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ABSTRACT

Joint Invariants of Primitive Homogeneous Spaces

by

Illia Hayes, Master of Science

Utah State University, 2022

Major Professor: Mark E. Fels, Ph.D.
Department: Mathematics and Statistics

We develop a reduction technique which identifies joint invariants of homogeneous spaces

with invariants of their corresponding isotropy action on a smaller space. The reduction

technique is then applied to compute joint invariants for primitive homogenoeus spaces of

affine type and minimal dimensional symmmetric type.

(155 pages)
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PUBLIC ABSTRACT

Joint Invariants of Primitive Homogeneous Spaces

Illia Hayes

Joint invariants are motivated by the study of congruence problems in Euclidean geometry,

where they provide necessary and sufficient conditions for congruence. More recently joint

invariants have been used in computer image recognition problems. This thesis develops

new methods to compute joint invariants by developing a reduction technique, and applies

the reduction to a number of important examples.
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CHAPTER 1

Introduction

This thesis is devoted to the development of a reduction technique used to construct

joint invariants for group actions on primitive homogeneous spaces. The study of joint

invariants for homogeneous spaces is motivated by congruence problems in Euclidian geom-

etry, in which case a complete set of joint invariants give necessary and sufficient conditions

for two k point polygons to be congruent. Our methods are motivated by the algorithmic

approach to classifying joint invariants developed in Olver [17], which use the theory of

moving frames to find a direct method of determining the joint invariants for homogeneous

space.

A practical application of joint invariants arises in image recognition. Two images

in a homogeneous space can be related by the transformations of the transitive group ac-

tion when their boundaries are congruent. A suitable collection of differential invariants

evaluated on the boundary of an image parameterize a signature manifold, which is in-

variant under the action of the group on the original image, and classify the object up to

these transformations. However, in most applications the differential invariants depend on

derivatives of high order which are very sensitive to noise. Joint invariants can be used

as a noise resistant alternative to parameterize a signature manifold, though the number

of joint invariants required to classify image boundaries, and therefore the dimension of

the corresponding signature manifold, is often quite large. There are two main ways to

mediate the large number of joint invariants in applications. Olver [17] shows that using

a small number of joint invariants and their derivatives can classify image boundary, and

that the highest order of these joint differential invariants is smaller than the approach of

using purely differential invariants.

Boutain [4] shows that one can use a collection of pure joint invariants along with a

well chosen preferred set of points on the image boundary, called landmarks, to characterize
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the boundary with a lower dimensional signature manifold. For example consider the image

boundaries in the left image of Figure 1.1. If the image boundary of one of the rabbits is

sampled and ordered in a counterclockwise direction, (xi, yi)0≤i≤n, one can designate the

first and last points in the collection as landmarks. Using the landmarks (x0, y0), (xn, yn),

define two functions by using the joint invariant of Euclidean transformations given by the

distance between two points,

δ1(i) =
√

(xi − x0)2 + (yi − y0)2

δ2(i) =
√

(xi − xn)2 + (yi − yn)2.

That is δ1(i) is the interpoint distance from the first point (x0, y0) to the ith point (xi, yi),

and δ2(i) is the interpoint distance between (xi, yi) and (xn, yn). Plotting the points

(δ1(i), δ2(i)) for 1 ≤ i ≤ n gives a curve which is invariant under Euclidean transformations

of the original data points (xi, yi). By comparing the signatures of two image boundaries

one can determine the “closeness” of the two images in a way that is invariant of Euclidean

transformations.

Figure 1.1 shows two image boundaries in the left image and their corresponding signa-

ture curves on the right. The two images on the left are clearly related by a Euclidean trans-

formation, which is reflected in the overlap of their corresponding their signature curves.

The code used for generating these images is provided in Appendix A.

The example of R2 as a homogeneous space of the Euclidean group is an example of

what is called a primitive homogeneous space. Primitive homogeneous spaces play a role

in the theory similar to irreducible representations in representation theory. If G is a Lie

group and H a closed subgroup, and the homogeneous space, G/H, admits a foliation by

immersed submanifolds where the elements of the group G map each immersed submanifold

to another immersed submanifold in the foliation, then the foliation is called invariant under

the action of G. An invariant foliation of G/H defines an equivalence relation where the

group G naturally acts on the quotient by this relation, and any joint invariant of the

natural action of G on the quotient determines a joint invariant of the original space G/H.
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Fig. 1.1: Joint invariant signatures example

A homogeneous space which admits no invariant foliations is called a primitive homogeneous

space.

Primitive homogeneous spaces G/H of a Lie group G are classified by the closed Lie

subgroups H of G such that H is not contained in any Lie subgroup of higher dimension.

In the case that G is a Lie group with Lie algebra g which is not simple, the subalgebras

h corresponding to a closed Lie subgroup H for which G/H is primitive are the maximal

subalgebras of g. Morosoff [13] classified the possible Lie algebra subalgebra pairs which

correspond to primitive homogeneous spaces in this case. The classification identifies two

main types of Lie algebra subalgebra pair, which we call the affine and symmetric types.

When G is a simple Lie group the possible subalgebras for the Lie subgroups H of G which

correspond to primitive homogeneous spaces G/H are more complicated. It is still true

that every closed subgroup H which has a maximal subalgebra h of g corresponds to a

primitive homogeneous space G/H but there are examples of subgroups H of G which do

not have maximal subalgebras while the corresponding homogeneous spaces are primitive,

see Golubitsky [10] and the example in Section 5.3.

This thesis builds upon the methods of Olver [17] by proving a reduction theorem

which shows that the k point joint invariants of a homogeneous space G/H are determined
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by the k − 1 point joint invariants of the isotropy subgroup H, where we identify a partial

cross section to the orbits of G and use this to identify the orbits of G on (G/H)k with

the orbits of H on (G/H)k−1. In applying this reduction theorem to examples of primitive

homogeneous spaces when G is not a simple Lie group we show that the invariants of the

affine case are constructed from invariants of the isotropy subgroup representation on an

abelian subalgebra of the Lie algebra for g, and that the two point joint invariants for

examples of symmetric type are constructed from invariants of the action of the isotropy

subgroup on itself by conjugation See Section 3.3, Theorem 4.4 and Chapter 7.

We organize this thesis as follows. Chapter 2 presents the background information and

basic definitions needed for the proof of the reduction theorem in Chapter 3. In Section

3.1 of Chapter 3 we present the main results of the reduction, Theorem 3.1, Corollary 3.1,

Corollary 3.2, and Lemma 3.1 give a method for evaluating the joint invariants using a

partial cross section. In Section 3.3 we show how the reduction theorem can be applied

to an example related to primitive homogeneous spaces of symmetric type by reducing

the problem of classifying two point joint invariants to the classification of class functions.

Chapter 3 concludes with Section 3.4 which gives some technical results about the reduction

which are needed in later chapters. In Chapter 4 we proceed to give a detailed overview of

primitive homogeneous spaces. Theorem 4.1 in Section 4.2 shows how to explicitly construct

an invariant foliation on a homogeneous space G/H when the subgroup H is contained in a

closed subgroupK ofG with strictly higher dimension thanH. The classification of primitive

Lie algebra subalgebra pairs in the case where G is not simple is given in Theorem 4.3.

Theorem 4.4 shows that the example investigated in Section 3.3 is a primitive homogeneous

space. Chapter 5 gives a description of the possible two dimensional primitive spaces of the

simple Lie group PSL(2,R) via the Adjoint representation, and in Theorem 5.1 identifies

which of these homogeneous spaces are primitive. In Section 5.2 we explicitly construct the

invariant foliations for the non primitive two dimensional homogeneous spaces and identify

them with invariant foliations of the orbits in the Adjoint representation. Then to conclude

the chapter Section 5.3 gives an example of a subgroup H of SL(2,R) such that SL(2,R)/H
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is a primitive homogeneous space, and where the isotropy subgroup H does not have a

maximal subalgebra.

In Chapter 6 we consider two cases of primitive homogeneous spaces which are of Affine

type, A(n) and SA(n). Section 6.1 shows that these are primitive homogeneous spaces, and

Subsections 6.3 and 6.3 apply the reduction theorem of Chapter 3 to determine complete

sets of local joint invariants for these spaces.

Finally Chapter 7 considers two examples of primitive homogeneous spaces of Sym-

metric type, SU(2,R) and SL(2,R) which are primitive homogeneous spaces as described

in Section 3.3 and Theorem 4.4. For SU(2,R) we construct a complete set of two and three

point joint invariants in Theorem 7.1 and Theorem 7.2. The construction of three point

joint invariants is then conducted in an alternative way in Section 7.1.3 which demonstrates

that when a slice exists where the isotropy subgroups of every point of a cross section are

conjugate, one can again reduce the action to a transitive group action on a product of

homogeneous spaces. We then apply the reduction theorem of Chapter 3 again to construct

the joint invariants. The last section of Chapter 7 constructs the two point joint invariants

for SL(2,R) and demonstrates the complexity of classifying joint invariants even in the two

point case where multiple distinct orbit types are present.
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CHAPTER 2

Background

This chapter provides the basic definitions and results that are used in the thesis. For

more information about this background material see Bredon [5], or Dummit and Foote [7].

Additionally the books by Boothby [3] Warner [19] and Helgason [11] contain more detailed

discussion in the case of smooth actions of Lie groups on manifolds as described in Section

2.2.

2.1 Group Actions

Definition 2.1. Let G be a group and X a set. A map µ ∶ G ×X → X is called a (left)

group action of G on X if µ satisfies the following conditions.

i) If x ∈X then µ(e, x) = x.

ii) If a, b ∈ G and x ∈X then

µ(a,µ(b, x)) = µ(ab, x).

When the context is clear we will denote µ by juxtaposition or a dot,

µ(a, x) = a ⋅ x or µ(a, x) = ax.

Remark 2.1. If µ ∶ G ×X →X satisfies part i) of Definition 2.1 but instead of part ii) the

map µ satisfies

µ(a,µ(b, x)) = µ(ba, x)
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for all a, b ∈ G and x ∈ X, then µ is called a right action. Every right action µ can be

converted into a left action µ̃ ∶ G ×X →X defined by

µ̃(a, x) = µ(a−1, x).

Left actions of a group G on a set X are equivalent to group homomorphisms from G

into permutations on X, denoted Perm(X).

Theorem 2.1. Let µ ∶ G×X →X be a map. Then the following conditions are equivalent.

1) The map µ is a group action.

2) The map Φµ ∶ G→ Perm(X) defined by Φµ(a) = µa, where µa ∶X →X is

µa(x) = µ(a, x),

is a homomorphism of groups.

Proof. Suppose that µ is a group action. Then we first show that Φµ is a well defined

map. Let a ∈ G and consider Φµ(a) = µa. The map µa−1 is a two sided inverse of µa,

µa ○ µa−1 = µa−1 ○ µa = Id, and so µa ∈ Perm(X). Now let a, b ∈ G and fix x ∈X. Consider

Φµ(a) ○Φµ(b)[x] = µa ○ µb(x)

= µ (a,µ(b, x))

= µ(ab, x)

= Φµ(ab)[x].

So Φµ(a) ○ Φµ(b) = Φµ(ab) which verifies that Φ is a homomorphism, and completes the

proof that 1) implies 2).
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On the other hand suppose that the map Φµ is a homomorphism. Consider e ∈ G and

fix x ∈X. Then

µ(e, x) = µe(x) = Φµ(e)[x] = Id[x] = x

since Φµ is a homomorphism, and µ satisfies part i) of Definition 2.1. Now let a, b ∈ G and

x ∈X. Consider

µ(a,µ(b, x)) = µa ○ µb(x) = Φµ(a) ○Φµ(b)[x] = Φµ(ab)[x] = µab(x) = µ(ab, x)

which verifies part ii) of Definition 2.1. Hence µ is a group action verifying that 2) implies

1) and completing the proof.

Remark 2.2. A similar argument to the proof of Theorem 2.1 shows that right actions

µ ∶ G ×X → X are equivalent to “antihomomorphisms” of G into Perm(X). That is, maps

Ψµ ∶ G → Perm(X) such that Ψµ(ab) = Ψµ(b) ○ Ψµ(a). The process in Remark 2.1 for

constructing a left action given a right action, µ, corresponds to saying every right action

Ψµ can be converted into a left action Φµ̃ by precomposing Ψµ with the inversion map

inv ∶ G → G given by inv(a) = a−1. That is Φµ̃ = Ψµ ○ inv is a group homomorphism, and

therefore the corresponding action µ̃ is a left group action.

Below we define two important kinds of group actions.

Definition 2.2. Let µ ∶ G ×X →X be a group action. If for every fixed x ∈X

µ(a, x) = x

implies a = e, where e is the identity element of G, then the action is called free.

See part 1) of Remark 2.5 for an alternative characterization of a free action.



9

Definition 2.3. A group action µ ∶ G ×X →X where

µ(a, x) = x

for all x ∈X implies a = e is called effective or faithful.

Note that an action µ is effective if and only if the map Φµ from part 2) of Theorem 2.1

has a trivial kernel, and so defines an isomorphism of G with a subgroup of the permutation

group Perm(X). See Remark 2.7 for an equivalent characterization of effective actions.

A group action µ defines a relation on X,

Rµ = {(x1, x2) ∈X ×X ∣x2 = µ(a, x1), a ∈ G} ⊂X ×X. (2.1)

We would like to determine necessary and sufficient conditions for when (x1, x2) ∈ Rµ, which

motivates the following definition.

Definition 2.4. Let µ ∶ G ×X → X be a group action. Two points x1, x2 ∈ X are said to

be congruent if there exists a ∈ G such that x1 = µ(a, x2), and the set

[x1]µ = {x ∈X ∣ (x1, x) ∈ Rµ}

is called the congruence class or orbit of x1.

When the action is understood from context, the congruence class or orbit of x is

sometimes called the G orbit of x and denoted by [x]G, or we will use Gx for the orbits of

a left action and xG for the orbits of a right action.

In this thesis we want to solve the congruence problem for an action µ, that is to find

a set of necessary and sufficient conditions for when two points x1, x2 ∈ X are congruent.

Specifically we are interested in solving the congruence problem for a family of actions

induced by a given µ as described below.

Whenever an action µ ∶ G ×X → X is fixed there is an induced action of the group G

on products of X.
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Definition 2.5. Let µ ∶ G ×X → X be an action of a group G on a set X. The diagonal

action of G on the product set

Xk ∶= (X ×X ×⋯ ×X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k copies

is the map µk ∶ G ×Xk →Xk defined by

µk (a, (x1, x2, . . . , xk)) = (µ(a, x1), µ(a, x2), . . . , µ(a, xk)) .

Subsets U ⊂ X where the congruence class of any point u ∈ U is a subset of U itself

are useful because any point that u is congruent to must be an element of U. So for the

purposes of solving the congruence problem, we can restrict our attention to the subset U

instead of the whole set X which motivates the following definition.

Definition 2.6. Let µ ∶ G ×X → X be an action of a group G on a set X. If U ⊂ X is a

subset which satisfies

µ(a, u) ∈ U (2.2)

for all u ∈ U and a ∈ G, then the set U is called an invariant subset of X with respect to µ.

If U ⊂ X is an invariant subset then the restriction of the action map in the second

argument, µ∣U ∶ G×U → U, is a well defined action of G on U. In most examples the solution

to the congruence problem is solved on the invariant subsets of X with respect to µ.

Note that in particular the orbit of any point x0 ∈X

[x0]µ = {x ∈X ∣ (x0, x) ∈ Rµ} ,

as in Definition 2.4 is an invariant subset of X. The next section shows that Rµ is an

equivalence relation and therefore the set of all congruence classes form a partition of X.
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2.1.1 Orbits

For a given action µ ∶ G × X → X of a group G on a set X the relation Rµ is an

equivalence relation, which we will denote by x1 ∼µ x2 if (x1, x2) ∈ Rµ.

Remark 2.3. Let µ ∶ G×X →X be a group action. The equivalence class of a point x0 ∈X

under the relation ∼µ as given in Definition 2.4 is the orbit or congruence class of x0 and is

equal to the set

[x0]µ = {x ∈X ∣x = µ(a, x0), a ∈ G} .

Remark 2.3 motivates another way to define the orbits of µ. Fix the second argument

of the action by picking some x0 ∈X, and considering the map µx0 ∶ G→X defined by

µx0(a) = µ(a, x0). (2.3)

The orbit of x0 with respect to µ is the image of µx0 , that is

[x0]µ = µx0(G).

Since the orbits of µ partition X we can define the quotient of X as the set of equivalence

classes of Rµ.

Definition 2.7. Let µ ∶ G ×X → X be a group action. We denote by X/µ, the set of ∼µ

equivalence classes, called the orbit space of X mod G. The notation X/G for the orbit

space will also be used.

2.1.2 Invariant functions

Let X, be a set with an equivalence relation R and denote equivalence with respect to

R by x1 ∼ x2 if and only if (x1, x2) ∈ R. Functions f ∶ X → Y which respect ∼ in the sense

that they are constant on the equivalence classes of R are defined as follows.
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Definition 2.8. Let R be an equivalence relation on a set X. A function f ∶ X → Y such

that x1 ∼ x2 implies that f(x1) = f(x2), is called an invariant of the equivalence relation

R. Or when the relation is clear from context, f is called an invariant.

Let [x] ⊂ X denote the equivalence classes of R in X. The quotient of X by R is the

set of equivalence classes of R, denoted by X̃ = {[x] ∣x ∈X} . Let π ∶ X → X̃ be the map

which takes each element x ∈X to its equivalence class [x],

π(x) = [x].

The map π is called the quotient map with respect to R and is an invariant, in fact a

stronger statement can be made, π(x1) = π(x2) if and only if x1 ∼ x2. This is immediate

because x1 and x2 belong to the same equivalence class if and only if x1 ∼ x2.

The next theorem shows that the invariant functions of R are in one to one correspon-

dance with functions on the set of equivalence classes X̃.

Theorem 2.2 (Universal Property of Quotients). Let R be an equivalence relation on a set

X, f ∶X → Y be a Y valued function on X, and π ∶X → X̃ be the quotient map.

The function f is an invariant if and only if there a exists a unique function f̃ ∶ X̃ → Y

such that f = f̃ ○ π.

Proof. Suppose there exists a function f̃ ∶ X̃ → Y such that f = f̃ ○π. Let x1, x2 ∈X be two

points such that x1 ∼ x2, and consider f(x1), f(x2). Since π(x1) = π(x2) then

f(x1) = f̃ ○ π(x1) = f̃ ○ π(x2) = f(x2),

which proves that f is an invariant of the equivalence relation R.

Conversely suppose that f ∶ X → Y is an invariant of the equivalence relation R. We

will define a function f̃ ∶ X̃ → Y by the following logic. Let [x] ∈ X̃, and let x ∈ X be any

element such that π(x) = [x]. Then let the value of f̃([x]) be f̃([x]) = f(x).

We now show that f̃ is well defined. Suppose to the contrary that there exists [x] ∈X

and y1, y2 ∈ Y with y1 ≠ y2 such that f̃([x]) = y1 and f̃([x]) = y2. By the definition of f̃
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there exist x1, x2 ∈X with π(x1) = [x] and π(x2) = [x] such that f(x1) = y1, and f(x2) = y2.

But since π(x1) = π(x2) then x1 ∼ x2 and therefore f(x1) = f(x2) which is a contradiction

in assuming that y1 ≠ y2. Hence the function f̃ is well defined. Moreover, the function f̃

satisfies f = f̃ ○ π by construction.

Now we show that f̃ is unique. Suppose there are two functions f̃ , g̃ such that

f̃ ○ π = f = g̃ ○ π.

Let [x] ∈ X̃. Then there exists an element x ∈X such that π(x) = [x] and

g̃ ([x]) = f(x) = f̃ ([x])

so g̃ = f̃ and the function f̃ is unique.

The proof above is equivalent to the statement that there exists a unique function f̃

which makes the diagram

X

X̃ Y

fπ

f̃

(2.4)

commute if and only if f is an invariant function.

Because an invariant f ∶X → Y is constant on the equivalence classes of R the condition

f(x1) = f(x2) is necessary for x1 ∼ x2. Invariants with the stronger condition that f(x1) =

f(x2) if and only if x1 ∼ x2 play a key role in understanding the equivalence classes of R,

motivating the following definition.

Definition 2.9. Let X be a set and R be an equivalence relation on X. If {fα}α∈A is a

collection of functions, fα ∶ X → Y, such that fα(x1) = fα(x2) for all α ∈ A if and only if

x1 ∼ x2 then we call {fα}α∈A a complete set of invariants of the equivalence relation R. If

the set {fα}α∈A contains a single function, f, then f is called a complete invariant of R.
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Given an action µ and a complete set of invariants, {fα}α∈A for Rµ as defined in Equa-

tion (2.1), the collection {fα}α∈A give necessary and sufficient conditions for two elements

of X to be congruent.

The following corollary of Theorem 2.2 shows that the set of equivalence classes, X̃

is unique in the sense that if f ∶ X → Y is a complete Y valued invariant of R which is

surjective, then f induces a canonical bijection between X̃ and Y.

Corollary 2.1 (Uniqueness of Quotients). Let f ∶X → Y be a complete Y valued invariant

of R which is also a surjective function. Then the unique map f̃ ∶ X̃ → Y such that f = f̃ ○π,

is a bijection.

Proof. Fix y ∈ Y. Since f is surjective there exists an element x ∈X such that f(x) = y. Let

[x] = π(x) and consider

f̃([x]) = f̃ ○ π(x) = f(x) = y

and f̃ is surjective. We now show that f̃ is injective. Let [x]1, [x]2 ∈ X̃ be such that

f̃([x]1) = f̃([x]2). Then there exist elements x1, x2 ∈X such that π(x1) = [x]1 and π(x2) =

[x]2 with f̃([x]1) = f(x1) and f̃([x]2) = f(x2). So f(x1) = f(x2), and x1 ∼ x2 since f is a

complete invariant. Hence [x]1 = [x]2 verifying that f̃ is injective.

Corollary 2.1 shows that whenever one finds a complete surjective invariant f ∶X → Y

of the relation R then the quotient of X by R can be replaced by Y without any loss of

generality.

We will mostly be concerned with the relations Rµ from Equation (2.1) induced by

group actions, which motivates the following definition.

Definition 2.10. Let µ ∶ G ×X → X be an action of G on X. Then a function f ∶ X → Y

which is invariant under the relation Rµ,

f (µ(a, x)) = f(x)
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for a ∈ G and x ∈ X, is called a Y valued invariant of µ. Sometimes when the action µ is

clear f is just called a Y valued invariant of G.

Let µ be an action of G on X and consider two a collections of k points in X,

(x1, . . . , xk−1) and (y1, . . . , yk−1). The invariants of the diagonal action µk as in Defini-

tion 2.5 give necessary conditions for when (x1, . . . , xk−1) and (y1, . . . , yk−1) are congruent.

These invariants are defined below.

Definition 2.11. Let µ ∶ G × X → X be a group action and let f ∶ Xk → Y be a map

satisfying,

f (µ(a, x1), . . . , µ(a, xk)) = f (x1, . . . , xk) ∀a ∈ G,

then f is called a k−point joint invariant of µ.

Note that the k point joint invariants of µ are the invariants of the diagonal action µk

from Definition 2.5.

2.1.3 Equivariant functions

The homomorphisms between spaces with an action of G are defined as follows.

Definition 2.12. Let µX ∶ G×X →X and µY ∶ G×Y → Y be actions of a group G on sets

X and Y respectively. A function φ ∶ X → Y is said to be equivariant with respect to µX

and µY if

φ (µX(a, x)) = µY (a, f(x)) (2.5)

for all a ∈ G, and x ∈X.

If µX and µY are actions of a group G, the set of equivariant functions respect the

action of G on these sets. In particular the image of invariant subsets of X with respect to

µX are invariant subsets of Y with respect to µY .
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Theorem 2.3. Let µX ∶ G×X →X and µY ∶ G×Y → Y be actions of a group G on sets X

and Y respectively. Then if φ ∶X → Y is an equivariant function and U ⊂X is an invariant

subset with respect to µX then φ(U) ⊂ Y is an invariant subset with respect to µY .

Proof. Let V = φ(U). Fix some v ∈ V and a ∈ G. Then consider µY (a, v). Since v ∈ φ(U)

then there exists some u ∈ U with φ(u) = v. Now using the equivariance of φ we have

µY (a, v) = µY (a,φ(u)) = φ (µX(a, u)) ,

where µX(a, u) = u′ ∈ U since U is an invariant subset of µX . Hence µY (a, v) = φ (u′) ∈ V

completing the proof.

The orbits of an action µX are invariant subsets, so an equivariant function will map

orbits of µX to orbits of µY in Y.

If φ ∶ X → Y is equivariant and a bijection of the sets X and Y then φ induces a

canonical bijection between the orbit spaces X/µX and Y /µY . In fact one can make a more

general statement that will be useful in proving the results of Chapter 3. If isomorphic

groups G and K act on sets X and Y by µ and θ respectively, and Φ ∶X → Y satisfies

φ (µ(a, x)) = θ (σ(a), φ(x))

then Φ induces a canonical bijection between the orbit spaces X/µ and Y /θ. This claim is

proved in the following theorem.

Theorem 2.4. Let µ ∶ G ×X →X be an action of a group G on X, with πµ ∶X →X/G its

quotient map, and let θ ∶K ×Y → Y be an action of a group K on Y with πθ ∶ Y → Y /K as

its quotient map. Let σ ∶ G → K be an isomorphism of groups. If φ ∶ X → Y is a bijection

which satisfies the identity

φ (µ(a, x)) = θ (σ(a), φ(x)) (2.6)
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then the map Φ ∶X/G→ Y /K defined by

Φ([x]G)) = {φ(x)}K ,

where [x]G is the orbit of x under G and {φ(x)}K is the orbit of φ(x) under K, is a unique

bijection between the orbit spaces such that Φ ○ πµG = πµK ○ φ.

Proof. First we show that Φ is well defined. Suppose that we have two points x1, x2 ∈ X

such that [x1]G = [x2]G, then there exists a ∈ G such that µ(a, x1) = x2. So

Φ([x2]G) = {φ(x2)}K = {φ (µ(a, x1))}K = {θ (σ(a), φ(x1))}K = {φ(x1)}K = Φ([x1]G),

and Φ is well defined.

Now we show Φ is an injection. Let [x1]G, [x2]G ∈ X/G be such that Φ([x1]G) =

Φ([x2]G). Then {φ(x1)}K = {φ(x2)}K and there are representatives φ(x1), φ(x2) of the K

equivalence classes such that

θ(k,φ(x1)) = φ(x2)

for some k ∈K. Pick a ∈ G such that σ(a) = k. From the identity in Equation (2.6)

φ (µ(a, x1)) = θ (σ(a), φ(x1)) = φ(x2)

and since φ is a bijection then µ(a, x1) = x2, so that [x1]G = [x2]G proving Φ is injective.

Now we show that Φ is surjective. Let {y}K ∈ Y /K. Fix any representative y for [y]K ,

and let x be the pre-image of y under φ. Then

Φ([x]G) = {φ(x)}K = {y}K

and Φ is onto.
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Now suppose that Γ ∶ X/G → Y /K is a bijection which satisfies Γ ○ πµ = πθ ○ φ. Fix

some [x]G ∈X/G. If x ∈X is a representative for [x]G so that pµ(x) = [x]G then

Γ([x]G) = Γ ○ πµ(x) = πθ ○ φ(x)

and πθ ○ φ(x) = {φ(x)}K = Φ([x]G) verifying uniqueness.

Whenever an equivariant bijection is present as in Theorem 2.4 then the canonical

identification of orbit spaces X/µX and Y /µY provides a canonical identification of the Z

valued invariants of µY with the Z valued invariants of µX .

Corollary 2.2. Let µX ∶ G ×X → X and µY ∶ G × Y → Y be actions of a group G on the

sets X and Y respectively. If φ ∶ X → Y is an equivariant bijection with respect to µX and

µY then the map φ∗ ∶ F(Y,Z) → F(X,Z) given by φ∗(f) = f ○ φ is a bijection between the

set of µY invariants and the set of µX invariants.

The next definition will be used to provide an equivalent definition of both equivariant

and invariant functions.

Definition 2.13. Let µ ∶ G ×X → X be an action of a group G on a set X. An element

x ∈X such that

µ(a, x) = x

for all a ∈ G is called a fixed point of the action µ. The set of all fixed points of µ in X

denoted Xµ or XG, is the set

Xµ = {x ∈X ∣µ(a, x) = z, ∀a ∈ G}.

Let µX ∶ G × X → X and µY ∶ G × Y → Y be actions of G on X and Y. Then θ ∶

G ×F(X,Y ) → F(X,Y ) defined by

µ(a, f)[x] = µY (a, f(µX(a−1, x))) (2.7)
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is an action on the set of Y valued functions on X. The fixed point set of θ from Equation

(2.7), is equal to the set of Y valued equivariant functions on X with respect to µX and

µY .

Theorem 2.5. Let µX and µY be actions of a group G on the sets X and Y. A function

f ∶X → Y is equivariant if and only if f is in the set of fixed points,

F(X,Y )θ = {f ∶X → Y ∣ θ (a, f) (x) = f(x)∀x ∈X,a ∈ G} ,

where θ is the action from Equation (2.7).

Proof. First suppose that f ∈ F(X,Y )θ. Fix some x ∈X and a ∈ G. Since f is a fixed point

of θ then

θ(a, f)(x) = f(x)

µY (a, f (µ (a−1, x))) = f(x)

f (µX (a−1, x)) = µY (a−1, f(x)) .

So f satisfies Equation (2.5) and f is equivariant.

Conversely suppose that f is equivariant. Fix x ∈X and a ∈ G. Consider the value of

θ(a, f)(x) = µY (a, f (µX (a−1, x))) = µY (a,µY (a−1, f(x)))

by equivariance of f. Then using that µY is an action θ(a, f)(x) = f(x) and f ∈ F(X,Y )θ.

If the action µY in Equation (2.7) is trivial, that is

µY (a, y) = y,

then the equivariant functions with respect to µX and µY are the Y valued invariant func-

tions on X.
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Corollary 2.3. Let µY be the trivial action µY (a, y) = y. Then the set of equivariant

functions with respect to µX and µY is equal to the set of Y valued invariant functions of

µX .

That is the invariant functions of an action µX are the fixed points of the induced

action on functions, where the group G acts trivially on the codomain.

2.1.4 Commuting Actions

Now consider the situation where two groups H and K act on the same set X.

Definition 2.14. Let H and K act on a set X by µH ∶H ×X →X and µK ∶K ×X →X. If

µH(h, µK(k, x)) = µK(k, µH(h,x))

for all h ∈H, k ∈K, and x ∈X then the actions are said to commute.

The following lemma records some properties of commuting actions used in the thesis.

Lemma 2.1. Let H and K be groups and X be a set. Suppose that µH ∶ H ×X → X and

µK ∶ K ×X → X are actions of H and K on X respectively, and let πµH ∶ X → X/µH and

πµK ∶X →X/µK be the quotient maps. If the actions of H and K commute then:

(i) the group K acts on X/µH by ηK ∶K ×X/µH →X/µH given by

ηK (k, πµH(x)) = πµH (µK(k, x)) x ∈X, (2.8)

(ii) and the group H acts on X/µK by ηH ∶H ×X/µK →X/µK given by

ηH (h,πµK(x)) = πµK (µH(h,x)) x ∈X. (2.9)

(iii) The projection maps πµH ∶ X → X/µH and πµK ∶ X → X/µK are equivariant with

respect to the induced actions ηK and ηH respectively.
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(iv) There is a canonical bijection, τ ∶ (X/µK)/ηH → (X/µH)/ηK , given by

τ (πηH(πµK(x))) = πηK(πµH(x)), x ∈X.

Proof. Proof of part (i). First we show that the maps in Equation (2.8) are well defined.

That is for each k ∈K that ηK(k, ⋅) ∶X/µH →X/µH , is well defined. Suppose that x, y ∈X

define the same H orbit. Then there exists h ∈H such that µH(h,x) = y. Now consider

ηK(k, πH(y)) = πµH (µK(k, y))

= πµH (µK(k,µH(h,x)))

= πµH (µH(h,µK(k, x)))

= πµH (h,µK(k, x))

= ηK (k, pH(x)) ,

so ηK(k, ⋅) is well defined. Showing that ηK satisfies Definition 2.1 is clear and will be

omitted from the proof. The proof of part (ii) is similar to the argument for part (i).

Now we give the proof of part (iii). By construction the projection map πH satisfies

πµH (µK(k, x)) = ηK (k, πµH(x))

which proves that πµH is equivariant, and the argument for πµK is similar.

Finally for the proof of part (iv) we note that σ ∶ (X/µH)/ηK → (X/µK)/ηH given by

σ (πηK(πµH(x))) = πηH(πµK(x)),

satisfies τ ○ σ = Id(X/µH)/ηK and σ ○ τ = Id(X/µK)/ηH so σ = τ−1 and τ is a bijection which

completes the proof.
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The proof above is equivalent to saying that the diagram

X

X/µH X/µK

(X/µH)/ηK (X/µK)/ηH

πµKπµH

πηK πηH

τ

commutes.

By Lemma 2.8 if µG and µK are commuting actions on X then there is an induced

action of K on X/µG. The following theorem, an extension of Corollary 2.1, shows that if

K acts on a space Y and X covers Y by a complete invariant of µG which is also equivariant

with respect to the action of K, then Y can be considered a unique relabeling of X/G which

respects the actions of K.

Theorem 2.6 (Uniqueness of quotients by commuting actions). Let µG and µK be com-

muting actions on a set X and suppose that θK ∶ K × Y → Y is an action of K on a set

Y.

If f ∶X → Y is a complete surjective invariant and equivariant with respect to µK and

θK then the unique map f̃ ∶ X/µK → Y such that f̃ ○ πµG is an equivariant bijection with

respect to the induced action of K on X/µG, ηK , and the action θK .

Proof. Corollary 2.1 shows that the map f̃ ∶ X/µG → Y is a canonical bijection, so we will

show that it is equivariant with respect to ηK and θK . Let k ∈ K and [x]G ∈ X/µG. Pick
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any representative x ∈X such that πµG(x) = [x]G, and consider

f̃ (ηK (k, [x]G)) = f̃ (ηK (k, πµG(x))) = f̃ (πµG (µK (k, x)))

= f̃ ○ πµG (µK (a, x))

= f (µK(a, x))

= θK (a, f(x))

= θK (a, f̃ ○ πµG(x))

= θK (a, f̃ ([x]G)) ,

which completes the proof.

The theorem above verifies that the following diagram

X

X/G Y

fπµG

f̃

commutes for a unique f̃ which is an equivariant bijection with respect to the induced action

ηK of K on X/µG and θK on Y.

2.1.5 Stabilizers and Isotropy

Let µ ∶ G ×X → X be a left group action and let x ∈ X be fixed. Consider the map

µx ∶ G→X as defined in Equation 2.3,

µx(a) = µ(a, x),

where the image of µx is the orbit of the element x ∈ X. In general the map µx will not be

injective, however if µx(a) = µx(b), then a, b lie in the same left coset of a subgroup of G.
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Definition 2.15. Let µ ∶ G ×X → X be a group action of G on a set X. Then for each

x ∈X the set

Gx = {a ∈ G ∣µx(a) = x}, (2.10)

is a subgroup of G called the isotropy or stabilizer subgroup of x.

Lemma 2.2. Let µ ∶ G ×X → X be a left group action. Then for each x ∈ X there exist

a, b ∈ G such that µx(a) = µx(b) if and only if aGx = bGx.

Proof. Let x ∈ X be fixed, and suppose that a, b ∈ G are elements such that µx satisfies

µx(a) = µx(b). Then

µ(a, x) = µ(b, x)

which implies that a−1b ∈ Gx, and therefore bGx = aGx. Conversely if a, b ∈ G are such that

aGx = bGx then a = bh for some h ∈ Gx. Hence,

µ(b, x) = µ(ah, x) = µ(a, x)

and µx(a) = µx(b) completing the proof.

Remark 2.4. If µ is taken to be a right action in Lemma 2.2, then the condition

µ(a, x) = µ(b, x)

implies that a, b are in the same right coset, Gxa = Gxb, since ab−1 ∈ Gx.

Since Gx is a subgroup of G then the condition a ∼Gx b if and only if a and b are in

the same coset is an equivalence relation, and the quotient of G by ∼Gx is the space of

cosets G/Gx. Lemma 2.2 shows that the action map µx is a complete invariant of ∼Gx and

therefore the image of µx, the orbit of x, is canonically bijective with the coset space G/Gx.
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Moreover the induced bijection µ̃x is equivariant with respect to the action of G on G/Gx,

the space of right cosets, by left multiplication and µ on X.

Theorem 2.7. Let G act on G/Gx by left multiplication and let µ ∶ G×X →X be an action

of G on X. If x ∈X then the map µ̃x ∶ G/Gx →X, given by

µ̃x(aGx) = µx(a) = µ(a, x), (2.11)

is a well defined bijection of G/Gx with the orbit [x]µ which is equivariant with respect to

the standard action of G on G/Gx by left multiplication and the restriction of µ to [x]µ.

Proof. From Lemma 2.2 the map µx is a complete invariant of the equivalence relation on

G given by the right cosets of Gx, and µx is a surjective function onto the orbit of x. Then

Corollary 2.1 implies µ̃x is a well defined bijection of G/Gx and [x]µ. So we show that µ̃x

is equivariant. Let α ∈ G, and fix some aGx ∈ G/Gx. If a ∈ G is any representative of the

coset aGx then αa is a representative of αaGx, the image of aGx under left multiplication

by α. Now consider,

µ̃x(αaGx) = µx(αa) = µ(αa,x) = µ(α,µ(a, x)) = µ(α,µx(a)) = µ(α, µ̃x(aGx)),

which verifies that µ̃x is equivariant with respect to left multiplication by G on G/Gx and

µ and completing the proof.

Remark 2.5. let µ ∶ G ×X →X be an action.

1) The action µ is free as in Definition 2.2 if and only if for every x ∈ X the stabilizer

Gx is the trivial subgroup, Gx = {e}.

2) A point x ∈X is a fixed point of µ as in Definition 2.13 if and only if the stabilizer of

x is the whole group, Gx = G.

Now we show that if two points in X lie on the same orbit their stabilizer subgroups

are conjugate.
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Lemma 2.3. Let G act on a set X and let x ∈ X. If the point y ∈ X satisfies y = a ⋅ x for

some a ∈ G then the isotropy Gy is conjugate to the isotropy Gx by the element a,

Gy = aGxa−1.

Proof. Let h ∈ Gx be an element of the isotropy for x, so that h ⋅ x = x. We can substitute

a−1 ⋅ y = x to get h(a−1y) = a−1y. Isolating y on the right hand side gives

(aha−1) ⋅ y = y,

so aha−1 ∈ Gy and aGxa
−1 ⊂ Gy.

On the other hand let k ∈ Gy. Then a ⋅ x = y and k ⋅ (a ⋅ x) = a ⋅ x so a−1ka ∈ Gx. Then

k ∈ aGxa−1 and Gy ⊂ aGxa−1.

Example 2.1.1. Let µ be an action of G on X. Then for any x ∈ X by Theorem 2.7 the

map µ̃x ∶ G/Gx → X is a canonical bijection of G/Gx with the orbit of x. Suppose that

y ∈ [x]µ is some other point in the same orbit. Then since µx is surjective onto [x]µ there

exists a ∈ G such that y = a ⋅ x. By Lemma 2.3 the stabilizer of y is

Gy = aGxa−1.

Again by Theorem 2.7 the map µ̃y ∶ G/Gy →X,

µ̃y([b]Gy) = b ⋅ y

is a canonical bijection. The inverse µ̃−1
y ∶X → G/Gy is given by

µ̃−1
y (z) = µ̃−1

y (c ⋅ y) = cGy

for all z ∈X. We know this map is well defined since if c1 ⋅ x = c2 ⋅ x then c1Gx = c2Gx.
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Then there is a canonical bijection between the two coset spaces, µ̂ ∶ G/Gx → G/Gy

given by

µ̂ = µ̃−1
y ○ µ̃x

explicitly this is

µ̂(bGx) = µ̃−1
y ○ µ̃x(bGx)

= µ̃−1
y (b ⋅ x)

= µ̃−1
y (ba−1 ⋅ y)

= ba−1[e]Gya−1

= bGxa−1

That is once a representative of the conjugacy class for Gx is fixed there is a canonical

bijection between the coset spaces G/Gx and G/Gy for any y on the same orbit as x given

by the mapping Gx ↦ Gxa
−1.

When an action µ has only one orbit equal to the whole set X, then X is parameterized

by G/Gx for any point x ∈X. This motivates the definition below.

Definition 2.16. Let G be a group acting on a set X.

i) The group G acts transitively if for each x, y ∈X there exists a ∈ G such that a ⋅x = y.

ii) If G acts on X transitively, we call X a homogeneous space of G and if x ∈X then the

map µ̃x given as in Theorem 2.7 is a canonical equivariant bijection of X and G/Gx.

Remark 2.6. Note that if H is a subgroup of a group G then the left coset space G/H is

a homogeneous space of G when G acts on G/H by left multiplication,

a ⋅ xH = axH. (2.12)

Where the subgroup H is the isotropy subgroup of the identity coset eH ∈ G/H.
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For the diagonal action µk on Xk induced by an action µ ∶ G×X →X as in Definition

2.5, the stabilizer of a point (x0, . . . , xk−1) ∈ Xk must necessarily fix each element xi ∈ X

simultaneously. The next lemma characterizes the stabilizer subgroups for points in Xk

with respect to the diagonal action µk.

Lemma 2.4. Let µ ∶ G×X →X be a group action and µk ∶ G×Xk →Xk the corresponding

diagonal action of µ on k copies of X. Then the isotropy subgroup of (x0, . . . , xk−1) ∈ Xk

with respect to µk,

G(x0,...,xk−1) = Gx0 ∩Gx1 ∩ ⋅ ⋅ ⋅ ∩Gxk−1

where Gxi is the isotropy subgroup of xi with respect to µ.

The proof is straightforward and will be omitted.

2.1.6 Effectiveness

Definition 2.17. Let G act on a set X, then the subset G∗
X ⊂ G given by

G∗
X = {a ∈ G ∶ a ⋅ x = x, ∀x ∈X},

is a normal subgroup of G called the global isotropy of the action.

Remark 2.7. An action µ ∶ G ×X → X is effective as in Definition 2.3 if and only if the

global isotropy subgroup G∗
X = {e}.

Theorem 2.8. Let µ ∶ G × X → X be an action. The normal subgroup which is the

intersection over X of all stabilizer subgroups,

⋂
x∈X

Gx,

is equal to the global isotropy subgroup.

The proof is an immediate consequence of Lemma 2.4.
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Theorem 2.9. Let G be a group and H a subgroup of G. The action of G on the coset

space G/H by left multiplication is effective if and only if H contains no non-trivial normal

subgroups of G.

Proof. First assume that the action of G is effective. By contradiction suppose that H

contains a non-trivial normal subgroup N. Let n ∈ N be any non trivial element, n ≠ e.

Then fix some xH ∈ G/H. Let x ∈ G be a representative of xH. Since N is normal, there

exists some n′ ∈ N such that nx = xn′ and

nxH = xn′H = xH

since n′ ∈ H. This contradicts that G acts effectively so H cannot contain any normal

subgroups of G when the action of G is effective.

Now suppose that H contains no non-trivial normal subgroups of G. Let G∗ be the

global isotropy subgroup of the action by G. Let n ∈ G∗ and consider

neH = nH =H

since n ∈ G∗, and hence n is in H, the stabilizer subgroup of the identity coset eH ∈ G/H.

Then G∗ is trivial since it is normal in G and the action is effective by Remark 2.7.

Corollary 2.4. Let G be a group and Z(G) be the center of G,

Z(G) = {a ∈ G ∶ aba−1 = b, b ∈ G} .

If Z(G) ∩H ≠ {e} then the action of G on G/H by left multiplication is not effective.

2.2 Group Actions on Manifolds

When G is a Lie group acting on a smooth (C∞) manifold, we can define the concept

of a smooth action as in Boothby [3].
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Definition 2.18. Let M be a C∞ manifold, G a Lie group, and µ ∶ G ×M → M a group

action. If µ is a smooth function then we say that the action µ is a smooth group action.

Theorem 2.1 shows that the action µ is equivalent to a homomorphism Φµ ∶ G →

Perm(M) by Φµ(a) = µa where µa ∶M →M is defined by

µa(p) = µ(a, p), a ∈ G, p ∈M. (2.13)

If the set M has a smooth structure, G is a Lie group, and µ is a smooth action then the

maps µa from Equation (2.13) are diffeomorphisms of M to itself.

Since the manifolds M and G are equipped with topologies and µ is a smooth action

we can define the following local conditions which correspond to free and effective actions.

Definition 2.19. A Lie group G acting smoothly on a manifold M is said to be

1) locally free if at each point m ∈ M the isotropy subgroup Gm is a discrete subgroup

of G,

2) and locally effective if the global isotropy subgroup G∗
X is a discrete subgroup of G.

Let µ ∶ G ×M → M be a smooth action of an r−dimensional Lie group G on an

d−dimensional smooth manifold M. In summary the action is:

1. Free if Gm = {e} for all m ∈M.

2. Locally free if Gm is discrete for all m ∈M.

3. Effective if G∗
M = {e}.

4. Locally Effective if G∗
M is discrete.

5. Transitive if [x]µ =M for all and hence any x ∈M.

2.2.1 Homogeneous Spaces of Lie Groups

If µ ∶ G ×M →M is a smooth and transitive action of a Lie group G smooth manifold

M then for any point m ∈M the map µ̃m ∶ G/Gm →M as in Equation 2.11 is a canonical



31

equivariant bijection. As shown in Example 2.1.1 the classification of the homogeneous

spaces of G is equivalent to the classification of the subgroups of G up to conjugation.

The next theorem shows that the coset spaces of a closed subgroup H of a Lie group G

are manifolds, so the classification of the homogeneous spaces of G which are manifolds is

equivalent to classifying the closed subgroups H of G up to conjugation.

Theorem 2.10. Let H be a closed subgroup of a Lie group G, and let G/H be the set of

left cosets modulo H. Let π ∶ G→ G/H denote the natural projection π(a) = aH. Then G/H

has a unique (smooth) manifold structure such that

(a) π is C∞.

(b) There exist local smooth sections of G/H in G; that is, if aH ∈ G/H, there is an (open)

neighborhood W of aH and a C∞ map τ ∶W → G such that π ○ τ = Id.

Theorem 2.11. Let G be a Lie group and M a smooth manifold with a smooth transitive

group action µ ∶ G ×M →M. Then for any m ∈M the map µ̃m ∶ G/Gm →M as defined in

Theorem 2.7 is an equivariant diffeomorphism.

For proofs of these theorems see Warner [19] or Boothby [3].

If µ ∶ G ×M →M is a smooth action which is free then we are guaranteed a sufficient

number of independent local invariants to solve a number of local congruence problems, see

Olver [16] [17]. When the action µ is not free there are two common ways of geometric

significance to construct a corresponding free action from µ. The first is to consider the

induced action of G on submanifolds of M and their derivatives, which is guaranteed to

become free provided µ satisfies certain regularity conditions, see Adams and Olver [1] [2].

The other is to extend µ to the diagonal action µk since the stabilizers of an element in the

product space (x0, . . . , xk−1) ∈Mk is the intersection of the stabilizers for every point xi by

Lemma 2.4. There are examples where the product action does not become free as shown

in Olver [17], however in most examples the product action will become free on a suitable

invariant open dense subset of Mk.
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In order to find the points where µk will eventually become free we introduce the

following definition.

Definition 2.20. LetG/H be a homogeneous space. For any point (x0H,x1H, . . . , xk−1H) ∈

(G/H)k letHi = GxiH be the isotropy subgroup of the point xiH. The point (x0H,x1H, . . . , xk−1H)

is said to be in general position provided the subgroups Gk = ⋂0≤i≤kHi satisfy dim(Gk−1) −

dim(Gk) is maximal.

A point (x0H, . . . , xk−1H) ∈ (G/H)k is in general position provided that for each 0 ≤ i ≤

k − 1 the isotropy subgroup of (x0H, . . . , xk−1H) has minimal dimension among the points

in (G/H)k, so that the µi orbits of these points have maximal dimension.
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CHAPTER 3

Reduction to the Isotropy

In this chapter we show that the k point joint invariants of G acting on G/H by left

multiplication are determined by the k − 1 point joint invariants of H on G/H, by left

multiplication.

If µ ∶ G ×X → X is a group action, a subset K ⊂ X with the property that for each

x ∈X the intersection of the orbit of x with the subset K is a single point,

[x]µ ∩K = {k},

then K is called a cross section to the group action µ. The reduction formalizes the ob-

servation that H × (G/H)k−1 is a partial cross section to the orbits of µkG. That is if

(x0H, . . . , xk−1H) ∈ (G/H)k then the µkG orbit [(x0H, . . . , xk−1H)]G intersects H×(G/H)k−1

by the subset

H × [(z1H, . . . , zk−1H)]H ,

where [(z1H, . . . , zk−1H)]H is the µk−1
H orbit of the point (x−1

0 x1H, . . . , x
−1
0 xk−1H) for any

choice of representatives xi ∈ G of the cosets xiH ∈ (G/H). So a complete set of k − 1 point

joint invariants for the action of H give necessary and sufficient conditions for congruence

in (G/H)k. This construction is equivalent to considering two points (x0H, . . . , xk−1H),

and (y0H, . . . , yk−1H) in (G/H)k and by the transitivity of the standard action of G

on G/H by left multiplication, translate the first entry of each collection to the origin.

Once centered at the origin we restrict to using transformations that fix the origin, which

are the transformations in the isotropy subgroup H, in order to determine congruence of

(x−1
0 x1H, . . . , x

−1
0 xk−1H) and (y−1

0 y1H, . . . , y
−1
0 yk−1H) in (G/H)k−1.

In Section 3.3 we give an application of the reduction theorem where we consider the
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action of a group L on itself by left and right multiplication. Applying the reduction to

this case yields Theorem 3.3 which shows that the two point joint invariants are determined

by class functions on L. This important example will be further developed throughout the

thesis, see Theorem 4.4 and Chapter 7.

This chapter is organized as follows, Section 3.1 gives an overview of the main results,

and Section 3.2 provides the proofs. Section 3.3 develops the example described above. The

chapter concludes with Section 3.4 which proves a theorem relating the isotropy subgroups

of points in (G/H)k and (G/H)k−1 which are related by the reduction.

3.1 Overview of Reduction to Isotropy Results

In this section we summarize our results on the reduction to isotropy method for joint

invariants and its application to the congruence problem. Throughout let G be a group let H

be a proper subgroup of G. Consider the standard transitive action of G on a homogeneous

space G/H, and extend this action to (G/H)k by the diagonal action given in Definition 2.5.

The following theorem demonstrates that these orbit spaces (G/H)k/G and (G/H)k−1/H

are bijective.

Theorem 3.1. Let G act on (G/H)k and H act on (G/H)k−1 by the diagonal actions

induced by left multiplication.

The map Φ ∶ (G/H)k/G→ (G/H)k−1/H, given by

Φ([ (x0H,x1H, . . . , xkH) ]
G

) = [ (x−1
0 x1H, . . . , x

−1
0 x1H) ]

H

,

is a bijection of the orbit spaces, (G/H)k/G and (G/H)k−1/H.

The map Φ above is not canonical since it involves a choice of one of the factors

in (G/H)k to remove, but once this choice is made the map Φ is determined uniquely.

Corollary 3.1 to Theorem 3.1 below identifies the invariants for the G action on (G/H)k

with the invariants for the action of H on (G/H)k−1.
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Corollary 3.1. The identity

fG(x0H,x1H, . . . , xk−1H) = fH(x−1
0 x1H, . . . , x

−1
0 xk−1H), (3.1)

defines a unique G invariant function fG ∶ (G/H)k → Y for every H invariant function fH ∶

(G/H)k−1 → Y and conversely defines a unique H invariant function fH ∶ (G/H)k−1 → Y

for each G invariant function fG ∶ (G/H)k → Y.

Corollary 3.1 verifies that the diagram,

(G/H)k (G/H)k−1 Y

(G/H)k/G (G/H)k−1/H

πG

fG

fH

πH

Φ

f̂H
(3.2)

commutes for a uniqueG invariant fG for eachH invariant fH . Conversely if fG is given there

is a unique fH given by the identity in Equation (3.1) such that the diagram commutes. In

particular, Corollary 3.1 shows that the invariants of the diagonal action byG on (G/H)k are

in one to one correspondence with the invariants of the diagonal action of H on (G/H)k−1.

Remark 3.1. The reader may be inclined to introduce a map γ ∶ (G/H)k → (G/H)k−1

defined by

γ (x0H,x1H, . . . , xk−1H) = (x−1
0 x1H, . . . , x

−1
0 xk−1H)

to the diagram in Equation (3.2), but this map is not well defined.

While the map γ in Remark 3.1 is not well defined, in most examples one would like

to complete the diagram from Equation 3.2 to compute the invariants f̃ without having a
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concrete description of the orbit spaces (G/H)k/G and (G/H)k−1/H. Let ρ ∶ G/H → G be

any function satisfying the identity

ρ(xH) ⋅ xH = eH, (3.3)

for example the map ρ(xH) = x−1 for any representative x of the xH coset.

Lemma 3.1. Let ρ ∶ G/H → G be a map satisfying the identity in Equation (3.3), and let

T ∶ (G/H)k → (G/H)k−1 be defined by

T (x0H,x1H, . . . , xk−1H) = (ρ(x0H)x1H, . . . , ρ(x0H)xk−1H) . (3.4)

If fH ∶ (G/H)k−1 → Y is a Y valued H invariant then fH ○ T = fG is a Y valued G

invariant on (G/H)k which is independent of ρ and hence of T.

Lemma 3.1 verifies that the completed diagram,

(G/H)k (G/H)k−1 Y

(G/H)k/G (G/H)k−1/H

T

πG

fG

fH

πH

Φ

f̂H
(3.5)

commutes and fG is independent of the T chosen. This will be the main result used in

Chapters 6 and 7 to describe the joint invariants guaranteed by Corollary 3.1.

Finally, Theorem 3.1 also gives the following corollary about the congruence problem.

Corollary 3.2. Let X ∈ (G/H)k be given by X = (x0H, . . . , xk−1H). The map ζ ∶ (G/H)k →

(G/H)k−1/H given by

ζ ((x0H, . . . , xk−1H)) = [(x−1
0 x1H, . . . , x

−1
0 xk−1)]H ,

is a complete invariant for the diagonal action of G on (G/H)k.
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Corollary 3.2 gives a solution to the congruence problem, if X,Y ∈ (G/H)k are chosen,

and given by

X = (x0H, . . . , xk−1H) and Y = (y0H, . . . , yk−1H),

then [X]G = [Y ]G if and only if

[(x−1
0 x1H, . . . , x

−1
0 xk−1H)]

H
= [(y−1

0 y1H, . . . , y
−1
0 yk−1H)]

H
.

3.2 Proofs of Theorems.

The following section provides proofs of Theorem 3.1, Corollaries 3.1 and 3.2, and

Lemma 3.1.

3.2.1 Notation Used in Proofs

We start by defining actions used throughout this section. For any positive integer k

let µHk ∶Hk ×Gk → Gk defined by

µHk ((h0, h1, . . . , hk−1), (x0, x1, . . . , xk−1)) = (x0h
−1
0 , x1h

−1
1 , . . . , xk−1h

−1
k−1). (3.6)

where (x0, . . . , xk−1) ∈ Gk and (h0, . . . , hk−1) ∈ Hk. This is the action of Hk on Gk by right

multiplication, where the inverse is added to ensure it is a left action.

Now let µkG ∶ G ×Gk → Gk the diagonal action of G on Gk defined by

µkG(a, (x0, x1, . . . , xk−1)) = (ax0, ax1, . . . , axk−1) (3.7)
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for a ∈ G and (x0, . . . , xk−1) ∈ Gk. Then let the restriction of µkG to H in the first argument

be, µkH ∶H ×Gk → Gk, which is given by

µkH(h, (x0, x1, . . . , xk−1)) = (hx0, hx1, . . . , hxk−1) (3.8)

for h ∈H and (x0, . . . , xk−1) ∈ Gk. This is the diagonal action of H on Gk.

Let θHk ∶Hk ×Gk−1 → Gk−1 defined by

θHk ((h0, h1, . . . , hk−1), (y1, y2, . . . , yk−1)) = (h0y1h
−1
1 , h0y2h

−1
2 , . . . , h0yk−1h

−1
k−1) (3.9)

be an action of Hk on Gk−1.

Now we will denote the diagonal actions of G and H on (G/H)k by

δkG (a, (x0H, . . . , xk−1H)) = (ax0H, . . . , axk−1H), (3.10)

δkH (h, (x0H, . . . , xk−1H)) = (hx0H, . . . , hxk−1H) (3.11)

where a ∈ G, h ∈H, and (x0, . . . , xk−1) ∈ (G/H)k.

Due to the large number of actions and groups present in the proofs we will denote

the orbit spaces with a subscript representing which action generates the quotient, and the

elements with square brackets and a subscript with the name of the action. For example

the quotient of Gk by the action µHk will be

Gk/µHk ,

and the elements by [(x0, . . . , xk−1]µHk .

Now since the actions µkG in Equation (3.7) and µHk in Equation (3.6) commute on Gk

then there is an induced action of Hk on the quotient Gk/µkG, denoted ηHk ∶Hk ×Gk/µkG →
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Gk/µkG given by

ηHk

⎛
⎝
(h0, . . . , hk−1), [(x0, . . . , xk−1)]

µkG

⎞
⎠
= [(x0h

−1
0 , . . . , xk−1h

−1
k−1)]µkG (3.12)

And ηkG ∶ G ×Gk/µHk → Gk/µHk by

ηkG
⎛
⎝
a, [(x0, . . . , xk−1)]

µ
Hk

⎞
⎠
= [(ax0, . . . , axk−1)]µ

Hk
. (3.13)

Finally we will denote the quotient maps by subscripts given by the action name as

well. So πµ
Hk

∶ Gk → Gk/µHk is the quotient

πµ
Hk

((x0, . . . , xk−1)) = [(x0, . . . , xk−1)]µ
Hk
.

3.2.2 Lemmas for Proofs of Main Results

The following lemma identifies Gk/µkG with Gk−1 through an equivariant bijection with

respect to the actions ηHk as in Equation (3.12) and θHk as in Equation (3.9) and also

identifies the double quotient (Gk/µkG)/ηHk with Gk−1/θHk .

Lemma 3.2. For any positive integer k

i) the map φµkG
∶ Gk/µkG → Gk−1 defined by

φµkG
([(x0, x1, . . . , xk−1)]µkG) = (x−1

0 x1, . . . , x
−1
0 xk−1)

is a bijection of Gk/µkG and Gk−1 which is equivariant with respect to ηHk and θHk ,

ii) and the map ΦµkG
∶ (Gk/µkG)/ηHk → Gk−1/θHk defined by

ΦµkG

⎛
⎝
[[(x0, x1, . . . , xk−1)]µkG]

η
Hk

⎞
⎠
= [(x−1

0 x1, . . . , x
−1
0 xk−1]θ

Hk
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is the unique bijection of the orbit spaces which satisfies

ΦµkG
○ πη

Hk
= πθ

Hk
○ φµkG .

Proof. Consider the map fµkG
∶ Gk → Gk−1 given by

fµkG
(x0, x1, . . . , xk−1) = (x−1

0 x1, . . . , x
−1
0 xk−1) (3.14)

The map fµkG
is clearly surjective and equivariant with respect to the actions µHk and

θHk . We show it is a complete invariant. Fix some (x0, x1, . . . , xk−1) ∈ Gk. Then

fµkG
(µkG (a, (x0, x1, . . . , xk−1))) = fµkG(ax0, ax1, . . . , axk−1) = (x−1

0 x1, . . . , x
−1
0 xk−1),

so it is an invariant of the action µkG.

Now suppose that X = (x0, x1, . . . , xk−1) and Y = (y0, y1, . . . , yk−1), are two points in

Gk such that fµkG
(X) = fµkG(Y ), that is

(x−1
0 x1, . . . , x

−1
0 xk−1) = (y−1

0 y1, . . . , y
−1
0 yk−1). (3.15)

Then consider

µkG (y0x
−1
0 , (x0, x1, . . . , xk−1)) = (y0, y0x

−1
0 x1, . . . , y0x

−1
0 xk−1)

which is equal to Y by Equation (3.15). Now it is easily checked that fµkG
= φµkG ○ πµkG and

by Theorem 2.6 the map φµkG
is the unique bijection which is equivariant with respect to

ηHk and θHk .

From Theorem 2.4, with σ = Id, the map φµkG
induces the unique bijection ΦµkG

of orbit

spaces as claimed in part ii).
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Lemma 3.2 above proves that the diagram,

Gk

Gk/µkG Gk−1

(Gk/µkG)/ηHk Gk−1/θHk

π
µk
G

f
µk
G

φ
µk
G

πη
Hk

πθ
Hk

Φ
µk
G

commutes, where fµkG
is as defined in Equation (3.14).

Remark 3.2. The map fµkG
in Equation (3.14) is not a group homomorphism, which is

reflected in the fact that the quotient of Gk by the diagonal action of G does not inherit a

group structure through the equivariant bijection φµkG
.

Now we consider Gk/µHk and (G/H)k.

Lemma 3.3. i) The map φµ
Hk

∶ Gk/µHk → (G/H)k defined by

φµ
Hk

([(x0, x1, . . . , xk−1)]µ
Hk

) = (x0H,x1H, . . . , xk−1H)

is an equivariant bijection of Gk/µHk and (G/H)k with respect to ηkG on Gk/µkH given

in Equation (3.13) and δkG given in Equation (3.10) on (G/H)k.

ii) The map Φµ
Hk

∶ (Gk/µHk)/ηkG → (G/H)k/δkG defined by

Φµ
Hk

⎛
⎝
[[(x0, x1, . . . , xk−1)]µ

Hk
]
ηkG

⎞
⎠
= [(x0H,x1H, . . . , xk−1H]

δkG

is the unique bijection which satisfies

Φµ
Hk

○ πη
Hk

= πδkG ○ φµHk .
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The proof is similar to that of Lemma 3.2 and follows from showing the map fµ
Hk

∶

Gk → (G/H)k defined by

fµ
Hk

((x0, . . . , xk−1)) = (x0H, . . . , xk−1H) (3.16)

is a surjective function, a complete invariant of µkH , and equivariant with respect to the

actions µkG and δkG.

The unique bijections φµ
Hk

and Φµ
Hk

from Lemma 3.3 make the following diagram

Gk

(G/H)k Gk/µHk

(G/H)k/ηkG (Gk/µHk)/ηkG

πµ
Hk

fµ
Hk

πG

φµ
Hk

π
ηk
G

Φµ
Hk

commute, where fµk
Hk

is as defined in Equation (3.16). Note that Φ−1
µ
Hk

∶ (G/H)k/δkG →

(Gk/µHk)/ηkG is given by

Φ−1
µ
Hk

([(x0H,x1H, . . . , xk−1H]
δkG

) = [[(x0, x1, . . . , xk−1)]µ
Hk

]
ηkG

(3.17)

Lemma 3.4. The map Γ ∶ Gk−1/θHk → (G/H)k−1/δk−1
H defined by

Γ([(y1, y2, . . . , yk−1)]θ
Hk

) = [y1H,y2H, . . . , yk−1H]δk−1H

is the unique bijection on the orbit spaces which satisfies

Γ ○ πθ
Hk

= πδk−1H
○ fµ

Hk−1

where fµ
Hk−1 is as defined in Equation (3.16).
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Proof. The composition fµ
Hk−1 ○ πµHk−1 is a surjective invariant of the action θHk on Gk−1.

Moreover if X = (x1, . . . , xk−1) and Y = (y1, . . . , yk−1) are two points in Gk−1 such that

fµ
Hk−1 ○ πµHk−1 (X) = fµ

Hk−1 ○ πµHk−1 (Y ) then

[(x1H, . . . , xk−1H)]
δk−1H

= [(y1H, . . . , yk−1H)]
δk−1H

.

Then there exists an h0 ∈H and (h1, . . . , hk−1) ∈Hk−1 so that

θHk ((h0, h1, . . . , hk−1), (x1, . . . , xk−1)) = (y1, . . . , yk−1)

and fµ
Hk−1 ○πµHk−1 is a complete surjective invariant. So applying Theorem 2.6 or Theorem

2.1 completes the proof.

Lemma 3.4 proves that there exists a unique Γ such that the diagram

Gk−1 (G/H)k−1

Gk−1/θHk (G/H)k−1/δk−1
H

fµ
Hk−1

πθ
Hk

π
δk−1
H

Γ

commutes.

3.2.3 Proofs of the Main Results
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Proof of Theorem 3.1. The actions µkG and µHk on Gk given by Equations (3.7) and (3.6)

commute, so that by Lemma 2.1 the diagram

Gk

Gk/µHk Gk/µkG

(Gk/µHk)/ηkG (Gk/µkG)/ηHk

πµ
Hk

π
µk
G

π
ηk
G

πη
Hk

τ

commutes, where τ ∶ (Gk/µHk)/ηkG → (Gk/µkG)/ηHk given by

τ
⎛
⎝
[[(x0, x1, . . . , xk−1)]µ

Hk
]
ηkG

⎞
⎠
= [[(x0, x1, . . . , xk−1)]µkG]

η
Hk

as in Lemma 2.1 is a canonical bijection. Using the maps from Lemmas 3.2, 3.3, and 3.4,

Γ ○ΦµkG
○ τ ○Φ−1

µ
Hk

⎛
⎝
[(x0H, . . . , xk−1H)]

δkG

⎞
⎠
= Γ ○ΦµkG

○ τ
⎛
⎝
[[(x0, . . . , xk−1)]µ

Hk
]
ηkG

⎞
⎠

= Γ ○ΦµkG

⎛
⎝
[[(x0, . . . , xk−1)]µkG]

η
Hk

⎞
⎠

= Γ
⎛
⎝
[(x−1

0 x1, . . . , x
−1
0 xk−1)]

θ
Hk

⎞
⎠

= [(x−1
0 x1, . . . , x

−1
0 xk−1H)]

δk−1H

= Φ([(x0H, . . . , xk−1H)]
δkG

)

So Φ is a composition of bijections and hence a bijection proving the claim.

Note that Φ is uniquely determined up to the choice of fµkG
which reflects the choice of

which point to translate to the identity coset in the congruence problem.

We now give complete proof of Corollaries 3.1 and 3.2 to Theorem 3.1.
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Proof of Corollary 3.1. First let fH be an invariant of δk−1
H and let f̂H ∶ (G/H)k−1/δk−1

H → Y

be the unique map such that f̂H ○πδk−1H
= fH from Theorem 2.2. Then define fG = f̂H ○Φ−1 ○

πδkG
. We claim that fG is the unique δkG invariant that satisfies the identity,

fG(x0H, . . . , xk−1H) = fH(x−1
0 x1H, . . . , x

−1
0 xk−1H). (3.18)

Clearly fG is an invariant of δkG since πδkG
is. Let X = (x0H, . . . , xk−1H) ∈ (G/H)k. Then

fG (x0H, . . . , xk−1H) = f̂H ○Φ ○ πδkG (x0H, . . . , xk−1H)

= f̂H ([(x−1
0 x1H, . . . , x

−1
0 xk−1H)]

δk−1H

) ,

and since (x−1
0 x1H, . . . , x

−1
0 xk−1H) is a representative of the orbit [(x−1

0 x1H, . . . , x
−1
0 xk−1H)]

δk−1H

then

f̂H ([(x−1
0 x1H, . . . , x

−1
0 xk−1H)]

δk−1H

) = f̂H ○ πH (x−1
0 x1H, . . . , x

−1
0 xk−1H)

= fH (x−1
0 x1H, . . . , x

−1
0 xk−1H) .

Now suppose that FG is defined by the identity in Equation (3.18). We claim FG is a

well defined invariant of δkG, and that FG = fG. Let X = (x0H, . . . , xk−1H) ∈ (G/H)k and

suppose X = (x0h0H, . . . , xk−1hk−1H) is another representative. Then

FG (x0h0H, . . . , xk−1hk−1H) = fH (h−1
0 x−1

0 x1H, . . . , h
−1
0 x−1

0 xk−1H) = fH (x−1
0 x1H, . . . , x

−1
0 xk−1H)

as fH is an invariant of δk−1
H . Now consider

FG (ax0H, . . . , axk−1H) = fH (x−1
0 x1H, . . . , x

−1
0 xk−1H)
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and FG is an invariant of δkG. Consider,

FG (x0H, . . . , xk−1H) = fH (x−1
0 x1H, . . . , x

−1
0 xk−1H) = fG (x0H, . . . , xk−1H) ,

so that FG = fG completing the proof of this claim.

On the other hand let fG ∶ (G/H)k → Y be an invariant of δkG. Then there exists a

unique map f̂G ∶ (G/H)k/δkG → Y such that f̂G ○ πδkG = fG by Theorem 2.2. Define

fH = f̂G ○Φ−1 ○ πδk−1H
.

We claim that fH is the unique invariant of δk−1
H satisfying the identity in Equation (3.18).

Clearly fH is an invariant. First let (y1H, . . . , yk−1H) ∈ (G/H)k−1, and consider

fH(y1H, . . . , yk−1H) = f̂G ○Φ−1 ○ πδk−1H
(y1H, . . . , yk−1H)

= f̂G ○Φ−1 ([(y1H, . . . , yk−1H)]
δk−1H

)

= f̂G ([(H,y1H, . . . , yk−1H)]
δkG

)

= fG(H,y1H, . . . , yk−1H),

for any representative (H,y1H, . . . , yk−1H) of the orbit [(H,y1H, . . . , yk−1H)]
δkG
.

Now Let (x0H, . . . , xk−1H) ∈ (G/H)k this is a representative of the orbit,

[(H,x−1
0 x1H, . . . , x

−1
0 xk−1H)]

δkG
. So from the observation above

fG(x0H, . . . , xk−1H) = f̂G ([H,x−1
0 x1H, . . . , x

−1
0 xk−1H]

δkG
)

= fH (x−1
0 x1H, . . . , x

−1
0 xk−1H) ,

which verifies that fH satisfies the identity in Equation (3.18).
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Now we show uniqueness, Suppose that FH ∶ (G/H)k−1 → Y is given by the identity in

Equation (3.18), that is,

FH(y1H, . . . , yk−1H) = fG(H,y1H, . . . , yk−1H),

which is clearly well defined. We show that FH is an invariant of δk−1
H . Let h ∈ H and

consider

FH(hy1H, . . . , hyk−1H) = fG(H,hy1H, . . . , hyk−1H) = fG(H,y1H, . . . , yk−1H)

since h ∈H and fG is invariant under δkG. Now consider

FH(y1H, . . . , yk−1H) = fG(H,y1H, . . . , yk−1H) = fH(y1H, . . . , yk−1H)

which completes the proof.

Proof of Lemma 3.1. We show the subdiagram,

(G/H)k (G/H)k−1

(G/H)k/δkG (G/H)k−1/δk−1
H

T

π
δk
G

π
δk−1
G

Φ

of the diagram in Equation (3.5) commutes.

Consider (x0H,x1H, . . . , xk−1H) ∈ (G/H)k. The orbit of this point with respect to δkG

as defined in Equation (3.10) contains

(H,ρ(x0H)x1H, . . . , ρ(x0H)xk−1H)

so

[(x0H,x1H, . . . , xk−1H)]
δkG

= [(H,ρ(x0H)x1H, . . . , ρ(x0H)xk−1H)]
δkG
.
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Then using this equation we have

Φ ○ πδkG ((x0H,x1H, . . . , xk−1H)) = Φ([(H,ρ(x0H)x1H, . . . , ρ(x0H)xk−1H)]
δkG

)

= [(ρ(x0H)x1H, . . . , ρ(x0H)xk−1H)]
δk−1H

= πδk−1H
○ T ((x0H,x1H, . . . , xk−1H))

and the diagram commutes.

We now show the second part of the lemma. Let f ∶ (G/H)k−1 → Y be a Y valued H

invariant. Then consider two choices ρ and ρ′ satisfying Equation (3.3) which induce the

corresponding T and T ′ as in Equation (3.4). Then consider f ○ T and f ○ T ′. Since the

diagram in Equation (3.5) commutes then f̃ = f ○ T and f̃ = f ○ T ′. And since f̃ is unique

by Corollary 3.1 then f ○ T = f ○ T ′ which completes the proof.

Proof of Corollary 3.2. First we show that the map ζ is well defined. LetX = (x0H, . . . , xk−1H)

and pick another representative X = (x0h0H, . . . , xk−1hk−1H) Then consider

ζ (((x0h0H, . . . , xk−1hk−1H)) = [(h−1
0 x−1

0 x1h1H, . . . , h
−1
0 x−1

0 xk−1hk−1H)]
δk−1H

= [(x−1
0 x1H, . . . , x

−1
0 xk−1H)]

δk−1H

= ζ (((x0H, . . . , xk−1H))

so ζ is well defined.

Now we show that ζ is a complete invariant. Indeed consider ζ (δkG(a,X)) ,

ζ ((ax0H, . . . , axk−1H)) = [(x−1
0 a−1ax1H, . . . , x

−1
0 a−1axk−1H)]

δk−1H

= ζ ((x0H, . . . , xk−1H))

so ζ is an invariant. Now suppose that X,Y ∈ (G/H)k satisfy ζ(X) = ζ(Y ). Then there

exists an h ∈H such that

(hx−1
0 x1H, . . . , hx

−1
0 xk−1H) = (y−1

0 y1H, . . . , y
−1
0 yk−1H).



49

So now consider δkG (y0hx
−1
0 ,X) ,

(y0H,y0hx
−1
0 x1H, . . . , y0hx

−1
0 xk−1H) = (y0H,y1H, . . . , yk−1H)

and [X]δkG = [Y ]δkG and ζ is a complete invariant.

3.3 Symmetric Pair Example

Let L be a group. Then L naturally acts on itself by left multiplication and right

multiplication, which motivates the following definition.

Definition 3.1. Let L be a group, and G = L ×L. Let the map µsym ∶ G ×L → L be given

by

µsym ((a, b), x)) = axb−1 (3.19)

for (a, b) ∈ G and x ∈ L. This is the symmetric action of G on L.

Lemma 3.5. The symmetric action µsym is transitive on L and the subgroup Gdiag ⊂ G,

Gdiag = {(a, a) ∶ a ∈ L},

is the stabilizer subgroup of the identity, e ∈ L.

Proof. Fix x ∈ L, and let ρ ∶ L→ G be given by

ρ(x) = (x−1, e) (3.20)

so that

µsym (ρ(x), x) = µsym ((x−1, e), x) = x−1xe = e,

and the action is transitive since µsym ((ρ(x))−1 , e) = x for all x ∈ L.
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The isotropy of the identity e is all (a, b) ∈ G such that ab−1 = e so it is equal to Gdiag

as claimed.

Theorem 2.7 and Lemma 3.5 imply that G/Gdiag is canonically equivariantly bijective

with L where G acts on G/Gdiag by the standard action of left multiplication, denoted

δsym ∶ G ×G/Gdiag → G/Gdiag, and on L by the symmetric action, µsym. Moreover, if L is a

Lie group then Theorem 2.11 shows that G/Gdiag is canonically equivariantly diffeomorphic

to L.

Let Gdiag act on L by the restriction, ηsym, of µsym to Gdiag and let µconj ∶ L × L → L

be the conjugation action

µconj(a, x) = axa−1. (3.21)

Denote the induced diagonal action on Lk as in Definition 2.5 by µkconj,

µkconj (a, (x0, . . . , xk−1)) = (ax0a
−1, . . . , axk−1a

−1) .

Similarly let µksym and ηksym be the diagonal actions of G and Gdiag respectively. The next

lemma shows that the orbit spaces Lk/ηksym and Lk/µkconj are canonically bijective.

Lemma 3.6. Let Id be the identity map on Lk, and let πµkconj
∶ Lk → Lk/µkconj and πηksym ∶

Lk → Lk/ηksym be the quotient maps of Lk by the diagonal actions µkconj and ηksym respectively.

The map Ĩd ∶ Lk/ηksym → Lk/µkconj given by

Ĩd([(x0, . . . , xk−1)]ηksym) = [(x0, . . . , xk−1)]µkconj

is a canonical bijection which satisfies πµkconj
○ Id = πηksym ○ Ĩd.

Proof. Consider the identity map Id ∶ Lk → Lk. This map satisfies

Id (ηksym((a, a), (x0, . . . , xk−1))) = µkconj (a, (x0, . . . , xk−1)) .
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So by Theorem 2.4 with σ ∶ Gdiag → L given by σ(a, a) = a, the identity map induces a

unique bijection of the orbit spaces Ĩd ∶ Lk/ηksym → Lk/µkconj given by

Ĩd([(x0, . . . , xk−1)]ηksym) = [(x0, . . . , xk−1)]µkconj . (3.22)

such that πµkconj
○ Id = πηksym ○ Ĩd.

With k = 1 Lemma 3.6 states that Ĩd is the unique bijection which makes the diagram

L ×L L L

L ×L/G L/Gdiag L/µconjL

π
µ2sym

πηsym

Id

πµconj

Φ

Ĩd

commute.

Now consider the case of k point joint invariants of µsym. The map ρ from Equation

(3.20) is used to prove the following theorem.

Theorem 3.2. Every Y valued invariant of µksym is given by

f ○ T (x0, . . . , xk−1) = f(x−1
0 x1, . . . , x

−1
0 xk−1)

where f is a Y valued invariant of µk−1
conj.

The proof is a straightforward application of Lemma 3.1 and Lemma 3.6.

In the case of two point joint invariants of µsym Theorem 3.1 shows that the orbit spaces

(G/Gdiag ×G/Gdiag) /δ2
sym and (G/Gdiag) /ηsym are bijective by the map Φ. Then Lemma

3.5 identifies G/Gdiag with L and Lemma 3.6 shows that L/ηsym is canonically bijective with

L/µconj. That is (L ×L)/µ2
sym is bijective with L/µconj.

The following corollary of Theorem 3.2 shows that class functions, functions out of L

which are invariant under conjugation, determine all the invariants of µ2
sym.
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Corollary 3.3. Let T ∶ L ×L→ L given by

T (x0, x1) = x−1
0 x1.

Every Y valued class function f ∶ L→ Y determines an invariant of µ2
sym given by f ○ T,

f ○ T (x0, x1) = f(x−1
0 x1)

and every invariant of µ2
sym is of this form.

Finally Corollary 3.3 and Theorem 3.1 prove the following theorem.

Theorem 3.3. If {fα} is a set of class functions which form a complete set of invariants

for µconj then the functions {fα ○ T} are a complete set of two point invariants for µ2
sym.

In Chapter 7 we apply the above observation to compute complete invariants when L

is taken to be SU(2,R) and SL(2,R).

3.4 A Remark on Free Actions

This section shows that for each subset of (G/H)k−1 where the action of H is free

guarantees a corresponding subset of (G/H)k where G acts freely.

We start by showing that the stabilizer of a point Y ∈ (G/H)k−1 contains the stabilizer

of any point in the preimage of a map T ∶ (G/H)k → (G/H)k−1 satisfying the conditions of

Lemma 3.1.

Lemma 3.7. Let G be a group and H a subgroup. Let µkG and µk−1
H be the diagonal actions

given as in Definition 2.5. Suppose that ρ ∶ G/H → G is a map satisfying the identity in

Equation (3.3), and T ∶ (G/H)k → (G/H)k−1 is the map defined in Equation (3.4). Then if

Y = (y1H, . . . , yk−1H) ∈ (G/H)k−1 and HY is its stabilizer subgroup, the stabilizer subgroup

of any point X = (x0H, . . . , xk−1H) ∈ T−1(Y ) is conjugate to a subgroup of HY by ρ(x0H),

ρ(x0H)GXρ(x0H)−1 ⊂HY .
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Proof. Let Y be as given in the theorem and consider any X = (x0H, . . . , xk−1H) ∈ T−1(Y ).

Suppose that h ∈ GX the stabilizer forX. Then let ρ(x0H)hρ(x0H)−1 and let µG ∶ G×G/H →

G/H be the standard action of G on G/H by left multiplication. Consider

µG (ρ(x0H)hρ(x0H)−1, eH) = ρ(x0H)hρ(x0H)−1eH = ρ(x0H)hx0H = ρ(x0H)x0H = eH.

That is ρ(x0H)hρ(x0H)−1 ∈H. Now since T (X) = Y we have from Equation (3.4)

T (X) = (ρ(x0H)x1H, . . . , ρ(x0H)xk−1H) = (y1H, . . . , yk−1H) (3.23)

and therefore,

µk−1
H (ρ(x0H)hρ(x0H)−1, (y1, . . . , yk−1)) = (y1, . . . , yk−1)

so that ρ(x0H)hρ(x0H)−1 ∈HY , completing the proof.

Now we show that any invariant subset of (G/H)k−1 whereH acts freely by the standard

diagonal action of left multiplication gives an invariant subset of (G/H)k where G acts freely

by the standard diagonal action of left multiplication.

Theorem 3.4. Suppose that U ⊂ (G/H)k−1 is a H invariant subset where the action µk−1
H

is free. Let ρ ∶ G/H → G be a map satisfying the identity of Equation 3.3 and T ∶ (G/H)k →

(G/H)k−1 defined as in Equation (3.4). Then the action µkG is free on the G invariant set

T−1(U) ⊂ (G/H)k.

Proof. First we verify that T−1(U) is a G invariant subset of (G/H)k. Pick some point

X = (x1H, . . . , xk−1H) ∈ T−1(U) and let a ∈ G. The proof of invariance follows from the

next claim.

There exists some h ∈H such that ρ(ax0H)a = hρ(x0H). Using the identity in Equation

(3.3) gives

ρ(x0H)x0H = ρ(ax0H)ax0H
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and so there is some h ∈H which satisfies ρ(x0H)x0 = ρ(ax0H)ax0h
−1 for some h−1 ∈H.

Now consider T (µk(a,X)) and use the claim above to compute,

T (ax0H, . . . , axk−1H) = (ρ(ax0H)ax1H, . . . , ρ(ax0H)axk−1H)

= (hρ(x0H)x1H, . . . , hρ(x0H)xk−1H)

= µk−1 (h,T (X)) ,

and since T (X) ∈ U and U is H invariant then µk(a,X) ∈ T−1(U) verifying this subset is

G invariant.

Now finally if the action µk−1
H on U is free then by Lemma 3.7 the stabilizer of any

point in T−1(U) is conjugate to a subgroup of the trivial subgroup, that is it must be trivial

and the action on this subset is free.

When G is a Lie group acting on a product of homogeneous spaces (G/H)k, Theorem

3.4 shows that for the purpose of finding an open invariant subset of points where G acts

freely, one can look for an open invariant subset of (G/H)k−1 where H acts freely instead.

This along with the identification of invariants by Lemma 3.1 shows that if one can find

a complete set of independent local invariants on U ⊂ (G/H)k−1 where the action of H is

free, then on T−1(U) there is a corresponding complete set of independent local invariants

of G on an invariant open set where G acts freely.
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CHAPTER 4

Primitive Spaces

A foliation of a homogeneous space G/H by immersed submanifolds of dimension k

which satisfies that the elements of G acting by left multiplication map the immersed

submanifolds of the foliation to immersed submanifolds of the foliation is called an invariant

foliation, see Definition 4.4. The homogeneous spaces of a Lie group G which do not admit

invariant foliations are called primitive homogeneous spaces which are formally defined

in Definition 4.6. Section 4.2.2 gives an overview of the relationship between primitive

homogeneous spaces of Lie groups G/H and the corresponding Lie algebra subalgebra pairs

(g,h). We conclude this section with Theorem 4.4 and Corollary 4.4 show that the example

of Section 3.3 is a primitive homogeneous space when the group L is a simple Lie group.

This motivates taking L = SU(2,R) and L = SL(2,R) as minimal dimensional examples for

the simple non isomorphic Lie algebras sl2(R) and su2(R) in Chapter 7. Theorem 4.3 due to

Morosoff [13] classifies the Lie algebras of G and H when G/H is a primitive homogeneous

space under the assumption that G is not simple. This classification motivates applying the

reduction theory from Chapter 3 to the examples in Chapters 6 and 7.

4.1 Primitive Group Actions

First we consider a purely set based definition of what it means for an action of a group

G on a set X to admit an invariant equivalence relation.

Definition 4.1. Let G be a group acting on a set X and let ∼ be an equivalence relation

on X. Denote the equivalence class of x ∈X by [x]. If

[a ⋅ x] = a ⋅ [x]
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for all a ∈ G and equivalence classes [x] ∈ X̃, then ∼ is called a G−invariant equivalence

relation, or we say that ∼ is invariant under the action of G.

From this definition the proof of the next lemma follows easily.

Lemma 4.1. Let µ ∶ G ×X → X be a group action on X, let ∼ be an equivalence relation

on X, and let X̃ be the space of equivalence classes. If ∼ is invariant under the action of G

then

i) there is a natural action of G on X̃, µ̃ ∶ G × X̃ → X̃ given by

µ̃(a, x̃) = µ̃(a, x),

for x̃ ∈ X̃ and a ∈ G,

ii) and the quotient map π ∶X → X̃, given by π(x) = x̃, is equivariant with respect to G,

π(µ(a, x)) = µ̃(a, x̃).

Corollary 4.1. If f̃ ∶ X̃ → Y is an invariant of the G action on X̃ then f = f̃ ○ π is an

invariant of the G action on X.

With this definition of invariant equivalence relation we can define a primitive action

on a set X for any group G.

Definition 4.2. Let G act on a set X. If there are no non-trivial equivalence relations ∼

on X which are invariant under the action of G, then the action of G is called primitive.

This definition is too general to be of use in the category of smooth manifolds, so in

the next section we restrict our attention to a special class of equivalence relations defined

for smooth manifolds.

4.2 Primitive Homogeneous Spaces
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This section closely follows Golubitsky [10]. In order to give a suitable definition of

primitive for a Lie group action on a smooth manifold M, we define equivalence relations

that have equivalence classes given by a collection of k dimensional immersed submanifolds.

Definition 4.3. A k foliation, F, on M is a collection of k dimensional immersed subman-

ifolds {Fm}m∈M such that for all m,m′ ∈M

a) the point m ∈ Fm,

b) the submanifold Fm is connected and has countable base for its topology,

c) and either Fm = Fm′ or Fm ∩ Fm′ = ∅.

The unique submanifold of the foliation containing the point m is called the leaf through m

and F defines an equivalence relation on M by m ∼m′ if Fm = Fm′ .

Then Definition 4.1 motivates the following class of foliations on M.

Definition 4.4. Let F be a foliation on M and let G be a group acting on M. Then F is

said to be invariant under the action of G if

aFm = Fam

for all a ∈ G, m ∈M.

The trivial foliations of M into points, i.e. F =M, and into the connected components

of M are always invariant under the action of G.

Definition 4.5. Let G be a Lie group acting on a smooth manifold M. If the only foliations

of M which are invariant under the action of G are the trivial foliations into points or

connected components, then the action of G is called primitive.

Motivated by Definition 4.2, we are interested in the possible homogeneous spaces G/H,

for closed subgroups H of G, where the action of G on G/H is primitive.

Definition 4.6. Let G be a Lie group and H a closed subgroup. If G acts primitively on

G/H then we call G/H a primitive homogeneous space.
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The primitive and transitive actions of a Lie group G on a smooth manifold M were

first examined in their infinitesimal form by Lie using vector field systems in Rn, which have

been classified in low dimensions see Olver [16] and Doubrov [6].

Primitive homogeneous spaces are classified by closed subgroups H which satisfy the

following maximality condition.

Definition 4.7. Let G be a Lie group and H a proper Lie subgroup. If for any Lie subgroup

K with H ⊂K ⊂ G then dim(H) = dim(K) or dim(K) = dim(G), the subgroup H is called

a maximal Lie subgroup of G.

If H is not a maximal Lie subgroup and contained in a closed subgroup, then the next

theorem shows how to construct a foliation on G/H that is invariant under the action of G.

Theorem 4.1. Let G be a Lie group and H a proper closed Lie subgroup of G. Let H be

nonmaximal, let K be a Lie subgroup such that H ⊂ K ⊂ G, and let q ∶ G/H → G/K be a

map given by

q([a]H) = [a]K . (4.1)

If K is closed, then there is a non-trivial foliation on G/H invariant under the action

of G, F = {F[a]H ∣ [a]H ∈ G/H}. Where F[e]H = q−1([e]K)0 is the connected component of

q−1([e]K) and the leaves F[a]H are defined by

F[a]H = aF[e]H .

Proof. Since K is closed G/H and G/K are manifolds, and q is well defined since H ⊂ K.

Let πH ∶ G→ G/H and πK ∶ G→ G/K be the canonical quotient maps. Then for any a ∈ G

q ○ πH(a) = q ([a]H) = [a]K = πK(a)
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and q ○πH = πK . So since πH and πK are smooth surjective submersions then q is a smooth

surjective submersion. Moreover q is an equivariant map with respect to the action of G on

G/H and G/K since

q (a[e]H) = q ([a]H) = [a]K = a[e]K = aq ([e]H) .

Then since q is a submersion q−1([e]K) is an embedded submanifold of G/H with dimension

dim (q−1([e]K) = dim(G/H) − dim(G/K) = dim(K) − dim(H),

which is positive and strictly less than dim(G) by assumption, see Boothby [3] for the proof

of this statement.

We now show that q−1([e]K) is invariant under the action of K ⊂ G. Let k ∈ K and

consider the map defined by the action, k ∶ G/H → G/H given by k([x]H) = [kx]H . We

claim that k restricts to a smooth map from q−1([e]K) to itself. Consider by applying k to

q−1([e]K), using equivariance, and that K is the stabilizer of [e]K in G gives

q(kq−1([e]K)) = kq(q−1([e]K)) = k[e]K = [e]K

so kq−1([e]K) ⊂ q−1([e]K). Moreover since q−1([e]K) is an embedded submanifold then the

restriction of k is smooth, and in fact a diffeomorphism since k−1 ∈K is its inverse.

So, F, is a family of embedded submanifolds on G/H. We claim that if [a]H = [a′]H

then F[a]H = F[a′]H so that F[a]H is well defined. Since a = a′h for some h ∈ H then the

claim will follow from showing hF[e]H = F[e]H for all h ∈H.

Fix some h ∈ H. Then since h[e]H = [e]H as H ⊂ G is the stabilizer subgroup of [e]H

then [e]H ∈ hF[e]H . As h ∈ K from the claim above hF[e]H ⊂ q−1([e]K) and h restricts to a

diffeomorphism of q−1([e]K) to itself. In particular h is a homeomorphism, so hF[e]H is a

connected component of q−1([e]K) containing [e]H and therefore hF[e]H = F[e]H , so F[a]H

is well-defined.

Now we show that F is a non-trivial foliation of G/H which is invariant under the action
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of G. Clearly if F is a foliation, it will be invariant under the action of G by construction.

Moreover F is non-trivial since the dimension of F[e]H is dim(K)−dim(H) which is positive

and less than dim(G) by hypothesis.

We now check Definition 4.3. First if [a]H ∈ G/H then [a]H ∈ F[a]H = aF[e]H so F

satisfies part a) of Definition 4.3.

Now, F[e]H is the connected component of an embedded submanifold so it is connected

submanifold of G/H, and since a ∶ G/H → G/H is a diffeomorphism then F[a]H = aF[e]H is

connected as well, and F satisfies part b) of Definition 4.3.

Lastly we show elements of F are pairwise disjoint. Suppose that F[a]H ∩ F[b]H ≠ ∅.

Since q is equivariant then F[a]H ⊂ q−1([a]K) and using the definition of F[a]H gives

F[a]H = aF[e]H = aq−1 ([e]K)0 .

So by applying q we have q(F[a]H) = [a]K . Hence, q−1 ([a]K) ∩ q−1 ([b]K) ≠ ∅, and by

applying q to this intersection [a]K = [b]K , so b = ak for some k ∈K.

We claim this forces F[a]H = F[b]H , which will follow from showing kF[e]H = F[e]H since

the map a ∶ G/H → G/H is a diffeomorphism. As above kF[e]H is a connected component

of q−1([e]K). Then since

bF[e]H ∩ aF[e]H = akF[e]H ∩ aF[e]H ≠ ∅,

there is a point in the intersection and [x]H , [y]H ∈ F[e]H such that ak[x]H = a[y]H . Then

there is a point k[x]H = [y]H in the intersection kF[e]H ∩F[e]H , and as above kF[e]H = F[e]H .

So part c) is satisfied showing that F is a foliation and completing the proof.

The foliation on G/H is determined by the fibers of the map q from Equation (4.1),

not the orbits of K acting on G/H by left multiplication.

The next lemma demonstrates that every invariant foliation of G/H comes from a

subgroup of G containing H.
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Lemma 4.2. Let H be a closed subgroup of G. There exists a surjective correspondence from

the set of all Lie subgroups of codimension k in G containing H to the set of all foliations

of G/H of codimension k invariant under the action of G.

For the proof see Golubitsky [10].

Corollary 4.2. Let G be a Lie group and H a closed Lie subgroup. The action of G on

G/H is primitive if and only if H is a maximal Lie subgroup.

Corollary 4.2 shows that classifying the possible primitive homogeneous spaces of G is

equivalent to classifying the closed maximal subgroups of G.

We now use Corollary 4.2 to verify the following example is a primitive homogeneous

space.

Theorem 4.2. Let L be a group containing no normal subgroups, and let G = L×L act on

L by the action µsym as in Definition 3.1. The action µsym is primitive.

Proof. First L is a homogeneous equivariantly bijective with G/Gdiag from Lemma 3.5.

Now we show that

Gdiag = {(a, a) ∣a ∈ L}

is a maximal subgroup (in the sense of groups). Let K be a subgroup such that Gdiag ⊂K.

Then (a, b) ∈ K if and only if (ab−1, e) ∈ K. This follows from (a, b) = (ab−1, e)(b, b) and

(b, b) ∈ Gdiag ⊂ K. Now let K` = {x ∈ L ∶ (x, e) ∈ K}. We claim that K` is normal in L. Let

a ∈ L and x ∈K`, consider

(axa−1, e) = (a, a)(x, e)(a, a)−1 ∈K

since Gdiag ⊂ K which proves the claim. Now, since L contains no non trivial normal

subgroups, there are two cases. Either K` = {e} and K = Gdiag or (xy−1, e) ∈ K for all

xy−1 ∈ L and K = G. This verifies that Gdiag is maximal and by Corollary 4.2 the action of

G on G/Gdiag is primitive.
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Theorem 4.2 also holds under the weaker assumption that L is a simple Lie group

(where it may have a discrete center), see Theorem 4.4, but requires an understanding of

the relationship between a primitive homogeneous space ,G/H, and the corresponding Lie

algebra-subalgebra pair (g,h).

The pair (G,Gdiag) in Theorem 4.2 along with the involutive automorphism, σ ∶ G→ G,

given by (a, b) ↦ (b, a) is a symmetric pair as defined in Helgason [11]. Moreover in the case

where L is compact, for example if L = SU(2,R), then the pair (G,Gdiag) is a Riemannian

symmetric pair.

4.2.1 Reduction to Effective

In this section we consider the case where the action of G on G/H is not effective. If G∗

is the global isotropy, then the action of G can be reduced to an effective action of Ĝ = G/G∗

which is indistinguishable from the action of G in the sense that the images aG∗xH = axH

for all a ∈ G and aG∗ ∈ Ĝ. See page 33 of Bredon [5] and the book by Olver [16] for more

information on this reduction.

Lemma 4.3. Let G be a Lie group, H a closed Lie subgroup, G∗ be the global isotropy

subgroup, and Ĝ = G/G∗.

i) The action of G on G/H induces a transitive and effective action of Ĝ on G/H given

by

aG∗ ⋅ xH = axH (4.2)

and the stabilizer subgroup of eH ∈ G/H is Ĥ =H/G∗.

ii) The group G acts on Ĝ/Ĥ by

a ⋅ xĤ = π(a)xĤ (4.3)
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where π ∶ G→ Ĝ is the quotient homomorphism, and there is a canonical G−equivariant

diffeomorphism ϕ ∶ G/H → Ĝ/Ĥ defined by

ϕ(aH) = a ⋅ eĤ = π(a)Ĥ

for all a ∈ G.

Proof. We first prove part i). The action of Ĝ on G/H given in Equation (4.2) is well

defined since G∗ is the global isotropy, and the action is transitive because the action of G

is. Let aG∗ ∈ G/G∗, if

aG∗xH = axH = xH

for all xH ∈ G/H then a ∈ G∗ and so the action is effective. The isotropy subgroup of

eH ∈ G/H is Ĥ = {aG∗ ∣a ∈H} =H/G∗ completing the proof of this claim.

Now we prove part ii). The action of G on Ĝ/Ĥ given in Equation (4.3) is well defined

and transitive since π ∶ G → Ĝ is a surjective homomorphism. The stabilizer subgroup of

eĤ using the action of G on Ĝ/Ĥ is the subset of all a ∈ G such that a ⋅ eĤ = π(a)eĤ = eĤ

so a ∈ π−1(eĤ) =H. By Theorem 2.11 there is a diffeomorphism ϕ ∶ G/H → Ĝ/Ĥ given by

ϕ(aH) = a ⋅ eĤ = π(a)Ĥ,

which is equivariant with respect to the action of G.

Note that if G acts smoothly and locally effectively on G/H, then the subgroup G∗ is

discrete and the dimensions dim (Ĝ) = dim(G) and dim (Ĥ) = dim(H).

The we will show that one of the actions Lemma 4.3 is primitive if and only if the other

is in Corollary 4.5, but the proof needs the following result.

Lemma 4.4. Let G act on smooth manifolds M and N. If ϕ ∶ M → N is an equivariant

diffeomorphism then the action of G on M is primitive if and only if the action of G on N

is primitive.



64

Proof. Since ϕ is a diffeomorphism the manifolds M and N have the same dimension,

d = dim(M) = dim(M).

Suppose that the action of G on N is primitive and let F be a non trivial foliation

on M which is invariant under the action of G. The leaves of F are k dimensional with

0 < k < d since F is a non trivial foliation. Let F̂ = ϕ(F ), which is a foliation on N because

ϕ is a diffeomorphism. Moreover the leaves of F̂ satisfy

F̂n = ϕ (Fϕ−1(n))

for all n ∈ N.

We now show that F̂ is an invariant under the action of G on N. Indeed let a ∈ G. The

map ϕ−1 is equivariant, so consider

aF̂n = aϕ (Fϕ−1(n))

= ϕ (aFϕ−1(n))

= ϕ (Fa⋅ϕ−1(n))

= ϕ (Fϕ−1(a⋅n))

= F̂a⋅n.

Then F̂ is invariant under the action of G on N. The action of G on N is primitive, so F̂

is trivial, and dim(Fn) is either 0 or d, contradicting that F is a non-trivial foliation.

The converse is similar.

Lemma 4.5. The action of G on G/H is primitive if and only if the action of Ĝ on Ĝ/Ĥ

is primitive.

Proof. We first show that a foliation on Ĝ/Ĥ is invariant under the action of G if and only

if it is invariant under the action of Ĝ. Let F̂ be a foliation of Ĝ/Ĥ which is invariant under
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the action of G on Ĝ/Ĥ. Fix an element a ∈ G. Then,

a ⋅ F̂Ĥ = π(a)F̂Ĥ = F̂π(a)⋅Ĥ = F̂a⋅Ĥ

and F̂ is invariant under the action of G. Conversely suppose F̂ is a non trivial foliation

invariant under the action of G on Ĝ/Ĥ. Fix some element â ∈ Ĝ. Pick any representative

element a ∈ G such that π(a) = â, and consider

âF̂Ĥ = π(a)FĤ = a ⋅ FĤ = Fa⋅Ĥ = FâĤ ,

so F̂ is invariant under the action of G on Ĝ/Ĥ and proving the claim.

The claim above shows that the action of G on Ĝ/Ĥ is primitive if and only if the

action of Ĝ on Ĝ/Ĥ is. Since ϕ is an equivariant bijection for the action of G on G/H and

Ĝ/Ĥ Lemma 4.4 shows that the action of G on Ĝ/Ĥ is primitive if and only if the action

of G on G/H is. The two statements together finish the proof.

Lemma 4.3 and Corollary 4.5 justify that one can assume the action of G on G/H is

effective without loss of generality. Furthermore, from Theorem 2.9, the action of G on

G/H is effective if and only if H contains no normal subgroups of G. This motivates the

following definition as in Golubitsky [10].

Definition 4.8. Let G be a Lie group and P be a proper closed subgroup satisfying

1) The action of G on G/P is primitive.

2) P contains no normal subgroups of G.

Then P is called a primitive subgroup, and (G,P ) a primitive pair.

Note that if P is a maximal subgroup which contains no proper normal subgroups of

G Corollary 4.2 implies P is a primitive subgroup and (G,P ) is a primitive pair.

Classifying the primitive pairs (G,P ) gives a classification of primitive homogeneous

spaces. Note that the subgroup Gdiag ⊂ G = L×L from Theorem 4.2 is a primitive subgroup
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since it contains no normal subgroups of G. However if we instead assume that L is a simple

Lie group, so that its Lie algebra contains no ideals, Gdiag may contain a discrete normal

subgroup and would not satisfy part 2) of Definition 4.8.

In the next section we present a classification of primitive homogeneous spaces via

classifying the possible Lie algebra subalgebra pairs that a primitive homogeneous space

can have.

4.2.2 Primitive Lie algebras

In the previous section Corollary 4.2 characterized when an action of a Lie group G

on G/H is primitive in terms of maximal subgroups H of G. Now we show how this notion

of primitive can be characterized in terms of Lie algebras. We begin with the following

definition.

Definition 4.9. Let g be a Lie algebra and h a proper Lie subalgebra. If for every subal-

gebra, k, satisfying h ⊂ k ⊂ g then k = h or k = g, then the subalgebra h is maximal.

The following corollary to Lemma 4.2 characterizes primitive homogeneous spaces in

terms of their Lie algebra-subalgebra pairs.

Corollary 4.3 (To Lemma 4.2). Let G be a Lie group and H a closed Lie subgroup with g

and h their respective Lie algebras.

i) If h ⊂ g is a maximal subalgebra then the action of G on G/H is primitive.

ii) If the action of G on G/H is primitive and H is connected then h ⊂ g will be a

maximal subalgebra.

iii) If H is connected then the action of G on G/H is primitive if and only if the Lie

algebra h is a maximal subalgebra of g.

Proof. First we prove part 4.3. Suppose that F is an invariant k dimensional foliation on

G/H. Then there is a Lie subgroup K of codimension k in G which contains H by Lemma

4.2. The connected component of H is a subgroup of K and therefore the Lie algebra k



67

of K contains h. Now by maximality of h in g then the codimension k of k is either 0 or

dim(G/H) and the foliation is trivial.

Now we prove part ii). Suppose that h ⊂ k ⊂ g for a Lie subalgebra k of g. Then there

is a connected subgroup K of G such that H ⊂ K ⊂ G. Since the action of G on G/H is

primitive, then there are no invariant foliations of G/H and by Lemma 4.2 if k = codimG(K)

then k = codimG(H) or k = 0. In the former case since dim(h) = dim(k) and h ⊂ k then h = k.

In the latter case dim(k) = dim(g) and k ⊂ g so k = g.

The final part follows from the previous two claims.

This motivates the following infinitesimal analog of Definition 4.8, as originally used

by Morosoff [13].

Definition 4.10. Let g be a Lie algebra, and p a subalgebra. If p satisfies

i) p is a proper subalgebra,

ii) p is a maximal subalgebra of g,

iii) and p contains no proper ideals of g

then p is called a primitive Lie subalgebra and the pair (g,p) is a primitive pair.

Let G be a Lie group and H a connected closed subgroup and let g and h be their

respective Lie algebras. Then if (G,H) is a primitive pair, (g,h) is a primitive pair. On

the other hand if we suppose that (g,h) are a primitive pair then H may contain a discrete

normal subgroup of G so that the action may only be locally effective and would not be a

primitive subgroup of G since it fails part 2) of Definition 4.8.

Then given a Lie group G with Lie algebra g, classifying the primitive subalgebras of g

classifies the possible primitive homogeneous spaces G/H where H is connected. The study

of these subalgebras and their connection to primitive actions was initiated by the authors

Ochai [15], Morosoff [13], Komrakov [12], and Dynkin [8]. It is interesting to note that in

the case where g is simple, part iii) of Definition 4.10 is trivially satisfied, and classifying

the primitive subalgebras reduces to classifying all maximal subalgebras of g.
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Suppose that G is not simple so that the Lie algebra g of G is not simple. The primitive

subalgebras of g were classified in one of the main results of Morosoff [13].

Theorem 4.3 (Morosoff). Let g be a non-simple Lie algebra and let p be a primitive

subalgebra.

i) If g is not semi simple then there exists an Abelian ideal i in g such that

g = p ⋉ i,

where p acts faithfully and irreducibly on i.

This is the affine case.

ii) If g is semi simple then there exists a simple l such that g = l⊕ l and p = {(x,x) ∶ x ∈

l} = gdiag.

This the symmetric case.

For the proof see Golubitsky [10] or Morosoff [13].

Now we return to the setup of Theorem 4.2 but with the weaker assumption that L is

a simple Lie group, which will be of interest for the examples in Chapter 6 and 7.

Theorem 4.4. Let L be a Lie group and let G = L×L act on L by the action µsym given in

Definition 3.1. If L is a simple Lie group then the action is primitive and L is a primitive

homogeneous space of G.

Proof. From Lemma 3.5 the group L is equivariantly diffeomorphic to G/Gdiag where Gdiag =

{(a, a) ∣a ∈ L} and G acts on G/Gdiag by left multiplication.

We prove that the Lie algebra, gdiag, of Gdiag, is maximal. Let l be the Lie algebra of

L, and l ⊕ l = g be the Lie algebra of G. Since gdiag = {(x,x) ∣x ∈ g} ≃ l it is simple. We

show it is also maximal. Suppose k is a subalgebra such that gdiag ⊂ k ⊂ g, and note that

k = {(x, y) ∣x − y ∈ k`}, as

(x, y) = (x − y,0) + (y, y)
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and (y, y) ∈ k. Now consider the subalgebra kl = {x ∈ l ∣ (x,0) ∈ k}. We claim that k` is an

ideal of l. Indeed if z ∈ l and x ∈ k` then

([x, z],0) = [(x,0), (z, z)] ∈ k

since gdiag ⊂ k, so [z, x] ∈ k`. Then either k = g or k = {0} and gdiag is a maximal subalgebra.

Finally, by Corollary 4.3 part i) the action will be primitive completing the proof.

Note that the pair (G,Gdiag) in Theorem 4.2 may not be a primitive pair as in Definition

4.8 as the subgroup Gdiag may contain a discrete normal subgroup of G failing part 2) of

the definition. However, the Lie algebra of G = L×L is l⊕ l where l is a simple Lie algebra,

and the Lie algebra of Gdiag is

gdiag = {(x,x) ∣x ∈ g}

which is isomorphic to l and therefore gdiag is simple. This observation proves the following

corollary of Theorem 4.4.

Corollary 4.4. The Lie algebra subalgebra pair (g,gdiag) is a primitive pair of type ii) in

the classification Theorem 4.3.

Remark 4.1. If G/H is a primitive homogeneous space and G is simple and H is connected

Corollary 4.3 states that the Lie subalgebra h must be maximal. However, classifying the

possible Lie algebra subalgebra pairs when H is not connected and G is simple is more

complicated. There are primitive homogeneous spaces G/H where h is not maximal, this

is the main focus of Golubitsky [10]. An example is presented below in Section 5.3 in the

case of SL(2,R). In the case where G is not a simple Lie group and G/H is a primitive

homogeneous space h will be a maximal subalgebra of g and the classification of primitive

subalgebras in Theorem 4.3 is the same as classifying the possible Lie algebra-subalgebra

pairs for primitive homogeneous spaces.
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CHAPTER 5

Two Dimensional Primitive Homogeneous Spaces of PSL(2,R).

There are three non conjugate one dimensional subalgebras, l, h, and so2(R) of sl2(R)

which have bases

` =
⎡⎢⎢⎢⎢⎢⎣

0 0

1 0

⎤⎥⎥⎥⎥⎥⎦
h =

⎡⎢⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎥⎦
s =

⎡⎢⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎥⎦
(5.1)

respectively. Then

L(t) =
⎡⎢⎢⎢⎢⎢⎣

1 0

t 1

⎤⎥⎥⎥⎥⎥⎦
, H(t) =

⎡⎢⎢⎢⎢⎢⎣

et 0

0 e−t

⎤⎥⎥⎥⎥⎥⎦
, and SO(t) =

⎡⎢⎢⎢⎢⎢⎣

cos(t) − sin(t)

sin(t) cos(t)

⎤⎥⎥⎥⎥⎥⎦
(5.2)

for all t ∈ R are the unique one parameter subgroups such that L̇(0) = `, Ḣ(0) = h, and

˙SO(0) = s. Note that the images L(R), H(R), and S(R) = SO(2,R) are one dimensional

subgroups of SL(2,R). Throughout this section we will abuse notation and denote the

images L(R) = L, H(R) =H, and SO(R) = SO(2,R).

Corollaries 4.2 and 4.3 allow us to identify which of the homogeneous spaces SL(2,R)/L,

SL(2,R)/H, SL(2,R)/SO(2,R) are primitive.

Lemma 5.1. The spaces SL(2,R)/L and SL(2,R)/H are not primitive homogeneous spaces

and SL(2,R)/SO(2,R) is a primitive homogeneous space.

Proof. Let B0 be the two dimensional connected subgroup of the lower triangular matrices

in SL(2,R). Then since L,H ⊂ B0 they are not maximal, and by Corollary 4.2 the first

claim follows.

For the second claim we note that SO(2,R) is connected so by Corollary 4.3 part

iii) SL(2,R)/SO(2,R) is primitive if and only if so2(R), as defined in Equation (5.1) is a



71

maximal subalgebra of sl2(R). Let k be a two dimensional Lie algebra such that so2(R) ⊂

k ⊂ sl2(R). Let

x =
⎡⎢⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎥⎦

be a basis for so2(R), and extend this to a basis for k, by some matrix

y =
⎡⎢⎢⎢⎢⎢⎣

t u

v −t.

⎤⎥⎥⎥⎥⎥⎦

Then by closure, the bracket

[x, y] =
⎡⎢⎢⎢⎢⎢⎣

−(u + v) 2t

2t u + v

⎤⎥⎥⎥⎥⎥⎦

is also in k. However [x, y] is linearly independent of x and y, so k would be three dimensional

which is a contradiction. Therefore the action of SL(2,R) on SL(2,R)/SO(2) is primitive.

The subgroup SO(2,R) of SL(2,R) contains the discrete normal subgroup of SL(2,R)

given by N = {±I}, so by Theorem 2.9 the action of SL(2,R) on SL(2,R)/SO(2,R) is not

effective and (SL(2,R),SO(2,R)) is not a primitive pair since it does not satisfy part 2) of

Definition 4.8.

Lemma 5.2. The standard action of SL(2,R) on SL(2,R)/SO(2,R) has global isotropy

subgroup given by the center of SL(2,R), the normal subgroup N = {±I}.

Proof. Let G∗ be the global isotropy subgroup of SL(2,R) for the standard action of

SL(2,R) on SL(2,R)/SO(2,R) by left multiplication. Suppose that B ∈ G∗. Since B is
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in the global isotropy, B[I]SO(2,R) = [I]SO(2,R), and hence B ∈ SO(2,R). Let

B =
⎡⎢⎢⎢⎢⎢⎣

cos(φ) − sin(φ)

sin(φ) cos(φ)

⎤⎥⎥⎥⎥⎥⎦

for some φ ∈ [0,2π] and let

E =
⎡⎢⎢⎢⎢⎢⎣

1 0

1/2 1

⎤⎥⎥⎥⎥⎥⎦

so that E ∈ SL(2,R). Now since B is in the global isotropy, B[E]SO(2,R) = [E]SO(2,R), and

there exits some θ ∈ [0,2π) such that

⎡⎢⎢⎢⎢⎢⎣

cos(φ) − sin(φ)

sin(φ) cos(φ)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0

1/2 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0

1/2 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

cos(θ) − sin(θ)

sin(θ) cos(θ)

⎤⎥⎥⎥⎥⎥⎦

which gives the system of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(φ) = sin(θ)

sin(φ) + 1
2 cos(φ) = 1

2 cos(θ) + sin(θ)

cos(φ) − 1
2 sin(φ) = cos(θ)

.

The first equation and the second equation imply that cos(φ) = cos(θ) and from the third

equation sin(φ) = 0. Then φ = 0, π and B = ±I. On the other hand N is a normal subgroup of

SL(2,R) contained in SO(2,R) so by Theorem 2.9, N is contained in the global isotropy.

Corollary 5.1. The action of PSL(2,R) on PSL(2,R)/ŜO(2,R) is effective and primitive.

Proof. From Lemma 4.3 there is a transitive effective action of PSL(2,R) = SL(2,R)/N on

SL(2,R)/SO(2,R) and an equivariant diffeomorphism ϕ ∶ SL(2,R)/SO(2,R) → PSL(2,R)/ŜO(2,R),
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where ŜO(2,R) = SO(2,R)/N, is given by

ϕ ([A]SO(2,R)) = [Â]ŜO(2,R)

for Â = [A]N = {±A}. So since SL(2,R)/SO(2,R) is a primitive homogeneous space with

respect to the standard action of SL(2,R) by left multiplication by Lemma 5.1, then by

Lemma 4.5 the homogeneous space PSL(2,R)/ŜO(2,R) is primitive with respect to the

standard action of PSL(2,R) by left multiplication.

Since ŜO(2,R) does not contain any normal subgroups of PSL(2,R) Corollary 5.1

implies that (PSL(2,R), ŜO(2,R)) is a primitive pair as given in Definition 4.8.

Now we identify the one parameter subgroups of PSL(2,R) corresponding to l, h, and

so2(R), L̂ Ĥ and ŜO(2,R).

Lemma 5.3. Let π ∶ SL(2,R) → PSL(2,R) be the quotient homomorphism. Then π∗ ∶

sl2(R) → psl2(R) is a Lie algebra isomorphism, and the one parameter subgroups which

correspond to the isomorphic images of l, h, and so2(R) under π∗ are

L̂ = π(L), Ĥ = π(H), ŜO(2,R) = π(SO(2,R)), (5.3)

where L, H, and SO(2,R) are the subgroups from Equation (5.2).

Proof. The quotient homomorphism is a smooth surjective submersion with constant rank

equal to three and hence the linearization π∗ ∶ sl2(R) → psl2(R) is an isomorphism of vector

spaces. Moreover π∗ is a Lie algebra homomorphism because π is a Lie group homomorphism

and therefore π∗ is a Lie algebra isomorphism. Under the identification from π∗ the one

dimensional Lie algebra corresponding to l is π∗(l), and we claim that π ○ L is the unique

one parameter subgroup with π∗(`) as its tangent vector at the identity Î ∈ PSL(2,R). To

prove the claim consider

d

dt
(π ○L(t)) ∣

t=0
= π∗ (L̇(0)) = π∗(`)
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using L̇(0) = ` since L is the unique one parameter subgroup with ` as its tangent vector at

the identity, I ∈ SL(2,R). The proof for the other cases is similar.

The Lie algebra isomorphism π∗ of sl2(R) and psl2(R) from Lemma 5.3 identifies the

two Lie algebras, so that any of the properties we develop for sl2(R) in this chapter hold

for psl2(R) as well.

Theorem 5.1. The spaces PSL(2,R)/L̂ and PSL(2,R)/Ĥ are not primitive homogeneous

spaces and SL(2,R)/ŜO(2,R) is a primitive homogeneous space where L̂, Ĥ, and ŜO(2,R)

are the one parameter subgroups of PSL(2,R) from Lemma 5.3.

Proof. The homogeneous space PSL(2,R)/ŜO(2,R) is primitive by Corollary 5.1. We will

only show that PSL(2,R)/L̂ is not primitive as the argument is similar for PSL(2,R)/Ĥ.

Since L̂ ⊂ π(B0) where B0 is the connected two dimensional Lie subgroup of upper triangular

matrices in SL(2,R), then π(B0) is a connected two dimensional subgroup of PSL(2,R)

which contains L̂, and it is easy to see that this containment is strict. So by Corollary 4.2

the homogeneous space PSL(2,R)/L̂ is not primitive.

The next section identifies the homogeneous spaces PSL(2,R)/L̂, PSL(2,R)/Ĥ, and

PSL(2,R)/ŜO(2,R) with orbits of the Adjoint representation of PSL(2,R).

5.1 Two Dimensional Model Spaces of PSL(2,R) Homogeneous Spaces.

The Adjoint representation of SL(2,R) on sl2(R) is the action AdSL ∶ SL(2,R) ×

sl2(R) → sl2(R) be given by

AdSL(A,p) = ApA−1 (5.4)

for A ∈ SL(2,R) and p ∈ sl2(R). Note that by Theorem 2.1 the action AdSL is equivalent to

the homomorphism ΦAdSL
∶ SL(2,R) → GL(sl2(R)) given by

ΦAdSL
(A)[p] = (AdSL)A(p) = AdSL(A,p)
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where we use the fact that the maps (AdSL)A are linear to verify ΦAdSL
⊂ GL(sl2(R).

The map ΦAdSL
is invariant under the action of N = {±I} by right or left multipli-

cation on SL(2,R) and, by Theorem 2.2, there is a unique function ΦAdPSL
∶ PSL(2,R) →

GL(sl2(R)) such that ΦAdPSL
○π = ΦAdSL

where π is the quotient homomorphism. It is easily

checked that ΦAdPSL
is a homomorphism of groups, and so by Theorem 2.1 is equivalent to

an action AdPSL ∶ PSL(2,R) × sl2(R) → sl2(R) defined by

AdPSL (Â, p) = ApA−1, (5.5)

for p ∈ sl2(R) and any A ∈ SL(2,R) such that π(A) = Â. Note that by the Lie algebra

isomorphism π∗ this action agrees with the Adjoint representation of PSL(2,R). The two

dimensional orbits of the action AdSL are split into three types, one sheeted hyperbola, two

sheeted hyperbola, and cones as shown in Figure 5.1. These orbits are identified with the

two dimensional homogeneous spaces PSL(2,R)/L̂, PSL(2,R)/Ĥ, and PSL(2,R)/ŜO(2,R)

from Theorem 5.1 in the following theorem.

Theorem 5.2. Let AdPSL be the Adjoint action given in Equation (5.5), let L̂, Ĥ, ŜO(2)

be the connected one parameter subgroups of PSL(2,R) given in Theorem (5.1), and let

(x, y, t) be the coordinates determined by the basis

X1 =
⎛
⎜⎜
⎝

1/2 0

0 −1/2

⎞
⎟⎟
⎠
, X2 =

⎛
⎜⎜
⎝

0 1/2

1/2 0

⎞
⎟⎟
⎠
, and X3 =

⎛
⎜⎜
⎝

0 −1/2

1/2 0

⎞
⎟⎟
⎠

(5.6)

for sl2(R). Then

i) The homogeneous space PSL(2,R)/Ĥ is equivariantly diffeomorphic to the one sheet

hyperbola Q2 = {(x, y, t) ∣2(x2 + y2 − t2) = 2}.

ii) The homogeneous space PSL(2,R)/L̂ is equivariantly diffeomorphic to the upper half

cone, Q+
0 = {(x, y, t) ∣x2 + y2 − t2 = 0, t > 0}.

iii) PSL(2,R)/ŜO(2,R) is equivariantly diffeomorphic to one sheet of a two sheet hyper-

bola Q+
−2 = {(x, y, t) ∣2(x2 + y2 − t2) = −2, t > 0}.
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Fig. 5.1: Orbits of the PSL(2,R) Adjoint action.

Two Sheet Hyperbola Cone One Sheet Hyperbola

PSL(2,R)/ŜO(2,R) PSL(2,R)/L̂ PSL(2,R)/Ĥ

primitive not primitive not primitive

In order to prove Theorem 5.2 we begin by identifying the orbits of AdSL and AdPSL.

Lemma 5.4. The orbit of any point p ∈ sl2(R) with respect to the action AdSL defined in

Equation (5.4) is equal to the orbit of p with respect to AdPSL defined in Equation (5.5).

Proof. Let p ∈ sl2(R) and let [p]AdSL
be its orbit. If q ∈ [p]AdSL

then there exists an element

A ∈ SL(2,R) such that AdSL(A,p) = q. Now let π ∶ SL(2,R) → PSL(2,R) be the quotient

homomorphism and define a map π̃ ∶ SL(2,R) × sl2(R) → PSL(2,R) × sl2(R) by

π̃(A,p) = (π(A), q)
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then by definition of AdPSL from Equation (5.5) we have

AdPSL ○ π̃ = AdSL. (5.7)

Therefore, AdPSL(π(A), p) = AdSL(A,p) = q, and [p]AdPSL
⊂ [p]AdSL

. On the other hand

suppose that q ∈ [p]AdPSL
, then there exists Â ∈ PSL(2,R) such that AdPSL(Â, p) = q and if

A ∈ SL(2,R) is any element such that π(A) = Â then from Equation (5.7)

q = AdPSL ○ π̃(A,p) = AdSL(A,p),

which verifies that [p]AdPSL
= [p]AdSL

completing the proof.

Now we define the Killing form on sl2(R). Let ad(x) ∶ sl2(R) → sl2(R) be the adjoint

map, ad(x) = [x, ⋅], where [⋅, ⋅] the commutator bracket on sl2(R). Then the Killing form

on sl2(R) is

Ksl2(R)(x, y) = tr(ad(x) ○ ad(y)).

This is a symmetric, bilinear form which satisfies

Ksl2(R) (AdSL(A,p),AdSL(A, q)) =Ksl2(R) (ApA−1,AqA−1) =Ksl2(R)(p, q)

for all A ∈ SL(2,R) and p, q ∈ sl2(R). Note that the killing form can be computed as

Ksl2(p, q) = 4 tr(pq), (5.8)

where tr is the usual trace function on matrices and multiplication in sl2(R) is matrix

multiplication. The observation follows from evaluating both sides of Equation (5.8) on

the basis in Equation (5.6). The Killing form defines a corresponding quadratic form,
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Q ∶ sl2(R) → R, by

Q(p) =Ksl2(R)(p, p) = 4 tr(p2), (5.9)

by using Equation (5.8). The form Q is an invariant of AdSL since the Killing form is left

and right invariant. Let the level sets of Q be denoted as follows

Qc = {p ∈ sl2(R) ∣Q(p) = c} . (5.10)

The following lemma identifies the level sets of Q as two dimensional surfaces in the three

dimensional Lie algebra sl2(R).

Lemma 5.5. Let Q be the quadratic form defined in Equation (5.9). The level sets Qc

given in Equation (5.10) are one of the following types.

i) If c > 0 then the level sets Qc are one sheet hyperbolas.

ii) If c = 0 then the level set Q0 is a cone through the origin.

iii) If c < 0 then the level sets Qc are two sheet hyperbolas.

Proof. Introduce coordinates on the vector space sl2(R) using the basis given in Equation

(5.6). That is p ∈ sl2(R) has coordinate representation (x, y, t) ∈ R3 where x, y, t are the

unique values such that p = xX1 + yX2 + tX3.

Then from Equation (5.8) the quadratic form is Q(p) = 4 tr(p2), and its coordinate

representation is,

Q(x, y, t) = 4 tr ((xX1 + yX2 + tX3)
2) = 4 tr

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

1
2x

1
2
(y − t)

1
2(y + t) −1

2x

⎤⎥⎥⎥⎥⎥⎦

2⎞
⎟⎟
⎠
= 2(x2 + y2 − t2).

Hence the level sets of Q are described by Qc = {(x, y, t) ∣2(x2 + y2 − t2) = c} , proving the

claim.



79

Lemma 5.6. If p ∈ sl2(R), then the characteristic polynomial Pp(λ) of p is

Pp(λ) = λ2 − 1

8
Q(p). (5.11)

Proof. Consider the usual basis for sl2(R) {f, e, h},

f =
⎡⎢⎢⎢⎢⎢⎣

0 0

1 0

⎤⎥⎥⎥⎥⎥⎦
, h =

⎡⎢⎢⎢⎢⎢⎣

1 0

0 −1

⎤⎥⎥⎥⎥⎥⎦
, e =

⎡⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎦
. (5.12)

With respect to these coordinates the quadratic form Q in Equation (5.9) has the form

Q(F,H,E) = Q(Ff +Hh +Ee) = 8(EF +H2).

Now consider an arbitrary matrix p ∈ sl2(R), with coordinates (F,H,E). Then the

characteristic polynomial Pp(λ) of p is

Pp(λ) = det (Ff +Hh +Ee − λI) = λ2 − (EF +H2) = λ2 − 1

8
Q(q),

which is independent of the basis for sl2(R) chosen since Q is invariant under conjugation.

Corollary 5.2. For each c ∈ R the points p ∈ Qc where Qc is the level set from Equation

(5.10) all have the same eigenvalues.

The sets Q2,Q
+
−2,Q

−
−2 from Theorem 5.2 are invariant subsets of SL(2,R) with respect

to the adjoint action because they are connected components of level sets of Q. The next

lemma proves that Q+
0 is also an SL(2,R) invariant subset.

Lemma 5.7. The set Q+
0 from part ii) of Theorem 5.2 is an SL(2,R) invariant subspace

with respect to the action AdSL.
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Proof. Let p ∈ Q+
0 . Then note that since 0 ∈ sl2(R) is a fixed point of the action µAd and

p ≠ 0, the point 0 is not an element of the orbit [p]AdSL
. Hence [p]AdSL

⊂ Q0 ∖ {0}. Note

that the sets Q+
0 and Q−

0 , where

Q−
0 = {(x, y, t) ∣x2 + y2 − t2 = 0, t < 0},

are nonempty disjoint open subsets such that Q0∖{0} = Q+
0∪Q−

0 and therefore the connected

subset [p]AdSL
lies entirely in Q+

0 or Q−
0 . Finally since p ∈ Q+

0 then [p]AdSL
⊂ Q+

0 completing

the proof.

Lemma 5.8. The action AdSL is transitive on the sets Q2,Q
+
0 ,Q

+
−2 identified in Theorem

5.2.

Proof. There are three parts to prove.

i) Let p ∈ Q2 from Lemma 5.5. Then from Lemma 5.6 the characteristic polynomial of p

is Pp(λ) = λ2− 1
4 and the eigenvalues of p are ±1/2. Since p has two distinct eigenvalues

let v1/2, v−1/2 be eigenvectors for p and let Z = [v1/2∣v−1/2] ∈ GL(n,R). Then

Z−1pZ =
⎡⎢⎢⎢⎢⎢⎣

1
2 0

0 −1
2

⎤⎥⎥⎥⎥⎥⎦
=X1.

Now det(Z) ≠ 0 since the eigenvectors are linearly independent, and there are two

cases. If det(Z) > 0 then the matrix U = 1√
det(Z)Z ∈ SL(2,R) satisfies U−1pU = X1

as well and X1 is on the same orbit as p. If det(Z) < 0 let Y = [v−1/2∣v1/2] so that

det(Y ) > 0. Then

(Y )−1 pY =
⎡⎢⎢⎢⎢⎢⎣

−1/2 0

0 1/2

⎤⎥⎥⎥⎥⎥⎦
.
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Let S ∈ SL(2,R) be the matrix,

S =
⎡⎢⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎥⎦
. (5.13)

Then note that

SY −1pY S−1 = SY −1p (SY −1)−1 =X1

and p is conjugate to X1 by an element SY −1 ∈ GL(2,R) where det (SY −1) > 0. By

similar logic to the case where det(Z) > 0 the point X1 is in the same orbit as p

verifying that AdSL is transitive on the subset Q2.

ii) Let p ∈ Q+
0 . Then Pp(t) = t2 by Lemma 5.6 and p is nilpotent. From the Cay-

ley–Hamilton theorem p2 = 0 and p ≠ 0 since p ∈ Q+
0 . Then there exists an element

v ∈ R2 such that pv ≠ 0. Consider the set {v, pv}. We claim this is a linearly indepen-

dent set. Suppose that

av + bpv = 0.

If a or b is zero then both a and b are zero since v, pv ≠ 0. If a and b are nonzero then

pv = a
b v so v is an eigenvector of p with eigenvalue a/b, but the eigenvalues of p are

zero so a/b = 0 contradicting pv ≠ 0.

Since {v, pv} is a linearly independent set then it is a basis for R2. Let Z be the matrix

Z = [v∣vp] ∈ GL(2,R). If det(Z) > 0 then

Z−1pZ =
⎡⎢⎢⎢⎢⎢⎣

0 0

1 0

⎤⎥⎥⎥⎥⎥⎦
=X2 +X3. (5.14)

That is q is conjugate to X2+X3 by an element of GL(2,R) with positive determinant
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and therefore p is conjugate to X2+X3 by an element of SL(2,R) and p is in the same

orbit as X2 +X3. If not, det(Z) < 0 then let Y = [pv, v] ∈ GL(2,R) so that det(Y ) > 0.

Then

Y −1pY =
⎡⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎦
=X2 −X3,

and p is conjugate to X2 −X3 by an element of GL(2,R) with positive determinant,

and therefore p is conjugate to X2 − X3 by an element of SL(2,R). However from

Lemma 5.7 the orbit of p is a subset of Q+
0 , and the coordinates of X2 −X3 from the

choice of basis in Equation (5.6) are (0,1,−1) ∈ Q−
0 . Therefore, det(Z) < 0 leads to a

contradiction and p is in the same orbit as X2 +X3.

iii) If p ∈ Q−2 then the characteristic polynomial Pp(t) = t2+ 1
4 and p has complex conjugate

eigenvalues. Then by the Cayley-Hamilton theorem, p2 + 1
4 I = 0, and p ≠ 0 so there

exists a non zero vector v ∈ R2 such that p2v = −1
4v. The set {v, pv} is a basis for R2

by similar logic to part ii).

Let Z = [v∣pv] ∈ GL(2,R) and there are two cases. If det(Z) > 0 then

Z−1pZ =
⎡⎢⎢⎢⎢⎢⎣

0 −1
4

1 0

⎤⎥⎥⎥⎥⎥⎦
= (1 − 1

4
)X2 + (1 + 1

4
)X3 (5.15)

where the right hand side of the equation above has coordinates (0,1 − 1
4 ,1 +

1
4
) ∈ Q+

−2

with respect to the choice of basis in Equation (5.6). Therefore since det(Z) > 0 then

p is in the same orbit as (1 − 1
4
)X2 + (1 + 1

4
)X3.

If det(Z) < 0 then let Y = [pv∣v] ∈ GL(2,R) with det(Y ) > 0. Then

Y −1pY =
⎡⎢⎢⎢⎢⎢⎣

0 1

−1
4 0

⎤⎥⎥⎥⎥⎥⎦
= (1 − 1

4
)X2 − (1 + 1

4
)X3 (5.16)

where the right hand side has coordinates (0,1 − 1
4 ,−1 − 1

4
) with respect to the choice
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of basis in Equation (5.6) and therefore is in Q−
−2. However since p ∈ Q+

−2 where Q+
−2

is a AdSL invariant subset this is a contradiction and det(Z) > 0.

That is every point p ∈ Q+
−2 is in the same orbit as (1 − 1

4
)X2+(1 + 1

4
)X3 which verifies

that AdSL is transitive on Q+
−2.

For more information on the Adjoint orbits of SL(2,R) see the paper by Rubilar [18].

Corollary 5.3. The action of AdPSL is transitive on the sets Q2, Q
+
0 , and Q+

−2.

The proof follows from applying Lemma 5.4. The next lemma shows how to compute

the isotropy subgroup for the action AdPSL given the isotropy subgroup for the same point

with respect to the action AdSL.

Lemma 5.9. Let AdSL and AdPSL be the actions defined in Equations (5.4) and (5.5)

respectively. For any p ∈ sl2(R) the isotropy subgroup PSL(2,R)p of p with respect to the

action AdPSL is equal to the subgroup π(SL(2,R)p) where π ∶ SL(2,R) → PSL(2,R) is the

quotient homomorphism and SL(2,R)p is the isotropy subgroup of p with respect to the

action AdSL.

Proof. From Equation (5.7) we have AdSL = AdPSL ○ π̃. First let Â ∈ π(SL(2,R)p). Then

for any A ∈ SL(2,R) such that π(A) = Â, that is ±A ∈ SL(2,R)p, Equation (5.7) implies

that AdPSL(Â, p) = p and Â ∈ PSL(2,R)p. On the other hand if Â ∈ PSL(2,R)p then there

exists an A ∈ SL(2,R) such that π(A) = Â and again from Equation (5.7) AdSL(A,p) =

AdPSL(Â, p) = p so A ∈ SL(2,R)p which completes the proof.

Finally we prove Theorem 5.2, by identifying the homogeneous spaces arising from the

subgroups L̂, Ĥ, and ŜO(2,R) with the level sets above.

Proof of Theorem 5.2. In the proof of Lemma 5.8 we showed that the orbits of X1, X2 +

X3 and (1 − 1
4
)X2 + (1 + 1

4
)X3 are Q2, Q

+
0 , and Q+

−2 respectively under the action AdSL.

Corollary 5.3 implies that these sets are also the orbits with respect to AdPSL. Note that X3
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from Equation (5.6) has Q(X3) = −2 and is given by (0,0,1) in the coordinates with respect

to the choice of basis in Equation (5.6). That is X3 is in the same orbit as (1 − 1
4
)X2 +

(1 + 1
4
)X3, and we can take X3 as a representative for the orbit Q+

−2 instead of (1 − 1
4
)X2 +

(1 + 1
4
)X3.

We now compute the isotropy of X1, X2 +X3 and X3, which will identify the orbits,

Q2,Q
+
0 ,Q

+
−2, with two dimensional homogeneous spaces PSL(2,R).

i) Consider the stabilizer of X2 +X3 with respect to the action AdSL, SL(2,R)X2+X3 .

This subgroup is defined by the solutions to

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 0

1 0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 0

1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

b 0

d 0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 0

a b

⎤⎥⎥⎥⎥⎥⎦
,

with ad − bc = 1. Then the isotropy subgroup of X2 +X3 as in Equation (5.6) is

SL(2,R)X2+X3 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

±1 0

c ±1

⎤⎥⎥⎥⎥⎥⎦
∣ b ∈ R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Now from Lemma 5.9 the stabilizer subgroup

PSL(2,R)X2+X3 = π(SL(2,R)X2+X3) = L̂.

Now from Theorem 2.7, PSL(2,R)/L̂ is equivariantly bijective with Q+
0 .

ii) Now consider the stabilizer, SL(2,R)X1 , of X1 as in Equation (5.6) with respect to

the action AdSL. This subgroup is given by the solutions to

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1/2 0

0 −1/2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1/2 0

0 −1/2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
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that is the matrices in SL(2,R) that have b = c = 0,

SL(2,R)X1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a 0

0 1/a

⎤⎥⎥⎥⎥⎥⎦
∣a ∈ R∗

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

From Lemma (5.9) PSL(2,R)X1 = π(SL(2,R)X1) = Ĥ, and PSL(2,R)/Ĥ is equivari-

antly diffeomorphic to Q2.

iii) Finally we compute SL(2,R)X3 . If A =
⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
, with ad − bc = 1, The equation AX3 =

X3A is

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 −1/2

1/2 0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 −1/2

1/2 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

b/2 −a/2

d/2 −c/2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−c/2 −d/2

a/2 b/2

⎤⎥⎥⎥⎥⎥⎦
.

This gives the system of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c + b = 0

d − a = 0

ad − bc = 1

.

So a = d and c = −b and from ad−bc = 1 we have a2+b2 = 1. That is A is an orthogonal

matrix so we can write the stabilizer in terms of a parameter t as

SL(2,R)X3 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

cos(θ) − sin(θ)

sin(θ) cos(θ)

⎤⎥⎥⎥⎥⎥⎦
θ ∈ [0,2π]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= SO(2,R).

As in the previous parts PSL(2,R)X3 = ŜO(2,R) so that PSL(2,R)/ŜO(2,R) is equiv-

ariantly diffeomorphic to Q+
−2 completing the proof.
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5.2 Invariant Foliations of PSL(2,R)/Ĥ and PSL(2,R)/L̂.

In this section we will prove the following theorems

Theorem 5.3. Let PSL(2,R)/L̂ and PSL(2,R)/Ĥ be the non primitive PSL(2,R) homo-

geneous spaces from Theorem 5.1.

i) There is an invariant foliation of PSL(2,R)/Ĥ with respect to the standard action of

PSL(2,R) by left multiplication, F Ĥ , which is defined by its leaf through the identity

coset,

F Ĥ[̂I]Ĥ
= {[Ê]Ĥ ∣ Ê ∈ L̂} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

±1 0

s ±1

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎦Ĥ
∣ s ∈ R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

ii) There is a foliation of PSL(2,R)/L̂ which is invariant under the standard action of

PSL(2,R) by left multiplication, F L̂, with leaf through the identity

F L̂[̂I]L̂
= {[D̂]L̂ ∣ D̂ ∈ Ĥ} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

±s 0

0 ±s−1

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎦L̂
∣ s ∈ R>0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Now consider the basis for sl2(R) given in Equation (5.6). We can define corresponding

invariant foliations on sl2(R) by using the equivariant diffeomorphism between the coset

spaces PSL(2,R)/Ĥ and PSL(2,R)/L̂ with Q2 and Q+
0 respectively as given in the following

theorem.

Theorem 5.4. There are invariant foliations with respect to AdPSL,

i) F̂ Ĥ of Q2 determined by the leaf through the point X1

F̂ ĤX1
= {X1 + s (X2 +X3) ∣ s ∈ R} ,

ii) and F̂ L̂ of Q+
0 given by the leaf through X2 +X3

F̂ L̂X2+X3
= { 1

s2
(X2 +X3) ∣ s ∈ R∗} .
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Fig. 5.2: Invariant foliation of the Upper Cone.

The foliations of Q2 and Q+
0 are depicted in Figure 5.3 and Figure 5.2 respectively.

Proof of Theorem 5.3. We will only prove the theorem for F Ĥ since the proof for F L̂ is

similar. Let q ∶ PSL(2,R)/Ĥ → PSL(2,R)/B̂ given by q([Â]Ĥ) = [Â]B̂ where B̂ = π(B0) and

B0 is the two dimensional subgroup of lower triangular matrices in SL(2,R). Then Theorem

4.1 implies that there is an invariant foliation of PSL(2,R)/Ĥ which is invariant under the

action of PSL(2,R) by left multiplication, F Ĥ = {F[Â]Ĥ ∣F[Â]Ĥ = ÂF[̂I]Ĥ} where the leaf

through the identity coset, F[̂I]Ĥ = q−1([̂I]B̂)0, the connected component of q−1([̂I]B) which

contains the identity coset [̂I]Ĥ . We will show that F Ĥ[̂I]Ĥ
, is the set L̂/Ĥ = {[Ê]Ĥ ∣ Ê ∈ L̂} .

First note that L̂ ⊂ PSL(2,R) is a connected subgroup of PSL(2,R) and the projection

πĤ ∶ PSL(2,R) → PSL(2,R)/Ĥ is a continuous map, the image L̂/Ĥ is a connected subset

of PSL(2,R)/Ĥ containing the identity coset [̂I]Ĥ . Now note that

q([Ê]Ĥ) = [Ê]B̂ = [̂I]B̂
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since L̂ ⊂ B̂, and the set L̂/Ĥ is contained in the preimage q−1([̂I]B̂). Hence, L̂/Ĥ ⊂ F Ĥ[̂I]Ĥ
.

Now suppose that [A]Ĥ ∈ F Ĥ[̂I]Ĥ
. Then since A ∈ PSL(2,R) there exist R ∈ SO(2,R), E ∈ L,

and D ∈ H, where SO(2,R) L and H are the connected one dimensional subgroups from

Equation (5.2), such that

π(RED) = π(R)π(E)π(D) = A

and π ∶ SL(2,R) → PSL(2,R) is the quotient map. Then consider [A]Ĥ = [π(RED)]Ĥ =

π(R)[π(E)]Ĥ since π(D) ∈ Ĥ. Now using the equivariance of q with respect to the standard

action of left multiplication of PSL(2,R) on PSL(2,R)/Ĥ and PSL(2,R)/B̂ we have

[̂I]B̂ = q([A]Ĥ) = q(π(R)[π(E)]Ĥ) = π(R)[π(E)]B̂ = π(R)[̂I]B̂

since π(E) ∈ B̂. But then π(R) ∈ B̂ and π(R) = Î. verifying that [A]Ĥ = [π(E)]Ĥ ∈ L̂/Ĥ

and completing the proof.

Corollary 5.4. Let π ∶ SL(2,R) → PSL(2,R) be the quotient homomorphism.

i) Every leaf of F Ĥ can be written as π(R)F Ĥ[̂I]H for some R ∈ SO(2,R). That is there

exists a unique θ ∈ [0, π) such that

F Ĥ[Â]Ĥ
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

cos(θ) − sin(θ)

sin(θ) cos(θ)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

s 1

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎦Ĥ
∣ s ∈ R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

ii) Every leaf F L̂[Â]L̂
∈ F L̂ can be written as π(R)F L̂[̂I]L̂

for some R ∈ SO(2,R). That is

there exists some θ ∈ [0, π) such that

F L̂[Â]L̂
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

cos(θ) − sin(θ)

sin(θ) cos(θ)

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

s 0

0 s−1

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎦L̂
∣ s ∈ R>0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.
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Fig. 5.3: The invariant foliation of one sheet hyperbola orbit.

Proof. Since every A ∈ SL(2,R) can be written as RDE or RED for R ∈ SO(2,R) D ∈ H

and L ∈ D, the claim follows from the invariance of the foliations F Ĥ and F L̂ with respect

to the standard action of PSL(2,R) by right multiplication, and from the fact that every

π(R) for R ∈ SO(2,R) can be written as

π(R) = π
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

cos(θ) − sin(θ)

sin(θ) cos(θ)

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

for some unique θ ∈ [0, π) which follows from

−I =
⎡⎢⎢⎢⎢⎢⎣

cos(π) − sin(π)

sin(π) cos(π)

⎤⎥⎥⎥⎥⎥⎦
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and π(R) = π(−R).

The invariant foliations F Ĥ of PSL(2,R)/Ĥ and F L̂ of PSL(2,R)/L̂ with respect to the

standard action of PSL(2,R) by left multiplication induce invariant foliations with respect

to the action AdPSL of the orbits Q2 and Q+
0 as described in Theorem 5.2.

Proof of Theorem 5.4. Again we will prove the claim for F̂ Ĥ as the statement for F̂ L̂ is

similar. By Theorem 2.7, the map (ÃdPSL)X1 ∶ PSL(2,R)/Ĥ → Q2 given by

(ÃdPSL)X1([Â]Ĥ) = AdPSL(Â,X1) = AX1A
−1

for any A ∈ SL(2,R) such that π(A) = Â. is an equivariant bijection of PSL(2,R)/Ĥ with

Q2

Then by the proof of Lemma 4.4, F̂ Ĥ = (ÃdPSL)X1(F Ĥ) is an invariant foliation of Q2

with respect to the action AdPSL. We can compute the leaf through the point X1 by the

image of F Ĥ[̂I]Ĥ
which is

(ÃdPSL)X1 (F Ĥ[̂I]Ĥ) = AdPSL ({[Ê]Ĥ ∣ Ê ∈ L̂} , X1) = EX1E
−1

for all E ∈ SL(2,R) such that Ê = π(E). That is

⎡⎢⎢⎢⎢⎢⎣

±1 0

s ±1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1/2 0

0 −1/2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

±1 0

s ±1

⎤⎥⎥⎥⎥⎥⎦

−1

=X1 + s(X2 +X3)

for all s ∈ R which completes the proof.

Using Corollary 5.4 each leaf of F̂ Ĥ can be written in coordinates as the line

cos(2θ)X1 + sin(2θ)X2 + s( cos(2θ)X2 − sin(2θ)X1 +X3)
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for a unique θ ∈ [0, π). By using the coordinates from the choice of basis in Equation (5.6)

for each θ the leaf of F̂ Ĥ through the point (cos(2θ), sin(2θ),0) is the line

( cos(2θ), sin(2θ),0) + s( − sin(2θ), cos(2θ),1).

Similarly the leaf F̂ L̂X2+X3
is given as

1

s2
(sin(2θ)X1 + cos(2θ)X2 +X3)

and in coordinates

1

s2
(sin(2θ), cos(2θ),1).

5.3 Primitive Homogenous Space With Submaximal Lie Algebra:

Let N(H) be the normalizer of of the diagonal subgroup H from Equation (5.2),

N(H) = {A ∈ SL(2,R) ∣ABA−1 ∈H, ∀B ∈H} .

This section shows that the homogeneous space SL(2,R)/N(H) is primitive, but the Lie

algebra for N(H) is not a maximal subalgebra of sl2(R). The subgroup N(H) is not con-

nected, demonstrating that the condition that H be connected in Corollary 4.3 part ii) is

necessary in the case where G is a simple Lie group.

We start by giving a concrete description of the normalizer N(H) in the following

lemmas.

Lemma 5.10. The centralizer, Z(H), of the one parameter subgroup H given in Equation

(5.2) is

Z(H) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a 0

0 a−1

⎤⎥⎥⎥⎥⎥⎦
∣a ∈ R∗

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.
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Proof. Let A ∈ SL(2,R) such that AUA−1 = U for all U ∈H and let

A =
⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

such that ad − bc = 1. Then AU = UA implies that

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

t 0

0 t−1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

t 0

0 t−1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ta t−1b

tc t−1d

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

ta tb

t−1c t−1d

⎤⎥⎥⎥⎥⎥⎦

for all t > 0. Then b = t2b and t2c = c for all t > 0 implies that b, c = 0. Using ad− bc = 1 gives

d = a−1 and A has the desired form. Conversely, if a ∈ R∗ then

⎡⎢⎢⎢⎢⎢⎣

a 0

0 a−1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

u 0

0 u

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a 0

0 a−1

⎤⎥⎥⎥⎥⎥⎦

−1

=
⎡⎢⎢⎢⎢⎢⎣

u 0

0 u

⎤⎥⎥⎥⎥⎥⎦

which completes the proof.

Lemma 5.11. Let H be the one parameter subgroup in Equation (5.2), Then the normalizer

subgroup, N(H), is given by

N(H) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a 0

0 a−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0 a

−a−1 0

⎤⎥⎥⎥⎥⎥⎦
∣a ∈ R∗

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Proof. Let

K =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a 0

0 a−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0 a

−a−1 0

⎤⎥⎥⎥⎥⎥⎦
∣a ∈ R∗

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Then K ⊂ N(H) is a straightforward computation that we will omit from the proof.
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If A ∈ Z(H) then it is an element of K by Lemma 5.10 so suppose that A ∈ N(H) ∖

Z(H). Then there exist U1, U2 ∈ H with U1 ≠ U2, such that AU1 = U2A. Note that U1 = I if

and only if U2 = I because matrix multiplication is linear and A is invertible, so U1, U2 ≠ ±I

as well. Now Let

A =
⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
, U1 =

⎡⎢⎢⎢⎢⎢⎣

u1 0

0 u−1
1

⎤⎥⎥⎥⎥⎥⎦
, and U2 =

⎡⎢⎢⎢⎢⎢⎣

u2 0

0 u−1
2

⎤⎥⎥⎥⎥⎥⎦

where u1, u2 > 0, u1 ≠ u2 and ad − bc = 1. Then AU1 = U2A is

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

u1 0

0 u−1
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

u2 0

0 u−1
2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

u1a u−1
1 b

u1c u−1
1 d

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

u2a u2b

u−1
2 c u−1

2 d

⎤⎥⎥⎥⎥⎥⎦
.

The condition that u1 ≠ u2 gives that a = 0. Then using ad − bc = 1 we have bc ≠ 0 and

c = −1/b. The off diagonal entries give u−1
2 = u1, and this then forces (u−1

2 − u2)d = 0 so d = 0

since U2 ≠ I. Therefore

A =
⎡⎢⎢⎢⎢⎢⎣

0 b

−b−1 0

⎤⎥⎥⎥⎥⎥⎦
,

so A ∈K completing the proof.

Lemma 5.12. The subgroup N(H) is not connected.

Proof. The subsets Z(H) and N(H) ∖ Z(H) are disjoint and open such that Z(H) ∪

(N(H) ∖Z(H)) = N(H).

The next lemma shows that the subgroup N(H) is maximal, and therefore by Corollary

4.2 the homogeneous space SL(2,R)/N(H) is primitive.

Theorem 5.5. The action of SL(2,R) on SL(2,R)/N(H) is a primitive action.
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Proof. We will show that N(H) is not contained in any subgroups of SL(2,R) with dimen-

sion strictly between dim(N(H)) = 1 and dim(SL(2,R)) = 3. Indeed let N(H) ⊂ K with

1 < dim(K) < 3. Since H is a connected Lie subgroup contained in K then the Lie algebra

h of H will be contained in the Lie algebra k of K.

We claim that this forces k to be a subalgebra of triangular matrices. Let {f, h, e} be

the standard basis for sl2(R) as in Equation (5.12). Then since h ∈ k and it has dimension

2 we can extend h to a basis for k, {h,x}. Now let x be given by

x =
⎡⎢⎢⎢⎢⎢⎣

t u

v −t

⎤⎥⎥⎥⎥⎥⎦

and suppose that u and v are both non-zero. Then the bracket [h,x] = x′ ∈ k and

x′ =
⎡⎢⎢⎢⎢⎢⎣

0 2u

−2v 0

⎤⎥⎥⎥⎥⎥⎦
.

Since k is a subalgebra then [h,x′] = x′′ ∈ k and

x′′ =
⎡⎢⎢⎢⎢⎢⎣

0 4u

4v 0

⎤⎥⎥⎥⎥⎥⎦
.

But now consider

1

4u
x′ + 1

8u
x′′ = e and

1

8v
x′′ − 1

4v
x′ = f

so k = sl2(R), a contradiction in assuming that both u and v are nonzero.

Then either u or v are zero, but not both since x and h are independent.

Suppose that v is zero. Since {x,h} is a basis for k then

k =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

σ α

0 −σ

⎤⎥⎥⎥⎥⎥⎦
∣σ,α ∈ R

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.
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then K contains the connected subgroup,

B0 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a b

0 a−1

⎤⎥⎥⎥⎥⎥⎦
∣∀a, b ∈ R, a > 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Let S ∈ N(H) be the matrix

S =
⎡⎢⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎥⎦
.

Then S ∈K as well and

S

⎡⎢⎢⎢⎢⎢⎣

1 b

0 1

⎤⎥⎥⎥⎥⎥⎦
S−1 =

⎡⎢⎢⎢⎢⎢⎣

1 0

−b 1

⎤⎥⎥⎥⎥⎥⎦

is in K by closure under multiplication for all real b > 0. Hence the Lie algebra k will contain

the element

⎡⎢⎢⎢⎢⎢⎣

0 0

1 0

⎤⎥⎥⎥⎥⎥⎦

which is independent of both x and h meaning k has dimension three, a contradiction. A

similar argument can be used to show that k is three dimensional in the case that u is zero.

Corollary 4.2 implies the action of SL(2,R) on SL(2,R)/N(H) is primitive and the

proof is complete.

Finally we note that since H ⊂ N(H) and N(H) is a one dimensional Lie group, then

the Lie algebra h of H is the Lie algebra of N(H). However h is not a maximal subalgebra

of sl2(R) as it is contained in the Lie algebra of B0.
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CHAPTER 6

Joint Invariants of Primitive Homogeneous Spaces with Lie Algebra-Subalgebra Pairs of

Affine Type

In this chapter we consider the groups A(n) and SA(n) acting on Rn by the standard

affine action.

Definition 6.1. Let A(n) = {(A,a) ∣A ∈ GL(n), a ∈ Rn} , be the real affine group. Then

the action, µA(n) ∶ A(n) ×Rn → Rn given by

µA(n) ((A,a), x) = Ax + a (6.1)

for x ∈ Rn and (A,a) ∈ A(n) is called the standard affine action of A(n) on Rn.

In Section 6.1 we prove Lemma 6.2 which shows that Rn is a primitive homogeneous

space of A(n) and SA(n). We conclude Section 6.1 by proving Lemma 6.3 which shows

that the Lie algebra subalgebra pair for Rn as a primitive homogeneous space of A(n) is

of type i) in the classification Theorem 4.3. In Section 6.2 we prove Theorem 6.1 by using

the reduction method to show that the joint invariants for µA(n) and µSA(n) is equivalent

to to finding joint invariants of the standard representations of GL(n,R) and SL(n,R).

The chapter concludes with Section 6.3 which determines the points of (Rn)k which are in

general position for GL(n,R) and SL(n,R) and constructs the joint invariants of µA(n) and

µSA(n) in Corollary 6.3 and Corollary 6.5.

The invariants of affine type presented in this chapter have been developed in the work

of Olver [17] for the special affine group SA(n).

The application of the reduction theory demonstrated on A(n) and SA(n) holds for the

Euclidean group Euc+(n) as well, showing that the joint invariants of the standard affine

action restricted to Euc+(n), that is the Euclidean transformations of Rn, are determined by

the joint invariants for the standard representation of SO(n,R). However, the construction
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of joint invariants deviates from our treatment of A(n) and SA(n) due to the standard

representation of SO(n,R) not being transitive on Rn ∖ {0}. For this reason the method

of slices described in Section 7.1.3 is more appropriate for determining the joint invariants

using the reduction method. To see a direct construction of the joint invariants for the

standard representation of SO(n,R) see Olver [17].

6.1 Primitive Verification

Lemma 6.1. The action µA(n) is transitive on Rn and the stabilizer of the point 0 ∈ Rn is

the subgroup HA(n) = {(A,0) ∣A ∈ GL(n)} ⊂ A(n).

Proof. Define a map ρ ∶ Rn → A(n) by

ρ(x) = (I,−x) (6.2)

which satisfies ρ(x) ⋅ x = 0 and so the action is transitive since ρ(x)−1 ⋅ 0 = x.

Now we compute the isotropy subgroup. If (A,a) ∈ A(n), then acting by (A,a) on 0

gives (A,a) ⋅ 0 = a, and the stabilizer subgroup of 0 is HA(n) = {(A,0) ∣A ∈ GL(n)} which

completes the proof.

The action µA(n) is extended to the diagonal action µkA(n) ∶ A(n) × (Rn)k → (Rn)k as

in Definition 2.5. Let µHA(n) = µA(n)∣HA(n) be the restriction of µA(n) to HA(n) in the first

argument. That is µHA(n) is the isotropy action induced by µA(n), and the corresponding

diagonal action of the isotropy subgroup is denoted µkHA(n) .

The action µSA(n) are defined by restricting µA(n) to the subgroup SA(n) which is

transitive on Rn by the same argument as Lemma 6.1. The isotropy subgroup of 0 ∈ Rn is

HSA(n) = {(A,0) ∈ A(n) ∣ det(A) = 1}

for SA(n).
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We now verify that A(n)/HA(n) is a primitive homogeneous space, and moreover that

(A(n),H) is a primitive pair. The section will provide two proofs of this statement, one by

showing that HA(n) is a maximal subgroup containing no normal subgroups of A(n) and

the other showing that the Lie algebra hA(n) of HA(n) is a maximal Lie subalgebra of an(R),

the Lie algebra of A(n). The proof that the subgroup HA(n) is maximal applies similarly

to the subgroup HSA(n) of SA(n), but the Lie algebra proof must be modified to hold for

the Lie algebra hSA(n).

Lemma 6.2. The action of A(n) on A(n)/HA(n) is primitive, and (A(n),HA(n)) is a

primitive pair.

Proof of Lemma 6.2. We will show that HA(n) is maximal Suppose HA(n) is contained in a

Lie subgroup K of A(n), HA(n) ⊂ K ⊂ A(n). Suppose that K ≠ HA(n) then there is some

element (B, b) ∈K such that b ≠ 0. We can factor (B, b) into the product

(B, b) = (B,0)(I,B−1b),

where B−1b = b′ ≠ 0. Since (B,0) ∈ K we can assume without loss of generality that

(B, b) = (I, b).

We proceed by showing that K = A(n). Fix some (C, c) ∈ A(n). If c = 0 then (C, c) ∈H

so suppose not. Then by transitivity of GL(n,R) on Rn ∖ {0} there exists an A ∈ GL(n,R)

such that Ab = c as b, c ≠ 0. Now factor

(C, c) = (A,0)(I, b)(A−1C,0),

where the right hand side is a product of elements in K and so (C, c) ∈K. This proves that

HA(n) is a maximal subgroup and by Corollary 4.2 A(n) acts primitively on A(n)/HA(n)

proving the first part of the claim.

Now we prove that HA(n) contains no normal subgroups of A(n) to verify (A(n),HA(n))

is a primitive pair. Suppose that N ⊂ HA(n) is a normal subgroup of A(n). Then fix some
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(X,0) ∈ N and consider conjugation by an arbitrary (A,a) ∈ A(n),

(A,a)(X,0) (A−1,−A−1a) = (AXA−1, (I −AXA−1)a) .

Since N is normal in A(n) then this must land back in N, and must land back in HA(n),

giving the equation

(I −AXA−1)a = 0.

Since a is arbitrary then I = AXA−1 but I is fixed under conjugation so X = I. Hence the

only normal subgroup of A(n) that HA(n) contains is the trivial subgroup.

Remark 6.1. The key point in this proof is that GL(n,R) acts transitively on Rn ∖ {0},

which is also true for SL(n,R) so the proof that Rn is a primitive homogeneous space of

SA(n) is similar.

Corollary 6.1. The action of A(n) on Rn in Equation (6.1) is primitive.

Proof. Since A(n) acts transitively on Rn with isotropy HA(n) then by Theorem 2.11 there

is a canonical equivariant diffeomorphism between A(n)/HA(n) and Rn. Then from Lemma

4.4 the action on Rn is primitive.

Now we consider the Lie algebra approach. Since A(n) is a semidirect product of

GL(n,R) and Rn, the Lie algebra an(R) of A(n) is given by the semidirect sum,

gl(n) ⋉Rn = {(X,x) ∣X ∈ gl(n), x ∈ Rn} , (6.3)

with the bracket,

[(X,x), (Y, y)] = ((XY − Y X),Xy − Y x) = ([X,Y ],Xy − Y x) ,

using that Rn is abelian as a Lie algebra.
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an(R) contains an abelian ideal i ⊂ a(n), given by

i = {(0, x) ∣x ∈ Rn} . (6.4)

And the Lie algebra hA(n) of HA(n) is given by

hA(n) = {(X,0) ∣X ∈ gl(n)} .

We claim that (a(n),hA(n)) is a primitive pair of type i) as in Theorem 4.3.

Lemma 6.3. Let (a(n),hA(n)) be the Lie algebras in Equation (6.3). Then

i) hA(n) is a maximal subalgebra of a(n)

ii) hA(n) acts faithfully and irreducibly on the abelian ideal i given in Equation (6.4).

iii) hA(n) contains no ideals of a(n).

Proof. Part i) Suppose l is a subalgebra of g and hA(n) ⊂ l ⊂ a(n). Then either l = hA(n) or

there exists a point (X,x) ∈ l with x ≠ 0. By bracketing with (I,0) we have

[(I,0), (X,x)] = (0, x) ∈ l.

Assume that (X,x) = (0, x) without loss of generality.

Now let (Z, z) ∈ a(n) and suppose that z = 0, since if not then (Z, z) ∈ hA(n) ⊂ l. Then

there exists a Y ∈ gl(n) such that Y x = z and

[(Y,0), (0, x)] = (0, z) ∈ l.

but because l is closed under addition and (Z,0) ∈ hA(n) ⊂ l then the element (Z,0)+(0, z) =

(Z, z) ∈ l, completing the proof of part i).
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Part ii) Now let (0, x) ∈ i and consider for each (Y,0) ∈ hA(n) the linear map ad(Y,0) ∶ i→ i

given by

ad(Y,0)((0, x)) = [(Y,0), (0, x)] = (0, Y x)

so that i is a representation of hA(n), isomorphic to the standard representation of gl(n) on

Rn which is faithful and irreducible completing the proof of part ii).

Part iii) Now suppose that k ⊂ hA(n) is an ideal of a(n). If (X,0) ∈ k and (Z, z) ∈ a(n)

then

[(X,0), (Z, z)] = ([X,Z],Xz) ∈ k

so in particular Xz = 0 and z ∈ ker(X), but this must hold for all z ∈ Rn so X = 0 completing

the proof.

Note this proof is special to hHA(n) and needs to be adapted for the subgroup SA(n).

6.2 Reduction

The action µA(n) makes Rn into a primitive homogeneous space of A(n) and SA(n),

as discussed in Section 6.1. In this section we will identify the joint invariants of A(n)

with those of the standard representation for GL(n,R) on Rn. The group GL(n,R) acts

on Rn by the standard representation µGL(n,R) ∶ GL(n,R) × Rn → Rn defined by matrix

multiplication,

µGL(n,R) (A, z) = Az (6.5)

for A ∈ GL(n,R) and z ∈ Rn. We denote the corresponding diagonal action of GL(n,R)

on k copies by µkGL(n,R); GL(n,R) × (Rn)k → (Rn)k . The map ρ in Equation (6.2) satisfies

the identity in Equation (3.3), and so by Lemma 3.1 the k point joint invariants of µA(n)
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are all given by f ○ T where f is a k − 1 point joint invariant of µHA(n) and the map

T ∶ (Rn)k → (Rn)k−1 , is given by

T (x0, . . . , xk−1) = (x1 − x0, . . . , xk−1 − x0). (6.6)

Theorem 6.1. Let f ∶ (Rn)k−1 → Y be a k − 1 point joint invariant of µGL(n,R). Then f ○T

is a k point joint invariant of µA(n) where T is given in Equation (6.6), and every joint

invariant of A(n) is of this form.

proof of Theorem 6.1. Using the identity map Id ∶ (Rn)k−1 → (Rn)k−1 and the isomorphism

σ ∶H → GL(n,R) given by

σ ((A,0)) = A

Theorem 2.4 gives a unique bijection of the orbit spaces Ĩd ∶ Rn/HA(n) → Rn/GL(n,R)

Ĩd([(z1, . . . , zk−1)]HA(n)
) = [(z1, . . . , zk−1]GL(n,R)

which satisfies Ĩd ○ pµk−1HA(n)
= pµk−1

GL(n,R)
○ Id. So if f ∶ (Rn)k−1 → Y is a Y valued k − 1 point

joint invariant of GL(n,R) then by pulling back along the identity map f ○ Id = f is also a

joint invariant of HA(n), and clearly every joint invariant of HA(n) is of this form.

Hence by Lemma 3.1 every k point joint invariant of A(n) is given by

f ○ T (x0, . . . , xk−1) = f(x1 − x0, . . . , xk−1 − x0)

where f is a k − 1 point joint invariant of the standard representation of GL(n,R).

6.3 Invariants

Now we will determine complete local joint invariants of the groups A(n) and SA(n)

by considering the joint invariants of GL(n,R) and SL(n,R) acting on the subset of points

in general position in (Rn)k .
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Theorem 6.2. The set of points in general position for the standard representation of

GL(n,R) on (Rn)k are the sets,

Uk = {(z1, . . . , zk) ∣ zi are independent} . (6.7)

Remark 6.2. Note that the preimage T −1(Uk) are all the points (x0, x1, . . . , xk) such that

(x1 − x0, . . . , xk − x0) are independent. Geometrically these are the sets of vectors based at

x0 which are independent.

The proof of Theorem 6.2 uses the following lemma and its corollary.

Lemma 6.4. For any 1 ≤ k ≤ n the action µkGL(n,R) is transitive on Uk ⊂ (Rn)k and the

dimension of the stabilizer of a point Z ∈ Uk is k(n − k).

Proof. Fix some 1 ≤ k ≤ n. First we note that Uk is invariant under µkGL(n,R) since an

invertible linear transformation takes linearly independent sets to linearly independent sets.

Let Z = (z1, . . . , zk) ∈ Uk and let {ei} be the standard basis for Rn. Extend {zi} to a basis

and consider the matrix, A, which has this basis as its columns. Then A−1zi = ei and

µkGL(n,R) (A, (z1, . . . , zk)) = (e1, . . . , ek)

which verifies that the action is transitive.

The isotropy subgroup for Z is conjugate to the isotropy of (e1, . . . , ek) since they are

in the same orbit. Let A be in the stabilizer of (e1, . . . , ek). then the first k columns of A

are (e1, . . . , ek) so A is block upper triangular

A =
⎡⎢⎢⎢⎢⎢⎣

Ik×k Bk×(n−k)

0(n−k)×k C(n−k)×(n−k)

⎤⎥⎥⎥⎥⎥⎦
(6.8)

with B some k×(n−k) matrix and C ∈ GL(n−k,R). So the isotropy subgroup has dimension

k(n − k) + (n − k)2 = n(n − k) as claimed.
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The description of the isotropy subgroup in Equation (6.8) implies the following corol-

lary.

Corollary 6.2. The action of GL(n) on Un is free.

proof of Theorem 6.2. Fix some k and pick a point Z = (z1, . . . , zk−1) ∈ (Rn)k . If Z = 0 then

it is a fixed point and has a zero dimensional orbit. So now assume Z ≠ 0 and consider two

cases on k.

If k ≤ n then if Z ∈ Uk the dimension of the stabilizer for Z is k(n − k) from Lemma

6.4. Now suppose Z = (z1, . . . , zk) ∉ Uk. Since Z is non zero let Ẑ be a maximal linearly

independent subset of Z with ` < k elements. Then the stabilizer of Z is contained in the

stabilizer of Ẑ by linearity of the action µkGL(n,R). The dimension of the isotropy subgroup

for Ẑ is n(n − `) from Lemma 6.4, which is larger than n(n − k) and therefore Z is not in

general position.

Now consider the case k > n. For Z to be in general position its first n points must be

in general position for (Rn)n , and hence are elements of Un. But from Corollary 6.2 the

action of GL(n,R) is free on Un and so every point in Un × (Rn)k−n has a zero dimensional

stabilizer.

The local invariants of µn+1
GL(n,R) defined on Uk ×Rn are given in the following theorem.

Theorem 6.3. There are n independent local n + 1 point joint invariants for the standard

representation of GL(n,R), µGL(n,R) on (Rn)n+1 given by the functions αi ∶ Un × Rn → R

which are defined by the equation

zn+1 = αi(z1, . . . , zn+1)zi.

Corollary 6.3. The functions αi ○ T ∶ (T−1(Un) ×Rn)) → R given by

αi ○ T (x0, . . . , xn+1) = αi(x1 − x0, . . . , xn+1 − x0),
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where T is as defined in Equation (6.6), are a complete set of local n+2 point joint invariants

for the standard affine action µA(n).

The proof of Theorem 6.3 follows from the next lemma.

Lemma 6.5. The orbit through every point, Z = (z1, . . . , zn+1) ∈ Un ×Rn, has a representa-

tive (e1, . . . , en, α
iei) for a unique collection of αi depending only on the point Z.

Proof. Let (z1, . . . , zn+1) ∈ Un × Rn. Then since {zi} are a basis for Rn the final point

zn+1 = αizi for a unique collection of components {αi}. Let A be the matrix which takes the

first n points to (e1, . . . , en), then

(e1, . . . , en, α
iei). (6.9)

Proof of Theorem 6.3. The functions αi are well defined since any point in Un is a basis for

Rn. Then suppose that Z = (z1, . . . , zn, zn+1) and A ∈ GL(n). Then

(Az1, . . .Azn,Azn+1) = (Az1, . . . ,Azn,Aα
izi) = (Az1, . . . ,Azn, α

i(Azi))

so that αi(Z) = αi(A ⋅Z) and these are invariant functions.

Now suppose that W = (w1, . . . ,wn+1) and V = (v1, . . . , vn+1) are chosen, by Lemma

6.5 they have representatives (e1, . . . , α
i(W )ei) and (e1, . . . , α

i(V )ei) which are equal, and

hence W and V are conjugate, if and only if αi(W ) = αi(V ).

Remark 6.3. For an explicit description of these invariants consider the function F ∶

Un ×Rn → Rn defined by

F (z1, . . . , zn+1) = [z1 ∣⋯ ∣ zn]
−1
zn+1

where [z1 ∣⋯ ∣ zn] is the matrix with columns given by (z1, . . . , zn). The components of this

function are the invariants αi given in Theorem 6.3.
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Now consider the special affine group SA(n).

Lemma 6.6. The standard representation of SL(n) is transitive on Uk for k = 1, . . . , n− 1.

and the stabilizer of a point Z ∈ Uk has dimension n(n − k) − 1.

Proof. The proof of transitivity is similar to Lemma 6.4. Let Z = (z1, . . . , zk) ∈ Uk and

extend to an oriented basis of Rn, Ẑ = (z1, . . . , zk, . . . , zn) such that det (Ẑ) = 1. Then there

is an element A−1 ∈ SL(n) such that A−1ei = zi and µkSL(n,R)(A,Z) = (e1, . . . , ek).

Now let A be an element of the stabilizer for (e1, . . . , ek). As in the previous case A

takes the form given in Equation (6.8), but now the block C is an element of SL(n − k,R),

so the dimension of the stabilizer is n(n − k) + (n − k)2 − 1 = n(n − k) − 1 as claimed.

When k = n the action µnSL(n,R) is not transitive, and every element of Un has a canonical

form given in the next lemma.

Lemma 6.7. If (z1, . . . , zn) ∈ Un then there is a matrix A ∈ SL(n) such that

µnSL(n,R) (A, (z1, . . . , zn)) = (e1, . . . , en−1, λen) (6.10)

where λ = det(z1, . . . , zn).

Proof. From Lemma 6.4 there exists Ã ∈ GL(n) such that

µnGL(n,R) (Ã, (z1, . . . , zn)) = (e1, . . . , en).

Taking the determinant of (Ãz1, . . . , Ãzn) gives the equation det (Ã)det(z1, . . . , zn) = 1. Let

λ = det (Ã)−1 = det(z1, . . . , zn),

and define A by scaling the last column of Ã by λ so that A ∈ SL(n) and

µnSL(n,R) (A, (z1, . . . , zn)) = (e1, . . . , λen).
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Corollary 6.4. The action µnSL(n,R) is free on Un.

The proof follows from computing the isotropy subgroup of (e1, . . . , λen) which is the

identity.

Theorem 6.4. The function det ∶ Un → R is a complete invariant of the SL(n) action on

(Rn)n.

Theorem 6.4 gives the immediate corollary by using Theorem 6.1 in the special affine

case.

Corollary 6.5. The function det ○T ∶ T−1(Un) → R

det ○T (x0, x1, . . . , xn) = det (x1 − x0, . . . , xn − x0) (6.11)

is a complete local n + 1 point joint invariant of the action of SA(n) on Rn.

Proof of Theorem 6.4. Since det(A) = 1 for all A ∈ SL(n) then

det(Az1, . . . ,Azn) = det(A)det(z1, . . . , zn)

gives that det is an invariant. Further since any two points V,W ∈ Un can be taken to

the representative given in Lemma 6.7 then they are on the same orbit if and only if

det(V ) = det(W ).
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CHAPTER 7

Joint Invariants of Primitive Homogeneous Spaces with Low Dimensional Lie

Algebra-Subalgebra Pairs of Symmetric Type

In this chapter we consider two examples of primitive homogeneous spaces of symmetric

type, SU(2,R) and SL(2,R). We will apply the reduction theory developed in Lemma 3.5

and Theorem 3.2 to these examples. These results show that the k point joint invariants

for the symmetric action µsym from Definition 3.1 when L is taken to be SU(2,R) and

SL(2,R) are determined by the k − 1 point joint invariants of the conjugation action µconj

as defined in Equation 3.21. The chapter is split into two sections. Section 7.1 constructs

the two and three point joint invariants of SU(2,R) and presents an additional technique

for determining the joint invariants of the intransitive action µconj on the set of point in

general position. Section 7.2 constructs a complete set of two point joint invariants of µsym

given by the group SL(2,R).

7.1 SU(2,R) Two and Three Point Example

We consider the group SU(2,R),

SU(2,R) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

z w

−w̄ z̄

⎤⎥⎥⎥⎥⎥⎦
∣ z,w ∈ C ∣z∣2 + ∣w∣2 = 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

which is a compact simple Lie group of dimension three.

Let L = SU(2,R) and G = SU(2,R) × SU(2,R) act on SU(2,R) by the symmetric

action µsym given in Definition 3.1. Lemma 3.5 identifies SU(2,R) as the homogeneous

space SU(2,R)2/SU(2,R)2
diag, and Theorem 4.4 shows that the action µsym of SU(2,R)2

on SU(2,R) is primitive. However, the pair (SU(2,R)2,SU(2,R)2
diag) is not a primitive

pair since SU(2,R)2
diag contains the normal subgroup (±I,±I) failing part 2) of Definition

4.8. Note that the Lie group SU(2,R) is the universal covering group of SO(3,R) and
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that SO(3,R) is a Lie group which contains no normal subgroups, so by Theorem 4.2 the

subgroup SO(3,R)2
diag is a primitive subgroup of SO(3,R)2 and (SO(3,R)2,SO(3,R)2

diag)

is a primitive pair.

Subsection 7.1.1 provides the proofs of the results for the two point case which are

summarized below. By Corollary 3.3 the two point joint invariants of µsym are identified

with the class functions on SU(2,R) and the trace function is a complete invariant of

conjugation as stated in the next theorem which will be proved in.

Theorem 7.1. The map 1
2 tr ∶ SU(2,R) → [−1,1] is a surjective function and a complete

global invariant of SU(2,R) acting on itself by conjugation.

Corollary 7.1. The function 1
2 tr ○T ∶ SU(2,R) × SU(2,R) → [−1,1] given by

1

2
tr(X0,X1) ○ T = 1

2
tr(X−1

0 X1)

is a a complete global two point joint invariant of µsym.

Note that this invariant is a scalar multiple of the Frobenius inner product of matrices

since X−1 =X∗ for matrices in SU(2,R).

There are two fixed points, ±I, of the action µconj. Lemma 7.4 below shows that the

stabilizer for any other point in SU(2,R) is conjugate to SO(2,R) and is proved in.

The points in general position for µconj are given below.

Lemma 7.1. The subset

SU(2,R)∗ = SU(2,R) ∖ { ± I}

of SU(2,R) are the points in general position for the action µconj.

We now summarize the results of the three point case which are proved in Subsec-

tion 7.1.2. The three point joint invariants of µsym are determined by the two point joint

invariants of µconj from Theorem 3.2.
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The points in general position for the two point diagonal action µ2
conj are given in the

next lemma.

Lemma 7.2. The set of points in general position for the action µ2
conj is the subset of

SU(2,R) × SU(2,R) which are not simultaneously diagonalizable.

Moreover the action µ2
conj is infinitesimally free on this subset, the stabilizer of every

point is given by the global isotropy subgroup ±I.

We use a canonical form for the orbits to determine a complete set of invariants.

Theorem 7.2. The functions

f1(Z1, Z2) =
1

2
tr (Z1), f2(Z1, Z2) =

1

2
tr (Z2), and f3(Z1, Z2) =

1

2
tr (Z∗

1Z2)

are a complete set of global two point joint invariants for the diagonal action of SU(2,R)

by conjugation.

The corresponding joint invariants of µ3
sym are given in the following corollary.

Corollary 7.2. Let T̂ ∶ SU(2,R)3 → SU(2,R)2 be given by

T̂ (X0,X1,X2) = (X∗
0X1,X

∗
0X2)

then the functions

F1 = f1 ○ T̂ (X0,X1,X2) =
1

2
tr (X∗

0X1),

F2 = f2 ○ T̂ (X0,X1,X2) =
1

2
tr (X∗

0X2),

F3 = f3 ○ T̂ (X0,X1,X2) =
1

2
tr (X∗

1X2),

form a complete set of three point global invariants for the action µsym.

Section 7.1.3 shows that SU(2,R)∗ is equivariantly bijective with the setN×SU(2,R)/H

where N are the diagonal matrices of SU(2,R)∗ and H is the common isotropy subgroup



111

for each D ∈ N. and uses this equivariant diffeomorphism to construct the joint invariants

from a different perspective, See Theorem 7.6 and Lemma 7.8.

7.1.1 Proof of Results for Two Point Case

The orbits of µconj are the conjugacy classes of points in SU(2,R). The following theo-

rem states that any matrix in SU(2,R) is conjugate to a diagonal matrix by an element of

the unitary group U(2,R).

Theorem 7.3. Let Z be a complex n × n matrix. Then Z is normal if and only if Z is

unitarily equivalent to a diagonal matrix.

This is a standard fact from linear algebra, see Friedberg [9] for proof.

The following lemma gives an explicit description for a representative of every conjugacy

class in SU(2,R).

Lemma 7.3. If Z ∈ SU(2,R) then there exists θ ∈ [0, π] such that Z is conjugate to the

diagonal matrix

Dθ =
⎡⎢⎢⎢⎢⎢⎣

eiθ 0

0 e−iθ

⎤⎥⎥⎥⎥⎥⎦
, (7.1)

by an element of SU(2,R).

Proof. Fix Z ∈ SU(2,R). Since Z ∈ U(2,R), the Hermitian conjugate, Z∗ = Zt, is the inverse

of Z, and Z is normal. So by Theorem 7.3 there exists a unitary matrix P ∈ U(2,R) such

that P ∗ZP = D for some diagonal matrix D ∈ SU(2,R). Since P ∈ U(2) then det(P ) is a

unitary complex number and therefore
√

det(P ) is also a unitary complex number. So let

Q = 1√
det(P )P where QQ∗ = Q∗Q = I and

µconj (Q∗, Z) = Q∗ZQ = P ∗ZP =D,

proving that Z is conjugate to D by an element of SU(2,R).
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Now let

Z =
⎡⎢⎢⎢⎢⎢⎣

z w

−w̄ z̄,

⎤⎥⎥⎥⎥⎥⎦

where the characteristic polynomial of Z is

PZ(t) = t2 − (z + z̄)t + 1,

so since the coefficients are real the eigenvalues must be real or complex conjugates. Suppose

that the eigenvalues are real and denote them by λ1, λ2. Then since the constant term of

PZ(t) is 1 the eigenvalues satisfy λ1λ2 = 1 and λ1, λ2 ≠ 0 so λ2 = 1/λ1.

From the linear term they must sum to z + z̄ and from ∣z∣2 + ∣w∣2 = 1 we have the upper

bound ∣z∣ ≤ 1 and hence ∣z + z̄∣ ≤ 2. Then we have

∣λ1 +
1

λ1
∣ ≤ 2

so rearranging and factoring gives (∣λ1∣ − 1)2 ≤ 0 which is only possible when ∣λ1∣ = 1 so

λ1 = ±1 are the only possible real roots.

Conversely, if the eigenvalues are complex conjugates, their product must be 1 from

the constant term and hence are unitary.

Let the eigenvalues be given in polar form, eiθ and e−iθ, for some θ ∈ [0, π]. The

diagonal representative of Z, D = Q∗ZQ, is one of the two forms, Dθ = diag (eiθ, e−iθ) or

D−θ = diag (e−iθ, eiθ) . But the matrix

S =
⎡⎢⎢⎢⎢⎢⎣

0 −i

−i 0

⎤⎥⎥⎥⎥⎥⎦

is in SU(2,R) and satisfies the equation, SDθS
∗ = D−θ, and so Dθ and D−θ are conjugate

in SU(2,R). Hence, we can always take Dθ to be the diagonal representative of Z which

completes the proof.
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The diagonal representatives Dθ for SU(2,R) conjugacy classes allow us to prove The-

orem 7.1.

Proof of Theorem 7.1. First we show that f = 1
2 tr is a surjective map. Let r ∈ [−1,1]. Then

let θ ∈ [0, π] such that cos(θ) = r. The matrix Dθ = diag (eiθ, e−iθ) , satisfies

tr(Dθ) =
1

2
(eiθ + e−iθ) = cos(θ) = r,

and f(Dθ) = r verifying f is onto.

The function f is an invariant since the trace function is a class function, so we now

show that f is a complete invariant. Let Z,W ∈ SU(2,R) satisfy,

1

2
tr(Z) = 1

2
tr(W ). (7.2)

Let Dθ = diag (eiθ, e−iθ) and Dφ = diag (eiφ, e−iφ) for θ, φ ∈ [0, π] be the diagonal represen-

tatives of Z,W respectively.

Then f(Z) = 1
2 tr (Dθ) = cos(θ) and f(W ) = 1

2 tr (Dφ) = cos(φ) where θ, φ ∈ [0, π], and

from Equation (7.2) θ = φ, as cosine is injective on the interval [0, π]. So Dθ =Dφ and Z is

conjugate to W which completes the proof.

Remark 7.1. From Theorem 7.1 the complete invariant 1
2 tr is surjective, and so the orbit

space SU(2,R)/µconj is canonically bijective with [−1,1]. In Appendix B we show that this

bijection is a homeomorphism with respect to the quotient topology on SU(2,R)/µconj and

the subspace topology of [−1,1].

Now we will determine the points in general position for µconj. First we compute the

isotropy subgroup for the elements of SU(2,R) which are not the fixed points ±I.

Lemma 7.4. The isotropy of every point in SU(2,R) ∖ {±I} is conjugate to the subgroup

SO(2,R).

Proof. Let Z ∈ SU(2,R) ∖ {±I}. Then Z is conjugate to a diagonal representative Dθ as

given in Equation (7.1), where θ ∈ (0, π) since Z ≠ ±I.
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The stabilizer of Dθ is all elements of SU(2,R) which satisfy the equation,

⎡⎢⎢⎢⎢⎢⎣

α β

−β̄ ᾱ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

eiθ 0

0 e−iθ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

eiθ 0

0 e−iθ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

α β

−β̄ ᾱ

⎤⎥⎥⎥⎥⎥⎦
.

That is βe−iθ = eiθβ where θ ≠ 0, π gives β = 0 and ∣α∣ = 1. So the stabilizer of Dθ is

SU(2,R)Dθ = {diag (α, ᾱ) ∣α ∈ C, ∣α∣ = 1} .

This is conjugate to SO(2,R). Suppose that diag (α, ᾱ) = diag (eit, e−it) for some t ∈ [−π,π].

Consider S ∈ SU(2,R) given by,

S = 1√
2

⎡⎢⎢⎢⎢⎢⎣

i −1

1 −i

⎤⎥⎥⎥⎥⎥⎦
.

By conjugating diag (α, ᾱ) by S we have,

S diag (eit, e−it)S∗ =
⎡⎢⎢⎢⎢⎢⎣

cos(t) − sin(t)

sin(t) cos(t)

⎤⎥⎥⎥⎥⎥⎦
.

So S SU(2,R)DθS∗ ⊂ SO(2,R). On the other hand

S∗
⎡⎢⎢⎢⎢⎢⎣

cos(t) − sin(t)

sin(t) cos(t)

⎤⎥⎥⎥⎥⎥⎦
S =

⎡⎢⎢⎢⎢⎢⎣

cos(t) + i sin(t) 0

0 cos(t) − i sin(t)

⎤⎥⎥⎥⎥⎥⎦

so SO(2,R) ⊂ S SU(2,R)DθS∗ completing the proof.

Proof of Lemma 7.1. The stabilizer of any point other than ±I has dimension one, while

the points ±I are fixed points and so have stabilizers of dimension three.

7.1.2 Proof of Results for Three Point Case

This section proves Theorem 7.2 and Corollary 7.2. We first identify a canonical form

for the orbits of this action.



115

Lemma 7.5. Any point (Z1, Z2) ∈ SU(2,R) × SU(2,R) is conjugate to

(Dθ,R) =
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

eiθ 0

0 e−iθ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

z r

−r z̄

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

for unique θ ∈ [0, π], z ∈ C, and r ∈ [0,1] such that ∣z∣2 + r2 = 1.

Proof. From Lemma 7.3, Z1 is conjugate to Dθ1 as in Equation (7.1) by some element

Λ1 ∈ SU(2,R). Consider µ2
conj (Λ∗

1 , (Z1, Z2)) = (Dθ1 ,Λ
∗
1Z2Λ1).

Let Z ′
2 = A∗Z2A be given by the matrix

Z ′
2 =

⎡⎢⎢⎢⎢⎢⎣

z w

−w̄ z̄

⎤⎥⎥⎥⎥⎥⎦
(7.3)

for some unique z,w ∈ C with ∣z∣2 + ∣w∣2 = 1.

First suppose that w = 0 so that ∣z∣ = 1. That is (Z1, Z2) is simultaneously diagonalizable

by the matrix Λ1. This is in the form required with r = 0.

Now suppose that w ≠ 0. then w = reiφ for a well defined φ ∈ [−π,π] and 0 < r ≤ 1. Let

ζ = −φ/2. From Lemma 7.4 the matrix

A = diag (eiζ , e−iζ) (7.4)

is in the stabilizer of Dθ, and

AZ ′
2A

∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z e2iζw

−(e2iζw) z̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

z r

−r z̄

⎤⎥⎥⎥⎥⎥⎦
= R

where ∣z∣2 + r2 = 1 since AZ ′
2A

∗ ∈ SU(2,R). Then µ2
conj (AΛ∗

1 , (Z1, Z2)) = (Dθ,R) as desired.

Proof of Lemma 7.2. Consider (Z1, Z2) ∈ SU(2,R)×SU(2,R). The points in general position

have minimal stabilizer dimension of both Z1 with respect to µconj and (Z1, Z2) with respect
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to µ2
conj. So (Z1, Z2) ⊂ SU(2,R)∗ × SU(2,R).

Now suppose that (Z1, Z2) ∈ SU(2,R)∗ × SU(2,R). If (Z1, Z2) is not simultaneously

diagonalizable then from Lemma 7.5 there is a unique representative (Dθ,R) with r > 0

for the orbit of (Z1, Z2). The stabilizer of this representative, SU(2,R)(Dθ,R) must be an

element of SU(2,R)Dθ ∩ SU(2,R)R, that is an element of the form diag(α, ᾱ) with ∣α∣ = 1

which solves the equation

⎡⎢⎢⎢⎢⎢⎣

α 0

0 ᾱ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

z r

−r z̄

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

z r

−r z̄

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

α 0

0 ᾱ

⎤⎥⎥⎥⎥⎥⎦
.

Hence, (α − ᾱ) = 0 since we’re assuming r > 0, and α is real and from αᾱ = 1, so α = ±I.

That is in the case where (Z1, Z2) is not simultaneously diagonalizable the isotropy has

dimension 0, and is given by the global isotropy subgroup for µ2
conj.

If (Z1, Z2) is simultaneously diagonalizable there is a pair of diagonal matrices (Dθ1 ,Dθ2)

in the same orbit as (Z1, Z2) which have the same stabilizer of dimension 1 and are not in

general position.

Proof of Theorem 7.2. We first check that f3 is an invariant, the others are similar. Let

A ∈ SU(2,R) and (Z1, Z2) ∈ SU(2,R) × SU(2,R) and consider,

f3 (AZ1A
∗,AZ2A

∗) = 1

2
tr(A∗Z∗

1AA
∗Z2A) = 1

2
tr(A∗Z∗

1Z2A) = 1

2
tr(Z∗

1Z2),

which verifies f3 is an invariant.

Now we will show that if (X1,X2), (Y1, Y2) ∈ SU(2,R) × SU(2,R) satisfy fi(X1,X2) =

fi(Y1, Y2) then they are in the same orbit.
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By Lemma 7.5 the points (X1,X2) and (Y1, Y2) have canonical forms,

(Dθ1 , Z1) =
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

eiθ1 0

0 e−iθ1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

z1 r1

−r1 z1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

(Dθ2 , Z2) =
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

eiθ2 0

0 e−iθ2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

z2 r2

−r2 z2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

For r1, r2 ∈ [0,1] and θ1, θ2 ∈ [0, π].

First consider the case that θ = 0, π then Dθ1 = Dθ2 = ±I which is a fixed point under

conjugation so X1 = Y1 = ±I. Hence (X1,X2) = (±I,X) and (Y1, Y2) = (±I, Y ) and therefore

since tr(X) = tr(Y ) and the trace function is a complete invariant of conjugation then

(X1,X2) is on the same orbit as (Y1, Y2).

If θ1, θ2 ∈ (0, π) then since fi are invariant functions they give equations for these

representatives,

tr (D∗
θ1Z1) = tr (D∗

θ2Z2)

tr (Dθ1) = tr (Dθ2) (7.5)

tr (Z1) = tr (Z2) .

Let z1 = a1 + ib1 = R1e
iφ1 and z2 = a2 + ib2 = R2e

iφ2 be the corresponding Cartesian and

polar forms for the complex numbers z1, z2. Then the system (7.5) becomes

eiθ1z1 + e−iθ1z1 = eiθ2z2 + e−iθ2z2

cos(θ1) = cos(θ2)

Re(z1) =Re(z2).
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As in the two point case we have θ1 = θ2 = θ. and now also we have a1 = a2 = a, so

substituting this in gives

eiθ(a + ib1) + e−iθ(a − ib1) = eiθ(a + ib2) + e−iθ(a − ib2)

i(eiθ − e−iθ)b1 = i(eiθ − e−iθ)b2

sin(θ)b1 = sin(θ)b2.

So since this is the case where θ ≠ 0, π, then b1 = b2 and z1 = z2. Then since r1 = 1− ∣z1∣2 and

r2 = 1− ∣z2∣2 then r1 = r2 as well and these representatives are equal, verifying that (X1,X2)

is in the same orbit as (Y1, Y2) and completing the proof.

7.1.3 Slice Method

This section of the chapter provides an additional technique for determining the k point

joint invariants of µconj when L = SU(2,R).

To determine the joint invariants for the intransitive action µconj we introduce the idea

of a slice.

Definition 7.1. Let µ ∶ G ×X → X be a group action. A strong slice is a subset N ⊂ X

which satisfies the following conditions.

i) If x ∈X then there exists a unique point n ∈ N such that N ∩ [x] = {n}.

ii) There is a subgroup H of G such that for all n ∈ N the stabilizer Gn =H.

In the example of µconj where G = SU(2,R) and X = SU(2,R)∗ = SU(2,R) ∖ {±I} the

set of diagonal matrices in SU(2,R)∗ are a strong slice.

Under the assumption that a strong slice exists for the action µ on a set X we can

define a map Ψ ∶ N ×G/H →X by

Ψ(n, [a]H) = an
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which is an equivariant bijection. The action on N × G/H is µslice ∶ G × (N × G/H) →

(N ×G/H)

µslice(a, (n, [x]H)) = (n, [ax]H).

The equivariant bijection Ψ then identifies the set of µ invariants with the set of µslice

invariants. Hence, the k point µ invariants are identified with the k point µslice invariants.

The k point µslice invariants fall into two types.

i) The invariants which arise from projecting onto the slice N, which are the maps

πk1 ∶ (N ×G/H)k → Nk given by

πk1 ((n1, [a0]H , . . . , (nk, [ak]H))) = (n1, . . . , nk).

ii) Invariants of the action of G on G/H by left multiplication from the equivariant map

πk2 ∶ (N ×G/H)k → (G/H)k

πk2 ((n1, [x1]H), . . . , (nk, [xk]H)) = ([x1]H), . . . , [xk]H).

The k point joint invariants of µslice which arise from πk2 are of primary interest since they

are exactly the k point joint invariants of G on G/H by left multiplication, and the reduction

theory from Chapter 3 shows that these are equivalent to the k − 1 point joint invariants of

the subgroup H.

The method is motivated by the theory of slices, for more information about the general

case see Bredon [5]

Let

H =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

α 0

0 ᾱ

⎤⎥⎥⎥⎥⎥⎦
∣ α ∈ C, ∣α∣ = 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

be the isotropy subgroup of any diagonal matrix Dθ from Lemma 7.3.
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Consider the set N = {Dθ ∣ θ ∈ (0, π)} . The map µslice ∶ SU(2,R) × (N × SU(2,R)/H) →

(N × SU(2,R)/H) given by

µslice (A, (Dθ, [Λ]H)) = (Dθ, [AΛ]H) (7.6)

is an action of SU(2,R) on N × SU(2,R)/H.

We will equivariantly identify the space SU(2,R)∗ of points in general position for µconj

with N × SU(2,R)/H.

Theorem 7.4. Consider the set N×SU(2,R)/H. Let µslice be the action defined in Equation

(7.6). The map Ψ ∶ (N × SU(2,R)/H) → SU(2,R)∗ defined by

Ψ (Dθ, [Λ]H) = ΛDθΛ
∗

is an equivariant bijection with respect to the actions µconj and µslice.

Proof. Consider the map ψ ∶ N × SU(2,R) → SU(2,R)∗ defined by

ψ (Dθ,Λ) = ΛDθΛ
∗.

Let µH ∶H × (N × SU(2,R)) → (N × SU(2,R)) be given by

µH (A, (Dθ,Λ)) = (Dθ,ΛA)

where (Dθ,Λ) ∈ N ×SU(2,R). The orbit space of µH is the set N ×SU(2,R)/H, and we will

show that ψ is a complete surjective invariant for µH , so that by Corollary 2.1 ψ factors

through the quotient by a unique bijection Ψ.

The map ψ is surjective since every element in SU(2,R)∗ is conjugate to a representative

Dθ via µconj. Now suppose (Dθ,Λ), (Dφ,Ω) ∈ N × SU(2,R) such that ψ(Dθ,Λ) = ψ(Dφ,Ω).
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Then

ΛDθΛ
∗ = ΩDφΩ∗ (7.7)

and tr(Dθ) = tr(Dφ) which implies that θ = φ. Then conjugating both sides of Equation

(7.7) by Ω−1 we have the equation

(Ω∗Λ)Dθ(Ω∗Λ)∗ =Dθ.

Hence, Ω∗Λ ∈H and there exists some A ∈H with Λ = ΩA. Act on (Dφ,Ω) by A via µH to

find

µH (A(Dφ,Ω)) = (Dθ,Λ)

and (Dθ,A) and (Dφ,B) are in the same orbit of µH . Now Corollary 2.1 verifies Ψ is a

bijection of N × SU(2,R)/H and SU(2,R)∗.

Finally we verify equivariance of Ψ. Consider

Ψ(Dθ, [AΛ]H) = (AΛ)Dθ(AΛ)∗ = µconj(A,ΛDθΛ
∗) = µconj (A,Ψ(Dθ,Λ))

completing the proof.

Note that the inverse of Ψ from Lemma 7.4, Ψ−1 ∶ SU(2,R)∗ → (N × SU(2,R)/H) is

given by

Ψ−1 (Z) = (Dθ, [Λ]H) (7.8)

for the unique θ ∈ (0, π) and [Λ]H ∈ SU(2,R)/H such that Z = ΛDθΛ
∗ for any representative

Λ of [Λ]H .

The equivariant bijection Ψ−1 Induces a unique bijection between the orbit spaces

SU(2,R)∗/µconj and (N × SU(2,R)/H) /µslice by Theorem 2.4. So by finding a complete set
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of invariants for µslice the map Ψ−1 induces a complete set of invariants for µconj.

Theorem 7.5. Let π1 ∶ N × SU(2,R)/H → N be the projection onto the first factor

π1(Dθ, [A]H) = Dθ. The map π1 is a complete invariant of µslice on N × SU(2,R)/H and

π1 ○Ψ−1 is a complete invariant of µconj on SU(2,R)∗.

Proof. The map π1 is an invariant of the action µslice since µslice acts trivially on the first

factor. Now we show that π1 is complete. Suppose that (Dθ, [Λ]H) and (Dφ, [Ω]H) are two

elements of N × SU(2,R)/H such that π1(Dθ, [Λ]H) = π1(Dφ, [Ω]H), that is, θ = φ. Then

the diagonal matrices Dθ = Dφ and the orbits Dθ × SU(2,R)/H = Dφ × SU(2,R)/H. Hence

the invariant π1 is complete.

Finally since Ψ−1 is an equivariant bijection the composition π1 ○ Ψ−1 is a complete

invariant of µconj.

Now consider µ2
conj restricted to the invariant subset SU(2,R)∗×SU(2,R)∗ ⊂ SU(2,R)×

SU(2,R). Let Ψ2 ∶ (N × SU(2,R)/H)2 → (SU(2,R)∗)2 be

Ψ2((Dθ1 , [A1]H), (Dθ2 , [A2]H)) = (Ψ(Dθ1 , [A1]H),Ψ(Dθ2 , [A2]H)).

The map Ψ−1
2 is an equivariant bijection with respect to µ2

conj and µ2
slice respectively. The

inverse Ψ−1
2 is given by

Ψ−1(Z1, Z2) = (Ψ−1(Z1),Ψ−1(Z2)) .

So the equivariant bijection Ψ−1
2 induces a unique bijection between the orbit spaces (SU(2,R)∗)2 /µ2

conj

and (N × SU(2,R)/H)2 /µ2
slice and a complete set of invariants for µ2

slice determines a com-

plete set of invariants for µ2
conj.

As above the map π2
1 ∶ (N × SU(2,R)/H)2 → N2 is an invariant function. How-

ever in this case it is not complete, so we consider the map π2
2 ∶ (N × SU(2,R)/H)2 →
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(SU(2,R)/H)2 defined by

π2
2 ((Dθ1 , [Λ1]H)(Dθ2 , [Λ2]H)) = ([Λ1]H , [Λ2]H). (7.9)

Which is equivariant with respect to the two point diagonal action of SU(2,R) on SU(2,R)/H

by left multiplication and µ2
slice. We will determine the two point joint invariants of µslice

by constructing two point joint invariants for the action of SU(2,R) on SU(2,R)/H.

Lemma 7.6. Let f ∶ (SU(2,R)/H)2 → Y be a Y valued two point joint invariant of SU(2,R)

on SU(2,R)/H. Then the function f ○ π2
2 is an invariant of the action µ2

slice.

The proof is immediate from the equivariance of π2
2 with respect to the two point

diagonal actions.

Now we consider the invariants of SU(2,R) acting on SU(2,R)/H × SU(2,R)/H. The

invariants of this action can be determined by using Lemma 3.1 once a suitable map ρ

satisfying the identity in Equation (3.3) is determined. In this case we let ρ ∶ SU(2,R)/H →

H be given by

ρ([Λ]H) = Λ−1

where we chose a particular representative for each [Λ]H by the Axiom of Choice in order

to assure ρ is well defined. Then let T ∶ SU(2,R)/H × SU(2,R)/H → SU(2,R)/H given by

T ([Λ1]H , [Λ2]H) = Λ∗
1Λ2.

By Lemma 3.1 The invariants of SU(2,R) on SU(2,R)/H × SU(2,R)/H are in one to one

correspondence with the invariants of H on SU(2,R)/H by precomposition with T.

Lemma 7.7. Let q ∶ SU(2,R)/H → [−1,1] be given by

q

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎣

z w

−w̄ z̄

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦H

⎞
⎟⎟
⎠
= ∣z∣2 − ∣w∣2.
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The map q is a complete invariant of the action of H on SU(2,R)/H by left multiplication.

Proof. First we show that q is a well defined invariant function. Consider q̂ ∶ SU(2,R) →

[−1,1] defined by

q

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

z w

−w̄ z̄

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
= ∣z∣2 − ∣w∣2.

We claim that q̂ is an invariant of the action of H by right multiplication on SU(2,R) and

so factors through the quotient by this action via the map q. Let diag(α, ᾱ) ∈ H where

∣α∣ = 1 and consider

q

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

z w

−w̄ z̄

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

α 0

0 ᾱ

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
= ∣z∣2 − ∣w∣2.

Now we show that p is a complete invariant function of the action by H via left mul-

tiplication on SU(2,R)/H. Suppose that [Λ1]H , [Λ2]H ∈ SU(2,R)/H such that p ([Λ1]H) =

p ([Λ2]H) . This equation is independent of the representatives chosen for the H cosets, so

let

Λ1 =
⎡⎢⎢⎢⎢⎢⎣

z1 r1

−r̄1 z̄1

⎤⎥⎥⎥⎥⎥⎦
, and Λ2 =

⎡⎢⎢⎢⎢⎢⎣

z2 r2

−r̄2 z̄2

⎤⎥⎥⎥⎥⎥⎦

where r1, r2 are non-negative real numbers, and

∣z1∣2 − r2
1 = ∣z2∣2 − r2

2

∣z1∣2 − r2
1 = ∣z2∣2 − r2

2,

which implies that ∣z1∣ = ∣z2∣ and r1 = r2.

To show that [Λ1]H and [Λ2]H are in the same orbit of H acting on SU(2,R)/H by

left multiplication. There are two cases, if z1 = 0 then z2 = 0 using ∣z1∣ = ∣z2∣ so Λ1 = Λ2

using r1 = r2 so that [Λ1]H = [Λ2]H .
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On the other hand if z1 ≠ 0 then z2 ≠ 0 as well since ∣z1∣ = ∣z2∣. Now consider β = z2/z1

which satisfies ∣β∣ = 1 from ∣z1∣ = ∣z2∣. Pick any α ∈ C such that ∣α∣ = 1 and α2 = z1/z2 which

exists since ∣z1∣ = ∣z2∣.

Consider the elements B = diag ( z2z1 ,
z̄2
z̄1

) ∈H and A = diag (α, ᾱ) ∈H. Then

(BA)Λ1 (A−1) =
⎡⎢⎢⎢⎢⎢⎣

z2/z1 0

0 z̄2/z̄1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

α 0

0 ᾱ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

z1 r1

−r1 z̄1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

ᾱ 0

0 α

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

z1 r2

−r2 z̄2

⎤⎥⎥⎥⎥⎥⎦
= Λ2

which verifies that BA[Λ1]H = [Λ2]H since A−1 ∈H.

So if q([Λ1]H) = q([Λ2]H) then [Λ1]H and [Λ2]H are in the same orbit of H acting by

left multiplication and p is a complete invariant.

Then by Lemma 7.6 The map q ○ T ○ π2
2 is an invariant of the action µ2

slice and we

complete the analysis of this section by proving the following theorem

Theorem 7.6. The maps π2
1 and q ○ T ○ π2

2 are a complete set of invariants for µ2
slice.

Proof. Suppose that

π2
1 ((θ1, [Λ1]H), (θ2, [Λ2]H), ) = π2

1 ((φ1, [Ω1]H), (φ2, [Ω2]H))

(θ1, θ2) = (φ1, φ2)

then the points ((θ1, [Λ1]H), (θ2, [Λ2]H)) and ((φ1, [Ω1]H), (φ2, [Ω2]H)) . If

q ○ T ○ π2
2 ((θ1, [Λ1]H), (θ2, [Λ2]H)) = q ○ T ○ π2

2 ((φ1, [Ω1]H), (φ2, [Ω2]H))

then there exists an A ∈H such that

(([AΛ1]H), ([AΛ2]H)) = (([Ω1]H), ([Ω2]H))
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and therefore

µ2
slice (A, ((θ1, [Λ1]H), (θ2, [Λ2]H))) = ((θ1, [Ω1]H), (θ2, [Ω2]H)) = ((φ1, [Ω1]H), (φ2, [Ω2]H))

completing the proof.

The two point joint invariants of µconj from Theorem 7.2 are functionally related to

the µconj invariants determined by Theorem 7.6 by precomposition with the equivariant

diffeomorphism Ψ−1. We will show the relationship for the two point invariant q○T ○π2
2○Ψ−1.

Lemma 7.8. The function q ○ T ○ π2
2 ○Ψ−1 ∶ SU(2,R)∗ × SU(2,R)∗ → R is given by

q(Z1, Z2) =
1
4 (2 tr(Z∗

1Z2) − tr(Z1) tr(Z2))√
1 − 1

4 tr(Z1)2
√

1 − 1
4 tr(Z2)2

.

Proof. The proof is broken into a sequence of claims. The first claim is that for any Z ∈

SU(2,R)∗ where

Z =
⎡⎢⎢⎢⎢⎢⎣

z w

−w̄ z̄

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x + iy u + iv

−u + iv x − iy

⎤⎥⎥⎥⎥⎥⎦

there is a representative for the coset [Λ]H in the image Ψ(Z) = (θ, [Λ]H), given by

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−iu+v√
2u2+2v2+2y2−2

√
u2+v2+y2 y

−
√
u2+v2+y2−y√

2u2+2v2+2y2−2
√
u2+v2+y2 y√

u2+v2+y2−y√
2u2+2v2+2y2−2

√
u2+v2+y2 y

iu+v√
2u2+2v2+2y2−2

√
u2+v2+y2 y

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This follows from computing

Λ−1ZΛ =

⎡⎢⎢⎢⎢⎢⎢⎣

(iu2+iv2+iy2−xy)
√
u2+v2+y2−(u2+v2+y2)(iy−x)

u2+v2+y2−
√
u2+v2+y2 y 0

0
(−iu2−iv2−iy2−xy)

√
u2+v2+y2+(x+iy)(u2+v2+y2)

u2+v2+y2−
√
u2+v2+y2 y

⎤⎥⎥⎥⎥⎥⎥⎦
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where

Λ−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

iu+v√
2u2+2v2+2y2−2

√
u2+v2+y2 y

√
u2+v2+y2−y√

2u2+2v2+2y2−2
√
u2+v2+y2 y

−
√
u2+v2+y2−y√

2u2+2v2+2y2−2
√
u2+v2+y2 y

−iu+v√
2u2+2v2+2y2−2

√
u2+v2+y2 y

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= Λ∗

so that Λ ∈ SU(2,R) and Λ−1XΛ is a diagonal matrix. This proves the first claim.

Now note that if we define a function η ∶ SU(2,R) → C by η(Z) = 2zw and consider

q ∶ SU(2,R) → R given by q(Z) = ∣z∣2 − ∣w∣2, then

η(Λ) = −i (−u + iv)√
u2 + v2 + y2

r(Λ) = y√
u2 + v2 + y2

.

The second claim is that for any pair Λ1,Λ2 ∈ SU(2,R) given by

Λ1 =
⎡⎢⎢⎢⎢⎢⎣

z1 w1

−w̄1 z̄1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x1 + iy1 u1 + iv1

−u1 + iv1 x1 − iy1

⎤⎥⎥⎥⎥⎥⎦

Λ2 =
⎡⎢⎢⎢⎢⎢⎣

z2 w2

−w̄2 z̄2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x2 + iy2 u2 + iv2

−u2 + iv2 x2 − iy2

⎤⎥⎥⎥⎥⎥⎦

Then if we let

η1 = 2z1w1 r1 = ∣z1∣2 − ∣w1∣2

η2 = 2z2w2 r2 = ∣z2∣2 − ∣w2∣2

then the value of

q(Λ∗
1Λ2) = r1r2 +

1

2
(η1η̄2 + η̄1η2) .

This is a straightforward computation that we will leave out of the proof.

Now let Z1, Z2 ∈ SU(2,R) as denoted above. Using the first claim on Z1, Z2 gives
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representatives Λ1 and Λ2 such that Λ−1
1 Z1Λ1 = Dθ1 and Λ−1

2 Z2Λ2 = Dθ2 . Then we can

compute directly that

q(Λ−1
1 Λ2) =

u1u2 + v1 v2 + y1y2√
u1

2 + v1 2 + y1 2
√

u2
2 + v2 2 + y2 2

.

Now we use that tr(Zi) = 2xi, x
2
i + y2

i + u2
i + v2

i = 1, and the identity,

1

4
(tr(Z∗

1Z2) − tr(Z1) tr(Z2)) = u1u2 + v1 v2 + y1y2 ,

to conclude the proof.

7.2 SL(2,R) Two Point Example

This section constructs a complete set of two point joint invariants for SL(2,R). In

contrast to the SU(2,R) example where all points excluding the fixed points ±I had con-

jugate isotropy subgroups, SU(2,R) is partitioned into three invariant subsets which have

non conjugate isotropy subgroups.

Theorem 7.7. Let tr ∶ SL(2,R) → R be the trace function. Then SL(2,R) is partitioned

into the invariant subsets

Q>2 = {Z ∈ SL(2,R) ∣ ∣ tr(Z)∣ > 2}

Q±2 = {Z ∈ SL(2,R) ∣ tr(Z) = ±2} (7.10)

Q<2 = {Z ∈ SL(2,R) ∣ ∣ tr(Z)∣ < 2} .

The joint invariants for each of these invariant subsets are given below and the proofs

delegated to Section 7.2.1. Subsection 7.2.2 identifies each of the orbits as SL(2,R) homo-

geneous spaces from Theorem 5.2.

Theorem 7.8. Let Q>2 be as defined in Equation (7.10). Then the function tr ∶ SL(2,R) →

R is a well defined complete local invariant of conjugation.
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Theorem 7.9. Let Q2 and Q−2 be the invariant subsets of SL(2,R) defined in Equation

(7.10). The set Q2 has three invariant subsets

Q2,0 = {Z ∈ Q2 ∣ dim(ker(Z − I)) = 0}

Q2,1 = {Z ∈ Q2 ∣ dim(ker(Z − I)) = 1} (7.11)

Q2,2 = {Z ∈ Q2 ∣ dim(ker(Z − I)) = 2}

and the Z3 valued invariant function fdim ∶ SL(2,R) → Z3 given by

fdim(Z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Z ∈ Q2,0

1 Z ∈ Q2,1

2 Z ∈ Q2,2

(7.12)

determines which subset Z belongs to. Each of these subsets has a complete local invariant.

a) The function f2,0 ∶ Q2,0 → Z2 defined by

f2,0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Z ∼SL(2,R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −1

1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1 Z ∼SL(2,R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 1

−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

is a complete local invariant of Q2,0.
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b) The function f2,1 ∶ Q2,1 → Z2 given by

f2,0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Z ∼SL(2,R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1 Z ∼SL(2,R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

is a complete local invariant of Q2,1.

c) Q2,2 is the fixed point I.

Similarly for Q−2 there are subsets, Q−2,0,Q−2,1,Q−2,2, and invariants, f−2,0 ∶ Q2,0 → Z2

defined by

f2,0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Z ∼SL(2,R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −1

1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1 Z ∼SL(2,R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2 1

−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(7.13)

and f2,1 ∶ Q2,1 → Z2 given by

f2,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Z ∼SL(2,R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1

−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1 Z ∼SL(2,R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1

−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(7.14)
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which form complete sets of local invariants where they are defined.

Theorem 7.10. Let Q<2 be defined as in Equation (7.10). Then the function frational ∶

Q<2 → SL(2,R) given by

frational(Z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Z ∼SL(2,R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −1

1 tr(Z)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

1 Z ∼SL(2,R)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

tr(Z) 1

−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(7.15)

is a well defined complete local invariant of conjugation on Q<2.

Corollary 3.3 implies the corresponding complete set of joint invariants for points

(X0,X1) ∈ SL(2,R)×SL(2,R) are given by the functions above precomposed with T (X0,X1) =

X−1
0 X1.

7.2.1 Proofs for Two Point Results

We split the proofs into three sections for each of the SL(2,R) invariant subsets,

Q>2,Q±2,Q<2.

The case of Q>2.

Let Z ∈ SL(2,R). If ∣ tr(Z)∣ > 2 then Z is diagonalizable and we have the following

lemma.

Lemma 7.9. Let Z ∈ SL(2,R). If ∣12 tr(Z)∣ > 1 then Z is diagonalizable over SL(2,R) with

diagonal representative

⎡⎢⎢⎢⎢⎢⎣

λ 0

0 1
λ

⎤⎥⎥⎥⎥⎥⎦
(7.16)

where λ ∈ R∗.
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Proof. Let Z ∈ SL(2,R) have ∣1
2 tr(Z)∣ > 1 then the characteristic polynomial of Z,

PZ(t) = t2 − 2 tr(Z)t + 1

implies that the eigenvalues of Z are nonzero real distinct values λ,1/λ. Then Z is conjugate

to either diag(λ,1/λ) or diag(1/λ,λ) by an element of P ∈ GL(n,R). Now possibly by

permuting the columns ofX and rescaling the matrix by 1√
det(P ) we can assume P ∈ SL(2,R)

without loss of generality, and since

S =
⎡⎢⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎥⎦

is in SL(2,R) and Sdiag(λ,1/λ)S−1 = diag(1/λ,λ) then the proof is complete.

Then the proof of Theorem 7.8 follows from applying Lemma 7.9.

proof of Theorem 7.8. Let Z,W ∈ Q>2 with eigenvalues λ, ν respectively the equation λ+ 1
λ =

ν + 1
ν implies either λ = ν or λ = 1

ν and the trace is a complete invariant.

The case of Q±2

Let tr(Z) = 2 we will provide a detailed discussion of this case, as tr(Z) = −2 is similar.

The characteristic polynomial of Z is PZ(t) = t2 − 2t + 1 and we have the following lemma

showing that fdim from Equation (7.12) is well defined.

Lemma 7.10. The dimension of ker(I −Z) is invariant under conjugation of Z.

Proof. Suppose that v is an eigenvector of Z. Then if A ∈ SL(2,R) we have AZA−1Av = Av

and Av is an eigenvector of AZA−1. So if {vi} is a basis for ker(I−Z) then {Avi} is a basis

for ker (I −AZA−1) verifying that they are the same dimension.

Now consider Q2,0 the following lemma gives representatives for the conjugacy classes

of points in this set, and verifies that the function f2,0 from Equation (7.13) is a well defined

complete local invariant there.
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Lemma 7.11. If dim(I −Z) = 0 then Z is conjugate to one of the two forms

⎡⎢⎢⎢⎢⎢⎣

0 −1

1 2

⎤⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎣

2 1

−1 0

⎤⎥⎥⎥⎥⎥⎦

and these forms are non conjugate.

We first prove the preliminary result

Lemma 7.12. If ∣α∣ ≤ 2 then the matrices,

⎡⎢⎢⎢⎢⎢⎣

0 −1

1 α

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

α 1

−1 0

⎤⎥⎥⎥⎥⎥⎦
, are not conjugate in

SL(2,R).

Proof. Suppose there is A ∈ SL(2,R) such that

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 −1

1 α

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

α 1

−1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

This leads to the two equations d = −a and b = αa + c so A must have the form,

A =
⎡⎢⎢⎢⎢⎢⎣

a αa + c

c −a

⎤⎥⎥⎥⎥⎥⎦

and since det(A) = 1 we have the necessary condition that a, c must solve the equation

a2+αac+c2+1 = 0. However this equation does not have any solutions until ∣α∣ > 2 which can

be verified by substituting a = r(t) cos(t) and c(t) = r(t) sin(t) for some arbitrary function

r(t). Then substituting into the equation and simplifying one arrives at the equation

r2 (1 + 1

2
α sin(2t)) + 1 = 0

but ∣1
2α∣ < 1 so this equation cannot have any solutions proving the claim.

Proof of Lemma 7.10. Let Z ∈ Q2,0. Then Z has no real eigenvalues and the matrix P =
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[e1∣Ae1], where e1 is the first standard basis vector, is an element of GL(2,R). So conju-

gating by P −1 gives

P −1ZP =
⎡⎢⎢⎢⎢⎢⎣

0 −1

1 2

⎤⎥⎥⎥⎥⎥⎦
.

There are two cases on det(P ). If det(P ) > 0 then the matrix R = 1√
det(P ) has R−1ZR =

P −1ZP and Z is conjugate in SL(2,R) to the form claimed. Otherwise det(P ) < 0 and the

matrix P ′ = [Ze1, e1] has det(P ′) > 0. Conjugating by (P ′)−1 gives

(P ′)−1Z(P ′) =
⎡⎢⎢⎢⎢⎢⎣

2 1

−1 0

⎤⎥⎥⎥⎥⎥⎦

and R′ = 1√
det(P ′)P

′ is in SL(2,R) such that (R′)−1ZR′ = (P ′)−1ZP ′. Then from Lemma

7.12 the representatives are not conjugate and the proof is complete.

Now we show that f2,1 from Equation (7.14) is a well defined complete invariant on

Q2,1.

Lemma 7.13. If dim(I −Z) = 1 then Z is conjugate to exactly one of the two forms

⎡⎢⎢⎢⎢⎢⎣

1 1

1 0

⎤⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎣

1 0

1 1

⎤⎥⎥⎥⎥⎥⎦
.

Proof. Let v be an eigenvector of Z so that Zv = v. Then since dim(ker(Z − I)) = 1 there

exists w,u ≠ 0 which is independent of v such that

(Z − I)w = u

or Zw = u +w and w is not an eigenvector of Z.

We claim that u is an eigenvector of Z. Suppose not, then u is in the image of (Z − I)

and therefore a scalar multiple of w, a contradiction in w not being an eigenvector of Z.
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So there exists w such that (Z − I)w = v (possibly by rescaling w) and the matrix

P = [v∣w] satisfies

P −1ZP =
⎡⎢⎢⎢⎢⎢⎣

1 1

0 1

⎤⎥⎥⎥⎥⎥⎦
. (7.17)

If det(P ) > 0 then Z is conjugate to the desired form over SL(2,R). Otherwise if det(P ) <

0 then we need to take P ′ = [w∣v] and Z is conjugate over SL(2,R) to the other form

completing the proof.

Lemma 7.14. If dim(I −Z) = 2 then Z = I.

The proof is clear so it will be omitted.

Proof of Theorem 7.8. From Lemma 7.10 the subsets Q2,i for i = 0,1,2 are invariant under

SL(2,R) and from Lemmas 7.11 7.13 and 7.14 the functions f2,i for i = 0,1 are well defined

complete local invariants of the subsets Q2,i for i = 0,1.

The Case of Q<2

When ∣ tr(Z)∣ < 1 then the matrix Z is not diagonalizable over the real numbers, the

next lemma shows that the rational canonical form is a complete invariant of the conjugation

action.

Lemma 7.15. Let Z ∈ SL(2,R) with ∣1
2 tr(Z)∣ < 1. Then Z is conjugate over SL(2,R) to

one of the forms

⎡⎢⎢⎢⎢⎢⎣

0 −1

1 tr(Z)

⎤⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎣

tr(Z) 1

−1 0

⎤⎥⎥⎥⎥⎥⎦

which are not conjugate.

Proof. Let α = tr(Z). The representatives are not conjugate by Lemma 7.12

Now consider the characteristic polynomial of Z, PZ(t) = t2 − αt + 1. By the Cayley-

Hamilton theorem Z satisfies its own characteristic polynomial and Z2−αZ + I = 0. Now let
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e1 be the first element of the standard basis for R2. Let P = [e1∣Ae1]. This is an element of

GL(2,R) since otherwise Ae1 would be a real multiple of e1, but this is impossible since A

has complex eigenvalues when ∣α∣ < 2.

There are two cases. If det(P ) > 0 then in the basis {e1, Ze1} then

P −1ZP =
⎡⎢⎢⎢⎢⎢⎣

0 −1

1 tr(Z)

⎤⎥⎥⎥⎥⎥⎦
.

Then by letting R = 1√
det(P )P R−1ZR = P −1ZP and Z is conjugate to this form over

SL(2,R).

On the other hand suppose that det(P ) < 0. Then we let P ′ = [Ze1∣e1] which again is

in GL(2,R) and satisfies

(P ′)−1ZP ′ =
⎡⎢⎢⎢⎢⎢⎣

α 1

−1 0

⎤⎥⎥⎥⎥⎥⎦

and by similar logic to the previous case Z is conjugate in SL(2,R) to the form

⎡⎢⎢⎢⎢⎢⎣

tr(Z) 1

−1 0

⎤⎥⎥⎥⎥⎥⎦
.

Then Lemma 7.15 implies that the function frational defined in Equation (7.15) is a well

defined complete local invariant on Q<2.

7.2.2 Isotropy of orbits

To conclude the analysis of µconj for the group SL(2,R) we will compute the isotropy

subgroups for each of the orbit representatives given above and identify them with the

homogeneous spaces of Chapter 5.
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1. For Z ∈ Q>2 the orbits have a diagonal representative

⎡⎢⎢⎢⎢⎢⎣

λ 0

0 1
λ

⎤⎥⎥⎥⎥⎥⎦

where λ ∈ R∗. So the isotropy areA ∈ SL(2,R) such thatAdiag(λ,1/λ) = diag(λ,1/λ)A,

⎡⎢⎢⎢⎢⎢⎣

λ 0

0 1
λ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

λ 0

0 1/λ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

and the isotropy of Z is conjugate to

⎡⎢⎢⎢⎢⎢⎣

a 0

0 1/a

⎤⎥⎥⎥⎥⎥⎦
for any a ∈ R∗. So these orbits are

diffeomorphic to the one sheet hyperbola Q2 as described in part i) of Theorem 5.2.

2. If Z ∈ Q2 there are three representatives to compute the isotropy. If Z = I then its

orbit is a fixed point, otherwise the stabilizer is given by solutions to the following

equation

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 1

0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 1

0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

or

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0

1 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0

1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

and the isotropy of Z is conjugate to

⎡⎢⎢⎢⎢⎢⎣

±1 t

0 ±1

⎤⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎣

±1 0

t ±1

⎤⎥⎥⎥⎥⎥⎦
. These subgroups are

conjugate over SL(2,R) and the corresponding orbits are diffeomorphic to the cones

Q+
0 as described in part ii) of Theorem 5.2.
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3. If Z ∈ Q<2 Then we have two possible representatives for its conjugacy class,

⎡⎢⎢⎢⎢⎢⎣

0 −1

1 α

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

α 1

−1 0

⎤⎥⎥⎥⎥⎥⎦
.

Let the first representative be denoted R. We will compute its isotropy subgroup

which is the same as for the other representative, and identify it with SO(2,R). The

isotropy equation, RA = AR gives the solution

A =
⎡⎢⎢⎢⎢⎢⎣

a −c

c αc + a

⎤⎥⎥⎥⎥⎥⎦
where a2 + αac + c2 = 1.

If we let X ∈ SL(2,R) be

X =
⎡⎢⎢⎢⎢⎢⎣

0 −1√
2
(4 − α2)1/4

√
2 (4 − α2)−1/4 α√

2
(4 − α2)−1/4

⎤⎥⎥⎥⎥⎥⎦
.

Then

Q =XAX−1 =

⎡⎢⎢⎢⎢⎢⎢⎣

αc
2 + a − c2 (4 − α2)1/2

c
2
(4 − α2)1/2 αc

2 + a

⎤⎥⎥⎥⎥⎥⎥⎦

,

where Q satisfies

QTQ =

⎡⎢⎢⎢⎢⎢⎢⎣

a2 + αca + c2 0

0 a2 + αca + c2

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎦
.

So Q ∈ SO(2,R) and Q is the isotropy of X−1RX, so that the isotropy of Z is conjugate

to SO(2,R) and the orbit of Z is diffeomorphic to Q+
−2 as described in part iii) of

Theorem 5.2.

This concludes our investigation of the SL(2,R) conjugacy classes.



139

REFERENCES

[1] Scot Adams, Freeness in higher order frame bundles, 2015.

[2] Scot Adams and Peter J. Olver, Prolonged analytic connected group actions are gener-

ically free, Transform. Groups 23 (2018), no. 4, 893–913. MR 3869422

[3] William M. Boothby, An introduction to differentiable manifolds and Riemannian ge-

ometry, second ed., Pure and Applied Mathematics, vol. 120, Academic Press, Inc.,

Orlando, FL, 1986. MR 861409

[4] Mireille Boutin, Joint invariant signatures for curve recognition, Inverse problems,

image analysis, and medical imaging (New Orleans, LA, 2001), Contemp. Math., vol.

313, Amer. Math. Soc., Providence, RI, 2002, pp. 37–52. MR 1940988

[5] Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied

Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144

[6] Boris Doubrov, Three-dimensional homogeneous spaces with non-solvable transforma-

tion groups, 2017.

[7] David S. Dummit and Richard M. Foote, Abstract algebra, third ed., John Wiley &

Sons, Inc., Hoboken, NJ, 2004. MR 2286236

[8] E. B. Dynkin, Maximal subgroups of semi-simple Lie groups and the classification of

primitive groups of transformations, Doklady Akad. Nauk SSSR (N.S.) 75 (1950), 333–

336. MR 0039736

[9] Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence, Linear algebra, third

ed., Prentice Hall, Inc., Upper Saddle River, NJ, 1997. MR 1434064

[10] Martin Golubitsky, Primitive actions and maximal subgroups of Lie groups, J. Differ-

ential Geometry 7 (1972), 175–191. MR 327855



140

[11] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and

Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Pub-

lishers], New York-London, 1978. MR 514561

[12] B. Komrakov, Primitive actions and the Sophus Lie problem, The Sophus Lie Memorial

Conference (Oslo, 1992), Scand. Univ. Press, Oslo, 1994, pp. 187–269. MR 1456467

[13] V. V. Morosoff, Sur les groupes primitifs, Rec. Math. N.S.[Mat. Sbornik] 5(47) (1939),

355–390. MR 0001557

[14] James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000, Second

edition of [ MR0464128]. MR 3728284

[15] Takushiro Ochiai, Classification of the finite nonlinear primitive Lie algebras, Trans.

Amer. Math. Soc. 124 (1966), 313–322. MR 204480

[16] Peter J. Olver, Equivalence, invariants, and symmetry, Cambridge University Press,

Cambridge, 1995. MR 1337276

[17] , Joint invariant signatures, Found. Comput. Math. 1 (2001), no. 1, 3–67. MR

1829236

[18] Francisco Rubilar and Leonardo Schultz, Adjoint orbits of sl(2,R) and their geometry,

2020.

[19] Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate

Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983, Corrected

reprint of the 1971 edition. MR 722297



141

APPENDICES



142

APPENDIX A

Code

The code used to generate signature manifolds in the landmark method from the in-

troduction:

import numpy as np

import matplotlib.pyplot as plt

def delta(x,y):

dlist = []

for i in range(0, len(y)):

dist = np.sqrt(

(x[0] - y[i][0])**2 + (x[1] - y[i][1])**2

)

dlist.append(dist)

return dlist

#delta takes single point and list of points and spits out the list of distances.

def parax(t):

f = t

return f*np.cos(2*t)

def paray(t):

g = t

return g*np.sin(2*t)

# import data from .txt files

X1 = np.loadtxt(’X1data’)
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Y1 = np.loadtxt(’Y1data’)

X2 = np.loadtxt(’X2data’)

Y2 = np.loadtxt(’Y2data’)

data1, data2 = [], []

for i in range(0, X1.size):

data1.append([X1[i], Y1[i]])

data2.append([X2[i], Y2[i]])

delta11 = delta([X1[0], Y1[0]], data1)

delta12 = delta([X1[len(X1) - 1], Y1[len(Y1) - 1]], data1)

delta21 = delta([X2[0], Y2[0]], data2)

delta22 = delta([X2[len(X2) - 1], Y2[len(Y2) - 1]], data2)

fig, [ax1, ax2] = plt.subplots(1, 2, figsize=(10,5))

ax1.scatter(x=X1, y=Y1, s=1, marker=’o’, color=’r’)

ax1.scatter(x=X2,y=Y2, s=1, marker=’x’, color=’b’)

ax1.set_title(’curves’)

ax1.set_xlim(-5, 15)

ax1.set_ylim(-5, 15)
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ax2.scatter(x=delta11, y=delta12, s=1, marker=’o’, color=’r’)

ax2.scatter(x=delta21, y=delta22, s=1, marker=’x’, color=’b’, alpha=0.5)

ax2.set_title(’signatures’)

ax2.set_xlabel(’$\delta_1$’)

ax2.set_ylabel(’$\delta_2$’)

plt.show()
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APPENDIX B

Topologically Identifying SU(2,R)/µconj with [−1,1]

The following appendix proves the topological claim made in Remark 7.1. First we

need some general results about invariants of topological spaces, this discussion will closely

follow Munkres [14].

Definition B.1. Let X and Y be topological spaces. Let π ∶ X → Y be a surjective map.

Then the map π is said to be a topological quotient map provided a subset U of Y is open

in Y if and only if π−1(U) is open in X.

Definition B.2. Let X and Y be topological spaces. The map f ∶X → Y is called open if

for any open set U ⊂X the image f(U) is open.

Lemma B.1. Let X and Y be topological spaces. If f ∶ X → Y is a surjective open

continuous map then f is a quotient map.

Proof. Since f is surjective and continuous we need only show that if f−1(U) is open for

some set U ⊂ Y then U is open. But since f is open f(f−1(U)) = U is open completing the

proof.

If G is a Lie group and µ ∶ G ×X → X is an action which is also a continuous map

with respect to the product topology on G ×X then with respect to the quotient topology

on X/G, the projection map π ∶ X → X/G sending each element of X to its orbit is an

open topological quotient map, see Boothby [3] for details. In this situation we have the

following extension of Theorem 2.2 for continuous invariants.

Lemma B.2. Let G be a Lie group, X a topological space, and µ ∶ G×X →X a continuous

group action with open quotient map π ∶X →X/G. Let f ∶X → Y be an invariant function

with respect to the action µ and let f̃ ∶X/G→ Y be the unique function such that f̃ ○ π = f.

The function f̃ is continuous if and only if f is continuous, and f̃ is a topological quotient

map if and only if f is a topological quotient map.
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Proof. If f̃ is continuous then f = f̃ ○ π is a composition of continuous maps and therefore

a continuous map.

Now suppose that f is continuous. If V ⊂ Y is open then U = f−1(V ) is open and

π(U) ⊂X/G is open because the projection is an open map. We claim that π(U) = f̃−1(V ).

From f̃ ○ π = f it’s immediate that f̃(π(U)) = V so that π(U) ⊂ f̃−1(V ). Fix x̃ ∈ f̃−1(V ).

Since π is surjective there exists some x ∈ X such that π(x) = x̃, and the image of π(x)

under f̃ is

f̃(x̃) = f̃(π(x)) = f(x),

so f(x) ∈ V because x̃ ∈ f̃−1(V ). Hence, x ∈ f−1(V ) = U and x̃ = π(x) ∈ π(U) which

completes the proof that π−1(U) = f̃−1(V ) so f̃ is continuous.

Now if f̃ is a topological quotient map then f̃ ○π = f is a composition of quotient maps

and so f is a quotient map.

On the other hand suppose that f is a quotient map. Then since f is surjective f̃ is

surjective. From the previous part since f is continuous then f̃ is continuous as well. So

consider some V ∈ Y. We will show that V is open in Y if Ũ = f̃−1(V ) is open in X/G.

π−1(Ũ) is open because π is continuous. We claim that π−1(Ũ) = f−1(V ). From

f(π−1(Ũ)) = f̃ ○ π(π−1(Ũ)) = f̃(Ũ) = V

then π−1(Ũ) ⊂ f−1(V ). Now fix x ∈ f−1(V ). Then f̃(π(x)) = f(x) ∈ V so π(x) ∈ Ũ and

x ∈ π−1(Ũ). Then since π−1(Ũ) = f−1(V ) is open and f is a topological quotient map then

V is open completing the proof.

Lemma B.3. If f ∶ X → Y is a topological quotient map and a complete invariant of the

continuous group action µ ∶ G ×X →X then f̃ ∶X/G→ Y is a canonical homeomorphism.

Proof. From Corollary 2.1 f̃ is a canonical bijection, and from Lemma B.2 f̃ is a topo-

logical quotient map. Then since f̃ is a topological quotient map and a bijection it is a

homeomorphism.
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We now give a sufficient condition for a surjective continuous complete invariant func-

tion to be open.

Lemma B.4. Let X and Y be topological spaces, f ∶ X → Y a surjective continuous map.

If there exists a continuous map g ∶ Y →X such that f ○ g = IdY then f is a quotient map.

Proof. Let V ⊂ Y be a subset and suppose that f−1(V ) is an open set. Then since g

is continuous g−1(f−1(V )) is open. Now we claim that this set is equal to V. Indeed

let y ∈ g−1(f−1(V )) then g(y) ∈ f−1(V ) and f(g(y)) = y ∈ V since f ○ g = IdY . Hence

g−1(f−1(V )) ⊂ V. On the other hand if y ∈ V then g(y) satisfies f(g(y)) = y ∈ V so

g(y) ∈ f−1(V ) and hence y ∈ g−1(f−1(V )) which completes the proof of the claim and

g−1(f−1(V )) = V. Then V is open and therefore f is a quotient map.

Now consider SU(2,R). This is a closed Lie subgroup of GL(2,C) and therefore an em-

bedded submanifold which is a topological manifold with respect to the subspace topology,

see Boothby [3] or Helgason [11].

The group GL(2,C) is an open submanifold of Mn(C) the real vector space of n × n

matrices with complex entries. The standard topology in Mn(C) is equivalent to the

topology induced by the inner product,

⟨A,B⟩ = 1

2
tr(A∗B),

and so the topology on SU(2,R) is the subspace topology with respect to the distance

function

d(A,B) = 1

2
tr((A −B)∗(A −B)).

Note that the map tr is continuous as it is a polynomial in the entries of elements of

SU(2,R). We now prove the trace function is a topological quotient map.

Lemma B.5. The map 1
2 tr ∶ SU(2,R) → [−1,1] is a quotient map.
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Proof. 1
2 tr is a continuous map as a restriction of a continuous map to a subspace. Moreover

1
2 tr is surjective from Theorem 7.1.

We will show that there exists g ∶ [−1,1] → SU(2,R) which is continuous and serves as

a right inverse of 1
2 tr . Indeed let

g(r) =
⎡⎢⎢⎢⎢⎢⎣

r + i
√

1 − r2 0

0 r − i
√

1 − r2

⎤⎥⎥⎥⎥⎥⎦
.

we note that det(g(r)) = r2 + 1 − r2 = 1 and

g(r)g(r)∗ =
⎡⎢⎢⎢⎢⎢⎣

r + i
√

1 − r2 0

0 r − i
√

1 − r2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

r − i
√

1 − r2 0

0 r + i
√

1 − r2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎦

so g is well defined. The map g is also continuous since each component of g(r) is continuous

in r. Now we verify that f ○ g(r) = r. Indeed this follows from the construction of g(r) so

that

1

2
tr(g(r)) = 1

2
(2r) = r

and by Lemma B.4 1
2 tr is a quotient map.

Now 1
2 tr ∶ SU(2,R) → [−1,1] is continuous surjective and open, so it is a quotient map,

and a complete invariant of the action µconj of SU(2,R) on itself by conjugation. Then

Lemma B.3 shows there is a canonical homeomorphism between SU(2,R)/µconj and [−1,1].
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