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ABSTRACT

Graviweak Theory in Bicomformal Space

by

Mubarak Ukashat, Doctor of Philosophy

Utah State University, 2022

Major Professor: James Wheeler, Ph.D.
Department: Physics

With the inception of the standard model, physicists tried various techniques to fit
gravity under the same underlying framework. These attempts were thwarted by the
Coleman-Mandula theorem, showing that a combined Poincare-SU(N) gauge theory leads
to a consistent quantum field theory only as a direct product. While supersymmetry pro-
vides an escape from the Coleman-Mandula conclusion, we explore a different approach.
In this work, we use the technique of biconformal gauge theory to bridge the gap between
the electroweak model and gravity, yielding a single graviweak theory. The quotient of the
conformal group of a space of dim n = p + g, with SO(p,q) metric by its homogeneous
Weyl subgroup. This gives a principal fiber bundle with 2n-dim base manifold and Weyl
fibers. The Cartan generalization to a curved 2n-dim geometry admits an action functional
linear in the curvatures, and the field equations generically yield general relativity on the
cotangent bundle of spacetime. However, in a subclass of cases the extra n dimensions can
give a fibration by a non-Abelian Lie group, with the maximal case for n = 4 being the
electroweak group. Thus, while the final Lorentz and electroweak symmetries are of the
direct product form required by Coleman-Mandula, the model is predictive of the specific

group. Our principal interest is to develop a spinor representation for the 4-dimensional
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case of this model in detail to see if further properties of the electroweak theory are pre-
dicted. In addition to the usual operators within Dirac theory, we find a new projection
which might be interpreted as either isospin or as the splitting between the gravity and
electroweak sectors. We discuss these possibilities. Also, we derive the field equations in

the self-dual/anti-self-dual spinor representation.

(159 pages)



PUBLIC ABSTRACT

Graviweak Theory in Bicomformal Space

Mubarak Ukashat

There are four basic forces in nature: the electromagnetic force, which accounts for
interactions of particles with charges; the weak force, which is responsible for radioactive
decay; the strong force, which holds the particles inside a nucleus tightly bound together;
and the gravitational force, which is resposible for keeping us on our beautiful planet,
Earth and holding together our entire solar system. Physicists have been on the hunt
for a theory that can single-handedly explain all these forces under the same underlying
mathematical formulation. So far, physicists have suceeded in unifying the electromagnetic
and weak forces in what is called the electroweak theory. Some ways are known to unify
the electroweak and strong interactions using group theory, but the odd one out is really
gravitational force. Gravity is explained successfully so far by Einstein’s general theory of
relativity but it has seen limited quantum mechanical explanation. One possible route to
full unification is string theory but we take an alternative approach. In this dissertation, we
attempt to unify gravity with the electroweak interaction. We propose a graviweak theory
based on a gauge field theory approach by harnessing the plethora of mathematical tech-
niques found in biconformal gauge field theory. In this special kind of field theory, not only
can we readily and easily get gravity, we simulteneously have a dual space that can accom-
modate the electroweak theory within the same formulation. We see that certain surprising
properties of the electroweak theory such as the existence of isospin or its preference for
left-handedness over right-handedness may have a natural explanation within biconformal

theory.
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CHAPTER 1
INTRODUCTION

1.1 Background

The standard model has been the greatest and most successful form of a unified theory
in modern physics. Apart from its success in explaining how the strong force works, it is
also based on the same framework of gauge field theory that unifies the electromagnetic and
weak interactions into a single electroweak interaction. Although the standard model does
not answer all questions, no experimental findings have been found to violate its predic-
tions till this day. Since the inception of the standard model, physicists have tried various
techniques to fit gravity under the same underlying framework. In this research, we use
the technique of biconformal gauge theory to to bridge the gap between the electroweak
model and gravity, unifying them into a single graviweak theory. We begin our task by
considering the conformal group of a space of dim n = p + ¢, with SO(p, ¢) metric and
taking the quotient of this group by its homogeneous Weyl subgroup. This gives a principal
fiber bundle with 2n-dim base manifold and Weyl fibers and the Cartan generalization to
a curved 2n-dim geometry admits an action functional linear in the curvatures. Because
symmetry is maintained between the translations and the special conformal transformations
in the construction, these spaces are called biconformal [1]. Biconformal geometry is a form
of double field theory; general relativity with integrable local scale invariance arises from
its field equations. It is notable that the field equations reduce all curvature components
to dependence only on the solder form of an n-dim Lagrangian submanifold, despite the
increased number of curvature components and doubled number of initial independent vari-
ables. Our principal interest is to see how 2n-dimensional geometry furnishes the platform
for electroweak theory with the proper symmetry breaking being an inherent consequence

of the biconformal structures.
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The formulation of the electroweak theory is strongly founded in gauge field theory.
In the early days of exploring theories of unification, Weyl was the first to attempt to
unify gravity and electromagnetism. In 1918 he was able to develop an electromagnetic-
gravitational theorem based on the assumption that we can treat lengths and directions
on an equal footing during parallel transport [2]. Einstein was able to figure out a flaw
this theory since if the assumptions were true, then when we parallel transport an electron
around some closed path in an electromagnetic field in a curved spacetime, its size will
not be the same. This is totally against observations since it violates the existence of
chemical elements with spectral lines of definite frequency and for this assumption to hold,
the relative frequency of two neighboring atoms of the same kind would be different in
general [3]. In 1921 Theodor Kaluza tried to unify electromagnetism and gravity by adding
an extra dimension to the usual four-dimensional spacetime metric [4]. This assumption
did not work out so well until 1926 when Oscar Klein introduced new paramaters for the
extra fifth dimension and required that it be compactified [5].

In 1929, Weyl developed the functional method of gauge theory for electromagnetism
using U (1) symmetry. This gave rise to many insights in the search for a united theory.
Yang and Mills were the first to gauge a nonabelian group in 1954 using SU(2), while
they were studying the behavior of protons and neutrons [6], [7]. Utiyama was the first
to gauge the Lorentz group in 1954 [8], while Kibble in 1961 gauged the full Poincare
group [9]. Using the methods of fiber bundles and Cartan geometry, we easily find unifying
relationships between these different gauge theories.

While electromagnetic interactions only affect particles with charge and the strong
interaction only affects quarks, gravitation affects all forms of energy, and every particle
feels the weak interaction. This suggests the possibility of a geometric graviweak model.
Properties of the weak interaction include flavor change, isospin doublets and singlets, parity
violation, charge conjugation violation and CP violation.

The theoretical development of the electroweak model had two major setbacks. The

first is related to the masslessness of the W and Z bosons for the theory to hold. We
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know from experiments that they are indeed massive. The second setback was that the
theory separated the behavior of right-handed particles from left-handed particles but had
terms involving interactions between them. It was difficult to explain this interaction based
on previous assumptions. This is where the Higgs mechanism of spontaneous symmetry
breaking came into play. The Higgs mechanism was able to solve both of these mysteries
and also introduced the existence of a new Higgs particle which was later discovered years
after its prediction.

Biconformal theory has been a very successful tool in developing effective theories
of locally scale covariant general relativity. The double-field-theory nature of this model
lets us propose other underlying theories with results consistent with observation. We
propose to formulate a graviweak theory from the gauge theory of the conformal group of
a 4-dimensional Euclidean biconformal space. We start with the Euclidean metric on R?,
compactifying it to extend it to its SO (5,1) conformal group. The quotient of SO (5,1) by
the product of SO(4) with dilitations is a fiber bundle with an 8-dimensional homogeneous
base manifold and SO (4) x dilatations fibers. Changing the connection to curve the base
manifold gives an 8-dimensional biconformal space (biconformal because it doubles the
dimension of space). The biconformal space gives us a Kahler manifold, with the metric,
symplectic form, and complex structures all arising naturally from the conformal group.

The general scale-invariant curvature-linear action on this biconformal space has been
shown to reduce to a locally scale invariant Euclidean general relativity an 4-dimensional
Lagrangian submanifold of the full space, with the remaining space fibrated by copies of
an 4-dimensional Lie group. Generically, this Lie group is Abelian, so the full biconformal
space is consistently identified as the co-tangent bundle, and the techniques of [10] show
how this can give rise to Lorentzian general relativity. However, an additional class of
solutions exists for which the extra 4 dimensions describe a fibration by a 4-dimensional
non-Abelian Lie group, G (4). This extends the fibers symmetry of the original bundle to
G (4) x SO (4) x D. The aim of our investigation is to determine under what conditions

G (4) is the SU (2)  x U (1), symmetry of electroweak theory, and to study the resulting



graviweak unification.

This underlying structure is expected to be able to show results of left and right-
handedness of particles, and naturally exhibit symmetry breaking. We also will examine
whether the existence of the Higgs alongside its mass prediction as an inherent part of the
theory rather than an input as it is in the standard model. We also propose in this new
theory to explore other known properties such as parity violation and charge conjugation.
The general approach will involve the usual gauge theory formulation with differential forms.
We will also extend our model to include spinor representations and ‘t Hooft matrices. At
the moment, although our theory beautifully separates left-handed particles from right-
handed particles naturally, we are not yet certain what features determine when our new
group is a subgroup of SO (4) and when it is a group contraction.

Choosing the appropriate spinor representation in biconformal space is one of the first
and foremost steps we undertake in order for our formulation and structure to be compatible
with the standard model. Spinors are the representations of matter in the standard model
which makes them play a very important role in our theory. They are the representations
for the grop of weakly interacting matter SU (2). The right way to think about a spinor +*
is that, despite the fact that it has a vector index y on it it is actually a matrix in spin space
with a pair of spinor indices which are often left out in literature. They actually look like
751)- It is a matrix because of the two spin indices ab, but at the same time it got a vector
index 4 in spacetime not spin space. So, the appropriate way to think about this object is a
4-component vector of matrices which happen to be 4 by 4 matrices for the 4D case. In 3D,
the analogous thing was a three component vector of 2 by 2 matrices. These gammas are
interesting because they live both in spin space and space time simultaneously. At this point
it is a good idea to start thinking in terms of spacetime and spin space separately. They
both have their separate index structures even if they are related since spin space is a way
of describing spinors on a spacetime, but we cannot use normal coordinates. Technically
speaking, the spinors exist on the spin bundle over the manifold. At each point we define

a spin space and a collection of these spin spaces throughout the spacetime which results
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in the spin bundle. This is analogous to vectors living in the tangent space to any given
point whose collection gives the tangent bundle of the manifold. The reason why it gets
confusing with vectors is that the indices in tangent space can be chosen to match with
the coordinates used for spacetime and this is called the coordinate basis of the tangent
space. Although we do not have to do this because we can represent the vectors using the
orthonormal basis in the tangent space in which case the spacetime indices and the tangent
space would look sort of disconnected from the coordinates in the same way as the spinors

do. There are cases where separating vectors from coordinates has been more efficient.

1.2 Fiber Bundles
Consider three differentiable manifolds E, Mand F where E is the bundle space, M
the base space and F' the fiber space where F and M may each be of any dimension. The
dimension of F'is the sum of the dimensions of £ and M. At each and every point of the
base space we attach a copy of the fiber space and the whole new space formed is the bundle
space with a dimension equal to the sum of the fiber space and base space dimensions.
We have some features that come with the formal definition of every fiber bundle and

these include;

1. Projection: If we take any point in the entire bundle space and apply a projection T,
it gives us the corresponding point in the base space. This is also true if we take any
point in the fiber bundle space and apply a projection , it gives us the corresponding

point in the base space.

2. Lie group G. There also exist a Lie group also called the structure group which acts

on F' from the left

3. Open Cover. These are some sets of open neighborhoods {U;} of the base space M
(such that all of u; gives back M) with a diffeomorphism ¢ : U x F — 7~ (U;) such

that 7 © ¢; (p, f) =pe M
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4. On every non-empty overlap of two subgroups U; NU; we require G-valued transition

functions t;; = ¢; © ¢; ' such that ¢; = ti;¢;

If we can cover the entire base M with only one Uj or if all of the t;; are trivial (¢;; = I;;) then
globally, the bundle FE is also trivial (F' = M x F). For a nontrivial bundle this property
is restricted to a local neighborhood. If we consider a base space M = S! which is just
a circle and the fiber space is taken to be F' = {z} € [—1,1] which is all values of a line
segment between —1 and +1 including -1 and +1. We have two possibilities for this case,
the first being we can take this to be the trivial bundle E = S! x [~1,1] which is the
surface of a cylinder. The second case is a nontrivial one which involves breaking S' into
two neighborhoods U; and Us with two overlaps on each end breaking the circle in half.
In each of these I have a line segment with its fibers and on one overlap we use a trivial
transition function ¢;; = I;; which is just the identity and on the other we use ¢; : z = —z.
This makes a mobius strip. So we call both a cylinder and a Mobius strip as line bundles
over S' where the cylinder is the trivial line bundle and the Mobius strip is the nontrivial
line bundle over S'. Another example of a nontrivial bundle is a circle bundle over a circle
called the Klein bundle. Trivial bundles allow us to do a lot of things easily but the more
restricted or nontrivial a bundle space is the more specific they are in regards to details of
what can be described in those spaces. For instance we know that the Mobius strip is a non-
oreientable surface which means that if I want to describe some physics in which orientation
is important then the Mobius strip will not be a good space for that representation. There
are also spaces that will not allow us have spinors on that space etc.

There are lots of spaces which can be categorized as bundles but the three most common

in physics are the following;

e When F' is a vector space we have a vector bundle with dimensions different or similar

to the base space M

e When F' is a particular vector space called the tangent space to M and then we have
the tangent bundle called TM. We already know that we can define a tangent space

at each point for any manifold irrespective of the space being a bundle in itself or not.
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In general relativity for instance if we want to talk about tensors or vectors in general

we will be restricted to objects in tangent spaces.

If FF = G, in other words if the fiber is a Lie group, then we have a principal bundle.
In other words, if we have a base space as spacetime and at each point our fiber is a
U (1), then we are talking about a U (1) principal bundle describing electromagnetism.
If it is an SU (2) fiber then it will be describing weak interactions and if it is an SU (3)
fiber it will be for QCD or the strong interactions. Principal fiber bundles are very

useful for gauge theories.

The idea of magnetic monopoles now depends on whether the U (1) principal bundle is

trivial or not. If it is trivial then there are no magnetic monopoles but if we can twist the

bundle in an analogous way to making a Mobius strip then we do have magnetic monopoles.

Half of Maxwell’s equations, the ones with sources come from an action prnciple and the

other half, the ones withpout the sources, are actually statements about the electromagnetic

geometry or the U (1) bundle and if we want to amend those equations to describe physics

on a nontrivial bundle then it is exactly adding a monopole term.

Some other features worth mentioning include;

e Sections. A section is a map that takes a single point in the fiber to a corresponding
point in the base space. It is like a curve mapping each section in the base to a
single point in the fiber. These are important in physics when we start writing out
Lagrangians and actions and equations of motion they are all in terms of sections of
bundles for instance in electromagnetism when we write A* (z) for the gauge potential

it is actually a section

Connection. A connection has to do with movement along the fibers or tangent to
them or both simultenously. This splits motion into verticality or horizontality. A
mathematical apparatus or construction which formalizes this for us is defined in terms
of a one-form connection A. In a principal bundle this one-form corresponds to the

gauge field while in a tangent bundle it is the Christoffel connection I' as in GR. These
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connections are what formalizes taking derivatives of objects in both GR and particle

physics which depends on taking differences of points with direction dependence.

Characteristic Classes. If we had a space and wanted to tell if it the tangent bundle of
this space was a trivial bundle or not, then we can deduce the answers from knowing
the characteristic classes which are objects built from the connections or transition
functions of these fiber bundles with a variety of ways to compute them and different
types in general. One particular one we want to talk about related to connection is

called the Chern class.

C (E) = det <1 + 2Z7TF>

where F' is defined in terms of the connection A as F = dA + A A A. This becomes
the curvature 2-form of the bundle. In a U (1) electromagnetic principal bundle where
A is the vector potential, then F'is just the field strength tensor F' = F),,, for the
tangent bundle to a manifold T'M, then F'is just the Ricci tensor R, created from
the Christoffel connection. These classes can be extended to a set of terms which are

as follows

Co(E) = I
Cl(E) = Tr <2;F)
Cy(B) =

C (E) is the first Chern class is really important with respect to Calabi-Yau manifolds.
The idea basically is that if we have a trivial space then all the Chern classes vanish

except the zeroth class.

Composite fiber bundles. When we gauge GR as a group of SO (1, 3)T x T* one way to
make this work is by encoding the translations as another bundle over the rotations.
The rotations form a fiber bundle over Minkowski space. In other words we can have

fiber bundles within other fiber bundles.



1.3 Differential Forms

Differential forms are one of the useful mathematical tools we shall be using for the
most part of this work. They provide one method for constructing coordinate invariant
expressions, simplify certain calculations (e.g. curvature tensors) and play a central role in
differential topology.

A differential p-form A®) is simply a (0,p) tensor that is completely antisymmetric.
In terms of components, a 0-form ¢ (no indices) has zero components, a 1-form A, is a

dual vector with four components Ag,A1,42,A3. A 2-form B,, = —B,,, By, = 0, has 6

VL)

components By, Boo, Bos, B12, B13, and Bog, a 3-form C;w)\ = C/\HV = Oy = _CVM)\ =
—Cxw = —Chyp, Cpupxn = 0 which leaves it with only four components Co12, Co13, Co23, and
Ci23. In general, any p-form in D dimensions will have = o DDip)! independent

p
components. More interesting things start to happen when we consider products of forms,

derivatives of forms and integral of forms.

1.3.1 Wedge Products
We can multiply two forms to get another form as long as we are careful to preserve

antisymmetry. A® AB@ = CP+9) in terms of components Cu..

(p+9)! A B

plq! (1 pp 2 tp 41 ptq)

=(AAB) =

Hptq H1-eHptq

For example if p=¢q¢ =1,

2!
(AAB), = AuBy

= 20 (4B, - AB,)

= A,B, - A,B,

andifp=1, g =2,
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3!
(A A B)/W/\ = 71!2!A[HBV/\]
1
= 36 (A#Bl,)\ + AABMV + AVB)\“ — AMBAV - A)\B,/# — AVBM)\)

1
= 5 (AuBor + By + Ay By, = 4By, = AxBuyu = AyB)

We can see that AAB = (-1)"BAA

For example if p=q¢ =1,

21

(B A A)p,l/ = WB[#AV]
1
- 25 (BMAV - BIJAM)
- = (AuBV - AVBM)
= —(AAB),
andifp=1, ¢ =2,
3!
(B AN A)MV/\ == ﬁB[NAV)‘]

= 3- é (BuAux + BaAy + By Ay, — BuAxy — BaAy, — By A,N)
= % (BuwAx + By, Ay + Bo)Ay — ByyAy — Bn Ay — By Ay)
= 5 (AuBur+ AsBuu + 4By — AuBy — AxByy — AuBy)
= (AAB),n
1.3.2 Exterior derivative

The components of differential forms can vary over space and time. This means that
when we write B, we really mean B, (x/\) It is then useful to discuss the derivative of

forms. Because of the nature of forms if we use the usual partial derivative % we do not
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get very useful results. On the other hand, if we are careful enough we can get a derivative
such that the derivative of a form gives another form.

Consider a form A®). The exterior derivative dA is a (p 4 1)-form with components

(dA) =0, A

P fpt1 B2 fhppet]

with the following properties:

o It satisfies a modified Leibniz rule. For A® and B@ we have

d(AAB) = dAAB+(-1’AAdB

e In an attempt to treat forms like tensors on a curved space or in curvilinear coordi-
nates, one might think that we would need to use 9, — D, = 9, +I'... to get back
a true tensor or in this case, a form. It turns out that due to the antisymmetrization
including the Christoffel connections make no difference as they still end up cancelling
out. This means that we have a meaningful tensorial derivative without requiring a
metric which means that these derivatives are defined on and only depend on the

topology of the spacetime!

e It squares to zero. This is the Poincare lemma. Since we would have to antisymmetrize
the indices on each 0 but partial derivatives commute we have d2A = 0 for any p-form
A. This feature is one of the keys to how exterior calculus of differential forms leads

to topological invariants.

1.3.3 Integration
It is very important here to remember that the components of a form only arise when
we decompose the form onto a basis. This basis is defined as
1

AP — EAMH'“pde AdaP? AL A date
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where the differentials anticommute, i.e. dx* A dx¥ = —dx” A dz*. Since coordinates are

functions, their exterior derivatives are 1-forms, hence anticommuting.

Proof: Consider

1
A® = iAw,dx“/\dx”

1
= iAwd:U”/\dx“

since A,, = —A,, and dz* A da¥ = —dz¥ A dz* and in fact we could consider this as
dat Adat2 A ... Ada?? with p = 2.
To enable us comprehend the usefulness of a set of anticommuting differentials let us

consider dxdy and transform to 2’ (z,y),y’ (x,y). Then:

/ / / /
dr s dédy = (%Cde+ % ay) (e + 2 ay
i Y ox Ay
ox' = oy ox' oy oxr' | Oy
= Y e+ gy + ayY
Ox wax m+8x x@y y+8y Y

/ 8$/ 8y/
dr + —dy——d
Ox T oy y@y Y

However, we know that dzxdy should transform with the Jacobian, i.e.

ox' oy’ 02’ Oy
/ / _ e
de'dy’ = ( By ” > dxdy

which is exactly what we get if we use the wedge product, dz’ A dz?/ = —da/ A d2’ =
dr Adzx=dyAndy =0.

We can now see that the basis of a p-form is actually an integration measure over a
p-dimensional (oriented) volume. This means that an expression like pr AD) ig perfectly
well defined and coordinate invariant. The physical significance of this is that there is a
natural coupling between p-form fields A®) and the p-dimensional world-surfaces swept out

by (p — 1)-dimensional objects. For instance
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ep=1 fZ AW is the natural coupling of a 1-form A, to a particle’s worldline.
1
e p=2 fZQ B® is the natural coupling of a 2-form B,,, to a string’s worldsheet.
and in general

° pr B(®) is the natural coupling of a p-form to a (p — 1)-brane’s world volume

1.3.4 Hodge Dual

In 3-dim we can define an invertible mapping between a 1-form and a 2-form because
they both have three independent components. This is also applicable to a O-form and a
3-form since they both have one component in 3-dim. This leads us to introduce the concept

of a Hodge dual, or star, operator. In 3-dim and Cartesian coordinates set

*(deAdy) = dz
*(dyndz) = dx
*(dzAndx) = dy

“(deAdyAdz) = 1

and further require the star to be its own inverse

With these rules we can compute the Hodge dual of any form in 3-dim.
These rules may be summarized using the Levi-Civita tensor. Still in 3-dim and Carte-

sian coordinates, the dual of any 1-form A is

A = AigijajkldxkAdwl

= Aj&tjkldxk A dat
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For example we can show that the dual of a general 1-form A = A;dz’ is the 2-form

S=A.drxNdy+ Aydz Ndx + Azdy A dz.

A = Az
= Aydz! + Asda? + Asda?
*A = % (Aid:):i)
= x(Aidz' + Apda® + Azda?®)

= Ay xda' + Ay« da® + Ag x d2?

Now, using the fact that a star is its own inverse, we can deduce that

(dzAndy) = *dz
*(dyAndz) = *dx
*(dzAdx) = *dy

*(deAdyAndz) = *1

which means that

*dz = (dz Ady)
*de = (dyAdz)
*dy = (dzAdx)

1 = (dzAdyAdz)

Now taking
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Adz! = A,dx
Aodz?® = A,dy

Asdz® = A.dz

we can now continue our derivation as follows

A

Al*dxl + Ag*d$2 + Ag*dl'g
= A)dz+ A, dy+ A.*dz

= A, (dyAdz)+ A, (dzAdx)+ A, (dz Ady)

In general, we can see that the Hodge operator is a map for any general m-form, in
n dimensions such that x : AJ* (R") — AJ7™ (R") is linear and satisfies the following

properties

etm cda'™mtt AL Ada'™

il i2 im -
*(dl’ Adz*?... ANdx ) n—m)! gl ein

1 1. tm
where G LA

is just a number.
If we consider n = 3 and m = 1, we can work backwards to derive our findings as

before.
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%1 AL (RS) — A129 (R3)

P
1 )
— xdz! = 561 jkdaﬂ A dzF
!
1 , ,
= B (de Adz® —dz3 A dx2)
3
= B (dac2 Adz? —dz3 A dZCQ)
= dz? Ad?
We can similarly show that
xd2? = —da'Adz?
xd2® = da' Adz?

In general, the Hodge dual maps basis from one space to another linearly.

1.4 A biconformal model of graviweak interactions

The possibility for a unified graviweak theory based in biconformal geometry was re-
cently established in [1]. These geometries arise as gauge theories of the conformal group C
of spaces of dim n = p+¢q, with SO (p, q) metric, where C may be written as SO (p + 1,q + 1)
or the corresponding spin group, Spin (p + 1,q + 1). The quotient of this conformal group
by its homogeneous Weyl subgroup gives a principal fiber bundle with 2n-dim base mani-
fold and Weyl fibers. The Cartan generalization to a curved 2n-dim geometry admits an
action functional linear in the curvatures. Because symmetry is maintained between the
translations and the special conformal transformations in the construction, these spaces
are called biconformal; this same symmetry gives biconformal spaces overlapping structures

with Kéahler manifolds and with double field theories, including manifest T-duality. Because
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of the manifest duality between translations and special conformal transformations, bicon-
formal space admit a gravity action linear in the curvatures [11]. In [1] it is established that
the field equations arising from the linear action lead to n-dimensional general relativity
with integrable local scale. It is notable that the field equations reduce all curvature compo-
nents to dependence only on the solder form of an n-dim Lagrangian submanifold, despite
the increased number of curvature components and doubled number of initial independent
variables. The reduction occurs without need for a section condition.

Here we focus on one result presented in [1], that the torsion-free solutions are foliated

by copies of an n-dim Lie group G. These Lie groups fall into two classes:

1. Generically, the Lie group G is abelian. Thus, the corresponding torsion-free solu-
tions generically describe locally scale-covariant general relativity with symmetric,
divergence-free sources with G representing either (a) the co-tangent bundle of n-dim

(p, q)-spacetime or (b) the torus of double field theory.

2. The solutions admit a subclass of spacetimes with n-dim non-abelian Lie symmetry.
The group G must be acted upon by the original SO((p, q) or Spin (p,q) fiber sym-
metry. As suggested in [1] these latter cases include the possibility of a unification of

gravity and the electroweak interaction.

To realize a graviweak theory, we study the SO (4) case.

Starting with a compactified Euclidean 4-space, we choose a spinor representation
so that the conformal symmetry is C = Spin (5,1). The homogeneous Weyl group then
consists of dilatations together with SO (4) = SU (2) x SU (2). The non-abelian group may
be a 4-dimensional subgroup, and the electroweak symmetry SU (2) x U (1) is an obvious
possibility

In order for us to realize this possiblity we need the following background understand-

ing:
1. Explore explicitly the electroweak theory accoording to the standard model.

2. Understand details of spinor representations.
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3. Develop and understand the spinor representation of the biconformal gauge theory
of SU (2) x SU (2). This involves new research since previous biconformal models
have been based on orthogonal groups. Although the Cartan structure equations are
the same for spin and orthogonal groups, differences arise when we implement the

SU (2) x SU (2) product manifestly.

4. Study known methods for obtaining Lorentzian gravity from SO (4) Euclidean sym-
mety. This can be accomplished either according to [12] or using the method of [13].
Either way, this is doable. The former method gives us extra fields, some of which

might cast light on the origin of the Higgs field.

In Chapter 2 we present a review of the Weinberg-Salam model of the electroweak interac-
tions and Chapter 3 reviews basic properties of biconformal spaces.

In Chapter 4 we explore many details of spinor representations. Since the whole struc-
ture of the standard model ranging from the electroweak interactions to the strong interac-
tions are based on spinor representations which are used to explain all matter as we know
it till date. The importance of spinors therefore, cannot be overemphasized.

Following these introductory Chapters we present our two principal results:

e Develop a full spinor representation for the biconformal field equations that makes

the SU (2) x SU (2) product structure manifest.

e Explore details of the breakdown from SU (2) x SU (2) to SU (2) x U (1). As a likely
possibility, we show that the subgroup of SU (2)x.SU (2) transformations that preserve
the form of the Weyl vector is the electroweak symmetry. To do this, we expressed
the real, 8-component Weyl vector in terms of spinors and studied its transformations

and gauge properties.

The derivation of these results is presented in the final Chapters. Future work will begin
with solutions to the field equations, using the splitting consistent with the Weyl vector to

dictate the group breakdown.
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CHAPTER 2
THE ELECTROWEAK MODEL

2.1 Gauge Theory and a Glance at the Electroweak Model
The procedure of gauge field theory, with the gauging of electromagnetism using the
U (1) group as an example, can be summarized in three stages; Firstly, we write down the

Lagrangian which in our case will be the Dirac Lagrangian for a spin-half matter field.

L= iﬁc@*y“@,ﬂb — mc*P

It is easy to see that the Lagrangian in (1) preserves global U (1) transformations.

b oo =y

b oo =y

— L1 = L) = ihc@e_iqev“ﬁﬂeiqew — mczv,/;e_iqeeiqegb =L
2 2 2

If we try to replace the global symmetry by a local U (1) gauge transformation, we find

out that this is not a symmetry of the Lagrangian.

L’% — L = ihc&e_iqe(“;)’y“é}#eme(x)@b — mcpe 0@ ia0(@) g, L /J%
2

This is due to the fact that the partial derivatives do not transform homogenously,

9, ( ia6() ¢> £ cia0(@) 9, (1)



20

The next step is to promote the global symmetry to a local symmetry by replacing the

partial derivatives with covariant derivatives

0, — D, = 8, +iqA, (2.1)

where A, is a gauge field and ¢ is a scalar. Defining the covariant derivative as given in

Eq(2.1) guarantees that the new derivative transforms homogenously.

Db = €®@ D, = Dy

with the transformation condition for the newly introduced gauge field as

iA, —iA, =iA, — 0,0 (x)

The new Lagrangian under this new local gauging is

fclocal = iﬁCiL’Y“D;ﬂ/J - mc%/ﬁb

= »C% - th’YMTZJAuw

where thv’%EA/ﬂj) is the interaction term. The new Lagrangian transforms as follows:

Liveal — L*Eocal _ mc@;e—qu(x)pyu Dueiqé’(aﬁw _ mgq’;e—iq@(ﬂc)eiq@(x)w
= z‘hcie_iqe(x)v“eiqe(w)Duw — mcp
= Liocal
The last step is to introduce a kinetic term for the propagation of the gauge field A,,.

This gauge field will be our photon and we will require a kinetic term for for a spin-1 particle

to propagate it. The starting point is the Proca Lagrangian given as
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1 1 /rme\2
L, = —F, Fm 7(—) AMA
L= Tenim ! T\ p

where [}, is the electromagnetic field strength defined as

The mass term of the Proca Lagrangian for our gauge field must vanish for local gauging
to be a symmetry. Then we can interpret the gauge field as the photon since it is massless,

and the new Lagrangian becomes

_ 1 y
L’% — L"% = E% — qhey! A + IG—WFWF“

where ¢ is the coupling strength of the fermions described by 1 to the electromagnetic field

A, and this is what we define to be the electric charge.

2.1.1 Properties of the Electroweak Interactions
Electromagnetic interactions only affect particles with charge and the strong interaction
only affects quarks. Gravitation effects all forms of energy, and every particle feels the weak

interaction. Properties of the weak interaction include the following;

1. Flavor change

2. Parity Violation

3. Violation of Charge Conjugation
4. CP Violation

5. Isospin Doublets and Singlets
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Fig. 2.1: Particles and their interactions according to the Standard Model [14]
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Fig. 2.2: A down quark turning into an up quark as an example of Flavor Changing in
Weak Interactions [15]
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2.1.2 Flavor change

In figure (2.1), the fermions in purple and the quarks in green are paired in flavors in
three groups of up and down. These pairs are called flavors and the weak interaction can
change from one flavor to another. To simplify this concept let us consider the beta decay
of the Cobalt-60 atom which is an example of a weak interaction. The decay process is

given by

89C0 —82 Ni+e™ + 7,

which can be broken down to the decay of a single neutron into a proton,

—n-—pt+te +7

This can be further broken down into the flavor change of a down quark into an up quark

(udd) — (uud) + e~ + e

—d—ute +7,

This flavor change can be visualized in the figure (2.2). If we compare the result from
figure (2.2) with those from figure (2.3), we find out that unlike the weak interactions,
the strong and electromagnetic interactions do not change flavor. In other words the same
particle that comes into any vertex as an incoming particle, comes out from the same vertex

as an outgoing particle

2.1.3 Parity Violation
So far, we have seen how continuous symmetries are satisfied by the standard model
but there are certain discrete symmetries that are violated within the standard model by

the weak interaction. Parity refers to a spatial mirror inversion with respect to some given
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e
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Fig. 2.3: Comparing the Strong and electromagnetic interactions which do not change flavor
with the weak interactions that does change flavor [16]

direction. There are two ways of understanding parity violation in the standard model. The
first method has to do with the concept of helicity.

A particle whose spin is in the same direction as its momentum is called a right-handed
particle and is given a positive quantum number of unity known as its helicity while a particle
whose spin is in the opposite direction as its momentum is called a left-handed particle.
The later particle is given a negative one quantum number for its helicity. Parity operations

on particles change right-handed particles into left-handed particles and vice versa.

In 1957, C. S. Wu alongside other physicists was the first to observe this parity violation
in beta decay [17]. Considering the same beta decay for Cobalt-60 nucleus, one possible
configuration is that a right-handed antineutrino and a left-handed electron be ejected as
shown as spin configuration 1 in the figure (2.5) below.

If we act on spin configuration 1 with the parity operator, we expect that the left-handed
electron becomes right-handed and the right-handed antineutrino become left-handed as
shown in spin configuration 2. If the process was to preserve parity, then both configurations

should be equally observed in experiments. It turns out that only the first configuration is
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left handed right handed

Fig. 2.4: A visualization of how the Parity operation changes a left-handed particle into a
right-handed particle and vice versa [18]

observed as we do not have left-handed antineutrinos in nature.
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Fig. 2.5: Parity Violation Experiment based on Helicity test

This is what we mean by parity violation in the context of helicity. Another way to
comprehend the concept of parity violation is the following;

Quantum mechanically, if we separate a wavefunction as follows;
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¥ (r,0,0) = R(r)Y™(0,0)

Under parity, the coordinates change as follows;

(r,0,9) — (—r,m—0,71+¢)

The spherical harmonics ordinarily can be written as proportionality

Y™ (0,¢) o B"(cosd)- el

Under parity, the individual components above transform as

elime) o im(¢+)
= (oo
= e
= P" (cosf) —> P"(cos(m—0))

= (=)™ P (cosb)

The last expression is deduced from the behavior of the associated Legendre polyno-

mials when 6 changes to (m — ). Therefore, under parity. Therefore, under parity
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" 0.¢) — Y"(r-0,7+9)
= (=)™ P (cosh) - (—1)" .M

= (-D'Y"(6,9)

Therefore, parity of the spherical harmonics depends on the evenness or oddness of [.

To every particle we attribute a parity quantum number: plus one for scalars and
pseudo-vectors and minus one for pseudo-scalars and vectors. Bosons will have the same
parity quantum number as antibosons while fermions will have opposite parity values as
antifermions. The pions or pi-mesons would then have a negative parity since they are

classified as pseudo-scalars. Consider the weak decays below;

ot — gt 440

e A 7T+—|—7T0+7T0

We multiply parities of products to get the parity of the parent. This means that 0%
will have positive parity while 77 will have negative parity. When parity was considered a
symmetry of the standard model in the early part of elementary particle physics, 6+ and 7+
were thought to be different particles even though other than this parity discrepancy they
were identical in every other way. After the discovery of parity violation, they were then
understood to be the same particle called K. Since, the later process preserves parity, it
was attributed to any of the electromagnetic, strong, or weak interactions, while the former

process was attributed to weak interactions alone because it violates parity.

2.1.4 Violation of Charge Conjugation:
Charge conjugation is an operation that takes particles into antiparticles. It is more

than just changing the charges of the particles because it can affect even neutral particles.
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For example, operating on a proton and a neutron with the charge conjugation operator

will give us an antiproton and an antineutron as follows;

Clp) = Cluud)

Cln) = Cludd)

Consider the decay below

™ — ut+u, (2.2)
The products yielded are both left-handed. If we then transform this decay under charge

conjugation we get

T u + (2.3)

These products are just antiparticles of the previous ones due to the nature of charge
conjugation but remain left-handed. But we do not have left-handed antineutrinos in nature,
so, the later process is not valid and as a result the weak interactions do not preserve charge

conjugation.
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2.1.5 CP Violation

CP refers to a combination of charge conjugation followed by a parity operation. People
thought that this might be a symmetry of the standard model and as it turns out, after
charge conjugating Eq.(2.2) to get Eq.(2.3), if we further apply the parity operator on
Eq.(2.3) we get back the right-handed antineutrinos as expected. It turns out that this
symmetry is still broken but to a very small scale compared to that of parity and charge
conjugation. This is known as minimal symmetry breaking for the case of CP violation.
When we further act on the CP by a time reversal operator it happens that we get a
symmetry for the standard model due to the CPT theorem. According to the CPT model,
since CP is not a symmetry of the standard model, the CPT combination is a symmetry if

and only if time reversal is also not a symmetry.

2.1.6 Isospin of Doublets and Singlets

We have left-handed electrons, muons and tau particles with corresponding left-handed
neutrinos respectively. We do also have right-handed electrons, muons and tau particles but
no corresponding right-handed neutrinos respectively. This is because they have not been
found experimentally but have found right-handed anti neutrinos in beta decays and other
weak interactions. For the quarks we have both right-handed and left-handed up, down,
charm, strange, top, and bottom quarks respectively. From observations also, only left-
handed particles take part in weak interactions.

The gauge group for the weak interaction is the SU (2),. Under this group we can
consider the fields or wavefunctions corresponding to the left-handed particles and their

neutrinos as a doublet

i, W,
—
1/]5 L we

L

while the right-handed particles have singlet fields (do not take part in the weak interaction)

since they have no partners
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weR — (¢6)R

Just as we assume the isospin in strong interactions for the nucleon is a composite

of protons (isospin —i—%) and neutrons (isospin —%), we can also make such a formulation

Ve

Ye
L

1= %, with isospin I3 = +% for v., and isospin I3 = —% for ey, . The isospin for the singlet

of isospin for the SU (2);. The field corresponding to the doublet has isospin

is zero. The total doublets and singlets for both leptons and quarks in the weak interaction

are

'QDVH 1/}1/7 ¢ue ¢u 77[)0 ¢t
% QZ)T I we i wd i ws L wb

L

(we)R ) (%)R ) (QbT)R ’ (%)R ) (%)R ) (qbc)R ) (%)R ) (%)R ) (wb)R

The gauge group corresponding to the electroweak interaction is the combination of
the SU (2), isospin and the U (1), hypercharge given as SU (2); x U (1), The relationship

between the charges is given by

Q is the electromagnetic charge, I3 is the third projection of isospin which is the charge
corresponding to SU (2);, and Y is the hypercharge corresponding to U (1)

Now consider the doublet

Vo,
Ve

Q.. = 0 since it’s a neutral particle, Is,, = +32, therefore, these fix ¥, = —1.
er, er, 2 er

Qc, = —1 since it’s a negative particle, I3, = —%, therefore, these fix Y,, = —1.
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Qcp = —1 since it’s a negative particle, I3, = 0, therefore, these fix Y., = —2.

The isospin and hypercharge are two quantum numbers that help us distinguish be-
tween left-handed and right-handed particles. Since both left-handed and right-handed
electrons have the same charge -1, they are indistinguishable in electromagnetic interac-

tions but distinguishable in weak interactions.

2.2 Weinberg-Salam-Glashow (WSG) Model and L-R Symmetry Breaking
The WSG model unifies the electromagnetic and weak forces into the electroweak theory
at high energies. The standard model at high energies is summarized by the interaction
between elements of the group SU (3) x SU (2),; xU (1), where L stands for left-handedness
and Y for hypercharge in order to differentiate it from the electromagnetic charge. The left-
handed particles exist as a doublet of two flavors which can be interchanged under a weak
interaction. This is a special feature of weak interactions which is not obtainable from any
other interactions. The right-handed particles are singlets. In the simplest of assumptions

of this model, we write the Dirac Lagrangian as follows;

L = ihc&v“@uw—mCQﬁw
Yy
WY

YR
YL

with projection operators defined as
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1445

o - 127,
1 5

v = L7,
1— 5

Y = ( 27)7#

Then we obtain

Vviy'yr = 0
YrY'r = 0
Yryr = 0
Yy = 0

Using these conditions, we restate our Lagrangian as follows in terms of the left-handed and

right-handed spinors;

L = ihe(Yry"Oubr + V" Oubr) — me? (VYL + Yrvr)

Now, using an electron as a specific example, we have

. 14 o | - Ve

L = ihc|ery'Ouer + Yo, —mc* | Yr + YR
€ e e
L L L L

AN
®

@

An SU(2)[, transformation acts on the doublets as follows using an arbitrary xp;
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e 2 XL

gy | v

[}

L

where & are the Pauli marices. Simulteneously we do a U (1)y transformation on both the

left-handed electron doublet and right-handed singlet in the form:

"

XL

4

XL —

and

/
e_g YXLd)XL
/ 1%
efg YXL¢ ¢
e

/
e Py,

’ V,
ed Yde) ¢

e

!
— e 9 Yy

e 9 Yx ¢ ) g

/
— e Yatepn

eg' Yy, ¢ (E)R
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To make our lagrangian locally symmetric we do the following transformations for both

the doublets and singlets:

a,uXL — Duxr
Zg — L
= Ouxr + E?J/VMXL +1ig B.ux1L
8#63 — D,ueR

=  Ouer+ ig,YeRBHeR

%
We require three gauge fields for W, corresponding to the three generators of SU(2)p,
(one for each Pauli matrix), and one gauge field for B, corresponding to the single generators

of U(1)y. To preserve our local symmetry these gauge fields will also transform as follows:

— g g = g g1 ig—= g\ 9= g
?.Wﬂ — e300 ?.Wueg?‘  + E(?M (e*%]?'g) e3 -0
g

BM — B, +0,¢

The next step is to allow these new gauge fields propagate by giving them kinetic terms

which we generally build by constructing

For U(1) this expression takes the form

F, = 0,B,—-0,B,

while for SU(2) which is non-abelian, we add an extra term and it takes the form
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Fi, = 0,W%—0,W, — ge" , WV',WS

2.3 The Higgs Mechanism

There were two major problems with the SU(2)r, x U(1)y electroweak model. The first
problem was the fact that from experiments the weak gauge bosons are found to be massive
while the Proca mass term (%)2 W, WH is not locally gauge invariant which makes it
vanish from our Lagrangian. Secondly, we recall that to have mass terms for spinors requires
both the left and right-hand parts of ¥ to combine as in mc? (1/_) RYL + @Z_JLwR), however we
have just constructed a gauge theory where the left and right parts transform differently
and as such we do not expect terms like mc? (Tz)pﬂ/JL + @m/JR) to be gauge invariant. We
resolve both of these problems using the Higgs mechanism for mass generation.

A crucial part of this process is the breaking of SU(2)r x U(l)y — U(1)ga. The
electroweak group,SU(2);, x U(1)y, has four generators; Wi,Wi,BM. After symmetry
breaking to U(1)gns, one would expect only one of these four symmetry generators to

survive but this is not what happens. In actualty, the B,, mixes with the neutral W3M from

SU(2)r, to form two orthogonal states

A, = Bucosﬁw—l—W?’usinHW

representing the photon for U(1) gy and

Z, = —Businﬁw—i-W?’ucosGW

for the massive neutral Z° boson of the weak interactions. The angle 6y is the Weinberg

mixing angle.



36

Another important point is that the original unified gauge group SU(2);, x U(1)y will
not be truly unified if the SU(2)r and U(1)y factors had completely independent couplings
g and ¢’ respectively. Since we experience the broken version of this theory, it is useful to

know how the couplings W*, Z° and v are related. It turns out that

gsinfy = ¢ cosby
= g'}/
g = 9gw+
_ 9y
9z = sinByy cosOyy

To understand how the Higgs mechanism works let us consider a simple construction
of the model based on a U(1) theory. Consider the following Lagrangian for a spin-zero

scalar field

1 1 1
L= 5(0:07)(0"0) — gu*d" o+ [N (¢70)"

When promoted to a local gauge symmetry and adding kinetic terms this becomes

_ 1 iq x iq STV S DI SR Sy
L = 2<8“+hc‘4“>¢ (a”+hcA“)¢ GH "0+ 1A (0" 9) + "

where the fields in terms of some arbitrary background configuration can be written as

¢ (x") = do(a") + ¢ (")
Ay () = Ao (") + 64, ()
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and ¢g (x*) describes the constant background configuration of the field and d¢ (z*) repre-
sents fluctuations relative to this background. These fluctuations are interpreted as parti-
cles. We then proceed to find solutions for the background by first setting 0¢ to zero. This
lets us solve for the first term in our Lagrangian. Secondly we vary the action. Finding

gf* = 0 for the equations of motion, we have,

_aE _ 9 _12* 12 * 1\2
0= = a¢*( SHP6"6 + 1A (¢¢>>
_ _12 12 *
= 56+ N (679)0

_ _12 12 2
= 5o+ 53X ¢ o

One solution is taking A, = 0, ¢ = 0. Using this solution and studying

¢ (a") = 0400 (z")

Ay(zh) = 0404, (z")

we get

_ 1 ﬂ * E _1 2¢ % 1 2 * 2 i v
L= 3 <aﬂ+ hc&@) 56 (8”+hc5A“> 66 — SH706756 + X (56736)° + S F" Fl

with F,, = 0,04, — 0,0A, in this case. The result is exactly like the original Lagrangian
with ¢— 0¢, 0™ — 69", A, — dA,,.

But another solution is A, = 0, ¢ = ¢g where ¢g = ¢1 + i and

oL
0p*

1 1
= *§M2¢0 + 5)\2 |66] ¢0 =0
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requires |¢0\2 = “—i = ¢2, + ¢3,- Choosing the phase so that ¢19 = &, 20 =0,4, =0 and

A

perturbing about this solution,

we find

o1(a") = 4001 (")
= L@

Il
=
—~

8
\_/t

3 @) (04 + 4P| + |5 0,6 (09
[ () ] () @ (5)
L @) - pom e+ (L) naan+ 5 (1) @+ ) A

+ {AM (* +nB%) + EAQ (" +20*8° + 54)}

Our new Lagrangian now describes a massive real scaler field ), a massive gauge field

A, and a massless scalar 8 with a lot of complex interactions between them. ¢ in our

original Lagrangian is the equivalent of the Higgs field and the procedure described so far

is how it generates mass in theory [4], [5].
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CHAPTER 3
BICONFORMAL GRAVITY

In order to have a basic understanding about how biconformal gauge theory works let
us first consider the Poincare group P and its Lorentz subgroup L . If we take the quotient
P/L we can use this new quotient structure to immediately build a fiber bundle such that
each point of the new manifold so formed is a coset isomorphic to L in P. This means
that there is a one-to-one correspondence between points in this coset and elements of L
which essentially makes it a Lorentz fiber bundle over a 4-dimensional manifold. We define

w?

. as the spin connection which defines the Lorentz part of the gauge or Lorentz fibers
and e® as the solder form which defines the set of orthonormal frame fields that span the
cotangent spaces to the manifold. The pure-gauge spin connection may be gauged to zero

so the solder forms become exact differentials of some coordinates, e* = §2dx® which makes

the manifold a flat spacetime or Minkowski space.

The Lie algebra is

1
(M5 05 = =3 (nf M — oM — MYy — M)
1
[ (ll;a Pc] = 5 (nbcnad - 5%5%) Py
[Paa Pb] = 0

It follows that the Maurer-Cartan equations are

de* = eb/\wab

dw, = wpAw?



40

The generalized connections become:

5
l
&

We add the curvatures to generalize these equations in order to build a more general
class of spacetimes and the Maurer-Cartan equations just become Cartan equations. We
require the curvatures to be horizontal and the modified structure equations integrable.
Horizontality means that Lorentz transformation leaves the closed loop integrals of the

connections invariant.
de* = &' Anof 4+ T
A general 2-form on this group manifold will have the form

1 1
Q = 5Qabea Ael + Qe Awb, + 5(2“ b © gl Aw,

but because we do not want the curvature 2-forms R* , and T* (the Riemann curvature
and torsion respectively) to change when we change the Lorentz part of the gauge, we forbid
the last two terms. In other words if we have our base manifold with Lorentz fibers and
integrate the connection around any closed path, we do not want the result to depend on
whether we raise or lower that path. Therefore if we do a Lorentz transformation locally
Q will transform and that means we will get something different around two curves that
differ only by a Lorentz transformation unless we ignore the last two terms. This condition

is called horizontality. As a result, we express the curvature 2-forms in terms of only the
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horizontal basis which is the solder form in this case. By doing this we find that the

resulting curvatures (R® , and T in this case) describe only the curvature of the base

manifold, maintaining the underlying Lorentz symmetry. Therefore

and integrability implies:

:}O =

= d%@0% = 0

Similarly

R%,

T[l

1
§Rabcdec AN ed

1
§Ta bceb N ec
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d%e* = 0
— 0 = dZ%*
= d(dé%)

— DT* = &"'ARY

This is the first and second Bianchi identity equivalent to what we have in GR

R%[cd;e] =0

Ra[bcd] = Tc[lbc;d]

If the torsion T* = 0, then we get a description equivalent to the Riemannian geometry
in GR. R is the Riemann curvature tensor R9_; as a 2-form.
Now we intend to build a theory from these Lorentz tensors 7% and RY by writing the

most general action linear in these curvatures

S = /R“b A €€ A e gped

This is the integral of a 4-form. We first of all vary this action with respect to the
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spin connection §,S = 0 and this gives us field equations indicating vanishing torsion. Next
we vary the action with respect to the solder form e and this gives us the following field

equations

(Rab A ed> €abed = 0

1
— QR“Z’ cr€ A ef neleyped = 0

Reducing this further gives the Einstein Equation as expected in GR. The Poincare
fiber bundle now describes a general Einstein-Cartan (ECSK) geometry. In summary what
we have done after taking the quotient of the Poincare group by the Lorentz group is
creating a homogenous manifold which gives spacetime. We then generalized that into a
curved space by changing the connection giving us the Cartan equations.

In this research we propose to consider a similar construction for the conformal group.
Let the connection forms dual to the generators of the Lie algebra be written as spin
connection w®, (SO (p, q) transformations), solder form e® (translations), co-solder form f,
(special conformal transformations, called co-translations in the context of these biconformal
geometries), and Weyl vector w (dilatations). We take the quotient of the conformal group
by its homogenous Weyl subgroup (which is just Lorentz transformations with dilatations).
The resulting equations, with curvatures, are the Cartan equations which gives us the
forms of the curvatures in terms of the connection. We then define our action (theory) as
the Wheeler-Whener action. Generic solutions give GR in n-dimensions.

So far, we are confident in the biconformal gauge theory formulation. We found the
structure equations from the commutator relations of our Lie group in a spinor representa-
tion, from which we wrote down the Maurer-Cartan equation. We then take the quotient
of this group by a Lie subgroup to form our fiber bundle. We checked that the spinor
representation reproduces the previous vector equations.

From the work done in [1] a space of dimension n = p+ ¢, with an SO (p, ¢)-symmetric

orthonormal metric 7 can be compactified with appropriate null cones at infinity to permit
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the inversions that give the space a well-defined conformal symmetry, C = SO (p+ 1,q¢ + 1).
We take the quotient by W, where W = SO (p, q) x SO (1,1) C C is the homogeneous Weyl
subgroup which consists of the pseudo-rotations and dilatations. The quotient C/W is a
2n-dimensional homogeneous manifold from which we immediately have a principal fiber
bundle with fiber symmetry W. We take the local structure of this bundle as a model for
a curved space a la Cartan, modifying the manifold and altering the connection subject to

the two conditions:
1. The resulting curvature 2-forms must be horizontal.

2. The resulting Cartan structure equations satisfy their integrability conditions (gener-

alized Bianchi identities).

In a vector representation, the Cartan structure equations are:

dw® = Wi AW+ 2A%f, Ae + Q7 (3.1)
de® = e’ Aw? +wne’+Te (3.2)
df, = W Afy+f,Aw+S, (3.3)
dw = e'Nf,+Q (3.4)

Horizontality requires the curvature to be expanded in the (e?,f}) basis, giving each of the

components (2%, T¢ S,,2) the general form
1 1
04 = §QAcd e Ned + QA f, Ned + §QACd f. A £y (3.5)

and integrability follows from the Poincaré lemma, d? = 0.

The (n=D+2)

5 curvature components (2%, T% S,, Q) together comprise a single con-

formal curvature tensor. However, the local symmetries of the homogeneous Weyl symmetry
of the biconformal bundle do not mix these four separate parts. Thereofore, we call the

SO (p,q) part of the full conformal curvature Q% the curvature, the translational part of
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the curvature T¢ the torsion, the special conformal part of the curvature the co-torsion,
S., and the dilatational portion £ the dilatational curvature or simply the dilatation.

Each of the curvatures each has three distinguishable parts, as seen in Eq.(3.5). We
call the e* A e’ term the spacetime term, the £, A €® term the cross term, and the f, A f
term the momentum term. While it may be somewhat abusive to call a signature (p, q)
space “spacetime”, for the gravitational applications we consider the name is ultimately
appropriate. In the cases where the co-solder forms generate a nonabelian Lie group, the
name “momentum” is not appropriate, and we will speak of the relevant group manifold.

To avoid introducing too many symbols, the symbols for the three parts of curvatures
are distinguished purely by index position. Thus, 2%, ¢, denotes the cross-term of the
SO (p,q) curvature and Q*, , the spacetime term of the SO (p,q) curvature. These are
independent functions. We therefore do not raise or lower indices unless, on some sub-
manifold, there is no chance for ambiguity. Note also that the raised and lowered index
positions indicate the conformal weights, +1 and —1 respectively, of all definite weight ob-
jects. Therefore, the torsion cross-term 7% . has net conformal weight +1, the spacetime
term of the co-torsion S, has conformal weight —3, and the full torsion 2-form T¢ has
conformal weight +1.

The generalized Bianchi identities are the integrability conditions for the Cartan equa-
tions which are found by applying the Poincaré lemma, d? = 0, to each structure equation,
then using the structure equations again to eliminate all but curvature terms. Thus, for the

SO (p, q) curvature, we take the exterior derivative of the structure equations.(3.1),

0 = d2wab
= dw® Aw?, — w Adw?, + 2A%df. A e? — 2A%F, A de? + dQ7,
= Q% Aw? —w A QY+ 20%S, A et — 2A%F, A T + dQY,

= DQY +2A%S, A et — 2A%F, A T
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where we have identified the covariant exterior derivative, D%, = dQ%, +Q Aw?, —w’ A

Q°.. Proceeding through Egs.(3.1) - (3.4), we find the full set of integrability conditions,

DY, +2A% (Sy A e —f, A TS = 0 (3.6)
DT -’ A Q%+ QAe” = 0 (3.7)
DS, + Q. Af,—f,AQ = 0 (3.8)
DQ+T*Af,—e*AS, = 0 (3.9)

where the covariant derivatives are given by

Dﬂab = dﬂab—i—ﬂcb/\wac—wcb/\ﬂac
DT® = dT®+ T’ Aw? —w AT
DS, = dS,—w’ ASy+S,Aw

DQ = dQ (3.10)

Since each Bianchi identity contains the covariant derivative of a curvature, it is typi-
cally difficult to use them to help find solutions to the field equations. They are simply the
conditions on the curvatures that guarantee that a solution exists, and if we find a solution
to the field equations, the Bianchi identities are necessarily satisfied. However, if one of the
curvatures vanishes the relations become algebraic and can be extremely helpful.

Carrying out each of the connection variations on the Wheeler-Wehner action,

S = /eac___dbe“'f (a2, + B0%Q +ve  Af) A A Ael AT A Afy (3.11)

we arrive, in the vector representation, at the final field equations:



47

T, T, 5w = (3.12)

T, +8.°,-5°, = 0 (3.13)

QAT (Tmba —§MTL 5™, bC) = 0 (3.14)

QAL (5§Tdad +8,b, s, a) ~ 0 (3.15)

o (07, & =00y 10%) + B0, -0 %) + A% = 0 (3.16)
o2 + BQap = 0 (3.17)

a(Q “— Q% “0%) + B Q% , —Q° 5%+ A = 0 (3.18)
aQ?, 4 30% = 0 (3.19)

where the constant A is defined to be A = ((n — 1) a — 8+ n?y).

When we gauge the conformal group of Euclidean space, the biconformal space still
allows us the freedom to put a Lorentz connection on the spacetime and come up with GR.
This can be done in different ways. Spencer and Wheeler [10] require orthogonality for the
x and y spaces. They also require the restriction of the 2n-dimensional Killing metric to
spacetime and the momentum space to be non-degenerate. These conditions are enough to
force a Lorentzian metric onto spacetime even though we started with a Euclidean space.
These conditions split the biconformal space in such way that we get emergence of time and
therefore spacetime.

However, the Spencer-Wheeler approach forces the same Lorentzian metric on both
spacetime and momentum space. We want the second 4-space to be a subgroup of SO (4),
hence of different signature. We can do this if we allow an angle between the momentum
and configuration spaces. This allows different metrics on either lagrangian submanifoldof

the biconformal space.
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CHAPTER 4
EIGHT COMPONENT SPINORS

Spinors refer to the representations of spin groups on curves, spaces, or spacetimes.
The whole structure of the standard model ranging from the electroweak interactions to the
strong interactions are based on spinor representations which are used to explain all matter
as we know it till date. The importance of spinors therefore, cannot be overemphasized. In

The Classical Groups. . . [19], Herman Weyl writes :

13

. only with spinors do we strike that level in the theory of its representa-
tions on which Euclid himself, flourishing ruler and compass, so deftly moves in
the realm of geometric figures. In some way Fuclid’s geometry must be deeply

connected with the existence of the spin representation.”

A Spin (n) group is a double cover of the special orthogonal group SO (n), and similarly the
Spin (p, q) group is a double cover of the Special orthogonal group SO (p, q). The Spin (1)
group is the orthogonal group O (1), the Spin (2) group is the unitary group U (1), the
Spin (3) group is the special unitary group SU (2), and the Spin (4) group is the product of
two unitary groups SU (2) x SU (2). The general linear group GL (1, R) is the double cover
for the special orthogonal group SO (1, 1), the special linear group SL (2, R) is the double
cover for the special orthogonal group SO (1,2), and the special linear group SL (2,C) is

the double cover for the special orthogonal group SO (1, 3).

4.1 Spin(4): 4-dimensional representation
The covering group, Spin (4), of the SO (4) symmetry of a 4-dimensional Euclidean
space gives a representation of the conformal group. The Dirac matrices for Spin (4) must

satisfy the Clifford algebra

{,Ya’,yb} — 95ab
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where a,b,... =1,2,3,4. We may choose the Dirac matrices to be the 4 x 4 matrices
-k k
—io T
k
")/ = =
iok 7k
1
4
/'y =
1

where ¥, k = 1,2,3 are the Pauli matrices. These are chosen so that linear combinations

Q = qu* take the form

Ll

Q=
q

where ¢ = g4 4+ iq - o is a quaternion and ¢ its conjugate.

In the usual way we build the additional matrices

O_ab — [,ya7 ,yb}

v = iyl =

0 -1

and 757%. The 16 matrices I'* = {1,7“,0“1’,7576‘,75} form a basis for all complex 4 x 4

matrices.
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It is a coincidence that T'4, taken together, give a representation of the conformal Lie

algebra,
[O_ab’ O_Cd_ _ 45bco_ad o 45aco_bd o 45bdo_ac + 46ad0_bc
ot 1z| = a(doTs - ooeTh)
1 1
721t = S (0" +40"D)
[D.T2] = +T%
[D, R
ﬁaTV = 0
+9 L4 -
where
¢ = E 1+ @
o= 50Em)y
O_ab — |:’}/a,’}/b}
1
D = -
275

are identified as the generators of translations T'¢, special conformal transformations 7¢,
Spin (4) rotations ¢, and dilatations D.

Because 72 = 1, we have projection operators
1

These project to self-dual and anti-self-dual subspaces. The matrices I'4 generate conformal

transformations on 4-component spinors,

« a+ bi
X I} c+di

w: = =
3 Jz e+ fi

v g+ hi
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4.1.1 Vectors from spinors

The standard way to form a real 4-vector is to write
1
u' = Sulyy

A direct check shows that
uua = (Xx) (€€) (4.1)

We can also form a pure-imaginary pseudo-vector (“pseudo” simply meaning these will
have opposite properties from vector under spatial inversion). Multiplying by 7 gives a real

vector,
i -
vt =S¥y Y

Also, if we combine these we form a complex 4-vector,

2 = % (Wv% - %57%)

= YIPiyy
with complex conjugate
(=) = ¥PAy"%

We have two interesting limits:
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where

1
& =

0

1
X0 =

0

Each of these is a general real 4-vector, but we cannot do both at once.

4.1.2 Vectors from projected spinors

Another way to form real 4-vectors is from projected spinors,

vi=| | = Ja+me
0 1

Yo = = 5(1—%)1/)
3

The only way these give us a vector from %wT'y“w is if we mix them because v* P, = P_~v*:

1 1
SUMP = SUT PPy
1
= SUIPA P

1
= 51@7“%
But

1 a
FVTP Py = 0

1
inP_’yaP_w =0

This means that the whole vector must vanish if either £ or x vanishes, in agreement with

the norm, Eq.(4.1).
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4.1.3 Vectors from outer products

Alternatively, we may take outer products of vectors or projected vectors:

XT
,ET

Yoyl = (&)®

y@xt x®¢t
(oxt Exd

where the 2-component products are

X'ex = (o589
B

a*a fra .
= = ulo, = u'l + vlo;
B BB
where «, 8 are complex numbers. The other outer products ¢F @ y, xT @ €, and ¢7 @ € are

similar. The resulting matrices are Hermitian,

f
a*a [fra a*a fra

oa*B B*B o*p BB

and so is the full matrix 1 ® . Since we may write any Hermitian 2 x 2 as a linear

combination of

Oq = (17079)
we can set

K @X = uoq = 3 0%+ 5°6) 141 (a%a— B) o+ 5 (a”B + ) o1~ & (4”6 — ) oy

thereby defining a real 4-vector u®.
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These are not general 4-vectors because they are always “null” in the sense that

(W) + () + (&%) = @B+ 50) — (@~ Fa) + ; (a*a— F6)
= >(a"fa’8+a’B 0 + Foa’S + Fap"a)
—i (@*Ba*B — a* BB — Braa™B + Brafa)
% (a*aa*a — o af B — B Bata + B BB H)
= (0aaa+200°B8" + §'55°)
- i (a*a + B*B)°

2
= ()
This form is therefore too restrictive for our purposes.

4.2 Spin(5,1)

While the conformal representation built from the Spin (4) Dirac matrices given above
is concise and easier to work with, the conformal group of Euclidean 4-space in a vector
representation is SO (5, 1), with covering group Spin (5,1). The 8-dimensional representa-
tion means calculations here get longer, so we will use the computational software for some
of our calculations.

We now turn to an explicit representation for Spin (5, 1).

4.2.1 A convenient Clifford basis for the spin representation
A basis for the Clifford algebra spin (5,1) is given (up to GL (n,C) similarity transfor-

mation) by six matrices 74 satisfying

(v 2"} =2n"" (4.2)
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where

P = (4.3)

is the SO (5,1) metric.
A rotation of the coordinates in the last two dimensions gives the form convenient for

the SO (5,1) vector representation of the conformal group.

Matrices preserving 747 directly give the usual vector representation of SO (4) rotations,
translations, special conformal transformations, and dilatations, so may help to see how
the usual rotation algebra relates to the conformal algebra. However, 748 will not give the

canonical form of a Clifford algebra, for which the basis is (p, ¢)-diagonal.
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Returning to Eq.(4.3), the ¥4 matrices must be at least 8 x 8, so we will have 8-

component spinors. We make a convenient choice of the gamma matrices,

—i1 —tl —tl

11 —t1 1l

1l 11 11

where k = 1,2,3 and A = 1,2,3,4,5,6. Here each component is a 2 x 2 matrix. These
74 satisfy the Clifford anticommutation algebra, Eq.(4.2). Of course, no essential results
should depend on any particular choice of the gamma matrices, but this basis gives the left-
and right-handed projections a simple form.

The commutators of the 44,
oAB = [4A 4P
generate the conformal group Spin (5,1) with

1
g(wap) = exp <2wABJAB)

where wap = —wpa depend on 15 real parameters.

In place of v5 of the spin (4) algebra, we define vy = y1y273y4y5~5, satisfying 7‘2, =1

and 'y;r/ = ~y. We also have {7‘4, 'yv} = 0 as usual.
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In the basis Eq.(4.5), vy takes the simple form

= (4.6)
~1

where 1 represents the 2 x 2 identity. This form makes subsequent calculations more trans-

parent.

4.2.2 Real 6-vectors

Real 6-vectors may be written as
VA = wTSAT

These vectors are central to our current investigation. In particular, we show that the
subset of conformal transformations on spinors ¥ that preserve any given vector V4 is the
electroweak symmetry. Since the biconformal geometry provides a geometric vector, the
Weyl vector, it is natural to find effects of SU (2) x U (1) playing a role as well.

Before demonstrating this invariance, we discuss various properties of these 6-vectors

and 8-spinors.

Conformal inner product

To achieve the usual conformal vector product we may define

(7* +7°)

(**=~°)

Sl =Sl



and conversely,

A \}5 (15 _ ,~Y6)
¥ = \}5 (7> +4°%)
Then let
VA — wi5054
so the components become
vA = L\IJT (&5 +,~y6) A4

V2
Ve = UiySyrp =ya
Ve o= 0T (57 +55) 50w
= ‘I’T’YG\% (++°) @
= — (Vo4 V)
Ve = wh050uw
_ \I,T,YG\}i (,}/6 _ 75) U
(vo-v?)

Sl

Summarizing,

‘7(1 — ‘IIT’}/(S’YQ\IJ:Va

_ 1

Vo= —= (VO V?
L

Sl
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These are clearly still real. The inner product is

HapVAVE = vy, — 21570
1

= Vo, -2
V2

(VO+V°) — (VO = V?)

L
V2
= VWV, — (VOVO - vPV?)
= VWV, + VvV —VOVe

= napV*vP
as required.

4-vectors from conformal 6-vectors
From a real conformal 6-vector we can map to the original compactified 4-space to get

a vector at the origin and a vector at the point at infinity

« _ Ve
v — i
Vo
«
w = =
2V6

These are proportional away from these the origin and infinity, and when not orthogonal
satisfy o
v?w, = % =1
2V5V6
Because ¥ has 8 complex components, we have 16 real degrees of freedom. We seek a

way to use these degrees of freedom to form two independent 4-vectors.

4.2.3 Self-dual and anti-self-dual projections
We may use 7y to form a pair of complementary projections in Spin (5, 1), analogous to

3 (1 £5) within Spin (4). Compatibility with the conformal group is guaranteed because
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the projections

1
Py = 5 (I+wv) (4.7)
commute with the conformal generators,
[Pi, oAB ] = 0

This also guarantees that the projections preserve the reality of 6-vectors,
(01P2) 459 (Pow) = why0y 2P0

Let an 8-component spinor ¥ be written as a pair of Dirac spinors, or a quartet of

2-component spinors,

X
\1121/):5
¢ «
B

Then Py project into the upper or lower pairs of spinors.

X
0 0
0
0
0 0
\II_ZP_\II == =
10} «
B

This basis has been adapted to give these projections their simplest form.
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4.2.4 Vector components

Now compute the components of 6-vectors. We need the products y6v4,

—il ok 0 —ick
il ok ick 0
P = =
—il ok 0 —ick
il ok ick 0
—il —il 0 -1
il il -1 0
oyt = =
—il —il 0 -1
il il -1 0
—il —il 1
il —il -1
¥y = =
—il il -1
il il 1
-1
-1
NN (4.8)
1
-1

The components of real 6-vectors are

VA = uiybAp



In terms of 2-component spinors, ¥ = (x, £, o, 3), the components of V4 are

\I/T’)/G’}/k‘ll

\I,T,YG,YS\I,

\I/T’)/6’76\Il

('€, af, 57)

—io¢
-k
10X

(.ol 87)

—ickB

iocka

i (¢lohx —xfohe) + i (BloFa — alats)

0 -1

(x.¢".af 57) ’

—xte—etx —alp - pla
1

(xivﬁf,aT,ﬁT)
x'x —ete —afa+ 578
1

(1. )

Ty — e —afa— 813

Mmoo X

o~

Q

=<

62
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In sum,

AR AEVRRTLS ) (fTO'kX — xTak§> +1 (ﬁTaka — ozTakB)
V=it = T — ¢y — ol - Bla
Vo= 0ify0u = Ty — ¢l —ala+ 878

VO=0l00r = Ty —¢f¢—ala - 58 (4.9)

In the next subsection we show unlike Spin (4), that the projected spinors can form general,

independent 6-vectors.

4.2.5 Components of self-dual vectors
We would like to know if we can form arbitrary 4-vectors from self-dual and anti-self-

dual spinors,

Ut = \111767’4\1/,

Unlike Spin (4), this is not automatically zero because of the presence of ~5.
Now compute components. The self-dual projection eliminates «, 3, so Eqs.(4.9) for

VA reduce to

vk = i(fTakx—xTaké’)
Vi o= —xfe—¢lx
Vo= xIx—¢i¢

Ve = —xIx—¢f¢ (4.10)
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Similarly, in the anti-self-dual case, we have y = ¢ = 0 so that U4 becomes

Uk = (,BTakoz — OéTO'kﬁ)

Ut = —alp-pla
U = —ala+pip
U = —afa-pp

The self-dual and anti-self-dual vectors VA4, U4 are clearly completely independent vectors.

It is straightforward to show that each also gives rise to a general 4-vector. For a

generic pair of 2-component spinors, y = P and £ = a , Eq.(4.10) expands to

o v

Vi = (o —otu+vip—p'y)

V2 = ro4otu—vip—pty

V3 = i(up—pptotv—vio)

Vi = —(uptvio+piutoty)

VS = pptoto—ptu— vt

Ve = —pp—oto—ptu— vty

A direct check of the norm shows that

Veve = 4(&) (xx)
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so we need both £ and y nonvanishing. However, if we restrict these expressions by setting

P a
X = = then

o 0
vl = aIm(v)
VZ = —aRe(v)

V3 = alm(p)

VY = —aRe(p)
V5 — _(N*N+U*V_a2)
VG _ 7(M*M+V*V+a2>

which, setting A = , already clearly gives rise to a fully general 4-vector,

a
a?—(p*p+vv)

vt = A(Im(v),=Re(v),Im(n), Re (1))

Other choices for p,o give considerable additional freedom. This additional freedom is

central to our first principal result.

4.3 Projections

It is convenient to identify a complete set of independent projections for the spinor
space. To independently specify each component of an 8-spinor we reqire three mutually
compatible projections, each splitting the previous projection in half. In addition to the
usual positive/negative energy and up/down spin projections for 4-spinors, we emply the

self-dual /anti-self-dual projection provided by ~yy .

4.3.1 Self-dual and anti-self-dual projections
We have already identified projections using vy, Egs.(4.7) and shown that the resulting

self-dual and anti-self-dual spinors produce general, independent 6-vectors. The use of vy
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divides 8-spinors into a pair of 4-spinors.

X
vo = sawe=| S =
0
0
0
1 0 a
Yo = 5(1—7V)1/1= =
a B
B

and these may be projected in the usual way into particle/antiparticle and spin-up/spin-
down components. The projections that accomplish this may be identified by first writing
the three mutually commuting commutators o'2, 534 0%, These are not all independent

because their product is proportional to 7y, but all are diagonal. Forming normalized

combinations, these take the forms:

o3
3
l 12 _ g
21 o3
o3
o3
3
1 3 _ -9
21 o3
P
-1
1 .. 1
2556 —
2 1
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We take ¢°¢ and ¢3¢ for our discussion.

It is also useful to consider the product o'2534,

1
——ol%2g3 =
-1

4.3.2 Projections analogous to quantum field theory

The projections in quantum field theory are given physical meaning only when applied
to solutions of the Dirac equation. Here we are starting in Euclidean space—only later to
develop spacetime signature spontaneously. Therefore, we need the Euclidean version of
the Dirac equation—the 4-dimensional Helmholz equation—applied to the self-dual or anti-

self-dual 4-spinors.

Reduced gamma matrices
We begin by projecting the modified gamma matrices, 7544 of Eq.(4.8), into the self-

dual and anti-self-dual subspaces,
ve = Pyt

For the self-dual subspace in the current basis the explicit form is
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where ¥, —i~® form a common choice of basis for Spin (3,1). Here we choose the truncated

anti-hermitian foursome,

y .4 0 oF —i
T+ € {’Y+a7+} = , (4-11)
—a* 0 —i
satisfy a Euclidean Clifford subalgebra
~a =~b _ ab
{3355} = —20m1 (4.12)

where a,b = 1,2,3,4. The remaining matrices are proportional to 45 and the identity,

respectively.

-1 0
W= AT =T =

0 1
8 = —il

Similar expressions hold in the lower quadrant for .

’yf = iP_fynyA

These anti-self-dual matrices take the explicit form

o
o
o
o

72 e {4k 4t} = 1 (4.13)
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satisfying

where a,b = 1,2, 3,4. This time

with 78 = —il.

The Euclidean-Dirac equation
To be certain of signs, we repeat here the familiar derivation of the Dirac equation and
solutions, but using the Euclidean inner product. The starting point is the 4-dimensional

Helmholz equation,

690, 0pp +m2¢p =0

This has plane-wave solutions ¢ ~ e*#a%*  We proceed to look for a “square root”.

Let (a&i@a + bm) 1 = 0 and apply the conjugate, remembering that if’: = —ﬁi:

0 = (~a5%0+bm) (320, + bm) ¥
_ (_ la|? 5250 000 — bmad’ 0y + bmai® da + |b|> m2) b

_ (|a\2 58,0, + b]> m? + (ba — ba) mﬁaa) "

where the Clifford algebra reduces the first term to — \a|2 6%9,0,. To reproduce the

Helmholz equation we therefore need

ja* = |o)”
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We satisfy the first by setting a = ape’® and b = age’®. Then the second requires
¢! 0=¢) _ ¢=10=¢) — 9isin (o — 0) =0

so that ¢ = 6 + nm. Thus,

for any complex number z = age’?. The normalization uses the real part of z, leaving the
usual U (1) invariance.
Dropping the overall factor, but maintaining the optional sign by setting A = +1, we

require

(7404 +Am)y = 0 (4.14)

To extract pseudo-physical information, we now solve the resulting Eucidean-Dirac
equation by setting

1/] = w (ka) eiikaxa

Q
where w is a pair of 2-component spinors, w = . This yields the algebraic form
B
(£i7Gka + Am) w =0 (4.15)

Expanding using Eq.(4.11)

0 oik; —iky o

+i ‘ + + Am =0
—o'k; 0 —iky I3

:Fi)\m O'iki — ik4 « 0
—ok; — iky Fidm I3



to give the algebraic Dirac equations. Writing this as a pair of equations

Fidxma + (o'k; —iks) B = 0

(—0'ki —iks) a FidmB = 0
we proceed to solve.

An orthonormal basis

Solving the first equation for «,

o = i(Uki—Zkz;)B

tAm
and substituting,

N (—0kj — ika) (0'k; — ika)
iAm
—olkjotk;
iIAm
+ (=0Ykikj — ki) BENm?B = 0

BFidmB = 0

— k2
+ A3FidmB = 0

(=0 kik; — k3 +m*) B = 0

and therefore

71

(4.16)

(4.17)

(4.18)
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If instead we solve Eq.(4.17 for g first,

ki + ik
B = Fl—— )
iIAm

Eq.(4.16) becomes

Fidma + (ajkj — ik4) (:F <U+Z4> a) =0

iIAm

(Mm+ (ajkj—ikz';) (aik,-+z'k4))a _

Iam

(—m2+k2+kz)a = 0

and the spinor form is

a a
tkiti
p ¥ (%) a

From these various solutions we choose the orthonormal set. Let the first be Eq.(4.19)

with o = and the spatial dependence e~*+** (bottom sign).

Sl

kstiky
iam

k1+iko
iam

Then with a = and the same spatial dependence we find we can choose

G-

k1—iko
im

_ k3—iky
iIAm



Checking orthogonality,

0
ds = (1 0 ks = ik k1 — iky 1
1u2 2 s Uy —im 5 i .
im
_ks—iks
iAm
T 92 (= (kg — iky) (k1 — ika) + (k1 — ika) (k3 — ik4))
=0

For the €%+ modes (top sign) we have

O'i kl —ik4

iam

B

Then for g =

k3 —iky
iAm
k1+iko
iAm
Vy =

S ‘
[\
[u—y

and with 8 =

k1—1iko
iAm

—ks—iky
1 iIam

0

V1 =

S

1

These are easily seen to be orthonormal. then checking the remaining orthogonality
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Checking orthogonality

U1v2

U101

1
~ |1
5 (10

[\

.

DN | =

1
2
0

k1 — iko

ks — ik
—ixm )’

ks — iky

ot

ks — ik
3 —tha

iIAm

—iAm

—iAm

)

k1 — ko

3 — iky
—ixm )’

k1 — iko

—iAm

k1 — ik
il

iIam

—iAm

)

)

)
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ks—iky
iam

k1+iko
iIAm

k1—iko
iIam
—k3s—iky
iAm



and for us,

U2

Ugv7

ks—iky
iIAm
1 k1 + ik k3 +iky klz;fz;?
o 07 17 . ) .
2 —iAm iIAm 1
0
1 [ ky +iko +k31+ik‘2
2 iIAm —iAm
0
k1—1iko
iIAm
Ly ik ks wik) | RN
2\ —idm’ iam 0
1

1 —ks — iky n ks +iky
2 iam iam
0

75
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The choice of A plays no role, so we set A = 1. Collecting solutions,

—ikqx® —ikqx?®

ue =

Sl

k3+iky
im

k1+iko
im

—ikgx® —ikqxz®

Uuge =

Sl

k1—ikg
m
_ k3—iky
m

ks—iky
im

k1 T‘rikg

e’ik‘aiba m eikawa

%‘,_\
[\]
—_

k1—iko
“m
—k3—iky

; a m ; a
vy ezkax — e’Lka{L‘

% ‘
[\]
(e}

Energy projections
Returning to the general algebraic form of the Dirac equation, Eq.(4.15), we recognize
it as an eigenvalue equation

iYL kqw = Fmuw

with eigenvectors u;2 for the upper sign and vy2 for the lower. This lets us construct

projection operators.



Therefore, let

M, =

Im_I11- =

,’:] [ G [ S N [ W G N [ SO N [ SO N =

1F — ka>

SO

(1+ k> <1+ kb)

(1 + 2273 Ky — % {’Yi’ﬁ} /‘?akb>
(

(

1+ %WH—M%kQ

k)

and similarly for II,. For the mixed product,

I,

1 j iy
e ) (1- Sot)
1 1 X
4<1+2m,{”74}kka
(1-— ﬂi25“bkakb)

S

The form of the projections depends on

T
E’Y-&—k‘a

i 0 kot — iky

3|

—kio® —iky 0

7



Then checking explicitly,

Iy
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For the action of II+ on general states,

H+U

1 1 m —ikjo" — ky a
ﬂ 2m ikidi — ]{74 m 701'13—;1'@0[
1
11 [ ma- (ikiai + k4) (%a) 0
\/5 2m (ZkZJZ — /{4) o+ miai%\:jk‘l (% 7k3;§k4
klji»ikz
m
1
1L i (= k) 0
V22m (ik‘iai —ky —iotk; + k4) « 7]“3;2]“4
kltkik‘g
m
0
Li m —ikiUi — k4 70”3'\;3164
22m | gt — kg m 3

11 [ mTELES (ko' + ki) B
72% <(ikio’ik4)(gikiik4) —i—m) 3

1 [ (—2ikio" —2kq) B
2% 1 (k2 —|—m2) 3

k-ai—ik4
- “m ﬁ
B
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and for II_,

II_u

80

m ikiot + ky o
—ikiai + k4 m %OJ
mao + ( 4l)w(l 4) o

(—ik’iO’i + k’4) o+ m%a
m (1 + %) a

2 (—’L'Uikii + k4) le%

m ikio' + ky %5
Cikioi ke m 3
m%ﬁ + (ikio" + k4) B
(—ikio® + kq) TRihag |y
(—iaiki — ky + kot + k4) I}

< (—ik2—kakjo'+hao'k;—ik?)

= +m) s

In short, I14+ separate uq, ue from vy, vs:

H+Ui = 0
H+Ui = U;
H_ui = U

H_UZ' =0
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Since II1 are descendend from 8 x 8 matrices, on the full space they have the form

Iy 0
0 0

and therefore commute with the duality projections,
[Py, I14] =0
and similarly for the anti-self-dual sector.

Spin projections

Finally, we define the projections on the

e o=z (1+s.%7%)

2
22 =

~—~

14 543594) (14 5p357%)
1+23”“—1 5438

a5+ 23a3b Y+ V+
(14 2503672 + 0™ 50

1
(5 (14 0sus) o0t

DO = = = RPN =

Therefore, these are projections provided

=1



In addition, they commute with II4 if

0 = [X4,104]

)
1F —kAL
< ¢:Wlb7+

N =

1
= |:2 (1 + )\Sa’?k');?i) s

| |

= — (14 As¥57%) <1 F ;kb’?f’F) - - (1 F ;%ﬂ) (1 + Asa¥57%)

e SN——

S

i
= (1T A+ As AT F M say
1 T+ +F AR
1
4

1 /. . b~ ~
= ¥ <75'Vi’7ﬁ-3akb - Sak‘wi%ﬂ)
m
1iX o
= :FZE'VLSSakb ({vi,h})
1A

= i§E755abSakb
and therefore we demand
%, = 0

In our basis the form of X4+ becomes

1 ca~
e = 5 (1£5.5%%)
1 0 siot — sy -1 0
—SiUz - i84 0 0 1
1 1 + (SiO'i — i84)
T2

+ (sioi + i84) 1



2y

N |

Let s, = (0,0,1,0) and k4, = (0,0,0,m) and expand the matrices,

1 o3
o3 1
1
1 —1
1 1
-1 1
1 —g3
—o3 1
1 -1
1 1
-1 1
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and

U1

Uz

V2

U1

Sl

Sl

Sl

Sl
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so the action of ¥ is

Z+U1

Z+UQ

E+U2

E+’U1

[\
S»—t
[\

[\
S»—t
[\

)

[\
SH
[\

)

[\
%»ﬂ
[\

-~ N e e

e e Y e Y
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while for ¥_,
1 -1 1
5 1 1 1 0
Ul = ——
V2| 1 1
1 1 0
=0
1 -1 0
5 1 1 1 1
—Uu2 = e
V2| 1 0
1 1 1
= u2
1 -1 -1
5 1 1 1 0
_Vy = ——
V2| 1 1
1 1 0
= ’[)2
1 —1 0
5 1 1 1 -1
U1 = —=
V2| 1 0
1 1 1
=0

Summarizing, ¥4 separate ui,v; from ug,ve. These are spin-up/spin-down projections.
The three projections in combination can project the components of any 8-spinor into

any single component along three independent axes:
o Self-dual/anti-self-dual
e Energy eigenvalues, +m

e Spin-up/spin-down
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Here we are principally interested in the self-dual /anti-self-dual projections, which allow us
to partition any eight component spinor into two independent 4-spinors with thier corre-

sponding 4-dimensional Clifford algebras.

4.4 Self-duality in 4-dimensions

4.4.1 Self-dual and anti-self-dual projections

The projections Py, = % (1 £ vy) produce two 4-dimensional subspaces, each described
by its own representation and Clifford algebra of SO (4) symmetry. Because SO (4) =
SU (2) x SU (2), there is a further self-duality projection. Dropping the ¢ notation in

favor of simply v* and with 75 = v'7?73~v%, we define projections

1
Py =5 (1£7)
In the basis of Eqgs.(4.11) and (4.12)
u 0 oF —1
Y= )
—oF 0 —1
satisfying {'?i,:yi} = —2§%1 and
-1 0
Y5 =
0 1
The projections therefore take the form
1 0 0
Pr=50+%) =
0 1
1 1 0
P- = 5 (1—=7) =
0 0
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Unlike Py the 2-component spinors resulting from these projection cannot build fully general

vectors. Indeed, defining ¢y = Py, we would have

v = Yl
= YIPy Py

= 0

The effect of P4 is to separate spinors transforming under SU (2), from those trans-

forming under SU (2) . To see this, consider the SO (4) rotation generators,

Under the action of P+ we define

= Pio® (4.20)



where the generators take the form

YA
o L 0 o
2 —at 0
~[o'o]
= 5 B
y 1
= —ig¥ kak
1
) 1 —1
4i
o = 3 ' ,
—1
1 —1
= 3 .
—1
io’
—iot

|
|

0

[,

ol]
0 o
o
ot 1

0
0 ot
i 2\ 5 o

1 -
= w4ia4l—|—§wija”
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Using Eq.(4.20)

we may write

and clearly P project into the two independent copies of SU (2).

ig
op =

44

o, =

y 0
—ie" oF
1
0
iok
-1
. 1
—ie" oF
0
1
io®
0
1
5’11)(1[)0'3_6
7 1 i
Wy + 2w”0
1
<w4k — §wi]’€ J k) ZO’k
ukiak
1
§wab0fb
. i l ij
—1W4;0 §wi]’8 [y
1 )
<—w4k — iwijsw k) ic®
Ukiak
€ SU(2) x SU (2)
eiukok

90
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4.4.2 The ’t Hooft matrices

It proves convenient to distinguish labels A, B,... =1,2,3 in su (2) from 4-dimensional
vector labels a, b, ... = 1,2,3,4 under SO (4), and we follow this convention in all subsequent
expressions. Also, let Ay be the space of antisymmetric, rank 2 tensors, % (Tap — Tp) € Az

and define the identity and dual mappings, I : Ay — Ay and E : Ay — Ay

R )

cd

1
2
1
§5ab

cd
Eab -

Clearly, I¢? ,T% =T for all T% € As,.

We may now write the 't Hooft matrices in a more symmetric form by defining
— AcB
€abe = 8ABC5Q 6[) 600 = Eabcd

That is, €4 vanishes if any of a,b, ¢ equals 4, and gives € 4o otherwise, where the anti-

symmetric components € 4p¢ are the structure constants of SU (2). Then

1
Av = Fua (5;:@55; P L A) io4

= Ugb (Iab Ad + Eab A4> ZUA

Af = Ugp (Iab A4 — Eab A4) ZUA
where the coefficients,
1
A A A A A A
Trab = 5 (026 — 00 +€ap ) = Iy + E% s
1
A A A A A A
N—ab = 3 (5a 521 - 53% — Eab ) =1 4ab — E7 4

are the 't Hooft matrices [20]. These provide a mapping from any antisymmetric, rank 2
tensor to su (2), or su(2)_.

Combining pairs of 't Hooft matrices gives us the usual self-dual and anti-self-dual
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projections for antisymmetric rank 2 tensors. We can raise and lower indices freely, since

both metrics §4p and d,p are Euclidean. Computing

Acd __
?7+ab77+ -

so that

and similarly

(5A5b 546b + Eup ) <6A054d o 54C6Ad + ECdA>
5(11454(5A054d _ (5(;452154C5Ad _ 525?6A054d + 63511)45406Ad + Eap Agch>

A4 _cdA 4 ¢A _cdA
5 (S 5a5b & +€ab

A5A654d — ey A5406Ad)
(67 — o2s™) oo™ — (57 — 536™) 5ot — o1 (55 — 635") 61 + 51 (5 — 5™ ) o)

(07 — ooty (o — o) — (62— sdot) (55 — o5 )
(_ sesl §id 4 ghatess i 4 55 gigte — gp 5id 5 54c)
(0507 — o5agay — o50007 + 05586457 — 5005 + odsser + a3aie; — adoisser )

5ot — 8958 + e, Cd)

copotd — 5eodat + oonste — 5da5on 4 646504 — od5ta%e + o5aded — 55535“)

N o SN I + + &= l= 4 e L SN I N

(
1
4
(
1
4
1
4
(525216% — shgleghgid _ sdghste | 5;154%21540)
i
1
4
1
4
(
1
4
(

0508 — 9405 + 0,

Acd __

d d d
77+ab77+ - (IC ab + Ec ab) = P—T— ab

l\.')\r—t

Whant = (e = (5050 - 8260)) (= 4 — (8501 — 455))

(Gt a) )
1

= 5 (ICdab - ECdab)
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The projections Pib . map the space Ay into self-dual and anti-self-dual parts.
Pi : .,42 — Azi

The Hodge dual allows us to do the same on elements of Az expressed as 2-forms, by taking

them to their dual.

1
w = §wabe“ Aeb
1
w = Zwabﬁ‘ab
1
= 3 <Eab cdwab> e’ A el

€ N e’

The self-dual and anti-self-dual 2-forms w4 may be written as

[

wr=—-(wtiw) = - <Iabcd + E“bcd> wape’ A e’

— o~

= fPadewabeC A el

=N

= iwcde A el
. . . b
Therefore the Hodge dual gives the same components as projection by P, .

4.4.3 Identities with ’t Hooft matrices

The 't Hooft matrices are

(5:145;71 - 5361174 + Eab A) = IA4ab + EAab4

(5(114521 - 63654 — & A) = IA4ab - EAab4

N RN —

where half the sum gives the identity and half the difference gives the SU (2) structure

constants.



Compute the products

IA4ab [Bibe  _ i ( 5:14 gt — g 51,)4) < §Bbgie _ 54b 5Bc>
— i (o aiomrote — o aia"aPe - sloftaPrste + shoaihat)
= —i (04167¢ + 5506%64P)
IA4abEB4bC _ % (5:14521 _ 5;1554) ngc
_ % gABegl
EAL [Bibe _ i A ( §Bbgde _ sBe 54b>
_ i cAB sie
B4 pBibe _ % A B
= (M (0 - ) — 57o%)
= —i (64755 — 645y — 6P 5567)

Now consider further products.

nhenBe = (1M, + BAYL) ( Bibe | EB4bc)

— IA4 bIB4bc + IA4abEB4bC + EAibIB4bC + EAibEB%C
= —= (667 535%547) + %ABC&;

i (64865 — 545l — 648 5507)

_5;45Bc o 536405AB + 8143053)

AB ¢dc
5,07 —

1

4

+ (et — 64505 + o407 + 640 50,)

% (6Ac(5aB o (5aAéBc _ 5AB(52 + EABc(sgl o EABa54C)
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This has traces,

For +/—,

Bbc __
77+ab77— -

with traces

B AB
7I+ab7l+ba = 0

Bbe _ §6C

77+Bab"7+ - 4 a
NiBai = —3

( JA4 _t EA4b) ( [Bdbe _ EB4bc)
a a

— 646] — 54P5567)

[A4 (Bl _ Al pBlbe | pAd Bl | pAd pBibe
% (5267 4 545%54B) — % cABegh _ i AB sie
% (64855 — 546 — 648 656,)
i (—5255e — GglegAB _ ABegh _ (B gle | 5ABge
i (- §AcsB _ sAgBe 4 §AB (5 25454) eABegt _ gABa64c)
nlant =
Nepan® = (=255 — 6568) + 3 (8¢ — 20562))

N Y

(02 — 40502
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Finally, for —/—,

Bbc

A n® (I, —
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EA4b) ( [Bdbe _ EB4bc)
al

— IA4 IB4bc o IA4abEB4bc o EAzlLbIBélbc + EAibEB4bc
1 1 1
— Z (514530 + 6;15405143) - ZgABC(Sg ngBa(séLc
1
=7 (074505 — 5707 — 645 5567)
1
— Z (5 5Bc + 53(5465AB + EABcdg o 6ABCL54C + 5AB(52 o 5A05GB _ 5AB(5253)
1
— Z (5AB62 + 5&4630 _ 5Aca‘aB + gABc(Sé _ €ABQ64C)
with further contractions
g B = _5AB
3
n-pan® = =70
n-pant = -3

4.4.4 Summary of 4-dim self-dual and anti-self-dual projections

We make use of several forms of projections. Py, divide the 8-component spinors into

two sets of 4-component spinors. Then II and 3 further subdivide the 4-component spinors

into the usual particle/antiparticle, and spin-up/spin-down sectors. Each of the classes of

4-component spinors can produce an independent space of real 4-vectors spanning R%.

The overarching projections from 8-dimensional spinors to 4-dimensional subspaces are

given by

(1+w)

(1=9v)

N =D =

To describe the 4-component spinors, we take upper case Latin letters to be su(2)

indices, A, B, ...

= 1,2,3 while 4-space indices are denoted by lower case Latin indices
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6 gamma matrices; 8-dim spinors

PV/_
%(1- 1) TN+ )

4 gamma matrices 4 gamma matrices
4-dim spinors 4-dim spinors
Lz LS
X+R/L+/-m X-R/L+/-m
4-vectors 4-vectors
u® =, v ve=yx Ty

Fig. 4.1: Projections from 8-dimensional spinors

running a,b,... = 1,2,3,4. Then we have various equivalent ways to form self-dual and

anti-self-dual projections

1. Direct self-dual and anti-self-dual projection tensors,

PVj: abcd = (5263 o 6352 + 6abcd)

=

0
These are idempotent orthogonal, and complete on the space of antisymmetric
2
tensors:
b d b
PViachViCef = PViaef
e
1
Py, g+ Py = 2 (5352 - 5362)
0
where 17 d = %(5?53 — 53‘52) is the identity operation on antisymmetric
2

tensors, Ay. These divide any antisymmetric SO (4) tensor into self-dual and anti-

self-dual parts.
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0
2. The Hodge dual also maps antisymmetric tensors, expressed as 2-forms, by
2
taking them to their dual.
W o= —wee® Ae?
* 0 lw ab c d
= 1 ab  cd© Ne
3. Left and right handed spinor projections,
1
Pright = i (1 + 75)
1
Pleft = 5 (1 - 75)

Right-handed projections correspond to self-dual projections; left-handed projections

correspond to anti-self-dual projections.

Each of these projections maps spinors to subspaces acted on by SU (2), or SU (2)_, re-
spectively. These same projections take antisymmetric tensors into the two representations

of SU (2). The 't Hooft matrices map the projected tensors A3 to elements of su (2), .
A
M Az = 5U(2)4
The matrices are given by

A A4 4cA A A4 A
Miab — (5(1 5(} - 6a6b + Eab ) =1 ab +FE ab4

N — N —

Agd  cdgA A Ad A
Meab = (5a 0p — 00y — Eqp ) =" = E7 s
4.5 Preserving the Weyl Vector as Symmetry Breaking
We now come to our first main result.
From the quotient Spin (5,1) /Weyl (4) we will develop a biconformal space which, in

addition to the usual solder form, spin connection and curvature will have a gauge vector
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for dilatations, the Weyl vector. As a 1-form, the Weyl vector is w = W,dz® + Wdy,
with gauge freedom w’ = w + df expressed through the dilatational part of the Weyl (4)
fibers.

It is known that the extra 4 dimensions of 8 dimensional biconformal spaces are fibrated
by a Lie group. Generically, this Lie group is abelian but for a subclass of cases it may
be non-abelian. Pursuing those cases of biconformal gravity solutions which permit a non-
abelian subgroup, we expect half of the biconformal space to become an additional fiber
symmetry. We know this symmetry must be a 4-dimensional Lie group, and a subgroup of
the SO (4) fiber symmetry. It is natural to suppose that since SO (4) = SU (2) x SU (2),
this 4-dimensional group will be the electroweak group, SU (2) x U (1), but we still desire
a derivation of this particular reduction.

Start with the spinor representation, ¥ € V(8 (C) for Spin (5,1). From each element

¥ we form a real vector
vA = w640
which may be partitioned into two independent 4-vectors by first partitioning ¥ — U, U_.

Ue — \111_"_,)/6,7(1\1}4_

Ve = wlaSyep
The vector V4 has 8 degrees of freedom, while the spinor ¥ has 16. Therefore, there may
be more than one ¥ that gives rise to any given vector. Our goal at this point is twofold:
e For a fixed V4, identify the class of spinors such that VA = Ufy644w,

e Demonstrate that fixing V4 as the Weyl vector is sufficient to identify the non-Abelian

subgroup.

e Show that the subgroup is the electroweak group.



100

To gain insight into these goals, we first worked with some special cases, implementing the
calculations using Maple.
Looking at the components of general V4 we noted that a simple k, o vector simplifies

® to the form

which is sufficient to find a nonvanishing vector. Indeed, we find

Ve = (0,0,0,4ko)

and the Weyl vector is preserved. Moreover, it is clear that there exists a 3-dimensional ro-
tation subgroup that will preserve this form, since the vector lies purely in the V* direction.
The rotations will be implemented with the group SU (2) acting on ¥, with an additional
phase freedom providing a U (1) symmetry.

Explicitly, we found that the transformations that work have the form
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KA
Il

1
<1 + QEGdeUaVbUCd> P
= (1 + 2k05a4ch“JCd> d

= (1 — QkoeiijiO'jk) P

where 7,7,k = 1,2,3. We looked at the cases

Ut = (1,0,0)

Ut = (0,1,0)

Ut = (0,0,1)
which give

023’03170_12

as three independent generators leaving V¢ invariant.

In a similar scenario we had used even a simpler 8-component spinor
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o o o o O

and the Weyl vector is also preserved.
Further investigations with Maple prompted a more general approach.

Suppose a spinor ¥ gives us the Weyl vector

WA = 0wl Ay = (a,b,c,d,e, f)

where the 4-vector part is

we* = (a,b,c,d)

Rotations of W4 are induced by the action of SO (4) on ¥. We want to find the rotations
that leave this particular 4-vector unchanged. Let U® be any other vector. Note that the
remaining components, V>, V6 only rescale W so they will not affect its direction.
Generalizing the first simple examples, suppose we first rotate to a frame in which W*
takes the form W% = (w,0,0,0). Then rotations in the 23,34, 24 planes clearly have no
effect, and this corresponds to the induced action of SU (2). In addition, a phase transfor-
mation of ¥ has no effect on W, providing an additional U (1) symmetry. We would like

to make these observations concrete by constructing a general form of the transformations.
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The antisymmetric product

Ve Ub . Vb Ue

is an area in the plane spanned by U® and V¢, just like the components of the cross product
but in higher dimension. Among the rotations we want are those in the complementary
plane, i.e. the plane dual to this one. That’s what the Hodge dual gives us, and we can

find it with the Levi-Civita tensor,

ch = 6abcd[]a Vb

This is an area element in the space perpendicular to both U® and V.

A rotation of this plane is generated by

1
5Ecdo_cd

d

where 0 are our 6 “Lorentz” generators. The transformation is the exponential of this, or

for an infinitesimal transformation

1+ gzchCd = 14+ g&‘abchavaCd

This works for any 4-vector U® but gives zero if U® is parallel to V. This means that

varying U® will give us a 3-parameter family of transformations leaving V¢ invariant.
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To make the group more explicit let

UV
U = [ye— a
+ SaVaVe
— po bUb

so that U{V, = 0. The projection P%, = 4} — ﬁV“Vb produces a 3-dimensional vector

subspace V) since
o (P,Ut) + 6 (P,U2) = P, (ot + 5UY)

General linear transformations of this subspace GL (3,R) do not affect V. Since the non-
abelian group must be a subgroup of SO (4) = SU (2) x SU (2), we are restricted to SU (2).

We implemented this procedure in Maple, starting with a fully general spinor,

a+bl
c+dl
e+ fI
g+hi
1491
k+11

m + nl

o+ pl

We construct the vector

Ve = o590

Next, rotate ® by any transformation of the form 1+ §eqpeqU ay/bged,
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b = (1 n geadeU“VbUCd) ® (4.21)

and construct the new vector

Ve = 3642

and check that it is the same no matter how we change U%. We can let U® depend on some

parameters, say U® = (u, v, w,x), and show that V'® is independent of them.

4.6 Isospin
Begin with a vector representation of SU (2) x SU (2), that is, a Spin (5, 1) spinor. The

Spin (5,1) transformations have generators
A8 = [44,47]

243~44~546 gives a projection of all

These are 8 x 8 matrices. The parity matrix, vy = 'y
initial spinors into pairs of 4-spinors. We identify this splitting with isospin and may label

4-spinors as up or down:

X Xu
&u

=
a | ay
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where P‘j} = %(1 + 7y). Then ~y alone is proportional to the z-component of isospin

operator:
1 X 3X
1 1 1 3¢
I3 = cywW = ) =
-1 a —%oz
-1 )\ B —3

[1]

How does this related to the y-space Lie group?

The spaces of 4-spinors have their own projection, P5jE = %(1 +75) based on 45 =

71424354, This breaks each 4-spinor into left and right handed parts,

Xu Xu,l Xu,r
gu fu,l gu,r
= +
Ps
Qg Qg Qg
Ba Ba, Ba,r
where
+ % (1 + ’75) 0
P =
0 3 (1+75)

These commute with I3, so that isospin doublets may be made left handed or right handed.

Any operator of the form
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will commute with I3, and we may write the particle/antiparticle and spin-up/spin-down
projections this way.

We know from experiments however, that right handed particles have zero value for

the third component of isospin. This ooses a difficulty from our represeb=ntation above.

In order to fit our model with experiments we will have to choose a diferent basis for our
gamma mattrices such that we get I3 in the form

1 X 35X
1 ~1 1¢

1 « %a

1) \s) \ -

So that Pi = 2 (1++s5) based on 95 = 7'42733* then breaks each 4-spinor into left
and right handed parts,

Xu Xu,l Xu,r
&d €4, Ed,r
= +
o P «
u u,l Oy,
Ba Ba, Ba,r
where
1
s(1x Y5 0
pe_ [ BOEW

0 5 (1+75)

These commute with I3, so that isospin doublets may be made left handed or right handed.
Any operator of the form
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will commute with I3, and we may write the particle/antiparticle and spin-up/spin-down

projections this way.

Xu Xu,l 0

&d IS
=

Qy s 0 Qly,r

Bd 0 /Bd,r

We already klnow that fixing a spinor preserves the Weyl vector. In this case what this

allows us to do is that we can choose a spinor say

o O O

—_

or

S = O O

which breaks the right handed doublet into a singlet. (It is not clear how this gives rise to
zero isospin for the singlet). Projections using the Py, give us two sets of 4 gamma matrices
and with the 4-dimensional gamma matrices we can still build the conformal group which

still gives us a representation of SO (5,1). One interpretation of this projection is in terms
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of Isospin up and down (after choosing the correct basis) and this gives us the first picture

of interpreting the Py, projection as illustrated in more details in the diagram below;

6 gamma matrices; 8-dim spinors

PV+/_
IsospinUp % (1- 1) % (1+ y,) Isospin Down
4 gamma matrices 4 gamma matrices
4-dim spinors 4-dim spinors
ILs I,
X+R/L+/-m X—R/LA/~m
A
4-vectors 4-vectors
u® =25 Yo% ve=xt Y0y

Fig. 4.2: Isospin Interpretation of Projections

Another interpretation is to say that one of Py, sets applies to the x-space and generates
the spacetime symmetry while the other applies to the y-space and generates the electroweak
symmetry since any of these outcomes are possible within a conformal group representation.

This is also illustrated in more details in the diagram below:

6 gamma matrices; 8-dim spinors

Electroweak Symmetry % (1- yy) % (1+ yy) Spacetime Symmetry

4 gamma matrices
4-dim spinors

4 gamma matrices
4-dim spinors

IL 2 ILZ

X—, R/L,+/—-m

4-vectors 4-vectors
ue= gy, "y, ve =yt yOyoy

Fig. 4.3: Graviweak symmetry interpretation of the projections
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We anticipate that further study in the context of solutions to the field equations will

clarify which interpretation is most appropriate.
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CHAPTER 5
SELF-DUAL AND ANTI-SELF-DUAL CONNECTIONS

Using the projections (see Appendix A)

Pty = g (00— oot e )
P = S(1-)

NAab = EAabs T 0Aa0b4 — 0Ab0as
F, = ,(F+°F)

and their complements, we can form the self-dual parts of the connection and curvature in
a variety of ways.

Begin with the spin connection,

wab — wib_i_wab

P g 4 P (5.1)

where

1

PY Wt = 1 ((5‘;52 - (53(52) wed £ 2 deCd>
1 1
5 <wab + §€ab decd)

5.1 Identities

In terms of the 't Hooft matrices we can get equivalent pieces,



and from the relations

1

NAab = 5 EabcdTAcd

1

NAab = _§5abcdﬁACd

and

ab Acd Aab
P+ cd’l

PadenAcd ]

PibcdﬁACd - 0

ab —Acd —Aab
Pt cd = 7N

we confirm the consistency,

_ A a
wi = N W

Lo pab

= 577 abpi cd%’
L g ed

= 577 abwi—

To invert this, act again,

= Pabcdde

cd

cd

A A
SY L NAab = 7 TNAabT] cdwc

112

(5.2)



In this way the 't Hooft matrices give a bijection,

A ab
wi & W
wd o

We can reconstruct the tensor projections as

1

A
Z”Aabn a = P, de
1 4 B
Z”Aabn a = P, abed
and
1 oAb 1
1 (0 naca + 1 iiaa) = 5 (5205~ oly)

We also have projections in a spinor representation. Let
(W, 0ua) = G284 - 550

Then we can project with any of the projections,

U;"d = Pioy
1
= 3 (1—=5)0ca
— Pab dCab
1
U—A&i = inAabo-ab
1 1
na CdO’f = -y, CdnAabaab
2 4
1
— Z <4Pabcd> Tab
_ PadeUab
1
Ué _ 7,’7Aab0_ab

2
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Each of the last two generates an independent SU (2).

5.2 Connection and curvature

Now compute the curvature by expanding

1 1

Wap = §wﬁ77Aab+§wéf/Aab
L 4 Loa
why = §w+77Aa p T+ 5""77714(1 b
and similarly for the curvature,
1 1 N
Qu = iﬂanab+§ﬂé77Aab
1, 1 .
oy = 59 na® p+ 59777,4& b
To invert these,
1 4 1 /1 4 d
§Q+"7Aa b = ) (277 cd$2° > na® b
1
= ZﬁAchAa bQCd
d
= —til-bcdﬂc
1 1 _
Yy = §QﬁﬁAa pt+ 59111%& b
1 1
b A b A b
Qmp’ . = §Q+77Aa v1IB ot 59777;&& v1B a
= 20{04p
and therefore,
Qt - Loaqa
+ - 277 aé b
1
A A
w+ = 577 bawa b

114
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We may also expand the antisymmetric identity, A%f

040% — 030y = P g+ PX g

1 o
= (UA“bnAcd + nA“bnAcd)

5.3 Splitting the curvature structure equation

Substituting into
dw®, = W', Aw® , + 2A%f. Ne? + Q%

we have

1 1 _ 1 1 3 1 1 _
§d‘—”i77Aa b+ §dWé77Aa b = (fﬁmc b+ §Wé77AC b> N <2‘-”f&77Aa et 5‘-'1’:‘%“ c>

1 1
+2A5E N et + §QfﬁAa pt+ §QéﬁAa b

1 1 _ 1 1 _
- <2wil77,46 b+ §wi‘77,40 b> A <2wi‘77Aa et §Wé77Aa c>

1 A 1 1 _
+21 (nA“bnAcd + UAabUAcd) f.Aed + 593?771461 p T iﬂi‘m“ b

Separating like terms,

1 1 1 1 1,
0 = —§dwﬁ77Aa b+ 5“’1 A §WEUAC pB" ot 577,4& o cafe e+ §Q+77Aa b
1 4 B B
+Zw_ /\wf (M4 onB" ¢ —14" B b)
1 _ 1 3 3 1_ 3 1 _
—idwf‘ma pt+ Zw’émc p Awii,® o+ 577Aa o1 afe A e + Qﬂf‘ma b (5.3)
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For the cross-terms,

4% 1B ¢ —71a% ens® v = 18" A »— 714" 1B" b
= (eB" cat0B0ca —0B:L) N4  y — (B 4 — 0BOcs + 0BcOF) NB°
= (6" 4t 0B0ca —0BcOY) (4% pa — 040ba + 04b0%)
— (A" 4= 640ca +64c0) (€57 pa + OpOba — Opdy)
= " 4eacba — € 44004 + OB0Ap — 04EABKL + OBA0YObs
—€4" € pa— A" Balba — 040By — 04EBALL — 0ABOYOba
= €™ 4EAcka — EBeba€A™ 4+ (04€ABb — 04EABDL)
+(ea8" 4004 —€aB  40b4)

+0B04r — 050Bs + (0BA0LOps — 04ABIFOba)

and then

N4 yMB" ¢ — 14" B v = €B" 4fAchs — EBebacA™ 4+ 050Ap — 640BY
= (—=0pady +6%0py) — (—0BA0y + 0B0Ap) + 6BIAL — 0%0 B
= 0%0p — 0% + 0%0 4 — 040y

= 0
Returning to the curvature,

1
0 = —dwin, ,+ 50«'1 ANwBna® mp® o+ na® g teafe Aet + Qi
N 1 4 _ N N _
—dw?i o, + 5‘»"3%6 p AW, o+ gt N et + Q0
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Now we need

NacNB™ = NBebNa™ = (Eacba + 6AcOba — 6apdac) (€™ 4+ 050] — 65dy) — (A < B)

= €Abca€" 4t EaBba0L + 0bacpA 4+ 6ABOKSE + OAb0
—€Bbca€ A" 4 — EBALAOY — Oba€aE 4 — OBAGKAOY — OBKoY

= (daBdy — 0%0B) — (0BAdE — 0%0pA)
+04p0% — 0Bp0% + 26 ABbad] — 2004805 4

= 2(pAB40s — Oba€” gpa — 0408 + 04b0%)

= 2(ebaBdy — opae” ap — " pc€aB°)

= 2e45° (0pc0y — 0c0ps — %)

= —2e,45% (6% o — Guc 0% + 6%pa)

= —2c,5% (e + 6804 — 6pc0f)

_ C a
= —2e4p Nc" b

Then finally,

1
0 = —dwi‘m“ p T wa A wf (MacbnB® — NBepnA ) + 14" bUAcdfc Net + Qi‘??Aa b
_ 1 o o _ N _
—dwan“ b+ 5‘-01:1 AwP (MacbTB® — MBebTA) + 714" zﬂ?Acdfc Ned + Qé??Aa b

1
= <—d(.d£ — 5(.01_?_’ VAN wisBCA + nAcdfc A ed + Qf-) 77Aa b

1
+ (—de — §w§ ANwCepd + 7t fe N el + QA> A" p
and therefore the curvature projects cleanly into a pair of conformal SU (2) curvatures:

1
A A A A
dw? = —5¢ Bcwf/\wg—l—n cdfc/\ed—l—ﬂ+

1
dw? = —ieABcwé AwC + it el + QA
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For the remaining connection forms,

de’ = AWy twAer+ T
1 1
= 5ebm‘;ﬁm“,,Jrieb/\wémab+wAea+T‘L
df, = W Af+f,Aw+S,

1 1
= 5wi‘AfbnA” a+§wi‘AfbﬁA” i Aw+S,

dw = e"Af,+Q

5wa b == Aa bcec + Bab Cfc

This depends on [A[ab]c] = 24 plus [B[ab]c] = 24 degrees of freedom, for a total of 48

equations. The variations preserving duality are
dwi = Al e+ B,

for a total of 12+ 12+ 12412 = 48 variations. The count is the same, so nothing is changed

if the variation preserves duality.

5.4 Summary of the structure equations

We have
dwjﬁ = —%5ABcwf/\w$+nAcdfC/\ed+Qf
dw? = —%5’45@.‘)}?/\wg+17‘L‘Cdfc/\ed—i-ﬂfx
de’ = %eb/\wﬂnAa b—l—%eb/\wfﬁA“ p FwAe + T
= %eb/\w“ber/\e“qLT“
df, = lwﬁ/\fbnAb a+1wi‘AfbﬁAb WA Aw+S,

2 2
= W A+ AWFS,

dw = e*Nf,+Q
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CHAPTER 6
ACTION AND FIELD EQUATIONS

6.1 The action in the spin basis

6.1.1 Introduction of the curvatures
The biconformal action,

(6.1)

ac--d

S:/(aﬁab+55%9+ve“/\fb)AfeA-u/\ff/\ec/\...AedebEMf
may now be written as

ac---d

S = /(aQJra b+0497a b+B5%Q+’7€a/\fb)/\fe/\"'/\ff/\ec/\'--/\edebemf

We vary w * ,w ;€% f;, w independently.

However, the curvatures we have are
o oM TS, 0

where M = 1,2,3 and a = 1,2,3,4. To connect the curvatures to the basis forms, we use
the 't Hooft matrices, n,,* ,,7,, ,- These connect the six antisymmetric pairs, [a, b] to
two sets of three SU (2) indices, M+. With this notation, we may write

S = / (@Y + oM+ B0+ et AR ) Af A AffACSA- - AelT
(6.2)

We vary w'', w™, et fy,w.
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6.2 Variation of the action

We vary

S:/(aﬂ—?—ﬁAa b—|—0¢ﬂé77Aa b+ﬁ(5%ﬂ+’7ea/\fb)/\fe/\.../\ff/\ec/\_”/\edebe...f

ac---d
where the curvatures are
1
Q= dwi+ isABwa AwS — 274 f, A e
1
Q4 = do? + iaABCw]f AwC — oA, A el
1 1
Ta = dea—iﬁAa bw_‘?_/\eb—inAa bWé/\eb—W/\ea
1_ 1
S, = df,— 577Aabwﬁ ANy — 57714& bwANE +wAf,
Q = dw-—2e*Af,
Upper case Latin indices refer to SU (2), with A, B,... = 1,2,3, while lower case Latin

indices refer to SO (4) and run a,b,...=1,2,3,4.
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6.2.1 Solder form variation

Vary e,

0S = /(Oé(seﬂ_iA_ﬁAa b+0[(569é’l7Aa b) /\fe/\.../\ff/\ec/\,,,/\edebe"‘f

ac--d

+/(B5(z5eﬂ+’y5ea/\fb)/\fe/\.../\ff/\ec/\.”/\edebe-nf

ac---d
+ [ (a2, @+ aQAn, ) AE A AP A (n—1)de NI A Aele T
+MA - p T ORIy b) e FA(n—1)6e“Ne e’e acgd

+/(ﬁ6%ﬂ+ryeaAfb)/\fe/\/\ff/\(n_l)(sec/\eg/\/\edebefacgd

ac--d

+ [ se" A (20m™9 £y @y — 2B8%8 + V6 ) AE A Afp A A AeteP T
h g'TA b b h f wed
+ (=) (n - 1)/5eh A (aﬂ_‘ﬁﬁA CONE A AN /\.../\edebe-..fahgmd

+(_1)n—1 (n— 1)/5eh A (aQéTIA a b) /\fe A--- /\ff ANed A ... /\edebe...fahgmd

+(-)"t(n—-1) / de A (BOYQ + e Af) Ao A AEp AT A nete T
Looking at just the variation of the Lagrangian density, and setting

5eh :Ahkek +Bhkfk
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we find

ac---d

5L = (Ah et + Bhkfk) A <2aﬁAgh77A a b) £ AL A A A A Aelel ]

e+ Bh’“fk> A (QanAghnA a b) £ AL A AN A A Al

ac:--

ac--d
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+(-1
+

- (_1)” A" k (2aﬁAghﬁA ¢ b) fg AY AVAERWN ff IN LN N edebe‘"f .

ac--

ac---d

+(—1)"Ahk(2anAghnA p — 2805 59+75z59>f A A AfpAe Ne A Aele? ]

H(=D)" (= 1) A" (aQE™ i " ) En AR A Afp A A NI At

H(=D)"(n—1) A" (aQA™ @ ) En AR A Afp A A NI N At

_l_

—1)" (n—1) A", (B84Q™, — 82O Epy Ao A AEp AR AT AT A A el ahg--d

()" (= 1) B"™ (aQ? 074 ) Ak Afo A Afp AT A NI At

—+

(=)™ (n— 1) B" (aQA s @ W) A Af A A AT AR A A Al ahg--d

_l’_

+
N RN ~N =~

(—=1)" " (n = 1) B (B69Qmn) Af Afo Ao Afp A A& NI N At
Now replace the volume forms with

1 ..
foane ™ = ——f @
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to give
oL = (1Al (20”7Agh77A @y 20,y — 286989 + W(SZ(;?) g f kewdbef &
+ (D" (n—1) A", (™, @+ aQA™ iy e b) éme...fkngmdebemf ahg-d®
+ (=D (n—1) A" (B55Q™, — 76701") éme...fkngmdebe"'f ahgd®
‘i‘% (-1)" ' (n—1)B"* (O‘Qﬁ mnfla @y aQA a4 B84 mn) éke...fmngmdebewf ahg-d®

= (n—D!'(n-1)!(=1)" A", <2aﬁAgh77A @42 0, ¢ — 286967 + 7(5%55) kst

+(-D" (=D n—2)(n— 1) A" (a2 ™74 "y +aQd ™y ) 8, (55;5;; - 535,’;) ®
(=) (0= )} (n = 2 (0 — 1) A" (803", — 105" o, (dho) — oo} ) @
1
+5 (D" (=D = 2)H (= 1) B (a9 aiia * o) 0F (0708 — 5,07) @
g 1" = D) =20 (0 1) B (002 55 0m) 0L (57167, — 6307 @

= (=D = DN A (2070, 0+ 20n g @ - 26058, + 5
+A", (O‘Qﬁb W+ a2t o, b+ﬁQan)
_Ana (53 (O‘Q—?b cﬁA ¢ b+aQéb cNa ¢ b+BQCc_n(n_ 1)7))

—B" (a2} s ¢y 402 sty + B35 an )| P

Collecting, we use the identity (see Appendix)

nAabnAcd + ﬁAabﬁACd = 2 (5(353 - 5&%)
Aa c ~Aa = ¢ —  9(§%5, , — §S5%
/AR e o A TV R (6%“bba — 6504)
and definitions
A _
Q+cb77Aac - Qicc b

QA0 . = Q1.

c — C
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=
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Al <2a (2 <5ba5hb - 5;;53)) — 2835958 + mag)
o ", a0 40

62 <aQ—iA-b cﬁAc b+aQi‘b anC b))

—A" (65 (B +4(n—1)a+28 —n?y)) D

—B" (aQ} o + QL 4o, + B6GQan) @

= A", (a1 ¢ ,+0Q% ¢ ,+BQ%,) D

—Aba(ag(aﬂicc Lra0d d))@
—A" (55 (B +4(n—1)a+28 —n’y)) P

—B™ (@ oy + Q. oy + Bg)
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6.2.2 Co-solder form variation

Now vary the co-solder form,

ac--d

(SfS = /(Oé(sfﬂfﬁAa b+0£(5fﬂil77Aa b) /\fe/\"'/\ff/\ec/\---/\edebe"'f

ac--d
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ac---d
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ac---d
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ac---d
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ac---d
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ac---d
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ac--d
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= /5fm/\(2aﬁ’4”;ﬁj4“ b)e”/\fe/\.../\ff/\ec/\”./\edebe---f

ac---d

+/5fm/\ (_2a77ATr:L77Aa b) en/\fe/\"'/\ff/\ec/\‘--/\edebe"'f

ac--d

+ / St A (286907 — 800 € Af, A+ Afp AeS A--- Aede? ]

ac--d

+/(n—1)5fmA(a9an“ o) Ay A Afp A ANl

ac---d

+/(n_1)5fm/\(aﬂé7714a b)/\fg/\---/\ff/\ec/\-~-/\edebmg"'f

ac--d
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ac---d

Let

of,, = mkek + Dmkfk
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Then

SiL = ()" D (20 s @ ) e A A Afp AT A A At
F (=) DE (—20m g @) e Afo A AEp AR A A At
+ (=) D, (28045 iy A A Afp A AeE A pete
+ (=)™ D (=06 B A A AT A A A pete T
+% (n—1) (=1)" Cpue (aQ_ﬁ’”ﬁA a b) B A AT A AfpAS A A pedeI T
+% (n—1)(=1)" Cpus, (aQi"“nA @ b) B G AL A A A NN pedeT
% (n— 1) (=1)" Cyut (ﬁ(sfﬂ’"') £y Afs AEy A A AR At A A et
+(n—1)(-1)"D,} (aQi‘hiﬁA a b) B A A A A A NeS Ao pede™ T
+(n—1)(-1)"D,} (aQi‘hmA a b) B AL AT A A A A A pedeIT
+(n—1)(=1)"D,f (ﬁ ‘;,th) B AL AT A A A A A pedeIT
+(n—1)(-1)"D,* (—75{}5;1) B A A A A A NeS Ao pede™ T
+(n—1)(-1)"D,}* (aQﬂﬁA @ b) B A A A A A NeS Ao pede™T
+(n—1)(=1)"D,}f (aQAhmA a b) B A A A A A NeS N At
+(n—1)(-1)"D,} (55‘;,(2%) B AL AE A A A A A pedeIT
+(n—1)(=1)"D,f (—75{;53) B AL AT A A A A A pedeI T

Now
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1k _Am _ wd_be-
(_1)11 Dm (_20”7 nZlnA ¢ b) ek@'“fnc e fac---d(I)

_ _ d e
(_1)n ! Dmk (_20”714%7714 “ b) eke~--fnc de ef ®

ac-d
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+ 4+ + + o+ o+ o+

n—1)(=1)" D} (865Q"; = 16167 ) eppg... oL, 4@
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(=D —2) (0 = 1) (~1)" D~ (a2, @ ) 3L (shoy - 5o} ) @
+ (= 1)1 =2 (0 1) (~1)" D, * (8" = 70}07) 3L (3ho — oo ) @
+ (=) (=D = D)IDS (=200 g © = 20 s ) 6150 @

+ (=" (n =) (n — 1)ID,F (285457 — 753"04%) 670, @
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Therefore,
=D" . . o
(n—1(n— 1)!5f£ = Dy (aQﬁh B e e n75{}) (625}1 — Ok 52) ¢

-D,* (_QQﬁAnZﬁA “ = 2an i, @+ 2807 — nyé;') ®
1 ) ) .
+5Cma (aQi‘mﬁA @, 4+ aQAhin @, 4 ﬁam’“) (5,‘;5;ﬂ - 5;;@55) &
= D, (a0 Lot L) Falon ) mapen b)) @
+D,.F (B (2™, — Q0 +n(n — 1)) @
—D,F (—4a (878 — 0553) + 2867 — nyoy) @

+Cma (002 47 + 0022 0" 4 GO0 ) @
where again

A aca + 7 P iaca = 2 (300 — 6207

Am a

A" T = —2(n—1) 5}

so that finally

1"
(n—(l)!()n—l)!éfﬁ e G A L R (R L DR
+D,F (B (™ — Q67 + 6 (n®y — da(n — 1) — 2B)) @

+Cma (QQ(}'_ bbm + OéQi bbm —+ ﬁQbm> P
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6.2.3 Left spin connection

Varying wf,

0SS = /O[(SQﬂf]Aab/\fe/\.../\ff/\ec/\_“/\edebemf

ac--d
ac-d

1
= /a<d5w_‘?_+2€ABC5w§/\w$>77Aa b/\fe/\"'/\ff/\ec/\"'/\edebe f

ac---d

1
+/a(2€ABcwf/\5w$> g ® b/\fe/\~-/\ff/\ec/\---/\edebe !

ac--d

- /a(déwﬁ"i_(swf/\(sABcwg))ﬁAa b/\fe/\'--/\ff/\ec/\---/\edebe"'f

ac--d

- /a(D+5wﬁ)nA“ p A A AP A A Aede ]
- /OZDJr (&aﬁﬁA a b/\fe/\-~-/\ff/\ec/\---/\ed> A
= /aéwﬁﬁA “, AD, (feA---/\ff/\ec/\---Aed) &t
= (n—-1) /a(swﬁ% N (((D+fe) NEGA-- N Ae N AN ed)> e
+(n— 1)/0“5‘0%1 Py A1) (B A A AfAD e net A et )
= (n—1) /a&wﬁnA @A (S;r NG A= Nfpnene A Aed> "I o
+(n—-1) /O“Swi‘m A <(—1)n_1 <fe Ng A NEE AT AR A A ed>> I

= (n—l)/aéwﬂﬁA“ b A (Sj/\ng---/\ffAec/\eh/\---Aed) et

+(n—1) /aéwi‘nA @A ((—1)"*1 (fe Ay A=A ATE A A A ed)> ool

where we know (and have shown elsewhere) that the covariant integration by parts must

yield tensors. Extracting the variation of the Lagrangian and expanding the connection as

6wi‘ = AAme™ 4 BATE



then the torsion and co-torsion,

08

(n_l)/aéwﬁﬁAab/\(S:/\fg/\"'/\ff/\ec/\eh/\.../\ed)ebeg'"f
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beg--- f
ach---d
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Then

1 iy
L = (n—1)!(n—1) (—1)n/0<AAm77A " (25: Yo (555; B 555?)) *®

+(n—1)!(n—1)! (—1)”/aAAm77A a, (—Tf 0L (s36m — 53;@55’)) P
+(n—1)!(n—1)! (—1)”/QBAW77A a, (sj 6] (5;55 - 5;55?)) P

1 . .
+(n—1)(n—1) (—1)”/aBAm77A a, <—2Tj 100, (85267 — 555;)) P

and finally

e = foar e o (s o - (- )

(n—1!(n-1
+/0€BAm {ﬁA ‘b <<Sz+ O — S a> - T3 ac(SS”L)] ¢

Note that the projection is tighter than the previous Ags, and that the torsion and co-torsion

are only the self-dual parts.

6.2.4 Right spin connection
Varying w?, is identical to varying w? except for the presence of 7 4 ¢ instead of

74 ¢ , and minus instead of plus. We follow it through as a check.

5_8 = /aé_nénA“ p AL A ANE A A pede ]

ac--d
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+(n—1) /acSwan A <fe Ay A AEpATE A A A edebeg---fachmd)
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dwh = Aldmem  pAmE,

the variation of the Lagrange density is
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6.2.5 Weyl vector

Vary,

ac---d
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6.2.6 Collected field equations

The Lagrange density variations are

e = fo oo s )]
c fann g (54530 -7t @
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so the field equations are

0 = ai, (S0 - T, 4 TS 67
0 = iy, (S0 = Si o= T5 o)
0 = any (S50 — T+ T o)

0 = amny ¢ b (Se_ ea(szz - Sr:z —-1° acéfn)
0 = 6 (Se bedgn + TcmC _ Tmaa>

0 = B(Scc m = S’ b_TCmC)

0 = ‘)‘(Qi L d)Jra(Qci L d>+/3(9ab_5gﬂcc>
50 (4 (n—1)a+ 28— n2'y>

0 = a9y -yt L) ra (R0 L et L)+ BT - 900
—67 (4o (n — 1) + 28 — n?y)

0 = (2% pea + 9 1ea) + BU%a

0 = O[( a bm+Qa bm)_’_BQbm
These equations comprise our second principal result.

6.3 Conclusion

We successfully constructed the biconformal gauge theory in 8-dimensional spinor rep-
resentation of Spin (5,1). The quotient of this conformal group by its homogeneous Weyl
subgroup gives a principal fiber bundle with 8-dim base manifold and Weyl fibers. The
Cartan generalization to a curved 8-dim geometry admits an action functional linear in
the curvatures, and the field equations generically yield general relativity on the cotangent
bundle of spacetime. We focussed on the subclass of cases when the extra 4 dimensions
can give a fibration by a non-Abelian Lie group, where the maximal case is the electroweak

group. Thus, while the final Lorentz and electroweak symmetries are of the direct product
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form required by Coleman-Mandula, the model is predictive of the specific group.

Satisfying the Coleman-Mandula theorem comes automatically because after taking
the quotient, the Lie group on the 4-dimensional y-subspace effectively extends the bundle
symmetry as a direct product of the fibers.

Our procedue in spinor representation includes projections that split left-handed par-
ticles from the right-handed ones, particles from antiparticles, and spin states of particles
as known in quatum field theory. This procedure also separates our curvatures and field
equations into self-dual and anti-delf-dual parts, making the field equations distinct from
those of previous studies.

However, due to our choice of basis, the projection operator Py, = %(1 + ) also
produces two 4-dimensional SO(5, 1) subspaces, each described by its own representation
and Clifford algebra of SO (4) symmetry. This gives us a new, alternative opportunity to
realize gravity other than the previous method described above. We conjecture that, if we
apply Py, on the group before taking the quotient by the homogenous Weyl group, we
can generate the correct gravity and electroweak symmetries directly. Specifically, if we
take the quotient of the first SO(5, 1) partition say Py, by SO (3, 1), this leaves a spacetime
signature on the fibers from which we get Einsteins equations for gravity leaving behind and
an extra SO (2) on the base manifold. Then if we take the quotient of the second SO(5,1)
partition say Py_ by SO (4) = SU (2) x SU (2), this leaves an electroweak signature on the

fibers and leaving behind and an extra SO (1,1) on the base manifold.
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Identities with 't Hooft matrices

The t’Hooft matrices are

A A Acd Al
maw — € ab+5a5b_6b5a

_A A Asd | sAsd
N = € ap— 040, +00,

If we add these,

77Aab + ﬁAab 2’:“Aab + 5(145;)1 - 51;453 + EAab - 6(1145;} + 62)463

= ZEAab

we do not recover the identity. This is awkward, because we would like to recover the vector
structure equations by adding the spinor ones.

Raise an index:

ity = el 5 — 5o
ﬁAa w = EAa p — 514(1514)1 + 54(1534
The product is
pAa B = (€Aa )t 5Aa5£1 _ 54a5l1)4) (EBb R L7 54b5§>
_ EAa bng . &,AaB(Sél _ 6Aa5B4521 + 5AaécB _ 54a€BA o+ 54(15314521

— _6AB(5?(5£( + 5246Ba _ EAaB(Sél _ 54a€BA . 5Aa,534621 + 5Aa(scB + 54(16314521

— _gAa,Bé*él _ 54a€BAC _ 5AB§}1<5£( + 6(;453(1 + 6Aa5cB + 640,5314621 _ 5Aa53453
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Consider the special cases

nAC bﬁBb p = —EACB54D _ 64C€BA D— 51435}0(65 + 5S6BC + 514055 + 5405BA5% _ 5AC§B454D

= 0808C — 64865 4 64C 58

nA4 bﬁBb D = _€A4B(54D _ 544€BA - 5AB§}1{6§ + (5?)(5B4 + 5A455 + 54453A54D o 5A4(SB454D
_ —EBA 5

T]AC b,F]Bb i = _€ACB52 _ 64053A4 _ 6AB(5[C(6£( + 5:145BC + 6A06f + 54053,462 _ 5AC5B462
— _gACB

nA4 bﬁBb L = 5BA

One further contraction gives

nAa bﬁBb . = —€ACLB(53 - 54aEBAa _ 5AB(5?(5£( + 5&4(53(1 + 5Aa5(113 + 54(1531453 - (5Aa53453
= —3048 4 648 4 548 4 584

= 0
If we multiply the same one:

nAa anb _ (SAa , +6Aa521 _ 54a5bA) (EBb C+5Bb521 _ 54b563)
_ EAa bEBb . +€Aa béBb(Sél _ gAa b54b5§ + 5Aa521€Bb .
+0495,580 5% — 54554000 — sagyte Pl — 515 6B0oE 4 516y 606 P
_ 5(,:4 §oB _ sAB 59 5({( 4 gAaB 521 _ §Aa 523 _ sla_BA - slasAB 521

— sAaBéél o 54a6BA .+ (SCA(SQB o 5AB5111{6£( - 5Aa5£3’ o 54116/13521
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Special cases:

UAC bTIBb p = 5ACB§4D _ 54C€BA D+ 56503 _ 5143510(55 _ 514055 _ 6405A354D
— 8AC’B($4D . 54C’€BA o+ 511%503 . 5AB5g . 614065

77A4 anb p = €A4B5%) o 644€BA o+ 56543 o 5AB(5;1<5§ _ 5A45§ o (544(5AB5%)
_ —EBA b

T]AC anb 4 = 8ACB§ZI _ 54CEBA4 + 5:14(SCB _ 6AB(5[C(6£( _ 5Acdf _ 6405,4352
— EACB

7,’.»44 b,’,le 4 = €A4B(Sil _ 644€BA A+ (521464B o 5AB54[1(5£( _ 5144543 _ 5445AB53
— _5AB

Contracting again,
nAa anb . = 5AaB(53 _ 54a€BA o+ 5345(1B o 5AB5(IL<5£( o 5Aa5aB _ 54a5AB(53

(SAB _ 35AB o 5AB o 5AB

= 4618
Now the conjugates,

C

jAa bﬁBb _ (gAa ) — 5Aa5;)1 +54a5é4) <€Bb - 5Bb521 +54b5§)
_ €Aa bEBb . EAaB(Sél _ 5Aa5;)1€Bb . (SAQ(SCB + (54a€BAC o 54a6AB52L

— —(SAB(S?((Sf + 5::4530, _ €Aa3521 _ 5Aa50B + 54a€BA . 54(16143521
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Special cases:

ﬁAC bﬁBb p = _5AB§IC(5§ + 5%530 _ 5ACB54D _ 614055 + 54C€BA D— 5405A354D

= =055 + 67567C — 61957

77A4 bﬁBb D = _5AB(54[1{5§ + 6S5B4 o €A4B5%) o 6A45€ + 544€BA - (5445AB64D
A
= gB D
ﬁAC bﬁBb A = _5AB5]C;54{( + 54A(SBC _ sAC'B(sjll _ 5AC§f + 54C€BA 4 6405AB621
— _EACB
77144 bﬁBb 4 = _(5.435}1(54{( + 5f5B4 o 6A4Bé‘i _ 5A4543 + 544€BA iy — 5445/—‘3511
o _5AB

and another contraction,

ﬁAa bﬁBb . = —(5AB(5?{(5£< + 52145Ba _ <€AaB(5;1 _ 5Aa6aB + 54a€BA "= 54a5AB5;L

_35AB + 5AB o 5AB o 5AB

= 4618
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