
# ~ fig5.savefig(results_path+'/CD.png')
# ~ fig6.savefig(results_path+'/L_D.png')
# ~ fig7.savefig(results_path+'/T.png')
# ~ fig8.savefig(results_path+'/ESFC.png')
# ~ fig9.savefig(results_path+'/W.png')
# ~ plt.show()

# ~ fig1.gca().plot(CRM_fo.xm, CRM_fo.h)
# ~ fig2.gca().plot(CRM_fo.xm, CRM_fo.V)
# ~ fig3.gca().plot(CRM_fo.xm, 
np.divide(CRM_fo.V,CRM_fo.a))
# ~ fig4.gca().plot(CRM_fo.xm, CRM_fo.CL)
# ~ fig5.gca().plot(CRM_fo.xm, CRM_fo.CD)
# ~ fig6.gca().plot(CRM_fo.xm, CRM_fo.L_D)
# ~ fig7.gca().plot(CRM_fo.xm, CRM_fo.T)
# ~ fig8.gca().plot(CRM_fo.xm, CRM_fo.esfc)
# ~ fig9.gca().plot(CRM_fo.xm, CRM_fo.W)
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{
"name" : "Ikhana",
"units" : "English",
"MTOW" : 8500.0,
"M15FW" : 5950.0,
"wing_area" : 265.625,
"CD0" : 0.023,
"CD1" : 0.0,
"CD2" : 0.034257,
"CM0" : 1.0,
"CM1" : 3.0,
"CM2" : 30.0,
"range" : 3500.0,
"a00" : 0.556861696,
"a01" : -2.78033E-05,
"a02" : -3.38045E-07,
"a10" : -2.60964E-06,
"a11" : -4.71393E-09,
"a12" : 2.00694E-11,
"a20" : 7.03639E-11,
"a21" : 1.69186E-13,
"a22" : -7.6756E-16,
"b00" : 1004.8398,
"b01" : 0.036841611,
"b02" : 0.001600612,
"b10" : -0.021716745,
"b11" : 2.31748E-08,
"b12" : -1.96944E-08,
"b20" : 8.44697E-08,
"b21" : -4.35643E-11,
"b22" : 2.52213E-14,
"grid" : 200,
"direction" : "b"

}
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{
"name" : "CRM",
"units" : "English",
"MTOW" : 628342.1825,
"M15FW" : 370663.8114,
"wing_area" : 3635.289071,
"CD0" : 0.0194411562227676,
"CD1" : -0.0159788833189256,
"CD2" : 0.066617,
"CM0" : 1.0,
"CM1" : 3.0,
"CM2" : 30.0,
"range" : 7725.0,
"CTSFC" : 0.0000060706,
"qTSFC" : 0.6,
"static_thrust_SL" : 93000.0,
"a1" : -9.50e-4,
"a2" : 5e-7,
"grid" : 200,
"direction" : "b"

}
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""" 
contour.py

Produces formatted contour plots for publication in .emf format.

This module is intended to allow a user to produce journal-quality 
contour
plots. It takes an input file containing many of the formatting options
in one location. The input file is meant to streamline the 
formatting of
the plot, and allows the inclusion of several data series. It is 
meant to
be run in conjunction with the bash script contour_save.sh, which 
allows
the user to save the figure in enhnaced windows metafile (.emf) format
and specify the desired name of the .emf file.

Parameters
----------------------------------------------------------------------
--
contour_plot_settings.json : input .json file
    Input file containing the following:
{
    "General_Format":{Contains general formatting parameters
        "N" : Integer, number of data points per axis, i.e. N=100 

means 100x100
              grid.
        "Font_Size":, float, Size of the default figure font, in pt
        "Figure_Size":, array Size of the figure, in inches in the 

order
                        [width,height]
        {"Grid": Contains grid parameters
            "is_present":, {0,1} integer, 0 for grid off, any other 

integer
                           for grid on
            "Which":, string, either 'major' for gridlines on major 

ticks
                      only, or 'minor' for gridlines on minor ticks
            "Alpha":, float between 0 and 1 specifying transparency of
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                      gridlines
            "Line_Color":, string, color of the gridlines, accepts any
                           valid python color string
            "Line_Style":, string, style of the gridlines, accepts any
                           valid python linestyle string
            "Dash_Style":, tuple, (Optional) accepts dash/space
                           specification, i.e. (0, (10.0, 5.0))
            "Line_Width": float, width of the gridlines, in pt.
        }
    },
    "Axis_Format":{ Contains axis formatting parameters
        "Minor_Ticks":, integer, 0 for no minor ticks, any other
                    integer to include minor ticks
        "Tick_Label_Size":, float, fontsize of the tick labels, in pt
        "X_Axis":{ Contains formatting parameters for the x axis.
                   Repeat for Y_Axis
            "Limits":, array, contains lower and upper bounds for the x
                       axis in the order [lower, upper]
            "Tick_Density":, array of values specifying tick values
            "Tick_Label_Format": string, format string specifying the
                                 output format of the tick labels. 

Accepts
                                 any valid python format string.
        }
    },
    "Data_Series_Format":{ Contains formatting parameters for the 

data series
        "Series_1":{ formatting parameters for the first series
                     duplicate for any subsequent series, i.e. 

Series_2, etc.
            "index":, order that the data series is listed in 

contour_data
            "Name":, string, name of the data series
            "Line_Width":, float, width of the data series, in pt
            "Line_Color":, string, color of the data series, accepts 

any
                           valid python color string
            "Line_Style": string, style of the gridlines, accepts any
                           valid python linestyle string
            "Dash_Style":, tuple, (Optional) accepts dash/space
                           specification, i.e. (0, (10.0, 5.0))
            "Contour_Density":, float specifying contour density or
                                array of floats specifying contour 

levels
            "Labels":{ contains formatting parameters for contour 

labels
                "is_present":, {0,1} integer, 0 for labels off, any 

other
                               integer for labels on
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                "Fontsize":, float, fontsize of the labels, in pt
                "Label_Format":, string, format string specifying the
                                 output format of the tick labels. 

Accepts
                                 any valid python format string.
            }
        },
    }
}

Returns
----------------------------------------------------------------------
--
Figure.emf
    Returns a figure in .emf format, with name specified by the user.

Notes
----------------------------------------------------------------------
--
Data is imported into the conotour.py module via contour_data.py.
contour_data.py contains the function data_import, which returns the 
arrays
A, B, and C. A and B are 1-D arrays containing the X and Y values,
respectively. C is a 1-D array of 2-D arrays specifying each data 
series.

Example
----------------------------------------------------------------------
--
contour.run_plot(input.json)

"""
import sys
import numpy as np
import matplotlib

matplotlib.use('TKAgg')

import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib import rc
import contour_data as cdat
import json
from collections import OrderedDict
from matplotlib.ticker import FormatStrFormatter
from ast import literal_eval

rc('font', **{'family':'serif', 'serif':['Times']})
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def run_plot(input_file):
""" The run_plot function creates the contour plot and allows 
the user

    the option to save the file.

    Parameters:

------------------------------------------------------------------
--

    input_file: dinput file containing formatting data

    Returns:

------------------------------------------------------------------
--

    matplotlib figure in .svg format.

    """
# Read in settings
format_data = _settings_read_(input_file)

# Create Plot with General Formatting
fig, ax = _create_baseplot_(format_data)

# Format Axis
ax = _format_axis_(format_data, ax)

# Plot Data
ax = plot_data(format_data, ax)

# Save Plot
saveflag = _plot_save_(input_file)

# End Terminal Operation if figure is not to be saved
if(saveflag is False):

sys.exit(0)

def _settings_read_(input_file):
""" The settings_read function reads in the input file and stores

    the values in the data dict.

    Parameters:

------------------------------------------------------------------
--

    input_file: .json file containing the formatting data as 
described above.
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    Returns:

------------------------------------------------------------------
--

    format_data: dictionary containing the formatting data from the 
input file.

    """
with open(input_file+'.json') as file:

format_data = json.load(file, object_pairs_hook=OrderedDict)

return format_data

def _create_baseplot_(format_data):
""" The create_baseplot function creates the baseline plot with 
general

    formatting.

    Parameters:

------------------------------------------------------------------
--

    format_data: dictionary containing the formatting data from the 
input file.

    Returns:

------------------------------------------------------------------
--

    fig: matplotlib figure object
    ax: matplotlib axis object

    """
# Create Figure
fig =
plt.figure(figsize=(format_data["General_Format"]["Figure_Size"][0
],

format_data["General_Format"]["Figure_Si
ze"][1]))

ax = fig.add_subplot(111)

# Format Grid
if(format_data["General_Format"]["Grid"]["is_present"] != 0):

# Set Line Style
line_style =
format_data["General_Format"]["Grid"]["Line_Style"]
if(line_style == 'dashed'):
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line_style =
literal_eval(format_data["General_Format"]["Grid"]["Dash_S
tyle"])

ax.grid(which=format_data["General_Format"]["Grid"]["Which"],
alpha=format_data["General_Format"]["Grid"]["Alpha"],

color=format_data["General_Format"]["Grid"]["Line_Colo
r"],
linestyle=line_style,

linewidth=format_data["General_Format"]["Grid"]["Line_
Width"])

# Set Border
ax.spines['top'].set_linewidth(1.3)
ax.spines['right'].set_linewidth(1.3)
ax.spines['bottom'].set_linewidth(1.3)
ax.spines['left'].set_linewidth(1.3)

return fig, ax

def _format_axis_(format_data, ax):
""" The format_axis function applies axis-specific formatting.

    Parameters:

------------------------------------------------------------------
--

    format_data: dictionary containing the formatting data from the 
input file.

    ax: matplotlib axis object

    Returns:

------------------------------------------------------------------
--

    ax: matplotlib axis object

    """
# Set X and Y Limits
ax.set_xlim(format_data["Axis_Format"]["X_Axis"]["Limits"])
ax.set_ylim(format_data["Axis_Format"]["Y_Axis"]["Limits"])

# Set Tick Density
ax.set_xticks(format_data["Axis_Format"]["X_Axis"]["Tick_Density"])
ax.set_yticks(format_data["Axis_Format"]["Y_Axis"]["Tick_Density"])
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# Toggle Minor Ticks
if(format_data["Axis_Format"]["Minor_Ticks"] != 0):

ax.minorticks_on()

# Format Tick Marks
ax.tick_params(which='major',

labelsize=format_data["Axis_Format"]["Tick_Label_Si
ze"],
direction='in',
width=0.75,
length=3.0,
top=True,
right=True,
pad=7.25)

ax.tick_params(which='minor',

labelsize=format_data["Axis_Format"]["Tick_Label_Si
ze"],
direction='in',
width=0.25,
length=1.75,
top=True,
right=True,
pad=7.25)

# Format Tick Labels

ax.xaxis.set_major_formatter(FormatStrFormatter(format_data["Axis_
Format"]["X_Axis"]["Tick_Label_Format"]))

ax.yaxis.set_major_formatter(FormatStrFormatter(format_data["Axis_
Format"]["Y_Axis"]["Tick_Label_Format"]))

return ax

def plot_data(format_data, ax):
""" The plot_data function plots and formats the data series

    Parameters:

------------------------------------------------------------------
--

    format_data: dictionary containing the formatting data from the 
input file.

    ax: matplotlib axis object

    Returns:
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------------------------------------------------------------------
--

    ax: matplotlib axis object

    """
# Import data from contour_data.py
A, B, C = cdat.data_import(format_data["General_Format"]["N"],

format_data["Axis_Format"]["X_Axis"]["L
imits"][0],

format_data["Axis_Format"]["X_Axis"]["L
imits"][1],

format_data["Axis_Format"]["Y_Axis"]["L
imits"][0],

format_data["Axis_Format"]["Y_Axis"]["L
imits"][1])

X, Y = np.meshgrid(A, B)

CS = []
# Data Series Formatting and Storage
for series in format_data["Data_Series_Format"].keys():

CS.append(ax.contour(X, Y,
C[format_data["Data_Series_Format"][series]["index"]],

format_data["Data_Series_Format"][series]
["Contour_Density"],

colors=format_data["Data_Series_Format"][
series]["Line_Color"],

linewidths=format_data["Data_Series_Forma
t"][series]["Line_Width"],

linestyles=format_data["Data_Series_Forma
t"][series]["Line_Style"]))

# Dash Formatting
if(CS[-1].linestyles == 'dashed'):

for c in CS[-1].collections:

c.set_dashes([literal_eval(format_data["Data_Series_Fo
rmat"][series]["Dash_Style"])])

# Data Series Labeling
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if(format_data["Data_Series_Format"][series]["Labels"]["is_pre
sent"] != 0):

ax.clabel(CS[-1], inline=1,

fontsize=format_data["Data_Series_Format"][serie
s]["Labels"]["Fontsize"],

fmt=format_data["Data_Series_Format"][series]["L
abels"]["Label_Format"])

return ax

def _plot_save_(input_file):
""" The plot_save function allows the user to save the figure as 
.svg

    It is meant to interface with the contour_save.sh bash script to 
save

    the figure as .emf and allow the user to specify the desired 
name of

    the figure.

    """
plt.show(block=False)
choiceflag = False
saveflag = False
while(choiceflag is False):

print(' ')
saving = input("Save Figure? (y/n) ")

if(saving == 'y'):
plt.savefig(input_file+'tempfile.svg',
bbox_inches='tight', transparent=True)
choiceflag = True
saveflag = True

elif(saving == 'n'):
saveflag = False
choiceflag = True

else:
print(saving+' is not a valid response. Try again.')

return saveflag
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""" 
contour_data.py
Used to generate data in a format useful for contour plotting with 
contour.py

The data_import function is meant to allow the user of the contour 
module
to calculate data however the user would like and return it in the 
correct form
for use in the contour module.

Parameters
----------------------------------------------------------------------
--
N: number of data points per axis. i.e. N=100 gives 100 x 100 grid
xl: lower bound of x-axis data
xu: upper bound of x-axis data
yl: lower bound of y-axis data
yu: upper bound of y-axis data

Returns
----------------------------------------------------------------------
--
A: 1-D array of length N containing x-axis values
B: 1-D array of length N containing y-axis values
C: 1-D array of 2-D arrays containing z-axis values for each x-y 
pair for each
   data series. size of each 2-D array: NxN size of C: number of 

desired data
   series. Note: The order of the data series in the array C should 

match the
   order of the data series formatting in the input file to the 

contour module.
"""

import numpy as np
import math as ma

def data_import(N,xl,xu,yl,yu):

# Calculate Data here

# Example Data
A=np.linspace(xl, xu, N)
B=np.linspace(yl, yu, N)
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C1=np.zeros((N, N), dtype=np.float64)
C2=np.zeros((N, N), dtype=np.float64)
for i in range(0, N):

for j in range(0, N):
C1[i, j] = A[i]*B[j]
C2[i, j] = A[i]**2*B[j]

C=[C1, C2]

return A,B,C # where C=[C1, C2, C3, etc...]
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#!/bin/bash
# Saves Contour plot as .svg
# Opens .svg in inkscape
# Resizes inkscape document
# Saves inkscape document as .emf for windows applications

#Contour Plot Script
SCRIPT='contour_plot.py'
TEMPFILE='tempfile.svg'

echo 'Please Enter Input Filename (without Extension): '
read INPUTFILE

python $SCRIPT $INPUTFILE

if [ -e $INPUTFILE$TEMPFILE ]
then

#Ask for Final Filename
echo ' '
echo 'Please Enter .emf Filename (without Extension): '
#Read user input to the EMFFILE variable
read EMFFILE
#open inkscape
inkscape $INPUTFILE$TEMPFILE --export-emf=$EMFFILE'.emf'
#delete temporary file
rm -r $INPUTFILE$TEMPFILE
echo ' '
echo 'File '$EMFFILE'.emf was saved successfully!'

else
echo ' '
echo 'File was not saved!'
exit 1

fi
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