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ABSTRACT

Joint Invariants of Primitive Homogeneous Spaces

by

[llia Hayes, Master of Science

Utah State University, 2022

Major Professor: Mark E. Fels, Ph.D.
Department: Mathematics and Statistics

We develop a reduction technique which identifies joint invariants of homogeneous spaces
with invariants of their corresponding isotropy action on a smaller space. The reduction
technique is then applied to compute joint invariants for primitive homogenoeus spaces of

affine type and minimal dimensional symmmetric type.

(155 pages)



iv

PUBLIC ABSTRACT

Joint Invariants of Primitive Homogeneous Spaces

Illia Hayes

Joint invariants are motivated by the study of congruence problems in Euclidean geometry,
where they provide necessary and sufficient conditions for congruence. More recently joint
invariants have been used in computer image recognition problems. This thesis develops
new methods to compute joint invariants by developing a reduction technique, and applies

the reduction to a number of important examples.
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CHAPTER 1

Introduction

This thesis is devoted to the development of a reduction technique used to construct
joint invariants for group actions on primitive homogeneous spaces. The study of joint
invariants for homogeneous spaces is motivated by congruence problems in Euclidian geom-
etry, in which case a complete set of joint invariants give necessary and sufficient conditions
for two k point polygons to be congruent. Our methods are motivated by the algorithmic
approach to classifying joint invariants developed in Olver [17], which use the theory of
moving frames to find a direct method of determining the joint invariants for homogeneous
space.

A practical application of joint invariants arises in image recognition. Two images
in a homogeneous space can be related by the transformations of the transitive group ac-
tion when their boundaries are congruent. A suitable collection of differential invariants
evaluated on the boundary of an image parameterize a signature manifold, which is in-
variant under the action of the group on the original image, and classify the object up to
these transformations. However, in most applications the differential invariants depend on
derivatives of high order which are very sensitive to noise. Joint invariants can be used
as a noise resistant alternative to parameterize a signature manifold, though the number
of joint invariants required to classify image boundaries, and therefore the dimension of
the corresponding signature manifold, is often quite large. There are two main ways to
mediate the large number of joint invariants in applications. Olver [17] shows that using
a small number of joint invariants and their derivatives can classify image boundary, and
that the highest order of these joint differential invariants is smaller than the approach of
using purely differential invariants.

Boutain [4] shows that one can use a collection of pure joint invariants along with a

well chosen preferred set of points on the image boundary, called landmarks, to characterize
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the boundary with a lower dimensional signature manifold. For example consider the image
boundaries in the left image of Figure 1.1. If the image boundary of one of the rabbits is
sampled and ordered in a counterclockwise direction, (z;,v;)o<i<n, one can designate the
first and last points in the collection as landmarks. Using the landmarks (xo,%0), (Tn,Yn),
define two functions by using the joint invariant of Euclidean transformations given by the

distance between two points,

81(1) = /(2 —20)2 + (i — y0)2

52(2) = \/(xz - wn)Q + (yi - yn)Q'

That is 6;(7) is the interpoint distance from the first point (zg, o) to the i*" point (z;,y;),
and 09(7) is the interpoint distance between (x;,v;) and (zn,y,). Plotting the points
(01(7),02(7)) for 1 <4 <n gives a curve which is invariant under Euclidean transformations
of the original data points (x;,y;). By comparing the signatures of two image boundaries
one can determine the “closeness” of the two images in a way that is invariant of Fuclidean
transformations.

Figure 1.1 shows two image boundaries in the left image and their corresponding signa-
ture curves on the right. The two images on the left are clearly related by a Euclidean trans-
formation, which is reflected in the overlap of their corresponding their signature curves.
The code used for generating these images is provided in Appendix A.

The example of R? as a homogeneous space of the Euclidean group is an example of
what is called a primitive homogeneous space. Primitive homogeneous spaces play a role
in the theory similar to irreducible representations in representation theory. If G is a Lie
group and H a closed subgroup, and the homogeneous space, G/H, admits a foliation by
immersed submanifolds where the elements of the group G map each immersed submanifold
to another immersed submanifold in the foliation, then the foliation is called invariant under
the action of G. An invariant foliation of G/H defines an equivalence relation where the
group G naturally acts on the quotient by this relation, and any joint invariant of the

natural action of G' on the quotient determines a joint invariant of the original space G/H.



Fig. 1.1: Joint invariant signatures example
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A homogeneous space which admits no invariant foliations is called a primitive homogeneous
space.

Primitive homogeneous spaces G/H of a Lie group G are classified by the closed Lie
subgroups H of G such that H is not contained in any Lie subgroup of higher dimension.
In the case that G is a Lie group with Lie algebra g which is not simple, the subalgebras
b corresponding to a closed Lie subgroup H for which G/H is primitive are the maximal
subalgebras of g. Morosoff [13] classified the possible Lie algebra subalgebra pairs which
correspond to primitive homogeneous spaces in this case. The classification identifies two
main types of Lie algebra subalgebra pair, which we call the affine and symmetric types.
When G is a simple Lie group the possible subalgebras for the Lie subgroups H of G which
correspond to primitive homogeneous spaces G/H are more complicated. It is still true
that every closed subgroup H which has a maximal subalgebra h of g corresponds to a
primitive homogeneous space G/H but there are examples of subgroups H of G which do
not have maximal subalgebras while the corresponding homogeneous spaces are primitive,
see Golubitsky [10] and the example in Section 5.3.

This thesis builds upon the methods of Olver [17] by proving a reduction theorem

which shows that the & point joint invariants of a homogeneous space G/H are determined
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by the k£ — 1 point joint invariants of the isotropy subgroup H, where we identify a partial
cross section to the orbits of G and use this to identify the orbits of G on (G/H)* with
the orbits of H on (G/H Y5=1. In applying this reduction theorem to examples of primitive
homogeneous spaces when G is not a simple Lie group we show that the invariants of the
affine case are constructed from invariants of the isotropy subgroup representation on an
abelian subalgebra of the Lie algebra for g, and that the two point joint invariants for
examples of symmetric type are constructed from invariants of the action of the isotropy
subgroup on itself by conjugation See Section 3.3, Theorem 4.4 and Chapter 7.

We organize this thesis as follows. Chapter 2 presents the background information and
basic definitions needed for the proof of the reduction theorem in Chapter 3. In Section
3.1 of Chapter 3 we present the main results of the reduction, Theorem 3.1, Corollary 3.1,
Corollary 3.2, and Lemma 3.1 give a method for evaluating the joint invariants using a
partial cross section. In Section 3.3 we show how the reduction theorem can be applied
to an example related to primitive homogeneous spaces of symmetric type by reducing
the problem of classifying two point joint invariants to the classification of class functions.
Chapter 3 concludes with Section 3.4 which gives some technical results about the reduction
which are needed in later chapters. In Chapter 4 we proceed to give a detailed overview of
primitive homogeneous spaces. Theorem 4.1 in Section 4.2 shows how to explicitly construct
an invariant foliation on a homogeneous space G/H when the subgroup H is contained in a
closed subgroup K of G with strictly higher dimension than H. The classification of primitive
Lie algebra subalgebra pairs in the case where G is not simple is given in Theorem 4.3.
Theorem 4.4 shows that the example investigated in Section 3.3 is a primitive homogeneous
space. Chapter 5 gives a description of the possible two dimensional primitive spaces of the
simple Lie group PSL(2,R) via the Adjoint representation, and in Theorem 5.1 identifies
which of these homogeneous spaces are primitive. In Section 5.2 we explicitly construct the
invariant foliations for the non primitive two dimensional homogeneous spaces and identify
them with invariant foliations of the orbits in the Adjoint representation. Then to conclude

the chapter Section 5.3 gives an example of a subgroup H of SL(2,R) such that SL(2,R)/H
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is a primitive homogeneous space, and where the isotropy subgroup H does not have a
maximal subalgebra.

In Chapter 6 we consider two cases of primitive homogeneous spaces which are of Affine
type, A(n) and SA(n). Section 6.1 shows that these are primitive homogeneous spaces, and
Subsections 6.3 and 6.3 apply the reduction theorem of Chapter 3 to determine complete
sets of local joint invariants for these spaces.

Finally Chapter 7 considers two examples of primitive homogeneous spaces of Sym-
metric type, SU(2,R) and SL(2,R) which are primitive homogeneous spaces as described
in Section 3.3 and Theorem 4.4. For SU(2,R) we construct a complete set of two and three
point joint invariants in Theorem 7.1 and Theorem 7.2. The construction of three point
joint invariants is then conducted in an alternative way in Section 7.1.3 which demonstrates
that when a slice exists where the isotropy subgroups of every point of a cross section are
conjugate, one can again reduce the action to a transitive group action on a product of
homogeneous spaces. We then apply the reduction theorem of Chapter 3 again to construct
the joint invariants. The last section of Chapter 7 constructs the two point joint invariants
for SL(2,R) and demonstrates the complexity of classifying joint invariants even in the two

point case where multiple distinct orbit types are present.



CHAPTER 2

Background

This chapter provides the basic definitions and results that are used in the thesis. For
more information about this background material see Bredon [5], or Dummit and Foote [7].
Additionally the books by Boothby [3] Warner [19] and Helgason [11] contain more detailed
discussion in the case of smooth actions of Lie groups on manifolds as described in Section

2.2.

2.1 Group Actions

Definition 2.1. Let G be a group and X a set. A map pu: G x X — X is called a (left)

group action of G on X if u satisfies the following conditions.
i) If x € X then p(e,x) = x.

ii) If a,b e G and x € X then

p(a, p(b,z)) = p(ab,z).

When the context is clear we will denote p by juxtaposition or a dot,

u(a,z) =a-z or p(a,x)=az.

Remark 2.1. If 4 : G x X - X satisfies part i) of Definition 2.1 but instead of part ii) the

map u satisfies

M(av M(b’ x)) = M(ba7 x)



7

for all a,b € G and z € X, then p is called a right action. Every right action p can be

converted into a left action fi: G x X — X defined by

jia, ) = p(a™, x).
Left actions of a group G on a set X are equivalent to group homomorphisms from G
into permutations on X, denoted Perm(X).
Theorem 2.1. Let p: Gx X - X be a map. Then the following conditions are equivalent.
1) The map p is a group action.

2) The map ®,: G — Perm(X) defined by ®,(a) = pa, where pig: X - X is

pa() = pla, ),

is a homomorphism of groups.

Proof. Suppose that p is a group action. Then we first show that ®, is a well defined
map. Let a € G and consider ®,(a) = po. The map p,-1 is a two sided inverse of p,,

g O g1 = fig-1 © g = 1d, and so p, € Perm(X). Now let a,b € G and fix z € X. Consider

@,.(a) 0 @, (b)[] = 1 © ()
= p(a: p(b, 7))
= :u(abwT)

- @, (ab)[z].

So ®,(a) o ®,(b) = ®,(ab) which verifies that ® is a homomorphism, and completes the

proof that 1) implies 2).
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On the other hand suppose that the map ®, is a homomorphism. Consider e € G and
fix x € X. Then

(e, @) = pe(z) = @p(e)[z] =Id[z] =

since ®,, is a homomorphism, and p satisfies part i) of Definition 2.1. Now let a,b e G and

x € X. Consider

p(a, (b, x)) = pig o pip(x) = ©p(a) o @4 (b)[x] = ©u(ab)[x] = pap(x) = p(ab, x)
which verifies part ii) of Definition 2.1. Hence pu is a group action verifying that 2) implies
1) and completing the proof. O

Remark 2.2. A similar argument to the proof of Theorem 2.1 shows that right actions
u:Gx X - X are equivalent to “antihomomorphisms” of G into Perm(X'). That is, maps
U, : G - Perm(X) such that ¥,(ab) = ¥,(b) o ¥,(a). The process in Remark 2.1 for
constructing a left action given a right action, u, corresponds to saying every right action
V¥, can be converted into a left action ®; by precomposing ¥, with the inversion map
inv: G - G given by inv(a) = a”!. That is ®; = ¥, oinv is a group homomorphism, and

therefore the corresponding action [ is a left group action.
Below we define two important kinds of group actions.

Definition 2.2. Let p: G x X - X be a group action. If for every fixed x € X

pla,x) =x

implies a = e, where e is the identity element of GG, then the action is called free.

See part 1) of Remark 2.5 for an alternative characterization of a free action.



Definition 2.3. A group action py: G x X - X where

pla,x) = x

for all x € X implies a = e is called effective or faithful.

Note that an action y is effective if and only if the map @, from part 2) of Theorem 2.1
has a trivial kernel, and so defines an isomorphism of G with a subgroup of the permutation
group Perm(X). See Remark 2.7 for an equivalent characterization of effective actions.

A group action u defines a relation on X,

R, ={(z1,22) e X x X |22 = p(a,21), a e G} c X x X. (2.1)

We would like to determine necessary and sufficient conditions for when (z1,22) € R,,, which

motivates the following definition.

Definition 2.4. Let 4 : G x X - X be a group action. Two points x1,29 € X are said to

be congruent if there exists a € G such that z1 = u(a,x2), and the set

o], = {w € X | (21,2) € Ry}

is called the congruence class or orbit of x.

When the action is understood from context, the congruence class or orbit of x is
sometimes called the G orbit of z and denoted by [x]q, or we will use Gz for the orbits of
a left action and xG for the orbits of a right action.

In this thesis we want to solve the congruence problem for an action pu, that is to find
a set of necessary and sufficient conditions for when two points x1,x2 € X are congruent.
Specifically we are interested in solving the congruence problem for a family of actions
induced by a given u as described below.

Whenever an action p: G x X - X is fixed there is an induced action of the group G

on products of X.
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Definition 2.5. Let p: G x X — X be an action of a group G on a set X. The diagonal

action of G on the product set

Xk::(XxXx---xX)

k copies

is the map ¥ : G x X* - X* defined by

i (a, (2,2 an)) = (u(aser ) (@), .. p(a, ) ).

Subsets U ¢ X where the congruence class of any point u € U is a subset of U itself
are useful because any point that u is congruent to must be an element of U. So for the
purposes of solving the congruence problem, we can restrict our attention to the subset U

instead of the whole set X which motivates the following definition.
Definition 2.6. Let p: G x X - X be an action of a group G on aset X. If U c X is a
subset which satisfies

u(a,u) eU (2.2)

for all w e U and a € G, then the set U is called an invariant subset of X with respect to u.

If U c X is an invariant subset then the restriction of the action map in the second
argument, |y : GxU — U, is a well defined action of G on U. In most examples the solution
to the congruence problem is solved on the invariant subsets of X with respect to p.

Note that in particular the orbit of any point zg € X
[20]p = {7 € X[ (20,7) € Ry},

as in Definition 2.4 is an invariant subset of X. The next section shows that R, is an

equivalence relation and therefore the set of all congruence classes form a partition of X.



11

2.1.1 Orbits
For a given action p : G x X — X of a group G on a set X the relation R, is an

equivalence relation, which we will denote by x1 ~, 3 if (z1,22) € R,,.

Remark 2.3. Let 1 : Gx X — X be a group action. The equivalence class of a point xg € X
under the relation ~, as given in Definition 2.4 is the orbit or congruence class of zg and is

equal to the set

[zo]u={z e X |z =p(a,x0), acG}.

Remark 2.3 motivates another way to define the orbits of u. Fix the second argument

of the action by picking some xp € X, and considering the map i, : G - X defined by

tao () = i(a, ). (2.3)

The orbit of xg with respect to p is the image of p,,, that is

[z0]u = 112 (G).-

Since the orbits of p partition X we can define the quotient of X as the set of equivalence

classes of R,.

Definition 2.7. Let ;1 : G x X - X be a group action. We denote by X /u, the set of ~,
equivalence classes, called the orbit space of X mod G. The notation X /G for the orbit

space will also be used.

2.1.2 Invariant functions
Let X, be a set with an equivalence relation R and denote equivalence with respect to
R by x1 ~ x9 if and only if (z1,22) € R. Functions f : X — Y which respect ~ in the sense

that they are constant on the equivalence classes of R are defined as follows.
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Definition 2.8. Let R be an equivalence relation on a set X. A function f: X — Y such
that 1 ~ xo implies that f(x1) = f(x2), is called an invariant of the equivalence relation

R. Or when the relation is clear from context, f is called an invariant.

Let [x] ¢ X denote the equivalence classes of R in X. The quotient of X by R is the
set of equivalence classes of R, denoted by X = {[z]|z € X}. Let 7 : X -» X be the map

which takes each element x € X to its equivalence class [z],

w(x) =[x].

The map m is called the quotient map with respect to R and is an invariant, in fact a
stronger statement can be made, m(x1) = m(x2) if and only if x; ~ z9. This is immediate
because x1 and 2 belong to the same equivalence class if and only if 1 ~ xo.

The next theorem shows that the invariant functions of R are in one to one correspon-

dance with functions on the set of equivalence classes X.

Theorem 2.2 (Universal Property of Quotients). Let R be an equivalence relation on a set
X, f: X >Y beaY valued function on X, and w: X - X be the quotient map.
The function f is an invariant if and only if there a exists a unique function f: X —»Y

such that f = fo .

Proof. Suppose there exists a function f: X — Y such that f = fom. Let 21,29 € X be two

points such that x; ~ x2, and consider f(z1), f(x2). Since w(x1) = 7(x2) then

f(a1) = fom(zr) = fom(xz) = f(2),

which proves that f is an invariant of the equivalence relation R.

Conversely suppose that f: X — Y is an invariant of the equivalence relation R. We
will define a function f: X — Y by the following logic. Let [z] € X, and let z € X be any
element such that 7(z) = [2]. Then let the value of f([z]) be f([z]) = f(z).

We now show that f is well defined. Suppose to the contrary that there exists [z] € X

and y1,y2 € Y with y; # yo such that f([z]) = y1 and f([z]) = y2. By the definition of f
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there exist z1,x9 € X with 7(x1) = [x] and 7(x2) = [x] such that f(z1) = y1, and f(z2) = yo.
But since 7(z1) = w(x2) then 1 ~ z9 and therefore f(xz1) = f(x2) which is a contradiction
in assuming that y; # y». Hence the function f is well defined. Moreover, the function f
satisfies f = f om by construction.

Now we show that f is unique. Suppose there are two functions f , g such that

fom=f=gom.

Let [2] € X. Then there exists an element z € X such that «(z) = [z] and

g([2]) = f(2) = f ([=])

s0 ¢ = f and the function f is unique. O

The proof above is equivalent to the statement that there exists a unique function f

which makes the diagram

(2.4)

commute if and only if f is an invariant function.

Because an invariant f: X — Y is constant on the equivalence classes of R the condition
f(z1) = f(x2) is necessary for x; ~ 9. Invariants with the stronger condition that f(z;) =
f(z2) if and only if x1 ~ x9 play a key role in understanding the equivalence classes of R,

motivating the following definition.

Definition 2.9. Let X be a set and R be an equivalence relation on X. If {f*},c4 is a
collection of functions, f*: X - Y, such that f*(x1) = f*(z2) for all @ € A if and only if
x1 ~ 2 then we call {f*},ca a complete set of invariants of the equivalence relation R. If

the set {f*}aca contains a single function, f, then f is called a complete invariant of R.
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Given an action p and a complete set of invariants, { f*}aea for R, as defined in Equa-
tion (2.1), the collection {f®}sea give necessary and sufficient conditions for two elements
of X to be congruent.

The following corollary of Theorem 2.2 shows that the set of equivalence classes, X
is unique in the sense that if f: X - Y is a complete Y valued invariant of R which is

surjective, then f induces a canonical bijection between X and Y.

Corollary 2.1 (Uniqueness of Quotients). Let f: X - Y be a complete Y valued invariant
of R which is also a surjective function. Then the unique map f: X Y such that f = fow,

s a bijection.

Proof. Fix y €Y. Since f is surjective there exists an element x € X such that f(z) =y. Let

[2] = 7(z) and consider

f([a]) = fom(x) = f(z) =y

and f is surjective. We now show that f is injective. Let [#]1,[2]2 € X be such that
f([]1) = f([x]2). Then there exist elements 21, x3 € X such that w(z;) = [#]; and 7(a2) =
[2]2 with f([z]1) = f(z1) and f([z]2) = f(22). So f(z1) = f(x2), and z; ~ xy since f is a

complete invariant. Hence [2]; =[]y verifying that f is injective. O

Corollary 2.1 shows that whenever one finds a complete surjective invariant f: X - Y
of the relation R then the quotient of X by R can be replaced by Y without any loss of
generality.

We will mostly be concerned with the relations R, from Equation (2.1) induced by

group actions, which motivates the following definition.

Definition 2.10. Let p: G x X - X be an action of G on X. Then a function f: X - Y

which is invariant under the relation R,,,

f (u(a,z)) = f(2)
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for a € G and x € X, is called a Y valued invariant of u. Sometimes when the action p is

clear f is just called a Y valued invariant of G.

Let p be an action of G on X and consider two a collections of k£ points in X,
(21,...,75-1) and (y1,...,yk-1). The invariants of the diagonal action u* as in Defini-
tion 2.5 give necessary conditions for when (x1,...,2_1) and (y1,...,ykx_1) are congruent.

These invariants are defined below.
Definition 2.11. Let p: G x X - X be a group action and let f : X¥ - Y be a map
satisfying,

f(,u(%fﬂl)»-..aﬂ(aaxk))=f(x17---7$k) VGEG,

then f is called a k—point joint invariant of .

Note that the k point joint invariants of y are the invariants of the diagonal action p*

from Definition 2.5.

2.1.3 Equivariant functions

The homomorphisms between spaces with an action of G are defined as follows.

Definition 2.12. Let ux : Gx X - X and py : GxY — Y be actions of a group G on sets
X and Y respectively. A function ¢ : X — Y is said to be equivariant with respect to ux

and py if

¢ (nx(a,2)) = py(a, f(2)) (2.5)

for all a € G, and x € X.

If ux and py are actions of a group G, the set of equivariant functions respect the
action of G on these sets. In particular the image of invariant subsets of X with respect to

px are invariant subsets of Y with respect to uy.
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Theorem 2.3. Let ux :GxX - X and puy : GxY =Y be actions of a group G on sets X
and Y respectively. Then if ¢ : X =Y is an equivariant function and U c X is an invariant

subset with respect to pux then ¢(U) cY is an invariant subset with respect to py .

Proof. Let V = ¢(U). Fix some v € V and a € G. Then consider py (a,v). Since v € ¢(U)

then there exists some u € U with ¢(u) = v. Now using the equivariance of ¢ we have

py (a,0) = py (a,¢(u)) = ¢ (px(a,u)),

where px(a,u) = u' € U since U is an invariant subset of px. Hence uy (a,v) = ¢ (u') e V

completing the proof. O

The orbits of an action uyx are invariant subsets, so an equivariant function will map
orbits of pux to orbits of py in Y.

If : X - Y is equivariant and a bijection of the sets X and Y then ¢ induces a
canonical bijection between the orbit spaces X /ux and Y /uy . In fact one can make a more
general statement that will be useful in proving the results of Chapter 3. If isomorphic

groups G and K act on sets X and Y by p and 0 respectively, and ® : X — Y satisfies

¢ (n(a2)) =0(o(a), (x))

then ® induces a canonical bijection between the orbit spaces X /u and Y'/6. This claim is

proved in the following theorem.

Theorem 2.4. Let u: G x X - X be an action of a group G on X, with w,: X - X /G its
quotient map, and let 6 : K xY —Y be an action of a group K onY withwg:Y - Y /K as
its quotient map. Let o : G — K be an isomorphism of groups. If ¢ : X — Y is a bijection

which satisfies the identity

¢ (n(a,7)) =6 (o(a), 6(x)) (2.6)
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then the map ®: X|/G - Y |K defined by

o([z]e)) = {¢(2)}k,

where [x]q is the orbit of x under G and {p(x)} i is the orbit of ¢(x) under K, is a unique

bijection between the orbit spaces such that ® om,, =7, o .

Proof. First we show that ® is well defined. Suppose that we have two points z1,22 € X

such that [z1]¢ = [22]q, then there exists a € G such that p(a,z1) = 2. So

O([z2]a) = {o(22)} ik = {# (1(a,21))} . ={0(0(a),d(21))} . = {B(21)} x = B([21]e),

and @ is well defined.
Now we show @ is an injection. Let [z1]q,[22]c € X/G be such that ®([z1]q) =
®([z2]¢). Then {¢(z1)}k = {¢(x2) } k and there are representatives ¢(x1), ¢(x2) of the K

equivalence classes such that
0(k, ¢(x1)) = ¢(x2)
for some k € K. Pick a € G such that o(a) = k. From the identity in Equation (2.6)
¢ (p(a,21)) =0 (0(a),d(z1)) = ¢(x2)

and since ¢ is a bijection then u(a, 1) = 2, so that [z1]g = [22]g proving ® is injective.
Now we show that ® is surjective. Let {y}x € Y/K. Fix any representative y for [y]x,

and let x be the pre-image of y under ¢. Then

O([z]e) ={o(2)}x = {y}x

and ® is onto.
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Now suppose that I' : X/G - Y/K is a bijection which satisfies ' o 7, = mg 0 ¢. Fix

some [z]g € X/G. If x € X is a representative for [x]q so that p,(x) = [x]¢ then
I'([z]g)=To ﬂu(x) =g o Pp(x)

and mg o ¢(x) = {¢(z)}k = P([z]) verifying uniqueness. O

Whenever an equivariant bijection is present as in Theorem 2.4 then the canonical
identification of orbit spaces X /ux and Y /uy provides a canonical identification of the Z

valued invariants of py with the Z valued invariants of px.

Corollary 2.2. Let ux : Gx X - X and py : GxY =Y be actions of a group G on the
sets X and Y respectively. If ¢ : X — Y is an equivariant bijection with respect to ux and
wy then the map ¢* : F(Y,Z) - F(X,Z) given by ¢*(f) = f o ¢ is a bijection between the

set of py invariants and the set of pux invariants.

The next definition will be used to provide an equivalent definition of both equivariant

and invariant functions.

Definition 2.13. Let p: G x X - X be an action of a group GG on a set X. An element

x € X such that

pa,x) = x

for all a € G is called a fized point of the action u. The set of all fixed points of p in X

denoted X* or XY, is the set
Xt ={zxeX|ula,z) =2 VYaeG}.

Let pux : GxX - X and py : GxY - Y be actions of G on X and Y. Then 6 :
GxF(X,Y)— F(X,Y) defined by

p(a, Flz] = py (a, f(px(a' 2))) (2.7)
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is an action on the set of Y valued functions on X. The fixed point set of 8 from Equation
(2.7), is equal to the set of Y valued equivariant functions on X with respect to pux and

py -

Theorem 2.5. Let ux and py be actions of a group G on the sets X and Y. A function

f: X =Y is equivariant if and only if f is in the set of fixed points,
FX,Y) ={f:X>Y|0(a,f)(2) = f(x) Vo e X,aeG},

where 0 is the action from Equation (2.7).

Proof. First suppose that f e F(X,Y)?. Fix some z € X and a € G. Since f is a fixed point
of 6 then

0(a, f)(z) = f(z)
py (a, f(p(a™t,2))) = f(x)
f(ux (a7 2)) = py (a7, f(2)).

So f satisfies Equation (2.5) and f is equivariant.

Conversely suppose that f is equivariant. Fix x € X and a € G. Consider the value of

0(a, f)(z) = py (a, f (px (a7, 2))) = py (a,py (a7, f(2)))

by equivariance of f. Then using that puy is an action 0(a, f)(x) = f(z) and f € F(X,Y)".

O

If the action py in Equation (2.7) is trivial, that is

py (a,y) =y,

then the equivariant functions with respect to pux and py are the Y valued invariant func-

tions on X.
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Corollary 2.3. Let py be the trivial action py(a,y) = y. Then the set of equivariant
functions with respect to ux and py is equal to the set of Y wvalued invariant functions of

X

That is the invariant functions of an action pux are the fixed points of the induced
action on functions, where the group G acts trivially on the codomain.
2.1.4 Commuting Actions

Now consider the situation where two groups H and K act on the same set X.

Definition 2.14. Let H and K act onaset X by ug: HxX - X and pg: K x X - X. If

:UH(hv MK(kvx)) = NK(k7 /"LH(h7x))

for all he H, k € K, and x € X then the actions are said to commute.
The following lemma records some properties of commuting actions used in the thesis.

Lemma 2.1. Let H and K be groups and X be a set. Suppose that pug : Hx X - X and
pr K x X - X are actions of H and K on X respectively, and let w,,, : X - X /pg and

Tug - X = X /K be the quotient maps. If the actions of H and K commute then:

(i) the group K acts on X [umg by nix : K x X/ug — X/pnmg given by

i (k,7u, () = muy, (i (k,2)) zeX, (2.8)
(ii) and the group H acts on X [px by ng: H x X [ux - X /px given by

i (hymu (2)) = 7 (pa(h,z)) e X. (2.9)

(iit) The projection maps m,, * X - X/ug and 7, + X - X/pg are equivariant with

respect to the induced actions ni and ng respectively.
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(iv) There is a canonical bijection, T: (X /ux)/ng = (X /um)/nk, given by
T (7T77H (”ux(m))) = WnK(WuH(ZE)), reX.

Proof. Proof of part (i). First we show that the maps in Equation (2.8) are well defined.
That is for each k € K that nx(k,-) : X/ug = X /pm, is well defined. Suppose that x,y € X

define the same H orbit. Then there exists h € H such that pg(h,z) =y. Now consider

i (ks 7 (Y)) = Ty (e (K, )

= T (MK(k,uH(h7$)))
= Mg (HH(hnuK(k’x)))

- (i (1,2))

=K (k;7pH(x))7

so ni(k,-) is well defined. Showing that nx satisfies Definition 2.1 is clear and will be
omitted from the proof. The proof of part (ii) is similar to the argument for part (i).

Now we give the proof of part (iii). By construction the projection map 7y satisfies

Tug (MK(kv‘T)) =NK (kvﬂ-MH (1‘))

which proves that 7, is equivariant, and the argument for m,,, is similar.

Finally for the proof of part (iv) we note that o : (X /um)/nx - (X/uK)/nm given by

g (WWK (ﬂ-MH (w))) = 7T77H(7TMK (37)),

satisfies 7o 0 = Id(x/u;)me @and 00T =Id(x/ux)/my S0 0 = 77! and 7 is a bijection which

completes the proof. O
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The proof above is equivalent to saying that the diagram

X
/ \

X/pu X/pK

WR % .

(X ) / M T (X ) / -

commutes.

By Lemma 2.8 if ug and px are commuting actions on X then there is an induced
action of K on X/ug. The following theorem, an extension of Corollary 2.1, shows that if
K acts on a space Y and X covers Y by a complete invariant of p which is also equivariant
with respect to the action of K, then Y can be considered a unique relabeling of X /G which

respects the actions of K.

Theorem 2.6 (Uniqueness of quotients by commuting actions). Let ug and pg be com-
muting actions on a set X and suppose that O : K xY —Y is an action of K on a set
Y.

If f: X =Y is a complete surjective invariant and equivariant with respect to pux and
O then the unique map JE : X/ug =Y such that fo Tue 18 an equivariant bijection with

respect to the induced action of K on X/ug, Nk, and the action 6.

Proof. Corollary 2.1 shows that the map f : X/ug — Y is a canonical bijection, so we will

show that it is equivariant with respect to nx and 6. Let k € K and [z]g € X/ug. Pick
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any representative x € X such that 7, (x) = [z]q, and consider

f (e (K, [2)@)) = f (e (B, 16 (2))) = f (e (i (K, )
= fomug (i (a,))
= f (px(a,z))
= 0k (a, f(z))
=0x (a. f o mug ()

=0k (a, f ([2]c)),

which completes the proof. O

The theorem above verifies that the following diagram

commutes for a unique f which is an equivariant bijection with respect to the induced action

nx of K on X/ug and 0k on Y.

2.1.5 Stabilizers and Isotropy
Let p: Gx X — X be a left group action and let = € X be fixed. Consider the map

te : G — X as defined in Equation 2.3,

pa(a) = p(a, ),

where the image of pu, is the orbit of the element x € X. In general the map p, will not be

injective, however if pz(a) = pz(b), then a,b lie in the same left coset of a subgroup of G.
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Definition 2.15. Let p: G x X — X be a group action of G on a set X. Then for each

x € X the set
Gy ={aeG|luz(a) =z}, (2.10)

is a subgroup of G called the isotropy or stabilizer subgroup of x.

Lemma 2.2. Let p: Gx X - X be a left group action. Then for each x € X there exist
a,be G such that p;(a) = p,(b) if and only if aG, = bG,.

Proof. Let z € X be fixed, and suppose that a,b € G are elements such that u, satisfies
tz(a) = pyp(b). Then

pla,z) = p(b, x)

which implies that a™'b € G,, and therefore bG, = aG,. Conversely if a,b € G are such that
aGy = bG, then a = bh for some h € G;,. Hence,

p(b,z) = p(ah,x) = p(a, )

and g, (a) = pz(b) completing the proof. O

Remark 2.4. If i is taken to be a right action in Lemma 2.2, then the condition

p(a,z) = p(b, )

implies that a,b are in the same right coset, Gpa = Gb, since ab™! € G,.

Since G is a subgroup of G then the condition a ~g, b if and only if @ and b are in
the same coset is an equivalence relation, and the quotient of G by ~¢g, is the space of
cosets G/G,. Lemma 2.2 shows that the action map p, is a complete invariant of ~g, and

therefore the image of p,, the orbit of x, is canonically bijective with the coset space G/G,.
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Moreover the induced bijection fi, is equivariant with respect to the action of G on G/G,,

the space of right cosets, by left multiplication and p on X.

Theorem 2.7. Let G act on G|G, by left multiplication and let p: Gx X — X be an action
of G on X. If x € X then the map fi, : G/G, — X, given by

ﬁw(aG:r) = pz(a) = pla, ), (2.11)

is a well defined bijection of G|/G, with the orbit [x],, which is equivariant with respect to

the standard action of G on G|G, by left multiplication and the restriction of p to [x],.

Proof. From Lemma 2.2 the map pu, is a complete invariant of the equivalence relation on
G given by the right cosets of G, and pu, is a surjective function onto the orbit of z. Then
Corollary 2.1 implies fi, is a well defined bijection of G/G, and [z],. So we show that fi,
is equivariant. Let a € G, and fix some aG, € G/G,. If a € G is any representative of the
coset aGG, then aa is a representative of aaG,, the image of aGG, under left multiplication

by a. Now consider,

fiz(aaGyz) = pz(aa) = plaa, ) = pe, p(a, ) = pla, pa(a)) = p(a, fiz(aGe)),
which verifies that fi, is equivariant with respect to left multiplication by G on G/G, and
u and completing the proof. O
Remark 2.5. let i : G x X - X be an action.

1) The action p is free as in Definition 2.2 if and only if for every z € X the stabilizer

G is the trivial subgroup, G, = {e}.

2) A point x € X is a fixed point of p as in Definition 2.13 if and only if the stabilizer of

x is the whole group, G, = G.

Now we show that if two points in X lie on the same orbit their stabilizer subgroups

are conjugate.
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Lemma 2.3. Let G act on a set X and let x € X. If the point y € X satisfies y = a-x for

some a € G then the isotropy Gy is conjugate to the isotropy G, by the element a,
Gy = aGpat.

Proof. Let h € G, be an element of the isotropy for x, so that h-xz = z. We can substitute

a™t-y =x to get h(a'y) = a~'y. Isolating y on the right hand side gives
(aha_l) -y =1,

so aha™ € Gy and aGya™t c Gy.
On the other hand let k € G,. Then a-z =y and k- (a-7) =a-x so a 'ka € G,. Then
keaGyat and Gyc aGpa . ]

Example 2.1.1. Let g be an action of G on X. Then for any x € X by Theorem 2.7 the
map [, : G/G; — X is a canonical bijection of G/G, with the orbit of z. Suppose that
y € [z], is some other point in the same orbit. Then since p, is surjective onto [x], there

exists a € G such that y = a-x. By Lemma 2.3 the stabilizer of y is
Gy = ana_l.
Again by Theorem 2.7 the map fi, : G/Gy - X,
ﬂy([b]Gy) =b-y
is a canonical bijection. The inverse ﬂ;l : X - G/Gy is given by
fi, (2) = i, (c-y) = cGy

for all z € X. We know this map is well defined since if ¢ - & = ¢co - & then ¢1G, = oG,
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Then there is a canonical bijection between the two coset spaces, i : G/Gy - GGy

given by

explicitly this is

ﬂ(be) = ﬂ;l ° iz (bG)
= i, (b- )

= fi,' (ba™" - y)

= ba_l[e]gya_l

=bGpa !

That is once a representative of the conjugacy class for G, is fixed there is a canonical
bijection between the coset spaces G/G, and G/G, for any y on the same orbit as = given

by the mapping G, —» Gza™'.

When an action p has only one orbit equal to the whole set X, then X is parameterized

by G/G, for any point x € X. This motivates the definition below.
Definition 2.16. Let G be a group acting on a set X.

i) The group G acts transitively if for each x,y € X there exists a € G such that a-x = y.

ii) If G acts on X transitively, we call X a homogeneous space of G and if z € X then the

map fi, given as in Theorem 2.7 is a canonical equivariant bijection of X and G/G,.

Remark 2.6. Note that if H is a subgroup of a group G then the left coset space G/H is

a homogeneous space of G when G acts on G/H by left multiplication,
a-zH =axH. (2.12)

Where the subgroup H is the isotropy subgroup of the identity coset eH € G/H.
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For the diagonal action x* on X* induced by an action p1: G x X - X as in Definition
2.5, the stabilizer of a point (zg,...,z_1) € X ¥ must necessarily fix each element z; € X
simultaneously. The next lemma characterizes the stabilizer subgroups for points in X*

with respect to the diagonal action .

Lemma 2.4. Let ji: Gx X — X be a group action and p* : G x X* - X* the corresponding
diagonal action of 1 on k copies of X. Then the isotropy subgroup of (xg,...,Tx-1) € Xk

with respect to ¥,

G (ao,..., GgyNGyyn--nG

27]6,1) = Tl-1

where G, 1is the isotropy subgroup of x; with respect to p.

The proof is straightforward and will be omitted.

2.1.6 Effectiveness

Definition 2.17. Let G act on a set X, then the subset G c G given by
Gy={aeG:a-z=2,VreX},

is a normal subgroup of G called the global isotropy of the action.

Remark 2.7. An action p: G x X - X is effective as in Definition 2.3 if and only if the

global isotropy subgroup G% = {e}.

Theorem 2.8. Let y: G x X - X be an action. The normal subgroup which is the

intersection over X of all stabilizer subgroups,

M Ga,

reX
1s equal to the global isotropy subgroup.

The proof is an immediate consequence of Lemma 2.4.
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Theorem 2.9. Let G be a group and H a subgroup of G. The action of G on the coset
space G|H by left multiplication is effective if and only if H contains no non-trivial normal

subgroups of G.

Proof. First assume that the action of G is effective. By contradiction suppose that H
contains a non-trivial normal subgroup N. Let n € N be any non trivial element, n + e.
Then fix some zH € G/H. Let © € G be a representative of xH. Since N is normal, there

exists some n' € N such that nxz = zn/ and
neH =on'H = xH

since n’ € H. This contradicts that G acts effectively so H cannot contain any normal
subgroups of G when the action of G is effective.
Now suppose that H contains no non-trivial normal subgroups of G. Let G* be the

global isotropy subgroup of the action by G. Let n € G* and consider
neH =nH = H

since n € G*, and hence n is in H, the stabilizer subgroup of the identity coset eH € G/H.

Then G* is trivial since it is normal in G and the action is effective by Remark 2.7. O

Corollary 2.4. Let G be a group and Z(G) be the center of G,
Z2(G)={aeG:aba™" =b,beG}.
If Z(G) n H # {e} then the action of G on G[H by left multiplication is not effective.

2.2 Group Actions on Manifolds
When G is a Lie group acting on a smooth (C'*) manifold, we can define the concept

of a smooth action as in Boothby [3].
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Definition 2.18. Let M be a C'™° manifold, G' a Lie group, and pu: Gx M — M a group

action. If p is a smooth function then we say that the action p is a smooth group action.

Theorem 2.1 shows that the action p is equivalent to a homomorphism &, : G —

Perm(M) by ®,(a) = 1o where g : M — M is defined by

ta(p) = u(a,p), aecG, peM. (2.13)

If the set M has a smooth structure, G is a Lie group, and g is a smooth action then the
maps ji, from Equation (2.13) are diffeomorphisms of M to itself.
Since the manifolds M and G are equipped with topologies and p is a smooth action

we can define the following local conditions which correspond to free and effective actions.
Definition 2.19. A Lie group G acting smoothly on a manifold M is said to be

1) locally free if at each point m € M the isotropy subgroup G,, is a discrete subgroup
of G,

2) and locally effective if the global isotropy subgroup G’ is a discrete subgroup of G.

Let p: Gx M - M be a smooth action of an r—dimensional Lie group G on an

d—dimensional smooth manifold M. In summary the action is:
1. Free if Gy, = {e} for all m e M.
2. Locally free if G,, is discrete for all m e M.
3. Effective if G}, = {e}.
4. Locally Effective if G}, is discrete.

5. Transitive if [x], = M for all and hence any x € M.

2.2.1 Homogeneous Spaces of Lie Groups
If p:Gx M — M is a smooth and transitive action of a Lie group G smooth manifold

M then for any point m € M the map fi,, : G/G,, — M as in Equation 2.11 is a canonical
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equivariant bijection. As shown in Example 2.1.1 the classification of the homogeneous
spaces of G is equivalent to the classification of the subgroups of G up to conjugation.
The next theorem shows that the coset spaces of a closed subgroup H of a Lie group G
are manifolds, so the classification of the homogeneous spaces of G which are manifolds is

equivalent to classifying the closed subgroups H of G up to conjugation.

Theorem 2.10. Let H be a closed subgroup of a Lie group G, and let G/H be the set of
left cosets modulo H. Let m: G — G|H denote the natural projection w(a) = aH. Then G/H

has a unique (smooth) manifold structure such that
(a) mis C™.

(b) There exist local smooth sections of G/H in G; that is, if aH € G/H, there is an (open)
neighborhood W of aH and a C*™ map 7: W — G such that mo 7 =1d.

Theorem 2.11. Let G be a Lie group and M a smooth manifold with a smooth transitive
group action p: G x M — M. Then for any m € M the map fin, : G/Gn — M as defined in

Theorem 2.7 is an equivariant diffeomorphism.

For proofs of these theorems see Warner [19] or Boothby [3].

If p:Gx M — M is a smooth action which is free then we are guaranteed a sufficient
number of independent local invariants to solve a number of local congruence problems, see
Olver [16] [17]. When the action g is not free there are two common ways of geometric
significance to construct a corresponding free action from p. The first is to consider the
induced action of G on submanifolds of M and their derivatives, which is guaranteed to
become free provided p satisfies certain regularity conditions, see Adams and Olver [1] [2].
The other is to extend x to the diagonal action ¥ since the stabilizers of an element in the
product space (o, ...,x,_1) € M¥ is the intersection of the stabilizers for every point z; by
Lemma 2.4. There are examples where the product action does not become free as shown
in Olver [17], however in most examples the product action will become free on a suitable

invariant open dense subset of M*.
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In order to find the points where p* will eventually become free we introduce the

following definition.

Definition 2.20. Let G/H be a homogeneous space. For any point (voH,z1H,...,xp_1H) €
(G/H)k let H; = G, be the isotropy subgroup of the point 2; H. The point (voH,z1H, ..., 21 H)
is said to be in general position provided the subgroups Gy = No<i<k H; satisfy dim(Gy_1) —

dim(Gg) is maximal.

A point (2oH, ..., zx_1H) € (G/H)" is in general position provided that for each 0 < i <
k —1 the isotropy subgroup of (zoH,...,xx_1H) has minimal dimension among the points

in (G/H)*, so that the u’ orbits of these points have maximal dimension.



33

CHAPTER 3

Reduction to the Isotropy

In this chapter we show that the & point joint invariants of G' acting on G/H by left
multiplication are determined by the k — 1 point joint invariants of H on G/H, by left
multiplication.

If p:Gx X - X is a group action, a subset K c X with the property that for each

x € X the intersection of the orbit of x with the subset K is a single point,

[:E]#ﬁK: {k}’

then K is called a cross section to the group action p. The reduction formalizes the ob-
servation that H x (G/H)*! is a partial cross section to the orbits of uf,. That is if
(woH,...,z11H) € (G/H)* then the uf, orbit [(zoH, ... ,xp-1 H)]q intersects Hx (G/H)*1

by the subset

H x [(le') s ,Zk,lH)]H,

where [(z1H,...,2,-1H)]g is the ,u'jél‘l orbit of the point (z5'z1H, ... ,xgl2;_ 1 H) for any
choice of representatives x; € G of the cosets x;H € (G/H). So a complete set of k-1 point
joint invariants for the action of H give necessary and sufficient conditions for congruence
in (G/H)*. This construction is equivalent to considering two points (zoH,...,zx_1H),
and (yoH,...,ys-1H) in (G/H)* and by the transitivity of the standard action of G
on G/H by left multiplication, translate the first entry of each collection to the origin.
Once centered at the origin we restrict to using transformations that fix the origin, which
are the transformations in the isotropy subgroup H, in order to determine congruence of
(vglarH, ... ot e 1 H) and (yolyiH, ...,y yr1 H) in (G/H)* L.

In Section 3.3 we give an application of the reduction theorem where we consider the
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action of a group L on itself by left and right multiplication. Applying the reduction to
this case yields Theorem 3.3 which shows that the two point joint invariants are determined
by class functions on L. This important example will be further developed throughout the
thesis, see Theorem 4.4 and Chapter 7.

This chapter is organized as follows, Section 3.1 gives an overview of the main results,
and Section 3.2 provides the proofs. Section 3.3 develops the example described above. The
chapter concludes with Section 3.4 which proves a theorem relating the isotropy subgroups

of points in (G/H)* and (G/H)*! which are related by the reduction.

3.1 Overview of Reduction to Isotropy Results

In this section we summarize our results on the reduction to isotropy method for joint
invariants and its application to the congruence problem. Throughout let G be a group let H
be a proper subgroup of G. Consider the standard transitive action of G on a homogeneous
space G/ H, and extend this action to (G/H)* by the diagonal action given in Definition 2.5.
The following theorem demonstrates that these orbit spaces (G/H)*/G and (G/H)*'/H

are bijective.

Theorem 3.1. Let G act on (G/H)* and H act on (G/H)* ! by the diagonal actions
induced by left multiplication.
The map ®: (G/H)*|G - (G/H)*1/H, given by

‘ID([(JUOH,le,...,ka)] ): I:(xalle,...,xglle) )

G H

is a bijection of the orbit spaces, (G/H)*|G and (G/H)*1/H.

The map ® above is not canonical since it involves a choice of one of the factors
in (G/H)* to remove, but once this choice is made the map ® is determined uniquely.
Corollary 3.1 to Theorem 3.1 below identifies the invariants for the G' action on (G/H)*

with the invariants for the action of H on (G/H)*!.
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Corollary 3.1. The identity
fe(xoH,z1H, ... ,xy_1H) = fH(a:(_)lle, ... ,:U6lxk_1H), (3.1)

defines a unique G invariant function fo: (G/H)* =Y for every H invariant function fy :
(G/H)*' > Y and conversely defines a unique H invariant function fr : (G/H)* ' =Y

for each G invariant function fg: (G/H)* -Y.

Corollary 3.1 verifies that the diagram,

(G/Hy: Gyt I 2y

I b o2

(G/H)F |G — = (G/H)*|H

commutes for a unique G invariant fg for each H invariant fy;. Conversely if fg is given there
is a unique fg given by the identity in Equation (3.1) such that the diagram commutes. In
particular, Corollary 3.1 shows that the invariants of the diagonal action by G on (G/H)* are

in one to one correspondence with the invariants of the diagonal action of H on (G/H)*L.

Remark 3.1. The reader may be inclined to introduce a map « : (G/H)* — (G/H)*!
defined by

v(xoH,z1H,...,xy_1H) = (xalle, . ,xalmk_lH)

to the diagram in Equation (3.2), but this map is not well defined.

While the map + in Remark 3.1 is not well defined, in most examples one would like

to complete the diagram from Equation 3.2 to compute the invariants f without having a
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concrete description of the orbit spaces (G/H)*/G and (G/H)*'/H. Let p: G/H - G be

any function satisfying the identity
p(xH)-xH =eH, (3.3)

for example the map p(xH) = 2~! for any representative = of the zH coset.

Lemma 3.1. Let p: G/H - G be a map satisfying the identity in Equation (3.3), and let
T:(G/H)* — (G/H)*! be defined by

T(xoH, 1 H, ... ,xp1H) = (p(xoH)x1H,...,p(xoH)zp-1H). (34)

If f : (G/H)*' - Y is a Y wvalued H invariant then fgoT = fg is a Y wvalued G

invariant on (G/H)* which is independent of p and hence of T.
Lemma 3.1 verifies that the completed diagram,

fa

N

(G/H)k ——--%-—- » (G/H ——2 Sy
|- [ o5
(G/H)*|G —2— (G/H)*'|H

commutes and fg is independent of the T chosen. This will be the main result used in
Chapters 6 and 7 to describe the joint invariants guaranteed by Corollary 3.1.

Finally, Theorem 3.1 also gives the following corollary about the congruence problem.

Corollary 3.2. Let X € (G/H)* be given by X = (xoH, ..., x_1H). The map ¢ : (G/H)¥ -
(G/H)*'[H given by

C((CEOH, ... ,$k_1H)) = [(az61$1H, ... ,$61xk_1)]H,

is a complete invariant for the diagonal action of G on (G/H)*.
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Corollary 3.2 gives a solution to the congruence problem, if X,Y ¢ (G/H )k are chosen,

and given by
X:(xOHa--kale) and Y:(yOHa"'uykle)a
then [X]g = [Y]¢ if and only if

[(x(_]la:lH, e ,Jralxk_IH)]H = [(yglylH, e ,yalyk_lH)]H .

3.2 Proofs of Theorems.
The following section provides proofs of Theorem 3.1, Corollaries 3.1 and 3.2, and

Lemma 3.1.

3.2.1 Notation Used in Proofs
We start by defining actions used throughout this section. For any positive integer k

let gy : H* x GF — G* defined by

HEE ((ho,hl, NN -;hk—l), (:no,:rl, cee ,l’k_l)) = (xohal,xlhfl, ce 7xk—1hl;11)' (3.6)

where (g, ...,25-1) € G* and (ho,...,h,_1) € H*. This is the action of H* on G* by right
multiplication, where the inverse is added to ensure it is a left action.

Now let ulé : G x G¥ - G* the diagonal action of G on G* defined by

Mlé(a7 (1’0,1’1, cee 7'%]671)) = (ax07 ary, ... ,al'k,l) (37)
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for a € G and (zo,...,25_1) € GF. Then let the restriction of ,u’é to H in the first argument

be, ,u’f{ : H x G* - G*, which is given by
,u'lfc—l(hu (:U(),.T}l, e 7xk71)) = (hx(]v h.’IJl, ey hxk*l) (38)

for he H and (xg,...,xp_1) € G*. This is the diagonal action of H on G*.

Let Oy : H* x GF~1 — G*~1 defined by

Opn ((hos b1, i), (yis v, - ye-1)) = (hoyrh ' hoyeha's o hoyk-rhily) — (3.9)

be an action of H* on G* L.

Now we will denote the diagonal actions of G and H on (G/H)* by

S8 (a,(woH,...,xp-1H)) = (axoH, ..., az;_1H), (3.10)

8t (hy (woH,...,xx1H)) = (haoH, ... hayH) (3.11)

where a € G, h e H, and (z,...,25-1) € (G/H)F.

Due to the large number of actions and groups present in the proofs we will denote
the orbit spaces with a subscript representing which action generates the quotient, and the
elements with square brackets and a subscript with the name of the action. For example

the quotient of G¥ by the action pyn will be

Gk/:u’Hlﬁ

and the elements by [(zo, ..., Tk-1]u,-
Now since the actions uf in Equation (3.7) and iy« in Equation (3.6) commute on G*

then there is an induced action of H* on the quotient Gk/ug, denoted Ny : H* x Gk/ug -
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G*[uk, given by

Nk ((ho,...,hk_l), [(mo,...,xk_l)] ) = [(xoh(;la-"axk—lh;ll)]ug (3.12)
e
And 0 : G x G*[upe - G* [k by
77’& (a, [(mo, . ,xkl)] ) = [(awo, - ,axk,l)]qu . (3.13)
gk

Finally we will denote the quotient maps by subscripts given by the action name as

well. So 7, : G* — G¥ . is the quotient

T (@0 210)) = [0, )],

3.2.2 Lemmas for Proofs of Main Results
The following lemma identifies G* / Mlé with G*~! through an equivariant bijection with
respect to the actions nyx as in Equation (3.12) and 6y« as in Equation (3.9) and also

identifies the double quotient (G*/uf,)/ngr with G*1/60 ..
Lemma 3.2. For any positive integer k

i) the map ngkG : Gk/,ulé - GF1 defined by

flwé ([(2503131, e ’xk_l)]u’&) = (93511‘1, . ,m61xk_1)

is a bijection of Gk//ﬂé and G*1 which is equivariant with respect to ng. and 0 g,

i1) and the map ® (G* k) [k — GF71 0 defined by

= [(1'611'1, .. ,:Ealzvk_l]
0,

CDHICC; ([[(l’o,l’l, ce ,:Z}k_l)]ulé]

Nk
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is the unique bijection of the orbit spaces which satisfies
Pk, © Mg = oy © Ou
Proof. Consider the map fﬂzé : GF » G*1 given by

fuzé(xg,xl, e ,ZL‘k_l) = (1’611‘1, .. .,aj‘6lxk_1) (3.14)

The map fu’é is clearly surjective and equivariant with respect to the actions pg» and

0p7x. We show it is a complete invariant. Fix some (zg,z1,...,zg-1) € GF. Then

fﬂg(ug (a, (zo,21,. . ~,33k—1))) = fﬂg(aﬂﬂo,ml, cyazpoy) = (zg'w, . ap we),

so it is an invariant of the action Mkc-
Now suppose that X = (zg,21,...,25-1) and Y = (yo,91,-..,Yx_1), are two points in

G* such that Fue (X) = f (Y), that is
(m61331, e ,xalmk_l) = (yglyl, ey yalyk_l). (3.15)

Then consider

ue; (y03661, (1’0,331, e ,l’k—1)) = (yo, Yoo 21, .. 7y033611’k—1)

which is equal to Y by Equation (3.15). Now it is easily checked that fué = ¢u’& O T,k and
by Theorem 2.6 the map ¢u’5 is the unique bijection which is equivariant with respect to
Nee and Q.

From Theorem 2.4, with ¢ = Id, the map qbué induces the unique bijection ® ik, of orbit

spaces as claimed in part ii). O
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Lemma 3.2 above proves that the diagram,

Gk;
™ Tk,
Gk?ﬂ’é G > GFL
(GH ) fp - i ey

commutes, where fu’é is as defined in Equation (3.14).

Remark 3.2. The map fulé in Equation (3.14) is not a group homomorphism, which is
reflected in the fact that the quotient of G* by the diagonal action of G' does not inherit a

group structure through the equivariant bijection (b“}é .
Now we consider G¥/pu . and (G/H)E.

Lemma 3.3. i) The map ¢, , :G¥ e — (GJH)E defined by

Dy ([(a:o,m, . ,:qu)]MHk) =(voH, 1 H, ... ,x51H)

is an equivariant bijection of G*[pgr and (G/H)E with respect to nk, on G¥[u¥, given

in Equation (3.13) and 6%, given in Equation (3.10) on (G/H)F.

ii) The map ®, = (G*|ugi) [ng ~ (G/H)*[5¢, defined by

Dy ([[(xo,x1,...,xk—1)]um] ) = [(«T0H7$1H7...,$k_1H]6g
g

is the unique bijection which satisfies

(I)#Hk O = 775@ °© ¢,qu'
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The proof is similar to that of Lemma 3.2 and follows from showing the map quk :

G* - (G/H)¥ defined by
Fuw (0, x1)) = (@0 H, ... w1 H) (3.16)

is a surjective function, a complete invariant of u'}'{, and equivariant with respect to the
actions M’(C; and 58

The unique bijections ¢, , and ®,_, from Lemma 3.3 make the following diagram

TI'GJ/ an
~

(G [l g5 (G )l

commute, where fﬂkk is as defined in Equation (3.16). Note that @;Lk : (G/H)k |5k —

H

(Gk/qu)/ng is given by

k

@;Lk ([(on,mlfI, ... ,xk_IH]5g) = [[(xo,xl, ... ,xk_l)]#Hk ] (3.17)
G

Lemma 3.4. The map T': G710, — (G/H)*1 /5% defined by

T ([(ybyz, .. .,yk—l)]er) = [ylH, Yo H,... ,yk—lH]ggl

is the unique bijection on the orbit spaces which satisfies

Loy, = Mar1 0 fuyna

where fu ., is as defined in Equation (3.16).
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Proof. The composition quk-1 0Ty, IS & surjective invariant of the action O+ on GF1.
Moreover if X = (z1,...,25_1) and Y = (y1,...,ys_1) are two points in G*! such that

f,qu—l © T i1 (X) = f,qu—l © T i1 (Y) then
[(le) oo 7xk—1H)]5II§—1 = [(yl-Ha v ’yk_lH)]‘;’ﬁfl .

Then there exists an hy € H and (hq,...,hx_1) € H*1 50 that

0k ((ho,hl,---,hk—1)>($17~--axk—l)) = (yla---ayk—l)

and fy ., 7y, 1S a complete surjective invariant. So applying Theorem 2.6 or Theorem

2.1 completes the proof. O
Lemma 3.4 proves that there exists a unique I' such that the diagram

f“Hk—l

Gk—l (G/H)k—l

Uyl T k-1
Hk J/ 6H

G0 —L— (GIH)* 15k

commutes.

3.2.3 Proofs of the Main Results
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Proof of Theorem 3.1. The actions ¥ and pgx on G given by Equations (3.7) and (3.6)

commute, so that by Lemma 2.1 the diagram

Gk
W#’é Tk
Gk/qu Gk/ﬂ’é
an Ak
(G far) [ ——— (&) o

commutes, where 7 : (G*/ppn ) [0k — (GF /L) [ngr given by

T([[(:Eo,m,...,mkﬁ]ﬂm] k) = [[(xo,xh...,xkl)]uzé]
el

Nk

as in Lemma 2.1 is a canonical bijection. Using the maps from Lemmas 3.2, 3.3, and 3.4,
-1
I'o (I)u'é oTo (I)“Hk ([(I()H, .. ,xk_lﬂ):Lk ) =To (I)u’é oT ([[(xo, .. 7zk_1)]“Hk:|nk )
G G

=Tod, ([[(‘m’ " ’x’“‘l)]”g]n k)

T ([(xglxl, " ,x61$k1):|9Hk)

= |:({L‘61£U1, ce ,:L‘(_)lfl,‘k_lH)]

k-1
5H

- & ([(xOH, . ,xk_lH)]ag)

So ® is a composition of bijections and hence a bijection proving the claim. O

Note that @ is uniquely determined up to the choice of fu’é which reflects the choice of
which point to translate to the identity coset in the congruence problem.

We now give complete proof of Corollaries 3.1 and 3.2 to Theorem 3.1.
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Proof of Corollary 3.1. First let fi be an invariant of 61]‘51_1 and let fp : (G/H)]‘/’_l/élff1 -Y
be the unique map such that fH OTgk1 = fr from Theorem 2.2. Then define fg = fH odlo

Tk - We claim that fq is the unique 58 invariant that satisfies the identity,
fa(zoH,. ..,z H) = fu(zgte H, ... x5 e 1 H). (3.18)
Clearly fq is an invariant of 6% since Tt is. Let X = (z0H,...,z;1H) ¢ (G/H)*. Then

f (woH,....wp 1 H) = frro @ omg (2oH, ... 231 H)

= fH ([(xalle, ce 7$61$k—1H)]51;{—1) 5

and since (:U(jlle, .. ,:Ualzvk_lH) is a representative of the orbit [(acglle, e a:glxk_lH)]ak,l
H

then

fH ([(x(_]lale, e ,zglxk_lﬂ)]ég_l) = fH oTH (xglazlfl7 e ,$61xk_1H)

=fu (Jﬁalle, . ,acglmk,lH) .

Now suppose that Fi is defined by the identity in Equation (3.18). We claim Fg is a
well defined invariant of 67, and that Fg = fg. Let X = (woH,...,z51H) € (G/H)* and

suppose X = (zohoH,...,xp_1hkx_1H) is another representative. Then
Fg (vohoH,. .. ap-the1 H) = fir (ho'ag a1 H, ... by g o H) = fo (xg o1 H, .. 25 2 H)
as fyr is an invariant of 5];{_1. Now consider

Fg(axoH,...,axx1H) = fg (x(_]la:lH, ... ,$61xk_1H)
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and F¢ is an invariant of 58. Consider,
Fg(xoH,...,xx1H) = fg (m61x1H, e ,:Ealznk_lH) = fa(zoH,...,xp_1H),
so that Fg = fo completing the proof of this claim.

On the other hand let fg : (G/H)* - Y be an invariant of 65. Then there exists a

unique map fg : (G/H)* |5k - Y such that fao ok = fa by Theorem 2.2. Define
fu=fao® o Tkt

We claim that fz is the unique invariant of 517?1‘1 satisfying the identity in Equation (3.18).

Clearly fy is an invariant. First let (y1H,...,yp_1H) € (G/H)* !, and consider

Fr(nH. .. i H) = fo o 0™ o my s (i H, ...yt H)
= fG o (I)—1 ([(y1H7 s 7yk—1H)]5}c{—1)
= fG([(HaylH)"'ayk—lH)]5g)

= fG(HﬂylHP"vykle)?

for any representative (H,y1H,...,yr_1H) of the orbit [(H7 nH,... ,yk_lH)]

ok~

Now Let (woH, ..., 2,1 H) € (G/H)" this is a representative of the orbit,

[(H, :ralle, . ,xalxk,lH)]M. So from the observation above
G

falaoH, ... o H) = fo ([Hoag o H, g ] )

-1 -1
=fH(x0 1 H, ... x xk_IH),

which verifies that fp satisfies the identity in Equation (3.18).
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Now we show uniqueness, Suppose that Fyy : (G/H )]‘3_1 — Y is given by the identity in

Equation (3.18), that is,

FH(ylHa"'aykle) :fG(H7y1H7"'7yk71H)7

which is clearly well defined. We show that Fp is an invariant of (5';1‘1. Let h € H and

consider
FH(hylHa "ahyk—lH) = fG(thylHa" 'ahyk—lH) = fG(Hvyle"' 7yk—1H)
since h € H and fg is invariant under (52. Now consider

FH(y1H7"'7yk—1H) :fG(H7y1H7"'7yk—1H) :fH(y1H7"'7yk—1H)

which completes the proof. O

Proof of Lemma 3.1. We show the subdiagram,

(GIHYE =Ty (G

Tk k-1

(G/H)*[6f, —2— (G/H)*[s%

of the diagram in Equation (3.5) commutes.
Consider (zoH,z1H,...,74-1H) € (G/H)*. The orbit of this point with respect to &,

as defined in Equation (3.10) contains
(H, p(zoH)z1H,...,p(xoH)z)-1H)
S0

[(1’0H71’1H, B 7xk71H):|5g = [(H,p(l'oH)$1H, B ,p(.’lf(]H).%'k,lH)]&g-
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Then using this equation we have

Po Tk ((on,l’lH, ces ,!Ekz—lH)) =® ([(va($0H)$1H’ e 7p($0H)xk—1H)]5’é)
= [(p(xOH)xlﬂ, . ,p($0H)xk—1H)]5§I—1

= Mgkt 0 T((mOH,le, e ,iUk_lH))

and the diagram commutes.

We now show the second part of the lemma. Let f: (G/H)* ! - Y be a Y valued H
invariant. Then consider two choices p and p’ satisfying Equation (3.3) which induce the
corresponding 7" and 7" as in Equation (3.4). Then consider foT and foT’. Since the
diagram in Equation (3.5) commutes then f = foT and f = foT’. And since f is unique

by Corollary 3.1 then foT = f oT' which completes the proof. O
Proof of Corollary 3.2. First we show that the map ( is well defined. Let X = (xoH,...,xx-1H)

and pick another representative X = (xghoH,...,zk_1hg-1H) Then consider

¢ (((wohoH, ..., xxrhyy H)) = [(hg'ag w1hi H, ... b5 ag @t b H) |

k-1
5H

[(xalle, . ,azala:k_lH)]

k-1
6H

=C(((woH,...,x5-1H))

so ( is well defined.

Now we show that ( is a complete invariant. Indeed consider ( (6Z(Q,X )) ,
¢ ((axOH, .. ,axk_lH)) = [(xalaflaxlﬂ, ... ,xalaflaxk_lH)]éz_l = {((wOH, . ,xk_IH))

so ¢ is an invariant. Now suppose that X,Y e (G/H)* satisfy ¢((X) = ¢(Y). Then there

exists an h € H such that

(hx[_)la:lH, e hmalxk,lH) = (yglylH, ... ,yalyk,lH).
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So now consider 5’& (yohazal,X) ,
(yoH,yohay v H, ... yohay w1 H) = (yoH,y1 H, ..., yp-1 H)
and [X] 5 = [Y] 5 and ( is a complete invariant. O

3.3 Symmetric Pair Example
Let L be a group. Then L naturally acts on itself by left multiplication and right

multiplication, which motivates the following definition.

Definition 3.1. Let L be a group, and G = L x L. Let the map jigym : G x L — L be given
by

ptsym ((a,),2)) = axb™! (3.19)

for (a,b) € G and x € L. This is the symmetric action of G on L.

Lemma 3.5. The symmetric action jisym is transitive on L and the subgroup Ggiag ¢ G,
Gaiag = {(a,a) :a € L},

1s the stabilizer subgroup of the identity, e € L.

Proof. Fix x e L, and let p: L - G be given by

p(x) = (:c_l,e) (3.20)
so that

Hsym (,O(JJ), iL‘) = Hsym ((x_la 6)7 iL‘) =z 'ze = ¢,

and the action is transitive since pigym ((p(gt?))_]L ,e) =z for all v € L.
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The isotropy of the identity e is all (a,b) € G such that ab™! = e so it is equal to Gdiag

as claimed. 0

Theorem 2.7 and Lemma 3.5 imply that G/Ggiag is canonically equivariantly bijective
with L where G acts on G/Ggiag by the standard action of left multiplication, denoted
dsym : G x G[Ggiag > G[Gdiag, and on L by the symmetric action, pigym. Moreover, if L is a
Lie group then Theorem 2.11 shows that G//Ggiag is canonically equivariantly diffeomorphic
to L.

Let Ggiag act on L by the restriction, nsym, of figym t0 Ggiag and let piconj: L x L - L

be the conjugation action
Poconj(a, ) = ara”t. (3.21)

Denote the induced diagonal action on L* as in Definition 2.5 by ,ulgonj,

1

:u’(]fonj (aa (an ) xk—l)) = (CL.’IZ‘()G7 yoen 7axk_1a71) .

Similarly let nym and nfym be the diagonal actions of G' and Ggiag respectively. The next

lemma shows that the orbit spaces L* /nfym and L¥/ ufonj are canonically bijective.

Lemma 3.6. Let Id be the identity map on L*, and let Tk

conj

:LF > Lk/,uffOnj and T
Lk > Lk/nfym be the quotient maps of L* by the diagonal actions u’(fonj and né“ym respectively.
The map Id : Lk/né“ym - Lk/ulgonj given by

Ia([(azo, ... ’xk_l)]né“ym) = [(io, . ,-Tlc—l)] k

'u’conj
is a canonical bijection which satisfies m x old=m r old.

Heon j Tlsym

Proof. Consider the identity map Id : L*¥ — L*. This map satisfies

1d (nfym((a,a), (zo, ... ,ka—l))) = Mfonj (a,(xoy.--,Tk-1)) -
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So by Theorem 2.4 with o : Ggiag = L given by o(a,a) = a, the identity map induces a
unique bijection of the orbit spaces Id : L* /né“ym - Lk/ u’(fonj given by

IH([(xo,...,xk,l)]ngym) = [(xo,...,xk,l)] .- (3.22)

‘uconj

such that m x old= Tk © Id. O

NCOI]_]

With k = 1 Lemma 3.6 states that Id is the unique bijection which makes the diagram

LxL L . > L
ﬂ—ugym ﬂ—ﬂsym ‘/ﬂ—“conj
LxL/G —2 L/G giag T L peons L

cominute.
Now consider the case of k point joint invariants of pgyy,. The map p from Equation

(3.20) is used to prove the following theorem.

Theorem 3.2. Every Y valued invariant of ufym s given by

foT(xo,... . xp-1) = f(xg @1, .., 25 Tp1)

k-1

where f is a Y valued invariant of fieop;-

The proof is a straightforward application of Lemma 3.1 and Lemma 3.6.

In the case of two point joint invariants of fisym Theorem 3.1 shows that the orbit spaces
(G/Gdiag X G/Gdiag) /582ym and (G/Gdiag) /Nsym are bijective by the map ®. Then Lemma
3.5 identifies G/Ggiag with L and Lemma 3.6 shows that L/nsym is canonically bijective with
L/ficonj- That is (L x L)/,ugym is bijective with L/ficonj-

The following corollary of Theorem 3.2 shows that class functions, functions out of L

which are invariant under conjugation, determine all the invariants of ,u,gym.
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Corollary 3.3. Let T: L x L — L given by
T(xo,21) = 25 21.
Every Y walued class function f: L —Y determines an invariant of ugym given by fo'l,

foT(zg,21) = f(xp'21)

and every invariant of ngm s of this form.
Finally Corollary 3.3 and Theorem 3.1 prove the following theorem.

Theorem 3.3. If {f“} is a set of class functions which form a complete set of invariants

for pconj then the functions {f* o T} are a complete set of two point invariants for ugym.

In Chapter 7 we apply the above observation to compute complete invariants when L

is taken to be SU(2,R) and SL(2,R).

3.4 A Remark on Free Actions

This section shows that for each subset of (G/H)* ! where the action of H is free
guarantees a corresponding subset of (G/H)* where G acts freely.

We start by showing that the stabilizer of a point Y ¢ (G/H)*"! contains the stabilizer
of any point in the preimage of a map T': (G/H)* — (G/H)*! satisfying the conditions of

Lemma 3.1.

Lemma 3.7. Let G be a group and H a subgroup. Let ,u’é and ul}jl be the diagonal actions
given as in Definition 2.5. Suppose that p : G/H — G is a map satisfying the identity in
Equation (3.3), and T : (G/H)* - (G/H)*' is the map defined in Equation (3.4). Then if
Y = (p1H,...,yp_1H) € (G/H)*' and Hy is its stabilizer subgroup, the stabilizer subgroup

of any point X = (xoH, ... ,x)_1H) e T-YX(Y) is conjugate to a subgroup of Hy by p(xoH),

p(zoH)Gxp(xoH)™ " c Hy.
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Proof. Let Y be as given in the theorem and consider any X = (zoH, ...,z H) e T71(Y).
Suppose that h € Gx the stabilizer for X. Then let p(xoH )hp(zoH) ! and let ug : GxG/H -

G/H be the standard action of G on G/H by left multiplication. Consider
pa (p(zoH)hp(xoH) ™ eH) = p(zoH)hp(xoH) ™ eH = p(zoH YhaoH = p(xoH)zoH = eH.
That is p(xoH)hp(xoH) ' € H. Now since T(X) =Y we have from Equation (3.4)
T(X) = (p(xoH )1 H, ..., p(xoH)zp-1H) = (1 H, ... ,yx-1H) (3.23)
and therefore,

/Jlfﬁfl (P(xOH)hP(l’OH)fla (yh e ayk—l)) = (y1, . ,yk_1)

so that p(xoH)hp(zoH) ! € Hy, completing the proof. O

Now we show that any invariant subset of (G/H)*~!

where H acts freely by the standard
diagonal action of left multiplication gives an invariant subset of (G/H)* where G acts freely

by the standard diagonal action of left multiplication.

Theorem 3.4. Suppose that U c (G/H)* is a H invariant subset where the action Ml}}_l
is free. Let p: G/H — G be a map satisfying the identity of Equation 3.3 and T : (G/H)* -
(G/H)* defined as in Equation (3.4). Then the action pf, is free on the G invariant set

T-Y(U) c (G/H)*.

Proof. First we verify that T71(U) is a G invariant subset of (G/H)*. Pick some point
X = (21H,...,2;,_1H) e T7H(U) and let a € G. The proof of invariance follows from the
next claim.

There exists some h € H such that p(axoH )a = hp(xoH ). Using the identity in Equation
(3.3) gives

p(zoH)xoH = p(axoH)axoH
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and so there is some h € H which satisfies p(xoH )zo = p(azoH )axoh™t for some h™t e H.

Now consider T' ( uk(a, X )) and use the claim above to compute,

T (axoH,...,axy1H) = (plaxoH)ax1H,...,plaxoH)ax,_1H)
= (hp(zoH )21 H, ..., hp(zoH)x)-1 H)

=@ (W, T(X)

and since T(X) € U and U is H invariant then p*(a, X) € T71(U) verifying this subset is
G invariant.

Now finally if the action MI;{_ L on U is free then by Lemma 3.7 the stabilizer of any
point in T-1(U) is conjugate to a subgroup of the trivial subgroup, that is it must be trivial

and the action on this subset is free. O

When G is a Lie group acting on a product of homogeneous spaces (G/H)*, Theorem
3.4 shows that for the purpose of finding an open invariant subset of points where G acts
freely, one can look for an open invariant subset of (G/H)*! where H acts freely instead.
This along with the identification of invariants by Lemma 3.1 shows that if one can find
a complete set of independent local invariants on U c (G/H)*"! where the action of H is
free, then on T71(U) there is a corresponding complete set of independent local invariants

of G on an invariant open set where G acts freely.
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CHAPTER 4

Primitive Spaces

A foliation of a homogeneous space G/H by immersed submanifolds of dimension k
which satisfies that the elements of G acting by left multiplication map the immersed
submanifolds of the foliation to immersed submanifolds of the foliation is called an invariant
foliation, see Definition 4.4. The homogeneous spaces of a Lie group G which do not admit
invariant foliations are called primitive homogeneous spaces which are formally defined
in Definition 4.6. Section 4.2.2 gives an overview of the relationship between primitive
homogeneous spaces of Lie groups G/H and the corresponding Lie algebra subalgebra pairs
(g,h). We conclude this section with Theorem 4.4 and Corollary 4.4 show that the example
of Section 3.3 is a primitive homogeneous space when the group L is a simple Lie group.
This motivates taking L = SU(2,R) and L = SL(2,R) as minimal dimensional examples for
the simple non isomorphic Lie algebras sla(R) and sup(R) in Chapter 7. Theorem 4.3 due to
Morosoff [13] classifies the Lie algebras of G and H when G/H is a primitive homogeneous
space under the assumption that G is not simple. This classification motivates applying the

reduction theory from Chapter 3 to the examples in Chapters 6 and 7.

4.1 Primitive Group Actions
First we consider a purely set based definition of what it means for an action of a group

G on a set X to admit an invariant equivalence relation.

Definition 4.1. Let G be a group acting on a set X and let ~ be an equivalence relation

on X. Denote the equivalence class of z € X by [z]. If

[a-2] =a-[2)
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for all @ € G and equivalence classes [x] € X, then ~ is called a G—invariant equivalence

relation, or we say that ~ is invariant under the action of G.
From this definition the proof of the next lemma follows easily.

Lemma 4.1. Let u: Gx X — X be a group action on X, let ~ be an equivalence relation
on X, and let X be the space of equivalence classes. If ~ is invariant under the action of G

then

i) there is a natural action of G on X, G x X —» X given by

ﬂ(aw%) = m%

for zeX and a € G,

i) and the quotient map m: X — X, given by m(x) = &, is equivariant with respect to G,
m(pu(a,x)) = ia, T).
Corollary 4.1. If f : X - Y is an invariant of the G action on X then f = fom is an

invariant of the G action on X.

With this definition of invariant equivalence relation we can define a primitive action

on a set X for any group G.

Definition 4.2. Let G act on a set X. If there are no non-trivial equivalence relations ~

on X which are invariant under the action of GG, then the action of G is called primitive.

This definition is too general to be of use in the category of smooth manifolds, so in
the next section we restrict our attention to a special class of equivalence relations defined

for smooth manifolds.

4.2 Primitive Homogeneous Spaces
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This section closely follows Golubitsky [10]. In order to give a suitable definition of
primitive for a Lie group action on a smooth manifold M, we define equivalence relations

that have equivalence classes given by a collection of k dimensional immersed submanifolds.

Definition 4.3. A k foliation, F, on M is a collection of k dimensional immersed subman-

ifolds {Fy, }mens such that for all m,m’ e M

a) the point m € F,,,
b) the submanifold F,,, is connected and has countable base for its topology,
c) and either F,, = F,,,y or F,,, n F,y = @.

The unique submanifold of the foliation containing the point m is called the leaf through m

and F defines an equivalence relation on M by m ~m/ if F,,, = F,.
Then Definition 4.1 motivates the following class of foliations on M.

Definition 4.4. Let F be a foliation on M and let G be a group acting on M. Then F is

said to be invariant under the action of G if

aFy, = Fum

for all a € G, m € M.

The trivial foliations of M into points, i.e. F'= M, and into the connected components

of M are always invariant under the action of G.

Definition 4.5. Let G be a Lie group acting on a smooth manifold M. If the only foliations
of M which are invariant under the action of G are the trivial foliations into points or

connected components, then the action of G is called primitive.

Motivated by Definition 4.2, we are interested in the possible homogeneous spaces G/H,

for closed subgroups H of G, where the action of G on G/H is primitive.

Definition 4.6. Let G be a Lie group and H a closed subgroup. If G acts primitively on

G/H then we call G/H a primitive homogeneous space.
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The primitive and transitive actions of a Lie group G on a smooth manifold M were
first examined in their infinitesimal form by Lie using vector field systems in R™, which have
been classified in low dimensions see Olver [16] and Doubrov [6].

Primitive homogeneous spaces are classified by closed subgroups H which satisfy the

following maximality condition.

Definition 4.7. Let G be a Lie group and H a proper Lie subgroup. If for any Lie subgroup
K with H c K c G then dim(H) = dim(K) or dim(K) = dim(G), the subgroup H is called

a mazimal Lie subgroup of G.

If H is not a maximal Lie subgroup and contained in a closed subgroup, then the next

theorem shows how to construct a foliation on G/H that is invariant under the action of G.

Theorem 4.1. Let G be a Lie group and H a proper closed Lie subgroup of G. Let H be
nonmazimal, let K be a Lie subgroup such that H c K c G, and let ¢ : G/H - G/K be a

map given by

q([aln) = [a]k- (4.1)

If K is closed, then there is a non-trivial foliation on G/H invariant under the action
of G, F = {Fa, |[aly € G/H}. Where Fi.),, = ¢ *([e]x)o is the connected component of

¢ ([e]x) and the leaves Flay, are defined by

H

Proof. Since K is closed G/H and G/K are manifolds, and ¢ is well defined since H c K.

Let 7 : G - G/H and 7k : G - G/K be the canonical quotient maps. Then for any a € G

qormn(a)=q([alm) = lalk = 7k (a)



99

and gomy = Tk . So since wy and wx are smooth surjective submersions then ¢ is a smooth

surjective submersion. Moreover ¢ is an equivariant map with respect to the action of G on

G/H and G/K since

q(ale]ln) = q([aln) = [a]x = ale]x = aq([e]n) .
Then since ¢ is a submersion ¢~ ([e]x) is an embedded submanifold of G/H with dimension
dim (¢7'([e]x) = dim(G/H) - dim(G/K) = dim(K) - dim(H),

which is positive and strictly less than dim(G) by assumption, see Boothby [3] for the proof
of this statement.

We now show that ¢ !([e]x) is invariant under the action of K c G. Let k € K and
consider the map defined by the action, k : G/H - G/H given by k([z]g) = [kz]n. We
claim that k restricts to a smooth map from ¢~*([e]x) to itself. Consider by applying k to

¢ '([e]x), using equivariance, and that K is the stabilizer of [e]x in G gives

q(kq™ ([e]x)) = ka(a" ([e]k)) = kle]k = [e]x

so k¢ ([e]x) c ¢ 1 ([e]x). Moreover since ¢ !([e]x) is an embedded submanifold then the
restriction of k is smooth, and in fact a diffeomorphism since k™! € K is its inverse.

So, F, is a family of embedded submanifolds on G/H. We claim that if [a]g = [a']g
is well defined. Since a = a’h for some h € H then the

then Fl,y, = Flay, so that Fg

H H

claim will follow from showing hF[), = Fl¢], for all h € H.

Fix some h € H. Then since h[e]y = [e]yg as H c G is the stabilizer subgroup of [e]y
then [e]y € hF}.),- As h € K from the claim above hF}.), © ¢"'([e]x) and h restricts to a
diffeomorphism of ¢71([e]x) to itself. In particular A is a homeomorphism, so hF] [e]y I8 @
connected component of g1 ([e]x) containing [e]z and therefore hFe1y = Frely» 80 Flayy

is well-defined.

Now we show that F' is a non-trivial foliation of G/H which is invariant under the action
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of G. Clearly if F' is a foliation, it will be invariant under the action of G by construction.
Moreover F is non-trivial since the dimension of Fi,j,, is dim(/) -dim(H ) which is positive
and less than dim(G) by hypothesis.

We now check Definition 4.3. First if [a]y € G/H then [a]y € Fi,, = aFj, so F
satisfies part a) of Definition 4.3.

Now, Fl.],, is the connected component of an embedded submanifold so it is connected
submanifold of G/H, and since a: G/H - G/H is a diffeomorphism then Fj,j, = aF.), is
connected as well, and F satisfies part b) of Definition 4.3.

Lastly we show elements of F' are pairwise disjoint. Suppose that Fj,j, n Fy), # @.

Since ¢ is equivariant then Fy,q, c ¢ '([a]x) and using the definition of F| [a]y Sives

Flaly = 0Frey, = g7 ([e]x), -

So by applying ¢ we have q(Fj,),) = [a]x. Hence, ¢ ([alx) n¢t([b]x) # @, and by
applying ¢ to this intersection [a]x = [b]k, so b = ak for some k € K.
We claim this forces Fq),, = Flp},, which will follow from showing kF.j,, = Fl¢,, since

the map a: G/H — G/H is a diffeomorphism. As above kFj,,, is a connected component

H

of ¢"'([e]x). Then since
bF[e]H ) aF[e]H = akF[e]H ﬂCLF[e]H *+J,

there is a point in the intersection and [z]w, [y]u € Fi], such that ak[x]y = a[y]y. Then

H
there is a point k[x]g = [y]m in the intersection kFi.),, N Fic),,, and as above ki, = Fl¢],-

So part c) is satisfied showing that F' is a foliation and completing the proof. O

The foliation on G/H is determined by the fibers of the map ¢ from Equation (4.1),
not the orbits of K acting on G/H by left multiplication.
The next lemma demonstrates that every invariant foliation of G/H comes from a

subgroup of G containing H.
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Lemma 4.2. Let H be a closed subgroup of G. There exists a surjective correspondence from
the set of all Lie subgroups of codimension k in G containing H to the set of all foliations

of GIH of codimension k invariant under the action of G.
For the proof see Golubitsky [10].

Corollary 4.2. Let G be a Lie group and H a closed Lie subgroup. The action of G on

G/H is primitive if and only if H is a maximal Lie subgroup.

Corollary 4.2 shows that classifying the possible primitive homogeneous spaces of G is
equivalent to classifying the closed maximal subgroups of G.
We now use Corollary 4.2 to verify the following example is a primitive homogeneous

space.

Theorem 4.2. Let L be a group containing no normal subgroups, and let G = L x L act on

L by the action psym as in Definition 3.1. The action pisym s primitive.

Proof. First L is a homogeneous equivariantly bijective with G/Ggiag from Lemma 3.5.

Now we show that

Gdiag = {(aaa) |a € L}

is a maximal subgroup (in the sense of groups). Let K be a subgroup such that Ggjag ¢ K.
Then (a,b) € K if and only if (ab !, e) € K. This follows from (a,b) = (ab™!,e)(b,b) and
(b,b) € Gaiag € K. Now let Ky ={x e L:(x,e) € K}. We claim that K, is normal in L. Let

a €L and x € Ky, consider

(azxate) = (a,a)(z,e)(a,a) ' e K

since Ggiag © K which proves the claim. Now, since L contains no non trivial normal
subgroups, there are two cases. Either K; = {e} and K = Ggiag or (zy',e) € K for all
xy ' e L and K = G. This verifies that G giag 1s maximal and by Corollary 4.2 the action of

G on G/Ggiag is primitive. dJ



62

Theorem 4.2 also holds under the weaker assumption that L is a simple Lie group
(where it may have a discrete center), see Theorem 4.4, but requires an understanding of
the relationship between a primitive homogeneous space ,G/H, and the corresponding Lie

algebra-subalgebra pair (g,bh).

The pair (G, Ggiag) in Theorem 4.2 along with the involutive automorphism, o : G - G,
given by (a,b) ~ (b,a) is a symmetric pair as defined in Helgason [11]. Moreover in the case
where L is compact, for example if L = SU(2,R), then the pair (G, Ggiag) is a Riemannian

symmetric pair.

4.2.1 Reduction to Effective

In this section we consider the case where the action of G on G/H is not effective. If G*
is the global isotropy, then the action of G can be reduced to an effective action of G=G |G*
which is indistinguishable from the action of G in the sense that the images aG*xH = axH
for all a € G and aG* € G. See page 33 of Bredon [5] and the book by Olver [16] for more

information on this reduction.

Lemma 4.3. Let G be a Lie group, H a closed Lie subgroup, G* be the global isotropy
subgroup, and G = G|G*.

i) The action of G on G/H induces a transitive and effective action of G on G/H given

by
aG* -zH = axH (4.2)

and the stabilizer subgroup of eH € G/H s H= H|G*.

it) The group G acts on G/f] by

a-xH =n(a)cH (4.3)
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where 7w : G = G is the quotient homomorphism, and there is a canonical G- equivariant

diffeomorphism ¢ : G/H — G/ﬁ defined by
o(aH) =a-eH =n(a)H

forall a e G.

Proof. We first prove part i). The action of G on G/H given in Equation (4.2) is well
defined since G* is the global isotropy, and the action is transitive because the action of G

is. Let aG* € G/G™, if
oG xH =axH =xH

for all H € G/H then a € G* and so the action is effective. The isotropy subgroup of
eH eG/H is H = {aG* |a e H} = H/G* completing the proof of this claim.

Now we prove part ii). The action of G on G/H given in Equation (4.3) is well defined
and transitive since 7: G - G is a surjective homomorphism. The stabilizer subgroup of
eH using the action of G on G/H is the subset of all a € G such that a-eH = n(a)eH = eH

soaen '(eH) = H. By Theorem 2.11 there is a diffeomorphism ¢ : G/H - G/H given by
o(aH) =a-eH =n(a)H,

which is equivariant with respect to the action of G. 0

Note that if G acts smoothly and locally effectively on G/H, then the subgroup G* is
discrete and the dimensions dim (G’) = dim(G) and dim (fI ) =dim(H).
The we will show that one of the actions Lemma 4.3 is primitive if and only if the other

is in Corollary 4.5, but the proof needs the following result.

Lemma 4.4. Let G act on smooth manifolds M and N. If o : M - N is an equivariant
diffeomorphism then the action of G on M is primitive if and only if the action of G on N

18 primitive.
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Proof. Since ¢ is a diffeomorphism the manifolds M and N have the same dimension,
d =dim(M) = dim(M).

Suppose that the action of G on N is primitive and let F' be a non trivial foliation

on M which is invariant under the action of GG. The leaves of F' are k dimensional with

0 < k < d since F is a non trivial foliation. Let E' = o(F), which is a foliation on N because

¢ is a diffeomorphism. Moreover the leaves of F' satisfy

Fr=o(Fpin)
for all n e N.

We now show that F is an invariant under the action of G on N. Indeed let a € G. The

map ¢! is equivariant, so consider

afy = ap (Fyoi(n))
= ¢ (aFp1(n)
= ¢ (Faprm)
= ¢ (Fpam))
=Fyn

Then F' is invariant under the action of G on N. The action of G on N is primitive, so F
is trivial, and dim(F},) is either 0 or d, contradicting that F' is a non-trivial foliation.

The converse is similar. O
Lemma 4.5. The action of G on G/H is primitive if and only if the action ofé' on G’/ﬁ
18 primitive.

Proof. We first show that a foliation on G’/ H is invariant under the action of G if and only

if it is invariant under the action of G. Let F be a foliation of é/ﬁ which is invariant under
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the action of G on G/H. Fix an element a € G. Then,

A ~

CLFH = W(Q)FH = Fw(a)-f:l = Fa-l:l

and F' is invariant under the action of G. Conversely suppose F' is a non trivial foliation
invariant under the action of G on G /fI . Fix some element & € G. Pick any representative
element a € G such that w(a) = @, and consider

aFg=m(a)Fyg=a-Fy=F, 5=F,p,

so F is invariant under the action of G on G/H and proving the claim.

The claim above shows that the action of G on G/fl is primitive if and only if the
action of G on é/ﬁ is. Since ¢ is an equivariant bijection for the action of G on G/H and
G/H Lemma 4.4 shows that the action of G on G/H is primitive if and only if the action

of G on G/H is. The two statements together finish the proof. O

Lemma 4.3 and Corollary 4.5 justify that one can assume the action of G on G/H is
effective without loss of generality. Furthermore, from Theorem 2.9, the action of G on
G/H is effective if and only if H contains no normal subgroups of G. This motivates the

following definition as in Golubitsky [10].

Definition 4.8. Let GG be a Lie group and P be a proper closed subgroup satisfying
1) The action of G on G/P is primitive.
2) P contains no normal subgroups of G.

Then P is called a primitive subgroup, and (G, P) a primitive pair.

Note that if P is a maximal subgroup which contains no proper normal subgroups of
G Corollary 4.2 implies P is a primitive subgroup and (G, P) is a primitive pair.
Classifying the primitive pairs (G, P) gives a classification of primitive homogeneous

spaces. Note that the subgroup Ggiag ¢ G = L x L from Theorem 4.2 is a primitive subgroup
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since it contains no normal subgroups of G. However if we instead assume that L is a simple
Lie group, so that its Lie algebra contains no ideals, Ggiag may contain a discrete normal
subgroup and would not satisfy part 2) of Definition 4.8.

In the next section we present a classification of primitive homogeneous spaces via
classifying the possible Lie algebra subalgebra pairs that a primitive homogeneous space

can have.

4.2.2 Primitive Lie algebras

In the previous section Corollary 4.2 characterized when an action of a Lie group G
on G/H is primitive in terms of maximal subgroups H of G. Now we show how this notion
of primitive can be characterized in terms of Lie algebras. We begin with the following

definition.

Definition 4.9. Let g be a Lie algebra and § a proper Lie subalgebra. If for every subal-

gebra, €, satisfying h c € c g then £ = h or £ = g, then the subalgebra § is mazimal.

The following corollary to Lemma 4.2 characterizes primitive homogeneous spaces in

terms of their Lie algebra-subalgebra pairs.

Corollary 4.3 (To Lemma 4.2). Let G be a Lie group and H a closed Lie subgroup with g

and b their respective Lie algebras.
i) If h c g is a mazimal subalgebra then the action of G on G[H is primitive.

i1) If the action of G on GJH is primitive and H is connected then h c g will be a

maximal subalgebra.

i11) If H is connected then the action of G on G/H is primitive if and only if the Lie

algebra b is a mazximal subalgebra of g.

Proof. First we prove part 4.3. Suppose that F'is an invariant k& dimensional foliation on
G/H. Then there is a Lie subgroup K of codimension k in G which contains H by Lemma

4.2. The connected component of H is a subgroup of K and therefore the Lie algebra ¢
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of K contains . Now by maximality of h in g then the codimension k of € is either O or
dim(G/H) and the foliation is trivial.

Now we prove part ii). Suppose that h c € c g for a Lie subalgebra ¢ of g. Then there
is a connected subgroup K of G such that H ¢ K c G. Since the action of G on G/H is
primitive, then there are no invariant foliations of G/H and by Lemma 4.2 if k = codimg (K)
then k = codimg(H) or k = 0. In the former case since dim(h) = dim(¢) and b c € then b = £.
In the latter case dim(£) = dim(g) and € c gso t=g.

The final part follows from the previous two claims. O

This motivates the following infinitesimal analog of Definition 4.8, as originally used

by Morosoff [13].
Definition 4.10. Let g be a Lie algebra, and p a subalgebra. If p satisfies
i) p is a proper subalgebra,
ii) p is a maximal subalgebra of g,
iii) and p contains no proper ideals of g
then p is called a primitive Lie subalgebra and the pair (g,p) is a primitive pair.

Let G be a Lie group and H a connected closed subgroup and let g and h be their
respective Lie algebras. Then if (G, H) is a primitive pair, (g,h) is a primitive pair. On
the other hand if we suppose that (g, ) are a primitive pair then H may contain a discrete
normal subgroup of G so that the action may only be locally effective and would not be a
primitive subgroup of G since it fails part 2) of Definition 4.8.

Then given a Lie group G with Lie algebra g, classifying the primitive subalgebras of g
classifies the possible primitive homogeneous spaces G/H where H is connected. The study
of these subalgebras and their connection to primitive actions was initiated by the authors
Ochai [15], Morosoff [13], Komrakov [12], and Dynkin [8]. It is interesting to note that in
the case where g is simple, part iii) of Definition 4.10 is trivially satisfied, and classifying

the primitive subalgebras reduces to classifying all maximal subalgebras of g.
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Suppose that G is not simple so that the Lie algebra g of GG is not simple. The primitive

subalgebras of g were classified in one of the main results of Morosoff [13].

Theorem 4.3 (Morosoff). Let g be a non-simple Lie algebra and let p be a primitive

subalgebra.

i) If g is not semi simple then there exists an Abelian ideal i in g such that

g=pxi,

where p acts faithfully and irreducibly on i.

This is the affine case.

it) If g is semi simple then there exists a simple | such that g=1® [ and p = {(w,x) 1T €
[} = Hdiag-

This the symmetric case.

For the proof see Golubitsky [10] or Morosoff [13].
Now we return to the setup of Theorem 4.2 but with the weaker assumption that L is

a simple Lie group, which will be of interest for the examples in Chapter 6 and 7.

Theorem 4.4. Let L be a Lie group and let G = Lx L act on L by the action pisym given in
Definition 3.1. If L is a simple Lie group then the action is primitive and L is a primitive

homogeneous space of G.

Proof. From Lemma 3.5 the group L is equivariantly diffeomorphic to G/G giag where Giag =
{(a,a)|a e L} and G acts on G/Ggiag by left multiplication.

We prove that the Lie algebra, gqiag, of Gdiag, is maximal. Let [ be the Lie algebra of
L, and [® [ = g be the Lie algebra of G. Since gqing = {(z,z)|z € g} = [ it is simple. We

show it is also maximal. Suppose £ is a subalgebra such that ggiag ¢ € ¢ g, and note that

t={(z,y)|r-yet}, as

($7y) = (:ZI—y,O) + (yay)
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and (y,y) € €. Now consider the subalgebra € = {z € [|(z,0) € ¢}. We claim that € is an

ideal of I. Indeed if z € [ and x € €, then

([:L',Z],O) = [(a:,O),(z,z)] et

since gaiag C €, 50 [2,2] € €. Then either £ = g or € = {0} and gqiag is a maximal subalgebra.

Finally, by Corollary 4.3 part i) the action will be primitive completing the proof. O

Note that the pair (G, Ggiag) in Theorem 4.2 may not be a primitive pair as in Definition
4.8 as the subgroup Ggijag may contain a discrete normal subgroup of G failing part 2) of
the definition. However, the Lie algebra of G = L x L is [ @ [ where [ is a simple Lie algebra,

and the Lie algebra of Ggiag is

Gdiag = {(2,7) |z € g}

which is isomorphic to [ and therefore ggiag is simple. This observation proves the following

corollary of Theorem 4.4.

Corollary 4.4. The Lie algebra subalgebra pair (g, gaiag) 95 a primitive pair of type ii) in

the classification Theorem 4.3.

Remark 4.1. If G/H is a primitive homogeneous space and G is simple and H is connected
Corollary 4.3 states that the Lie subalgebra h must be maximal. However, classifying the
possible Lie algebra subalgebra pairs when H is not connected and G is simple is more
complicated. There are primitive homogeneous spaces G/H where b is not maximal, this
is the main focus of Golubitsky [10]. An example is presented below in Section 5.3 in the
case of SL(2,R). In the case where G is not a simple Lie group and G/H is a primitive
homogeneous space §h will be a maximal subalgebra of g and the classification of primitive
subalgebras in Theorem 4.3 is the same as classifying the possible Lie algebra-subalgebra

pairs for primitive homogeneous spaces.
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CHAPTER 5

Two Dimensional Primitive Homogeneous Spaces of PSL(2,R).

There are three non conjugate one dimensional subalgebras, [, h, and so2(R) of sl (R)

which have bases

0 0 1 0 0 -1
l= h = s = (5.1)
10 0 -1 10
respectively. Then
10 et 0 cos(t) —sin(t)
L(t) = , H(t) = , and SO(t) = (5.2)
t 1 0 et sin(t)  cos(t)

for all t € R are the unique one parameter subgroups such that L(0) = ¢, H(0) = h, and
SO(0) = s. Note that the images L(R), H(R), and S(R) = SO(2,R) are one dimensional
subgroups of SL(2,R). Throughout this section we will abuse notation and denote the
images L(R) = L, H(R) = H, and SO(R) = SO(2,R).

Corollaries 4.2 and 4.3 allow us to identify which of the homogeneous spaces SL(2,R)/L,
SL(2,R)/H, SL(2,R)/SO(2,R) are primitive.

Lemma 5.1. The spaces SL(2,R)/L and SL(2,R)/H are not primitive homogeneous spaces

and SL(2,R)/SO(2,R) is a primitive homogeneous space.

Proof. Let By be the two dimensional connected subgroup of the lower triangular matrices
in SL(2,R). Then since L, H c By they are not maximal, and by Corollary 4.2 the first
claim follows.

For the second claim we note that SO(2,R) is connected so by Corollary 4.3 part
iii) SL(2,R)/SO(2,R) is primitive if and only if so3(R), as defined in Equation (5.1) is a
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maximal subalgebra of sla(R). Let £ be a two dimensional Lie algebra such that sos(R) c

tcslh(R). Let

t u
y =
v —t.
Then by closure, the bracket
—(u+v) 2t
[z,y] =
2t U+ v

is also in €. However [z, y] is linearly independent of = and y, so k would be three dimensional
which is a contradiction. Therefore the action of SL(2,R) on SL(2,R)/SO(2) is primitive.
O

The subgroup SO(2,R) of SL(2,R) contains the discrete normal subgroup of SL(2,R)
given by N = {+I}, so by Theorem 2.9 the action of SL(2,R) on SL(2,R)/SO(2,R) is not
effective and (SL(2,R),SO(2,R)) is not a primitive pair since it does not satisfy part 2) of
Definition 4.8.

Lemma 5.2. The standard action of SL(2,R) on SL(2,R)/SO(2,R) has global isotropy

subgroup given by the center of SL(2,R), the normal subgroup N = {£I}.

Proof. Let G* be the global isotropy subgroup of SL(2,R) for the standard action of
SL(2,R) on SL(2,R)/SO(2,R) by left multiplication. Suppose that B € G*. Since B is
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in the global isotropy, B[I]so2,r) = [I]so(z,r), and hence B € SO(2,R). Let

cos(¢) —sin(¢)
sin(g)  cos(o)

for some ¢ € [0,27] and let

1 0
E:

1/2 1

so that E € SL(2,R). Now since B is in the global isotropy, B[E]so(2r) = [£]so,r), and

there exits some 6 € [0,27) such that

cos(¢) -—sin(p)[| 1 0 1 0]|cos(f) -sin(h)
sin(¢) cos(o) [|1/2 1 1/2 1||sin(f) cos(6)

which gives the system of equations
sin(¢) = sin(0)

sin(¢) + %cos(gb) = %cos(@) +sin(0)

cos(¢) — %sin(tb) =cos(0)

The first equation and the second equation imply that cos(¢) = cos(f) and from the third
equation sin(¢) = 0. Then ¢ = 0,7 and B = £I. On the other hand N is a normal subgroup of

SL(2,R) contained in SO(2,R) so by Theorem 2.9, N is contained in the global isotropy. [
Corollary 5.1. The action of PSL(2,R) on PSL(2,R)/SO(2,R) is effective and primitive.

Proof. From Lemma 4.3 there is a transitive effective action of PSL(2,R) = SL(2,R)/N on
SL(2,R)/SO(2,R) and an equivariant diffeomorphism ¢ : SL(2,R)/SO(2,R) - PSL(2,R)/SO(2,R),
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where SO(2,R) = SO(2,R)/N, is given by

¢ ([Alsoer)) = [A]Sb(2,R)

for A = [A]n = {£A4}. So since SL(2,R)/SO(2,R) is a primitive homogeneous space with
respect to the standard action of SL(2,R) by left multiplication by Lemma 5.1, then by
Lemma 4.5 the homogeneous space PSL(Z,R)/S@(Z,R) is primitive with respect to the

standard action of PSL(2,R) by left multiplication. O

Since SO(2,R) does not contain any normal subgroups of PSL(2,R) Corollary 5.1
implies that (PSL(2,RR),SO(2,R)) is a primitive pair as given in Definition 4.8.

Now we identify the one parameter subgroups of PSL(2,R) corresponding to [, b, and
505(R), L H and SO(2,R).

Lemma 5.3. Let m : SL(2,R) — PSL(2,R) be the quotient homomorphism. Then T, :
slo(R) — psly(R) is a Lie algebra isomorphism, and the one parameter subgroups which

correspond to the isomorphic images of I, b, and so2(R) under 7, are
L=n(L), H==(H), SO(2,R)=r(SO(2,R)), (5.3)

where L, H, and SO(2,R) are the subgroups from Equation (5.2).

Proof. The quotient homomorphism is a smooth surjective submersion with constant rank
equal to three and hence the linearization 7, : sl3(R) — psl,(R) is an isomorphism of vector
spaces. Moreover 7, is a Lie algebra homomorphism because 7 is a Lie group homomorphism
and therefore 7, is a Lie algebra isomorphism. Under the identification from 7, the one
dimensional Lie algebra corresponding to [ is m.([), and we claim that 7 o L is the unique
one parameter subgroup with m,(¢) as its tangent vector at the identity ILe PSL(2,R). To

prove the claim consider

2 (o 1)y = . (EO) = .00
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using L(O) = { since L is the unique one parameter subgroup with ¢ as its tangent vector at

the identity, I € SL(2,R). The proof for the other cases is similar. O

The Lie algebra isomorphism 7, of sla(R) and psly(R) from Lemma 5.3 identifies the
two Lie algebras, so that any of the properties we develop for sly(R) in this chapter hold

for psly(R) as well.

Theorem 5.1. The spaces PSL(2,R)/L and PSL(2,R)/H are not primitive homogeneous
spaces and SL(2,R)/S@(2,R) is a primitive homogeneous space where L, H, and SO(2,R)

are the one parameter subgroups of PSL(2,R) from Lemma 5.3.

Proof. The homogeneous space PSL(2,R)/SO(2,R) is primitive by Corollary 5.1. We will
only show that PSL(2,R)/L is not primitive as the argument is similar for PSL(2,R)/H.
Since L c 7(By) where By is the connected two dimensional Lie subgroup of upper triangular
matrices in SL(2,R), then m(Bp) is a connected two dimensional subgroup of PSL(2,R)
which contains I:, and it is easy to see that this containment is strict. So by Corollary 4.2

the homogeneous space PSL(2,R)/L is not primitive. O

The next section identifies the homogeneous spaces PSL(2,R)/L, PSL(2,R)/H, and
PSL(2,R)/SO(2,R) with orbits of the Adjoint representation of PSL(2,R).

5.1 Two Dimensional Model Spaces of PSL(2,R) Homogeneous Spaces.
The Adjoint representation of SL(2,R) on sly(R) is the action Adgp : SL(2,R) x
sla(R) = sly(R) be given by

Adsp,(A,p) = ApA™! (5.4)

for A € SL(2,R) and p € sl5(R). Note that by Theorem 2.1 the action Adgy, is equivalent to

the homomorphism ® a4, : SL(2,R) - GL(sl2(R)) given by

Padg, (A)[p] = (Adsr) a(p) = Ads,(4,p)
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where we use the fact that the maps (Adgy,)4 are linear to verify ®pq., © GL(sl2(R).

The map ®aqq, is invariant under the action of N = {«I} by right or left multipli-
cation on SL(2,R) and, by Theorem 2.2, there is a unique function ®aq,, : PSL(2,R) —»
GL(sl2(R)) such that ®aq,¢, o7 = Paqg, Where 7 is the quotient homomorphism. It is easily
checked that ® 44, is a homomorphism of groups, and so by Theorem 2.1 is equivalent to

an action Adpgy, : PSL(2,R) x sl3(R) — sla(R) defined by
Adpsy, (A,p) = ApA™, (5.5)

for p € slo(R) and any A € SL(2,R) such that 7(A) = A. Note that by the Lie algebra
isomorphism 7, this action agrees with the Adjoint representation of PSL(2,R). The two
dimensional orbits of the action Adgy, are split into three types, one sheeted hyperbola, two
sheeted hyperbola, and cones as shown in Figure 5.1. These orbits are identified with the
two dimensional homogeneous spaces PSL(2,R)/L, PSL(2,R)/H, and PSL(2,R)/SO(2,R)
from Theorem 5.1 in the following theorem.

Theorem 5.2. Let Adpgy, be the Adjoint action given in Equation (5.5), let ﬁ,fI,Sb(Q)

be the connected one parameter subgroups of PSL(2,R) given in Theorem (5.1), and let

(x,y,t) be the coordinates determined by the basis

/2 0 0 1/2 0 -1/2
X1 = s X2 = y and X3 = (56)
0 -1/2 1/2 0 1/2 0

for slo(R). Then
i) The homogeneous space PSL(Q,R)/I:I is equivariantly diffeomorphic to the one sheet

hyperbola Q2 = {(x,y,t) |2(5L‘2 +y? - tg) =2}.

i1) The homogeneous space PSL(2,R)/£ is equivariantly diffeomorphic to the upper half

cone, Qf = {(z,y,t)|v? +y*> -2 =0, t > 0}.

i11) PSL(Z,R)/SC(ZR) is equivariantly diffeomorphic to one sheet of a two sheet hyper-

bola Qo = {(z,y,t)|2(x® +y? —t2) = -2, t > 0}.
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Fig. 5.1: Orbits of the PSL(2,R) Adjoint action.

Two Sheet Hyperbola Cone One Sheet Hyperbola
PSL(2,R)/SO(2,R) PSL(2,R)/L PSL(2,R)/H
primitive not primitive not primitive

In order to prove Theorem 5.2 we begin by identifying the orbits of Adgr, and Adpsr..

Lemma 5.4. The orbit of any point p € slo(R) with respect to the action Adsy, defined in

Equation (5.4) is equal to the orbit of p with respect to Adpgy, defined in Equation (5.5).

Proof. Let p € sl3(R) and let [p]aqg, be its orbit. If ¢ € [p]adg, then there exists an element
A e SL(2,R) such that Adgp(A,p) = g. Now let 7 : SL(2,R) - PSL(2,R) be the quotient
homomorphism and define a map 7 : SL(2,R) x sl3(R) - PSL(2,R) x sl3(R) by

7~T(A,p) = (W(A)a q)
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then by definition of Adpgr, from Equation (5.5) we have
AdpsL o = AdSL. (57)

Therefore, Adpsr,(m(A),p) = Adsi.(A,p) = ¢, and [p]adpg, € [P]ads, - On the other hand
suppose that ¢ € [p]adpg, , then there exists A € PSL(2,R) such that Adpsr,(A,p) = ¢ and if

A eSL(2,R) is any element such that 7(A) = A then from Equation (5.7)
q= AdPSL o ﬁ-(Aap) = AdSL(Aap)a

which verifies that [p]adps, = [P]ads, completing the proof. O

Now we define the Killing form on sla(R). Let ad(z) : slo(R) — slo(R) be the adjoint
map, ad(z) = [m, -], where [-,-] the commutator bracket on sla(R). Then the Killing form
on sly(R) is

Kay(r) (2, 9) = tr(ad(z) 0 ad(y)).
This is a symmetric, bilinear form which satisfies
Ky ) (AdsL(A, p), AdsL(4,9)) = Key ) (ApA™, AgA™) = Koy (wy (p, @)
for all A eSL(2,R) and p, q € slo(R). Note that the killing form can be computed as

K, (p,q) = 4tr(pg), (5.8)

where tr is the usual trace function on matrices and multiplication in slp(R) is matrix
multiplication. The observation follows from evaluating both sides of Equation (5.8) on

the basis in Equation (5.6). The Killing form defines a corresponding quadratic form,
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Q :sl(R) > R, by

Q(p) = Ky w)(p,p) = 4tr(p?), (5.9)

by using Equation (5.8). The form @ is an invariant of Adgy, since the Killing form is left

and right invariant. Let the level sets of Q) be denoted as follows

Qc={pesh(R)|Q(p) =c}. (5.10)

The following lemma identifies the level sets of () as two dimensional surfaces in the three

dimensional Lie algebra sly(R).

Lemma 5.5. Let Q be the quadratic form defined in Equation (5.9). The level sets Q.

given in Equation (5.10) are one of the following types.
i) If ¢ >0 then the level sets Q. are one sheet hyperbolas.
i1) If ¢ =0 then the level set Qo is a cone through the origin.
i11) If ¢ <0 then the level sets Q. are two sheet hyperbolas.

Proof. Introduce coordinates on the vector space sla(R) using the basis given in Equation
(5.6). That is p € slo(R) has coordinate representation (z,y,t) € R® where z,%,t are the
unique values such that p = x X7 + yXo + t X3.

Then from Equation (5.8) the quadratic form is Q(p) = 4tr(p?), and its coordinate

representation is,

2

D=

z 5(y-1)

%(y+t) —%x

Q(z,y,t) =4tr ((xXl +yXo+ tX3)2) =4tr =2(x? + % - 7).

Hence the level sets of @ are described by Q. = {(z,y,t)|2(2? + y*> - t?) = ¢}, proving the

claim. O
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Lemma 5.6. If p € sl3(R), then the characteristic polynomial Py(X) of p is

Py(A) = N° - %Q(p)- (5.11)

Proof. Consider the usual basis for sla(R) {f,e,h},
f — , h = , e = . (512)

With respect to these coordinates the quadratic form @ in Equation (5.9) has the form
Q(F,H,E)=Q(Ff+Hh+ Fe)=8(EF + H?).

Now consider an arbitrary matrix p € sly(R), with coordinates (F, H, E). Then the

characteristic polynomial P,(\) of p is
1
P,(\) =det (Ff+ Hh+FEe- ) =\ - (EF + H*) = \? - éQ(q),

which is independent of the basis for sl3(R) chosen since @ is invariant under conjugation.

O

Corollary 5.2. For each c € R the points p € Q. where Q. is the level set from Equation

(5.10) all have the same eigenvalues.

The sets Q2,Q75, Q-5 from Theorem 5.2 are invariant subsets of SL(2,R) with respect
to the adjoint action because they are connected components of level sets of (). The next

lemma proves that Qf is also an SL(2,R) invariant subset.

Lemma 5.7. The set Q§ from part ii) of Theorem 5.2 is an SL(2,R) invariant subspace

with respect to the action Adgy,.
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Proof. Let p € Qj. Then note that since 0 € sl(R) is a fixed point of the action paq and
p # 0, the point 0 is not an element of the orbit [p]aqs, . Hence [plags, © Qo ~ {0}. Note

that the sets Qf and @, where

Qo ={(zy.t) |2 +y* — 3 =0, <0},

are nonempty disjoint open subsets such that Qo {0} = QjuQ; and therefore the connected
subset [p]adg, lies entirely in Qf or Q. Finally since p € Q then [p]aqy, © Qf completing

the proof. ]

Lemma 5.8. The action Adgy, is transitive on the sets Q2,Qf, QY identified in Theorem

5.2.
Proof. There are three parts to prove.

i) Let p € Q2 from Lemma 5.5. Then from Lemma 5.6 the characteristic polynomial of p
is P,(A) = A?—1 and the eigenvalues of p are +1/2. Since p has two distinct eigenvalues

let vy/9,v_1/2 be eigenvectors for p and let Z = [vy/o|v_y1/2] € GL(n,R). Then

Z W7 = 0 =X
b4 = = A7l

N[—=

[an}

1
2

Now det(Z) # 0 since the eigenvectors are linearly independent, and there are two

cases. If det(Z) > 0 then the matrix U = \/deltﬁz € SL(2,R) satisfies U™'pU = X,

as well and X7 is on the same orbit as p. If det(Z) < 0 let Y = [v_ys|vy/2] so that
det(Y) > 0. Then

)y - ~1/2 0 |
0 1/2
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Let S € SL(2,R) be the matrix,
S = . (5.13)

Then note that

SY lpy st =5y lp(sy ) = X,

and p is conjugate to X; by an element SY ! € GL(2,R) where det (SY‘I) > 0. By
similar logic to the case where det(Z) > 0 the point X; is in the same orbit as p

verifying that Adgy, is transitive on the subset Q5.

Let p € Qf. Then P,(t) = t* by Lemma 5.6 and p is nilpotent. From the Cay-
ley-Hamilton theorem p? = 0 and p # 0 since p € Q§. Then there exists an element
v € R? such that pv # 0. Consider the set {v,pv}. We claim this is a linearly indepen-

dent set. Suppose that
av +bpv = 0.

If @ or b is zero then both a and b are zero since v, pv £ 0. If ¢ and b are nonzero then
pv = $v s0 v is an eigenvector of p with eigenvalue a/b, but the eigenvalues of p are

zero so a/b =0 contradicting pv # 0.

Since {v, pv} is a linearly independent set then it is a basis for R?. Let Z be the matrix

Z = [v|vp] e GL(2,R). If det(Z) > 0 then

L 0o
77 = = Xy + X (5.14)
10

That is g is conjugate to X9+ X3 by an element of GL(2,R) with positive determinant
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and therefore p is conjugate to X2+ X3 by an element of SL(2,R) and p is in the same
orbit as Xo + X3. If not, det(Z) < 0 then let Y = [pv,v] € GL(2,R) so that det(Y") > 0.
Then

Y lpy = 01 =Xo-X
p = = 2 3

00

and p is conjugate to Xo — X3 by an element of GL(2,R) with positive determinant,
and therefore p is conjugate to Xy — X3 by an element of SL(2,R). However from
Lemma 5.7 the orbit of p is a subset of (), and the coordinates of X3 — X3 from the
choice of basis in Equation (5.6) are (0,1,-1) € Q. Therefore, det(Z) < 0 leads to a

contradiction and p is in the same orbit as Xo + X3.

If p € Q_2 then the characteristic polynomial P,(t) = t2+i and p has complex conjugate
cigenvalues. Then by the Cayley-Hamilton theorem, p? + }LI =0, and p # 0 so there
exists a non zero vector v € R? such that p?v = —}lv. The set {v,pv} is a basis for R?

by similar logic to part ii).
Let Z = [v|pv] € GL(2,R) and there are two cases. If det(Z) > 0 then

. 0 -1 1 1
777 = :(1_Z)X2+(1+Z)X3 (5.15)

where the right hand side of the equation above has coordinates ((), 1- i, 1+ i) €7,
with respect to the choice of basis in Equation (5.6). Therefore since det(Z) > 0 then

p is in the same orbit as (1 - %)XQ + (1 + %)Xg.
If det(Z) < 0 then let Y = [pv|v] € GL(2,R) with det(Y) > 0. Then

Y lpy = =(1——)X2—<1+—)X3 (5.16)

where the right hand side has coordinates (0, 1- i, -1- %) with respect to the choice
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of basis in Equation (5.6) and therefore is in ()~,. However since p € QF, where Q7,

is a Adgy, invariant subset this is a contradiction and det(Z) > 0.

That is every point p € Q7, is in the same orbit as (1 - %1) Xo+ (1 + }L) X3 which verifies

that Adgy, is transitive on Q7.
O
For more information on the Adjoint orbits of SL(2,R) see the paper by Rubilar [18].
Corollary 5.3. The action of Adpgy, is transitive on the sets Q2, Qf, and Q7.

The proof follows from applying Lemma 5.4. The next lemma shows how to compute
the isotropy subgroup for the action Adpgy, given the isotropy subgroup for the same point

with respect to the action Adgr..

Lemma 5.9. Let Adgy, and Adpsy, be the actions defined in Equations (5.4) and (5.5)
respectively. For any p € slo(R) the isotropy subgroup PSL(2,R), of p with respect to the
action Adpsg, is equal to the subgroup mw(SL(2,R),) where m: SL(2,R) - PSL(2,R) is the
quotient homomorphism and SL(2,R), is the isotropy subgroup of p with respect to the

action Adsgy,.

Proof. From Equation (5.7) we have Adgy, = Adpgy, o 7. First let A € 7(SL(2,R),). Then
for any A € SL(2,R) such that w(A) = A, that is +A € SL(2,R),, Equation (5.7) implies
that Adpsy,(A,p) = p and A € PSL(2,R),. On the other hand if A € PSL(2,R), then there
exists an A € SL(2,R) such that 7(A) = A and again from Equation (5.7) Adsp(4,p) =
AdpSL(/l,p) =p so A € SL(2,R), which completes the proof. O

Finally we prove Theorem 5.2, by identifying the homogeneous spaces arising from the

subgroups L, H, and SO(2,R) with the level sets above.

Proof of Theorem 5.2. In the proof of Lemma 5.8 we showed that the orbits of X1, Xs +
X3 and (1 - 411) Xo + (1 + }l) X3 are (Y2, ), and QF, respectively under the action Adgr,.

Corollary 5.3 implies that these sets are also the orbits with respect to Adpgr,. Note that X3
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to the choice of basis in Equation (5.6). That is X3 is in the same orbit as (1 - %:) Xo +
(1 + }1) X3, and we can take X3 as a representative for the orbit @, instead of (1 - }L) Xo+
(1+1)Xs.

We now compute the isotropy of X7, X9 + X3 and X3, which will identify the orbits,

Q2,Q5,Q*,, with two dimensional homogeneous spaces PSL(2,R).

i) Consider the stabilizer of X + X3 with respect to the action Adgr,, SL(2,R)x,+x5-

This subgroup is defined by the solutions to

c d||1 O 1 0Ol|le d

with ad — bc = 1. Then the isotropy subgroup of X2 + X3 as in Equation (5.6) is

+1 0
SL(?,R)X2+X3= beR}.

Now from Lemma 5.9 the stabilizer subgroup
PSL(2,R) x4 x5 = 7(SL(2,R) x4 x5) = L.

Now from Theorem 2.7, PSL(Q,R)/ﬁ is equivariantly bijective with Q.

ii) Now consider the stabilizer, SL(2,R)x,, of X; as in Equation (5.6) with respect to

the action Adgy,. This subgroup is given by the solutions to

a bl|1/2 0 12 0 |la b

c dll o -1/2 0 -1/2(|c 4
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that is the matrices in SL(2,R) that have b=c=0,

SL(2,R)x, =

a€R”
0 1/a

From Lemma (5.9) PSL(2,R)x, = 7(SL(2,R)x,) = H, and PSL(2,R)/H is equivari-

antly diffeomorphic to Q2.

a
iii) Finally we compute SL(2,R)x,. If A =

X3A is

Cc

This gives the system of equations

, with ad — bec = 1, The equation AX3 =

c d
—O —1/2- —0 -1/2 —a b
_1/2 0 | _1/2 0 | c d
—b/2 —a/2‘ ——0/2 —d/2-
_d/2 —c/2_ ha/2 b/2_
c+b=0
d-a=0
ad-bc=1

So a =d and ¢ = b and from ad—-bc = 1 we have a®+b? = 1. That is A is an orthogonal

matrix so we can write the stabilizer in terms of a parameter t as

SL(2,R)x, =

cos(f) —sin(0)

0¢[0,27]} = SO(2,R).

sin(f) cos(0)

As in the previous parts PSL(2,R)x, = SO(2,R) so that PSL(2,R)/SO(2, R) is equiv-

ariantly diffeomorphic to QF, completing the proof.
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5.2 Invariant Foliations of PSL(2,R)/H and PSL(2,R)/L.

In this section we will prove the following theorems

Theorem 5.3. Let PSL(2,R)/L and PSL(2,R)/H be the non primitive PSL(2,R) homo-

geneous spaces from Theorem 5.1.

i) There is an invariant foliation of PSL(2,R)/H with respect to the standard action of
PSL(2,R) by left multiplication, Ff{, which is defined by its leaf through the identity
coset,

A . A 1 0
FIl ={[E]4|EecL}= seR
RS H
s 1],
H

i) There is a foliation of PSL(2,R)/L which is invariant under the standard action of

PSL(2,R) by left multiplication, Fﬁ, with leaf through the identity
+s 0

i ~ ~ A~
Fmiz{[D]ﬁDeH}: seRyg

L

Now consider the basis for sly(R) given in Equation (5.6). We can define corresponding
invariant foliations on sls(R) by using the equivariant diffeomorphism between the coset
spaces PSL(2,R)/H and PSL(2,R)/L with Q4 and Q} respectively as given in the following

theorem.
Theorem 5.4. There are invariant foliations with respect to Adpsy,,

i) ol of Q2 determined by the leaf through the point X3
P = X1 +5(Xo+X3) |s R},
i1) and jals of QF given by the leaf through Xo + X3

| 1 .
F)L(2+X3:{¥(X2+X3) |seR }
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Fig. 5.2: Invariant foliation of the Upper Cone.

The foliations of Q2 and Q are depicted in Figure 5.3 and Figure 5.2 respectively.

Proof of Theorem 5.3. We will only prove the theorem for FH since the proof for F L i
similar. Let ¢ : PSL(2,R)/H — PSL(2,R)/B given by ¢([A] ;) = [A] 5 where B = 7(By) and
By is the two dimensional subgroup of lower triangular matrices in SL(2,R). Then Theorem
4.1 implies that there is an invariant foliation of PSL(2,R)/H which is invariant under the

action of PSL(2,R) by left multiplication, FH - {F[A] X |F[A] o= AF[T } where the leaf
H H

la

through the identity coset, F| ], = q_l([i] B)O, the connected component of q_l([i] ) which
H

contains the identity coset [I];. We will show that F[Ié , is the set L/H = {[E]H
H

First note that L ¢ PSL(2,R) is a connected subgroup of PSL(2,R) and the projection

Bel).

7y PSL(2,R) —» PSL(2,R)/H is a continuous map, the image L/H is a connected subset

of PSL(2,R)/H containing the identity coset [i]H Now note that

~

a([Ely) = [Elz =[]
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since L c B, and the set L/H is contained in the preimage q_l([i]B). Hence, L/H c F[I% K
H
Now suppose that [A]; € F[% . Then since A € PSL(2,R) there exist R € SO(2,R), E ¢ L,

H
and D € H, where SO(2,R) L and H are the connected one dimensional subgroups from

Equation (5.2), such that
m(RED) =n(R)n(E)r(D)=A

and 7 : SL(2,R) - PSL(2,R) is the quotient map. Then consider [A]; = [7(RED)], =
7(R)[7(E)] since m(D) € H. Now using the equivariance of ¢ with respect to the standard
action of left multiplication of PSL(2,R) on PSL(2,R)/H and PSL(2,R)/B we have

[ = a[Alz) = a(m(R)[(E)] ) = m(R)[7(E)] 5 = n(R)[1] 5

since m(E) € B. But then w(R) € B and w(R) = 1. verifying that [Aly = [7(E)]y € L/H

and completing the proof. O

Corollary 5.4. Let 7 :SL(2,R) - PSL(2,R) be the quotient homomorphism.

i) Every leaf of FH can be written as F(R)F[]% for some R € SO(2,R). That is there
H

exists a unique 0 € [0, ) such that

5 cos(f) —sin(6 1 0
P = ©) 9 seR}.

Ala sin(f) cos(f) J\s 1 4

i1) Bvery leaf F[%]A e FL can be written as W(R)F[%} for some R € SO(2,R). That is
L L

there exists some 0 € [0,7) such that

8 cos(f) —sin(f s 0
o, [ ) on
v sin(#) cos(f) J\0 s7! i
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Fig. 5.3: The invariant foliation of one sheet hyperbola orbit.

Proof. Since every A € SL(2,R) can be written as RDE or RED for R e SO(2,R) D e H
and L € D, the claim follows from the invariance of the foliations FH and FE with respect
to the standard action of PSL(2,R) by right multiplication, and from the fact that every

m(R) for R e SO(2,R) can be written as

cos(f) —sin(6)
sin(f) cos(#)

m(R) =7

for some unique 6 € [0, 7) which follows from

cos(m) —sin(m)

sin(w)  cos(m)
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and m(R) = 7(-R). O
The invariant foliations F2 of PSL(2,R)/H and FLof PSL(2,R)/L with respect to the

standard action of PSL(2,R) by left multiplication induce invariant foliations with respect

to the action Adpgy, of the orbits Q2 and Qf as described in Theorem 5.2.
Proof of Theorem 5.4. Again we will prove the claim for FH as the statement for L is
similar. By Theorem 2.7, the map (Adpsy,)x, : PSL(2,R)/H — Q5 given by

(Adpsp) x, ([A]5) = AdpsL(4, X1) = AX A7

for any A € SL(2,R) such that m(A) = A. is an equivariant bijection of PSL(2,R)/H with

Q2
Then by the proof of Lemma 4.4, FH (A~dpSL)X1 (FH) is an invariant foliation of Q9

with respect to the action Adpgr,. We can compute the leaf through the point X; by the

image of F¥  which is
Uy

(Adpsr,) x, (F[%H) =Adps, ({[E]g|Eel}, X1)=EX1E™!
for all E € SL(2,R) such that E = n(E). That is

+1 0|12 o [[+1 o0
=X1+S(X2+X3)

s 1|1 0 -1/2(s =1

for all s € R which completes the proof. O

Using Corollary 5.4 each leaf of FH can be written in coordinates as the line

cos(260) X1 +sin(20) Xs + s( cos(260)Xs —sin(20) X7 + X3)
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for a unique 6 € [0,7). By using the coordinates from the choice of basis in Equation (5.6)

for each @ the leaf of through the point (cos(26),sin(26),0) is the line
(005(20), sin(20), 0) + s( —sin(20), cos(20), 1).
Similarly the leaf F' )’%2 X, 1S given as
L.
2 (sin(20) X1 + cos(20) X2 + X3)
and in coordinates
L s 0 0
S—2(Sln(2 ),cos(20),1).

5.3 Primitive Homogenous Space With Submaximal Lie Algebra:

Let N(H) be the normalizer of of the diagonal subgroup H from Equation (5.2),
N(H)={AeSL(2,R)|ABA™ e H,VBe H}.

This section shows that the homogeneous space SL(2,R)/N(H) is primitive, but the Lie
algebra for N(H) is not a maximal subalgebra of sl3(R). The subgroup N(H) is not con-
nected, demonstrating that the condition that H be connected in Corollary 4.3 part ii) is
necessary in the case where G is a simple Lie group.

We start by giving a concrete description of the normalizer N(H) in the following

lemmas.

Lemma 5.10. The centralizer, Z(H), of the one parameter subgroup H given in Equation

(5.2) is
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Proof. Let A eSL(2,R) such that AUA™! = U for all U € H and let

such that ad —bc=1. Then AU = U A implies that

a bllt O t 0 lla b
cht’l‘ ~Ot’lcd

ta t'b ta  tb

te t—ld_ _t_lc t~1d

for all ¢t > 0. Then b = t?b and t%c = ¢ for all ¢ > 0 implies that b,c = 0. Using ad - bc = 1 gives

d=a"' and A has the desired form. Conversely, if a € R* then

which completes the proof. O

Lemma 5.11. Let H be the one parameter subgroup in Equation (5.2), Then the normalizer

subgroup, N(H), is given by

a 0 0 a
N(H) = , aeR*
0 a! —ab 0
Proof. Let
a 0 0 a
K= , a€R”
0 a! —ab 0

Then K c¢ N(H) is a straightforward computation that we will omit from the proof.
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If Ae Z(H) then it is an element of K by Lemma 5.10 so suppose that A e N(H)
Z(H). Then there exist Uy, Us € H with Uy # Us, such that AU; = Us A. Note that Uy =1 if
and only if Us = I because matrix multiplication is linear and A is invertible, so Uy, Us # £1

as well. Now Let

0 U
A= , U= , and U=
c d 0wt 0wyt

where u1,us >0, u; # ug and ad —bc =1. Then AU = UoA is

a b|luy O- —u2 0 |la b
c d[|o0 u;l___o uzt |le d
uLa u[lb- —UQG/ ugb
uic u[ld_ . _uglc uytd

The condition that u; # uy gives that a = 0. Then using ad — bc = 1 we have bc # 0 and
c = —1/b. The off diagonal entries give u3' = u1, and this then forces (ug1 - u2) d=0sod=0

since Uy # 1. Therefore

so A € K completing the proof. O
Lemma 5.12. The subgroup N(H) is not connected.

Proof. The subsets Z(H) and N(H) ~ Z(H) are disjoint and open such that Z(H) u
(N(H)NZ(H))=N(H). O

The next lemma shows that the subgroup N (H) is maximal, and therefore by Corollary

4.2 the homogeneous space SL(2,R)/N(H) is primitive.

Theorem 5.5. The action of SL(2,R) on SL(2,R)/N(H) is a primitive action.
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Proof. We will show that N(H) is not contained in any subgroups of SL(2,R) with dimen-
sion strictly between dim(N(H)) =1 and dim(SL(2,R)) = 3. Indeed let N(H) c K with
1 <dim(K) < 3. Since H is a connected Lie subgroup contained in K then the Lie algebra
h of H will be contained in the Lie algebra £ of K.

We claim that this forces € to be a subalgebra of triangular matrices. Let {f,h,e} be
the standard basis for slo(R) as in Equation (5.12). Then since h € ¢ and it has dimension

2 we can extend h to a basis for ¢, {h,z}. Now let « be given by

Since € is a subalgebra then [h,z'] = 2" € € and

0 4u
124
z = .
4v 0
But now consider
1 1 1 1
—2'+—2"=¢ and —2"-—2'=f
4u 8u 8v )

so £ =sl3(R), a contradiction in assuming that both u and v are nonzero.
Then either u or v are zero, but not both since x and h are independent.

Suppose that v is zero. Since {x,h} is a basis for ¢ then

t= o,aeR ;.
0 -0
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then K contains the connected subgroup,

a b
By = Va,beR,a>0
0 a!
Let S e N(H) be the matrix
0 -1
S =
1 0
Then S € K as well and
10 L 1 0
S S =
0 1 -b 1

is in K by closure under multiplication for all real b > 0. Hence the Lie algebra ¢ will contain

the element

which is independent of both z and h meaning ¢ has dimension three, a contradiction. A
similar argument can be used to show that £ is three dimensional in the case that u is zero.
Corollary 4.2 implies the action of SL(2,R) on SL(2,R)/N(H) is primitive and the

proof is complete. O

Finally we note that since H ¢ N(H) and N(H) is a one dimensional Lie group, then
the Lie algebra b of H is the Lie algebra of N(H). However h is not a maximal subalgebra

of sla(R) as it is contained in the Lie algebra of By.
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CHAPTER 6
Joint Invariants of Primitive Homogeneous Spaces with Lie Algebra-Subalgebra Pairs of

Affine Type

In this chapter we consider the groups A(n) and SA(n) acting on R" by the standard

affine action.

Definition 6.1. Let A(n) = {(A,a)| A e GL(n), a€R"}, be the real affine group. Then

the action, pip(n) : A(n) x R" — R" given by

HA(n) ((A, a),:v) =Ax+a (6.1)

for x € R™ and (A,a) € A(n) is called the standard affine action of A(n) on R™.

In Section 6.1 we prove Lemma 6.2 which shows that R" is a primitive homogeneous
space of A(n) and SA(n). We conclude Section 6.1 by proving Lemma 6.3 which shows
that the Lie algebra subalgebra pair for R™ as a primitive homogeneous space of A(n) is
of type i) in the classification Theorem 4.3. In Section 6.2 we prove Theorem 6.1 by using
the reduction method to show that the joint invariants for pa(,) and pga(y) is equivalent
to to finding joint invariants of the standard representations of GL(n,R) and SL(n,R).
The chapter concludes with Section 6.3 which determines the points of (R”)k which are in
general position for GL(n,R) and SL(n,R) and constructs the joint invariants of ) and
HsA(n) in Corollary 6.3 and Corollary 6.5.

The invariants of affine type presented in this chapter have been developed in the work
of Olver [17] for the special affine group SA(n).

The application of the reduction theory demonstrated on A(n) and SA(n) holds for the
Euclidean group Euc*(n) as well, showing that the joint invariants of the standard affine
action restricted to Euc*(n), that is the Euclidean transformations of R™, are determined by

the joint invariants for the standard representation of SO(n,R). However, the construction



97

of joint invariants deviates from our treatment of A(n) and SA(n) due to the standard
representation of SO(n,R) not being transitive on R™ \ {0}. For this reason the method
of slices described in Section 7.1.3 is more appropriate for determining the joint invariants
using the reduction method. To see a direct construction of the joint invariants for the

standard representation of SO(n,R) see Olver [17].

6.1 Primitive Verification

Lemma 6.1. The action pa(yy is transitive on R™ and the stabilizer of the point 0 € R" is

the subgroup Hp () = {(A4,0)| A€ GL(n)} c A(n).

Proof. Define a map p:R"™ - A(n) by

o) = (I,-2) (6.2)

which satisfies p(x) -2 = 0 and so the action is transitive since p(z)™-0 = z.
Now we compute the isotropy subgroup. If (A4,a) € A(n), then acting by (A, a) on 0
gives (4,a) -0 = a, and the stabilizer subgroup of 0 is Hy(,) = {(4,0)[A € GL(n)} which

completes the proof. O

The action pa(y,) is extended to the diagonal action ui(n) :A(n) x (R)* > (RMF as
in Definition 2.5. Let pp,,, = :U’A(n)|HA(n) be the restriction of () t0 Ha(y) in the first
argument. That is HHyqy 18 the isotropy action induced by pa(n), and the corresponding
diagonal action of the isotropy subgroup is denoted ,u];{A(n).

The action jigp(n) are defined by restricting g (,) to the subgroup SA(n) which is

transitive on R™ by the same argument as Lemma 6.1. The isotropy subgroup of 0 € R™ is

Hsany = {(4,0) € A(n)| det(A) = 1}

for SA(n).
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We now verify that A(n)/Hyy) is a primitive homogeneous space, and moreover that
(A(n), H) is a primitive pair. The section will provide two proofs of this statement, one by
showing that Hy(,) is a maximal subgroup containing no normal subgroups of A(n) and
the other showing that the Lie algebra h, (,,y of Hj(y,) is @ maximal Lie subalgebra of a,(R),
the Lie algebra of A(n). The proof that the subgroup Hj(y) is maximal applies similarly
to the subgroup Hga(,) of SA(n), but the Lie algebra proof must be modified to hold for

the Lie algebra hga ()

Lemma 6.2. The action of A(n) on A(n)/Hy is primitive, and (A(n), Hae) is a

primaitive pair.

Proof of Lemma 6.2. We will show that Hj,) is maximal Suppose Hy ;) is contained in a
Lie subgroup K of A(n), Hy(,) ¢ K c A(n). Suppose that K # Hj(,) then there is some

element (B,b) € K such that b# 0. We can factor (B,b) into the product

(B,b) = (B,0)(1, B 'b),

where B™1b = b’ # 0. Since (B,0) € K we can assume without loss of generality that
(B,b) = (1,b).

We proceed by showing that K = A(n). Fix some (C,c) € A(n). If ¢ =0 then (C,c) e H
so suppose not. Then by transitivity of GL(n,R) on R"™ \ {0} there exists an A € GL(n,R)

such that Ab=c as b,c # 0. Now factor

(C,e) = (A,0)(1,b)(A1C,0),

where the right hand side is a product of elements in K and so (C,¢) € K. This proves that
H () is a maximal subgroup and by Corollary 4.2 A(n) acts primitively on A(n)/H ()
proving the first part of the claim.

Now we prove that H,) contains no normal subgroups of A(n) to verify (A(n), Ha(n))

is a primitive pair. Suppose that N c Hj(,) is a normal subgroup of A(n). Then fix some
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(X,0) € N and consider conjugation by an arbitrary (A,a) € A(n),
(4,a)(X,0) (A, -A7"a) = (AXA™, (I- AXA ")a).

Since N is normal in A(n) then this must land back in N, and must land back in Hy ),

giving the equation
(I-AXAYa=0.
Since a is arbitrary then I = AX A~ but I is fixed under conjugation so X = I. Hence the

only normal subgroup of A(n) that Hy(,) contains is the trivial subgroup. O

Remark 6.1. The key point in this proof is that GL(n,R) acts transitively on R™ \ {0},
which is also true for SL(n,R) so the proof that R™ is a primitive homogeneous space of

SA(n) is similar.
Corollary 6.1. The action of A(n) on R™ in Equation (6.1) is primitive.

Proof. Since A(n) acts transitively on R" with isotropy Hy,) then by Theorem 2.11 there
is a canonical equivariant diffeomorphism between A(n)/H(,) and R™. Then from Lemma

4.4 the action on R" is primitive. O

Now we consider the Lie algebra approach. Since A(n) is a semidirect product of

GL(n,R) and R", the Lie algebra a,(R) of A(n) is given by the semidirect sum,
gl(n) xR" = {(X,z)| X egl(n), v e R"}, (6.3)
with the bracket,
[(X,2),(Y.y)]=((XY -YX),Xy-Yz)=([X,Y], Xy-Yz),

using that R™ is abelian as a Lie algebra.
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a,(R) contains an abelian ideal i c a(n), given by
i={(0,z)|zeR"}. (6.4)
And the Lie algebra ha,) of Hy(y) is given by
ham) = {(X,0)[X egl(n)}.

We claim that (a(n),bha(n)) is a primitive pair of type i) as in Theorem 4.3.
Lemma 6.3. Let (a(n),ha(,)) be the Lie algebras in Equation (6.3). Then
i) Ban) is a mazimal subalgebra of a(n)
i1) Ba(n) acts faithfully and irreducibly on the abelian ideal i given in Equation (6.4).
i) ha(n) contains no ideals of a(n).

Proof. Part i) Suppose [ is a subalgebra of g and hu(,) c [ c a(n). Then either [ = by, or

there exists a point (X,x) € [ with z # 0. By bracketing with (I,0) we have

[(1,0),(X,z)] = (0,z) €L

Assume that (X, z) = (0,z) without loss of generality.
Now let (Z,2) € a(n) and suppose that z = 0, since if not then (Z,2) € hs(,) ¢ [. Then

there exists a Y € gl(n) such that Yz = z and

[(Y,O), (O,x)] =(0,z) el

but because [ is closed under addition and (Z,0) € h,,) ¢ [ then the element (Z,0)+(0,2) =

(Z,z) e, completing the proof of part i).
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Part ii) Now let (0,z) € i and consider for each (Y,0) € b,y the linear map ad(y,gy : 1 — 1

given by

ad(y,0)((0,7)) = [(Y,O), (O,m)] =(0,Yx)

so that i is a representation of h, (), isomorphic to the standard representation of gl(n) on
R™ which is faithful and irreducible completing the proof of part ii).
Part iii) Now suppose that € c by, is an ideal of a(n). If (X,0) e t and (Z,2) € a(n)

then
[(X,0),(2,2)] = ([x, 2], X=) et

so in particular Xz = 0 and z € ker(X), but this must hold for all z € R” so X = 0 completing

the proof. 0

Note this proof is special to by A and needs to be adapted for the subgroup SA(n).

6.2 Reduction

The action ji(,) makes R" into a primitive homogeneous space of A(n) and SA(n),
as discussed in Section 6.1. In this section we will identify the joint invariants of A(n)
with those of the standard representation for GL(n,R) on R™. The group GL(n,R) acts
on R" by the standard representation jigr,(pr) : GL(7,R) x R" - R" defined by matrix

multiplication,

HGL(n,R) (A,2) = Az (6.5)

for A € GL(n,R) and z € R". We denote the corresponding diagonal action of GL(n,R)
on k copies by M’éL(n R); GL(n,R) x (R")* - (R™)*. The map p in Equation (6.2) satisfies

the identity in Equation (3.3), and so by Lemma 3.1 the k point joint invariants of p A(n)
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are all given by f oT where f is a kK — 1 point joint invariant of [H o () and the map

T: (R™)* - (R")*™ | is given by
T(x,- -, 7p-1) = (1= T0, ., Tp1 — T0)- (6.6)

Theorem 6.1. Let f: (R")k_1 =Y be a k-1 point joint invariant of pgrnr)- Then foT
is a k point joint invariant of pa(,y where T is given in Equation (6.6), and every joint

invariant of A(n) is of this form.
proof of Theorem 6.1. Using the identity map Id : (R")* ™ - (R")*™ and the isomorphism
o: H - GL(n,R) given by

o((4,0))=4

Theorem 2.4 gives a unique bijection of the orbit spaces Id : R™ [Hamy = R"/GL(n,R)

I~d ([(zla ) Zk_l)]HA(n)) = [(Zla s ’zk_l]GL(n,R)

which satisfies Id Op/ﬂ;{:(n) = p“é}}(n,R) old. So if f: (Rn)k_l - Y is a Y valued k-1 point
joint invariant of GL(n,R) then by pulling back along the identity map folId = f is also a
joint invariant of Hy(,), and clearly every joint invariant of Hy ) is of this form.

Hence by Lemma 3.1 every k point joint invariant of A(n) is given by

foT(xo,...,vp-1) = f(21 - 20,...,Tp-1—T0)

where f is a k — 1 point joint invariant of the standard representation of GL(n,R). O

6.3 Invariants
Now we will determine complete local joint invariants of the groups A(n) and SA(n)
by considering the joint invariants of GL(n,R) and SL(n,R) acting on the subset of points

in general position in (R™)¥.
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Theorem 6.2. The set of points in general position for the standard representation of

GL(n,R) on (R™)* are the sets,
Uk ={(21,...,2k) | zi are independent} . (6.7)

Remark 6.2. Note that the preimage 77! (U}) are all the points (xo,z1,...,x)) such that
(x1 - x0,...,2) — z0) are independent. Geometrically these are the sets of vectors based at

xg which are independent.
The proof of Theorem 6.2 uses the following lemma and its corollary.

Lemma 6.4. For any 1 < k < n the action ,u’éL(n R) 8 transitive on U ¢ (RM* and the

dimension of the stabilizer of a point Z € Uy, is k(n - k).

Proof. Fix some 1 < k < n. First we note that Uy is invariant under ,uléL(mR) since an
invertible linear transformation takes linearly independent sets to linearly independent sets.
Let Z = (z1,...,2x) € Uy and let {e;} be the standard basis for R". Extend {z;} to a basis

and consider the matrix, A, which has this basis as its columns. Then A~'z; = ¢; and

'uléL(nyR) (A’ (Zl, o '7Zk)) = (617 s aek)

which verifies that the action is transitive.

The isotropy subgroup for Z is conjugate to the isotropy of (e1,...,e) since they are
in the same orbit. Let A be in the stabilizer of (e1,...,e). then the first k£ columns of A
are (eq,...,er) so A is block upper triangular

Texk Biex(n-k)

A= (6.8)

Otn-kyxk  Cln-k)x(n-k)

with B some kx(n-k) matrix and C' € GL(n-k,R). So the isotropy subgroup has dimension
k(n-k)+(n-k)?=n(n-k) as claimed. O
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The description of the isotropy subgroup in Equation (6.8) implies the following corol-

lary.
Corollary 6.2. The action of GL(n) on U, is free.

proof of Theorem 6.2. Fix some k and pick a point Z = (21,...,25.1) € (R”)k If Z =0 then
it is a fixed point and has a zero dimensional orbit. So now assume Z # 0 and consider two
cases on k.

If k <n then if Z € Uy the dimension of the stabilizer for Z is k(n - k) from Lemma
6.4. Now suppose Z = (z1,...,2;) ¢ Ug. Since Z is non zero let Z be a maximal linearly
independent subset of Z with £ < k elements. Then the stabilizer of Z is contained in the
stabilizer of Z by linearity of the action ,u'éL(n’R). The dimension of the isotropy subgroup
for Z is n(n - ) from Lemma 6.4, which is larger than n(n - k) and therefore Z is not in
general position.

Now consider the case k > n. For Z to be in general position its first n points must be
in general position for (R™)", and hence are elements of U,. But from Corollary 6.2 the
action of GL(n,R) is free on U,, and so every point in U, x (R”)k_" has a zero dimensional

stabilizer. O
The local invariants of 'U’?}Jil(n,R) defined on Uy, x R™ are given in the following theorem.

Theorem 6.3. There are n independent local n + 1 point joint invariants for the standard
representation of GL(n,R), parmr) on (R™)™! given by the functions o' : U, x R" - R

which are defined by the equation
Zn+l = ai('zl, s azn+1)zi~
Corollary 6.3. The functions o’ o T : (T"}(U,) xR™)) - R given by

O/: OT(Z’O,. . ,$n+1) = ai(ajl — X055 Tn+l _(L.O)v
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where T is as defined in Equation (6.6), are a complete set of local n+2 point joint invariants

for the standard affine action pa ().
The proof of Theorem 6.3 follows from the next lemma.

Lemma 6.5. The orbit through every point, Z = (21,...,2n+1) € Upn x R™, has a representa-

tive (e1,...,en,a'e;) for a unique collection of o depending only on the point Z.

Proof. Let (z1,...,2n+1) € U, x R™. Then since {z;} are a basis for R" the final point
Zn+1 = @'z; for a unique collection of components {ai}. Let A be the matrix which takes the

first n points to (e1,...,e,), then
(el, . ,en,aiei). (6.9)

O
Proof of Theorem 6.3. The functions o' are well defined since any point in U, is a basis for
R™. Then suppose that Z = (z1,...,2n, 2n+1) and A € GL(n). Then

(Az1,... Azp, Azpir) = (Aze, ..., Az, Aaizi) = (Azl, oAz, ai(Azi))

so that a’(Z) = a*(A - Z) and these are invariant functions.

Now suppose that W = (w1,...,wp+1) and V = (v1,...,0,41) are chosen, by Lemma
6.5 they have representatives (e1,...,a"(W)e;) and (e, ...,a*(V)e;) which are equal, and
hence W and V are conjugate, if and only if o/ (W) = o*(V). O

Remark 6.3. For an explicit description of these invariants consider the function F' :

U, x R" - R" defined by
-1
F(z1,...,2041) = [Z1 | |Zn] Zn+l

where [21 ]| 2, ] is the matrix with columns given by (z1,...,2,). The components of this

function are the invariants o' given in Theorem 6.3.
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Now consider the special affine group SA(n).

Lemma 6.6. The standard representation of SL(n) is transitive on Uy for k=1,...,n—1.

and the stabilizer of a point Z € Uy, has dimension n(n - k) - 1.

Proof. The proof of transitivity is similar to Lemma 6.4. Let Z = (z1,...,2x) € U and
extend to an oriented basis of R™, Z = (21y+++y2ky---,2n) such that det (Z) = 1. Then there
is an element A~! € SL(n) such that A~'e; = z; and ugL(n,R)(A, Z)=(e1,...,ex).

Now let A be an element of the stabilizer for (ei,...,ex). As in the previous case A
takes the form given in Equation (6.8), but now the block C' is an element of SL(n - k,R),

so the dimension of the stabilizer is n(n - k) + (n—k)? -1 =n(n-k) - 1 as claimed. O

When k = n the action ugL(n R) is not transitive, and every element of U,, has a canonical

form given in the next lemma.

Lemma 6.7. If (z1,...,2,) € U, then there is a matriz A € SL(n) such that

MgL(n,R) (A, (21, e zn)) =(e1,..-,en-1,Aepn) (6.10)

where X =det(z1,...,2n).

Proof. From Lemma 6.4 there exists A € GL(n) such that
,u’éL(n,R) (fl, (21, o ,zn)) =(e1,...,6en).
Taking the determinant of (flzl, e ,flzn) gives the equation det (fl) det(z1,...,2,) = 1. Let
A =det (21)71 =det(z1,...,2n),
and define A by scaling the last column of A by A so that A € SL(n) and

MgL(n,R) (Av (Zla . -7zn)) = (61, .. .,)\en).
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Corollary 6.4. The action ”gL(n,R) 1s free on U,.

The proof follows from computing the isotropy subgroup of (ey,...,Ae,) which is the

identity.

Theorem 6.4. The function det : U,, > R is a complete invariant of the SL(n) action on

(R™)"™.

Theorem 6.4 gives the immediate corollary by using Theorem 6.1 in the special affine

case.

Corollary 6.5. The function detoT : T-Y(U,) - R
detoT'(zg, z1,...,oy) = det (3:1 — L0y .., Ly — 930) (6.11)

is a complete local n + 1 point joint invariant of the action of SA(n) on R™.

Proof of Theorem 6.4. Since det(A) =1 for all A € SL(n) then
det(Azy,...,Az,) =det(A) det(z1,...,2,)

gives that det is an invariant. Further since any two points V,W e U, can be taken to
the representative given in Lemma 6.7 then they are on the same orbit if and only if

det(V') = det(W). O
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CHAPTER 7
Joint Invariants of Primitive Homogeneous Spaces with Low Dimensional Lie

Algebra-Subalgebra Pairs of Symmetric Type

In this chapter we consider two examples of primitive homogeneous spaces of symmetric
type, SU(2,R) and SL(2,R). We will apply the reduction theory developed in Lemma 3.5
and Theorem 3.2 to these examples. These results show that the k point joint invariants
for the symmetric action pgym from Definition 3.1 when L is taken to be SU(2,R) and
SL(2,R) are determined by the k -1 point joint invariants of the conjugation action ficon;
as defined in Equation 3.21. The chapter is split into two sections. Section 7.1 constructs
the two and three point joint invariants of SU(2,R) and presents an additional technique
for determining the joint invariants of the intransitive action ficonj on the set of point in
general position. Section 7.2 constructs a complete set of two point joint invariants of fisym

given by the group SL(2,R).

7.1 SU(2,R) Two and Three Point Example

We consider the group SU(2,R),
z w N 2
SU(2,R) = z,weClz|"+w[*=1¢,

which is a compact simple Lie group of dimension three.

Let L = SU(2,R) and G = SU(2,R) x SU(2,R) act on SU(2,R) by the symmetric
action psym given in Definition 3.1. Lemma 3.5 identifies SU(2,R) as the homogeneous
space SU(2,RR)?/ SU(2,R)3iag, and Theorem 4.4 shows that the action fisym of SU(2,R)?
on SU(2,R) is primitive. However, the pair (SU(2,R)2,SU(2,R)§iag) is not a primitive
pair since SU(2,]R)?1iaLg contains the normal subgroup (+I,£I) failing part 2) of Definition

4.8. Note that the Lie group SU(2,R) is the universal covering group of SO(3,R) and
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that SO(3,R) is a Lie group which contains no normal subgroups, so by Theorem 4.2 the
subgroup SO(3,R)fhag is a primitive subgroup of SO(3,R)? and (SO(3,R)2,SO(3,R)§iag)
is a primitive pair.

Subsection 7.1.1 provides the proofs of the results for the two point case which are
summarized below. By Corollary 3.3 the two point joint invariants of pgyn, are identified
with the class functions on SU(2,R) and the trace function is a complete invariant of

conjugation as stated in the next theorem which will be proved in.

Theorem 7.1. The map %tr : SU(2,R) - [-1,1] is a surjective function and a complete

global invariant of SU(2,R) acting on itself by conjugation.

Corollary 7.1. The function %trOT :SU(2,R) x SU(2,R) — [-1,1] given by
1 1
5 tI‘(Xo,Xl) ol = 5 tI‘(XO Xl)

is a a complete global two point joint invariant of fisym.

Note that this invariant is a scalar multiple of the Frobenius inner product of matrices
since X! = X* for matrices in SU(2,R).

There are two fixed points, +I, of the action ficonj. Lemma 7.4 below shows that the
stabilizer for any other point in SU(2,R) is conjugate to SO(2,R) and is proved in.

The points in general position for piconj are given below.

Lemma 7.1. The subset
SU(2,R)* =SU(2,R)\ { +1}

of SU(2,R) are the points in general position for the action ficon;.

We now summarize the results of the three point case which are proved in Subsec-
tion 7.1.2. The three point joint invariants of jisym are determined by the two point joint

invariants of ficonj from Theorem 3.2.
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The points in general position for the two point diagonal action ugonj are given in the

next lemma.

Lemma 7.2. The set of points in general position for the action /Lgonj is the subset of

SU(2,R) x SU(2,R) which are not simultaneously diagonalizable.

Moreover the action pgonj is infinitesimally free on this subset, the stabilizer of every
point is given by the global isotropy subgroup +I.

We use a canonical form for the orbits to determine a complete set of invariants.

Theorem 7.2. The functions
1 1 1 N
fl(Zl,ZQ) = itr(Zl), fQ(Zl,ZQ)ZEtI'(Zg), and f3(Z1,Z2) :Etr(Z1Z2)

are a complete set of global two point joint invariants for the diagonal action of SU(2,R)
by conjugation.
The corresponding joint invariants of ug’ym are given in the following corollary.

Corollary 7.2. Let T': SU(2,R)? - SU(2,R)? be given by

T'(Xo, X1, X2) = (X X1, X7 X2)

then the functions

~ 1 .

Fy = fioT(Xo, X1, X2) = 5t1~(X0X1),
~ 1 .

Fy = fa0T(Xo, X1, X2) = 5t1~(X0X2),
~ 1 .

F3 = f30T(Xo,X1,X2) = 5tr(X1 Xs),

form a complete set of three point global invariants for the action fisym.

Section 7.1.3 shows that SU(2,R)* is equivariantly bijective with the set NxSU(2,R)/H

where N are the diagonal matrices of SU(2,R)* and H is the common isotropy subgroup
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for each D € N. and uses this equivariant diffeomorphism to construct the joint invariants

from a different perspective, See Theorem 7.6 and Lemma 7.8.

7.1.1 Proof of Results for Two Point Case
The orbits of jiconj are the conjugacy classes of points in SU(2,R). The following theo-
rem states that any matrix in SU(2,R) is conjugate to a diagonal matrix by an element of

the unitary group U(2,R).

Theorem 7.3. Let Z be a compler n x n matriz. Then Z is normal if and only if Z is

unitarily equivalent to a diagonal matrix.

This is a standard fact from linear algebra, see Friedberg [9] for proof.
The following lemma gives an explicit description for a representative of every conjugacy

class in SU(2,R).

Lemma 7.3. If Z € SU(2,R) then there exists 6 € [0,7] such that Z is conjugate to the

diagonal matriz

Dy = NE (7.1)

by an element of SU(2,R).

Proof. Fix Z € SU(2,R). Since Z € U(2,R), the Hermitian conjugate, Z* = Zt, is the inverse
of Z, and Z is normal. So by Theorem 7.3 there exists a unitary matrix P € U(2,R) such
that P*ZP = D for some diagonal matrix D € SU(2,R). Since P € U(2) then det(P) is a

unitary complex number and therefore y/det(P) is also a unitary complex number. So let

Q= \/o‘leltﬁp where QQ* = Q*Q =1 and
Hconj (Q*, Z) = Q*ZQ =P*ZP= D,

proving that Z is conjugate to D by an element of SU(2,R).
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Now let

where the characteristic polynomial of Z is
Py(t) =t - (z+2)t+1,

so since the coefficients are real the eigenvalues must be real or complex conjugates. Suppose
that the eigenvalues are real and denote them by A1, A2. Then since the constant term of
Py(t) is 1 the eigenvalues satisfy AjAg =1 and A\, Mg # 0 s0 Ao = 1/)q.

From the linear term they must sum to z+ 2 and from |z|? + |w|? = 1 we have the upper

bound |z| <1 and hence |z + z| < 2. Then we have

<2

1
A+ —
1+)\1

so rearranging and factoring gives (|A1] - 1)? < 0 which is only possible when [A1] = 1 so
A1 = £1 are the only possible real roots.

Conversely, if the eigenvalues are complex conjugates, their product must be 1 from
the constant term and hence are unitary.

Let the eigenvalues be given in polar form, e and e ¥, for some 6 € [0,7]. The
diagonal representative of Z, D = Q*Z(Q), is one of the two forms, Dy = diag (ew,e_w) or

D_y = diag (e‘w, ew) . But the matrix

is in SU(2,R) and satisfies the equation, SDyS* = D_g, and so Dy and D_gy are conjugate
in SU(2,R). Hence, we can always take Dy to be the diagonal representative of Z which

completes the proof. ]
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The diagonal representatives Dy for SU(2,R) conjugacy classes allow us to prove The-

orem 7.1.
Proof of Theorem 7.1. First we show that f = %tr is a surjective map. Let r € [-1,1]. Then

let 0 € [0, 7] such that cos(f) = r. The matrix Dy = diag (e’,e™), satisfies

tr(Dy) = (ew + efw) =cos(f) =,

DO | =

and f(Dy) = r verifying f is onto.
The function f is an invariant since the trace function is a class function, so we now

show that f is a complete invariant. Let Z, W € SU(2,R) satisfy,
1 1
3 tr(Z) = 3 tr(W). (7.2)

Let Dy = diag (ew, e_w) and Dy = diag (ei‘z’, e_i‘z’) for 0, € [0, 7] be the diagonal represen-
tatives of Z, W respectively.

Then f(Z) = §tr(Dg) = cos(9) and f(W) = 5 tr(Dy) = cos(¢) where 6, € [0, 7], and
from Equation (7.2) 6 = ¢, as cosine is injective on the interval [0,7]. So Dg = Dy and Z is

conjugate to W which completes the proof. O

Remark 7.1. From Theorem 7.1 the complete invariant %tr is surjective, and so the orbit
space SU(2,R)/ficonj is canonically bijective with [-1,1]. In Appendix B we show that this
bijection is a homeomorphism with respect to the quotient topology on SU(2,R)/ficonj and

the subspace topology of [-1,1].

Now we will determine the points in general position for piconj. First we compute the

isotropy subgroup for the elements of SU(2,R) which are not the fixed points +I.

Lemma 7.4. The isotropy of every point in SU(2,R) \ {£I} is conjugate to the subgroup
SO(2,R).

Proof. Let Z € SU(2,R) \ {£I}. Then Z is conjugate to a diagonal representative Dy as

given in Equation (7.1), where 6 € (0,7) since Z # +I.
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The stabilizer of Dy is all elements of SU(2,R) which satisfy the equation,

That is Be ™ = 8 where 6 # 0,7 gives § = 0 and |a| = 1. So the stabilizer of Dy is
SU(2,R)p, = {diag (o, @) |a eC,|a|=1}.

This is conjugate to SO(2,R). Suppose that diag («, @) = diag (eit, e‘it) for some ¢t € [-m,7].
Consider S € SU(2,R) given by,

3=
[\

—_ .
|

.

By conjugating diag (o, @) by S we have,

, . cos(t) —sin(t
Sdiag (e, e™) S* = ) *) )
sin(t)  cos(t)

So SSU(2,R)p,S* c SO(2,R). On the other hand

o cos(t) —sin(t) S cos(t) +isin(t) 0
sin(t)  cos(t) 0 cos(t) —isin(t)
so SO(2,R) c SSU(2,R)p,S* completing the proof. O

Proof of Lemma 7.1. The stabilizer of any point other than +I has dimension one, while

the points +I are fixed points and so have stabilizers of dimension three. ]

7.1.2 Proof of Results for Three Point Case
This section proves Theorem 7.2 and Corollary 7.2. We first identify a canonical form

for the orbits of this action.
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Lemma 7.5. Any point (Z1,Z2) € SU(2,R) x SU(2,R) is conjugate to

e? 0
(D¢, R) = ,

for unique 0 € [0,7], z € C, and r € [0,1] such that |z|*> +r? = 1.

Proof. From Lemma 7.3, Z; is conjugate to Dy, as in Equation (7.1) by some element
Ay € SU(2,R). Consider ,ugonj (Ai’, (Zl, Zg)) = (Dgl,AfZgAl).

Let Z) = A*Z3A be given by the matrix
7 - (7.3)

for some unique z,w € C with |z[? + |w|? = 1.

First suppose that w = 0 so that |z| = 1. That is (Z1, Z3) is simultaneously diagonalizable
by the matrix A;. This is in the form required with r = 0.

Now suppose that w # 0. then w = re’® for a well defined ¢ € [-m, 7] and 0 <7 < 1. Let

¢ =-¢/2. From Lemma 7.4 the matrix

A = diag (eic, efic) (7.4)
is in the stabilizer of Dy, and
z e?
z T
AZLA* = = =R
‘ -r z
—(e2iCw) z

where |2|?> +72 = 1 since AZ,A* € SU(2,R). Then ugonj (AAY,(Z1,2Z2)) = (Dg, R) as desired.
O

Proof of Lemma 7.2. Consider (Z1,Z3) € SU(2,R)xSU(2,R). The points in general position

have minimal stabilizer dimension of both Z; with respect to ficonj and (Z1, Z2) with respect
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to p2oni S0 (Z1, Z2) € SU(2,R)* x SU(2,R).

Now suppose that (Z1,Z2) € SU(2,R)* x SU(2,R). If (Z1,Z2) is not simultaneously
diagonalizable then from Lemma 7.5 there is a unique representative (Dg, R) with r > 0
for the orbit of (Z1,Z2). The stabilizer of this representative, SU(2,R)p, gy must be an
element of SU(2,R)p, nSU(2,R)g, that is an element of the form diag(a, @) with o] =1

which solves the equation

Hence, (a— @) = 0 since we’re assuming r > 0, and « is real and from aa =1, so a = =L
That is in the case where (Z1, Z3) is not simultaneously diagonalizable the isotropy has
dimension 0, and is given by the global isotropy subgroup for ,ugonj.

If (Z1, Z3) is simultaneously diagonalizable there is a pair of diagonal matrices (Dy, , Dy, )
in the same orbit as (Z1, Z2) which have the same stabilizer of dimension 1 and are not in

general position. O
Proof of Theorem 7.2. We first check that fs is an invariant, the others are similar. Let
A eSU(2,R) and (Z1,Z2) € SU(2,R) x SU(2,R) and consider,

1 1 1
fs (A A" AZy A7) = S (A Z{ AN 2y A) = S (A2 2, A) = S t0(Z7 Z),

which verifies f3 is an invariant.
Now we will show that if (X1, X2), (Y1,Y2) € SU(2,R) x SU(2,R) satisfy fi(X1,X2) =

fi(Y1,Y3) then they are in the same orbit.
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By Lemma 7.5 the points (X1, X2) and (Y7, Y2) have canonical forms,

it 0 z1 T

(Dg,, Z1) = L
0 e - 1
eif2 0 Z9  T9

(D62 ) Z2) = ) 5
0 e -ry 2o

For 1,72 € [0,1] and 6,02 € [0, 7].

First consider the case that 6 = 0,7 then Dy, = Dy, = I which is a fixed point under
conjugation so X1 =Y) = +I. Hence (X1, X2) = (I, X) and (Y1,Y2) = (21,Y) and therefore
since tr(X) = tr(Y) and the trace function is a complete invariant of conjugation then
(X1, X?2) is on the same orbit as (Y1, Y2).

If 61,605 € (0,7) then since f; are invariant functions they give equations for these

representatives,

tr (Dg, Z1) = tr (Dj, Z5)
tr (D, ) = tr (Dy, ) (7.5)

tr (Zl) = tI‘(ZQ) .

Let 21 = a1 +ib; = R1e"® and 29 = ag + ibs = Ree'®? be the corresponding Cartesian and

polar forms for the complex numbers z1, z2. Then the system (7.5) becomes

e7,191 2 + 6_7'912’_1 — 61922’2 4 e—z@gz—z

cos(6) = cos(62)

%2(21) = S)‘ie(zg).
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As in the two point case we have 61 = 5 = 0. and now also we have a; = as = a, so

substituting this in gives

e?(a+ib)) + e (a-iby) =e?(a+iby) + e (a—iby)
Z-(eiﬁ _e—iG)bI _ i(eiO _e—iO)bz

sin(0)by = sin(0)bs.

So since this is the case where 6 £ 0,7, then by = by and 21 = z9. Then since 71 =1 - |,21|2 and
79 = 1—|29[? then 1 = 75 as well and these representatives are equal, verifying that (X1, X»)

is in the same orbit as (Y7,Y2) and completing the proof. O

7.1.3 Slice Method

This section of the chapter provides an additional technique for determining the k point
joint invariants of pieonj when L = SU(2,R).

To determine the joint invariants for the intransitive action ficonj we introduce the idea

of a slice.

Definition 7.1. Let u: G x X — X be a group action. A strong slice is a subset N c¢ X

which satisfies the following conditions.
i) If z € X then there exists a unique point n € N such that N n[z] = {n}.
ii) There is a subgroup H of G such that for all n € N the stabilizer G,, = H.

In the example of ficonj where G = SU(2,R) and X = SU(2,R)* = SU(2,R) \ {£I} the
set of diagonal matrices in SU(2,R)* are a strong slice.
Under the assumption that a strong slice exists for the action p on a set X we can

define a map ¥: N x G/H - X by

U(n,[a]g) =an
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which is an equivariant bijection. The action on N x G/H is pglice : G x (N x G/H) —

(N x G/H)

Mslice(a7 (TL, [x]H)) = (n7 [am]H)

The equivariant bijection ¥ then identifies the set of u invariants with the set of gice
invariants. Hence, the k point p invariants are identified with the k point pgjee invariants.

The k point pgjce invariants fall into two types.

i) The invariants which arise from projecting onto the slice N, which are the maps

7 (N x G/H)* - N* given by
ﬂ-lf((nh[aO]Hﬂ"‘7(nk7[ak]H))) = (nlw”vnk)'

ii) Invariants of the action of G on G/H by left multiplication from the equivariant map

5 (N x G/H)* — (G/H)*

s ((n1, [1]m)s s (s [2] ) = (L] w)s - Lo ]m).-
The k point joint invariants of pgce which arise from 71']2€ are of primary interest since they
are exactly the k point joint invariants of G on G/H by left multiplication, and the reduction
theory from Chapter 3 shows that these are equivalent to the k£ —1 point joint invariants of
the subgroup H.
The method is motivated by the theory of slices, for more information about the general
case see Bredon [5]

Let
a 0
H-= aeC, |aj=1

be the isotropy subgroup of any diagonal matrix Dy from Lemma 7.3.
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Consider the set N ={Dy|0 € (0,7)}. The map pglice : SU(2,R) x (N x SU(2,R)/H) —
(N xSU(2,R)/H) given by

Hslice (A; (D97 [A]H)) = (D97 [AA]H) (76)

is an action of SU(2,R) on N x SU(2,R)/H.
We will equivariantly identify the space SU(2,R)* of points in general position for ficon;
with N x SU(2,R)/H.

Theorem 7.4. Consider the set NxSU(2,R)/H. Let pigjice be the action defined in Equation
(7.6). The map ¥ : (N xSU(2,R)/H) - SU(2,R)* defined by

U (Dg,[A]) = ADgA*

is an equivariant bijection with respect to the actions piconj and fislice-

Proof. Consider the map ¢ : N x SU(2,R) - SU(2,R)* defined by
¥ (Dg,N) = ADgA*.
Let pp : Hx (N xSU(2,R)) - (N x SU(2,R)) be given by
pr (A, (Do, A)) = (Dg, AA)

where (Dg, A) € N xSU(2,R). The orbit space of py is the set N xSU(2,R)/H, and we will
show that 1 is a complete surjective invariant for pg, so that by Corollary 2.1 ¢ factors
through the quotient by a unique bijection W.

The map 1) is surjective since every element in SU(2,R)* is conjugate to a representative

Dy via piconj- Now suppose (Dg, A), (Dg,2) € N x SU(2,R) such that (Dg, A) = 1(Dgy,2).
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Then
ADyA* = QD4sQ* (7.7)

and tr(Dp) = tr(Dy) which implies that § = ¢. Then conjugating both sides of Equation

(7.7) by Q7! we have the equation
(Q*A)Dy(2"A)* = Dy.

Hence, QA € H and there exists some A € H with A = QA. Act on (Dy,$2) by A via ug to
find

it (A(D. 9)) = (Dp. )

and (Dg,A) and (Dg, B) are in the same orbit of up. Now Corollary 2.1 verifies ¥ is a
bijection of N x SU(2,R)/H and SU(2,R)*.

Finally we verify equivariance of W. Consider
‘I’(Deh [AA]H) = (AA) DG(AA)* = Nconj(A)ADGA*) = Hconj (Aa \I/(Dg, A))

completing the proof. O

Note that the inverse of ¥ from Lemma 7.4, ¥~!: SU(2,R)* — (N x SU(2,R)/H) is

given by
U (Z) = (Dg, [A]n) (7.8)

for the unique 0 € (0,7) and [A]x € SU(2,R)/H such that Z = ADyA* for any representative
The equivariant bijection ¥~' Induces a unique bijection between the orbit spaces

SU(2,R)*/ptconj and (N x SU(2,R)/H) [ pislice by Theorem 2.4. So by finding a complete set
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of invariants for pgce the map U1 induces a complete set of invariants for ficonj.

Theorem 7.5. Let m : N x SU(2,R)/H — N be the projection onto the first factor
m1(Dyg,[A]n) = Dy. The map m is a complete invariant of pgice on N x SU(2,R)/H and

w1 oWt s a complete invariant of Peonj 0n SU(2,R)*.

Proof. The map 1 is an invariant of the action pgjce since pgice acts trivially on the first
factor. Now we show that 71 is complete. Suppose that (Dy, [A]x) and (Dy, [2]5) are two
elements of N x SU(2,R)/H such that 7 (Dy,[A]n) = m1(Dg, [Q]x), that is, # = ¢. Then
the diagonal matrices Dy = Dy and the orbits Dy x SU(2,R)/H = Dy x SU(2,R)/H. Hence
the invariant 7 is complete.

Finally since U~! is an equivariant bijection the composition m; o ¥~! is a complete

invariant of ficonj. O

Now consider uzonj restricted to the invariant subset SU(2,R)*xSU(2,R)* c SU(2,R) x
SU(2,R). Let Wy : (N x SU(2,R)/H)* - (SU(2,R)*)? be

‘I’z((Del, [A1]H), (De,. [A2]H)) = (‘I/(Del, [A1]m), ¥(De,, [AQ]H))-

The map V5 lis an equivariant bijection with respect to ugonj and ,uzhce respectively. The

inverse \1'51 is given by
U N(21,2:) = (V(21),97(2,)).

So the equivariant bijection ¥;' induces a unique bijection between the orbit spaces (SU(2,R)*)?/ ,uzonj
and (N x SU(2,R)/H)?/ (12, and a complete set of invariants for u2, . determines a com-
plete set of invariants for Mgonj‘

As above the map 72 : (N xSU(2,R)/H)?> - N? is an invariant function. How-

ever in this case it is not complete, so we consider the map 73 : (N x SU(2,R)/H )2 -
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(SU(2,R)/H)? defined by

73 (Do, [M]1)( Doy, [A2]r)) = ([Ar]a, [A2]n). (7.9)

Which is equivariant with respect to the two point diagonal action of SU(2,R) on SU(2,R)/H
by left multiplication and ,ughce. We will determine the two point joint invariants of pigice

by constructing two point joint invariants for the action of SU(2,R) on SU(2,R)/H.

Lemma 7.6. Let f : (SU(2,R)/H)* > Y be a Y valued two point joint invariant of SU(2,R)

on SU(2,R)/H. Then the function f o3 is an invariant of the action ,ughce.

The proof is immediate from the equivariance of 71'% with respect to the two point
diagonal actions.

Now we consider the invariants of SU(2,R) acting on SU(2,R)/H x SU(2,R)/H. The
invariants of this action can be determined by using Lemma 3.1 once a suitable map p
satisfying the identity in Equation (3.3) is determined. In this case we let p: SU(2,R)/H —

H be given by
p([Am) = A7

where we chose a particular representative for each [A]gy by the Axiom of Choice in order

to assure p is well defined. Then let 7: SU(2,R)/H x SU(2,R)/H — SU(2,R)/H given by
T([A1]m, [A2]m) = AfAs.

By Lemma 3.1 The invariants of SU(2,R) on SU(2,R)/H x SU(2,R)/H are in one to one

correspondence with the invariants of H on SU(2,R)/H by precomposition with 7.

Lemma 7.7. Let q: SU(2,R)/H — [-1,1] be given by

zZ W
2 2
q = |2 = |w[*.
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The map q is a complete invariant of the action of H on SU(2,R)/H by left multiplication.

Proof. First we show that ¢ is a well defined invariant function. Consider § : SU(2,R) —
[-1,1] defined by

z w
q = [2” = Jwl®.

We claim that ¢ is an invariant of the action of H by right multiplication on SU(2,R) and
so factors through the quotient by this action via the map ¢. Let diag(a,a) € H where

|o| =1 and consider

q =[] = Jwl*.

|
g
N
Qi

Now we show that p is a complete invariant function of the action by H via left mul-
tiplication on SU(2,R)/H. Suppose that [A1]g,[A2]g € SU(2,R)/H such that p ([A1]g) =
p([A2]m) . This equation is independent of the representatives chosen for the H cosets, so
let

Z1 T z2 T2
A= , and Ao=

-z —Ty 2
where r1, 7 are non-negative real numbers, and

z1)? =17 = |2af* - 73

|21)* = 17 = |22 - 13,

which implies that |z1| = |z2] and 71 = ro.
To show that [Aq]y and [A2]y are in the same orbit of H acting on SU(2,R)/H by
left multiplication. There are two cases, if z; = 0 then zo = 0 using |z1| = |22| so A1 = A

using r; =72 so that [Aq]g = [A2]m.
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On the other hand if 21 # 0 then 29 # 0 as well since |21| = |22|. Now consider = z9/2;
which satisfies |3| = 1 from |21| = |22|. Pick any « € C such that |a| = 1 and o? = 21/zo which
exists since |z1| = |za].

Consider the elements B = diag (2—2 é) € H and A = diag («,&) € H. Then

217 21

0 0 @ 0
(BA)Al(A_l): z9/21 a z1 m|la _ z1 T A,

0 22/21 0 all-m1 z1||0 « -ro 22

which verifies that BA[A;]z = [A2]g since AL e H.
So if ¢([A1]m) = ¢([A2]m) then [A;]g and [A2]p are in the same orbit of H acting by

left multiplication and p is a complete invariant. O

Then by Lemma 7.6 The map goT o 7r§ is an invariant of the action ,ushce and we

complete the analysis of this section by proving the following theorem
Theorem 7.6. The maps 7'('% and goT o 7'['% are a complete set of invariants for Hglice‘

Proof. Suppose that

i (01, [ ]m), (02, [A2]), ) = 77 (91, []m), (62, [Q2]m))
(61,62) = (¢1,¢2)

then the points ((91, [Al]H); (02, [AQ]H)) and ((gf)h [Ql]H), (gf)g, [QQ]H)) I
goTomy ((61,[A]u), (02, [A2u)) =qoToms ((61,[]n), (¢2.[0]n))

then there exists an A € H such that

(([AM]m), ([AA2)m)) = (([]r), ([Q2]m))
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and therefore

piiice (As (01, [ ]ar ), (62, [A2]ir))) = (61, [Q] ), (82, [22]m)) = (@1, [N]m), (@2, []a))

completing the proof. O

The two point joint invariants of ficonj from Theorem 7.2 are functionally related to
the ficonj invariants determined by Theorem 7.6 by precomposition with the equivariant

diffeomorphism ¥~'. We will show the relationship for the two point invariant q0T07r§ oL,
Lemma 7.8. The function goT om3 oW1 :SU(2,R)* x SU(2,R)* » R is given by

Y (2te(Z1 Z2) - t1(Z1) tr(Z2))

71, 7)) = '
q(Z1,Z2) \/1_itr(Z1)2\/1_%tr(ZQ)2

Proof. The proof is broken into a sequence of claims. The first claim is that for any Z €

SU(2,R)* where

z w T+ U+

-0z —u+iv X -1y

there is a representative for the coset [A]y in the image ¥(Z) = (6,[A]y), given by

—tutv _ u+v?+y?—y
A= \/2u2+2v2+2y2—2 uZ+v2+y2y \/2u2+2v2+2y2—2 uZ+v2+y2y
u?+v24y2 -y utv

\/2u2+2'u2+2y2—2\/u2+v2+y2 Y \/2u2+2v2+2y2—2\/u2+'u2+y2 Y

This follows from computing

(i +iv? +iy?—zy)V/u2+v2+y2 - (u?+v2+y?) (iy-z) 0
ALZA = u2+v2+y2—\/uZ+v24+y2y
- (—iu?—iv?—iy?—ay)Ju2+v2+y2+ (z+iy) (uZ+02+y?)
0

u2+v2+y2 —\/uZ+v2+y2 y
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where

uZ+v2+y2-y

1U+V
- 2u2+202+2y2 -2\ /u2 +v2 +y2 2u2+202+2y2 -2/ u2+v2 +y2
Al = V y2-2y/ Py y2 -2,/ T
u+vZ+y?-y —tu+v

\/2u2+2v2+2y2—2 u?+v2+y2y \/2u2+2v2+2y2—2 u?+v+y?y

so that A € SU(2,R) and A"' XA is a diagonal matrix. This proves the first claim.
Now note that if we define a function 7 : SU(2,R) — C by n(Z) = 2zw and consider
q:SU(2,R) - R given by ¢(Z) = |2|* - |w[?, then
- (—u+ 1w
n(a) = )
Vu? + 02 +y?

r(A) = y

Vu? + 02 +y?

The second claim is that for any pair Aj, A € SU(2,R) given by

21 w1 Ty +z'y1 Uy +i1)1

A_l = =
-w1 21 —u; +1V; Ty —1Y;g
29 w2 To + iyg U + 12

A_Q = =
—Wy 22 —Up +1V2 To —1Y2

Then if we let

m=2z1w; 11 = |2 - |w?

Mo = 220wy 79 = |22]* — |wal?
then the value of
. r,._
q(ATA2) =rirg + 3 (M2 + mn2) -

This is a straightforward computation that we will leave out of the proof.

Now let Z1,Z5 € SU(2,R) as denoted above. Using the first claim on Zy,Zy gives
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representatives A1 and A, such that AIlZlAl = Dy, and A§122A2 = Dy,. Then we can

compute directly that

-1 UgUg + V102 +Y1Y2
q(Ar"Az) = 2 2 2 2 2 2
\/’LL] + U7+ Yy \/Ug + V2% + Y2

Now we use that tr(Z;) = 2x;, :c? + yz-2 + uf + v? =1, and the identity,
1 "
1 (tr(Z{ Z2) - tr(Z1) tr(Z2)) = usug + v1v2 + Y1 y2,

to conclude the proof. O

7.2 SL(2,R) Two Point Example

This section constructs a complete set of two point joint invariants for SL(2,R). In
contrast to the SU(2,R) example where all points excluding the fixed points +I had con-
jugate isotropy subgroups, SU(2,R) is partitioned into three invariant subsets which have

non conjugate isotropy subgroups.

Theorem 7.7. Let tr : SL(2,R) — R be the trace function. Then SL(2,R) is partitioned

into the invariant subsets

Q-2 ={Z e SL(2,R)| |tx(2)| > 2}
Qs2={Z eSL(2,R)| tr(Z) = =2} (7.10)

Q«w={ZeSL(2,R)| |tx(Z)| < 2}.

The joint invariants for each of these invariant subsets are given below and the proofs
delegated to Section 7.2.1. Subsection 7.2.2 identifies each of the orbits as SL(2,R) homo-

geneous spaces from Theorem 5.2.

Theorem 7.8. Let Q-2 be as defined in Equation (7.10). Then the function tr : SL(2,R) —

R is a well defined complete local invariant of conjugation.
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Theorem 7.9. Let Q2 and Q_3 be the invariant subsets of SL(2,R) defined in Equation

(7.10). The set Q2 has three invariant subsets

Q20 ={Z € Q2| dim(ker(Z -1)) = 0}
Q2,1 =1{Z € Q2| dim(ker(Z - 1)) =1} (7.11)

Q22 ={Z € Q2| dim(ker(Z - 1)) = 2}

and the Z3 valued invariant function fgim : SL(2,R) — Zs given by

0 Ze QZ,O
Jam(Z) =1 Z e Qy, (7.12)
2 ZeQop

determines which subset Z belongs to. Fach of these subsets has a complete local invariant.

a) The function fao: Q2,0 — Zo defined by

0 -1
0 Z ~sL2R)
1 2
f20 =
2 1
1 Z~sLeRr)
-1 0

is a complete local invariant of Q2.



b) The function fa1: Q21 — Zy given by

f2,0 =

0 Z~sreR)

1 Z ~sLeR)

is a complete local invariant of Q2 1.

¢) Qa2 is the fized point 1.
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Similarly for Q-2 there are subsets, Q_2.0,Q-2,1,Q-22, and invariants, f_20: Q2,0 — Zo

defined by
0
fo0=
1
and fa1: Q21 — Zo given by
0
fo1=
1

0
Z ~3L(2,R)

1

-2
Z ~3L(2,R)

-1

-1
Z ~SL(2,R)

-1

-1
Z ~3L(2,R)

-1

(7.13)

(7.14)
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which form complete sets of local invariants where they are defined.

Theorem 7.10. Let Q< be defined as in Equation (7.10). Then the function frational :

Q<2 — SL(2,R) given by

0 -1
0 Z ~sLeRr) :
1 tr(2)
frational(Z) = (7.15)
tr(Z) 1
1 Z~sLeR)
-1 0

1s a well defined complete local invariant of conjugation on Q<s.

Corollary 3.3 implies the corresponding complete set of joint invariants for points
(Xo,X1) € SL(2,R)xSL(2,R) are given by the functions above precomposed with T'( Xy, X1) =
XX,

7.2.1 Proofs for Two Point Results

We split the proofs into three sections for each of the SL(2,R) invariant subsets,
Q>27 Q:{:Qv Q<2'

The case of ()so.
Let Z € SL(2,R). If [tr(Z)| > 2 then Z is diagonalizable and we have the following

lemma.

Lemma 7.9. Let Z € SL(2,R). If |%tr(Z)| > 1 then Z is diagonalizable over SL(2,R) with

diagonal representative

(7.16)

>l

where \ € R*.
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Proof. Let Z € SL(2,R) have |% tr(Z)‘ > 1 then the characteristic polynomial of Z,
Py(t) =t* = 2tr(Z)t + 1

implies that the eigenvalues of Z are nonzero real distinct values A, 1/\. Then Z is conjugate

to either diag(A,1/\) or diag(1/A,A) by an element of P € GL(n,R). Now possibly by

permuting the columns of X and rescaling the matrix by ——— we can assume P ¢ SL(2,R)

\/det(P)

without loss of generality, and since

0 -1
S -
1 0
is in SL(2,R) and Sdiag(\,1/\)S™! = diag(1/A, ) then the proof is complete. O

Then the proof of Theorem 7.8 follows from applying Lemma 7.9.

proof of Theorem 7.8. Let Z, W € Q-9 with eigenvalues A, v respectively the equation )\+§ =

O

v+ % implies either A=v or A = % and the trace is a complete invariant.

The case of (.9
Let tr(Z) = 2 we will provide a detailed discussion of this case, as tr(Z) = -2 is similar.
The characteristic polynomial of Z is Pz(t) = t2 - 2t + 1 and we have the following lemma

showing that fgi, from Equation (7.12) is well defined.
Lemma 7.10. The dimension of ker(1— Z) is invariant under conjugation of Z.

Proof. Suppose that v is an eigenvector of Z. Then if A € SL(2,R) we have AZA 1 Av = Av
and Av is an eigenvector of AZA™!. So if {v;} is a basis for ker(I- Z) then {Awv;} is a basis

for ker (I -AZ A‘l) verifying that they are the same dimension. O

Now consider Q2,9 the following lemma gives representatives for the conjugacy classes
of points in this set, and verifies that the function f; o from Equation (7.13) is a well defined

complete local invariant there.
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Lemma 7.11. If dim(I- Z) =0 then Z is conjugate to one of the two forms

and these forms are non conjugate.

We first prove the preliminary result

0 -1 a 1
Lemma 7.12. If |a| < 2 then the matrices, and , are not conjugate in

1 « -1 0
SL(2,R).

Proof. Suppose there is A € SL(2,R) such that

a bl|0 -1 a 1lla b
c d||l « -1 Ol]lec d

This leads to the two equations d = —a and b = aa + ¢ so A must have the form,

and since det(A) = 1 we have the necessary condition that a,c must solve the equation

a?+aac+c®+1 = 0. However this equation does not have any solutions until |a| > 2 which can

be verified by substituting a = r(t) cos(t) and ¢(t) = r(t) sin(t) for some arbitrary function

r(t). Then substituting into the equation and simplifying one arrives at the equation
2 L.
r 1+§asm(2t) +1=0

but ‘%a‘ < 1 so this equation cannot have any solutions proving the claim. O

Proof of Lemma 7.10. Let Z € Q2 9. Then Z has no real eigenvalues and the matrix P =
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[e1|Ae1], where e; is the first standard basis vector, is an element of GL(2,R). So conju-

gating by P! gives

B 0 -1
P ZP-=
1 2
There are two cases on det(P). If det(P) > 0 then the matrix R = ——— has R™'ZR =

\/det(P)
P71ZP and Z is conjugate in SL(2,R) to the form claimed. Otherwise det(P) < 0 and the

matrix P’ = [Zey,e1] has det(P’) > 0. Conjugating by (P')~! gives

L 1
(P~ z(P")=
-1 0
I _ 1 /A -1 /I _ -1 /
and R’ = \/WP is in SL(2,R) such that (R")™ZR' = (P')" ZP'. Then from Lemma
7.12 the representatives are not conjugate and the proof is complete. ]

Now we show that fo; from Equation (7.14) is a well defined complete invariant on

Q2,1

Lemma 7.13. Ifdim(I- Z) =1 then Z is conjugate to exactly one of the two forms

11 10
or

10 11

Proof. Let v be an eigenvector of Z so that Zv = v. Then since dim(ker(Z — 1)) = 1 there

exists w,u # 0 which is independent of v such that
(Z-Dw=u

or Zw =u+w and w is not an eigenvector of Z.
We claim that u is an eigenvector of Z. Suppose not, then u is in the image of (Z —1)

and therefore a scalar multiple of w, a contradiction in w not being an eigenvector of Z.
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So there exists w such that (Z - I)w = v (possibly by rescaling w) and the matrix

P = [v|w] satisfies
1 1
P ZP= . (7.17)

If det(P) > 0 then Z is conjugate to the desired form over SL(2,R). Otherwise if det(P) <
0 then we need to take P’ = [w|v] and Z is conjugate over SL(2,R) to the other form

completing the proof. O

Lemma 7.14. Ifdim(I-Z) =2 then Z = 1.

The proof is clear so it will be omitted.

Proof of Theorem 7.8. From Lemma 7.10 the subsets QQ2; for 7 = 0,1, 2 are invariant under
SL(2,R) and from Lemmas 7.11 7.13 and 7.14 the functions fo; for ¢ = 0,1 are well defined

complete local invariants of the subsets Q2 ; for i =0, 1. O

The Case of Q-
When [tr(Z)| < 1 then the matrix Z is not diagonalizable over the real numbers, the
next lemma shows that the rational canonical form is a complete invariant of the conjugation

action.

Lemma 7.15. Let Z € SL(2,R) with ‘%tr(Z)‘ < 1. Then Z is conjugate over SL(2,R) to
one of the forms
0 -1 tr(Z) 1

or
1 tr(2) -1 0

which are not conjugate.

Proof. Let o = tr(Z). The representatives are not conjugate by Lemma 7.12
Now consider the characteristic polynomial of Z, Pz(t) = t> — at + 1. By the Cayley-

Hamilton theorem Z satisfies its own characteristic polynomial and Z? -« Z +1 = 0. Now let
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e1 be the first element of the standard basis for R?. Let P = [e1|Ae;]. This is an element of
GL(2,R) since otherwise Ae; would be a real multiple of eq, but this is impossible since A
has complex eigenvalues when |o| < 2.

There are two cases. If det(P) >0 then in the basis {e;, Ze;} then

1 0 -1
P ZP-= .
1 tr(2)
Then by letting R = L_p R'ZR = P7'ZP and Z is conjugate to this form over

Vdet(P)
SL(2,R).

On the other hand suppose that det(P) < 0. Then we let P’ = [Zej|e1] which again is
in GL(2,R) and satisfies

(P 'zZP' =
-1 0

and by similar logic to the previous case Z is conjugate in SL(2,R) to the form

tr(Z) 1
-1 0

O]

Then Lemma 7.15 implies that the function fiationa defined in Equation (7.15) is a well

defined complete local invariant on Q)<o.

7.2.2 Isotropy of orbits
To conclude the analysis of ficonj for the group SL(2,R) we will compute the isotropy
subgroups for each of the orbit representatives given above and identify them with the

homogeneous spaces of Chapter 5.
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1. For Z € ()5 the orbits have a diagonal representative

A0
1
X

where A € R*. So the isotropy are A € SL(2,R) such that Adiag(\, 1/\) = diag(\, 1/))A,

rolla o] A o ]fa b
0 xlle d] |0 1/x][c d
a 0
and the isotropy of Z is conjugate to for any a € R*. So these orbits are
0 1/a

diffeomorphic to the one sheet hyperbola @2 as described in part i) of Theorem 5.2.

2. If Z € Q2 there are three representatives to compute the isotropy. If Z =1 then its

orbit is a fixed point, otherwise the stabilizer is given by solutions to the following

equation
a b1 1 1 1ffa b
c d||0 1 0 1|lc d
or
a b|I1T O 1 0]]la b
c dl|f1 1 1 1|]c d
+1 t 1 0
and the isotropy of Z is conjugate to or . These subgroups are
0 =+1 t =+l

conjugate over SL(2,R) and the corresponding orbits are diffeomorphic to the cones

Q¢ as described in part ii) of Theorem 5.2.
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3. If Z € Q<2 Then we have two possible representatives for its conjugacy class,

0 -1 a 1
and

1 «o -1 0

Let the first representative be denoted R. We will compute its isotropy subgroup
which is the same as for the other representative, and identify it with SO(2,R). The

isotropy equation, RA = AR gives the solution

A= where a®+aac+c =1.

If we let X € SL(2,R) be

-1 2\1/4
X - 0 5 (4-a?)
oy-1/4 o\ -1/4
V2(4-0?) T 5 (4-0?)
Then
ooxaxio| o i )"
c(4-a)”  eeia |
2 2
where () satisfies
o0 a’ +aca+ c? 0 10
0 a’+aca+c? 0 1

So Q € SO(2,R) and Q is the isotropy of X ' RX, so that the isotropy of Z is conjugate
to SO(2,R) and the orbit of Z is diffeomorphic to Q*, as described in part iii) of

Theorem 5.2.

This concludes our investigation of the SL(2,R) conjugacy classes.
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APPENDIX A
Code

The code used to generate signature manifolds in the landmark method from the in-

troduction:

import numpy as np

import matplotlib.pyplot as plt

def delta(x,y):

dlist = []

for i in range(0, len(y)):
dist = np.sqrt(

(x[0] - y[il[0])**2 + (x[1] - y[i][1])=x*2

)
dlist.append(dist)

return dlist

#delta takes single point and list of points and spits out the list of distances.

def parax(t):

f=t

return f*np.cos(2*t)
def paray(t):

g =1t

return g*np.sin(2*t)

# import data from .txt files

X1 = np.loadtxt(’X1ldata’)



Y1

X2

Y2

np.loadtxt(’Yidata’)

np.loadtxt(’X2data’)

np.loadtxt(’Y2data’)

datal, data2 = [1, []

for i in range(0, X1.size):

datal.append([X1[i], Y1[ill)

data2.append ([X2[i], Y2[i]l])

deltall = delta([X1[0], Y1[0]], datal)
deltal2 = delta([X1[len(X1) - 11, Yi[len(Y1) - 111, datal)
delta21l = delta([X2[0], Y2[0]], data2)
delta22 = delta([X2[1len(X2) - 1], Y2[1len(Y2) - 1]], data2)

fig, [axl, ax2] = plt.subplots(l, 2, figsize=(10,5))

axl.

ax1.

axl.

ax1.

ax1.

scatter(x=X1, y=Y1, s=1, marker=’0’, color=’r’)
scatter (x=X2,y=Y2, s=1, marker=’x’, color=’b’)
set_title(’curves’)

set_xlim(-5, 15)

set_ylim(-5, 15)
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ax2.
ax2.
ax2.
ax2.

ax2.

plt.

scatter(x=deltall, y=deltal2, s=1, marker=’0’, color=’r’)
scatter(x=delta2l, y=delta22, s=1, marker=’x’, color=’b’, alpha=0.5)
set_title(’signatures’)

set_xlabel (’$\delta_1$’)

set_ylabel(’$\delta_2$’)

show ()
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APPENDIX B
Topologically Identifying SU(2,RR)/ftconj with [-1,1]

The following appendix proves the topological claim made in Remark 7.1. First we
need some general results about invariants of topological spaces, this discussion will closely

follow Munkres [14].

Definition B.1. Let X and Y be topological spaces. Let m: X — Y be a surjective map.
Then the map 7 is said to be a topological quotient map provided a subset U of Y is open

in Y if and only if 771(U) is open in X.

Definition B.2. Let X and Y be topological spaces. The map f: X — Y is called open if

for any open set U c X the image f(U) is open.

Lemma B.1. Let X and Y be topological spaces. If f : X — Y 1is a surjective open

continuous map then f is a quotient map.

Proof. Since f is surjective and continuous we need only show that if f~1(U) is open for
some set U ¢ Y then U is open. But since f is open f(f~1(U)) = U is open completing the

proof. O

If G is a Lie group and p: G x X - X is an action which is also a continuous map
with respect to the product topology on GG x X then with respect to the quotient topology
on X /G, the projection map 7 : X - X /G sending each element of X to its orbit is an
open topological quotient map, see Boothby [3] for details. In this situation we have the

following extension of Theorem 2.2 for continuous invariants.

Lemma B.2. Let G be a Lie group, X a topological space, and p: Gx X - X a continuous
group action with open quotient map w: X — X/G. Let f: X =Y be an invariant function
with respect to the action p and let f: X |G —Y be the unique function such that fom = f.
The function f s continuous if and only if f is continuous, and f s a topological quotient

map if and only if f is a topological quotient map.
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Proof. If f is continuous then f = f o is a composition of continuous maps and therefore
a continuous map.

Now suppose that f is continuous. If V c Y is open then U = f~1(V) is open and
7(U) c X/G is open because the projection is an open map. We claim that 7(U) = f~1(V).
From fom = f it’s immediate that f(x(U)) =V so that 7(U) c f~1(V). Fix & ¢ f~1(V).
Since 7 is surjective there exists some x € X such that 7(z) = Z, and the image of w(x)

under f is

f(@) = f(r(2)) = f(2),

so f(x) € V because & € f~1(V). Hence, z € f5(V) = U and & = w(x) € 7(U) which
completes the proof that 7 (U) = f~1(V) so f is continuous.

Now if f is a topological quotient map then fom = f is a composition of quotient maps
and so f is a quotient map.

On the other hand suppose that f is a quotient map. Then since f is surjective f is
surjective. From the previous part since f is continuous then f is continuous as well. So
consider some V € Y. We will show that V is open in Y if U = f~*(V) is open in X/G.

771 (U) is open because 7 is continuous. We claim that 77*(U) = f~(V). From

f@ N U0) = for(z™(U)) = f(U) =V

then 7 1(U) c f~Y(V). Now fix 2 € f~1(V). Then f(n(z)) = f(z) € V so n(z) € U and
z e 1 (U). Then since 7-1(U) = f~1(V) is open and f is a topological quotient map then

V' is open completing the proof. O

Lemma B.3. If f: X - Y is a topological quotient map and a complete invariant of the

continuous group action p: G x X - X then f: X/G =Y is a canonical homeomorphism.

Proof. From Corollary 2.1 f is a canonical bijection, and from Lemma B.2 f is a topo-
logical quotient map. Then since f is a topological quotient map and a bijection it is a

homeomorphism. O
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We now give a sufficient condition for a surjective continuous complete invariant func-

tion to be open.

Lemma B.4. Let X and Y be topological spaces, f: X — Y a surjective continuous map.

If there exists a continuous map g:Y — X such that f og=1dy then f is a quotient map.

Proof. Let V c Y be a subset and suppose that f~!(V) is an open set. Then since g
is continuous g '(f71(V)) is open. Now we claim that this set is equal to V. Indeed
let y € g1 (f~1(V)) then g(y) € f1(V) and f(g(y)) = y € V since f og = Idy. Hence
g1 (f1(V)) c V. On the other hand if y € V then g(y) satisfies f(g(y)) =y € V so
g(y) € £5(V) and hence y € g1 (f1(V)) which completes the proof of the claim and

g X (f5(V)) = V. Then V is open and therefore f is a quotient map. O

Now consider SU(2,R). This is a closed Lie subgroup of GL(2,C) and therefore an em-
bedded submanifold which is a topological manifold with respect to the subspace topology,
see Boothby [3] or Helgason [11].

The group GL(2,C) is an open submanifold of M, (C) the real vector space of n xn
matrices with complex entries. The standard topology in M, (C) is equivalent to the

topology induced by the inner product,
1 .
(A,B) = étr(A B),

and so the topology on SU(2,R) is the subspace topology with respect to the distance

function
d(A, B) - %tr((A _B)*(A-B)).

Note that the map tr is continuous as it is a polynomial in the entries of elements of

SU(2,IR). We now prove the trace function is a topological quotient map.

Lemma B.5. The map %tr :SU(2,R) - [-1,1] is a quotient map.
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Proof. % tr is a continuous map as a restriction of a continuous map to a subspace. Moreover
%tr is surjective from Theorem 7.1.
We will show that there exists g : [-1,1] - SU(2,R) which is continuous and serves as

a right inverse of %tr. Indeed let

+iV1-72 0

0 r—ivV131-r2

o) =|

we note that det(g(r)) =r2+1-72=1 and

. |rrivi-r? 0 r—iv1-1r2 0 10
g(r)g(r)” = =
0 r—iv1-r2 0 r+ivV1-r2 0 1
so g is well defined. The map g is also continuous since each component of g(r) is continuous

in r. Now we verify that f o g(r) = r. Indeed this follows from the construction of g(r) so

that

S tr(g(r) = 5 (2r) =7

and by Lemma B.4 %tr is a quotient map. O

Now %tr :SU(2,R) - [-1,1] is continuous surjective and open, so it is a quotient map,
and a complete invariant of the action ficonj of SU(2,R) on itself by conjugation. Then

Lemma B.3 shows there is a canonical homeomorphism between SU(2,R)/ftconj and [-1,1].
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